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ABSTRACT

Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely
used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger
(HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated,
flawed tubing data were examined. The tubing data were acquired from the EPRI NDE Center,
Charlotte, NC. The data are catalogued in the Performance Demonstration Database (PDD)
which is used as a training manual for certification. The specific subset of the data used in this
dissertation has an Examination Technique Specification Sheet (ETSS) and a blueprint of the

flawed tube specimens.

The purpose of this dissertation is to develop and implement an automated method for the
classification and an advanced characterization of defects in HX and SG tubing. These two
improvements enhanced the robustness of characterization as compared to traditional bobbin-coil
ECT data analysis methods. A more robust classification and characterization of the tube flaw in-
situ (while the SG is on-line but not when the plant is operating), should provide valuable

information to the power industry.

The following is a summary of the original contributions of this dissertation research.

1. Development of a feature extraction program acquiring relevant information from both
the mixed, absolute and differential ECTD Flaw Signal (ECTDFS).

2. Application of the Continuous Wavelet Transformation (CWT) to extract more
information from the mixed, complex differential ECTDFS.

3. Utilization of Image Processing (IP) techniques to extract the information contained in
the generated CWT.

4. Classification of the ECTDFSs, using the compressed feature vector and a Bayes
classification system.

5. Development of an upper bound for the probability of classification error, using the
Bhattacharyya distance, for the Bayesian classification.

6. Tube defect characterization based on the classified flaw-type to enhance characterization

7. Development of a diagnostic software system EddyC and user’s guide.
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The important results of the application of the method are listed. The CWT contains at least
enough information to correctly classify the flaws 64% of the time using the IP features. The
Bayes classification system, using only the CWT generated features (after PCA compression),
correctly identified 64% of the ECTD flaws. The Bayes classification system correctly identified
75% of the ECTD flaws using cross validation utilizing all the generated features after PCA
compression. Initial template matching results (from the PDD database) yielded correct
classification of 69%. The B-distances parallel and bound the percent misclassified cases. The
calculated B-distance for 15 PCs were 0 and 14.22% bounding the 1.1% incorrectly classified.
But, these Gaussian-based calculated B-distances may be inaccurate due to non-Gaussian
features. The number of outliers seems to have an inverse relationship with the number of
misclassifications. Characterization yielded an average error of 12.76 %. This excluded the
results from flaw-type 1 (Thinning).

The following are the conclusions reached from this research. A feature extraction program
acquiring relevant information from both the mixed, absolute and differential data was
successfully implemented. The CWT was utilized to extract more information from the mixed,
complex differential data. Image Processing techniques used to extract the information contained
in the generated CWT, classified the data with a high success rate. The data were accurately
classified, utilizing the compressed feature vector and using a Bayes classification system. An
estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was
successfully applied to the Bayesian classification. The classified data were separated according
to flaw-type (classification) to enhance characterization. The characterization routine used
dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust.
The inclusion of outliers may help complete the feature space so that classification accuracy is

increased.
Given that the eddy current test signals appear very similar, there may not be sufficient

information to make an extremely accurate (> 95%) classification or an advanced characterization

using this system. It is necessary to have a larger database fore more accurate system leaming.
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1. Introduction

The introduction is divided into five sections. The first section details the background and
motivation for this research. The second section describes the problem statement, tasks
accomplished, and the outline of the solution. The third section reviews previous work. The
fourth section lists the contributions of this research, with the final section outlining the structure

of this dissertation.
1.1. Background and Motivation

Pressurized water reactor (PWR) power plants contain either U-tube or once-through type steam
generators (SG). These are complex structures with about 3,500 stainless steel tubes in a typical
U-tube steam generator. Over a period of time these tubes degrade because of exposure to high
temperature, pressure, and chemically corrosive environment. Typical tube degradations include
stress corrosion cracking (SCC), intergranular attack (IGA), thinning, sludge pile, pitting,
mechanical fretting, anti-vibration bar (AVB) wear, impingement, and denting. Often, the
degraded tubes are either plugged or sleeved. As a result, about one-half of the PWR nuclear
power plants in the world have been plugging or repairing steam generator tubes in any given

year. This action reduces the efficiency of the steam generator.

In recent years, the average percentage of PWR tubes plugged per year has been about 0.3%. The
number of steam generator tubes plugged per year during the last few years has ranged from
10,000 to 12,000 tubes. Although an average rate of 0.3% per year may seem acceptable, over a
40 year steam generator life, this amounts to 10 to 12% of the available tubes being plugged [1].

If a tube ruptures during operation, a complex plant transient will ensue. Usually the transient
does not result in an enviromental release, but a plant shutdown and repairs will be needed.
Spontaneous rupturing of tubes occurs about once every two years and incipient tube ruptures
(tube failures usually identified with leak detection just before rupture) at the rate of one per year.
This shutdown itself would cost the plant approximately $750,000 per day in lost revenues, not to
mention the repair costs [1]. The cost of replacing a steam generator is about $150 million in

a 1,300 MWe four-loop plant [2].



Eddy Current Testing (ECT) is performed periodically to check the integrity of these tubular
structures within the HX or SGs. If more information can be obtained, specifically classification
and advanced characterization of the flaw in-situ (while the SG is on-line but not when the plant
is operating), ECT using a bobbin-coil probe would be more cost effective and would insure

better overall operation.

In this research, laboratory-generated, flawed tubing data were examined. The tubing data were
acquired from the Electric Power Research Institute (EPRI) Non-Destructive Examination (NDE)
Center, Charlotte, NC. The data are catalogued in the Performance Demonstration Database
(PDD) which is used as a training manual for certification. The specific subset of data used has
an Examination Technique Specification Sheet (ETSS) and a blueprint of the flawed tubes.

1.2. Statement of the Problem, Tasks Accomplished, and Outline of the Approach

This section is divided into three parts. The first part details a statement of the problem. The
second section specifies the two tasks accomplished by this research. Finally, an outline of the

technical approach is given.

1.2.1. Statement of the Problem

The ECT technology has a proven track record at both detecting SG tubing defects and basic
characterization of the defect (only defect sizing given in % through-wall or %TW) while the SG
is on-line (but not when the plant is operating). The type of flaw is ususally narrowed down, but
not determined, by the location of the flaw in the tube, whether the flaw occurs as an outer
diameter (OD) or an inner diameter (ID) flaw, and the SG vendor. A profile of the physical
degradation can be determined if there is information contained in the mixed absolute ECT
signal. A degraded SG tube is plugged or sleeved after a certain %TW damage is determined by
the ECT specialist. The type of degradation is usually determined after a tube was pulled out and
inspected.



At this time, using basic bobbin-coil ECT, there is no method available to classify the type or
volume (length, width, depth and volume) of degradation of a flaw while the tube is still in the

steam generator.

1.2.2. Major Tasks Accomplished

The purpose of this dissertation was to develop and implement an automated method for the

classification and advanced characterization of defects in HX and SG tubing.

Different degradation mechanisms cause the SG tube wall to physically deteriorate differently
(classification of degradation). Therefore, two improvements were made in the basic bobbin-coil

ECTD analysis.

1. In-situ classification of tube flaws as indicated by the ECTD signal.

2. In-situ characterization (flaw siaing using length, width, etc.) of the flaws.

These two improvements enhanced the robustness of characterization as compared to traditional
methods. A more robust classification and characterization of the tube flaw should provide

valuable information to the power industry.
1.2.3. Technical Approach and Definition of Tasks
The approach that was developed for the diagnosis of degradation (both classification and
characterization) of SG tubes consists of several steps. For steps 3 through 7 new or modified
analysis techniques were required. All the steps are enumerated below.
1. ECTD Pre-processing with EddyM.m

a) Frequency mixing

b) De-drifting

c) De-noising.

2. Entering Known Information from the PDD



a) ECTD flaw identification
b) Location of flaw, if given
c) Diffierential impedance plane phase angle and magnitude
d) Classification (if known)

e) Characterizations (if known).

3. Transformation of the mixed, complex, differential ECTD flaw signal (ECTDFS) using the
Continuous Wavelet Transformation (CWT).

4. Feature Extraction

a) Polynomial function approximation (PFA) of the inductive reactance component of
absolute mixed ECTDFS

b) One-dimensional feature extraction for the inductive reactance component of the mixed
differential ECTDFS

c) Image processing (IP) characterization of the CWT of the complex, mixed differential
ECTDFS.

5. Data compression of extracted features utilizing Principal Component Analysis (PCA.).

6. ECTD defect classification using compressed feature vector and CWT using a traditional

pattern recognition (PR) technique.

7. ECTD defect characterization (or flaw sizing) using multiple artificial neural networks

(ANNSs), one for each flaw-type.

A flow diagram of these steps is given Figure 1. This diagram illustrates the interactions among
the steps and the initial steps taken during the analysis. The solution, given in Figure 1, generated
new information from the ECTDFS by Continuous Wavelet Transformation (CWT) processing,
Polynomial Function Approximation (PFA) and a basic feature extraction. The CWT is a signal

processing method that extracts time and frequency (scale) information from a signal.



Figure 1. Flow diagram of ECTD analysis showing the various steps.



Then the new information, generated by the CWT, was compressed using image processing (IP)
techniques. All the features were then included in a feature vector. This new feature vector was
compressed using the PCA. The compressed feature vector was then used to classify the tubing

flaw. Once the classification was complete, separate ANNs were used for flaw characterization.

1.3. Review of Previous Work

This section is divided into three parts: ECT and wavelet transforms, CWT and applications, and
review of research at the University of Tennessee. The references provided here, were the most

pertinent found during an extensive literature review.

1.3.1. Eddy Current Testing (ECT) and Wavelet Transformations

Only one ECT reference was located in this search that employs a CWT. This reference
describes the implementation of the modulus of the CWT of the complex ECTDFS along with a
Bayes strategy to determine the location of outer diameter notches along a tube. A signal-to-
noise ratio was applied to the CWT to determine which scale (approximately the inverse of
frequency) level has the highest signal to noise ratio. This scale level was then used with a Bayes

strategy to determine if a flaw exists [3].

The next references use the discrete wavelet transform (DWT) for various applications in ECT.
The first reference describes a DWT filtering technique to eliminate noise from the ECT signal
[4]. An automated flaw detection algorithm for signals in the tube support plate (TSP) region was
created using the affine transformation for pre-processing (ECT data frequency mixing), and
wavelet transformation (DWT using Daubechies 2) for compression and feature extraction and
regression for evaluation. The feature extraction consisted of thresholding a specified level of the
DWT coefficients, then determining anti-polar peaks and a distance threshold [5]. Multi-
frequency ECT (using a probe designed for flat surfaces) was used to generate EC flaw data. The
material used to generate the ECT data had a cuboid geometry. The flaw data were then filtered
and converted to a spectrogram. This process was done in both the X and Y directions in order to
give a 3-D spectrogram of the flaw. Features were extracted from the 3-D spectrogram and used
as input to a neural network (NN). The first NN determines a flaw location and the second NN

determines shape characteristics [6]. ECT (using a probe designed for flat surfaces) was used to
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construct a 2-D image of the circuit board. The ECT data was first processed using the discrete
wavelet transform (DWT) to filter and clean (extract relative DWT levels, then threshold) the
signal. The DWT-processed signal was then used to construct a 2-D image [7].

All of the above described methods worked, but none used CWTs to obtain classification and

advanced characterization of steam generator tubing utilizing bobbin-probe ECT.

1.3.2. Continuous Wavelet Transform (CWT) and Applications

Three references were located that use similar tools and algorithms as this research. The first
reference was an application of CWT to speech signal, treating the resulting CWT as an image.
The CWT “image” was characterized using global descriptors (geometric moments) and “blob”
descriptors. The characterizing quantities are then used to classify the voice pattern [8]. The
second reference details transforming a vibration signal from rotating equipment using
continuous wavelets. The CWT was then converted to a binary image (image value of 0 or 1)
using a coefficient threshold technique. The binary image was converted to a vector and used in a
neural network to classify the condition of the equipment [9]. The third reference uses CWTs of
ultrasonic signals to produce a fingerprint. The CWT fingerprints are then compressed using
geometric moments. The geometric moments are used as input to a neural network to classify (or

sort) different materials. The classification had a 100% success rate [10].

This use of geometric moments with CWTs was employed in this research. The technique used

in this research also employs converting the CWT into a binary image for processing.

1.3.3. Research at The University of Tennessee

There have been two areas of investigation within the UTK-NE department directly related to this
research, the first area was the analysis of ECT and the second area was the use of wavelet

transforms. There have been five publications since 1996.

The first area of research focused on using various data descriptors (phase angle, magnitude,
linear integral, radii from the center of gravity, and Fourier descriptors) derived from the ECT

signal to determine if there was a flaw present (using fuzzy logic) and then determining %TW for
7



the flaw (using neural networks). The results show that specific descriptors were effective for
either defect identification or defect description. The Fourier descriptors were not very effective
for either task [11]. Another area of research was to create a fuzzy logic system whose input was
the phase angle of the flaw for three of the four channels of the ECT data. The problem was to
determine if the signal was a flaw and to determine the %TW [12]. The third report defines a
system based on the wavelet zero crossings. The wavelet zero crossing technique first performed
a 2-level DWT on the signal, with the resulting DWT signal transformed using the zero crossing
technique. A fuzzy logic system using the number of zero crossings for each level as input and
defect sizing as an output was established. The accuracy of this system was fairly good [13]. The
final area of research focused on extraction of features (signal segment, phase angle, linear
predictive coding, and wavelet zero crossing) from the ECT flaw data with the features then used
in a self-organizing map (SOM) neural network for classification. The results show that the SOM
worked well with the real signal segment [14]. The final report was a general overview of the use
of Power Spectral Density (PSD), Short Time Fourier Transformation (STFT) and wavelets
(DWT) as research tools. Interestingly, the DWT was used to separate signals into 20 levels, and
then the FFT was applied at each level. The resulting PSDs were grouped together generating a
band-limited waterfall plot of PSDs [15].

1.4. Contributions of this Dissertation

This section is divided into two parts, original contributions and other contributions.
1.4.1. Original Contributions

The following is a summary of the original contributions of this dissertation research.

1. Development of a feature extraction program acquiring relevant information from both
the mixed, absolute and differential ECTDFS. The features from the mixed, inductive
reactance component of the differential ECTD flaw included, standard deviation (STD)
normalized peak-to-peak magnitude and the number of data points between peaks. The

PFA coefficients of the inductive reactance component of the mixed, absolute ECTDFS

were also used as features.



2. The application of the CWT to extract more information from the mixed, complex
differential ECTDFS. For the CWT to be useful, the information contained in the CWT
must be extracted and utilized.

3. The use of IP techniques to extract the information contained in the generated CWT. The
two IP features used were geometric moments and other basic IP parameters used for
picture comparison.

4. Classification of tube defects, utilizing the compressed feature vector and using a Bayes
classification system.

5. Development of a diagnostic software system EddyC and user’s guide.

1.4.2. Other Contributions

The other contributions were:

1. Classification of the tube defects using dedicated ANNs. The characterization routine
used separate, flaw-type specific ANN that resulted in robust characterization of the
ECTD flaw.

2. Development of an upper bound for the probability of error, using the Bhattacharyya

distance, for the Bayesian classification.

This research outlines the methods used to incorporate the new ECTDFS features for flaw
classification and characterization. It also describes the methods used to incorporate the

information contained in a CWT into pattern recognition algorithms.

1.5. Outline of the Dissertation

This dissertation is divided into seven sections. Section 1 is the introduction. Section 2 is a
review of basic ECT and general information about SGs and tubing flaws. Section 3 describes
data transformation utilizing the CWT. Section 4 describes the three types of features extracted
from the ECTDFS and feature compression using the PCA. Section 5 describes the technique of
flaw classification used in this research and the approach for flaw characterization (flaw sizing).

Section 6 contains a discussion of the results. Section 7 includes a summary, conclusions, and



recommendations for future work. Appendices A-G contain additional results and listings of

computer codes.

10



2. Background Study of Eddy Current Testing

(ECT) and Steam Generator Information

This section is divided into two parts. The first part gives a basic overview of ECT theory and
application. The second part is a general review of steam generator information with an emphasis

on the information contained in EPRI’s Performance Demonstration Database (PDD).
2.1. Eddy Current Testing (ECT)

The ECT section is divided into five parts. The first section discusses basic ECT principles. The
second section provides an overview of how ECT excitation frequencies are determined. The
third section describes ECTD analysis. The final section lists the advantages and disadvantages
of ECT.

