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ABSTRACT 

In order to rapidly probe the structure of proteins in solution, a protocol for 

chemical modification of solvent accessible amino acid side chains was developed, and 

the sites of modification were determined by mass spectrometry to describe the surface of 

the protein. The knowledge gained about side chain solvent accessibility allowed the 

critical evaluation of structural models for the proteins examined, allowing incorrect 

models to be rejected and more likely models to be proposed. Methods were developed 

using either Fenton chemistry or photolysis of hydrogen peroxide to generate hydroxyl 

radicals in situ. The oxidation chemistry of these radicals with the side chains of various 

amino acids were exploited to label solvent accessible sites on several model proteins of 

known tertiary structure. The relative apparent rate of oxidation of the side chains was 

shown to be a function of the known solvent accessibility and the chemical reactivity of 

the amino acid. The known properties of hydroxyl radical oxidation of amino acid side 

chains allows hydroxyl radical surface mapping data to be used as biophysical constraints 

for evaluating structural models of proteins and protein-protein interactions. 

Computational models of the yeast ribonucleotide reductase inhibitor protein 

Sml 1 p were evaluated using surface mapping data of the functional C 14S Sml 1 p protein. 

Various full atom computational models were discredited based on the surface mapping 

data, and a manually adjusted computational model was generated that possessed low 

free energy, and agreed with surface mapping data, partial NMR data, and tryptophan 

anisotropy and quenching data. In addition, the interaction between peptides forming A� 
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fibrils, implicated in Alzheimer's disease, were examined using hydroxyl radicals. This 

radical mapping suggests that the model proffered by Perutz et al, which states that the 

A� fibril is a solvent-filled nanotube, is incorrect. Overall, chemically-generated 

hydroxyl radicals have been developed as a general, multi-target labeling reagent for 

protein surfaces. Hydroxyl radical surface maps can be used to characterize protein 

tertiary and quaternary structure and to apply valuable biophysical constraints for 

structural modeling. 
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CHAPTER 1-INTRODUCTION 

The era of high-throughput biology began with the publication of the microbial 

genomes of Haemophilus influenzae (1 ), Mycoplasma genitalium (2), the eukaryote 

Saccharomyces cerevisiae (3 ), and the archaeon Methanococcus jannaeschii ( 4 ). Since 

these reports, there has been an explosion in discovery-based, high-throughput biology. 

Comparative genomics has led to insights in evolution, gene prediction, and gene 

regulation sequences ( 5-7). These insights have been applied to many different problems, 

including the elucidation of antimicrobial targets (8, 9), elucidation of host-symbiont 

interactions (10), and the nature of drug-efflux systems (11). Comparative genomics has 

even allowed researchers to begin to define the minimal set of genes required to sustain 

independent life (12, 13). Genome sequencing today has been greatly automated to run 

scores of experiments in parallel, with massive computing resources dedicated to the 

assembly of contigs from all of the automated sequencing results, leading to incredibly 

high-throughput DNA sequencing. 

The amount of information afforded by high-throughput biological analyses 

increased greatly with the development of high-density microarray hybridization analysis 

(14). High-density DNA microarrays allow for the analysis of DNA homology on a 

genomic scale (15-18). Perhaps more importantly for high-throughput biology is the 

ability to rapidly compare gene expression profiles between different growth conditions. 

For example, expression differences between stationary and logarithmic growth phases in 

E.coli were analyzed by microarray analysis (19), as was the differences between aerobic 
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and anaerobic growth of B. subtilis (20), even analysis of transcription in the brewer's 

yeast S. cerevisiae during different stages of the brewing process (21 ). This technology 

allows the parallel comparative expression analysis of thousands of genes in a single 

experiment, resulting in very high-throughput analysis of transcriptional regulation. 

More recently, the advent of high-throughput proteomics has been realized, with 

the great advances in mass spectrometric instrumentation and the coupling of mass 

spectrometry with various separations techniques allowing the rapid identification of 

proteins from complex mixtures (22, 23). Not only has proteomics allowed the 

identification of a large part of the protein complement of many organisms and tissue 

types, but also the relative quantitation of protein abundances between different growth 

states (24, 25), environmental stimuli (26), or tissue differentiation stage (27). A major 

key to the tremendous increase in throughput and coverage in mass spectrometry is the 

development of low flow rate LC-MS (22). The result of these technologies is the ability 

to determine hundreds of protein identities ( and potentially relative quantities) in a single 

experiment. 

Thus far, the advances in high-throughput biology have followed the central 

dogma of molecular biology as described above (Figure 1 ). As the complexity of the 

information sought increased from genes to transcripts to protein sequence to protein 

structure, the analytical requirements, and thus the complexity of the analytical 

techniques have increased as well. The next logical step is the high-throughput 

characterization of protein structure. Protein structure is widely recognized to be 

intimately linked to protein function. Knowledge of protein structure often allows great 
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Figure 1: Progress of High-Throughput Biology 

A comparison of the standard rates of progress in a single research group for high­

throughput biology in systems of increasing complexity. The rate for structural genomics 

taken from a recent review (28). 
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insight into the mechanisms of various aspects of protein enzymatic function and ligand 

binding. For example, Figure 2 shows the structure of bovine �-lactoglobulin A at pH 

6.2 (Figure 2A) and pH 8.2 (Figure 2B), two sides of the characterized Tanford transition 

(29). High-resolution structures allowed the characterization of the conformational 

change of the pH-sensitive loop covering the hydrophobic binding pocket (3 0). 

Numerous other examples of the value of protein structure in elucidation of protein 

function have been reported. Various initiatives have been proposed to enable the rapid 

elucidation of protein structures. The major comprehensive initiatives focus on the 

analysis of targeted proteins to represent a "fold family", by which other proteins can be 

modeled (3 1 ). Current initiatives have focused on NMR and X-ray crystallography to 

provide high-resolution structures of these targeted proteins (32). Both NMR-based and 

XRC-based approaches have recently reported a success rate of about 20% from gene to 

structure (33 ,  34), resulting in 80% of targeted genes yielding no structure by high­

throughput methods. Estimates suggest that the structures of about 16,000 new, carefully 

selected proteins must be solved in order to accurately model the vast majority of protein 

structures. If the current rate of ten non-redundant structure solutions per week 

continues, sufficient data to produce accurate models for the vast majority of proteins will 

be possible in just over 30 years (3 1 ). 

There are several factors leading to the low throughput and low success rate for 

structural genomics by XRC and NMR. The main factor is the need to purify large 

quantities of the protein of interest. Protein purification is often a very time-consuming 

task, and not all proteins are amenable to overexpression and purification. In addition, 

solution-phase NMR has limitations as to the size of proteins that can be analyzed, with a 

4 



Figure 2: The Tanford Transition of P-lactoglobulin A 

The value of protein structure to elucidate the mechanism of biological function. 

A.-P-lactoglobulin A at pH 6.2. Loop 85-90 is colored green, and is covering the 

hydrophobic pocket between the two� sheets. B.- P-lactoglobulin A at pH 8.2, after the 

Tanford transition. Loop 85-90 ( containing Glu89) moves outward, exposing the 

hydrophobic pocket. 
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hard size limitation at about 40 kDa, and a practical limitation for rapid de novo structural 

analysis of20 kDa (32). While XRC does not have this size limitation, the technique 

does require a high-quality crystal of the protein of interest, and many proteins do not 

readily crystallize. With the amount of protein identifications possible by proteomics 

approaching thousands per experiment, and the low success rate and low throughput of 

structural genomics initiatives, an alternative technique that can combine true high­

throughput analysis (preferably without the need for purification) with reliable structural 

information would be an invaluable addition to the toolbox of high-throughput biology. 

Every structural genomics initiative to date has included as an essential part the 

technique of computational structural prediction. The high speed of computational 

prediction as compared with any experimental technique almost ensures the continued 

reliance of structural genomics initiatives on computational modeling. Computational 

modeling algorithms are divided into several groups based on the methods used to 

generate a structural model. For the purposes of this discussion, two groups of modeling 

algorithms will be considered. The first group heavily utilizes previously solved protein 

structures to predict the structure of similar proteins. This group includes protein 

threading (35), fold recognition and comparative modeling (3 6) algorithms. With 

current modeling technologies, reasonably accurate structural models can be generated 

for proteins that share >30% sequence identity with a protein of known structure (37, 38). 

Of organisms with completed genomes, reasonably accurate structural models could be 

generated for only 5-10% of the genes sequenced, according to a report made in 2001 

(31 ). These models generally focus on backbone alignments only, with side chain 

configurations often disregarded. 
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The other group of modeling algorithms is often referred to as ab initio modeling. 

These modeling techniques attempt to generate protein structures without reliance on 

homology with known structures, using force field equations and energy minimization 

techniques to generate protein structures from primary sequences. In recent competitions 

in protein modeling known as Critical Assessment in Structure Prediction ( CASP), the 

Rosetta algorithm by Dr. David Baker's group has consistently outperformed other 

algorithms in the ab initio category, and is approaching levels of confidence and accuracy 

previously reserved for comparative modeling/threading techniques (39). In addition, 

protein comparative modeling is unsuited to modeling truly novel folds, while ab initio 

modeling techniques enjoy much better (although still very limited) success. 

Protein structure modeling techniques have been shown to have greatly improved 

accuracy and reliability when biophysical constraints are applied to the modeling process. 

Several studies have been published utilizing sparse NMR datasets to constrain protein 

modeling ( 40, 41 ), as well as known active site geometries and disulfide bonds ( 42). 

Since biophysical constraints greatly improve the accuracy of computational models, a 

high-throughput method for generating reliable biophysical constraints for proteins would 

be a great aid in structural genomics, allowing for reasonably accurate models to be 

generated for a large number of proteins in a short amount of time. As opposed to 

threading techniques that tend to rely upon backbone alignments, Rosetta relies heavily 

upon full atom representations to improve the accuracy and reliability of the modeling 

process (43). Therefore, unlike algorithms that only model backbone positions, previous 

knowledge of the biophysical properties of amino acid side chains could be utilized to 

evaluate full-atom representations generated from models provided by Rosetta. 
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One biophysical property of proteins that can be measured experimentally is 

solvent accessibility. Several methods for determination of solvent accessible regions of 

a soluble protein have been utilized previously. The study of the binding of monoclonal 

antibodies has been used in several analyses ( 44-4 7). One allows monoclonal antibodies 

to bind to the epitope of interest, and then observes changes in the binding affinities 

under different conditions. A reduced binding affinity is interpreted as a reduced 

accessibility of the epitope. This method requires the availability of monoclonal 

antibodies for each epitope that one wishes to study, making this approach unsuitable for 

high-throughput analyses. Also, the large size of the antibody and the large size of the 

epitope to which the antibody binds reduce the resolution of the surface map; the change 

in antibody accessibility can occur anywhere within the epitope, and changes in structure 

that preclude antibody binding may or may not eliminate solvent accessibility. 

Another popular method utilized involves incomplete digestion of the protein by a 

panel of proteases and measuring which sites are susceptible to proteolysis ( 48-63). One 

partially digests the protein with the panel of proteases and then tries to determine which 

potential cleavage sites are acted upon. However, there are many limitations with this 

approach. First, the investigator must be very careful that only one cleavage per protein 

molecule occurs. If more than one cleavage occurs, it is very possible that the protein 

structure can change significantly, preventing further cleavages from being representative 

of the native structure. A thorough sampling of a protein requires a battery of 

experiments using different proteases for each protein to be probed, reducing the 

throughput. Also, the number of reliable proteases limits the sites that can be probed. 
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Finally, proteases are large enzymes, and thus do not accurately represent the solvent 

accessibility of the sites they act upon. 

Specific chemical modification of solvent accessible side chains is another 

method of protein surface characterization that has been utilized often in the literature 

( 51 , 64-74 ). These methods each allow for the modification of a single class of 

functional groups on amino acid side chains, such as the free amines of lysine or the 

sulfhydryl of cysteine. However, although these methods are quite powerful, they only 

probe a very limited range of amino acids, requiring batteries of different experiments, 

reagents, and reaction conditions to probe a significant fraction of the amino acids of a 

protein. A nonspecific protein label would avoid the need for multiple experiments, 

increasing the speed and reliability of the data acquisition process as well as increasing 

reproducibility by minimizing the number of different reaction conditions required. 

Nonspecific hydrophilic photolabeling experiments were performed previously in 

order to tag surface proteins in erythrocytes (75), study the denaturation of ribonuclease 

A (76), discern the topography of rhodopsin in the membrane (77), and measure pH­

induced conformation changes in receptor proteins (78). However, in these studies, the 

detection of the site of labeling was limited to simply detecting which proteins were 

labeled by autoradiography, protease digestion followed by autoradiography, or acid 

hydrolysis followed by analysis of differences in amino acid composition. These 

detection methods have inherently poor resolution. Analysis of proteolytic fragments 

can, at best, only localize the labeling site to within one polypeptide; amino acid 

composition analysis can only determine approximately how many of each amino acid 

are labeled, not their location. Also, for detection using these methods, the reaction is 
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required to go to saturation. Saturating the protein with the photolabel makes it possible 

that the first labeling reactions will cause structural changes that are then reflected in later 

labeling reactions. In addition, experimentation has shown that the overall efficiency of 

the photolabeling reaction is low, requiring an excess of label and long irradiation times 

(personal observation). 

Solution phase hydrogen-deuterium exchange is a commonly used technique to 

study solvent accessible surfaces and hydrogen bonding of proteins (79-91 ). Hydrogen­

deuterium exchange is a powerful technique, which will probe the backbone of any 

protein residue. Analysis of hydrogen-deuterium exchange data is often very 

complicated, though, with the effects of hydrogen bonding, solvent accessibility, and 

complex back-exchange kinetics all contributing to the observed exchange rates (92). As 

such, any hydrogen-deuterium exchange experiment requires extensive optimization to 

characterize the back-exchange rates for the protein studied. Therefore, hydrogen­

deuterium exchange, while an excellent technique for targeted applications, is unsuitable 

for high-throughput experimentation. 

Another promising method is that of untethered Fe-EDT A cleavage of proteins in 

the presence of hydrogen peroxide and ascorbate (93-97). This method has been shown 

to yield nonspecific cleavages and has been used successfully to map protein-protein 

interactions and protein-DNA interactions. However, there are several limitations with 

this method. Once again, this method involves cleavage of the protein backbone, and a 

single cleavage event can drastically alter the structure of the protein. Therefore, one 

must be very careful to ensure that only a single cleavage event per molecule occurs; 

otherwise, incorrect structural information may be obtained. Also, the cleavage reaction 

10 



results in many modifications to protein side chains before the first cleavage event; these 

modifications make accurate assignment of the sites of cleavage difficult (98). However, 

mapping the sites of protein side chain modification under very limited oxidation 

conditions could be very useful for describing the surface of a protein. 

The use of a synchrotron X-ray beamline has been proposed to generate hydroxyl 

radicals very rapidly in solution. The hydroxyl radicals oxidize certain amino acid side 

chains, and then mass spectrometry is used to determine the sites of oxidation (99-103 ). 

Good correlation was demonstrated in most cases between oxidation and solvent 

accessibility, and the value of the technique for probing protein folding and unfolding has 

been demonstrated (99, 103 ). Unfortunately, there are some practical difficulties with a 

synchrotron X-ray approach. Standard low-flux or pulse x-ray sources are not ideal for 

these studies due to potential damage to the analyte protein ( 102), and access to a 

synchrotron beamline is not readily available to all researchers. Another method was 

developed for surface oxidation of proteins using high electrospray needle voltages with 

oxygen as the nebulizer gas (104). However, this technique invokes questions as to the 

structure of the protein in the aerosol spray under a high electric field, as well as 

difficulties in subsequent tryptic digestion. 

Matheson et al listed a series of criteria for that must be met for a useful probe of 

protein surfaces (76). 

1) The labeling process itseU should not alter the surface topography of the protein 

2) The presence of the surface labeling compound(s) in solution before labeling should 
not alter the surface features of the protein 

3) It should be demonstrated that residues known to be buried in the native protein are 
not labeled but can be labeled in the denatured protein 
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4) In order to correcdy interpret the labeling patterns, it should be determined to what 
extent the labeling reagent is nonspecific 

The hydroxyl radical meets all of these requirements. This radical has been 

utilized to label a variety of model proteins, and it has been shown that the radical will 

not interact with side chains that are buried in the native structure, showing that the 

process itself does not modify the protein topography, and that the presence of the 

labeling compounds also does not modify the protein topography (101, 104). In addition, 

we have shown that residues known to be buried and unmodified in native folded 

lysozyme were oxidized readily upon UV-induced protein denaturation (discussed in 

Chapter 4). Finally, the rich history of radiation biology provides an excellent collection 

of data on the reactivity of side chains with hydroxyl radicals (105). Complete and 

thorough analyses on the rates of modification for each of the twenty standard amino 

acids have been performed, describing the reactivities of the amino acids in solution 

(106). These findings are summarized in Table 1. The hydroxyl radical has been shown 

to label a variety of amino acids, most notably sulfur-containing amino acids (Cys, Met) 

and aromatic amino acids (Trp, Tyr, Phe) (100). These amino acids are usually found in 

the hydrophobic interior of the protein. Therefore, information on a hydrophobic amino 

acid that is actually on the surface of the protein is highly useful from an ab initio 

modeling perspective; the force field equations attempt to bury the hydrophobic amino 

acids, so constraints that require the amino acid on the surface eliminates a large number 

of inaccurate structures. 
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Table 1 Pseudo-First Order Rate Constant of Free Amino Acid Oxidation. 

Side Rate constant Side Rate constant 
Chain (M-1 s·I) Chain (M-1 s·l) 
Ala 7.7 X 10' Leu 1.7 X H)'J 

Arg 3.5 X 10�* Lys 3.5 X 108 

Asn 4.9 X 101 Mer 8.9 X 10'J 

Asp 7.5 X 1 01 Phe 6.9 X 10'J 

Cys 3.4 X 1010 Pro 4.8 X 108 

Glu 2.3 X 1 08 Ser 3.2 X 108 

Gln 5.4 X 108 Tor 5.1 X 108 

Gly 1 .7 X 101 Trp 1 .3 X 1010 

His 5.0 X 10'J* Tyir 1.3 X 1010 

Ile 1.8 X 10'J Val 7.6 x 108 

Compiled from Buxton et al (1 06). Side chains in bold are those observed previously to 

have an addition of 16  Da as a result of hydroxyl radical surface mapping (1 00). 

*These amino acids with relatively high rate constants have a complex series of major 

reaction products that cause the measured rate of addition of 16  Da to be much lower than 

the previously reported rate of oxidation; therefore, the rate constants of these amino 

acids are not indicative of the observed relative reactivity in surface mapping 

experiments . 

.LMethionine is known to be oxidized regardless of solvent accessibility ( 1 01 ). 
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The need clearly exists for a high throughput method for accurate determination 

of protein structure, preferably based on actual biophysical data. Current structural 

techniques generally require prior purification of the protein of interest, inherently 

limiting their speed as well as limiting the range of proteins which can be analyzed to 

those which can be successfully purified in a native form. It has also been established 

that computational modeling methods, which are currently the backbone of high­

throughput structural analyses, often yield inaccurate structures, but can be improved 

through the use of biophysical constraints (40, 42, 107, 108). The hydroxyl radical 

satisfies all criteria for a valid surface probe set out by Matheson et al (76). Previous 

work has also demonstrated that protein surfaces can be rapidly and accurately probed 

using hydroxyl radicals, and the sites of oxidation can be accurately and sensitively 

determined using tandem mass spectrometry (101, 104). 