2.1.1. Eddy Current Testing Basics

ECT is accomplished by using tubular-shaped coils (bobbin coils) that are excited by an
alternating current. This alternating current produces a magnetic field that permiates the tubing.
The permiating magnetic field produces circular electric currents (eddy currents) within the tube
wall. These currents in turn generate a field that opposes the primary field. If there is a defect in
the tube wall, the opposing field changes, thus changing the impedance (both resistance and
inductive reactance) of the primary coil. This impedance is measured and processed to identify

flaws in the tubing. A schematic of a differential bobbin coil probe is shown in Figure 2.

The properties of the eddy current are affected by and can detect changes in electrical
conductivity and/or magnetic permeability of a specimen caused by changes in the following

characteristics.

e Grain size
e Surface treatment, especially heat treatment

e Coating thickness
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Figure 2. Schematic of a differential bobbin coil probe [12].
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e Hardness
e Discontinuities such as cracks, inclusions, dents, and holes
¢ Dimensions such as thickness, eccentricity, diameter, or separation distance

e Alloy composition [16, 17].

There are many facets of ECT that could be detailed, but only issues relevant to this research will
be discussed. The topics include ECT excitation frequencies and mixing, EC analysis and the

application to steam generator tubing flaws.

2.1.2. ECT Excitation Frequencies

The frequency of the alternating current in the primary coil is extremely important. Most eddy
current testing utilizes frequencies between 500 to 500,000 Hz. As the frequency increases, the
depth of penetration of eddy currents decreases. This “skin effect” limits the depth of penetration
or inspection. Extremely high frequencies are used to detect the position of the specimen
(measure the distance between the specimen and the probe). Such detectors are also used as

dynamic or vibration testing transducers.

Depth of penetration is also dependent upon conductivity and magnetic permeability of the
specimen as is illustrated in Table 1. The “standard depth” Indicates the depth into or thickness of
the specimen that decreases the signal to 1/e (37%) of the signal at the surface. Note that the
depth of penetration varies in an orderly fashion with frequency (a straight line on a log-log plot)
for non-magnetic materials but decreases more rapidly for iron and its alloys. The standard depth

of penetration (S) can be calculated from the relationship:
S (inches) = 1980 (p/up™? 1)
with:  p=resistivity (ohm-cm)

4 = magnetic permeability (constant, no dimensions)

f= frequency (Hz).

13



Table 1. Conductivity and Depth of Penetration for Various Metals [18].

Conductivity Depth of Penetration’
Metal (% IACS) (mils)
1 KHz 100 kHz 10MHz
Cu 100 80.0 8.00 0.80
Al 61.0 160 16.0 1.60
Ti 31 800 80.0 8.00
304 SS 2.5 550 55.0 5.50
Fe 10.7 14.0 1.40 0.10

'International Annealed Copper Standard.
*Depth into specimen at which eddy current signal is /e of the signal at the surface.

*Without saturation. At saturation, depth of penetration is approximately the same as that for

stainless steel.
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The ratios used to determine the needed depth of penetration and the primary frequency (phase
difference between inner and outer wall defects of 90°) for a particular sample with a specified

wall thickness and electrical resistivity are given as:

t 3p
. Joo =] (2a, 2b)
where: &= depth of penetration (or S in Eq. 1)
p = electrical resistivity

t = tube wall thickness

Joo = primary frequency phase difference between inner and outer wall defects (in kHz).

Use of a single frequency gives larger responses from the tubing supports than obtained from the
tubing wall thickness. Recent applications of EC, especially to tubular goods, make use of
multiple, simultaneous frequencies in the primary coil. There are usually four excitation
frequency levels associated with ECT. These frequency levels are high, primary, half and
quarter.

By proper selection of frequencies, unwanted information or interference from properties or
structures in the specimen, of no interest, can be minimized or eliminated. For instance, the effect
of support structures on measurement of wall thiclaness, pitting, and holes in thin wall tubing can
essentially be eliminated by using a pair of frequencies. Wall thickness at the supports is often
critical, as vibration of the tubes may have produced wear from rubbing of the tubes against the

support. Bi-frequency analysis can adjust for the supports [18].

During ECT of SG tubing, the probe outputs a distorted signal. Usually, the signal distortions are
caused by material either attached to or near the steam generator tubing. Other factors such as
specimen conductivity, magnetic permeability, test specimen thickness and other geometrical
parameters, coupling between the probe coil and specimen due to probe wobble, the presence of

cracks and others result in unwanted contributions to the signal.

The above-mentioned interference affects the flaw signals generated at that site. Frequency
mixing is a method to combine the lower and higher frequency signals to minimize the
15



interference and maximize the flaw signal. The primary method of mixing is to utilize an affine

transformation. The affine transformation includes rotation, scaling and translation.

Both the high frequency EC signal (%f) and the low frequency EC signal (/f) are first divided into

their real and imaginary (resistance and inductive reactance) components.

of =[if, 1f, ] andif =[if, 1] ©
The Affine transformation is applied to the low frequency EC signal such that it matches the high
frequency signal as close as possible. Then the transformed /f signal is subtracted from the Af
signal. The resulting signal, Z, has minimum interference and maximum flaw signal. The

procedure is detailed below.

The rotation part of the affine transform is given by the matrix R

. [cos(r) - sin(z')} @

sin(6) cos(6)

where: 7= independent (of 0) horizontal rotation.

6= vertical rotation.

Next, the scaling matrix is given by

i 5
—O,B o)

where a and S are real scalars.

The If signal is then transformed and subtracted from the 4f signal.
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cos(z) —sin(r)}[a

’ 0 '
Z=hf -ReSelf =[nf, 1] —[Sm(e) cos(6) | 0 ﬂ][lf,.lfv] ©

where: Z=1[Z, Z,]’.

The four variables are determined such that they minimize a cost function. The cost function is

related to the hf and transformed If signal. The cost function listed below is used for this purpose

@ B.0.0)=3 | f.(6)- Z, (k) )

k=1 i=hyv

where: k = data points (1 through /)

i = vertical or horizontal.

To minimize this cost function, first order partial derivatives with respect to each variable are

taken and set equal to 0.

VJ(a,ﬂ,r,0)=0 (®)
or

Y _ 0¥ 0¥ _oama® o, ©

Oa op or 06

A gradient descent program is then used to solve this minimization and determine the best values
for 7, 6, @ and B. The parameters are then used in Equation (4), resulting in the properly mixed
ECT signal [19, 20]. A frequency mixing program was generated for the ECTD pre-processing
step of the diagnostic approach outlined on pages 3 and 4.

Other specimen-to-probe effects of note include edge effect, fill factor, and lift-off. The edge
effect results from the distortion of the magnetic field at the end or edge of the specimen. By

decreasing the size of the probe coil or, better, by enclosing the coil in a magnetic shield such as a
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metal, the area of the specimen inspected by the probe can be decreased so that the edge can be
approached closer. This is called focusing the probe. Even so, inspecting at less than 1/8-inch
from the edge in non-magnetic materials or within 6 inches of the edge of magnetic materials is
likely to produce distorted information. Likewise, the gap between a cylindrical specimen and an
encircling coil can greatly affect readings. In general, the closer the specimen comes to filling the
hole in the center of the coil, the better the sensitivity (fill factor = 1). Fill factor (FF) is defined

as:

FF = (Dsp/ ID)? (10)

where: Dy, = diameter of the specimen

ID:-= inner diameter of the coil.

In a similar fashion, any gap between a probe and the surface of a specimen will reduce
sensitivity. The lift-off effect can be used to measure the thickness of a non-conducting coating

on a conductive material [18].
2.1.3. Analysis of ECT Flaw Signals

The resistance and inductive reactance, generated by one, or a mix, of the excitation frequencies,
using a differential probe are plotted in a Lissajous-type plot (examples are shown in the top plots
of Figure 3). In the Lassajous plot, the x-axis is the resistance and the y-axis is the the inductive
reactance. To determine the phase angle and the magnitude (volt) of the flaw signal using the

Lissajous plot, the following steps are used.

Identifying the end tips of the figure eight shaped curve.
Determine the first tip made.
An line is drawn from the first tip to the second tip.

The phase angle is the angle the line makes with the negative x-axis.

LA I A A

The voltage magnitude is the length of this line.

The phase angle of the mixed differential ECT flaw signal is the most utilized information. An
example plot of a mixed differential ECTDFS for a tube flaw is shown in Figure 3.
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Figure 3. Example of a mixed differential ECTDFS.
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Figure 3 contains a Lassajous plot (top left), a Lassajous plot of the data located around the flaw
(top right), and the components of the impedance plotted separately (bottom). The middle portion
of the signal, the upper right figure, signifies 20 points located around the flaw. The diamond is
approximately the center point of the flaw. The dashed lines represent £ 2.5 times the standard
deviation (STD) of the real and imaginary parts. The phase angle is approximately 72° and the
voltage magnitude is approximately 8.5 Volt.

The voltage magnitude of the mixed complex differential signal is often not used because of the
variability of this measurement caused by the relative location of the probe with respect to the
tube wall. Thus, the phase angle becomes the major variable used to determine the percent
through-wall of the defect.

Figure 4 is an example of the Lissajous-type plot of the complex impedance of a tubular standard
specimen. The standard speciman has 5 flaws of varying depth. The depth of the flaw is given in
percent through-wall. Percent through-wall (or %TW) is determined by the depth of the flaw
divided by the thickness of the tube. Notice, in Figure 4, that as the %TW increases the phase

angle decreases (or rotates counter-clockwise).

Figure 5 is a plot of the inductive reactance of the frequency-mixed absolute signal. The ECTD is
a mix of two excitation frequencies, 200 and 100 kHz. The maximum magnitude of the mixed
signal indicates %TW defect information, while the shape of the signal follows the profile of the
flaw. The peaks in the signal were identified, along with their magnitudes (top right). The
horizontal line represents 0.75 times the STD of the signal. This threshold is used to extract the
information section of the signal. Data above the threshold is used as a profile of the EC flaw.

The usual information obtained from the ECTDEFS is the location within the tube of the flaw and
the %TW of the flaw. This information is obtained by either analysis of the mixed differential

and/or the absolute signals.

A general rule of thumb, when the indications are shallow, the absolute ECT signal tends to
perform better; once the indications hit 40% TW the differential signal tends to perform better.
The best mix for absolute is half and quarter frequency, and for differential, prime and quarter
frequency. You also have to look at the residual from the mix [21].
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Figure 5. Inductive reactance component of the 200/100 kHz mixed absolute signal.
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2.1.4. Advantages and Disadvantages of ECT

The following are the advantages of eddy current testing.

1.

The eddy current testing technique can be extremely rapid. Most of these inspections are

automated.

e Tubing wall thickness and integrity can be inspected at 500 ft/min.

e Ammunition cartridges can be inspected for wall thickness, eccentricity, and cracks
on their entire circumference at 6000 per minute.

e Heat exchanger tubes can be checked for dents, corrosion pitting, and wall thickness

at several feet per minute.

Sorting of alloys can be accomplished in the field quite easily without great expense or
much operator training and experience.

Very sensitive flaw detection, particularly for thin material, is possible.

The eddy current technique does not require contact with the specimen, which eliminates
scratches, tears or other marring of the specimen and allows for rapid testing.

ECT can provide a permanent record.

Since a large variety of material properties affect eddy currents, many of the physical and

metallurgical properties of the specimen can be determined.

The disadvantages of eddy current testing are:

Manual testing is very slow.

The material being tested must be electrically conductive.

Eddy current testing usually requires sophisticated electronic equipment except for very
simple testing such as alloy identification. This sophistication translates into high cost,
considerable operator training, and complex systems often suitable only for laboratory
operation.

The technique is sensitive to geometry and shape of the specimen. Depth of penetration,
and therefore the depth of discontinuity detection, is poor. A thickness of about Y-inch is
the maximum useful depth of penetration for most materials. The frequency of excitation
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of the coil is important because it limits the useful depth of penetration. High frequencies
give less depth of penetration than low frequencies.
5. Interpretation is sometimes difficult because specimen conductivity and magnetic

permeability are responsive to so many material properties.
Since ECT is widely used, the advantages must outweigh the disadvantages [16, 17, 18].
2.2. Steam Generator Information
There are three Steam Generator (SG) manufacturers represented in EPRI’s PDD [22]. The three
manufacturers are Babcock & Wilcox (B& W), Combustion Engineering (CE) and Westinghouse.

This section describes SG information from these three manufacturers.

The first section describes the types of tubing flaws that occur in the SG, with the second section

providing locations where the flaws occur for specific steam generators.

2.2.1. Types of SG Tubing Flaws

There are nine specific SG flaw types

1. Cracking 6. Stress Corrosion Cracking (SCC),
2. Thinning either Primary-Water (PWSCC) or
3. Wear Outer-Diameter (ODSCC)

4. Impingement 7. IGA/SCC

5. Intergranular Attack (IGA) 8. Pitting

9. Denting [22].

Along with these flaw types, one must recognize that there is also the possibility of

1. No Defect

2. Multiple Defects (a combination of two or more of the above nine flaws at a specific
point)

3. Undetermined.
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Thus, there could be 12 different flaw types. The following flaw types will not be detailed in

Section 2.2.3. These flaws were not available for processing.

1. IGA

e Corrosion attack at grain boundaries, usually not stress related
e Propagation (or fingers)

e Function of Temperature
2. SCC (PWSCC or ODSCC)
e Corrosion attack at grain boundaries, stress related
e Propagation (or fingers)
e Function of temperature

3. IGA/SCC

e Combination of IGA and SCC

e Fingers with loss of volume

4. Fatigue

e Cracking caused by alternating stress cycles accelerated by corrosion

5. Denting — Self explanatory [22].

Figure 6 shows typical tubing flaws and their location in U-tube steam generators. Not all the

different flaw types are shown in Figure 6.
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Figure 6. Location of Tubing Flaws in a U-tube steam generator [1].
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2.2.2. Location and Flaw-type Information for Specific Manufacturers

Realizing that individual manufacturers do not exhibit all the different flaw-types and that the
flaw-types sometime occur in a specific region, classification of unknown flaws according to
flaw-type can be simplified. Table 2 illustrates the subsets of flaws for each manufacturer. B &
W exhibits only four flaw-types, while CE exhibits five and Westinghouse exhibits six.

Table 3 summarizes position verse flaw-type for B&W Steam Generators as detailed in EPRI’s
PDD. The 10® location does not contain a flaw. This table clearly shows that specific flaw-types
occur at specific regions within the B & W SG. This information may be used to classify the

ECT flaw since the flaws location is known.

Again, as done previously in Table 3, Table 4 was organized to show the relationship between
location and flaw-type for CE SGs. Depending on the location of the flaw, the flaw-type may be

further narrowed from five to three at most. Some regions only exhibit one flaw-type.

The Westinghouse information is subdivided according to specific SG models. This information

is given in Tables 5 — 8.

There is a strong relationship between flaw-type and the location in the SG manufactured by
Westinghouse, similar to that indicated by B&W and CE steam generators. Therefore, if the
ECTD are generated from SG tubing, the tables in this section would allow the narrowing of

classification as a function of position.

2.2.3. EPRI’s Performance Demonstration Database ETSS Subset

As outlined in Section 1.1, the ECT data used for this research were acquired from EPRI. The
acquired database is part of the Performance Demonstration Database (PDD) [22] maintained by
EPRI. The subgroup of data that was chosen for analysis was PDD data that included ETSS and
blueprints. The blueprints were needed so that flaw characterization could be expanded from

only a %TW to include other dimensions.
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Table 2. Steam Generator Tube Degradation by Manufacturer [22].

Corrosion Mechanical
o0 @} d
£ 2|2 2|85 |2
E|E |0 |Els|s |F2
& Babcock & X X X X
&
g Wilcox
“3 Combustion X X X X X
é Engineering
8 Westinghouse X X X X X X
Table 3. Position vs. Flaw-type for B&W SG’s [22].
Location (Listed in Notes)
1 2 3 4 5 6 7 8 9
IGA/SCC X X X
5 Wear X g _8
E; Impingement § § X
_E Fatigue 'j ':3 X
= PWSCC -
Denting X
Notes
(1) Upper span region of steam generator
(2) Predominately within the upper tubesheet crevice
(3) Minor IGA observed on a single pulled tube within the lower tubesheet crevice
(4) Diagnosed by eddy current
(5) Occurrence not related to operation
(6) Mostly confined to outer periphery tubes at the 9 support plate elevation
(7) Lane region
(8) Upper tubesheet crevice
(9) Diagnosed at broached or drilled tube support plates, or tubesheet

(10) Lower span.
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Table 4. Position vs. Flaw-type for CE SG’s [22].
Location (Listed in Notes)
1 2 3 4 5 6 7 10
Thinning X X
Wear X X X

é IGA/SCC X X X X X X

E PWSCC X

- Pitting X

Denting Location not Designated

Notes
(1) Sludge pile
(2) Eggcrates/support plate
(3) Vertical supports
(4) Batwings
(5) Cold-leg corner
(6) Top of tubesheet (expansion)
(7) Innerrow U-bends
(8) Freespan manufacturing defects
(9) Associated with copper
(10) Freespan horizontal and vertical runs.
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Table 5.

Position vs. Flaw-type for Westinghouse SG’s (24, 27, 33 & 44) [22].

Location (Listed in Notes)
2 3 4 5
Thinning
Wear X
) IGA/SCC X X X
g PWSCC X
= Pitting
Fatigue Location not Designated, only observed at 2 Units
Denting Location not Designated
Notes
(1) Sludgepile
(2) AVB’s
(3) Tubesheet crevice
(4) Support plates
(5) Roll transition

©)

Inner row U-bends
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Table 6. Position vs. Flaw-type for Westinghouse SG’s (51 S/G) [22].

Location (Listed in Notes)
1 2 3 4 5 6 7
Thinning X X X
Wear X
@ IGA/SCC X X X
‘E: PWSCC X X
= Pitting X
Fatigue Location not Designated, Only 1 Unit affected
Denting Location not Designated
Notes

(1) Cold-leg outer periphery support plates
(2) AVB’s

(3) Tubesheet crevice

(4) Tube support plates

(5) Inner row U-bends

(6) Sludgepile

(7) Transition or expansion

(8) Row I’s plugged

(9) Dented supports
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Table 7. Position vs. Flaw-type for Westinghouse F-Type Units [22].
Location (Listed in Notes)
1 2 3
Wear X

% IGA/SCC X X
3 PWSCC X
- Denting X

Notes

(1) AVB’s

(2) Sludgepile

(3) Top of tubesheet

(4) Mill annealed tubing affected

Table 8. Position vs. Flaw-type for Westinghouse Framatone Units [22].

Location (Listed in Notes)
1 2 3 4
Wear X
E: IGA/SCC X X X
_% PWSCC X
- Denting Location not Designated (many units affected)
Notes
(1) AVB’s
(2) Support Plate
(3) Sludgepile
(4) Extension transition
(5) Inner row U-bends
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The information listed in Table 9 is a summary of the PDD-subgroups with ETSS information
and flaw descriptions for the data groups (flaw-types) used. The four data groups were 96001,
96002, 96004 and 96005.

In Figures 7 — 10, examples of flaw drawings (blueprints) are given for each of the four data
groups. Notice that for Wear flaw-types, only two characteristics are given. The blueprints
indicate the differences between flaw geometries. For various reasons, only 92 examples were

used.

2.2.4. ECTD Preprocessing with EddyM and EddyC Start-up

The EddyM MATLAB program was generated by Hopper [12]. This program was designed to
characterize EPRI’s PDD ECTDFS within a MATLAB framework. The EddyM program
generates two Graphical User Interfaces (GUIs). One GUI displays the full data file and the
second displays a windowed section. Within the GUIs are two built-in preprocessing functions,

mixing, and dedrifting and denoising.

Since the ETSS data subset was generated in the laboratory, dedrifting and denoising were not

needed. But, there were two ECTD preprocessing tasks that were needed using the EddyM

program:

1. Locating the flaw within the data file and
2. Mixing.

Once these two tasks were accomplished, the EddyC MATLAB program was initiated.
The EddyC MATLAB program initiates the EddyC system. The tasks accomplished by the
EddyC system are detailed, using MATLAB command window inputs and outputs, in Appendix

F. The MATLAB programs used to generate and operate the EddyC system are given in
Appendix G.
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Table 9. PDD Sub-groups with ETSS Information [22].
PDD Sub-group with ETSS Information

96001 96002 96004 96005
(Thinning) (Impingement) | (Wear) (Pitting)
Shape Long Candle-flamed | Short Oval
Rectangular Rectangular
and Triangular
Caused by Water Solids in | Mechanical Galvanic
chemistry coolant or | action between | attack

liquid  hitting | two materials

_g solids
-E' Affects All tube | All tube | All tube | All tube
g material material material material
Best Mix* 400/100 Diff | 600/400 Diff 400/100 Diff 400/100 Diff
200/100 Abs | 200/100 Abs 200/100 Abs 600/200 Abs
Total Examples | 26 (25) 29 (21) 92 (24) 61 (22)
(Number Used)
Flaw Dimensions | 3 3 2 3
(Characterization)

*Best: The best is defined as the mix that yields the highest correlation (R?) and the lowest
RMSE (root mean squared error) as determined by the linear model developed using the ECT
determined %TW and the measured (actual) %TW.
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Figure 7. Example Blueprint of Thinning Flaw [22].

36

Domage Mech.[ Thinning *
oo .875
WALL .049

CIR. EXTENT 7%

DIA./WIDTH 1
DEPTH # 23

T

Detail A

Trifoll Tube Support

Support Plate

oD .625
WALL .037
CIR. EXTENT] .1962
DIA /WIDTH .27
DEPTH % 60
Detail "A"

Figure 8. Example Blueprint of Impingement Flaw [22].
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WALL 0.048

g 0

kand

MH

E)D > D D

DETAL B

~— ooces NZAL WAL

ALL FLAWS ARE

vZ TAPERED

VERTICAL STRAP WEAR

Figure 9. Example Blueprint of Wear Flaw [22].

o

Flaw A
.06W x .06H

)———Faw 8

.045W x .035H

Flow C
.06W x .03H

Flaw D,
.085W x .03H

Figure 10. Example Blueprint of Pitting Flaw [22].
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DEPTH 0.030
OW/WDTH 050
DEPTH % 63
DEPTH 0.027
DIA/WDTH 0.50
DEPTH % S6
DEPTH 0.022
DIA/WDTH 0.50
DEPTH % 46
DEPTH 0.017
DIA/WIDTH 0.50
DEPTH % 35
DEPTH 0.012
DIA/WDTH 0.50
DEPTH % 25
’EPTH 0.005
DIA/WDTH 0.22
DEPTH % 10
DETAL “A”

]

TWO FLAT STRAPS
(TOP & BOTTOM

Pomoge Mech]  PITTING

[e]0] 75

WALL 043

Flow Name |% Thru—wall
Flow A 33
Filaw B 22
Flaw C 28
Flaw D 30
Flaw E N/A
Flaw G N/A




Throughout both processes, the EddyC system generates four “.mat” files with various types of

information. Those four files are identified as

Basic Information (E_9600 ... ) Files
Stacked Basic Information (uTR _ ... ) Files
Compressed Processed Information (TR) Files

ANN Information (net_char ... ) Files

B R

Each type of information file is detailed in the following chapters.
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3.0. Eddy Current Test Data Transformation
using the Continuous Wavelet Transformation

(CWT)

As seen in the bottom two graphs of Figure 3, the ECTDEFS is non-stationary or transient. The
limited experience of previous investigations and the waveform property of the ECT signals
indicated that CWT would yield better results than the traditional PSD or the STFT because the
CWT is more effective in compressing short time samples (transient) and non-stationary

waveforms.

This section is divided into three parts. The first part is an overview of CWT theory. The second
part briefly describes the method of selecting a mother wavelet or transformation based on the
ECTD flaws. The third section contains ECTD generated CWTs with an emphasis on

determining usual and unusual ECTD flaw representations.
3.1. Signal Processing using the CWT

The CWT is a signal processing method that extracts time and frequency (scale) information from
the ECT signal [22]. The CWT was formalized by A. Grossman and J. Morlet in 1984 [23]. The

wavelet function y (x) € I*(R) has two characteristic parameters, namely, dilation (a) and
translation (b), which vary continuously. A set of wavelet basis function ¥, ,(x) is defined as

b

__1 X

W ()= ﬂw(

= a,beR;a=0 (11)

a

Here, the translation parameter, b, controls the position of the wavelet in time. The parameter, a,
controls the dilation of the wavelet. A “narrow” wavelet can access high-frequency information,

while a more dilated wavelet can access low-frequency information. This means that the

parameter a varies for different frequencies. The CWT is defined as
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Woo () =< fo¥as>= [F()V,, (X)dx. (12)

The wavelet coefficients are given as the inner product of the function being transformed with
each basis function [22, 23, 24, 25, 26, 27].

In order to plot the CWT of a complex signal, the absolute values of the coefficients are plotted as
a function of time and scale a. An example plot is given in Figure 11. Clearly, the flaw in Figure
11 exhibits scale (frequency) and peak geometry characteristics that, if extracted properly, may

provide valuable information relative to classification and characterization of the ECDT flaws.
3.2. Mother Wavelet Selection for the Eddy Current Test Data

To extract the most information from the ECTD using CWT, the best mother wavelet was
selected. Two parameters were used to determine the best mother wavelet for CWT of the
ECTDFS. The first parameter was entropy and the second was the residuals. Both parameters

are determined by applying a discrete wavelet transform (DWT) to the ECT signal examples.
The entropy was calculated for each level of the DWT for each mother wavelet. The entropy
values are compared between the mother wavelets at a specified level. The mother wavelet that

produces the minimum entropy value, at a specified level, was selected. The entropy that was

calculated was the first norm entropy. The first norm entropy was given as:
Enonnl :Z|x!’ | (13)

where: x = signal

i = each signal value.
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CWT of Flaw from t26B01; R054T082
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scales a 1 20

time (or space) b

Figure 11. Absolute value of the CWT of the 400/100 kHz mixed complex differential signal of a

flaw located near a support structure.
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The residuals are calculated using the sum of the absolute value of the difference between one
level and the next for each specified mother wavelet. The residual of L1 and L2 (Rsz;;o) is

mathematically given as:

Ry, =2 L1, - 12, | (14)

where: LI = higher level of decomposition
L2 = lower level of decomposition
i=each value of L1 and L2 [23].

The best mother wavelet, using the residuals, was one in which the residuals were minimum for
that flaw-type, at the comparison levels. The results were tabulated in Table 10. The results were

mixed. A bi-orthogonal level 3.5 (“bior3.5”) was used.
3.3. Initial review of the CWT

An initial review of the generated CWTs was crucial to identify ECTD flaw examples that may
be non-typical for that flaw-type. A non-typical CWT may cause the ECTD flaw example to be
an outlier after the features were extracted and compressed. A list was generated identifying the

non-typical CWTs for each flaw-type.

Section 3.3 is divided into two parts. The first part details typical ECTDFS generated CWTs for
each flaw-type. The second section lists non-typical ECTDFS example CWTs generated for each
flaw-type.

3.3.1. Typical CWTs of ECTD Flaws
The typical CWT for a group was selected visually by examining all the CWT examples for that

group. A typical CWT is one which resembles many of the other CWTs in that group. The
following five CWTs (Figures 12 through 16) seem to be typical for each flaw-type.
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Table 10. Mother Wavelet Determination using Entropy and Residual Calculations.

Entropy Residuals
Signal A2 D2 D1 S&A2 | A2& D2 &
D2 D1
Crack 1.18¢0 | 9.67e03 | 2.06e03 | 0.57e03 | 0.25¢04 | 1.14e04 | 0.23e04
4 dbl db3 dblo db3 bior2.2 db3
Thinning 68.08 67.34 2.53 0.81 2.76 67.19 2.90
% dbl bior3.5 db8 bior3.9 | bior3.1 | bior3.5
Z | Pitting 9.90e0 | 9.71e03 | 0.36e03 | 0.11e03 | 0.40e03 | 9.67e03 | 0.40e03
= 3 dbl dblo db4 dblo bior2.2 dblo
IGASCC 75.95 75.01 4.84 0.84 5.07 74.75 5.08
bior3.3 | bior5.5 | bior5.5 | bior5.5 | bior3.3 | bior5.5

Scale

CWT for Group 96001 filename DHRODOC2D4I031,

Data Point

Figure 12. Typical CWT for Data Group 1 (Flaw-type Thinning).
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CWT for Group 96001 filename DHRODBC0671016,

Scele Data Point

Figure 13. Another Typical CWT for Data Group 1 (Flaw-type Thinning).

CWT for Group 968D02 filename DARDS1C014I013,

Scale

Data Point

Figure 14. Typical CWT for Data Group 2 (Flaw-type Inpingement).
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CWT for Group 96004 filename DHRSMPCO0BID19,

SCaE Data Point

Figure 15. Typical CWT for Group 3 (Flaw-type Wear).

CWT for Group 96005 filaname DHROOPCOS511048,

Scale

Data Point

Figure 16. Typical CWT for Group 4 (Flaw-type Pitting).



Group 1 (or Thinning) seemed to have two typical CWTs. There were approximately equal
numbers of each of these CWTs. Almost all of the CWTs for every flaw-types seemed visually
similar. The one exception was the CWT for the second thinning flaw-type (Figure 13).

3.3.2. Non-typical CWTs of Eddy Current Test Data Flaw Signals

As stated previously, if a CWT was dissimilar from other CWTs within the group, the dissimilar
CWT may be an outlier (non-typical) and may distort the results. By visually comparing the
generated ECTDFS CWTs, unusual results were noted as follows in Table 11. Examples of
dissimilar CWTs are given in Appendix B.

Even though the above CWTs were identified as non-typical, all the ECTD were used. The PDD

ETSS subset did not have enough samples for non-typical example extraction. Also, by including

the non-typical examples, the database simulates a real-world situation more closely.
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Table 11.

Unusual Results from Visual Comparison of the CWTs.

Data Group (or Flaw-type)
1 2 3 4
(DHRO000C ... (DAROBWC ...) (DHRSMPC ...) | (DHROOPC...)
or
DHRO0BC ...)
00910231 0801018 _1 0011004 _1 0481063 3
Non- 2021032 _1 0011004 _3
Typical 0621021 1 0051016_3
0631009 1 0081025_1
CWTs 0661006 _1
0751011 _1
0771015 _1
0781004 _1
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4. Feature Extraction and Compression

The chapter is divided into two sections. The first section details the feature components
extracted from the ECTD signal. The second section describes Principal Component Analysis

and its usage to compress the feature components.
4.1. Feature Extraction

There were three types of features that were extracted from either the ECTDFS or the CWT
generated from the ECTDFS. The first type of feature was extracted from both the inductive
reactance component and the complex mixed differential ECTDFS. The second feature was
extracted from the mixed absolute ECTDFS. The third type of feature was extracted from the
CWT of the mixed differential ECTDFS.

4.1.1. Feature Extraction Technique for the Inductive Reactance and Resistance

Components of the Differential ECTDFS
The following features were extracted using the mixed, differential ECTDFS.

1. Phase angle of the complex ECTDFS.

2. Magnitude of the complex ECTDFS.
Number of data points between the first and the last peaks of the inductive reactance
component ECTDFS.

4. Magnitude between the peak values divided by STD for the inductive reactance
component of ECTDFS.

The first two features are discussed in Section 2.1.3. The number of data points between the first
and last peak contains information about the relative length of the flaw. The magnitude between
the peak values divided by the STD may contain flaw volume information. Thus, two feature
vectors were generated, one containing the first two elements and another one containing the last

two.
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Figure 17 shows an example plot obtained when using the EddyC.m program in the differential
feature extraction section. For the example signal in Figure 17, feature #1 equals 50 (data points
between the peaks, 74 — 24), and feature #2 = (1.69 - (-0.57)) / (RMS value of the signal).

4.1.2. Polynomial Function Approximation

PFA of the inductive reactance component of the mixed absolute ECTDFS was used to give a

characterization of the profile of the signal. The polynomial function has the form

f(x): DX+ DX 4+ p X+ p,, (15)
The coefficients {p;, p, ... and p,.,} of the approximating polynomial were used as features [28].

Figure 18 is an example of a polynomial fit of an ECTDFS. As is seen in the figure, the
polynomial fit matches the shape of the actual signal. The number of polynomial coefficients
needed to fit the data was 18. The sum of squares of the residual was approximately 0.02.

4.1.3. Feature Generation Using Continuous Wavelet Transform (CWT)

Four techniques were used to characterize (or extract features from) the CWT. The first
technique was to calculate the geometric moments. The other three IP techniques described in
Sections 4.1.3.3-4.1.3.5) utilize features generated from a binary image, they are described in the
MATLAB Image Processing Toolbox [29].

This section is subdivided into four parts. The first part details generating geometric moments.