In order to meet the need for rapid generation of biophysical constraints for 

computational modeling, rapid chemical methods for generating hydroxyl radicals 

without denaturing proteins were developed. We hypothesize that chemically generated 

hydroxyl radicals would accurately probe the surface of proteins utilizing a simple, 

rapid reaction to label a variety of solvent accessible side chains, many of which are 

hydrophobic in nature. Further, we hypothesize that these labeling events can serve as 

constraints to eliminate faulty computational models. The proposed scheme to probe 

protein surfaces is presented in Figure 3. Proteins are labeled utilizing hydroxyl radicals 

generated from hydrogen peroxide, either by transition metal-catalyzed Fenton chemistry, 

or by photolysis of hydrogen peroxide by UV irradiation. The labeled protein is 

characterized by ES-FTMS to determine the extent of oxidation. The labeled protein is 
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Figure 3: Scheme for Surface Mapping of Proteins 

A diagram of the scheme utilized for mapping the solvent accessible surface of proteins 

by hydroxyl radical oxidation. 
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then digested with trypsin, and the resulting peptides are measured by ES-FTMS and by 

LC-MS/MS using a quadropole ion trap. The labeled amino acid side chains must be 

accessible to the hydroxyl radical, and therefore to the solvent. Differences in the rate of 

oxidation will be observed for amino acid side chains with different solvent 

accessibilities. 

The data generated from protein surface mapping will not be sufficient to allow 

the generation of accurate, high-resolution models. Neither NMR and X-ray 

crystallography will be supplanted by the successful use of this technique. However, 

surface mapping has several advantages over these two techniques, as summarized in 

Table 2. Although the data provided by hydroxyl radical surface mapping is significantly 

lower resolution, it does not require pure sample, does not have a size limitation, is not as 

labor intensive, and requires less sample than NMR and XRC. Hydroxyl radical surface 

mapping was developed as yet another tool in the field of structural biology, especially 

for rapid characterization of unknown protein samples. Presented herein is work 

performed to develop a rapid, simple method for utilizing the hydroxyl radical to describe 

the surface of a protein, and ultimately to use these data as constraints to improve protein 

structure prediction accuracy. 
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Table 2 Comparison of Three Structural Biology Techniques 

Technique Sample Purity Size Solution Dynamics? Resolution 
Amount Limitation Phase? 

X-ray --20-50 2: 95% none no no very high 
crystallography mg (typically 

2:1-3 A) 
NMR --3 mg 2: 95% <30-40 yes* yes high 

spectroscopy kDa (typically 2: 
2-4 A) 

Hydroxyl <.2 mg Low; none yes no- Undefined 
radical usable aggregate --depends 

mappmg with average on protein, 
simple solvent fairly low 

mixtures accessibility 

*Solid-state NMR is not yet considered a method of choice for complete structural 

resolution (1 09), and thus is not considered here. 
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CHAPTER 2-MATERIALS AND METHODS 

The approach described here is designed to rapidly probe protein surfaces with 

hydroxyl radicals. The basic strategy is to generate hydroxyl radicals in situ with either 

native or denatured protein of interest. The amount of oxidation is gauged by mass 

spectrometry to ensure that the oxidation is controlled and limited to a moderate extent. 

The protein is then digested and the sites of oxidation are determined by mass 

spectrometry. The sites of oxidation of the denatured protein serve as a control to 

determine potential oxidation targets, and the native state oxidation determines which 

side chains are solvent accessible. 

Chemical oxidation of protein solutions 

Two stock solutions were prepared for the chemical oxidation reactions. Stock 

solution # 1 consisted of 20 mM sodium ascorbate, 50 mM sodium phosphate (Fisher 

Scientific, Pittsburgh PA), adjusted to pH 6.5 using sodium hydroxide. Stock solution #2 

consisted of 6 µM N�F e(SO4)2 (Fisher Scientific), 13 µM EDT A (Fisher Scientific), 50 

mM sodium phosphate (Fisher Scientific), adjusted to pH 6.5 using sodium hydroxide. 

These stock solutions and the reagent (3% H2O2) were used according to a protocol from 

Heyduk (98) adapted to result in limited side chain oxidation of apomyoglobin. 

Lyophilized protein (apomyoglobin, Sigma-Aldrich, St. Louis MO) was reconstituted at 

200 µM concentration in 50 mM sodium phosphate. For reactions, ascorbate and the 

iron-EDT A solutions were added in a 1: 10 dilution (stock volume : total volume) to the 
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buffered apomyoglobin. Finally, the H2O2 was added to a 0.3% final concentration to 

initiate the oxidation. In order to quench the reaction, an equal volume of 2M Tris (pH 5) 

was added. 

Photochemical oxidation of protein solutions 

All solvents were purchased from Sigma-Aldrich at the highest purity available 

and used as supplied without further purification, unless otherwise designated. The 

protein of interest was reconstituted in 1 mL phosphate buffered saline (PBS, 0.01M 

sodium phosphate, 0.1 5M sodium chloride, pH 7.5) at a concentration of 0.1 to 2 mg/mL 

in a 2mL microcentrifuge tube (VWR International, West Chester PA). The protein 

concentration did not seem to affect the amount of protein oxidation within this 

concentration range with these proteins. Each sample had lmL of 30% hydrogen 

peroxide (Sigma-Aldrich) added to it, for a final hydrogen peroxide concentration of 15% 

v/v. For denatured C1 4S Smllp analyses, guanidine hydrochloride (Sigma-Aldrich) was 

added to the mixture to a final concentration of 6M. Each sample was then irradiated in 

the microfuge tube with the cap open in a Stratalinker 2400 (Stratagene, LaJolla CA) at a 

distance of~ 10  cm from the UV source, using the manufacturer's UV light bulbs with 

maximum illumination at a wavelength of 254 nm for a set amount of time, with the time 

corrected internally by a UV detector to ensure constant a UV output of ~4000 

µwatts/cm2. The oxidized sample was immediately extracted using a tC2 SepPak 

(Waters, Milford MA), according to manufacturer's recommendations, to stop the 

reaction by removing the hydrogen peroxide. The sole exception to this protocol was the 

analysis of the A� 1 -40 monomer and fibril. The monomer oxidation was quenched by 
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solid phase extraction using a C 18  Lite Sep-Pak (Waters); the oxidation of the fibrils was 

halted by pelleting, using a 1 5  minute centrifugation at 4 ° C in a bench top microcentrifuge 

followed by a wash with water. The wash was repeated twice to quench the reaction. An 

aliquot of 1 00 µL of intact oxidized protein was retained for ES-FTMS analysis of the 

extent of oxidation. 

Chemistry of hydroxyl radical-mediated oxidation of amino acid side chains 

Oxidative damage of proteins has long been an important topic of research, 

especially damage resulting from ionizing radiation (1 05) or from accumulation of 

reactive oxygen species as associated with aging (11 0, 1 1 1 ). A large body of research is 

available on the chemistry of radical-mediated oxidation of proteins, both at the side 

chains and the backbone. Understanding of this chemistry is essential to characterization 

of the resulting oxidation products. 

A potential oxidation site in all peptides and proteins is at the Ca carbon of the 

protein backbone. Figure 4A shows the reaction mechanism of oxidative cleavage at a 

protein backbone (1 12, 1 13). Oxidation at the protein backbone occurs at a fairly low 

rate primarily due to the low steric accessibility of the hydrogen of the Ca carbon and the 

difficulty of the backbone to assume the necessary planar trigonal conformation (1 14). In 

the conditions described above for protein oxidation, no main chain degradation was 

detected. 

Oxidation at aliphatic side chains, including Ile, Leu, Val, and Ala, is initiated by 

abstraction of a hydrogen from a C-H bond, resulting in a side chain carbon radical 

(Figure 4B). The carbon radical will then interact with molecular oxygen in solution to 
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Figure 4: Hydroxyl Radical-Protein Chemistry 

Reactions of hydroxyl radicals with various areas of the proteins. A. The 

oxidative cleavage of the protein backbone; the two major pathways both lead to a keto 

acid, with one resulting in a free amide and the other releasing ammonia and a carboxylic 

acid. B. The oxidation of aliphatic groups. Both hydroxyl and carbonyl substitution are 

possible pathways, although hydroxyl substitution is much more prevalent. C. The 

oxidation of aromatic rings. The addition to the phenyl group occurs in Phe, Tyr, and 

Trp, resulting in the production of a hydroperoxyl radical . 
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result in either a hydroxyl or carbonyl substitution (112, 115, 116). In other amino acids 

with aliphatic side chains ending in functional groups (such as acid and basic amino acids 

as well as Asn, Gln, Ser and Thr), hydrogen abstraction in the aliphatic portion of the side 

chain often results in the loss of the functional group (115, 117). In the absence of 

oxygen, the carbon radicals will interact with one another and dimerize, resulting in 

protein crosslinking either through the Ca carbon ( 118-121) or through the side chain­

centered radical (116). All reactions were performed in non-evacuated solutions, and no 

crosslinking of protein was observed. 

Oxidation at unsaturated cyclic side chains does not occur via a hydrogen 

abstraction mechanism; rather, the hydroxyl radical directly inserts itself into an 

unsaturated C-C bond system, resulting again in a side chain carbon radical (Figure 4C). 

In the presence of molecular oxygen, the addition of an oxygen atom occurs via the 

introduction of a hydroxyl group to the unsaturated system( 122-124 ). In tryptophan, the 

addition preferentially occurs at the double bond in the indole ring (125, 126). Histidine 

undergoes addition to the imidazole ring, followed by a complex sequence of side 

reactions (Figure 5)  (127-130). The most abundant of these reactions is the conversion of 

histidine to asparagine and aspartic acid. 

Oxidation at sulfur-containing side chains occurs preferentially at the sulfur atom. 

In methionine, oxidation occurs though an addition reaction at the sulfur locus to yield 

methionine sulfone and methionine sulfoxide (13 1), although a very low yield of 

oxidative cleavage of the C-S-C linkage has been reported (132). The oxidation of 

methionine can also occur without direct interaction with a hydroxyl radical (101, 13 3, 

134 ), perhaps through a radical transfer reaction in which a methionine buried in a 
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Major reaction pathways of the hydroxyl radical with the histidine side chain. Various 

other minor products have also been described. 
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protein transfers an electron to a carbon radical on the surface of the protein. After this 

electron transfer, the sulfur-centered radical is oxidized by molecular oxygen ( 1 01 ). 

Radical-mediated oxidation at free cysteines at neutral pH occurs through abstraction of 

the hydrogen, followed by interaction with molecular oxygen, yielding final products of 

sulfuric and sulfonic acids (135, 136). Oxidation at disulfide bonds results in the final 

formation of both sulfuric and sulfonic acids, with cleavage of the disulfide bond 

occurring (137-139). A summary of the mass shifts resulting from the most common 

oxidation products detected are shown in Table 3. 

Analysis of oxidized proteins and peptides by ES-FTMS 

To analyze the extent of protein oxidation, the oxidized protein was analyzed by 

ES-FTMS. All ES-FTMS mass spectra were acquired with an IonSpec (Lake Forest, 

CA) 9 .4-Tesla HiRes electrospray Fourier transform ion cyclotron resonance mass 

spectrometer (Figure 6). Ions were generated by direct infusion with an Analytica 

electrospray source ( ~ 2 µL/min flow rate), desolvated in a heated glass capillary, 

accumulated in an external hexapole ( 140), transferred into the high vacuum region with 

a quadropole lens system (141), and then detected in the cylindrical analyzer cell of the 

mass spectrometer. Ion detection was achieved in an ultra-low vacuum regime (~2 x 10-

10  Torr) through the use of multiple stage pumping. Initial pumping was achieved using a 

mechanical pump, lowering the pressure to the millitorr range. The next stage of 

pumping was achieved using a turbopump, lowering the pressure to ~ 1 0-5 Torr. Finally, 

two cryopumps lowered the base pressure to 1 -2 x 1 0-10  Torr. A broadband mass 

possible. Mass scale calibration was accomplished with ubiquitin. The high-resolution 
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Table 3 Common Product Mass Shifts From Protein Oxidation 

Residue Mass Shift 

Cys +16, +32, +48 

Met +16, +32 

His +16, -23, -24 

Pro +16, +14 

Tyr, Trp, Phe, Ile, Leu +16 
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Hexapole Ion 
Accumulator 

Cryopumps Turbo Rough 

Pump Pump 

Figure 6:  Diagram of lonSpec FT-ICR 

Schematic of the IonSpec ES-FTMS instrument. Ions are introduced through the 

Analytica electrospray ion source and transferred through a heated glass capillary into a 

mechanically-pumped region, through a skimmer, and into a turbopumped rf-only 

hexapole for storage at 2x10-5 Torr. The ions are then gated through a shutter, down a 

quadropole ion guide into the Penning cell in a high magnetic field. The Penning cell is 

pumped to ~10-10  Torr by two cryopumps for low pressure, high resolution analysis. 
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resolution of about 1 50,000 (full width of peak at half maximum) at m/z 1000 was mass 

measurement enables isotopic resolution of multiply charged ions. Thus, the charge state 

of a multiply-charged ion can be determined solely by its isotopic spacing (142). 

Deconvoluted molecular mass spectra were generated with the IonSpec software 

from the electrospray mass spectra by multiplying the masses of the electrospray ions by 

their respective charges, and then subtracting the masses of the protons added. This 

"unfolds" the multiply charged ion mass spectrum into a more easily interpreted 

molecular mass spectrum. Errors in mass measurement for the multiply charged ions will 

be scaled proportional to the charge in the calculation of the molecular masses in the 

deconvoluted mass spectra. By calibrating on the calculated values of the most abundant 

isotopic peaks of six different charge states (7+ to 1 21 of bovine ubiquitin, the 

deconvoluted molecular mass spectrum yielded a measured molecular mass for ubiquitin 

that was within 0.030 Da of the calculated value. This external calibration procedure 

generally provides a molecular mass measurement accuracy of� 5 ppm for most proteins 

up to at least 20 kDa. Measurements of lower mass peptides, such as those obtained from 

a proteolytic digestion, usually yield molecular mass accuracies in the few millimass 

range (� 1 ppm). The ability to accurately determine the mass/charge ratio of ions as 

well as the charge state from the isotopic spacing allows the oxidation state of proteins to 

be followed accurately, as well as the identity of oxidized peptides to be determined by 

accurate mass measurement. 

Ion collisional dissociation was conducted by isolating an ion of interest ( either a 

peptide or protein) within the analyzer cell of the mass spectrometer, and then 

accelerating the ion into a molecular nitrogen or argon target gas by sustained off-
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resonance irradiation collisionally activated dissociation, or SORI-CAD (143). For the 

SO RI-CAD experiments, the ion excitation was accomplished with an rf pulse ( ~ 1 KHz 

lower in frequency than the ion's cyclotron frequency) applied for two seconds in 

duration and with an amplitude in the range of 1 -4 volts (peak-to-peak). A pulsed valve 

was used to admit the argon or nitrogen collision gas into the high vacuum region to a 

maximum pressure of ~5 x 10-6 Torr during the ion excitation step. A base pressure of~ 1 

x 10-9 Torr was re-established prior to ion detection. 

Trypsin digestion of oxidized protein 

Measurement of the extent of oxidation is insufficient to generate much solvent 

accessibility data; if the actual sites of modification are determined, they can be deduced 

to be solvent accessible in the protein. In order to identify the sites of oxidation, the 

proteins were dried to near completeness in a SpeedVac (Savant Instruments, Holbrook 

NY) and resuspended in lmL 8 M guanidine HCl (Sigma-Aldrich), 1 0  mM DTT (EM 

Science, Gibbstown NJ), 50 mM Tris buffer (Sigma-Aldrich), and 10  mM calcium 

chloride (Sigma-Aldrich) pH 7.5. The proteins were heated at 60° C for one hour. They 

were then diluted with 9 mL of 50 mM Tris buffer, 1 0  mM calcium chloride, and 20 µg 

of sequencing grade modified trypsin (Promega, Madison WI) was added to each sample. 

The tryptic digests were incubated overnight in a 37° C shaker-incubator, and then the 

peptides were extracted using a C18 SepPak (Waters, Milford MA), and their accurate 

masses determined by ES-FTMS as described above. The accurate mass measurement 

allows unambiguous and sensitive detection of oxidized peptides, as well as determining 
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the approximate apparent rate of oxidation for the peptide by comparison of the 

abundance of the oxidized peptide abundance with the unoxidized version. 

Analysis of tryptic peptides by LC-MS/MS 

For LC-MS/MS analyses, the C18 SepPak eluant was dried to near completeness 

in a SpeedVac and resuspended in ~200 µL 0. 1 % acetic acid. For each tryptic digest, 

~50 µL of the resuspended eluant was placed in a sampling vial (Sun International 

Trading, Ltd., Wilmington NC) for analysis. All samples were injected using a F AMOS 

autosampler (LC Packings, San Fransisco CA) over a 20 µL low dispersion loop onto a 

C1s (218MS5.3 15, 300 µm i.d. x 15cm, 300 A with 3 µm particles) reverse phase column 

(Vydac, Hesperia CA). HPLC was performed using an Ultimate HPLC system (LC 

Packings) interfaced to an LCQ-Deca ion trap mass spectrometer (Thermo Finnigan, San 

Jose CA) equipped with an electrospray source. The sample was washed for five minutes 

in 100% Buffer A ( 5% acetonitrile, 95% water, 0. 5% formic acid), then the HPLC was 

run using a linear gradient of 100% Buffer A to 100% Buffer B (70% acetonitrile, 30% 

water, 0. 5% formic acid) over a time of fifty minutes at a flow rate of 4 µL/min, followed 

by a five minute wash in 100% Buffer B using a plug-in to the Xcalibur software 

provided by LC Packings. For all C14S Smll p samples, as well as for all AP 1-40 

samples, a second gradient was also run to increase sequence coverage. The second 

gradient was identical, except the linear A to B gradient was run for thirty minutes 

instead of fifty. The column was connected to the electrospray source with 100 µm I.D. 
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fused silica. The LCQ-Deca mass spectrometer was run in data-dependent mode with 

dynamic exclusion activated, and both MS and MS/MS spectra were acquired throughout 

the LC run. Apomyoglobin tryptic digestion LC-MS runs were examined periodically to 

ensure column integrity and mass calibration. 

The resulting data was analyzed in two steps. The first step employed 

TurboSEQUEST (144), using a database consisting of the sequence of the protein 

analyzed. The threshold was set at 50000, with an upper mass limit of 5000, a lower 

mass limit of 300, a precursor mass tolerance of 1 .4 Da, a fragment mass tolerance of 0.5 

Da, a peptide mass tolerance of 1.5 Da, a group scan tolerance of 2, a minimum group 

count of 1 ,  and differential modifications of 48 Da on cysteines (triply oxidized version 

most commonly observed) and 16  Da on Trp, Met, Tyr, Phe, His, Leu (1 05), Ile (personal 

observation), and Ala (solely to aid in identification of other oxidation sites). All masses 

that were identified as oxidation products were interpreted manually. All MS/MS spectra 

that were not identified as an unoxidized tryptic peptide were then analyzed manually for 

unassigned oxidized peptides. As the peptide fragments in the mass spectrometer, 

cleavage at the amide bond is the prevalent mode of fragmentation. Fragments that are 

charged on the N-terminal portion of the peptide are b-type ions, and are numbered from 

the N-terminus of the parent peptide. Fragments that are charged on the C-terminal 

portion of the peptide are y-type ions, and are numbered from the C-terminus of the 

parent peptide (145). When an amino acid is oxidized, the difference between the 

fragment masses equals the amino acid plus the mass of oxygen ( or oxygens, in the case 

of multiply-oxidized residues). Therefore, the site of oxidation can be determined by the 

neutral mass loss in the tandem mass spectrometry experiments (Figure 7). 
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Figure 7: Sample MS/MS Spectrum to Identify Oxidation Site 

MS/MS spectrum of peptide 1 25-13  8 of bovine �-lactoglobulin A from quadropole ion 

trap. Peptide fragments were labeled according to the site of cleavage and which of the 

resulting fragments retained the charge. A shift of 16  daltons more than would be 

expected between the bl 1 and b l2  ions (and also the y2 and y3 ions) proved the presence 

of oxygen on F1 36. 
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LC-MS/MS utilizing the QIT has several advantages over ES-FTMS that 

necessitate its use for oxidized peptide characterization. The addition of a 

chromatography step prior to mass spectrometry decreases the complexity of each 

spectrum by separating the proteins in time. This separation step increases the dynamic 

range of the technique; peptides of widely differing abundances can be detected from the 

same mixture by separating the abundant peptide from the less abundant one. The use of 

reverse phase chromatography has actually allowed the separation of peptides differing 

only by a single oxygen atom, allowing the detection of low level oxidation events even 

in the presence of much greater amounts of the unoxidized peptide. In addition, the LCQ 

Deca instrument used for the LC-MS/MS runs couples nicely with TurboSEQUEST, the 

computational tool used to perform the initial screening for oxidized peptides. Finally, 

CAD on the QIT is more thorough and more robust than SORI-CAD using ES-FTMS. 