The second section describes converting a CWT into a binary CWT. The last two parts describe
the IP features extracted from the binary CWT.
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Mixed, Inductive Reactance, Differential EC Signal with threshold

16 24.00,-0.57
24 74.00,1.69

1.2

0.8
06

Magnitude

04
0.2

10 20 30 40 50 60 70 80 90
Point

Figure 17. Mixed, inductive reactance component of the differential ECTDFS.
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Figure 18. Comparison of the polyfitted signal to the original and the absolute value of the

residuals.
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4.1.3.1. Geometric Moments

Geometric moments provide rich information about the image and are popular features for pattern
recognition [30]. Geometric moments are used for 2-D images whose intensities are a function of

x and y. The geometric moment is defined as

o @

m, = J' Jx”y"l(x, y)dxdy (16)

—00—00

where: m,, = the geometric moment of order p + g

I(x,y) = continuous image function.

The moments depend on the coordinates of the object of interest within the image; thus, they lack
the invariance property. The geometric moments may be transformed such that the moments will

be translation invariant. The transformation was given by the central geometric moments:

P = [[1Gey X =% (v - 7Y dvdy )
with: X = —”—z&,f B (18)
Moy Moo

The geometric moments are calculated for a discrete image as shown in Equations (19, 20).

=3 S 10 N-1 (-7 19

i=0 j=0

where: 7=t ;- Hu (20)
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This may be well suited for use with transformed data if the position of the object with the image
is not important [30]. For this application, the scale (or y) information was very important and

was not be invariant. The location (or x) was invariant. Thus, the transformation used was

NN,

e = 2, 216N 1 @

i=0 j=0

This caused the ;o value to be always equal 0. This was the only generated feature that was
extracted from the feature mawix due to invariance. For this application, the 0 through 4™

moments were generated [8]. This resulted in 25 geometric moments.
4.1.3.2. Conversion to a Binary CWT for Image Processing

The three other features (a weighted area, the Euler number and the Roundness Ratio) perform
ridge characterization on the binary CWT. The binary CWT was constructed by thresholding the
CWT and assigning a 0 value if the CWT value was less than the threshold and a 1 if the CWT
value was greater than or equal to the threshold. Example CWTs were visually inspected as the
threshold was changed. Information contained in the ridges of the binary CWT (shapes of the
ridges and lack of noise) was used to determine the threshold. The threshold was determined, by
this inspection, to be 1 times the 2D STD (std2.m) of the binary CWT. These three features are

commonly used in image processing and are described in Sections 5.3.3.3-5.3.3.5.
4.1.3.3. Image Area (Weighted)

The area of the image was calculated by determining how many pixels are on. However, the
pixels are weighted differently based on a 2 by 2 neighborhood around the pixel. There are six
different patterns of weighting:

e Patterns with 0 ‘on’ pixels (area = 0)
e Patterns with one ‘on’ pixel (area = %)
e Patterns with two adjacent ‘on’ pixels (area = 1)

e Patterns with two diagonal ‘on’ pixels (area = %)
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e Pattern with three ‘on’ pixels (area = %)

e Pattern with all four pixels ‘on’ (area = 1)

Thus, the image area is the sum of the area values for each pixel of the specified image [29].

4.1.3.4. Euler Number

The Euler number is a measure of the topology of the image. It is defined as the total number of
objects in the image minus the number of holes in the objects. Also specified is the connection
type. The connection type refers to the neighborhood that is used. The neighborhood can be 4-
connected or 8-connected. The connection is the pixels directly in contact with the center pixel.

The threshold value must remain constant for all the images processed.

Determination of the threshold value was very important. A threshold level that was too low may
introduce unwanted signal components of a low value and the shape of the ridges. A threshold
value too high may lose valuable information (shape of the peaks and desired components) [29].

This is also discussed in Section 5.1.3.2. An 8-connected neighborhood was used.

4.1.3.5. Roundness Ratio

The Roundness Ratio (y) is calculated using the perimeter and unweighted area. The relationship

is given in the following equation:

-2 22)
where: P° = perimeter squared
A = unweighted area.
The area and perimeter are calculated using the binary image (bwimage) as follows.
A=) bwimage 23)
x y
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This sums the total number of “On” pixels, which gives an unweighted area.

The perimeter is calculated using the same binary image. The perimeter was calculated using the
MATLAB command “bwperim.m”. The “bwperim.m” function determines the perimeter pixels
of the objects in a binary image. One may use either a 4- or 8-connected neighborhood for
perimeter determination. An 8-connected neighborhood was used. A pixel is considered a

perimeter pixel if it satisfies both of these criteria:

1. It is an on pixel.

2. One (or more) of the pixels in its neighborhood is off.

Once the pixels are determined to be “on”, the number of “on” pixels is summed and squared.
2 "o ps 2
P? = (3" "on" Pixels) (29)

The two values generated by Equations (23) and (24) are used in Equation (22) to determine the
roundness ratio y [29].

4.1.4. Scatter Plot Analysis of Initial Features for Grouping and Outlier Identification

Scatter plots are a useful general tool to determine outliers and groupings in data sets. For
example, if different classes within the data set are visually discernable from one another, the
feature type may be a good classifier. Another example is that if a feature value does not change

then this feature may be deleted from the feature group.

The feature families are similarly generated features (described above) extracted from the raw
ETSS PDD data and the computed CWT. The feature families are as follows:

1. PDD input data,
2. PFA coefficients generated using the inductive reactance component of the mixed

absolute ECTDFS.
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2 features extracted from the mixed differential imaginary ECTDFS,
4. Geometric moments extracted from the complex CWT of the mixed differential

signal
5. Image processed CWT of the mixed differential signal.

General observations were made and outliers were identified for each feature family. The
following seven figures (Figures 19-21) are scatter plots of each feature group or family (with the

geometric moments sub-grouped) with histograms of each feature.

Feature group 1 (Figure 19) contains the phase angle (feature 1) and magnitude (feature 2)
derived from the mixed differential ECTD signal. A general observation was that minor grouping
seems to be evident between flaw-types. There seems to be two outliers, DHR000C1151029 1
and DHROOPC0061006 1.

Feature group #2 scatter plot is given in Figure 20. Feature group 2 contains the distance between
peaks (feature 1) and magnitude between peaks divided by the STD of the signal (feature 2), both
derived from the mixed differential ECTD signal. A general observation was that separation

between flaw-type groupings seems to be evident. No outliers were identified.

Figure 21 exhibits the relationship between the image processing features (or Feature Group 3).
Feature group 3 contains area (feature 1), the Euler Number (feature 2) and Roundness Ratio
generated using the CWT derived from the mixed differential ECTD signal. A general

observation was that three was grouping between flaw-types. There seems to be no outliers.

A summary of this information is given in Table 12.

Obviously, there was information that would distinguish flaw-types contained in these features.
Few outliers were detected. There was very little information that could be obtained from the
scatter plots of the geometric moments or the PFA coefficients. These figures are shown in

Appendix A.
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Scatter Plots of Feature Group # for each Feature Vanable
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Figure 19. Scatter Plot of Phase Angle vs. Magnitude for Data Group #1.
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Scatter Plots of Feature Group #3 for each Feature Variable
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Figure 20. Scatter Plot of Feature Group #2. Distance Between Peaks verses Magnitude between
Peaks / Std of Signal.
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Scatter Plots of Feature Group #6 for each Feature Variable
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Figure 21. Scatter Plots of Image Processing Features.
Table 12. Summarizes the results for 3 of the feature groups.
Feature Group
Information 1 2 3
Grouping little yes yes
Outliers DHR000C1151029 1 no no

DHRO0PC0061006_1
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All the features described in this section were included in a feature vector. The generated feature
vector had 51 feature elements. The next step is to use the Principal Component Analysis (PCA)

to compress the generated feature vector with as less information loss as possible.

4.1.5. Basic Information Files

The basic information files were created by the EddyC program after preprocessing, raw signal
extraction, CWT processing, and feature extraction but before PCA compression of the feature
vector (see Appendix F for the EddyC Users Guide and Appendix G- for the actual MATLAB
programs). These files contain three types of information.

1. Original information
2. Raw signal, flaw phase and magnitude, flaw location, CWT, and initial feature vector

3. Flaw classification and characterization information.
The basic information files were named utilizing four specifications:
Whether the data originated as regular PDD or the ETSS subset

The PDD or ETSS subset group
PDD or ETSS given filename (tube identification)

PR o

Flaw number (this is used to identify multiple flaws for a specific tube).

Thus, an example basic information filename is E 96001 _DHR00BC0661006 1.

4.1.6. Stacked Basic Information (uTR) Files

As the name suggests, the stacked basic information files that have been assembled into a group.
There is no additional processing of the basic information files that are contained within the
stacked basic information files. The group could include all the example flaws or a subset of the

full set. Again, this may be seen in Appendix F and G.

The stacked basic information files were named uTR files. The full name consisted of the uTR
prefix, the data origin and an identifying number. An example uTR data file name is uTR_E 1.
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4.2. Feature Compression using Principal Component Analysis (PCA)

This section is divided into 3 parts. The first section gives a brief overview of the Principal
Component Analysis (PCA) theory. The second part details the determination of the number of
PCs to be retained in the PC model. The final section is a scatter-plot analysis of the PCs retained

for grouping and for determining outlier information.

4.2.1. Theory of Principal Component Analysis (PCA)

PCA is a quantitatively rigorous method for determining a linear transformation to maximize the
variances of all the variables of a data group. PCA also calculates the variances of the
transformed data, thus allowing the user to select a small set of variables that show the most
significant contributions to the variance. This eliminates unneeded variables, and reduces the

feature vector size.

To achieve this, PCA first determines the covariance matrix (Z) using the original data matrix

(X). The covariance matrix is given by:

X' X
P = o (25)

where: X = original data matrix with variable means subtracted.

N =number of samples.

Next, the eigenvalues of 2 are determined. The eigenvalues are determine by using the

following:

2=y (26)

where: 2= covariance matrix
= eigenvector

A= eigenvalue.
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The eigenvectors are stacked in a matrix (@) that is used to transform the original data matrix X

into the new data matrix. This new data matrix (A) is determined by
A=0X 27

A has the properties that each variable is now orthogonal to any other variable and the new
variables exhibit maximum variance. These variables (Principal Components or PCs) are stacked
according to the amount of variance each one contains. Thus, the first PC contains more variance

than any of the other PCs [31, 32, 33, 34, 35, 36].

One may include only certain PCs to form a compressed model. One method to determine how
many PCs to retain is to plot the total amount of variance vs. the number of PCs retained.
Usually, the amount of variance retained reaches a plateau at a certain number of retained PCs.

This is a good indication of the number of PCs to retain to adequately model the original data.

The next step is to verify if the PCA model is actually a good fit to the data. Two criteria that are
commonly used for this are the Hotelling’s T? statistic and the Q statistic [34, 35, 36].

Hotelling’s T? statistic is a measure of the variation within the PCA model. Hotelling’s T? is

given by
TA=0h' =2 R A Pex (28)

where: t;=i-th row vector of the matrix of k-score vectors from the PCA model.
A = diagonal matrix of inverse eigenvalues associated with the eigenvectors retained in
the model.
x; = i-th data sample.

Py = transformation matrix (loading matrix with k-PCs retained).

If a data point has a value larger than the 95% confidence level, the data point may not be
representative of the data in the PCA model [33, 34, 36).
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The Q statistic is a measure of distance a data point falls outside the PCA model (indicating
goodness of fit). This statistic relates how well the point fits the PCA model. Q is simply the

sum of squares of each row of the error matrix. The Q statistic is then given by
9= eieiT =X (I . PKP1§ )xi (29)

where: ¢; = i-th row of the error matrix

I = identity matrix.

Again, if a data point has a value larger than the 95% confidence level, the data points are not
modeled well using PCA [33, 34, 36].

The Confidence levels (CLs) for both the Q and T? statistic are calculated assuming normal
distributions. The CL for Q is given by

¢, 20,1 +1+®2h0(h0 ~1)[* &6

=0
Qa 1 ®1 @f
where
0, = Z,{'J fori=1,2,3 (€2))
J=k+1
and
20.0
hy =1-—L2 32

with ¢, = standard normal deviate corresponding to the upper (1-a) percentile

k =number of principal components retained for the model
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n =total number of principal components.

The residuals used to calculate the error Q are much more likely to have a normal distribution
compared to the scores. This is because Q is a measure of the non-deterministic variation in the

samples [36].

The statistical confidence limit for T? is calculated by using the F-distribution. The limits are

calculated as follows

Fk,m—k,a (33)

where m = number of samples used to develop the model
k =number of PCs retained in the model.

Fi m.r o = value of F-distribution at level a, with (k,k-m) degrees of freedom.

The assumption that the data are multivariate normal may not always hold true. Ifthe data are
clustered, the T statistic may not accurately predict the outliers. However, the Q statistics are

surprisingly well behaved in a wide variety of cases [36].

4.2.2. Determination of the Number of PCs to be Retained for the ECT Data Features

To determine the number of PCs that would accurately convey the information extracted using
the ECTD feature parameters, the full data set was used. The full data set, uTR_E 1 contains the
basic signatures for all 92 ECTD flaw examples. Two parameters were used for establishing the

number of PCs to be retained.

1. The % variance retained by the model [33]

2. The % incorrect classification.

The notation TR_E 1a means that it was a processed data subgroup, extracted from uTR E 1,
with 3 PCs. TR _E_1bhas 5 PCs and so on as listed in Table 13.
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Table 13. PCs retained vs. % Variance of Model, and % Incorrect Classification.

TR Run Number (or Subgroup)

3 PCs 5PCs 10 PCs 15 PCs 20 PCs
(TR_E_1a) (TR_E_1b) | (TR_E_1c) | (TR_E_1d) (TR_E_1e)
% Variance 69.7 84.5 97.0 99.7 99.9
% Incorrect 44.5 32.6 6.5 1.1 1.1
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The results above indicate that 15 PCs would retain more than 99% of the variance and classify
observed flaws correctly 98.9%. If 20 PCs were kept, a very little increase in % variance retained

or decrease in the % incorrect classification would be obtained.

4.2.3. Basic PC Scatter Plots, Hotelling’s T Statistic, and Q Statistic Analysis of PCA

Compressed Features

Figure 22 shows the first three PCs (from the compressed features) plotted for all 92 of the ECTD
flaw examples. As given in the figure legend, the flaws and flaw centers are marked by a colored
circle or square, respectively. The general observations from Figure 22 were that there was little

grouping and some separation was evident. In addition, no outliers were identified.

Figure 23 shows the scatter plots of all combinations (in pairs) of the five PCs. The bar graphs
located along the diagonal are histograms of each of the PCs. The general observations from
Figure 23 were that there was little grouping and some separation was evident. The histograms
(the diagonal sub-plots in Figure 23) of the first five PCs indicate non-Guassian distributions.
Also, four outliers were identified. The outliers were DARO051C0081017 1,
DHRSMPC0081025_2, DAR051C0131026 1 and DAR051C0151016 1.

Figure 24 is a plot of the T statistic for the PCA model. For the full data set, a 95 % Confidence
Level for the T2 values is = 38.87. Thus, many data points may not be representative of the data
set as a whole. There were 9 data points above 80.

Figure 25 is a plot of the Q statistic. For the full data set, a 95 % Confidence Level for the Q
Statistic values is = 0.46. From the Figure 25, 8 data points were not modeled well. These data
points are DHRO00BC0691018_1, DHRO00BC0701014_1, DHR00BC0781004_1,
DHRO00BC0791012_1, DHR00BC0821020_1, DHRSMPC0011004_2, DHRSMPC0061019 2 and
DHRSMPCO0081025 3.
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Figure 22. 3D Plot of P’s #1, 2 and 3 for All 92 Examples.
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95 % Confidence Level

Figure 24. Hotelling’s T? statistic for uTR_E_1 (Full data set).
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Figure 25. The Q statistic Magnitude vs. ECTD (example) Number for uTR_E 1.
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The results from the basic scatter-plots, the T? and Q statistics are summarized in Table 14. As is
seen in Table 14, a few of the outliers were named more than once. This coincides with the fact
that the same example may be an outlier for more than one of the three analysis. As stated in
Section 4.3.2, the identified non-typical flaw examples were retained in the database for the

previously stated reason.

As is seen in Figure 25, the Q statistic identifies 7 possible outliers, but overall most of the data
falls within the 95% CL. Thus, the PCA models the data well. Figure 24 clearly shows that most
of the samples fall outside of the 95 % CL for T2. This particular situation seems to indicate that
there is large within model variation. But, as stated at the end of Section 5.2.1, if the resulting
compressed data clusters, the Q statistic should show few points above the 95% CL but the T?
statistic should show many. This explains the Q and T? results [36].