The increase in CAD efficiency allows for high quality fragmentation spectra, which are 

essential to accurately determine the actual sites of oxidation. The combination of the 

high accuracy mass measurements from ES-FTMS with the robust fragmentation and 

increased dynamic range from LC-MS/MS on the QIT allows increased identification and 

characterization of a complex mixture of peptides. 

Analysis of side chain solvent accessibility 

The side chain solvent accessibility of a given protein model or structure was 

calculated using the fifty structures determined by NMR spectroscopy for lysozyme, PD B 

accession number 1 E8L ( 146); the ten structures determined by NMR spectroscopy for �­

lactoglobulin A, PDB accession number 1 CJ5 (1 47); the X-ray crystal structure of horse 
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heart myoglobin, PDB accession number 1 YMB (148) modified as described in Chapter 

3; and the various Rosetta and manually generated models for Cl4S Smllp as discussed 

in Chapter 5. Each PDB file was split into individual structure files (when necessary for 

multiple NMR structures), and the solvent accessible area of each reactive carbon and 

sulfur for each individual NMR structure, XRC structure, or computational model was 

calculated using GET AREA 1 .1 (149), calculating the solvent accessible area in A2 for 

each atom of the structural model input. The averages and standard deviations for the 

solvent accessible area of each reactive carbon and sulfur (1 05) were calculated across all 

NMR structures for lysozyme and �-lactoglobulin A. XRC structures are generally 

considered more accurate and higher resolution, but NMR structures reveal protein 

dynamics, which are very important when utilizing a method that examined the average 

solvent accessibility of a side chain. For improved protein characterization, both the 

XRC and the NMR structure were examined and compared to the oxidation sites when 

possible. 

Bacterial expression and purification of C14S Smllp 

The cloning, expression, and purification of the C 14S mutants is described in 

Gupta et al (1 50). The expression construct causes the addition of a Gly-Ser to the N­

terminus of the protein, which is known not to alter the biophysical properties of the 

protein (1 50). As previous work has been performed on the C14S mutant without the N­

terminal addition, the C 14S nomenclature will be maintained here, although the actual 

mutation in this protein is at Cys 16. The elution fractions containing C 14S Sml 1 p were 

examined by SDS-PAGE using a 15% acrylamide gel followed by analysis by 
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electrospray Fourier transform ion cyclotron resonance mass spectrometry (ES-FTMS) as 

described previously (1 5 1 ). The concentration of C14S Smllp was determined by 

Coomassie Protein Assay Kit (PIERCE, Rockford, IL) using BSA as a standard. 

Computational modeling of Smllp 

Partial sequence of Smllp (residues 1 -80 and 5 1- 104) and the whole amino acid 

sequences of Sml 1 p were subjected to structure prediction using Rosetta/I-sites ( 1 52). 

The top five most commonly recurring models generated by Rosetta for each submitted 

sequence were returned. Full atom representations for all models were constructed using 

Modeller (1 53). Models that are consistent with experimental data for each segment were 

selected for manual construction of the constrained structural models of Sml 1 p. The 

quality of each model was evaluated as described earlier ( 150). Different, lower energy 

rotamers of side chains Phe87 and Arg26 were substituted for the manually constructed 

model, followed by energy minimization. The models were refined using Deep View 

(154) (http://www.expasy.ch/spdbvD. 

Preparation of AB 1-40 peptides and fibrils 

AP 1 -40 fibrils were grown from chemically synthesized AP 1 -40 peptide (Keck 

Biotechnology Center, Yale University). Briefly, AP 1 -40 peptide was treated with TF A 

(Pierce) and HFIP (Acros) to remove any preexisting aggregates (1 55). Following 

disaggregation, the peptide was then dissolved stepwise in equal volumes of 2 mM Na OH 

and 2x PBS, pH 7.4, containing 0. 1 % sodium azide to give a peptide concentration of 
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approximately 50 µM. The peptide was then ultracentrifuged for 18 h at 50000gto 

remove any remaining aggregates. The soluble fraction after this step was used for 

monomer oxidation at a final concentration of --0. 1 mg/mL. 

The fibril formation reaction was initiated by addition of a small quantity of 

sonicated A� 1-40 fibrils at a weight ratio of 1 :750 and incubation at 37 ° C in PBS, pH 

7.4. Fibril growth was monitored using thioflavin assay (156) until complete (~7 days). 

Fibrils were suspended by vigorous shaking prior to oxidation, and oxidation was 

performed at a final concentration of --0. 1 mg/mL. After fibril oxidation, the fibrils were 

disaggregated by incubation overnight in TF A, followed by dilution in PBS and solid 

phase extraction by C 18 Lite Sep Pak (Waters). Following extraction, the remaining TF A 

was removed by evaporation in a SpeedVac (Savant Instruments). 
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CHAPTER 3-SURFACE MAPPING OF APOMYOGLOBIN 

BY FENTON CHEMISTRY OXIDATION 

The data presented below has been previously published as "Sharp, J. S., Becker, J. M., 

and Hettich, R. L. Protein surface mapping by chemical oxidation: Structural analysis by 

mass spectrometry. Anal Biochem (2003), 313, pg 216-225". All experimental work and 

data analysis were performed by Joshua S. Sharp. 

Introduction 

One approach to generate hydroxyl radicals for protein solvent accessible surface 

studies is the use of chelated iron to catalyze the formation of hydroxyl radicals from 

hydrogen peroxide, known as Fenton chemistry. Previous use of this method was limited 

to utilizing the hydroxyl radicals to cleave the protein backbone, followed by 

determination of the sites of cleavage by gel electrophoresis (93). Gel electrophoresis is 

a low resolution, low accuracy mass measurement technique, limiting the quality of 

information gained from solvent accessible surface analyses by this method. Adding to 

the inherent inaccuracy of gel electrophoresis is the fact that amino acid side chain 

oxidation reactions occur on a shorter timescale than backbone reactions, resulting in the 

addition of an unknown number of oxygens to the protein (98). Consequently, the 

fragments resulting from oxidative cleavage of the protein backbone have a range of 

oxygens attached to the amino acid side chains, altering the fragments' masses and 

electrophoretic mobilities by an unknown amount and reducing the accuracy of oxidative 

cleavage site determinations. 
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We report an experimental protocol to use chemically generated hydroxyl radicals 

to probe the solvent accessible surface areas of apomyoglobin by determination of the 

sites of side chain oxidation by mass spectrometry. This method has the benefits of 

requiring only commonly available chemicals, fast reaction times, and well-characterized 

chemistry (157). Apomyoglobin was used because its secondary and tertiary structure 

has been extensively characterized by NMR (158-161 ), it is commercially available at 

high purity, easily digested, and has no prosthetic groups to complicate chemistry or mass 

spectrometric analysis. We present the results from this proof-of-principle experiment as 

evidence that selective amino acid side chain oxidation by chemically generated hydroxyl 

radicals can be used for the rapid analysis of protein solvent accessible surface areas. 

Results 

Chelated iron-catalyzed oxidation of apomyoglobin 

Solutions of apomyoglobin were oxidized for varying amounts of time using 

chelated iron and hydrogen peroxide to generate solution phase hydroxyl radicals, which 

then react with the amino acid side chains to oxidize the protein. Chelated iron does not 

bind specifically to proteins, helping to ensure the non-specificity of the oxidation 

reaction (93 , 98, 162). Analysis of the oxidation products by ES-FTMS showed that 

oxidation of apomyoglobin occurs in a time-dependent manner, and several amino acid 

side chain oxidation events can be detected before significant backbone cleavage occurs. 

Figure 8 shows the deconvoluted mass spectra of four time points in the presence of a 10-

fold dilution of catalyst to slow the rate of oxidation. The zero time point was collected 
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Figure 8: Apomyoglobin Oxidation Timecourse 

Deconvoluted mass spectra of a time-course of apomyoglobin oxidation. The reactions 

were quenched at 90 second intervals and spectra obtained by ES-FTMS, showing that 

the number of oxygen atoms added to each molecule of apomyoglobin is time-dependent. 

At 4.5 minutes, in addition to the oxidation observed, significant fragmentation has begun 

to occur ( data not shown). 
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after performing the reaction in the presence of 1 M Tris buffer and allowed to sit on the 

bench top for one hour, showing that the presence of lM Tris is sufficient to quench the 

oxidation reaction. Note that there are no oxidation events at the zero time point; the 

observed packet of ions is due to the naturally occurring 13C isotopic distribution. A 

mass shift of 15 .995 Da per oxidation event is characteristic of oxidation events. The 

increase in oxidation events per molecule is clearly time-dependent, with the addition of 

up to five oxygens as well as cleavage of the protein backbone by the hydroxyl radicals 

occurring at 4.5 minutes ( data not shown). 

One concern with the development of this technique is ensuring that the oxidation 

reactions probe the native structure of the protein. Multiple oxidations could conceivably 

alter the structure of the protein. Therefore, we used direct infusion ES-FTMS to monitor 

the oxidation status of the intact protein, and chose a time point that represented a small 

number of oxidation events per protein molecule distributed across the reactive, solvent 

accessible side chains. Thus, we could help ensure that the oxidation events themselves 

do not invalidate the data gathered by altering the structure of the protein with initial 

oxidation events and then oxidizing a site that is buried in the native structure. No 

evidence of fragmentation or cross-linking is observed in this mass spectrum of oxidized 

apomyoglobin. 

Analvsis of oxidation sites bv tandem mass spectrometry 

In order to determine which amino acid side chains are solvent accessible, we 

determined the sites of oxidation by both direct infusion ES-FTMS with SORI-CAD 

fragmentation and by reverse phase capillary LC-MS/MS in data-dependent mode. 
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The use of high resolution ES-FTMS allows for high accuracy mass measurements to 

ensure the identity of oxidized peptides, while LC-MS/MS is a robust, partially 

automated method for interrogating the complex mixture to assign oxidation sites. Full 

sequence coverage of non-oxidized peptides was obtained by ES-FTMS for all peptides 

that did not contain one of the two methionines in the sequence. Oxidized peptides 

containing the two methionines were detected, as well as oxidized peptides containing 

either Phe1 51 or Trp7 and Leul 1 .  The high resolution and mass accuracy of the ES­

FTMS measurements ensured that the peptides were oxidized and not a different adduct. 

Oxidized peptides containing all sites identified by LC-MS/MS were also found by ES­

FTMS. Listed in Table 4 are the residues that we were able to identify as sites of 

oxidation by tandem mass spectrometry. Oxidized peptides were identified by their 

masses compared to an in silico digestion of apomyoglobin using PROWL (163 ). 

Figure 9 shows the MS/MS spectrum that identifies Phe 151  as an oxidized 

residue. The presence of an abundant non-oxidized b5 ion with no (b5+O) ion present 

shows that the peptide is oxidized at or C-terminal to Phe 1 51 .  The presence of an 

abundant (b6+O) ion with no non-oxidized b6 ion detected shows that oxidation of this 

peptide occurred exclusively at Phe 1 51 .  The additional presence of b4 and (b7+O) 

further confirm this assignment. As calculated from the crystal structure of horse heart 

myoglobin, Phe1 51 has 20.75A2 side chain solvent accessible area. 

Table 5 summarizes the MS/MS spectra that reveal the sites of oxidation. In the 

case of peptide 1 19-1 33, the CAD spectrum allowed assignment ofMet l31 as the sole 

oxidation site. The presence of the (y3+O) ion with the non-oxidized y2 ion shows that 

the oxygen is present on Met 131 .  The lack of non-oxidized y3 ion, as well as the lack of 
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Table 4 Sites of Apomyoglobin Oxidation 

Measured Peptide Calculated Site of Surface 
Mass (Da) Oxidized Oxidation by Area by X-

Mass (Da) LC-MS/MS ray Model 
(Al) 

1830.889 1-16 183 0.889 Trp7 13 .42 
1830.889 1-16 183 0.889 Leul l 40.44 
1494.716 48-56 1494.723 Met55 5.74 
1517.660 119-13 3 1517.656 Met13 1 0.00 
956.454 146-153 956.460 Phe151 20.75 

A table of all oxidized peptides detected by ES-FTMS and the sites of oxidation 

on each determined by LC-MS/MS. The calculated masses were determined using 

PROWL (163 ). The measured and calculated masses all represent the deprotonated 

peptide. The side chain solvent accessible areas were calculated using GET AREA 1. 1 

(149) using the X-ray structure of horse heart myoglobin (1 YMB) (148). 
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Figure 9: MS/MS Spectrum to Identify Oxidation in Lysozyme 

A representative ion trap MS/MS spectrum used to determine sites of oxidation. The 

presence of an abundant non-oxidized b5 ion with no (b5+0) ion present shows that the 

peptide is oxidized at or C-terminal to Phe 15 1 of lysozyme. The presence of an abundant 

(b6+0) ion with no non-oxidized b6 ion detected shows that oxidation of this peptide 

occurred exclusively at Phe 151. All oxidation site assignments were performed in a 

similar manner. 
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Table 5 MS/MS Fragmentation of Oxidized Peptides 

Peptide Detected b Detected y ions Oxidized Residues 
ions 

b9, b9+0, blO, y5, y6, y6+0, y7, W7, Ll l 
1-GLSDGEWQ blO+O, bl l+O, y7+0, y9, y9+0, 
QVLNVWGK-16  b14+0, b15+0 ylO+O, y12+0, 

y13+0, y14+0 

51-TEAEMK b2 y8, y9+0, y l  1+0 M55 
ASEDLKK-63 

1 19-HPGDFGAD b7, b8, b9 y2, y3+0, y5+0, M131 
AQGAMTK-133 y6+0 

146-YKELGFQG-l 53 b4, b5, b6+0, y5+0, y6+0 F151 
b7+0 

A table of the MS/MS fragments from oxidized peptides. Four oxidized peptides were 

found by LC-MS/MS. The MS/MS spectra were analyzed manually and assignments 

made for various fragment ions. The fragments assigned are listed in the table above, 

along with the assignments of the oxidation sites made from the fragmentation patterns. 
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a (y2+O) ion, shows that the oxidation is exclusively on Metl 31 . In the X-ray crystal 

structure of horse myoglobin, Met1 31 is completely buried in the interior of the protein 

and has 0.00 A2 of solvent accessible side chain surface area. 

Surprisingly, the fragments from CAD of peptide 1 -16  allow for the assignment 

of Trp7 and Leul 1 as two distinct oxidation sites in a single peptide with only one 

oxidation event per peptide. The presence of both oxidized and non-oxidized fragment 

ions for many b and y ions shows that there is more than one oxidation site on the 

peptide. In the y ion series, y14 through yl0 are only found as oxidized fragments, while 

y9 and (y9+O) are present, showing that the N-terminal oxidation site is at Trp7. The y6 

and (y6+O) ion are also both present, while only the non-oxidized y5 ion is present, 

showing that the C-terminal oxidation site is Leu 1 1 .  According to the crystal structure of 

horse myoglobin, the side chain ofTrp7 has 13.42 A2 of solvent exposed surface area, 

while the side chain ofLeul 1 has 40.44 A2
• The ability to resolve oxidation isomers 

greatly increases the utility of the technique. 

The fragments from the CAD of peptide 51 -63 were used to determine the 

oxidation ofMet55 of apomyoglobin. The presence of an abundant (yl 1 +ot2 ion as well 

as a (y9+Ot2 ion with no unoxidized (y9t2 present show that all oxidation events 

detected at this peptide must occur at or C-terminal to Met55. However, the presence of 

a (y8t2 ion with no (y8+Ot2 ion detected shows that the sole site of oxidation on this 

peptide occurs at Met55. As shown in Table 4, according to the X-ray structure of 

myoglobin, Met55 has 5.74 A2 side chain solvent accessible surface area, which is 

relatively small. 

44 



A calculation based on the X-ray crystal structure ofholomyoglobin of the solvent 

accessible side chain areas of all residues in apomyoglobin that are chemically 

susceptible to modification by hydroxyl radicals is presented in Figure 1 0. The residues 

that we found to be oxidized are not the most solvent accessible according to the structure 

of holomyoglobin. A partial NMR structure of sperm whale apomyoglobin, however, 

shows that three regions of apomyoglobin are disordered ( 1 61 ), causing the residues in 

these disordered regions to be extremely solvent accessible. As shown in Figure 1 0, 

Phe151  and Met55 are directly in one of the disordered regions, implying that their side 

chain solvent accessibilities to be much higher than the calculations based on the X-ray 

crystal structure of holomyoglobin suggested. 

Trp7 and Leul 1 are not in a disordered region, and yet were found to be oxidized 

by our method. As shown in Figure 1 1 , Trp7 and Leul 1 are protected from solvent in 

holomyoglobin by a region that is disordered in apomyoglobin. Thus, in apomyoglobin, 

Trp7 and Leul 1 have a much greater solvent accessible side chain area than that 

calculated from the X-ray structure of holomyoglobin. Therefore, the oxidation sites 

identified by our method are shown by established structural methods to be highly 

solvent accessible in the structure of apomyoglobin. 

Discussion 

With the exception of methionines, all of the residues oxidized and identified in 

this study are highly solvent accessible according to the NMR structure of apomyoglobin. 

The data presented above (most notably the complete lack of false positives) provide 

evidence that the use of chemically generated hydroxyl radicals as probes to determine 
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Reactive Residue 

Figure 10: Analysis of Oxidation Sites in Apomyoglobin 

Side chain solvent accessibilities of all amino acid residues in apomyoglobin that are 

either very highly reactive ( cysteine or methionine, crossed); highly reactive 

(phenylalanine, tyrosine, or tryptophan, black); reactive (praline, diagonal); or poorly 

reactive (histidine or leucine, white) (1 00). Residues determined to be oxidized by 

tandem mass spectra are labeled with black triangles. The vertical axis represents the 

side chain solvent accessible area in A2 as calculated from the crystal structure of 

holomyoglobin, PDB identifier 1 YMB (148). Plotted across the top of the graph are 

dotted bars representing disordered regions as determined from the partial NMR structure 

of sperm whale apomyoglobin (1 61 ). 
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Figure 11 :  Effect of Disordered Regions on Oxidation Rates 

The X-ray crystal structure ofholomyoglobin, PDB identifier 1 YMB (148). Shown in 

green is the side chain of Trp7; shown in red is the side chain ofLeul 1. The blue areas 

are all regions determined by the partial NMR structure of sperm whale apomyoglobin to 

be disordered (161). 
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protein surface residues is feasible, with the exception of methionine oxidation. The 

short reaction time (30 seconds) along with relatively short digestion and analysis times 

suggest that this method would be useful as a rapid analysis of certain aspects of protein 

structure. 