PCA was used as a linear transformation of the feature vectors, described in Section 4.2, into a
smaller dimensional feature space and also to detect the outliers. The compressed feature vector
retained almost all of the original feature vector’s variance but has 1/3 the number of the feature

variables.
4.2.4. Compressed and Processed, Stacked Basic Information (TR) Files

The compressed and processed information files are generated using a uTR file. The generated
TR data file would contain multiple pages of data. Each page of data was specific for a
classification of flaw. Each page of the TR data file was organized in the manner shown in Table
15.

The TR data files were named using the uTR data file information plus an identification
corresponding to the number of PCs retained by the model. An example TR file name is
TR_E _la. This means uTR E 1 is processed, retaining only 2 PCs. This is also explained in
Section 5.2.2.
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Table 14. Outliers for the Scatter-plots of the Principal Components.

Flaw-type

1 2

3 4

Outliers

DHR000C 1151029 1
DHR00BC0651017 1
DHRO00BC070I014 1(2)
DHR00BC0771015_1
DHRO00BC0791012_1(2)
DHRO00BC0821020_1(2)
DHR00BC0691018_1
DHRO00BC0781004 1

DARO051C0131026_1
DARO051C0151016_1
DARO051C0151016_1
DARO051C0081017_1

DHRSMPC0081025_2
DHRSMPC0081025_2
DHRSMPC0011004_2
DHRSMPCO0061019 2
DHRSMPC0081025 3

None

Table 15. Page Contents of a TR Data File.

Column

1

(All Examples contained within

2
(Specific for the Examples for that

Row

the uTR used) Flaw Classification)

1 Deleted Columns (0 variance) Break Files
2 STD and Mean (for each column) CWT Compressed Matrix
3 Feature Matrix Feature Matrix

(without deleted columns) (without deleted columns)
4 PCA Transformation Matrix Flaw Characteristics

(using the specified number of
PCs)

5 PCA Transformed Data PCA Transformed Data
6 Tsquare Tsquare
7 QTR QTR
8 empty Raw CWT for Flaw

!




5. Classification and Characterization of Flaws in

Steam Generator (SG) Tubing

This chapter is divided into two parts. The first part details classification theory and its
application. The second part describes the advanced characterization process and underlying

theory.
5.1. Classification of Flaws in Steam Generator (SG) Tubing
The next step in this research was to classify the type of flaw in the SG tubing using the ECT

data. Classification of the flaw was accomplished by using the compressed feature vector. In

general, the classifications could include the following flaw types.

1. No Defect 7. Stress Corrosion Cracking (PWSCC
2. Cracking or ODSCC)

3. Intergranular Attack (IGA) 8. IGA/SCC

4. Thinning 9. Pitting

5. Wear 10. Denting

6. Impingement 11. Multiple Defects

12. Undetermined

Three factors help to narrow this list.

1. Not all the flaws listed above are exhibited by SGs by each vendor.
2. The location of the flaw within the SG.
3. The location of the flaw with respect to the tube itself (ID or OD).

As outlined in Section 2.2.3, the ECTD subset used included only 4 flaw-types. Thus, the
classification was narrowed to thinning, impingement, wear, and pitting. In addition, since the
data were lab-generated, the three factors listed above were not relevant. Classification of flaws

was accomplished using a traditional (Bayes and distance-based) pattern recognition technique.
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Section 5.1 is divided into five parts. The first part gives an overview of Bayesian pattern
recognition. The second details the calculation of the upper bound for the total Probability of
Error using the Bhattacharyya distance. The third describes cross validation techniques. The
fourth combines cross validation and Bayes pattern recognition. The final part mentions template

matching classification.
5.1.1. Bayesian Pattern Recognition Method
Bayesian pattern recognition is based on Bayes decision theory. Bayes decision theory uses the

minimization of the probability of error and the a posteriori probability. The conditional

probability is expressed as

P(B| A)P(4)= P(4| B)P(B) (34)
where: P(B|A4) = probability of event B assuming A4

P(A|B) = probability of event A assuming B

P(A) and P(B) = probability of 4 and the probability of B.

These can also be extended to random variables and probability density functions.

plx1»)p(y)= p(y| x)p(x) (35)

where: p(x|y) = probability density function of x given y
Pp(|x) = probability density function of y given x
p(x), p(y) = probability density functions of x andyy, respectfully.

Now, to adjust for classes (@) and multi-dimensional variable x

p(x| ®,)P(w,) (36)

P(a’: |x)= p(x)

Where p(x) is given by
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plx)= g)p(x | @, )P(w,) 37)

The Bayes classification rule (or decision-making) states that among m-hypotheses, choose H;

such that P(wj|x) is maximized for wj and is given by the following

Choose hypothesis H; over H, if:
plx| @,)P(@,)2 plx| o, )Plor,) (38)

where: P(a;) = prior probability of class i.
P(wy) = prior probability of class j.

These probabilities are based on the number of examples for class i divided by the total number

of examples (V) or

Plo,)=-2 (39)

Assuming a multi-dimensional normal probability density function for the data under each

hypothesis, the joint probability density function in Equation (38) has the form

1 1
plx| @)= Wexp(— E(x =) - )) (40)

where: x = vector of measurements.
M = vector of mean value of the class

| 2| = determinant of the / by I covariance matrix.

The covariance matrix is defined as
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%, = Ele- Y- 1) | @)
For the minimum error probability case, the decision surface to classify between classes i andj is
p(xlo,)P(@,)-p(x|0,)Plo,)=0 @)

These surfaces can be used to determine the class of a new test vector. Another approach is to

transform each part of the decision surface using the natural log as
8,(x)=1n(p(x| o, )P(@,)) = In(p(x | , )+ In(P(e, ) (43)
Using Equation (40) this may be simplified as

1 ¥ 1 N 1 . 1 g
gi(x)=_ExT Zi1x+5xT Ztl H; _Eﬂr Zil.ui +5#T Ztl x+lnP(wi)+ci (44)

where: ¢, =—(1/2)In27 - (1/2)|Z,|.

Each class generates a decision function, g;(x). The decision function is used by substituting the
unknown flaw vector values into each function g;(x), with the flaw being classified according to

the largest value generated. That is

m:lx g; (x) (45a)

Decision surfaces are generated using all class combinations of the decision functions

g;(x)=g,(x)-g,(x)=0 (45b)
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These decision functions are hyper-quadratics when the number of classes is great than 2 [29, 30,
31].

The MATLAB classification routine “classify.m” uses the above strategy but makes the

following assumption of Equiprobable Classes. This assumption lead to
1 _
gi(x)=_5(x_ﬂi)Tzil(x_#i) (46)

where constants have been neglected. If the covariance matrix is non-diagonal, maximizing g;(x)

is equivalent to minimizing the Z,._l norm, known as the Mahalanobis distance, or

d, =((x- Y 27— 1)} (1)

Thus, if the smallest distance calculated using an unknown (x) is generated using the p produced
by data from group i, then the unknown is classified as group i [30, 31]. There are other distance
functions that have a direct relationship to the probability of detection (or the total probability of

errors).
5.1.2. Upper Bound on Probability of Error using Bhattacharyya Distance

Since this research employs Bayesian decisions, guaranteeing the lowest average error rate,
calculation of the probability of error was important. The probability of error (Pe), for a two

classification, system is given by
Pe=P(xeR,,w,)+P(xcR,0,) (48)

where: x = observation
R; =region 1 (Classification 1)
R, =region 2 (Classification 2)
w; = true State (or Classification) 1

@, = true State (or Classification) 2.
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or in integral form

Pe = !p(x | wl)P(a’l)dx"' Ip(x | @, )P(wz)dx (49)

where: p(x|w,) = state-conditional probability density function for x given class 1
p(x| wy) = state-conditional probability density function for x given class 2
P(w;) = prior probability that nature was in state 1
P(w,) = prior probability that nature was in state 2.

The Chemoff Bound applies the inequality
min[a, 5] < a”b** fora,b>0and 1> 820, (50)

to simplify the integral form of Pe. Using this inequity, the upper bound for Pe can be estimated

as
Pe< P (o, )P‘"ﬂ(coz)J'Pﬂ(x | )P (x| w,)dx  for12p20. (51)

If the conditional probabilities are normal, the above integral can be evaluated analytically,

yielding
.[Pﬂ(x | 0, )Pl_ﬂ (x | a’z)dx ) (52)

where

Bl-8 , " 1, |2 +(1-B), |
)= 2D Y - B - ) BB

(53)
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Bis varied until a minimum value of e*® is determined. This Byields the Chemoff error bound.

If f= 0.5, then the upper bound of the probability of error based on the Bhattacharyya distance
(UPeBD) is determined. This simplifies as

Pe < Pl YPl) [ ol T, ol o, (54
with the integral part equal to *?. For the Gaussian case

lEI D

+
2

VIZ 2

55
5 (33)

il
1 Z,+2 1
k(1/2)=_(.”2_.u1)t == (/U ™ 1 Y

8 2

If the distribution is not Gaussian, this estimation may not be accurate. The BPeUB provides an
upper bound on the probability of error for the Bayesian decision method [31, 37, 38, 39]. Two
UPeBDs are calculated, the regular UPeBD and a UPeBD calculated using zeroed off-diagonal

covariance matrices, 2; and 2} (or as abbreviated UPeBDZ).

P(w)’s were assumed to be 0.25, corresponding to the case that there were 4 classes. A summary
of the Bhattacharyya distances (Both the UPeBD and the UPeBDZ), including the % variance and

% incorrect classification, is given below in Table 16. These calculations were made using the
full data set of 92 examples (uTR_E 1and TR _E _1).

A graph of the above information can be seen in Figure 26. The UPeBDZ (dashed line) seems to
parallel and bound the % Incorrect Classification as the number of PCs were increased. Since the
retained PCs were deemed non-Gaussian in Section 5.2.3, the calculated B-distances (based on a

Gaussian assumption) may not be appropriate or very accurate.
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Table 16. PCs retained vs. % Variance of Model, % Incorrect Classification, UPeBD and
UPeBDZ.

TR Run Number (or Subgroup)
3PCs 5PCs 10 PCs 15 PCs 20 PCs
(TR_E_1a) | (TR_E_1b) | (TR_E_ I¢) (TR_E_1d) (TR_E_le)
% Variance 69.7 84.5 97.0 99.7 99.9
% Incorrect 445 32.6 6.5 1.1 1.1
UPeBD 0.3249 0.1242 0.0024 1.734e-5 1.103e-8
UPeBDZ 0.4434 0.3273 0.1722 0.1422 0.0723

% Variance Kept, % Wrong Classification and the Bhattacharyya Probability of Error Bound
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Figure 26. PCs retained vs % Variance, % Incorrect (Wrong) Classification, UPeBD and
UPeBDZ.
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5.1.3. Basic Cross Validation Theory and Applications

Cross validation is the procedure of randomly splitting a set of examples into a training set and a
test set, training the classification system with the training set, then test the system with the test
set. One cross validation method is to leave out m samples of n total examples, generating n/m

subsets.

There were 92 total examples in the database. Two cross validation procedures were used. First,
only four examples were extracted at a time, thus 23 subgroups were formed. Then the new
training group was formed by recombining 22 of the subgroups, with the remaining subgroup
used as the test group. This procedure was repeated 23 times, thus allowing each subgroup to be
left out as a test group. The inaccuracy of classification was the average of the 23 validations. In
the second approach, only one example was extracted at a time. Thus, one flaw was extracted at
a time and the remaining 91 samples were used for train. This allows the training set the

maximum information from the database without the system seeing the test example.

Cross validation was applied to three different scenarios with classification accuracy as the
measuring stick. First, sensitivity of single feature groups was ascertained using the first cross
validation system. Second, sensitivity of multiple feature groups was established, also using the
first system. Finally, cross validation of the classification using all feature groups was

determined using both the first and second system.

The first two applications correspond to the two parts of this section. The third application is
briefly discussed in Section 5.1.4.

5.1.3.1. Cross Validation System Four used for Classification of Single Groups of Raw

Features

When using MATLAB’s Bayesian classifier (classify.m), the number of examples for a specific
class must be greater than the number of features. With this in mind, the two groups of features,
geometric moments and the polynomial coefficients, were not processed. The features were not

compressed using PCA.
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Table 17 lists the results using cross validation system four for the classification of single groups

of raw features. The three individual feature families were highly inaccurate.

5.1.3.2. Cross Validation System Four used for Classification of Multiple Groups of

Compressed Features

In order to use MATLAB’s classifym program, the multi-group feature families were
compressed using the PCA. The first 15 PCs were kept. Feature family #2 was the polynomial
coefficients derived from the Imaginary absolute ECTD signal. Feature family #4 was the
geometric moments derived from the CWT of the complex differential ECTD signal

Classification inaccuracy was listed in Table 18.

To summarize, the average % incorrect classification when deleting a feature family was 23.91.
The best case was when the absolute coefficients were deleted. The deletion of no one feature

family had a significant effect on the average % incorrect classification.

5.1.4. Cross Validation with Application of Bayes Pattern Recognition

Both cross validation subset generation systems were outlined in the second paragraph of Section

5.1.3. Theresults listed in Section 6.1 were generated using these methods.

5.1.5. Classification using Template Matching

Classification using Template Matching utilized the ECTDFS generated CWT. Initial Template
matching results (from the PDD database) yielded marginal results (correct classification 69%),
and was not utilized. These results are summarized in Appendix E.

The results of template matching using the raw CWT signatures indicated that the CWT

contained information about flaw types necessary for successful classification using image

processing signatures.
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Table 17. Average % Incorrect Classification vs. Feature Group

Feature Group Average % Incorrect Classification
1 (Phase and Magnitude of ECTD 60.87
Differential Signal)
3 (Parameters derived from the Imaginary 53.26

Part of the Differential Signal)

5 (Image Processing Parameters derived 57.61

from the Imaginary Differential CWT)

Table 18. Average % Incorrect Classification vs. Feature Family Deleted.

Feature Family Deleted Average % Incorrect Classification
1 25.00
2 25.00
3 25.00
4 22.83
5 25.00
Average incorrect % (when deleting 2391
families)
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5.2. Characterization of Flaws in SG Tubing

Characterization of the tube flaws was accomplished, after classification, by using trained flaw-
type specific Artificial Neural Networks (ANNs). This section describes basic ANN theory and

the various steps that were taken to accomplish this task.

This section is divided into four parts. The first part details basic theory of artificial neural
networks, with the second part outlining the specifics of ANNs for this application. The third part
briefly describes correlation analysis of the input and target output. The final part includes a
description of training and storing the ANNS.

5.2.1. Artificial Neural Networks

ANNSs are highly versatile modeling tools. ANNs can model almost any function (or system)
with high accuracy [40-43]. Since there were multiple inputs (15 PCs and a classification) and
outputs in this system, ANN seemed to be the logical choice for the task. This section contains a

general overview of ANNs.
5.2.1.1. Basic Artificial Neural Network

A single neuron network consists of a weight, a bias, and a function. The weight and bias matrix

transforms the input, the transformed input is expressed as
a=f(W+*p+b) (56)

where: a = Output
W = Weight
p = Input
B =Bias

Jf= Transformation Activation Function.

This is shown in Figure 27. Many inputs and neurons can be used to form a single layer-multiple

neuron network. This is shown in Figure 28.
83



Input  Neuron with bias

r Nf N

a =f(wp+b)

Figure 27. A Basic Input-Output Neuron [44].

Input  Layer of Neurons

a=F (Wp+b)

Figure 28. A simple layer ANN with multiple Inputs and Ouputs [44].
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The next step is to form multiple layers of multiple neurons. This is the classic ANN. The
formula for a three-layer multiple neuron ANN is given by:

a=f,(W. £, W, 1\, * p+b,)+b,)+b;) 57

where the f§ are functions, the W's are weights and the bs are biases. This can be seen in Figure
29.

Each of the above individually performed functions is called a layer. Thus, the output of the i-th
layer becomes the input for the (i+1)th layer. This transformation is executed for each individual
layer of the ANN, noting that the ANN may have many layers. Each individual function group
performs a transformation of the input data in an effort to obtain the target data as the output of
the last layer.

An example of an activation function (also called the sigmoidal function), is given by the

equation below:

1
| hg™

f(x) (58)

where: X = input (W*p+b in this case)

a = shape parameter.
One complete transformation (through all the ANN layers) is called an epoch. These epochs are

repeated over and over until an error goal between the training data and the target data is

accomplished, or the ANN cannot accomplish this goal in the allotted number of epochs [44].