The fact that Metl 31 has essentially no solvent accessible area, even considering 

the disordered regions in apomyoglobin, and yet is still oxidized suggests that there is a 

different mechanism for the oxidation of methionine that is not dictated by solvent 

accessibility. These data are supported by observations in studies with lysozyme using 

synchrotron radiation that also found buried methionines to be oxidized (102). Kiselar et 

al postulated in previous work that methionines are oxidized by an intramolecular radical 

transfer mechanism, in which a hydroxyl radical would first abstract a hydrogen from a 

solvent accessible reactive residue. Then, another side chain close to the radical site 

would donate an electron to the solvent accessible radical. That solvent accessible 

residue would then pick up a proton, transferring the radical to the electron-donating 

group. Molecular oxygen would then oxidize the radical, which would not necessarily be 

solvent accessible (101 ). Metl 31, the only buried methionine in the sequence, is in close 

proximity to both Leul 1 and Trp7, which were both shown to be oxidized. Therefore, we 

propose that a similar radical transfer mechanism is responsible, at least in part, for the 

oxidation of Met 131. In addition, peptides with oxidized methionines can be detected in 

ES-FTMS spectra of tryptic digests of apomyoglobin that have undergone no oxidation 

reactions ( data not shown), suggesting that methionine oxidation also occurs, at least in 

part, during or after digestion. 
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According to the X-ray structure of horse myoglobin, Leul 1 has 40.44 A2 of 

solvent accessible side chain surface area. The previous observation that the main region 

in holomyoglobin that partially protects Trp7 and Leul 1 from solvent is disordered in 

apomyoglobin shows that the actual solvent accessible regions of the Trp7 and Leul 1 

side chains are greater than those calculated from holomyoglobin. Even so, Phe43 is 

within a disordered region and has a higher chemical reactivity than leucine. Phe41 

should also have a higher solvent accessibility than Leul 1 ,  as the group is actually within 

a disordered region; however, no oxidation of Phe43 is observed. The fact that an amino 

acid residue with a higher chemical reactivity within a disordered region is not oxidized 

while Leul 1 is oxidized suggests that either Phe43 is not fully exposed to solvent even 

within a disordered region, or that a factor other than solvent accessibility and amino acid 

identity, such as the local chemical environment of the amino acid side chain, may play a 

role in the rate of oxidation. Unfortunately, due to the uncontrolled Fenton chemistry 

catalyzed by the iron bound to the heme group, holomyoglobin was not able to be 

analyzed to test the effect of disordered regions on the rate of oxidation. 

While only limited oxidation was performed in this initial experiment, the failure 

to observe the oxidation of certain residues which one would expect to be oxidized by no 

means invalidates the approach presented in this report. All residues ( except methionine) 

that were found to be oxidized are highly solvent accessible in the native solution phase 

structure of apomyoglobin as determined by NMR ( 161 ). The data presented in this 

study suggest that the technique presented here may have applications in a variety of 

structural analyses, including protein folding and protein-protein interaction studies. X­

ray synchrotron studies, which use the same hydroxyl radical probe, have been utilized to 
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examine protein unfolding (1 03) and protein structure (102). A chemical means for 

generating the hydroxyl radical probe should allow for more widespread use of this rapid 

structural technique. Though this method has many advantages, there are some 

drawbacks. A potential drawback with this method is that the high concentrations of iron 

salt, EDT A, and ascorbate could be causing conformational changes in the analyte 

protein. Previous studies using Fe-EDT A catalyzed reactions to cleave the protein 

backbone and determining sites of cleavage by gel electrophoresis have thus far agreed 

with experimental data gathered by other methods (93, 162). Therefore, existing 

empirical evidence suggests that the chemical oxidation method presented here accurately 

probes the surface of proteins. Another drawback is that, due to the nature of the 

hydroxyl radical-generating reaction, this method is not applicable to metal-binding 

proteins. The data generated by mass spectrometry can determine down to the amino 

acid side chain which -area is oxidized; in order to obtain a more complete description of 

the surface of a protein, however, it may be necessary to increase the numbers of oxygen 

atoms attached to each protein molecule. Further testing of other model systems is also 

required to ensure that the oxidation method described in this report does indeed probe 

solvent accessible areas. Efforts to determine other factors that dictate the kinetics of 

side chain oxidation also should be pursued. 
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CHAPTER 4--RAPID ANALYSIS OF PROTEIN SOLVENT 

ACCESSIBLE SURFACES BY PHOTOCHEMICAL 

OXIDATION AND MASS SPECTROMETRY 

The data presented below has been accepted for publication pending revision as "Sharp, 

J. S. , Becker, J. M. , and Hettich, R. L. Rapid Analysis of Protein Solvent Accessible 

Surfaces by Photochemical Oxidation and Mass Spectrometry. Anal Chem (2003 ), in 

review". All experimental work and data analysis were performed by Joshua S. Sharp. 

Introduction 

A promising nonspecific reagent that has been utilized for determining solvent 

accessibility is the hydroxyl radical. Several methods utilizing hydroxyl radicals as a 

solvent accessibility probe have been published. The first experiments utilized Fenton 

chemistry to generate the radicals, which were then used as a protein cleavage reagent 

(93 , 98, 1 62). This method had some success, but was limited by the inherently poor 

resolution of gel electrophoresis, as well as the various side chain reactions that occurred 

prior to cleavage and altered the fragments' electrophoretic mobilities. 

More recently, a method has been developed that utilized a high-energy X-ray 

synchrotron beamline to generate the hydroxyl radical probe from water for protein 

surface labeling (1 00, 1 01 ,  1 03,  1 64-1 67). This method has the distinct advantages of 

being a pulse labeling technique (reactions require milliseconds) that does not require the 

presence of chemicals that could alter protein structure. The main drawback to this 

experimental method is the requirement for a high-energy X-ray synchrotron beamline, a 
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resource that is not readily available to most researchers. Hydroxyl radicals generated by 

Fenton chemistry were also used to label certain amino acid side chains, and the site of 

modification determined by reverse phase liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) (1 34). Although this technique provided solvent 

accessibility information for a model protein (apomyoglobin), the high concentrations of 

iron salts and EDT A required for the reactions generated some concern about the 

maintenance of native protein structure, reproducibility of results, and the ease of sample 

preparation for mass spectrometric analysis. 

The hydroxyl radical will rapidly label a variety of amino acid side chains; most 

notably, it will target sulfur-containing residues and aromatic residues, although 

oxidation of certain aliphatic residues has been reported (99- 10 1 ,  134, 164- 166). 

Previous measurements of the pseudo-first order rate constants for the oxidation of amino 

acid side chains have shown that, of the amino acids previously observed to be oxidized 

by this technique, the rate of oxidation is Cys>Trp, Tyr>Met>Phe>His>Ile>Leu>Pro. 

Each of these oxidation events occur significantly faster than oxidative backbone 

cleavages( 106). One advantage of the hydroxyl radical as a probe of solvent accessibility 

is the fact that the hydroxyl radical preferentially interacts with sulfur-containing and 

aromatic residues that are often buried in protein structure. As such, the analytical value 

of each identified oxidation site is greater than if the technique labeled residues expected 

to be found on the surface of the protein, such as charged residues. 

The purpose of this study was to develop a simple, rapid, and reliable method for 

generating hydroxyl radicals and to utilize these radicals to probe the solution-phase 

structure of two model proteins with well-characterized, stable NMR structural models, 

52 



hen egg white lysozyme and bovine �-lactoglobulin A, while avoiding the sample clean­

up difficulties and high salt concentrations required for the previous approach utilizing 

Fenton chemistry (134). These two proteins have very different secondary and tertiary 

structures, and serve nicely as test models for a surface mapping protocol. The rate of 

oxidation of any one side chain should be influenced by the solvent accessibility of the 

reactive atoms in the side chain, as well as the inherent chemical reactivity of the side 

chain. Hydroxyl radicals were generated by UV irradiation of hydrogen peroxide, and 

the model protein was allowed to react with the hydroxyl radicals. The resulting oxidized 

protein was analyzed by high resolution, high accuracy electrospray Fourier transform 

mass spectrometry (ES-FTMS) to determine the extent of oxidation. The oxidized 

protein was then digested with trypsin, the resulting peptides were analyzed by LC­

MS/MS in order to determine the residues that were oxidized, and then analyzed by ES­

FTMS in order to both confirm the identity of oxidized peptides and to gather more 

comprehensive information on oxidized peptides that were not identified by LC-MS/MS. 

Finally, the sites of oxidation were analyzed against the known solution-phase NMR 

structures of the model proteins in order to determine the extent to which solvent 

accessibility influenced the rate of oxidation. 

Results 

Photochemical oxidation of lysozyme 

Solutions of lysozyme and hydrogen peroxide were irradiated for varying 

amounts of time to generate hydroxyl radicals, and the amount of oxidation was 

determined by ES-FTMS. A control was also carried out in which the protein was 
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incubated at room temperature in hydrogen peroxide with no irradiation for 30 minutes. 

The amount of oxidation was found to increase with the UV irradiation time in a near 

linear fashion up to a point, after which cooperative oxidation was observed (Figure 1 2). 

After five minutes of oxidation, no backbone fragmentation was detected; therefore, no 

significant backbone oxidation is occurring. However, some fragmentation was detected 

after oxidation for one hour. When the sites of oxidation were determined by LC­

MS/MS for the heavily irradiated sample, several buried cysteines were found to be 

oxidized (data not shown). Similarly, when irradiation was performed in the absence of 

hydrogen peroxide for forty minutes, no oxidation occurred, but the solution turned 

cloudy and the lysozyme began to precipitate. These data support the conclusion that, 

upon extensive irradiation, the protein began to unfold independently of oxidation, 

exposing sites that are highly reactive but were previously buried. These newly exposed, 

highly reactive sites were rapidly oxidized, leading to the apparent cooperative oxidation 

observed. 

Previous published work reports that UV irradiation can damage disulfide bonds 

that are important in maintaining the structure of lysozyme (1 68). Since the unfolding 

seemed to occur at least partially independent of protein oxidation, it is probable that the 

protein was being damaged by the extensive UV irradiation. However, after a five 

minute irradiation period, no cooperative oxidation was observed, no fragmentation of 

the protein was detected, no buried residues were found to be oxidized (discussed below), 

and in the absence of hydrogen peroxide, no clouding or precipitation of lysozyme was 

detected. In addition, after a five minute oxidation, no alteration in the circular dichroism 

spectrum of lysozyme is detected (Figure 13). However, after one hour of oxidation, 
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Figure 12: Timecourse Oxidation ofLysozyme 

ES-FTMS spectrum of oxidation of lysozyme as a function of UV irradiation time. 0.5 

mg/mL lysozyme in PBS and 15% H2O2 was irradiated for varying amounts of time using 

UV light. As the time increased, the amount of oxidized protein increased until one hour, 

where about a third of the protein unfolds and highly reactive, previously buried residues 

are exposed to solvent and oxidized very rapidly ( cooperative oxidation). Some 

oxidation occurred when the protein was incubated for 30 minutes in 1 5% H2O2 with no 

UV irradiation at ambient temperatures; to prevent uncontrolled oxidation, solid phase 

extraction of oxidized protein was always performed directly after irradiation. The mass 

of unmodified lysozyme is labeled M, with the additions of multiple oxygens noted. 
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Figure 13:  Effect of Oxidation on CD Spectrum of Lysozyme 

Circular dichroism spectra of hen egg white lysozyme (blue line), lysozyme after five 

minutes of UV irradiation in the presence of 1 5% H2O2 (pink dashes), and after one hour 

of UV irradiation in the presence of 1 5% H2O2 (red line). The deconvolution of the 

spectra show little change between the control and the five minute oxidation spectra, 

while after one hour, approximately one third of the helical structure of lysozyme has 

been converted to random coil. This supports the hypothesis that roughly a third of the 

protein is in an almost fully denatured conformation, while the rest is in a near native 

state. 
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significant changes in the CD spectra are detected, showing that significant alterations in 

secondary structure occurs after extensive irradiation and oxidation. Due to the unaltered 

CD spectra after a five minute oxidation, we propose that limited UV irradiation and 

oxidation does not cause substantial structural changes in lysozyme. 

LC-MS/MS analysis of oxidized lysozyme tryptic fragments 

Lysozyme oxidized for five minutes was denatured and reduced, and then 

digested with trypsin. The tryptic digest mixture from oxidized lysozyme was loaded 

onto a C 18  column for LC-MS/MS analysis to determine the sites of oxidation. 

Previous work examining peptide oxidation by X-ray synchrotron radiolysis­

generated hydroxyl radicals determined that sulfur-containing residues (Cys, Met) are the 

most highly reactive, followed by aromatic residues (Phe, Tyr, Trp ), followed by proline, 

and finally histidine and leucine (100). Our results presented here, as well as previous 

results examining ionizing radiation-induced oxidation (105), suggests that histidine is 

oxidized more readily than proline and aliphatic residues, but probably not as fast as 

aromatic residues. Also, we have evidence from examining R67 dihydrofolate reductase 

from E. coli that isoleucine can also be oxidized by this method (J. Sharp, unpublished 

results). 

After the LC-MS/MS experiment, the measured peptides were screened 

computationally for differential modifications using SEQUEST (1 44), as previously 

described. Double oxidation of methionine was observed during manual interpretation of 

MS/MS spectra. However, incorporation of this higher oxidation states into the 

SEQUEST searching parameters caused several oxidized peptides not to be identified; 
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therefore, parameters for lower level oxidation events were used for computational 

screening. All spectra which could contain an oxidized peptide were interpreted 

manually. Previous work using Fenton chemistry (134) and X-ray synchrotron radiolysis 

(99-1 02, 164-166) have shown that methionine can be oxidized regardless of its solvent 

accessibility, possibly via an electron transfer mechanism through a reactive residue 

present on the surface followed by subsequent oxidation by molecular oxygen (1 01 , 1 02). 

Therefore, while all methionine oxidation events are measured, they are ignored for 

solvent accessibility analyses. The overall sequence coverage, including all unoxidized 

peptides and oxidized peptides identified manually in the LC-MS/MS run included the 

entire sequence of lysozyme except for residues 1 13-1 14. The non-methionine oxidized 

residues of lysozyme as detected by LC-MS/MS are shown as colored in Figure 14. 

When plotted onto the X-ray crystal structure of lysozyme, PDB accession number 193L, 

with water removed for clarity (169), the four oxidized residues can clearly be seen to be 

on the surface of the protein. 

In order to gain a quantitative understanding of the effect of solvent accessibility 

on side chain oxidation, the average solvent accessibility of all reactive carbons and 

sulfurs of each side chain as calculated from fifty NMR structures was plotted, PDB 

accession number 1E8L (146). In Figure 1 5, the solvent accessibility of all sulfurs in 

cysteine and all reactive carbons in aromatic side chains is plotted. Cys6 has the greatest 

solvent accessibility of all cysteines for the reactive sulfur group, while the other cysteine 

sulfurs are essentially buried. The only cysteine identified as oxidized by the 

photochemical method is Cys6; none of the other highly reactive cysteines were seen to 

be oxidized, supporting the supposition that our technique only oxidizes exposed 
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Figure 14: Sites of Oxidation Plotted on Lysozyme Structure 

Two views of the X-ray crystal structure hen egg white lysozyme with waters removed 

for clarity (PDB accession number 193L). Oxidized residues confirmed by MS/MS are 

colored, with the sulfur of Cys6 is shown in orange, with the side chain of His 15  (blue), 

Tyr20 (purple), Phe34 (green), and Trp62 (red) also indicated. Additional oxidized 

residues were detected by ES-FTMS (as shown in Table 6), but are not included here 

since the exact oxidation site was not confirmed. 
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Figure 15: Quantitative Analysis of Oxidation of Lysozyme 

The average solvent accessibility (in A 2) of all reactive carbons and sulfurs in all 

cysteine, aromatic, and histidine residues in hen egg white lysozyme as calculated from 

50 NMR structures (PDB accession number 1E8L) times their known inherent chemical 

reactivity (M- 1 s·1
). Error bars represent one standard deviation. Residues that were 

determined to be oxidized by LC-MS/MS or SORI-CAD are marked with an asterisk, 

while all residues that either were the primary oxidation targets for peptides known to be 

oxidized by ES-FTMS or were positively identified by LC-MS/MS or SORI-CAD are 

shaded. All solvent accessibilities were calculated using GET AREA 1. 1 with default 

settings. 
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residues. Among the aromatic residues, the most accessible side chain is Trp62, and it 

was indeed found to be oxidized. His 1 5  and Tyr20 were also found to be oxidized, and 

as shown by their average side chain solvent accessibility, they are exposed to solvent. 

Quantitation of oxidation ratios by tandem mass spectrometry on peptides with multiple 

oxidation events can be achieved by comparison of the oxidized and unoxidized fragment 

peak heights. While such a comparison is not entirely straightforward, the ratios of 

oxidized to unoxidized fragment ions between His1 5 and Tyr20 in the LC-MS/MS 

experiment suggest that the majority of oxidation on peptide 1 5-22 occurred on Tyr20, 

with considerably less oxidation occurring on His15. The LC-MS/MS experiment did 

not detect oxidized Tyr23, Phe34, Trp63, Trpl 1 1 ,  or Trp123 (all of which are more 

reactive and have side chains at least as solvent accessible as His1 5); however, oxidized 

forms of peptides containing these residues were detected by ES-FTMS (Table 6, below). 

In addition, SORI-CAD experiments showed that the exclusive site of oxidation on 

peptide 34-45 is Phe34. 

In order to determine if the extent of oxidation is indicative of the amount of 

solvent accessibility, the peptides resulting from the tryptic digest of oxidized lysozyme 

were analyzed by ES-FTMS. Table 6 shows the oxidized peptides detected by direct 

infusion ES-FTMS. The sequence of lysozyme is shown above the table; the regions of 

lysozyme for which a peptide was detected (either oxidized or unoxidized) by ES-FTMS 

are underlined, residues that were confirmed as oxidized by MS/MS are in bold, and 

peptides which were shown to be oxidized by ES-FTMS but with no oxidation sites 

identified by LC-MS/MS are italicized. In the table itself, all masses listed are 

monoisotopic masses, and residues which were positively identified as oxidized by 
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Table 6 ES-FTMS Measurement of Oxidized Peptides from Lysozyme 

1 * 1 0  * 2 0  * 3 0  * 4 0  * s o  
1 KVFGRCELAAAMKRB.GLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGS 

51  TDYGILQINS.RWWCNDGRTPGSRNLCNI PCSALLSSDITASVNCAKKIVS 

1 0 1  DGNGMNAWVAWRNRCKGTDVQAWIRGCRL 

Measured 
Ratio of Oxidized/ 

Peptide (residues) Deconvoluted Oxidization F onns 
Unoxidized * 

Masses (Da) 

873 .408 M 

15-2 1  .0 1 14 
889.409 M+O 

935.377 M 

62-68 .0620 
95 1 .368 M+O 

1044.538 M 
1 17-125 . 1324 

1060.536 M+O 

1267.60 1 M 

22-33 .0445 
1283 .583 M+O 

1427.669 M 

34-45 .0 10 1  
1443 .674 M+O 

1433.7 1 1 M 

62-73 . 1 177 
1449.721 M+O 

1674.788 M 

98-1 12 1690.788 M+O 17.0959 (.0995)* 

1706.740 M+2O 

1752.828 M 
46-6 1 .0063 

1768.80 1 M+O 

1802.890 M 

97-1 12 18 1 8.902 M+O 17.9175 (. 1 1 89)* 

1 834.896 M+2O 

2123.0 16 M 
1 5-33 .0464 

2 139.000 M+O 

*-The ratio in parentheses is of mono-oxidized to di-oxidized peptide. 
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Reactive Residues 

HIS, Ll7, Y20 

W62, W63, C64 

Wl23, 1124 

Y23, L25, W28, 
C30 

F34, F38 

W62, W63, C64, 
P70 

198, MlOS, W108, 
Wi l l  

Y53, 155, L56, 158 

197, MlOS, Wl08, 
Wi l l  

HIS, L17, Y20, 

Y23, L25, W28, 
C30 



MS/MS are marked in bold, while residues which are probable sites of oxidation, but for 

which there are not reliable LC-MS/MS spectra, are underlined. Phe34, which is both 

underlined and bold in Table 6, was the only amino acid which was identified as oxidized 

based solely on SO RI-CAD data from ES-FTMS. A sequence coverage of 89.9% of the 

amino acids was obtained by ES-FTMS analysis, with the notable lack of residues 6-13, 

containing the only oxidized cysteine detected by LC-MS/MS. No unoxidized peptide 6-

13 was detected by the LC-MS/MS experiment, so it is probable that Cys6 is oxidized 

nearly 100% in this experiment. 