85



Input Layer 1 Layer 2 Layer 3

‘Y4 \ { \ ( \
P t"v.‘“! R_l’ri‘ Ct hwl,l 2 i ’l ﬂ ?2 IWLU, z ml ’I j3 _al_}
l b lbz . lbl
I L !
P ni a r * nl @
miimny v im ey e e e
P 1 ] 3
XL e M
p.1 n a. a2 @2 13 @3
R > _s_blf]_ sm” Z S’Iﬁ Sl“rJ Z S’Iﬁ——s’
A TRy 12 i b
o o It
1 1 1
\_J\ J \ J \ J
at = f1(IWup +by) 2 = 2(LWaai+b2) a3 =f3 (LW a2+ o)

Figure 29. A multi-layer ANN with multiple Inputs, and multiple Outputs [44].
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5.2.1.2. Error

The error is usually given by the sum of squared errors (SSE), which is defined as

N M

SSE=3"(T, -a,f (59)

j=1 i=1

where: a;; = ith training vector used to produce the hth output value of the ANN
T;;=ith and hth Target Value.
N =total number of training vectors

M = total number of output variables [44].

This is only one of many performance errors that can be utilized. Other errors are detailed in
Section 5.2.2.3. To train an ANN, the error of the system can be backpropagated through the
ANN framework and used to adjust the weights in each layer. The backpropagation algorithm is

one such method.
5.2.1.3. Backpropagation Algorithm

The backpropagation algorithm uses a steepest descent technique, which is very stable, when a

small leaming weight is used, but may be slow to converge. The error term used is given by

e=(T;-a,) (60)

y

To backpropagate the error, the relationship between the error and the functions at each step must
be analyzed. Therefore, to change the weights in the 1% layer, the error must be backpropagated
through the hidden layer. For a 2 layer ANN, the change of error with respect to the change in

weights at 1% layer is
ae/ow; = 3e/af*of/av, * avy/owy*dws/da*0a/af* af/avi*avi/aw, (61)

where: f= transformation function
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w = weights
v = W*ptb for each layer
a = Output of the layer.

In a two-layer ANN using backpropagation, the above term is equal to
de/ow; = ar*(1-a))*{ Wa*[a*(1-ax)*e]} (62)

The derivative term is then used to update the weight in the 1% layer as

W™ =W, " +2%Ir* ety (63)
ow

1

The weights in the second layer are updated in a similar fashion. The 3-layer case is slightly
more complicated but the same principles apply as in the 2-layer case. Now, assume that the

ANN has been trained. The next step is to check the adequacy of the ANN [44-46].
5.2.1.4. Over-fit and Under-fit of the ANN

Two problems can arise when modeling with a ANN. The first problem arises when the ANN

over fits the data. The second problem occurs if the ANN under fits the data.

If the ANN over fits the data, the analyst has used too many degrees of freedom. The ANN
would train to a very low RMSE, but the ANN would train to each individual data point and not
the underlying function that describes the data. Thus, when the ANN is checked with a data
sample that is in-between the points used, a high RMSE would be obtained, as shown in Figure
30.

If the ANN under fits the data, the ANN would yield a high RMSE result and not approximate the
underlying function of the data. This means the ANN did not use enough degrees of freedom to
identify the underlying function or the ANN had an appropriate number of degrees of freedom
but was not trained properly [45].
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Figure 30. An Overfit ANN Approximation of a Sine Curve [44].
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5.2.2. Application of ANNs for Characterization

Once the tube flaw was classified, a ANN was used for defect sizing (or characterization). But,
instead of one ANN being trained to characterize all flaw types, individual flaw-specific ANNs

were trained to characterize (the dimensions found in the blueprints) the flaw.

The first section defines what is meant by generalization subsets. The second section outlines a
number of ANN parameters that were assigned rather than determined and details the justification
for each. The third section details the logic in determining the appropriate training error level or
goal. The fourth part establishes the number of hidden neurons needed to adequately characterize
the training data given by the generalization subset 1 (WTR_E 2 and TR _E 2a).

5.2.2.1. Generalization Subsets

A generalization training subgroup was formed by randomly extracting four flaw examples (one
from each flaw-type) from the full data set (WTR_E_1). Five generalization training subgroups
were generated, uTR_E 2 through uTR E 6. Each generalization training subgroup had four
different flaws extracted from the full data set. No two test flaws were the same.  As an

example, TR_E 2a was the processed data subgroup, generated from uTR_E_2, using 15 PCs.

5.2.2.2. Fixed ANN Parameters

Many parameters associated with the neural networks were either assigned or determined. The
assigned parameters were data preprocessing, layer functions, the number of hidden layer, type of
training, maximum number of epochs, performance function, and a few others. The MATLAB

code to assign these parameters is given below.

[Pn,minp,maxp, Tn,mint,maxt}=premnmx(P,T);

net = newff(minmax(Pn),[S1 S2],{'tansig' 'purelin'},'trainbr');
net.trainParam.goal = goal;

net.trainParam.mc = 0.95;

net.trainParam.show = 10;

net.trainParam.epochs = 200;
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net = train(net,Pn, Tn);
Yn = sim(net,Pn);
Y = postmnmx(Yn,mint,maxt);
With Y being the flaw characteristic output of the ANN.
5.2.2.3. Error Performance and Goal
A good training error level is one that accurately generates results with both the training data and
unseen test data. Sum of Squared Error (SSE) is the assigned error function for “trainbr”. The

SSE is defined in Equation (59).

The Mean Squared Error (MSE) performance indicator was chosen because it was not affected by

the number of variables or the number of examples. The MSE is defined as

(T, - (64)

M:

1 N
MSE=WZ

Jj=li

I
—

where the values are defined Equation (59) [44-46].

An SSE = 0.1 yielded the results summarized in Table 19. An MSE goal of 0.01 was chosen. The
MSE goal of 0.01 forced approximately a + 1% error between the un-scaled target and output.
Using the above data as a reference, an SSE of 0.05 was selected. An SSE of 0.05 should yield

the mean squared error (MSE) level discussed below.

Another performance indicator is the Root Mean Error (ME). The mean error is defined as

RME=«/W=\/Lii( (65)

MN 545
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Table 19. SSE and MSE for each Data Group (or Flaw-type).

Flaw-type Error Function
(# of Examples, # of SSE MSE
Outputs)
1(24,3) 0.1 0.0144
2 (20,3) 0.1 0.0130
3(23,2) 0.1 0.0020
4 (21,3) 0.1 0.1723
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Basically, the RME gives the physical error, while the MSE gives a squared error [44-46].
Another error measurement is the % Average Error (%AE). The %AE for a single target vector
(7) is defined as

T;_ai
T,

M
% Average Error =100 * -A—ll- Z (66)

i=1

——

where: a = Predicted Value
T =Target Value
M =Number of Output Variables.

The %AE was utilized to determine the accuracy of the generalized characterization results.

5.2.2.4. Determination of the Number of Hidden Layer Neurons

Data sets uTR_E 2 and TR_E_2a were utilized to determine the appropriate number of hidden
layer neurons for accurate and robust training. Note that each flaw-type has its own ANN. This
was done for two reasons. The number of characterizations changes for different flaw-types, and

yields more accurate characterization results.

The appropriate number of hidden layer neurons was determined by reducing the error to a
minimum value before the ANN begins to over-fit. When the ANN over-fits, the error may

increase, and generalization results would not be acceptable.

The number of neurons in the hidden layer was determined by trial and error. The determination
of the number of hidden neurons in the hidden layer utilized data subgroup uTR_E 2 and
TR_E 2a. An MSE goal of 0.01 was chosen. The MSE goal of 0.01 should force approximately

a + 1% error between the un-scaled target and the output.

As can be seen in Table 20, for each flaw-type, the MSE drops significantly from 3 to 5 hidden
neurons, then very little. Flaw-type #4 could not be trained below an MSE = 0.17. The number

of hidden neurons was determined to be 5.
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Table 20. Number of Hidden Neurons vs. Flaw-type Listing the MSE (and ME) Values

# of Hidden Flaw-type

Neurons 1 2 3 4
3 0.0144 (0.12) 0.0130 (0.12) 0.0010 (0.03) 0.1723 (0.42)
5 0.0011 (0.03) 0.0007 (0.03) 0.0010 (0.03) 0.1710 (0.41)
/ 0.0007 (0.03) 0.0007 (0.03) 0.0008 (0.03) 0.1708 (0.41)
10 0.0007 (0.03) 0.0008 (0.03) 0.0009 (0.03) 0.1706 (0.41)
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5.2.3. Correlation Analysis of the Input Values and Target Output

A correlation analysis between the Input Values and the Target Output (Characterization Values)

was prepared. The correlation coefficients for each flaw-type are presented in Appendix C.

5.2.4. Training and Storing the Neural Networks

Once all the aforementioned parameters were either set or determined, ANNs for each
generalization group were trained. The neural network results were stored as a “.mat” data file.
Net_char E 2a5.mat contains the neural network structure and parameters generated by using
uTR_E 2 and TR_E_2a subgroup with 5 hidden neurons. Thus, resulting in Net_char E 2a5.
The output of the training for net char E 2aS can be found in Appendix D. These results were
typical of results for net_char E_3a5 through 6a5.
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6. Results and Discussion

The main goal (specific to ECT) of this research, using the above outlined procedures, was to
achieve an in-situ flaw classification and characterization technique. This section details the

results using this process.

The results and discussion section is divided into three parts. The first section details important
intermediate analysis. The second part details the Bayes classification of the ECTD test flaws.
The third section presents an overview of the characterization of the ECTD test flaws. The final

section is a discussion of the generated results.

6.1. Summary of Important Intermediate Analysis

This section summarizes important results of the intermediate analysis sections.

1. The resulting compressed data exhibit non-Guassian distributions and clustering.

2. The B-distances computed (both the UPeBD and UPeBDZ, in percent) seem to
parallel and bound the % Incorrect Classification. The calculated upper bound for 15
PCs was 0 and 14.22% (UPeBD and UPeBDZ, in that order) bounding the 1.1%
incorrectly classified. However, the Gaussian-based calculated B-distances may be
inaccurate due to non-Gaussian data.

Using only the phase and magnitude, 39% of the flaws were accurately classified.

4. Using only the IP features generated from the CWTs, 42% of the flaws were
accurately classified.

5. Using only the polynomial coefficients of the mixed, inductive reactance component
of the absolute ECTDFS, 46% of the flaws were accurately classified.

6. Using four out of five of the feature families, 72% of the flaws were accurately
classified.

These six results are analyzed in the following sections.
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6.2. Bayes Classification of Test Flaws

The Bayes Classification of test flaws section is divided into four parts. The first section
describes results generated using only the CWT generated features, after compression, with an
extract one cross validation system. The second part contains the results generated with the cross
validation system of extract four. The third section contains the results generated with the cross
validation system of extract one. The fourth section looks at the relationship between outliers and

misclassification.

6.2.1. Bayes Classification of Test Flaws using only the CWT Generated, Compressed
Features Employing the Cross Validations System of Extract One

A Bayes classification was performed using only PCA compressed (15 PCs), CWT generated
features. The CWT features included both the geometric moments and the IP features. The
incorrect classification percentage using the extract one cross validation system was 35.87. The

extract one cross validation system correctly classified 64.13 % of the flaws.

6.2.2. Bayes Classification of Test Flaws Using the Cross Validation System of Extract Four
As discussed in Section 5.1.3, the results, found in Table 21, were generated using the first cross
validation system (extract four). The incorrect percentage using all feature families (4 extracted)
was 25.00. Thus, the system correctly identified the flaw-type 75 % of the time. Table 22
reorganizes the above information to show the number of misclassified flaws by the flaw-type.
Flaw-type 3 was the least misclassified and flaw-type 4 was the most misclassified.

6.2.3. Bayes Classification of Test Flaws Using the Cross Validation System of Extract One
As discussed in Section 5.1.3, the following results, listed in Table 23, were generated using the

second cross validation system (extract one). The average incorrect percentage (extracting one)

using all feature families was 27.17.
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Table 21. Cross Validation System One, Sub-Group # with Misclassified Flaw Example Names.

Sub-Group # Flaw Example Names
1,9,11,13,15 none
2 'DHRSMPC0011004 2' (3)
3 'DHRO0PC0041021 4'(4)
4 'DAR00BC1001022_1'(2)
'DHRO0PC0051022_1' (4)
5 'DHRO0OPC0051022 4' (4)
6 'DAR051C0021013_1'(2)
'DHR000C2041031_1'(1)
7 'DHRO0PC0351024_1' (4)
8 'DAR051C0041005_1'(2)
'DHR000C2031033_1'(1)
10 'DHRO0PC0441059 1' (4)
12 'DHRO0PC0481063_1'(4)
14 'DHRO0PC0491046_2' (4)
16 'DHRO0PC0491064_2' (4)
17 'DHRO0PC0491064_4' (4)
18 'DHROOPC0511048_3' (4)
19 'DAR051C0151016_1' (2)
20 'DAR051C0991010 _1'(2)
'DHROOPCO0511048_5' (4)
21 'DHROOPCO0511066_3' (4)
22 'DAROBWC0791015_1' (2)
'DHROOPC0511066_4' (4)
23 'DAROBWC0801018 _1' (4)
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Table 22. Number of Misclassified by Flaw-types for Cross-validation System One (Extract 4).

Flaw-type

Number 2 6 1 14

Misclassified
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Table 23. Cross Validation System Two, Sub-Group # with Misclassified Flaw Example Names.

Sug-groups Flaw Example Names (Flaw-type)
1-5,7, 9-26, 28, 30, 32-40, 44, 47, 50 - 71, 75, none
71,78, 80, 82, 84, 88, 92
6 'DHR000C2041031_1'(1)

8 'DHR000C2031033_1' (1)

27 'DAR00BC1001022_1'(2)

29 'DAR051C0021013_1'(2)

31 'DARO051C0041005_1'(2)

41-43 'DAR051C0141019 _1'(2)

'DAR051C0151016_1'(2)
'DAR051C0991010_1' (2)

45, 46 'DAROBWCO0791015_1' (2)
'DAROBWCO080I018_1' (2)
48,49 'DHRSMPC0011004_2' (3)
'DHRSMPC0011004_3' (3)
72-174 'DHROOPC0041021_4' (4)

'DHRO0PC0051022 1'(4)
'DHRO0PCO0051022 4' (4)

76 'DHRO0PC0351024_1' (4)
79 'DHRO0PC0441059 _1'(4)
81 'DHRO0PC0481063_1'(4)
83 'DHRO0PC0491046_2' (4)
85-87 'DHRO0PC0491064_2' (4)

'DHRO00PC0491064_4' (4)
'DHRO0PC0511048_3' (4)
89-91 'DHROOPCO0511048_5' (4)
'DHRO0OPCO0511066_3' (4)
'DHRO0OPCO0511066_4' (4)
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Thus, the system correctly identified the flaw-type 73 % of the time. Table 24 reorganizes the

above information to show the number of misclassified flaws by flaw-type.

Flaw-types 1 and 3 were the least misclassified and flaw-type 4 was the most.

Since there were many misclassified flaws, a look at the outliers as they relate to the misclassified

flaws, is discussed in the next section.

6.2.4. Remarks on Outliers and Misclassification

Referring to Table 14, this lists all outliers by flaw-type. Now, reorganize Table 14 in the same
manner as Tables 22 and 24. This yields Table 25.

If the results found in Tables 22, 24, and 25 are combined (Table 26), the number of outliers
seems to have an inverse relationship with the number of misclassified. The outliers may help

complete the feature space so that classification accuracy is increased.

6.3. Characterization of Test Flaws

Five trained ANNs (one each for the 5 generalization subsets, net char_E_3a$ through 6aS) were
generated to check for good generalization results. The MSE (and ME) calculated below did not
use the scaled T and Y. Thus, the MSE values were much larger. The results can be seen in

Table 27.

Results generated using the five subgroups (with 15 PCs and 5 hidden neurons) are given in Table
28. This table contains the % Average Error (%AE) given for each flaw-type. The %AE was

determined using all the characteristics for that particular flaw-type.

As can be seen in Table 28, Flaw-type 1 error was very unstable. The errors range from 148 to
25%. Flaw-types 2-4 have moderately stable characteristic errors. The average error for all flaw-

types (excluding flaw-type 1) = 12.8 %.
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Table 24. Number of Misclassified by Flaw-types for Cross-validation System 2 (Extract 1).

Flaw-type
1 2 3 4
Number 2 8 2 13
Misclassified
Table 25. Number of Outliers by Flaw-types.
Flaw-type
1 2 3 4
Number of 11 4 5 0
Outliers

Table 26. Total Number of Misclassified and Outliers by Flaw-types.