Tyr23, Trp63, Trpl 11, and Trp123 are shown to be more solvent accessible than 

Hisl 5, and yet they were not found to be oxidized by MS/MS. The overall rate of 

oxidation for aromatic residues was shown to be faster than that of histidine (100); 

therefore, one would expect to observe oxidation on these residues. Failure to detect all 

peptides in a tryptic digest is common for mass spectrometry experiments, due to 

dynamic range issues, poor peptide ionization, or other factors. Automated LC-MS/MS 

experiments have the added problem of time resolution. As peptides elute from the 

reverse phase column, they are isolated and fragmented by the mass spectrometer in the 

order of signal intensity. The mass spectrometer is programmed to only fragment each 

particular peptide twice, ignoring it for a period of time after analyzing it. If an oxidized 

peptide coelutes with other, more abundant peptides, the oxidized peptide may not be 

fragmented in the time that it elutes from the LC column. Therefore, the failure to detect 

all peptides expected to be oxidized is not unusual; these peptides probably were 

oxidized, just not detected under these conditions. Examination of the ES-FTMS data in 

Table 6 shows that oxidation probably did occur on these residues and was not detected 
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by our LC-MS/MS method. In the peptide containing residues 22-33, the most highly 

solvent accessible, reactive residue by far is Tyr23. The ratio of oxidized to unoxidized 

peptide for 22-33 was higher than that of peptide 15-21 , which contains both His1 5 and 

Tyr20. When the solvent accessibility of the Tyr23 is compared to that of Tyr20 and 

His 15, it is found that Tyr23 has the greatest solvent accessibility (Figure 1 5). 

Several solvent accessible tryptophan residues (Trp63, Trpl 1 ,  and Trp123) were 

not detected by our LC-MS/MS method. The proximity of Trp63 to Trp62 made 

identification of the lesser oxidation site by tandem mass spectrometry very difficult. In 

order to determine the sites of oxidation from a mixture of oxidation isomers, MS/MS 

peaks must be measured for both the oxidized and the unoxidized fragmentation events 

that occur between the two oxidation sites. Since in the case of Trp62 and Trp63 the 

potential oxidation events would occur directly next to each other, there are only two ions 

that could differentiate the two events (the y ion and the b ion with the fragmentation site 

between residue 62 and 63). As the oxidation event at Trp62 was very abundant, the 

unoxidized b ion (and/or the oxidized y ion) from fragmentation between Trp62 and 

Trp63 representing an oxidation at Trp63 would be at a much lower signal-to-noise. 

Since there are only two potential ions that would allow the identification of the oxidation 

at Trp63, and the oxidation at Trp62 is expected to be much more prevalent, it remains 

possible that Trp63 was oxidized to a lesser extent, and simply could not be accurately 

identified. 

It is also probable that the oxidized peptides containing Trp 1 1 1 ,  and Trp 123 were 

present but simply not identified by the LC-MS/MS experiment. The ES-FTMS data 

show that, in both cases, there was a detectable level of oxidized peptide (Table 6). Due 
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to the fact that Metl 05 is present on the same peptide as Trp 1 1 1 ,  and that methionines 

can be doubly oxidized, accurate differentiation between the peptides with a single 

oxidation at Metl 05 and a single oxidation at Trp 11 1 ,  and peptides with a double 

oxidation at Met105 cannot be made quantitatively. Trpl23, though, is the only readily 

oxidizable residue on peptide 1 17-125. The ratio of oxidized to unoxidized peptide for 

peptide 1 1 7-125 was very similar to that of peptide 62-68, the smallest peptide containing 

Trp62, which is known to be oxidized. Since the solvent accessible areas of the two 

residues are also similar, these data support the idea that solvent accessibility directly 

influences the rate of oxidation of an amino acid side chain by our method. 

In order to estimate the effect of solvent accessibility on the rate of protein 

oxidation, the ratio of oxidized to unoxidized peptide was measured for all peptides in 

lysozyme where oxidation probably occurred on an aromatic side chain. Since only one 

cysteine was oxidized to a detectable level, and methionines were oxidized regardless of 

solvent accessibility, we could not plot the effect of solvent accessibility for sulfur­

containing residues. In order to try to best estimate the effect of solvent accessibility on 

the rate of oxidation, we assumed ( when necessary) that all oxidation on a peptide 

occurred on the most accessible, most reactive residue. Residue Phe34 was not included 

due to a low signal to noise ratio, which made accurate determination of the ratio of 

oxidized to unoxidized peptide difficult. While this assumption is overly simplified, it 

allows for a reasonable estimation of the effects of solvent accessibility on the rate of 

oxidation. We then plotted the side chain solvent accessible area of each candidate 

residue against the ratio of oxidized to unoxidized peptide on which the candidate residue 

resides (Figure 16). Since the only difference between the oxidized and unoxidized 
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Figure 16: Rate of Oxidation as a Function of Solvent Accessibility 

A plot of the solvent accessible area of the aromatic residues most likely to be oxidized 

on oxidized peptides detected by ES-FTMS versus the ratio of oxidized to unoxidized 

peptide signal in the ES-FTMS spectra times the inherent chemical reactivity of the 

amino acid (M-1 s-1). Due to the nearly identical chemical structure of the oxidized 

peptide to its unoxidized form, the ratio of peptide signal should be almost identical to the 

ratio of peptide in solution. 
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versions of the peptide is one oxygen, the two peptides should ionize similarly, making 

the relative abundances of oxidized and unoxidized peptide peak heights indicative of the 

actual relative abundances of each form of the peptide in solution. The plot shows a 

definite influence of solvent accessibility on the rate of oxidation. The lack of absolute 

linearity could be due to several factors, such as partial oxidation at other residues on the 

peptide, fluctuations in the ES-FTMS signal causing incorrect ratios, differences in the 

chemical reactivity of a side chain due to local chemical influences from neighboring 

residues, or slight differences in ionization potential between the oxidized and unoxidized 

version. However, the plot shows a definite influence of solvent accessibility, and these 

data support the use of this protocol to measure solvent accessible residues. 

Photochemical oxidation of 8-lactoglobulin A 

In order to further support the use of photochemical oxidation to probe the solvent 

accessible surface of a protein, we performed the oxidation of bovine �-lactoglobulin A, 

which is slightly larger than lysozyme, contains fewer disulfide bonds, and is mainly 

comprised of �-sheets as opposed to lysozyme' s largely a-helical secondary structure. It 

was observed that, after 5 minutes of UV irradiation, a similar extent of oxidation was 

observed for �-lactoglobulin A as that observed for lysozyme. No cooperative oxidation 

was observed for �-lactoglobulin A (data not shown), supporting the premise that the 

protein remained folded throughout the oxidation process. 
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LC-MS/MS analysis of oxidized 8-lactocJobulin A tzyptic fracments 

Oxidized �-lactoglobulin A was denatured, reduced, and digested with trypsin. 

The tryptic digest of oxidized �-lactoglobulin A was analyzed by LC-MS/MS and the 

data searched computationally by SEQUEST for oxidation events. A total of four non­

methionine oxidation sites were found for �-lactoglobulin A in this experiment. These 

oxidation sites are shown on the X-ray crystal structure of �-lactoglobulin A, PDB 

accession number lBEB, monomer with no waters show (170), in Figure 1 7. All 

oxidized side chains appear to be solvent accessible from the X-ray crystal structure. 

Quantitative analysis from ten NMR structures of �-lactoglobulin A, PDB 

accession number 1CJ5 (147), showed a trend previously noted with lysozyme. Figure 

1 8  shows the average solvent accessibility of the reactive sulfur of each cysteine and the 

reactive carbon in each aromatic residue in �-lactoglobulin A. Cys160 clearly has the 

greatest solvent accessibility of all cysteines in �-lactoglobulin A, and Cys 1 60 is the only 

cysteine determined to be oxidized by LC-MS/MS. The sulfur of Cys66 is also 

significantly solvent accessible; however, the peptide is not detected in the LC-MS/MS 

experiment in either an oxidized or unoxidized state. Therefore, the extent of oxidation 

of Cys66 cannot be determined from this experiment; it may be completely oxidized or 

completely unoxidized. This observation is consistent with our hypothesis that the 

solvent accessibility of the reactive sulfur of cysteine directly influences the rate of 

oxidation. Detailed analysis ofES-FTMS data (below) will shed light on the oxidation 

state of Cys66; however, poor sequence coverage by LC-MS/MS makes this comparison 

difficult based solely on data obtained from the QIT. 
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Figure 17: Sites of Oxidation Plotted on f3-Iactoglobulin A Structure 

The X-ray crystal structure of bovine f3-lactoglobulin A (PDB accession number lBEB, 

monomer with waters removed for clarity). Oxidized residues confirmed by LC-MS/MS 

are colored, with the sulfur of Cys 160 is colored orange, with the side chain of Pro 1 26 

(purple), Phe136 (green), and Phe151 (red) also indicated. Trp61 (blue) and Cys66 

(pink) were detected by ES-FTMS (as shown in Table 6), but the exact oxidation site was 

not confirmed. 
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Figure 18: Quantitative Analysis of Oxidation of fl-lactoglobulin A 

The average solvent accessibility (in A 2) of all reactive carbons and sulfurs in all 

cysteine, aromatic, and histidine residues in bovine �-lactoglobulin A as calculated from 

10  NMR structures (PD B accession number 1 CJ 5) times their known inherent chemical 

reactivity (M-1 s·1). Error bars represent one standard deviation. Residues that were 

determined to be oxidized by LC-MS/MS are colored red (or marked with an asterisk 

when the colored bar is not visible), while all residues that were the primary oxidation 

targets for peptides known to be oxidized by ES-FTMS are marked with red arrows. 

Regions of the protein which were not detected in the LC-MS/MS run as either oxidized 

or unoxidized peptides are shaded gray. All solvent accessibilities were calculated using 

GETAREA 1 .1 with default settings. 
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Figure 18  also shows the solvent accessibility of the reactive carbons of aromatic 

and histidine residues in �-lactoglobulin A. Trp61 is clearly the most solvent accessible 

of all of the reactive side chains. However, the peptide that contains Trp61 (which is the 

same peptide that contains Cys66) was not detected in either an oxidized or unoxidized 

state in the LC-MS/MS experiment, so the extent of oxidation of Trp61 versus that of 

Cys66 cannot be determined by this experiment. The failure to detect a peptide 

containing Trp61 by LC-MS/MS could be due to poor peptide ionization or coelution 

with a peptide with a very high electrospray response (a dynamic range problem). 

Phe 151 was found to be oxidized by this experiment, and has very solvent accessible 

reactive side chain carbons. An oxidation event also occurred at Phe 1 36, which was 

shown by NMR to be relatively (but not completely) buried. When examining the LC­

MS/MS selected ion chromatograms, peptide 1 25-138 was very prevalent in its 

unoxidized form, and it eluted from the column in detectable amounts for much longer 

than most peptides ( over eight spectra). However, the oxidized form of the peptide was 

only detectable in one MS spectrum, and at very low levels ( oxidized to unoxidized ratio 

of approximately .04 in the one LC-MS spectrum). 

In order to quantitatively measure the rates of oxidation, as well as to try to 

identify other regions of the protein where oxidation occurred, we examined the peptides 

by ES-FTMS (Table 7). The sequence of bovine �-lactoglobulin A is shown above the 

table; the regions of �-lactoglobulin A for which a peptide was detected ( either oxidized 

or unoxidized) by ES-FTMS are underlined, residues that were confirmed as oxidized by 

LC-MS/MS are in bold, and peptides which were shown to be oxidized by ES-FTMS but 

with no oxidation sites identified by LC-MS/MS are italicized. Significantly better 
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Table 7 ES-FTMS Measurement of Oxidized Peptides of �-lactoglobulin A 

1 * 1 0  * 2 0  * 3 0  * 4 0  * s o  

1 LIVTQTMKGLDIQKVAGTWYSLAMAASDI SLLDAQSAPLRVYVEELKPTP 

5 1  EGDLEI LLQKWENDECAQKKIIAEKTKIPAVF.KIDALNENKVLVLDTDYK 

1 0 1  KYLLFCMENSAEPEQSLVCQCLVRTPEVDDEALEKFDKALKALPMHIRLS 

1 5 1  FNPTQLEEQCHI 

Peptide Measured Oxidization 
(residues) Deconvoluted Forms 

Masses (Da) 

142-148 836.474 M 

852.464 M+O 

868.461 M+2O 

149- 162 1657.774 M 

1673.8 1 1  M+O 

102- 124 2722.278 M+3O 

2738.228 

61 -83 2688. 194 M 

2704.386 M+O 

15-40 2722.380 M+O 

2738.380 

Ratio of 
Oxidized/ 
Unoxidized 

123.0 101  

(.0198)* 

.0 109 

(>20)** 

-

1 .9425 

-

Reactive Residues 

Ll43,  Pl44, M145, Hl46, 

I l47 

Ll49, F151, Pl53, Ll56, 

C160, Hl61 ,  I l62 

Yl02, Ll03, Ll04, F l05, 

Cl  06, M107, Pl  13, LI 1 7  

W61 ,  C66, 17 1 ,  172, 178, 

P79, F82 

Wl9, Y20, L22, M24, 129, 
L3 1 ,  L32, P38, L39 

*-The ratio in parentheses is of mono-oxidized to di-oxidized peptide. 

**-The ratio in parentheses is from the LC-MS/MS experiment, where the tri-oxidized 
and unoxidized peptide co-eluted in the LC run. 
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sequence coverage was obtained by direct infusion ES-FTMS than by LC-MS/MS. In the 

table itself, all masses listed are monoisotopic masses, and residues which were positively 

identified as oxidized by LC-MS/MS are marked in bold, while residues which are 

probable sites of oxidation, but for which there is not reliable MS/MS spectra, are 

underlined. Unfortuntely, as only two non-methionine ([oxidized]/[unoxidized] ) ratios 

could be determined, it was not possible to attempt to plot the correlation between solvent 

accessibility and apparent rate of reactivity. 

Peptide 1 49-1 62 contains two oxidation sites (Phe 1 51 and Cys 1 60), making the 

actual quantitation of the sites difficult. However, all detected Cys 1 60 oxidation events 

had Cys 1 60 triply oxidized, while the detected Phe 1 51 oxidation event had only Phe 1 51 

oxidized. Therefore, we suggest that the ratio of mono-oxidized to unoxidized peptide 

1 49-1 62 represents the rate of Phe 1 51 oxidation, while the ratio of tri-oxidized to 

unoxidized peptide 1 49-1 62 represents the rate of Cys 1 60 oxidation. As was the case 

when examining lysozyme, a cysteine that was known to be very extensively oxidized 

( either to the point of complete oxidation, as with lysozyme, or to almost complete 

oxidation with Cys 1 60 of �-lactoglobulin A) and easily detected by LC-MS/MS was 

undetected in subsequent ES-FTMS analysis. Samples were analyzed immediately after 

tryptic digestion by LC-MS/MS, while the peptides were stored for about two weeks at -

75° C in 0. 1 % acetic acid prior to ES-FTMS analysis. It is possible that peptides that 

have been triply oxidized on a cysteine (forming a sulfonic acid) are not stable for long 

periods of time in an acidic solution. 
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LC-MS/MS experiments showed that Phe136, which is buried in �-lactoglobulin 

A, is oxidized. When examining peptide 1 25-1 38 by ES-FTMS, without the increase in 

dynamic range offered by separations techniques, no oxidation event can be detected 

( even when attempting to isolate the oxidized peptide in the Penning trap). In addition, 

examination of the selected ion chromatogram of oxidized peptide 1 25-138 showed very 

little oxidized peptide present. We suggest, therefore, that an oxidation event at Phe136 

was detected only due to the very high ionization efficiency of the peptide, its excellent 

fragmentation pattern, and its excellent separation from other peptides in our LC-MS/MS 

experiment; the actual amount of Phe 136 oxidized was well below background. One 

oxidized peptide was found that had no oxidized residue detected by LC-MS/MS. This 

peptide (residues 61 -83) contains Trp61 , which is by far the most solvent exposed 

reactive residue, as well as Cys66, which is the second-most solvent accessible cysteine 

residue. The oxidized to unoxidized ratio was also very high, which corresponds with the 

high solvent accessibility of the Trp61 residue and the high reactivity and medium 

solvent accessibility of Cys66. As mentioned previously, oxidation of cysteine results in 

the addition of two or three oxygens; only the addition of one oxygen to peptide 61 -83 

was detected. Therefore, all oxidation on peptide 61 -83 probably occurred on Trp61 . 

The number of peptides oxidized on �-lactoglobulin A was too few for meaningful 

quantitative analysis to determine the relationship between solvent accessible area and 

rate of oxidation. 
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Discussion 

Previous work utilizing X-ray synchrotron radiolysis to probe the solvent 

accessible surface of lysozyme reported a smaller set of oxidized residues than those 

reported here, detecting Cys6, Phe34, Trp62, and Trp123 as the non-methionine oxidized 

side chains by LC-MS/MS. Their work clearly demonstrated that the solvent 

accessibility relates almost linearly with the rate of oxidation in identical residues in 

lysozyme (1 01 , 102). While we did not detect Phe34 or Trp123 by our LC-MS/MS 

experiments, ES-FTMS analysis showed that Phe34 and Trp123 were probably oxidized 

by our method. In addition, we were able to detect oxidized peptides from almost every 

region of lysozyme by ES-FTMS. While our ability to detect a greater amount of 

oxidized peptides may be a result of the greater performance of ES-FTMS as opposed to 

the matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) 

instrumentation utilized in by Kiselar et al(lOl), another possible explanation is an 

increase in the extent of oxidation. As such, from an oxidation coverage standpoint, our 

method compares favorably with current reported results. 

The overall purpose of this study was to provide a useful method for rapidly 

probing the surface area of proteins in solution. As shown from the results presented 

here, this technique is suitable for the oxidation of solvent accessible residues. Through 

the use of both LC-MS/MS and direct infusion ES-FTMS, all oxidation events that would 

be expected to occur are detected, with no appreciable oxidation of buried residues. 

While not every solvent accessible residue was oxidized to a level detectable by our LC­

MS/MS experiment, those oxidized side chains that were detected were all solvent 

accessible to some extent, and the extent of solvent accessibility ( along with the inherent 
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chemical reactivity of the residue) had a direct influence on the rate of oxidation. The 

extent of oxidation was comparable to (if not more extensive than) previous X-ray 

synchrotron studies performed on lysozyme (101), however, the pattern of oxidation 

detected by LC-MS/MS analysis was somewhat different. 

Photochemical oxidation has the advantages of being a simple protocol for 

labeling of a variety of residues (mainly hydrophobic), most of which are normally 

expected to be buried in protein structures. Since it is residues that are typically buried 

that are labeled, while there may only be four to five non-methionine residues oxidized in 

the protein, the value of each oxidation event is much greater than if, for instance, the 

method labeled charged residues that would be expected to be on the surface. The ability 

of this technique to provide structural data for targeted proteins in a rapid, relatively 

simple fashion without the necessity for an X-ray synchrotron beamline could be of great 

use to structural biologists to test structural models or investigate conformational 

changes. Unfortunately, the requirement for hydrogen peroxide prevents the use of this 

technique on transition metal-binding proteins due to uncontrolled Fenton chemistry that 

would occur. Also, X-ray synchrotron radiolysis surface mapping still maintains the 

distinct advantage of being a pulse labeling method, and thus more useful for measuring 

protein-protein interactions and protein folding kinetics. We are currently working with 

pulsed UV sources in an attempt to develop this technique into a pulse labeling method. 