Flaw-type
2 3 4
Number 4 14 3 27
Misclassified
Number of 11 4 5 0
Outliers
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Table 27. MSE and ME Values According to Flaw-type and Generalization Subset.

Flaw-type Generalization Subsets
2 3 4 5 6
1 4383.00 27.88 137.40 2717.31 205.47
(66.20) (5.28) (11.72) (16.65) (14.33)
2 28.82 (5.37) | 32.54(5.07) | 1.35(1.16) 32.85(5.73) |4.75(2.18)
3 0.19 (0.44) 0.57 (0.75) 0.83 (0.91) 5.75 (2.40) 0.79 (0.89)
4 20.72 (4.55) | 21.68(4.66) | 20.14(4.49) | 29.05(5.39) | 6.52(2.55)

Table 28. % Average Error of Flaw Characterizations divided into Neural Network Run

Numbers (Subgroups) and Flaw-types.

Flaw-type Neural Network Run Number (corresponding to Subgroup)
2as5 3as 4as 5a$ 6as
1 148.05 24.87 46.18 46.91 14.54
2 14.22 13.35 7.86 16.84 20.70
3 1.29 0.62 2.35 3.83 0.92
4 29.25 592 36.22 15.56 12.98
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The EddyC ANN outputs containing the values for T (target) and Y (generated values) for each
flaw-type group are assembled in Appendix D.

6.4. Discussion of Results

The results of this current research effort have shown the following.

1. The B-distance can be used to predict the % incorrect classification.

2. The information contained within the individual feature families compliment themselves
when used together.

3. The CWT contains at least enough information to correctly classify the flaws 64% of the
time using the IP features.

4. Initial Template matching results (from the PDD database) yielded correct classification
of 69%.

5. The number of outliers seems to have an inverse relationship with the number of
misclassifications.

6. The different SG tubing flaw-types may be classified using the ECTDFS features with
very good accuracy as compared to traditional industry methods.

7. The characteristics can also be determined accurately for three of the four ECTD
classifications. The characteristics are more robust than only a %TW as traditionally

used in the industry.
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7. Summary, Conclusions and Recommendations for

Future Work

7.1. Summary

The ECT technology has a proven track record at both detecting SG tubing flaws and
characterizing the flaws (flaw sizing given in % through-wall or %TW). The type of flaw is
ususally narrowed down, but not determined, by the location of the flaw within the tube, whether
the flaw occurs as an outer diameter (OD) or an inner diameter (ID) flaw, and the SG vendor. A
profile of the physical degradation can be determined if there is information contained in the
mixed absolute ECT signal. The decision about the plugging or pulling out a degraded SG tube
after a certain %TW damage is determined by the ECT specialist. Different degradation
mechanisms cause the SG tube wall to physically deterioate differently. The type of degradation
is usually determined after a tube were pulled out and inspected.

The purpose of this dissertation is to develop and impliment an automated method for the

classification and advanced characterization of defects in HX and SG tubing.

At this time, using basic bobbin-coil ECT, there was no method available to classify the type or
volume of degradation of a flaw while the tube is still in (while the SG is on-line but not when the
plant is operating) the SG. Therefore, two improvements were made in basic bobbin-coil ECTD

analysis.

1. In-situ classification of tube flaws as indicated by the ECTD signal.

2. Expanded in-situ characterization (flaw sizing) of the flaws.

These two improvements enhanced the robustness of characterization as compared to traditional

methods.

The approach that was developed for the diagnosis of degradation (both classification and
advanced characterization) of SG tubes consists of several steps. For steps 3 through 6, new

analysis techniques were required. All the steps are enumerated below.
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1. ECTD pre-processing

2. Entering known information from the PDD

3. Transformation of the mixed, complex, differential ECTD flaw signal (ECTDFS)
using the continuous wavelet transformation (CWT)

4. Feature extraction and compression of extracted features utilizing Principal
Component Analysis (PCA)

5. Tube defect classification using compressed feature vector and CWT using a
traditional pattern recognition (PR) technique

6. Tube defect characterization (or flaw sizing) using multiple neural networks

(ANN:s), one for each flaw-type.

The major results of this research support that the B-distance can be used to predict the %

incorrect classification, that the CWT contains at least enough information to correctly classify

the flaws, and that the different SG tubing flaw-types may be classified and characterized using

the ECTDFS features with very good accuracy as compared to traditional industry methods.

7.2. Conclusions

The following are the conclusions reached from this research:

I

A feature extraction program acquiring relevant information from both the mixed,
absolute and differential ECTDFS was successfully employed.

The CWT was utilized to extract more information from the mixed, complex
differential ECTDFS.

IP techniques used to extract the information contained in the generated CWT,
classified the ECTDFSs with success.

The ECTDFSs were accurately classified, utilizing the compressed feature vector,
using a Bayes classification system.

An estimation of the upper bound for the probability of error, using Bhattacharyya

distance, was successfully applied to the Bayesian classification.
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6. The classified ECTDFSs were separated according to flaw-type (classification) to
enhance characterization. The characterization routine used separate, flaw-type
specific ANNs that made the characterization of the ECTD flaw more robust.

7. The inclusion of outliers may help complete the feature space so that classification

accuracy is increased.

Given that the ECTD signals appear very similar, there may not be enough information to make a
highly accurate (>95%) classification or characterization using this system. It is necessary to

have a large database for more accurate system leaming.

7.3. Recommendations for Future Work

There are four primary areas for future work. The first area would be to incorporate more flaw
examples and variety into the database. After incorporating more flaw examples into the
database, a more thorough sensitivity analysis for the geometric moments and the absolute
polynomial coefficients as they pertain to classification should be done. The third area would be
to examine other ECTD information extraction transformations, specifically using the Windowed
Wigner-Ville Transformation and/or Short Time Fourier Transformation. Different classification

technique, such as ANNSs, could be utilized.
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Appendix A. Scatter Plots of the CWT Geometric

Moments and Polynomial Coefficients

Geometric Moments

Scatter Plots of Feature Group #4 subgroup 1 for each Feature Variable
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Figure Al. Scatter Plots of Geometric Moments, Subgroup 1 (G11, G12, G13 and G14, Note that
G10=0).
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Scatter Plots of Feature Group #4 subgroup 2 for each Feature Variable
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Figure A2. Scatter Plots of Geometric Moments, Subgroup 1 (G20, G21, G22, G23 and G24).
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Scatter Plots of Feature Group #4 subgroup 3 for each Feature Variable
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Figure A3. Scatter Plots of Geometric Moments, Subgroup 1 (G30, G31, G32, G33 and G34).
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Scatter Plots of Feature Group #4 subgroup 5 for each Feature Variable
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Polynomial Coefficients
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Scatter Plots of Feature Group #2 subgroup 1 for each Feature Variable
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Appendix B. Non-typical CWT Magnitude
Examples for each Flaw type

CWT for Group 96001 filsname DHROOBCO75011,

Scale

Data Point

Figure B1. Non-Typical Flaw CWT for Data Group 1 (Thinning).
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CWT for Group 96001 filename DHRODOC2020032,

S Data Point

Figure B2. Non-Typical (multiple flaw ?) Flaw CWT for Data Group 1 (Thinning).

CWT for Group 96002 filename DAROBWCOBOI013,

Scale

Data Point

Figure B3. Non-typical Flaw CWT for Data Group 2 (Impingement).
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CWT for Group 96004 filename DHRSMPCO01004,

Data Point

Figure B4. Non-typical Flaw CWT for Data Group 3 (Wear).
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Figure BS. Non-typical Flaw CWT for Data Group 4 (Pitting).
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Appendix C. Tables of Correlation Coefficients
Relating Input Values and Target Outputs

The following correlation coefficients are structure with the rows 1 — 15 and columns 1 -3 as the correlation
between the 15 PCs and 3 characteristic variable values. The final 3 rows (also columns 1 — 3) are the

correlation coefficients between the characteristic variables.
Flaw-type #1

0.6943 0.6969 0.5107
0.5562 0.6345 0.4697
-0.3019 0.4968 -0.1756
0.1333 -0.4276 0.0497
0.1646 -0.2577 0.0884
0.3947 -0.2403 0.0359
0.5514 -0.0268 0.0195
0.0111 -0.0402 -0.2193
-0.1040 0.0121 -0.1329
-0.5024 -0.2438 -0.0773
0.4101 -0.0538 0.6605
-0.4024 -0.1350 -0.2857
-0.0242 -0.2791 0.1534
0.0155 0.0667 0.1545
-0.1053  0.0859 0.0460
1.0000 0.0893 0.6292
0.0893 1.0000 0.3147
0.6292 0.3147 1.0000

Flaw-type #2

0.6280 -0.4197 0.3179
-0.1383 0.0033 -0.0646
0.2735 -0.3560 0.3764
-0.1967 0.0553 -0.2354
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0.2930
0.6837
0.0280
0.1941
0.2572
0.3073
0.3734
0.2443
0.1330
0.3189
0.0537
1.0000
-0.7277
0.4736

-0.1980
-0.6437

0.1291

0.0165
-0.0546
-0.1974
-0.2004
-0.4663

0.0981
-0.4772
-0.0558
-0.7277

1.0000
-0.4871

Flaw-type #3

0.8824
-0.2399
0.0046
0.3635
-0.0358
0.8017
0.6923
-0.4110
-0.3560
0.5686
-0.3580
0.2879
0.3372
-0.0046
-0.2707
1.0000
-0.0000

0.0000
0.0000
0.0000
-0.0000
-0.0000
0.0000
-0.0000
0.0000
0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
0.0000
-0.0000
1.0000

0.5560
0.3801
-0.0764
0.4605
0.3990
0.3082
0.5289
0.1273
-0.0184
-0.0004
0.1516
0.4736
-0.4871
1.0000
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Flaw-type #4

0.5014
0.2654
-0.2409
0.2347
0.2087
0.1987
-0.0147
-0.6200
-0.7920
0.3948
-0.0845
-0.3451
0.1320
0.0723
0.2681
1.0000
0.3397
0.2462

To determine which PCs should have been retained, two restrictions could be applied. The first restriction
could be to keep any PC with a correlation greater than 0.5. The second could be to retain any PC with a

range of correlation greater than 0.1 but with at least one greater than 0.4 for the characteristic values.

PCs with at least one correlation greater than or equalto 0.5-1,2, 5,6, 7, 8, 9 and 10.
PCs with all correlation greater than 0.1 and at lest one greater than 04 -1, 2, 3, 5,6, 7, 8,9, 10, 11 and 12.

If these two restriction are set to select higher correlated PCs (to be retained in the PC model), PCs 1-3, 5-

0.2363
0.1624
-0.2404
0.2248
0.2192
0.2801
-0.1438
-0.3062
-0.4032
0.0377
-0.0209
-0.2700
0.0300
-0.1515
0.2324
0.3397
1.0000
0.2155

12 would be kept.

0.3581
0.0023
-0.4107
-0.1495
-0.0824
0.3216
-0.0212
-0.3952
-0.1901
0.0056
0.4124
0.1630
-0.0506
-0.0362
-0.1535
0.2462
0.2155
1.0000
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Appendix D. Training Output for
net_char E 2a5.

Neural Network Characterization Results for

Data origin was E
Data Group was 96000

The Data run number was 2 a

Neural Network Analysis for Flawtype | =—=—

Number of neurons for the hidden layer. 5

Desire SSE goal. 0.05

TRAINBR, Epoch 0/200, SSE 272.31/0.05, SSW 25.0731, Grad 1.56e+002/1.00e-010, #Par
9.80e+001/98

TRAINBR, Epoch 200/200, SSE 0.0765691/0.05, SSW 25.0674, Grad 9.06e-002/1.00e-010, #Par
6.16e+001/98

TRAINBR, Maximum epoch reached.

Target Flaw characterization vector for flawtype # 1

Columns 1 through 7

9.0000 40.0000 9.0000 23.0000 60.0000 38.0000 12.0000
195.0000 75.0000 75.0000 75.0000 360.0000 45.0000 45.0000
1.4000 1.0000 1.0000 1.0000 3.0000 0.4500 0.3300

Columns 8 through 14
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22.0000 46.0000 30.0000 40.0000 50.0000 57.0000 66.0000
45.0000 45.0000 90.0000 90.0000 90.0000 90.0000 90.0000
0.3000 0.3550 3.0000 3.0000 3.0000 3.0000 3.0000
Columns 15 through 21

80.0000 90.0000 100.0000 30.0000 38.0000 44.0000 60.0000
90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000
3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
Columns 22 through 24

66.0000 88.0000 80.0000

90.0000 90.0000 90.0000

3.0000 3.0000 3.0000
ANN Flaw characterization vector for flawtype # = 1
Y=

Columns 1 through 7

9.7228 39.8231 11.1158 20.7447 60.1289 41.2281 11.5610
191.7737 78.6626 79.7349 70.3920 356.4926 45.8375 45.8267

1.4319 1.0229 0.9540 1.0761 2.9891 0.4635 0.3385

Columns 8 through 14
25.4834 39.9912 29.4587 38.5275 51.0159 56.9392 66.8311

40.8969 47.9546 101.5796 91.8237 89.0201 78.5705 94.5207
0.2865 0.3759 3.0147 2.9969 2.9880 2.9715 2.9992
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Columns 15 through 21
79.2603 89.0128 101.1728 30.9231 37.0268 44.0948 60.7561
81.3758 91.0044 923122 92.0768 85.1997 86.7275 86.6746
3.0378 2.9909 3.0107 3.0028 2.9858 2.9222 2.9897
Columns 22 through 24
67.8055 86.0480 79.4594
91.6117 98.0453 92.1311
3.0005 2.9841 3.0146
The MSE between Tn and Yn for flawtype # 1 = 0.0011
Correlation Coeff between T and Y for flawtype # 1 variable 1 =1.00
Correlation Coeff between T and Y for flawtype # 1 variable 2 = 1.00

Correlation Coeff between T and Y for flawtype # 1 variable 3 = 1.00

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 5a or 5b ... with 5 being general run number). 5

Figures D1 through D3 are generated.
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[0 DatsPoints |
—— Dest Linear Fit
|- A=T

Figure D1. Correlation between Target Data and Output Data For Flaw-type 1 (Thinning),

Characteristic 1.
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Correlation between Target Data and Output Data for flawtype 1 variable 2

o ' - ' O Data Points
—— DBest Linear Fit
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Figure D2. Correlation between Target Data and Output Data For Flaw-type 1 (Thinning),

Characteristic 2.
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j O Data Points
| — Best LinearFit |
|- A=T

Figure D3. Correlation between Target Data and Output Data For Flaw-type 1 (Thinning),

Characteristic 3.
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===—Neural Network Analysis for Flawtype 2 =—=—

Number of neurons for the hidden layer. 5

Desire SSE goal. 0.05

TRAINBR, Epoch 0/200, SSE 72.3529/0.05, SSW 25.311, Grad 4.64e+001/1.00e-010, #Par
9.80e+001/98

TRAINBR, Epoch 41/200, SSE 0.0448119/0.05, SSW 15.3099, Grad 1.75e-001/1.00e-010, #Par
5.19¢+001/98
TRAINBR, Performance goal met.

Target Flaw characterization vector for flawtype # 2

Columns 1 through 7

58.0000 63.0000 65.0000 68.0000 73.0000 75.0000 76.0000
0.0850 0.0860 0.0950 0.0980 0.0930 0.0950 0.0900
0.3450 0.2000 0.2290 0.2160 0.2240 0.2230 0.2280

Columns 8 through 14

78.0000 79.0000 82.0000 84.0000 87.0000 87.0000 98.0000
0.0900 0.0820 0.0820 0.0730 0.0740 0.0700 0.0680
0.2290 0.3540 0.2270 0.2310 0.2390 0.2330 0.2660

Columns 15 through 20
95.0000 92.0000 60.0000 76.0000 60.0000 37.0000

0.0780 0.0780 0.0880 0.0910 0.1962 0.2110
0.3100 0.3320 0.2700 0.2150 0.2700 0.0754
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NN Flaw characterization vector for flawtype # = 2
Y =
Columns 1 through 7
58.5564 61.9967 66.8606 68.0577 72.5460 74.7176 76.6117
0.0848 0.0909 0.0960 0.0955 0.0927 0.0981 0.0918
0.3405 0.2065 0.2263 0.2167 0.2236 0.2250 0.2292
Columns 8 through 14
77.6411 78.7649 80.8234 83.4476 86.6497 87.7425 97.7881
0.0905 0.0820 0.0760 0.0759 0.0745 0.0707 0.0690
0.2305 0.3513 0.2228 0.2352 0.2323 0.2402 0.2638
Columns 15 through 20
94.3642 91.9928 61.3398 75.8844 59.3983 37.9375
0.0782 0.0781 0.0887 0.0883 0.1947 0.2094
0.3098 0.3316 02690 0.2160 0.2682 0.0781
The MSE between Tn and Yn for flawtype # 2 = 0.0007
Correlation Coeff between T and Y for flawtype # 2 variable 1 = 1.00
Correlation Coeff between T and Y for flawtype # 2 variable 2 = 1.00

Correlation Coeff between T and Y for flawtype # 2 variable 3 = 1.00

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 5a or 5b ... with 5 being general run number). 5

Figures D4 through D6 are generated are generated.
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Figure D4. Correlation between Target Data and Output Data For Flaw-type 2 (Impingement),

Characteristic 1.