The recent reports in the area of constrained computation modeling show that the 

use of experimental constraints in computation protein modeling greatly increase the 

accuracy of the model (41, 42). The potential for utilizing a technique such as 

photochemical oxidation to generate experimental constraints on protein structure in a 
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high throughput manner may enable structural genomics to provide structural models of 

reasonable accuracy at a turnover rate comparable to that of genomics and proteomics, 

allowing for great leaps in systems biology. We are currently exploring possibilities for 

utilizing photochemical oxidation data to improve computational models of proteins with 

unknown three-dimensional structures. 
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CHAPTER 5-APPLICATION OF 

PHOTOCHEMICAL SURFACE MAPPING OF C14S SMLlP 

TO CONSTRAINED COMPUTATIONAL MODELING 

Introduction 

Sml 1 p is a small protein from the yeast Saccharomyces cerevisiae that binds to 

the large subunit (Rnr 1 p) of the ribonucleotide reductase (RNR) complex and inhibits 

the activity of this enzyme for catalyzing the rate-limiting step of the de novo synthesis of 

deoxynucleotides (dNTPs) (171, 172). During S-phase and after DNA damage, the 

intracellular level of Smll is substantially reduced through its degradation (173). The 

degradation of Sml 1 p activates RNR, increasing the levels of the dNTP pools to enhance 

the capacity of DNA repair (171). The RNR activity must be tightly regulated, since 

failure to control the concentration or relative amounts of dNTP pools may lead to cell 

death or genetic abnormalities ( 172, 17 4 ). Structural characterization of Sml 1 p is critical 

for understanding the nature of the interaction between this protein and RNR. 

Although there is some biochemical information about the function of Sml 1 p, 

very little structural data is available for this important checkpoint protein. Sml 1 p is 

known to bind to Rnr 1 p with 1: 1 stoichiometry, in which the binding domain of Sml 1 p 

involves the C-terminal 33 residues (175, 176). NMR studies have indicated that Sml lp 

has two large alpha-helices oriented in an anti-parallel manner (177); overall, this protein 

generally is described as a loosely folded structure in solution. However, there is no 
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three-dimensional structural information available for either Rnr 1 p or Sml 1 p, much less 

for the Sml 1 p/Rnr 1 p complex. In order to better understand the structure-function 

relationship of this important complex, a reliable three-dimensional structural model for 

the components must be generated. 

Protein structure prediction methods are playing, and will continue to play, an 

important role in high throughput structural genomics due to the limitations of structural 

determination methods such as x-ray crystallography and nuclear magnetic resonance 

(NMR). The progress in structure prediction techniques has been assessed objectively by 

the biennial community-wide experiment, Critical Assessment of Protein Structure 

Prediction (CASP) (178-180). These assessments have shown that rapid progress is being 

made in the prediction techniques of protein structures. One key group of protein 

structure prediction methods is comparative modeling and threading, which rely on the 

detectable similarity between the target sequence and at least one solved protein structure 

in the PDB database (181). If there is no reliable template protein structure identified by 

sequence- or structure-based approaches, a target protein could not have its structure 

predicted using such methods. This is the case for Sml 1 p. Both sequence homology and 

threading methods failed to detect any suitable template structure (150). 

The second group of prediction methods, called de novo or ab initio methods, has 

no such limitation since it does not rely on the existing structural folds. The ab initio 

method is based on the first principal that the native state of the protein is at the global 

energy minimum. Significant advances have been achieved in the field of ab initio 

protein structure prediction as seen in the recent CASP3 (178), CASP4 (39) and CASP5 

(http://predictioncenter.llnl.gov/casp5/). Rosetta is probably the best method in the ab 
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initio prediction category (39). It is a pseudo-ab initio prediction method since it uses 

small segment information from a structural database. A significant feature of Rosetta is 

the separation of local and nonlocal interactions in which each short segment of the chain 

samples possible local structures adopted by the short sequence in known protein 

structures, followed by folding to the native state when local segments are oriented such 

that low energy nonlocal interactions are achieved throughout the protein, favoring paired 

�-strands and buried hydrophobic residues. In contrast with some modeling techniques 

that only attempt to successfully align the protein backbone, the addition of full-atom 

representation and refinement to the backbone-C � structure returned by Rosetta is a very 

important factor for improving the accuracy and reliability of the modeling process (43). 

Although the overall topology of a protein or a domain can be predicted very 

well, structure prediction by ab initio approaches generally has lower prediction accuracy 

than that of comparative modeling techniques when they are applicable ( 182). One 

strategy to improve the prediction accuracy is to apply partial experimental data as 

constraints in computational modeling. There are a number of studies that combine sparse 

NMR data with computational techniques, such as ab initio and threading, for protein 

structure prediction ( 40, 183). Effectively combining the data and modeling techniques 

can yield significantly better prediction results (183). 

One method for generating experimental structural data for biophysical 

constraints is through the use of hydroxyl radicals to modify solvent exposed amino acid 

side chains. The sites of modification are determined by enzymatic digest, followed by 

mass spectrometry. Several previous reports of the successful use of this method to 

examine model proteins are available, utilizing high-flux X-rays (99, 101, 102), Fenton 
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chemistry (134), and photochemical oxidation (133) to generate hydroxyl radicals in situ. 

These hydroxyl radicals then oxidize certain solvent accessible amino acid side chains, 

preferentially oxidizing sulfur-containing residues, followed by aromatics, then followed 

by histidine, proline, leucine, and isoleucine (1 00, 1 05, 1 06). Hydroxyl radical surface 

mapping has also been utilized to examine protein conformation changes (1 65, 167), 

largely-known protein structures (1 84), protein-protein interactions (166), and protein 

folding (164). The rate of oxidation has been shown to be directly related to the solvent 

accessible side chain area (102, 133) and the inherent rate constant of the oxidized amino 

acid (1 06, 133), and the measurement is reproducible in different laboratories (102, 1 33). 

However, no attempts have been reported to utilize hydroxyl radical solvent 

accessibilities as constraints for computational modeling of a protein with no previously 

solved three-dimensional structure. 

Here, we present data from hydroxyl radical surface mapping experiments 

examining the native solution structure of the C 14S mutant of Sml 1 p. Hydroxyl radical 

surface mapping measures the solvent accessibility of amino acid side chains. An 

important feature of Rosetta nonlocal modeling is the burial of hydrophobic side chains, 

and the use and refinement of full-atom representations are necessary for accurate and 

reliable modeling by Rosetta (14). Therefore, critical analysis of the solvent accessibility 

of amino acid side chains ( especially hydrophobic amino acid side chains, which are 

preferentially measured by our method) of the refined full-atom representations generated 

from Rosetta backbone-C� models gives a measure of the overall accuracy of the full­

atom models. The solvent accessibility data generated are utilized, along with other 

previously reported NMR data, to evaluate and improve pseudo-ab initio computational 

81 



models generated by the Rosetta algorithm. A computational model is presented which 

agrees with various experimental parameters. 

Results 

Oxidation of denatured Cl 4S Smllp 

In order to determine which amino acids will be oxidized based solely on their 

inherent chemical reactivity and any effects stemming from the primary sequence, 

oxidation of C 14S Sml 1 p was performed in the presence of 6M guanidine HCI. The 

denatured intact protein was examined by ES-FTMS to determine the overall amount of 

oxidation. The base peak represented C 14S Sml 1 p plus the addition of eight atoms of 

oxygen; a smaller peak representing the addition of nine atoms of oxygen was also 

detected ( data not shown). As Sml 1 p contains eight methionine residues, and methionine 

is known to be highly oxidized regardless of solvent accessibility ( 101, 13 3 ), this degree 

of oxidation is expected. No significant degradation products were detected. 

In order to determine the exact sites of oxidation, we utilized tryptic digestion 

followed by C 1 8  reverse phase LC-MS/MS to determine the exact side chains that were 

oxidized as described previously (133, 134). Amino acids should be oxidized largely 

based on the inherent rate constant of the corresponding free amino acid. In C 14S 

Sml lp, we expect to detect oxidation events at Met3, Tyr9, PhelO, Tyrl 1, Met30, Phe33, 

Met41, Met46, Met53, Met66, Trp67, Met82, Phe 87, Met95, Phe96, Met104, and 

Phe 106. This set of residues represents all amino acids with a rate constant for hydroxyl 

radical interaction above 6 x 109 M-1 s-1 in their free amino acid forms, and is indicative of 

the amino acids we normally observe in unfolded proteins. Generally, aliphatic amino 
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acids are not readily oxidized due to the limited amount of oxidation performed to 

preserve the structure of the protein. 

After the oxidation, tryptic digestion, and LC-MS/MS analysis of denatured C14S 

Sml 1 p, we were able to unambiguously identify eighteen oxidation sites. Including both 

oxidized and unoxidized peptides, 1 00% sequence coverage for C 14S Sml 1 p was 

obtained. The results of the oxidation of denatured C14S Smllp are shown in Figure 19. 

Each of the amino acids expected to be oxidized was detected, with the exception of 

Tyr9. Tyr9 resides in a peptide directly adjacent to FlO  and Tyrl 1 ,  both of which were 

heavily oxidized (as estimated from fragment ion abundances in LC-MS/MS 

experiments); therefore, the failure to detect the oxidation of Tyr9 is probably due to the 

complex fragmentation pattern resulting from the MS/MS of three oxidation isomers 

differing in the site of oxidation by one residue. In addition to the amino acids expected 

to be oxidized, Pro22 and Leu25 were also found to be oxidized by LC-MS/MS; 

however, no other oxidation sites were detected. 

Oxidation of native Cl 4S Smllp 

Since we only failed to detect one highly oxidizable amino acid in the entire 

sequence, we judged the denatured data a sufficient baseline from which to perform 

analyses of C 14S Sml 1 p in its native structure. The oxidized protein was measured by 

ES-FTMS to determine the extent of oxidation, and to help ensure that the protein was 

not denatured or fragmented by the oxidation process as described elsewhere (1 33). The 

native C 14S Sml 1 p was oxidized to approximately the same extent overall that the 

denatured protein was; that is, the base peak was the addition of eight oxygen atoms, with 
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Figure 19: Sites of Oxidation of Native and Denatures C14S Smll p 

The sequence of C14S Sml lp. The addition of a N-terminal Gly-Ser from the expression 

construct places the actual mutation site at Cys 16➔Ser 16. Residues oxidized only in the 

native state are colored red, residues oxidized only in the denatured state are colored blue, 

and residues oxidized in both the native and denatured states are colored purple. 

Methionines are colored orange, and are not informative as they are oxidized regardless 

of solvent accessibility. 
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a smaller peak representing the addition of nine oxygens and no unmodified or degraded 

protein detectable ( data not shown). The fact that denatured Sml 1 p did not show more 

oxidation events per protein molecule than the native Sml 1 p strongly suggests that 

saturating levels of hydroxyl radicals were not produced in the experiment; therefore, the 

denatured protein interacted with the same, limited number of radicals as the native, j ust 

with the oxidation events spread across more residues. 

Tryptic digestion was then performed on the oxidized native C 14S Sml 1 p sample, 

and the resulting peptides were analyzed by LC-MS/MS. The sites of oxidation of native 

C 14S Sml 1 p are shown in Figure 19. All methionines were found to be oxidized in the 

native state. This finding is not surprising, as several previous reports have shown that 

methionine is oxidized regardless of the solvent accessibility of the residue (99, 101, 104, 

134, 164-167, 184). However, several non-methionine residues that were found to be 

oxidized in the denatured Cl 4S Smll p were not detected in this assay (Pro22, Phe3 3,  

Phe 107, and Phe 106). These data, as well as the fact that we could detect and fragment 

the unoxidized version of the peptides, strongly suggests that Pro22, Phe3 3,  Phel 07, and 

Phe 106 are buried in the native structure. The fact that these four residues are buried 

undermines a previous conclusion based on partial NMR data that Sml 1 p had no tertiary 

structure in solution (177). 

The non-methionine amino acids that were oxidized in the native structure must 

be solvent accessible, as shown previously in several model systems by several oxidation 

techniques (101, 102, 134). In the native state, we were able to assign Tyr9 (although the 

signal-to-noise of the particular fragment ion required for this assignment was fairly 

poor); other than this single outlier, no other residues were detected in the native structure 
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that were not detected in the denatured structure. Tyr9, PhelO, Tyrl 1, Leu25, Trp67, and 

Phe96 were all shown to be oxidized in the native structure by LC-MS/MS. The data 

gathered on these ten residues were utilized to evaluate pseudo-ab initio computational 

models. 

Computational modeling by Rosetta 

As reported earlier, Sml 1 p does not exhibit significant sequence similarity with 

any protein structure in PDB, and fold-recognition methods failed to identify a structural 

fold with high confidence (150). Rosetta/I-sites, which is more applicable to novel 

structural fold and a top performer at CASPs in the new fold category, was applied to 

Sml 1 p structure prediction. The top five models generated by Rosetta for Sml 1 p are 

shown in Figure 20 A-E. All of these models have almost identical secondary structures 

(an a-helix near the N-terminus, and a-helix near the middle of the sequence, and an a­

helix near the C-terminus); they differ mainly in the relative orientation and contacts 

between the N-terminal domain and the C-terminal domain. It has been shown that for 

about 40% of the examined proteins that are shorter than 150 amino acids, one of the five 

top models generated by Rosetta has good global similarity to the true structure (182). 

Evaluation of computational models by surface mapping analysis 

After the computational models were generated, each was evaluated by 

application of the surface mapping constraints. For each model, the product of the 

solvent accessible reactive area and the respective free amino acid rate constant was 

plotted for each of the known reactive amino acid residues in C 14S Sml 1 p (both for the 
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Figure 20: Oxidation Sites Plotted on Computational Models of Smllp 

Spacefill representations of each of the eight computational models discussed. Amino 

acids that are oxidized only in the denatured state (and therefore buried in the native 

structure) are colored blue. Amino acids that are oxidized in the native state ( and 

therefore are accessible in the native structure) are colored red. 3A-Rosetta model 1 ;  3B­

Rosetta model 2; 3C-Rosetta model 3; 3D-Rosetta model 4; 3E-Rosetta model 5 ;  3F­

partial NMR Smllp model; 30-Sml lp rotanier 1 model; 3H-Sml lp rotamer 2 model 
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denatured and native experiments). Given that the model is correct, the product of the 

side chain area and the amino acid rate constant would estimate the relative reactivity. 

The comparison of each of the computational models is shown in Figure 2 1 .  In 

the case of a correct model, one should be able to draw a line at some value along the 

ordinate below which lie all ( area x rate) products for amino acids which were only 

oxidized in the denatured state ( and thus are "buried" in the native structure), and above 

which lie all ( area x rate) products for amino acids which were oxidized in the native 

state (and thus are "exposed" in the native structure). The ordinate value at which this 

line is drawn will depend upon the overall extent of oxidation and the sensitivity at which 

the oxidized peptides are detected; therefore, this value will differ from experiment to 

experiment. The important factor is not the value of this discriminating line, but rather 

the comparative value of the (area x rate) product for different amino acids within the 

same protein in the same experiment. All assignments of "buried" and "exposed" are 

relative to other amino acids within the same protein (i.e. when FlO  is assigned as 

"exposed", the actual meaning is "more exposed than any buried residue"). Analysis of 

the computational models presented yielded a discriminating line for one computational 

model, as discussed below. Based on an analysis of the fit of each computational model 

with the solvent accessibility data gathered previously, the accuracy of each model can be 

critically evaluated against known biophysical properties of the native structure. 

The first of the top five models generated by Rosetta is shown in Figure 20A. In 

examination of the surface mapping constraints, several residues look reasonable. Tyr9 

and Tyr 1 1  are both highly solvent exposed, which is supported by the surface mapping 

data. In addition, this model buries Pro22, Phe3 3, and Phe 106, which are all known to be 
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Figure 21 :  Quantitative Analysis of Sites of Oxidation of C14S Smllp 

The product of the solvent accessible reactive area and the respective free amino acid rate 

constant (given in Table 1)  for each of the ten reactive, non-methionine residues in C 14S 

Smllp. Residues that were oxidized in the native state are marked with a red asterisk 

(exposed), and residues that were oxidized only in the den3tured state are marked with a 

blue triangle (buried). An empirical discriminatory threshold separating oxidized and 

unoxidized residues is indicated by a horizontal line at 2. 1 x 10 1 1
• This line effectively 

separates exposed vs. buried residues for the Sml 1 p Rotamer 2 model. 

89 



buried in the native structure. However, this model has Phel 0 fairly buried, and Phe96 is 

nearly completely buried. Both of these residues were shown to be solvent accessible in 

the native structure. Also, this model exposes Phe 106, which is known to be buried in 

the native structure. These discrepancies eliminate Rosetta model 1 as a potential correct 

structure for Smll p. 

The second model generated by Rosetta is shown in Figure 20B. Comparison of 

this model with surface mapping constraints is even less promising than the first model. 

Both Tyr9 and Tyrl 1 are almost completely buried, as is Phe96. All of these residues 

should be solvent accessible. Trp67 is almost completely solvent accessible, which 

agrees with our data as well as with other tryptophan fluorescence data (150). This 

model does bury Pro22, Phe33 ,  and Phe106, which is in agreement with the data. 

However, the buried aromatic residues near the N-terminus, as well as the buried Phe96 

and the exposed Phe87, all eliminate Rosetta model 2 from consideration as a correct 

structure of Sml 1 p. 

The third Rosetta model (Figure 20C) looks considerably better than the first two. 

Tyr9 and Tyrl 1 are both highly solvent exposed, as is Trp67. Pro22, Phe33 and Phe106 

are all buried, and Phe87 is more buried in this model than in either of the previous ones. 

However, PhelO is still relatively buried; its (area x rate) product is lower than that of 

Phe87, and yet Phel 0 is known to be solvent accessible while Phe87 is known to be 

buried. In addition, this model still has Phe96 buried, which is at odds with the 

experimental surface mapping constraints. Therefore, Rosetta model 3 must also be 

rejected as a potential structure, although it does agree better than any of the other 

Rosetta models thus far. 
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The fourth model generated by Rosetta, Figure 20D, reveals immediate 

difficulties at the N-tenninus. Tyr9 and Tyrl 1 are both buried in this model, as is Phe96. 

All of these residues were shown experimentally to be solvent accessible in the native 

structure. Phe 1 0  is more solvent accessible in this structure than in any of the others so 

far, Trp67 is considerably exposed, and Phe33 and Phe014 are properly buried. 

However, Phe96 is incorrectly buried in this model, and Phe87 is too exposed. All of 

these disagreements between Rosetta model 4 and the experimental surface mapping data 

exclude this model from further consideration. 

The fifth and final model generated by Rosetta, shown in Figure 20E, has 

incorrectly buried Tyr9 and Phel 0 completely. Tyrl 1 and Trp67 are somewhat exposed 

in this model, and Phe96, while still buried, is more exposed than in any of the other 

Rosetta models. However, Phe33 is highly solvent accessible in this model, as is Phe87 

and Phe 106, when all three are known to be buried. Therefore, Rosetta model 5 must 

also be excluded from consideration as a correct structure for Sml 1 p. 

All the five models generated by Rosetta for Smllp have two a-helices (one near 

the N-tenninus and one near the center of the sequence) that are consistent with the NMR 

data (177). However, each of the Rosetta models also has another a-helix near the C­

tenninus, contrary to the NMR data. Therefore, a hybrid model was constructed using 

segments consistent with NMR data (1 50). This model, shown as Figure 20F, was 

examined utilizing the solvent accessibility data generated here. This model looks 

considerably better than any of the models generated by Rosetta. Tyr9 and Phe 10  are 

both moderately exposed, with Tyrl 1 highly solvent accessible. Phe33 has been properly 

buried in this model, and Trp67 is almost completely solvent exposed, in agreement with 
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our data and with the previous fluorescence quenching and anisotropy data (150). 

Phe 106 is also correctly buried; however, the most dramatic change is in Phe96, which 

has become approximately three times more solvent exposed than in the most favorable 

Rosetta model. A minor difficulty still arises; the ( area x rate) product of the exposed 

Phel0 is slightly lower than the (area x rate) product of the buried Phe87. This problem 

could be readily resolved by either exposing Phel 0 or by burying Phe87; however, even 

small local changes may impact the solvent accessibilities of several other residues. 

In order to improve the fit of the model with the experimental surface mapping 

data, different rotamers of selected side chains from the partial NMR Sml 1 p model were 

analyzed and compared with the surface mapping data. Sml 1 p rotamer 1 model (Figure 

200) features a lower-energy rotamer for the Arg26 side chain. The overall solvent 

accessibility profile is similar to the parent model, with a few minor differences. Tyr9 

and Phel0 are both slightly more solvent accessible, and Tyrl 1 is much more solvent 

accessible. Trp67 is also slightly more solvent accessible. Unfortunately, Phe87 is also 

slightly more solvent accessible than the parent model, and as such its ( area x rate) 

product is still slightly higher than the exposed Phe 1 0. 

The Sml 1 p rotamer 2 model (Figure 20H), which in addition to the altered Arg26 

side chain rotamer also uses a lower energy rotamer for the Phe87 side chain, has an 

absolutely identical solvent accessibility profile as the Sml 1 p rotamer 1 model, with one 

important exception. The solvent accessibility of Phe87 has dropped slightly, lowering 

its (area x rate) product below that of the exposed PhelO. This model (with the exception 

ofLeu25, discussed below) has no conflicts with the solvent accessibility data. A 

discriminating line can be drawn at an (area x rate) product of 2.1 x 101 1  A2 M-1 s- 1 ; below 
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this line lie the ( area x rate) products of all residues known to be buried, and the ( area x 

rate) products of all residues known to be exposed lie above this line ( with the exception 

of Leu25). However, the differences between the partial NMR Smllp model, the Smllp 

rotamer 1 model, and the Sml 1 p rotamer 2 model are very small, and the three cannot be 

confidently discriminated by solvent accessibility data alone. Therefore, while we cannot 

say with certainty that any of the three models are correct or incorrect, our results and 

calculations suggest that the Smll p rotamer 2 model is a likely candidate for the native 

structure of Smll p. 

In the discussions of all of the computational models above, one apparent conflict 

in each model has not yet been addressed-the ( area x rate) product of Leu25 is low in 

each model, and yet the data shows that the amino acid is oxidized in both the native and 

denatured state. The main difficulty is that, even if Leu25 were to be completely 

exposed, the (area x rate) product would only be approximately 2. l x101 1  A2 M-1 s-1 , 

comparable to that of Phel O. In addition, the data generated from the denatured C14S 

Sml 1 p showed that both Leu25 and Pro22 were oxidized, while other leucines and 

prolines were not. Together, these data suggest that there may be characteristics in the 

primary sequence near these two residues that increase their rate of reactivity or their 

ease of detection. The fact that these two amino acids were detected in the denatured 

experiment while none of the other aliphatic amino acids were detected, even though 

these amino acids have comparable reactivities in a denatured protein, suggests that this 

peptide was detected with unusually high sensitivity and fragmented efficiently in the 

LC-MS/MS experiment. In addition, previous results have shown that the rate of 

oxidation varies directly with solvent accessibility; no neighbor effects have been 
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reported (101, 102, 13 3). Figure 22A shows the total ion chromatogram for the oxidized 

and unoxidized singly-charged 16-26 peptide, which contains both Pro22 and Leu25. 

The ratio of the base peak abundance of the oxidized 16-26 peptide to the unoxidized 16-

26 peptide (which serves as a rough estimate of the rate of oxidation) is 0.0292. The low 

ratio is due to a very low abundance of the oxidized 16-26 peptide, which also is evident 

in the very noisy oxidized peptide selected ion chromatogram. In contrast, a peptide with 

an exposed phenylalanine (peptide 94-100) shows a base peak oxidized:unoxidized ratio 

of 0.4278. This peptide' s selected ion chromatogram shows clear peaks representing the 

unoxidized and the oxidized peptide (Figure 22B); this ratio is similar for all other 

oxidized/unoxidized peptide pairs detected. Therefore, we have chosen to disregard 

Pro22 and Leu25, and hinge our analyses on the aromatic amino acids, all of which have 

similar reactivities (105, 106), and all of which showed reasonable ratios of 

oxidized/unoxidized peptide in the selected ion chromatograms (Figure 22B). 

Discussion 

The regulator of ribonuclease reductase Sml 1 p is a highly important regulatory 

protein, regulating intracellular levels of dNTPs and thus important in maintaining 

genetic stability ( 185). Sml 1 p is known to interact with Rnr 1 p in a 1 : 1 stoichiometry 

(172), and this interaction is known to take place via the C-terminus (177). 

Significant amounts of work have been performed in order to elucidate the structure of 

Sml 1 p. Previous NMR work performed showed that Sml 1 p has two alpha helices 

comprising residues 6-16 and 63-82 (177), which were added to the Rosetta model. 
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Figure 22 : Selected Ion Chromatograms Showing Rates of Oxidation 

Selected ion chromatograms (full scan MS only) from an LC-MS/MS run for oxidized 

and unoxidized versions of two peptides. A-{top) the unoxidized, singly-charged 

version of peptide 16-26; (bottom) the oxidized, singly-charged version of peptide 16-26. 

B-{top) the unoxidized, singly-charged version of peptide 94-100; (bottom) the 

oxidized, singly-charged version of peptide 94-100. For both A and B, both top and 

bottom panels are normalized to the same absolute signal intensity for direct comparison. 
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These helices were supported by gas phase collision of intact Sml 1 p, which showed that 

these regions were protected from fragmentation in the gas phase, suggesting secondary 

structure (151). The NMR work also suggested that the protein has no stable tertiary 

structure; however, the data generated here clearly demonstrate that a solvent-excluding 

tertiary structure exists for Sml 1 p. 

Thorough random mutagenesis of SMLJ was also performed to determine which 

residues were essential for Smll p activity. All of the mutants that were found to abolish 

the inhibition of ribonuclease reductase (Rnr 1 p) were found to be at the C-terminus. In 

addition, deletion of the N-terminus revealed that the C-terminal 54 amino acids were 

necessary and sufficient to maintain the inhibitory activity of Sml 1 p (177). Also, 

analysis of the unfolding profile of Smll p and C14S Smll p show identical unfolding 

transitions ( 150). Therefore, the substitution of a serine at position 14 for a cysteine 

should not substantially alter the structure or function of Sml 1 p. 

It has been shown previously that Sml 1 p can form a stable dimer in solution, 

either covalently bound via a disulfide bridge or, in the case of Cl4S Smll p, by 

noncovalent interactions (1 50). However, a previous �eport based on NMR spectroscopy 

did not report any dimerization (177). With the conflicting reports, any analysis of 

Sml 1 p solvent accessibility must take the possibility of dimerization into account. 

However, previous analysis of another noncovalently-bound structure, R67 dihydrofolate 

reductase, suggests that the photochemical oxidation technique may not probe all protein­

protein interactions under the conditions and time-scales utilized here ( unpublished 

results). In addition, the N-terminal 38 amino acids of C14S Smll p are necessary for 

homodimerization (150). In the solvent accessibility analysis of C14S Smll p, only P22 
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and F33 are buried in the N-terminal 38 amino acids, and neither of these amino acids 

were solely responsible for the elimination of a computational model. From the top five 

models generated by Rosetta, not one was excluded from consideration solely on the 

basis of buried residues, and it is unlikely that dimerization causes a residue to become 

exposed. Regardless, during analysis of computational models utilizing solvent 

accessibility constraints, it is important to note that residues that are found by surface 

mapping to be buried may in fact be buried by a protein-protein interaction, not by any 

tertiary structure. 

As a general method, the application of surface mapping constraints to Rosetta 

models has great promise. Rosetta has performed very well in the recent CASP4 

competition, successfully modeling large segments of most of the domains for which 

models were submitted. Rosetta was especially well suited for the analysis of Sml 1 p, as 

this protein would not thread correctly against any template structure, making modeling 

by protein threading impossible. As a pseudo-ab initio modeling algorithm, Rosetta does 

not require a folding template, and can attempt to predict new folds such as Sml 1 p. 

However, the modeling algorithm is imperfect, and utilized a number of artificial 

constraints as an attempt to produce valid models in a reasonable timeframe. Several of 

these procedures can be directly influenced by solvent accessibility data. For example, 

Rosetta utilizes an energy function that buries hydrophobic residues. In addition, a filter 

is used which eliminates structures based on solvent-accessible surface calculations 

(1 86). As can be determined from Table 1 ,  many of the most highly oxidizable side 

chains are hydrophobic in nature, which allows the data to be used to successfully defy 
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the pseudo-ab initio calculations by exposing residues that the energy functions of 

Rosetta wish to bury. 

While the approach taken with the analysis of Sml 1 p is a valid method for 

eliminating incorrect structures, better results would be achieved if the constraints were 

built into the modeling algorithm itself. Several model proteins have been analyzed by 

hydroxyl radical surface mapping (133 ,  134). Current efforts are being made to generate 

a constraining term for the protein threading algorithm PROSPECT, in an attempt to 

improve threading template selection and energy minimization (42). Once the solvent 

accessibility data can be inserted within a threading algorithm, a direct pipeline between 

surface mapping experiments and constrained computational structures can be established 

for pseudo-high throughput constrained structure prediction, a tremendous goal for 

systems biology. 
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CHAPTER 6-ANALYSIS OF THE STRUCTURE OF Ap 1-

40 AMYLOID FIBRILS BY PHOTOCHEMICAL 

OXIDATION AND MASS SPECTROMETRY 

Introduction 

The elucidation of the structures of amyloid fibrils is an intriguing and very 

important problem due not only to the fact that amyloid fibrils and related aggregates are 

implicated in over 20 diseases (187), but also as an alternative folding pathway as a P 

sheet-rich protein aggregate (188). It has also been shown that amyloid fibrils can 

actually serve a beneficial function, such as aiding in maintaining evolutionary variability 

(189); in addition, cellular machinery has been found responsible for creating and 

maintaining amyloid fibrils in E. coli (190). Amyloid fibrils are known to be fairly 

straight structures of approximately 80-120 A in width with lengths up to several µm, 

with a substructure of bundled protofilaments of20-30 A (187). 

The secondary structure of amyloid fibrils has been characterized by a variety of 

methods. X-ray fiber diffraction has given some important insight into the nature of the 

secondary structure of amyloid fibrils. It has been determined that the fibril consists of 

multiple p sheets perpendicular to the axis of the fibril (191). In addition, X-ray 

diffraction has suggested that the multiple p sheets are stacked, as opposed to 

polyglutamine fibrils, which may have an extended helical conformation (187, 192, 193). 

However, currently two models of amyloid fibril structure are favored; the hollow, 
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extended conformation � helical structure p'roposed by Perutz et al (192) and the parallel 

stacked � sheet helical structure proposed by Wille et al (194). 

Perutz and colleagues recently published an analysis of various X-ray diffraction 

and electron microscopy data on a variety of fibril aggregate forms . Perutz et al argued 

that, due to the known � sheet composition of the fibrils as well as the lack of a 10 A 

reflection in the polyglutamine diffraction pattern, that the polyglutamine fibril forms a 

cylindrical � sheet, with each peptide in an extended � strand conformation. The 

resulting structure, shown in Figure 23 , would have an inner pore of about 11.8 A 

diameter-too small for many dyes, but large enough for the diffusion of unbound water 

(192), and also large enough for the diffusion of hydrogen peroxide and hydroxyl 

radicals . Since half of the side chains of the fibril will be facing this inner, solvent 

accessible core, all of these amino acids should be available for oxidation by hydroxyl 

radicals. 

In a study of the amyloid-like prion aggregate PrPsC, electron microscopy studies 

found a hexagonal crystal in fibril preparations of the infection prion (194). The authors 

contend that the hexagonal crystal represents the cross-section of the fibril; furthermore, 

due to evidence from spectroscopic studies of internal deletions of the PrP8c prion, the 

authors contend that the only known structural element that could make up the fibril is 

the parallel � helix (Figure 24). One major structural difference between this parallel � 

helix and the structural model presented for polyglutamine fibrils and proposed to also 

apply to A� amyloid fibrils (192) is that the parallel � helix model proposed by Wille et 

al would exclude solvent from the interior of the protofilament, while the model of Perutz 

would require a protofilament filled with unbound water (187). 
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1 1 .s A 

Figure 23: Amyloid Nanotube Model for Alzheimer's AP Peptide 

A model adapted from Perutz et al of the structure of the AP fibril ( 192). Perutz et al 

stipulated a possible third concentric helix outside of the first two. Even given a 3A layer 

of bound water within the nanotube, there is still a 6A diameter of unbound water; this 

diameter is too small for many chemical dyes and labels, but small enough for water, 

hydrogen peroxide, and hydroxyl radicals. 
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Figure 24: Spa·cefill Models of a Left-Handed and Right-Handed Stacked P Helix 

Figure reproduced from Wetzel with permission (1 87). The left panel shows a 

top-down view of two rungs of a left-handed stacked p helix (PDB accession ID 1 lxa); 

the right panel shows a top-down view of two rungs of a right-handed p helix (PDB 

accession ID 1 dab) with amino acids colored to show chemical similarity (hydrophobics 

green, neutral hydrophilics yellow, acidics red, basics blue, Gly and Pro purple, and water 

light blue). Note that the central region of the helix is filled in with side chains. 

102 



Since these two leading models are differentiated by a solvent accessible core, the 

application of a technique that measures the solvent accessibility of a variety of amino 

acids would be useful to eliminate one of the two models. The hydroxyl radical labeling 

method is ideal for this problem. Not only does the radical label a wide variety of amino 

acid side chains, but the small size of the radical would allow it to penetrate into the 

hollow center of the protofilament if the model of Perutz et al is correct. Therefore, 

photochemical hydroxyl radical surface mapping was performed on the A� 1 -40 peptide 

as well as the amyloid fibril generated by the A� 1 -40 peptide. If the model of Perutz et 

al is correct, half of the peptide involved in the protofilament should be accessible to the 

solvent within the core of the nanotube ( 192), while if the model of Wille et al is correct, 

only the amino acids on the solvent accessible, outside face of the protofilament would be 

solvent accessible. 

Results 

In order to test the model of Perutz et al, the photochemical surface mapping 

technique previously developed was applied to the A� fibril. A� 1 -40 peptide, shown in 

Figure 25, was photochemically oxidized as described in Chapter 2 in both the monomer 

and the fibril state. In order to determine the potential sites of oxidation, LC-MS/MS of 

the monomer was performed in triplicate. Table 8 shows the sites of oxidation and the 

number of replicates in which each site was identified. Oxidation at the amino acids L 1 7, 

F19, F20, and M35 were detected in each replicate for the monomer, and were treated as 

the most reliable datapoints in fibril analysis. Oxidation at 132 and L34 were detected in 
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1 * 1 0  * 2 0  * 3 0  * 4 0  

DAEF DSGYEVHHQKLVFFAEDVGSNKGAIIGL VGGVV 

Figure 25: Sequence of AP 1-40 Peptide 

Colored red is peptide 6-16, which could not be detected in either the monomer or the 

fibril by LC-MS/MS or ES-FTMS. Colored blue are amino acids that were detected by 

LC-MS/MS in at least two of the three monomer oxidation replicates, but not in the fibril 

oxidation. Colored orange is methionine, which is detected as oxidized in both the 

monomer and fibril. No solvent accessibility data can be determined from the oxidation 

of methionine (1 01 , 1 33, 134). 
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Table 8: Sites and Apparent Rates of Oxidation for A� 1 -40 Monomer and Fibril 

Peptide [ Oxidized]/[U noxidized] [Oxidized]/[Unoxidized] 
Monomer Fibril 

1 -5 0.05* 0 
6-16  ND ND 
17-28 0.08 0 
29-40 100% oxidized (0.06A) 1 00% oxidized 

ND-peptide not detected as oxidized or unoxidized 

*--very poor signal to noise 

Oxidized 
Residues 
F4 
ND 
F19, F20, L17  
M35, 132, L34 

"--ratio of methionine oxidation to 132 and L34 oxidation ([+ 10] + [+ 20]) / [+ 30] 

Underlined residues were identified in all three replicated by LC-MS/MS measurements; 

others were identified in two of three replicated except for F 4, which was detected in one 

replicate and strongly implicated by ES-FTMS measurements. 
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two out of the three replicates, both at low signal to noise levels. Oxidation at F 4 was 

detected in only one replicate at very low signal to noise levels; however, the oxidized 

peptide seems to be present at low abundance in all replicates of the LC-MS/MS 

experiment, just without a good MS/MS fragmentation spectrum. Peptide 1-5 did not 

ionize well in any experiment (either LC-MS/MS or ES-FTMS), causing even the 

unmodified peptide to be difficult to detect; therefore, detection of the oxidized peptide 1-

5 was challenging in even the best cases. Peptide 6-16 could not be detected in the 

unoxidized or oxidized state in the monomer or the fibril. Peptide 6-16 has three 

histidines as well as a tyrosine present. Each histidine could have at least three major 

oxidation products, resulting in the signal from peptide 6-16 to be split into at least 27 

peaks (ignoring the contribution from the tyrosine). Since the signal from one peptide is 

split into so many peaks, it is probable that the many peaks from this peptide are at too 

low signal to noise to detect by mass spectrometry. It is also possible, although 

improbable, that peptide 6-16 was not retained on the C 18 SepPak used in cleaning up the 

sample after trypsin digestion; however, nothing about the peptide' s sequence suggests a 

difficulty with solid phase extraction. It is known that at least H6 is solvent accessible in 

the fibril, and more recent mutagenesis experiments have suggested that H 13 and H 14 are 

also part of the solvent accessible tail (Wetzel, personal communication), suggesting that 

the oxidation of all three histidines is likely in both the monomer and the fibril. 

Oxidation of the A� 1-40 fibril was performed, and the rates of oxidation of each of the 

four peptides were compared with those of the monomer. The major oxidation sites of 

the monomer as estimated from the MS/MS fragmentation spectra were F19, F20, and 

M35, with very minor oxidation occurring at Ll 7 and no relative rate estimates available 
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for F4. The rates and sites of oxidation of the fibril are shown in Table 8. The only 

oxidation site detected was M35. The methionine-containing peptide was not detected in 

the unoxidized state, with essentially the same oxidation rate for the dioxidized peptide 

(representing the methionine sulfone) as the monomer. As previously mentioned, 

oxidation of methionine can occur regardless of side chain solvent accessibility ( 101, 

102); however, essentially no methionine oxidation occurs in the absence of the UV­

induced hydrogen peroxide photolysis. Therefore, the measured oxidation of methionine 

at near the same rate as in the monomer shows that the oxidation reaction did occur as 

expected (as opposed by a true negative result). However, no other sites of oxidation 

were detected in the fibril. 

Figure 26 shows the ES-FTMS relative quantitation of the [ oxidized] / 

[ unoxidized] ratio of peptide 1-5 in the monomer (Figure 26A) and the fibril (Figure 

26B). As can be seen in the spectra, the signal to noise of peptide 1-5 is poor even in the 

native form, and the oxidized form is barely detectable in the monomer. The signal to 

noise is considerably worse in the fibril spectrum, probably due to the emergence of 

chemical noise from the TF A treatment required to dissociate the fibril into monomers 

after oxidation, as well as sample loss during the centrifugation and washing. Since the 

chemical noise is significantly higher in the fibril spectrum, we were unable to detect 

oxidized peptide 1-5. The lack of data at the N-terminus, while unfortunate, does not 

detract from the overall knowledge of AP 1-40 structure, as the N-terminal 12 residues 

have already been determined to be solvent accessible by partial proteolysis (195). 
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Figure 26: ES-FTMS of Peptide 1-5 Oxidation 

Spectrum of peptide 1-5 oxidation in the (A) mono1:ller and (B) fibril. The oxidized 

peptide 1-5 can barely be detected in the monomer, but cannot be detected in the fibril, 

possibly due to significantly worse chemical noise in the fibril spectrum. The only 

oxidizable residue in peptide 1-5 is F4. 
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Figure 27 shows the ES-FTMS relative quantitation of the [oxidized] / 

[unoxidized] ratio of peptide 17-28 in the monomer (Figure 27A) and the fibril (Figure 

27B). As the spectra show, the signal to noise of this peptide is very good, which allows 

even low oxidation levels to be detected reliably. Figure 27 A shows that peptide 17-28 is 

oxidized to a detectable extent, with an [ oxidized] / [ unoxidized] ratio of 0.08 (Table 8), 

with oxidation occurring at Fl 9, F20, and to a much lesser extent, LI 7. Figure 27B 

shows the oxidation of peptide 17-28 in the fibril. The signal from peptide 17-28 in the 

fibril still shows good signal to noise; however, no signal from an oxidized peptide can be 

detected. Even in the LC-MS/MS spectra, no evidence of oxidized peptide 17-28 can be 

found in the fibril. If only one of the two phenylalanines was exposed to solvent in only 

half of the peptide, as in the concentric continuous � sheet helix model of Perutz et al 

(192), we would expect an oxidation rate approximately 25% of that of the monomer. At 

the signal to noise levels obtained for this peptide in the fibril; an [ oxidized]/[ unoxidized] 

ratio of--0.02 would be detectable; however, no such oxidation was seen. Therefore, it 

must be concluded that both phenylalanines are buried to a significant extent in the fibril. 

The oxidization of peptide 29-40 as determined by ES-FTMS measurements is 

shown in Figure 28. Figure 28A shows the oxidation states of peptide 29-40 in the 

monomer. As shown in the figure, there is no detectable unmodified peptide. This is not 

uncommon for methionine-containing peptides. The peptide 29-40 + 0 peak represents 

the M35 sulfane as determined by LC-MS/MS fragmentation. The peptide 29-40 + 20 

peak represents the M3 5 sulfone, again as determined by LC-MS/MS fragmentation. The 

peptide 29-40 +30 peak represents the M35 sulfone plus the oxidation of 132 or L34. In 

the ES-FTMS spectrum of the oxidized fibril (Figure 28B), the oxidation of M35 to both 
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Figure 27: ES-FTMS of Peptide 17-28 Oxidation 

Spectrum of peptide 1 7-28 oxidation in the (A) monomer and (B) fibril. The oxidized 

peptide 1 7-28 can be detected in the monomer, but not in the fibril, even though the 

signal to noise is excellent in both spectra. The major sites of oxidation in this peptide 

are Fl 9 and F20. The insert shows the m/z range of 1 338-1 344 expanded for detail. 
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Figure 28: ES-FTMS of Peptide 29-40 Oxidation 

l 
1 1 33 ,847 
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Spectrum of peptide 29-40 oxidation in the (A) monomer and (B) fibril. The unoxidized 

peptide 29-40 is not detected in the monomer or the fibril, even though the signal to noise 

is excellent in both spectra. Peptide 29-40 + 0 and peptide 29-40 + 20 both represent 

oxidation at M35; peptide 29-40 + 30 represents oxidation at M35 and 132 or L34. 
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the sulfane and the sulfone is present at essentially the same apparent rate (Table 8); 

however, the peptide 29-40 + 30 peak is not present. The signal to noise ratio of the 

peptide 29-40 + 30 peak in the monomer is large enough to be easily detected in the 

fibril if no change in the solvent accessibility of 132 and L34 occurred; however, no 29-

40 + 3 0 peak can be detected in the ES-FTMS spectrum of the oxidized fibril. In 

addition, no evidence of oxidation of l32 or L34 can be detected in the LC-MS/MS 

spectra taken of the oxidized fibril. Therefore, the amount of overall hydroxyl radical 

production during the oxidation reaction appears to be comparable between the fibril 

reaction and the monomer reaction ( due to the same apparent rate of oxidation of M3 5 

into both the sulfane and the sulfone forms). In addition, the solvent accessibility of 132 

and/or L34 must be decreased in the fibril as compared to the monomer. Since it cannot 

be determined with great accuracy to what extent each residue contributed to the 

oxidation of peptide 29-40 in the monomer, it is possible that the loss of solvent 

accessibility to one of the sites may be sufficient to lower the signal of the peptide 29-40 

+ 30 peak below the signal to noise ratio threshold necessary for detection in the 

oxidized fibril sample; however, both residues must be located on the same face of the P­

strand, suggesting that a structure which buried one of them probably would bury the 

other as well. 

Discussion 

Photochemical oxidation surface mapping is an excellent tool for examining 

multiple amino acid side chains in wild type proteins with a single experiment. Amyloid 

fibrils are a very difficult protein to examine using traditional structural methods. The 
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fibrils will not crystallize, making X-ray crystallography unusable, and they are much too 

large for examination by solution-phase NMR spectroscopy. Much work has been done 

with X-ray diffraction (191 , 193, 196, 197) and with solid-state NMR spectroscopy (1 98-

207). The models proposed for the structure of the A� amyloid fibril are often in 

disagreement with one another. One such model recently proposed by Perutz et al (192) 

states that A� amyloid fibrils are composed of two or three concentric continuous � 

helices, with an unbound water-filled pore in the middle, leading to a nanotube-like 

structure. However, another model of amyloid structure recently proposed by Agard et 

al suggest a hexagonal array of cross-sectional slabs of peptide stacked upon one another, 

with a solvent-excluding central pore. 

The results presented above show that F19 and F20, both of which are known to 

be part of the protected structure (presumably the A� core) of the fibril (195), both have 

solvent inaccessible side chains. In addition, 132 and/or L34 also have solvent 

inaccessible side chains. This is in agreement with other studies that suggest that 132 and 

L34 are involved with the � sheet structure and are not part of a free C-terminal tail 

(200); however, in the model of Perutz et al, these side chains would either be exposed to 

the outside of the continuous outer � sheet or exposed to the water-filled cavity of the 

nanotube structure. The center of this nanotube model is large enough to support the 

diffusion of both hydrogen peroxide and hydroxyl radicals (192); therefore, while a 

decrease in the apparent rate of oxidation of peptide 17-28 could be expected in the 

Perutz model, the complete lack of oxidation of the side chains should not occur. 

A model which would support the burial of both F 19 and F20 in a � sheet 

structure would be one with the strands perpendicular to the axis of the fibril, with the 
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side chains of the amino acids at the N- and C-termini of the � strand portion of the 

peptide exposed to solvent (Figure 29). While such a model is by no means the only 

possible fold that would protect the side chains of both Fl 9 and F20 in a �  sheet 

structure, the model published by Perutz et al (1 92) does not explain the photochemical 

oxidation surface mapping results presented here without significant alterations. Further 

experimentation to map other amino acid side chains not probed by this technique is 

required to establish a model for both the overall structure of the A� amyloid fibril as 

well as the side chain packing within this structure. 
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Figure 29: Model of AP 1-40 Stacked p Strand Structure 

A rough theoretical model of the � strand portion of the A� 1 -40 fibril. There is an 

unstructured N-term.inus and possibly an unstructured C-terminal tail. The interior of the 

fibril is protected from solvent by the side chains at the ends of the � strand, with each 

strand stacking on top of another to form a helical � sheet. The side chains are packed 

too tightly together to allow penetration of solvent, therefore completely protecting the 

interior side chains from the probing hydroxyl radical. Protofilaments are packed 

together in such a way as to shield the outward-facing phenylalanine from the solvent. 
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CHAPTER 7-CONCLUSIONS 

In the studies presented here, we have attempted to demonstrate the usefulness of 

the hydroxyl radical to generate surface constraints for protein modeling. We first set out 

to prove the suitableness of photochemical hydroxyl surface mapping for examining 

protein structure. In order to present the hydroxyl radical as a useful probe of protein 

surfaces, the four criteria set forth by Matheson et al should be met (76). 

1) The labeling process itseU should not alter the surface topography of the protein 

2) The presence of the surface labeling compound(s) in solution before labeling should 
not alter the surface features of the protein 

3} It should be demonstrated that residues known to be buried in the native protein are 
not labeled but can be labeled in the denatured protein 

4) In order to correcdy interpret the labeling patterns, it should be determined to what 
extent the labeling reagent is nonspecific 

The hydroxyl radical has a complex chemistry with the variety of chemical groups 

on proteins that makes its applicability as a surface probe somewhat difficult to measure. 

Fortunately, the rich history of radiation biochemistry from the 1960' s and 1 970' s has left 

us with an excellent understanding of the protein chemistry of hydroxyl radicals (105, 

106). The rich body of literature has allowed the use of the hydroxyl radical as a 

chemical surface probe; despite the radical' s  complex protein chemistry, the rates of 

oxidation and the various products are well characterized, allowing the interpretation of 

the protein oxidation pattern and satisfying the fourth criterion of Matheson et al. 

116 



With the model protein lysozyme, it was shown that the labeling process does not 

alter the structure of the protein as measured by CD spectroscopy. In addition, it was 

demonstrated that highly chemically reactive residues buried in the structure of lysozyme 

are not labeled under native conditions, but are labeled under UV-denaturing conditions. 

These observations satisfy the remaining criteria of Matheson et al, leading to validation 

of the hydroxyl radical as a probe of protein surfaces. 

The hydroxyl radical label, like all chemical surface probes, measures the 

aggregate average solvent accessibility. This is an important factor to keep in mind with 

all protein surface mapping studies. For instance, if a protein exists in more than one 

conformation, the apparent rate of oxidation for a specific amino acid will represent the 

weighted average solvent accessibility for the amino acid side chain over the time of the 

labeling process. This observation leads to several important implications for the 

analysis of structural data by this method. First of all, the experiments performed and 

presented in this work all had timescales of minutes; therefore, the structures measured 

were all averages of various conformations that the protein undergoes in solution. As we 

hypothesized based on the data from the one hour oxidation of intact lysozyme (Figure 

1 1 ,  Chapter 4), the presence of multiple structural conformations can result in a non­

additive, "cooperative" oxidation profile. The reason behind the presence of two packets 

of oxidation is that one conformation has more highly reactive groups exposed than the 

other; therefore, the conformation with more reactive groups exposed will better compete 

for the hydroxyl radicals that the conformation with the reactive groups buried, and will 

therefore have higher oxidation states than the less reactive conformation. 
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The observation of multiple oxidation states for multiple conformations may be 

useful in examining conformational changes in proteins upon changes in pH, 

temperature, ionic strength, or ligand binding. By following the extent of oxidation while 

altering pH, ionic strength, or temperature, the transition point of the conformation 

change can be determined. In addition, in conformation changes that are very drastic 

without a gradual transition (such as rapid, drastic pH, ionic strength, or temperature 

driven changes or conformation changes such as single ligand binding), the multiple 

conformations can be simultaneously detected, either near the transition point for pH, 

ionic strength, or temperature driven conformations or at substoichiometric 

concentrations of ligand for ligand binding, by rapid oxidation under these conditions. 

Not only can the presence of the different conformations be determined, but the 

conformations can be generally described by examining the direction of the shift in the 

oxidation state. If upon ligand binding, a protein becomes more heavily oxidized under 

the same conditions, the protein can be said to become generally more "open", or 

unfolded. However, if the protein becomes less oxidized, the protein can be said to 

become generally more "closed", or tightly folded. Separate experiments can also be run 

to more carefully characterize the nature of the conformation change. Studies in this area 

are currently being pursued, examining the oxidation of �-lactoglobulin A at different pH. 

In addition to the applicability in measuring conformation changes, 

photochemical hydroxyl radical surface mapping has great potential in mapping 

membrane proteins. Great interest has been presented for membrane proteins (208-2 1 3), 

due to their importance in signal transduction, as drug targets, as transporters, and their 

implication in disease due to misfolding. The hydroxyl radical has the excellent 
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characteristic of closely mimicking water in size and hydrophilicity; unlike many 

chemical labels, the radical can realistically claim to model solvent accessibility closely. 

This is highly important for determining the structure of small molecule transporters, 

especially aquaporins, which allow the transport of water (21 4-21 8). In addition to 

aquaporins, hydroxyl radical mapping could be an important tool for determining the 

locations of loops and tails in membrane proteins, therefore assisting in localizing the 

location of transmembrane domains. In addition to topology, radical mapping of intact 

cells may assist in determining the orientation of membrane proteins, both important 

questions in biology (21 1 ,  219-228). 

Another area of interest for future research is that of mapping sites of protein­

protein interaction interfaces. Initial work in this area was presented in Chapter 6, 

measuring the interaction between the AP 1 -40 fibrils; however, additional work in 

mapping protein interaction sites of globular proteins is currently underway. The 

potential for developing models for mutagenesis studies by determining sites that become 

buried upon addition of an interacting partner is an exciting prospect for examining the 

topology of protein complexes. One difficulty lies in the fact that the protocol developed 

measured protein solvent accessibility over a period of minutes. In this time, protein 

complexes are often formed, then fall apart, and are reformed many times. Under most 

circumstances, this is not a problem; the technique measures the aggregate average 

solvent accessibility, and for stable complexes, the majority of the protein will be in the 

complexed form. However, prior work with R67 dihydrofolate reductase brought to light 

a specific problem with this technique when applied to certain complexes. The R67 

dihydrofolate reductase complex is a homotetramer which exists in equilibrium with the 
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dimeric form in solution, with the tetramer much more prevalent. However, one essential 

residue in the dimer-dimer interface is a histidine. Upon hydroxyl radical surface 

mapping of the complex, it was found that the oxidation tended to degrade a portion of 

the sample into an irreversible dimeric form. The reason for this is, in the small portion 

of the protein that occurs in the dimeric form, the radical oxidized the solvent-exposed 

histidine. Upon oxidation, histidine undergoes a complex series of oxidation pathways, 

resulting in numerous products, most of which involve scission of the imidazole ring 

(Figure 4). For the small subpopulation of protein that exists in the dimeric form, the 

histidine is oxidized. Once this essential histidine is oxidized, the oxidized dimer can no 

longer form the tetramer. The inability of this dimer to form the tetramer removes it from 

the dimer-tetramer equilibrium, irreversibly populating the dimer state the longer the 

oxidation occurs. 

In order to overcome this problem for examining sensitive protein-protein 

interaction interfaces, a flash labeling method needs to be developed. If the labeling 

occurs in less time than the half-life of the complex, then the vast majority of the 

oxidative damage to the dimer-dimer interface can be avoided. In order to realize this 

goal, a more stable labeling precursor needs to be developed. As shown in Figure 1 1 , 

hydrogen peroxide at ambient conditions can lead to oxidation, albeit at a low rate. A 

flash labeling method would require immediate activation and quenching of the labeling 

reaction; therefore, the unstable hydrogen peroxide is unsuitable. Work performed in 

high intensity X-ray radiolysis of water to generate hydroxyl radicals can label on the 

order of microseconds (99- 10 1 ,  1 04, 1 64- 1 67, 1 84); however, the availability of high flux 

X-ray synchrotron sources greatly limit the availability of this technique to the research 
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community. High-flux gamma ray or fast neutron sources would also work for 

generating hydroxyl radicals (229); however, sources that generate enough flux to 

sufficiently probe protein surfaces on the order of microseconds or less would again place 

the technique beyond general utility to the research community. The only form of 

radiation that is readily available at high flux is UV and visible light. A probe that is 

more stable in solution while still readily reactive after exposure to an intense flash of 

light would be an excellent probe for general flash labeling; considerable effort should be 

directed towards identifying alternative reagents for flash labeling, perhaps using an 

alternative mechanism other than the hydroxyl radical reaction. 

An area where this research may have considerable impact is the field of 

structural genomics. As mentioned previously, the advances in genomics, 

transcriptomics, and proteomics have far outstripped the modest advances in structural 

genomics (Figure 1 ). When the analytical techniques applied to each problem are 

examined, the explanation for this lag in structural genomics is obvious. Both genomics 

and transcriptomics are successful at high-throughput analysis because they are easily 

multiplexed and highly automated, and the purification of the sample is straightforward. 

Proteomics, while not as capable of multiplexing, is still highly automated and utilizes 

the superb resolution, accuracy, sensitivity, and dynamic range of mass spectrometry to 

examine complex mixtures in a single run without purification of individual proteins. 

Structural genomics relies upon XRC and NMR spectroscopy. Neither technique 

can be readily automated due to difficulties in sample purification ( each protein must be 

highly purified), sample preparation (proteins must form perfect crystals for XRC), and 

complex data analysis. Neither technique is amenable to all ( or perhaps even most) 
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proteins, with a published success rate of ~20% from target to structure (3 1). With the 

enormous amount of effort required for each structure, the low success rate, and the 

unsuitability of the techniques for many proteins, it is no surprise that the "high­

throughput" initiatives based on these techniques boast tens of structures per year (28) as 

opposed to the thousands of genes, transcriptional levels, and protein ID' s determined on 

a daily or weekly basis by other, truly high-throughput techniques. In order to bring 

structural genomics into the realm of high-throughput biology, a different analytical 

technique must be applied. The application of the peroxide-mediated hydroxyl radical 

surface mapping technique is not suitable in and of itself for mapping entire proteomes 

due to the presence of transition metal-binding proteins. In the presence of transition 

metals, uncontrolled Fenton chemistry will occur, leading to oxidative degradation of 

metal-binding proteins. Therefore, in order to be useful for whole proteome 

measurements, either the transition metals must be removed from solution prior to 

measurement (meaning that the apo- structure of metalloproteins will be probed), or a 

more stable labeling reagent must be developed. 

In addition to alternative labeling methods, another essential piece that must be in 

place before this technique can be applied in a high-throughput fashion is an automated 

data analysis pipeline. In the studies detailed here, TurboSEQUEST was utilized to 

screen tremendous amounts of LC-MS/MS data for the presence of oxidized peptides. 

TurboSEQUEST does a fairly good job identifying the presence and identity of oxidized 

peptides; however, the in silica fragmentation algorithm is very crude and inaccurate, and 

the algorithm will often identify chemical noise as actual peaks. In addition, 

TurboSEQUEST only allows one potential modification per search; therefore, one cannot 

122 



search for both the sulfoxide and the sulfone version of methionine oxidation in one 

search. The end result is that, while the algorithm can identify which peptides were 

oxidized by LC-MS/MS, TurboSEQUEST is very bad at determining the actual sites of 

oxidation from fragmentation spectra. Currently, all MS/MS spectra must be interpreted 

manually. A more detailed program for determining sites of modification based on 

MS/MS fragmentation spectra must be developed in order to improve the speed of 

analysis. 

Another area that must be improved for the high-throughput application of surface 

constraints is the computational modeling algorithms. As a leading pseudo-ab initio 

modeling algorithm that relies upon full-atom representations for accuracy, Rosetta is an 

excellent algorithm for use with surface constraints. However, the current method 

utilized for evaluating computational models is inefficient. Currently, we generate the 

models and then screen them manually for agreement with our data. A much more 

efficient and more productive approach would be to utilize an energy function within the 

Rosetta algorithm itself to penalize structures that violate the constraints provided. This 

would greatly increase the likelihood that the proper structure is scored at or near the top 

of the list of models, while further automating the data analysis process. However, the 

source code for Rosetta is currently unavailable. Efforts to either obtain the source code 

or to foster a collaboration with the creator of Rosetta ( 186) should be made. 

The principles learned from the experiments detailed here are invaluable lessons 

in what must be achieved for high-throughput structural genomics initiatives. While the 

applicability for photochemical hydroxyl radical surface mapping for targeted 

applications in proteins, protein-protein complexes, and membrane protein topology, as 
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well as more esoteric subjects such as viral particle surface mapping (230) is apparent 

and important, the implications for high-throughput analysis of protein structure is a more 

exciting yet difficult prospect. The value of multi-target surface labeling is apparent as a 

method for evaluating structural modeling. Further work must be performed in order to 

optimize both the experimental conditions and the data analysis; however, the foundation 

presented here shows that the goal of rapid, broadly applicable structural characterization 

without the need for extensive protein purification is realizable. The current technology 

as presented here enables the rapid probing of structures of proteins that were resistant to 

other, more direct analyses, granting important insight into their structure. As more 

broadly applicable labeling reagents are developed and more powerful data analysis 

methods developed, the role of protein surface mapping backed by the analytical power 

of mass spectrometry should play an increasingly important role in all facets of protein 

structure-function analyses. 
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