155



[ O Dsta Points
| — DBest Linear Fit
i ---- A=T

Figure DS. Correlation between Target Data and Output Data For Flaw-type 2 (Impingement),

Characteristic 2.
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Corelation between Target Data and Output Data for flalype 2 variable 3
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Figure D6. Correlation between Target Data and Output Data For Flaw-type 2 (Impingement),

Characteristic 3.
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Neural Network Analysis for Flawtype 3

Number of neurons for the hidden layer. 5
Desire SSE goal. 0.05

Waming: Some maximums and minimums are equal. Those targets won't be transformed.
> In C:\matlabR12\toolbox\nnet\nnet\premnmx.m at line 77
In C:\Patrick\eddym\NN_char.m at line 70
TRAINBR, Epoch 0/200, SSE 117.998/0.05, SSW 22.6067, Grad 1.02e+002/1.00e-010, #Par
9.20e+001/92
TRAINBR, Epoch 16/200, SSE 0.0446862/0.05, SSW 4.23562, Grad 1.89e-001/1.00e-010, #Par
2.33e+001/92
TRAINBR, Performance goal met.

Warning: Some maximums and minimums are equal. Those inputs won't be transformed.
> In C:\matlabR 12\toolbox\nnet\nnet\postmnmx.m at line 59

In C:\Patrick\eddym\NN_char.m at line 88

Target Flaw characterization vector for flawtype # 3

Columns 1 through 7

17.0000 61.0000 10.0000 89.0000 37.0000 46.0000 79.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 8 through 14

37.0000 50.0000 84.0000 55.0000 61.0000 67.0000 26.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 15 through 21
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70.0000 90.0000 74.0000 46.0000 80.0000 50.0000 32.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 22 through 23

90.0000 70.0000

0.2750 0.2750

NN Flaw characterization vector for flawtype # = 3

Y=

Columns 1 through 7

18.4217 61.3516 11.9381 88.1088 34.0617 47.9653 79.3533
0.2741 0.2748 0.2736 0.2747 0.2746 0.2750 0.2748

Columns 8 through 14

359941 49.2409 84.6975 58.6848 60.1340 67.0242 27.7238
0.2746 0.2751 0.2750 0.2752 0.2750 0.2749 0.2746

Columns 15 through 21

71.9045 90.0559 72.9519 46.2938 77.0158 50.7998 31.1801
0.2750 0.2750 0.2752 0.2754 0.2751 0.2752 0.2749

Columns 22 through 23

89.1956 65.8629
0.2730 0.2750
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The MSE between Tn and Yn for flawtype # 3 = 0.0010

Correlation Coeff between T and Y for flawtype # 3 variable 1 = 1.00
Waming: Rank deficient, rank =1 tol = 2.4492e-014.
> In C:\matlabR 12\toolbox\nnet\nnet\postreg.m at line 57
In C:\Patrick\eddym\NN_char.m at line 100
Waming: Divide by zero.
> In C:\matlabR12\toolbox\nnet\nnet\postreg.m at line 77
In C:\Patrick\eddym\NN _char.m at line 100
Correlation Coeff between T and Y for flawtype # 3 variable 2 = -Inf

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 5a or 5b ... with 5 being general run number). 5

Figures D7 and D8 are generated.
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Correlation between Target Data and Output D

ata for flawtype 3 variable 1

100

@l R=09%

A

—_

T

© Data Points
—— DBest Linear Fit
A=

Figure D7. Correlation between Target Data and Output Data For Flaw-type 3 (Wear),

Characteristic 1.
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0 DataPoints |
| — Best Linear Fit
|---- A=T

Figure D8. Correlation between Target Data and Output Data For Flaw-type 3 (Wear),

Characteristic 2.
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Neural Network Analysis for Flawtype 4 =—=—

Number of neurons for the hidden layer. 5
Desire SSE goal. 0.05

TRAINBR, Epoch 0/200, SSE 106.863/0.05, SSW 24.2804, Grad 6.40e+001/1.00e-010, #Par
9.80e+001/98

TRAINBR, Epoch 200/200, SSE 10.7702/0.05, SSW 2.12682, Grad 2.42e+000/1.00e-010, #Par
1.55e+001/98

TRAINBR, Maximum epoch reached.

Target Flaw characterization vector for flawtype # 4

Columns 1 through 7

29.0000 30.0000 47.0000 46.0000 29.0000 42.0000 37.0000
0.0550 0.0850 0.0650 0.0650 0.0550 0.0800 0.0750
0.0500 0.0300 0.0650 0.0350 0.0500 0.0580 0.0720
Columns 8 through 14

47.0000 44.0000 47.0000 44.0000 62.0000 67.0000 62.0000
0.0800 0.1000 0.1150 0.1150 0.1000 0.1400 0.1000
0.0450 0.1650 0.0900 0.0450 0.1100 0.0900 0.1100
Columns 15 through 21

67.0000 44.0000 77.0000 53.0000 44.0000 77.0000 53.0000

0.1400 0.1450 0.0850 0.0850 0.1450 0.0850 0.0850
0.0900 0.0400 0.0500 0.0550 0.0400 0.0500 0.0550
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NN Flaw characterization vector for flawtype # = 4
Y =
Columns 1 through 7
41.9825 37.2459 45.1249 44.4929 33.8579 52.5222 45.4426
0.0866 0.0795 0.0923 0.0861 0.0716 0.0976 0.0890
0.0798 0.0509 0.0726 0.0495 0.0671 0.0550 0.0496
Columns 8 through 14
38.9596 41.4228 46.0120 40.9487 58.9615 64.3786 61.7799
0.0805 0.0840 0.0932 0.0844 0.1056 0.1169 0.1118
0.0461 0.0768 0.0767 0.0538 0.0902 0.0752 0.0892
Columns 15 through 21
66.3965 54.2986 59.6348 49.6870 54.0965 62.3058 50.6391
0.1178 0.0999 0.1064 0.0920 0.1011 0.1107 0.0948
0.0863 0.0661 0.0654 0.0644 0.0700 0.0714 0.0699
The MSE between Tn and Yn for flawtype #4 =0.1710
Correlation Coeffbetween T and Y for flawtype # 4 variable 1 = 0.85
Correlation Coeff between T and Y for flawtype # 4 variable 2 = 0.58

Correlation Coeff between T and Y for flawtype # 4 variable 3 = 0.62

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 5a or 5b ... with 5 being general run number). 5

Figures D9 through D11 are generated.
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Figure D9. Correlation between Target Data and Output Data For Flaw-type 4 (Pitting),

Characteristic 1.
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Figure D10. Correlation between Target Data and Output Data For Flaw-type 4 (Pitting),

Characteristic 2.
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Figure D11. Correlation between Target Data and Output Data For Flaw-type 4 (Pitting),

Characteristic 3.
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Appendix E. CWT Template Matching

Appendix E was divided into two parts. The first section discusses the theory of template
matching and its application to CWTs. The second section contains results generated for and

presented in the dissertation.
2-D Template Matching (2DTM) Utilizing the CWT

The two-dimensional template matching technique may be use to compare CWT of the known
flaw with the CWT of the unknown flaw. The use of this method requires no compression of the
CWT and retains all the information in the transformation. Template matching was divided into

two parts, template generation and template matching routine.
Template Generation

Template generation was comparable to temporal image blending. In this case, CWTs of similar

flaws are blended together to form the known-flaw template.

The first step in generating a known-flaw template was to scale each known-flaw CWT between
0 and 1. This step was taken because the magnitude of the signal was not very important and was
highly influenced by probe-wobble. Next, the known-flaw CWTs are averaged using
MATLAB’s mean2.m program. This program was specifically used to determine 2-D means.

The result was the known-flaw template.

The known-flaw templates are then compared with the unknown-flaw CWT. The comparison

methods are described next.
Template Matching Routine

Two-dimensional template matching was generally used in scene analysis to detect if a reference

object image was present in a test image. If we are given an object image with dimension M x N
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and test image with dimensions I x J suchthat M <1 and N < J, the sum of the squared-errors was

given by
m+M-1n+N-1
D(m,n)= > Y |t(i,j)-r(i-m,j-n)} E1)
i=m Jj=n

where: t(i, Jj ) was the test image

r(i -m,j— n) was the object image.

Template matching was conducted by moving the object image within the test image for locations
(m,n) and calculating D(m,n) at each position, then determining the location at which the error
was minimum. If there was little variation in the magnitude of the test image, the minimum

D(m,n) was achieved when

c(m, n) = ZZ t(i, j)r(i -m,j— n) (E2)

was maximum for all possible locations (m,n). The quantity c(m,n) was a cross-correlation
between t(i,j) and r(i-m,j-n) computed at locations (m,n). If the magnitude assumption was not

valid, a normalized measurement

c(m,n)

S AT =

i

was a more appropriate measure [25]. Given that the CWT modulus fluctuates, employing the
correlation coefficient may not be valid. Since the E* parameter does not have this restriction, it

will be used.

The E* map may be used in a variety of ways, but for the purposes of this research, the best
overall measurement of error may be the average value of E%. The average E? value may be

calculated using:
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22FE

where: R =number of rows of the E* map

C = number of columns of the E* map.

A similar parameter that may be calculated would be to apply the same procedure to the

correlation coefficient map as was done in Equation (E2)

ZZ(}N (m,n)

AVG _ m n
Cire = — (ES)

This parameter could yield a good estimation of how the flaw cwt matches with the generated

flaw template. The best template matching parameter (either E?, Cy, Ey, or Cy*'©) will be used.
Template Matching Results

In this section, the template-matching results are generated using the first flaw
(T23b01_T077R004_1) as the unknown. This CWT was then compared to the other six
templates, generating an E*> map. The E* maps are given (in figures E1-E6), along with the
average E” values. A more thorough investigation was made using each flaw compared to all

flaw-type templates. The results are tabulated in Table E1.

The results obtained using template matching required approximately 20 seconds to calculate and

graph the above plots. This was accomplished on a 350 MHz system with 128 Mbyte RAM.

The best overall results (yielding the most correct classifications) were using the minimum E?

value.
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E-squared between Template 1 and Image CWT # from Page 1 (E2avg = 107.5405)

Scale Location Data Location

Figure E1. Template Matching Results (E?) utilizing the first CWT template (Group T23b01 -
WA) vs. CWT for T23b01_T077R004 _1.
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E-squared between Template 2 and Image CWT #1 from Page 1 (E2avg = 114.5436)

Scale Location

Data Location

Figure E2. Template Matching Results (E2) utilizing the first CWT template (Group T26b01) vs.
CWT for T23b01_T077R004_1.
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Data Location

Scale Location

Figure E3. Template Matching Results (E?) utilizing the first CWT template (Group T24b01) vs.
CWT for T23b01_TO077R004_1.
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E-squared between Template 4 and Image CWT #1 from Page 1 (E2avg = 186.4847)

Magnitude

Scale Location Data Location

Figure E4. Template Matching Results (E2) utilizing the first CWT template (Group T99b99) vs.
CWT for T23b01_TO077R004_1.
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E-squared between Template § and Image CWT #1 from Page 1 (E2avg = 1136473)

L

Scale Location Data Location

Figure ES. Template Matching Results (E?) utilizing the first CWT template (Group T24b01 Cal)
vs. CWT for T23b01_T077R004_1.
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E-squared between Template 6 and Image CWT #1 from Page 1 (E2avg = 134.8065)

Scale Location Data Location

Figure E6. Template Matching Results (E°) utilizing the first CWT template (Group T23b01-
WB) vs. CWT for T23b01_TO077R004 1.
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Table E1. Initial Template Matching Results using Each Flaw as the Unknown.

Flaw

Actual

Flaw-

3

Average

CN Flaw-

3

Maximum
Cx
Flaw-type

Average E’
Flaw-type

Minimum

E? Flaw-

3

T23b01_T077R004_1

6

T23b01_TO077R022_3

T23b01_TO77R022_2

T23b01_TO077R022_1

T23b01_TO077R023 1

T23b01_TO077R025 1

T23b01_T077R026_1

T23b01_T077R027_1

T23b01_TO77R028_1

T26b01_T108R116_1

T26b01_T107R116 _1

T26b01_T106R118_1

T26b01_T084R005_1

T26b01_TO87R005_1

T26b01_T115R006_1

el e e e s I L I Y S S Y Y Y Y s

T26b01_T095R002_2

(="

T26b01_T095R002_1

(==Y

T26b01_T134R062_1

—

T26b01_TO045R118 1

T26b01_T054R082_1

T24b01_T072R018_2

T24b01_TO72R018 1

T24b01_T072R014_1

T24b01_TO072R012_1

T24b01_T080R034_1

T24b01_TO80R027 2

T24b01_TO80R027_1

W] W W] W W W W N N NN N N NN N N N = o o] o ] ] | [

| W] | ] L L ] ] | ]| ] | ] ] ] ] ] ] | v k| | ] ]| | | wn

W | & & & & O] & | | O] | & O] | O] | | | | | V| | | ] b

el Y e L S Y I Y )

W =| Wl W | Lvn] L] N N & N =] ] L N L B N L] =] =] B =] =] =] =] Wn
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Table E1. Continued.

flaws)

Flaw Actual Average Maximum Average E* | Minimum
Flaw- Cx Flaw- Cn Flaw-type E? Flaw-
type type Flaw-type type

T24b01_TO080R026_2 3 3 6 1 3
T24b01_TO80R026_1 3 5 6 1 2
T24b01_TO80R025_2 3 5 6 1 5
T24b01_TO080R025_1 3 5 6 1 4
T24b01_TO080R023_1 3 5 6 1 5
T99b99 _T999R999 2 4 5 5 1 4
T99b99 _T999R999 1 4 5 6 1 4
T24b01_T999R100_3 5 5 6 1 5
T24b01_T999R100_2 5 5 6 1 5
T24b01_T999R100_1 5 5 6 1 5
T24b01_T999R080 3 5 5 6 1 5
T24b01_T999R080 2 5 5 6 1 5
T24b01_T999R080_1 5 5 6 1 5
T24b01_T999R060 3 5 5 6 1 5
T24b01_T999R060_2 5 5 6 1 5
T24b01_T999R060 1 5 5 6 1 5
T24b01_T999R020_3 5 5 6 1 5
T24b01_T999R020_2 5 5 6 1 5
T24b01_T999R020_1 5 5 6 1 5
T23b01_TO075R006_1 6 5 2 1 6
T23b01_T078R006_1 6 5 4 1 6
Probability of Error 36/48 = 48/ 48 = 39/48 = 15/48 =
(# wrong / total 75% 100% 81% 31%
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Appendix F. EddyC Users Guide

The EddyC User’s guide is divided into two sections. The first section details the procedure to
load a training flaw into the uTR cell. The second section outlined the procedure to check an
unknown flaw.

The uTR cell contains all the raw information about the flaw examples. The uTR cell is then
processed into a TR cell. The TR cell extracts only the needed information from the uTR cell and
processes the data into the needed formats. The uTR and TR data cells are then used in the
classification and characterization processes. The characterization procedure generates “.mat”
MATLAB data structures. These “.mat” structures contain all the neural network parameters
needed to generate and operate the characterization ANNs. Once the uTR has been fully loaded
with the training examples, processed into a TR and both have been used to train and generate a

“.mat” NN structure, a flaw may be classified and characterized.

Both loading and checking procedure examples used a flaw that was saved. The EddyC program
saves input data and basic flaw signals into a file that bears the flaws data-file name (example:
E 96001 _DHRO0BC0661006_1). The difference between using a pre-saved flaw and one that is
not is at the fifth step listed below. Instead of indicating a “S”aved data file (by typing “S”), the
user indicates “W”indow data file (by typing “W>). The procedure to load or check a flaw that
has not be pre-saved is exactly the same, except the information listed under the ETSS or PDD
Input Information and ETSS or PDD Flaw Classification and Characterizations are input into the

system.

An italicized sentence indicates that MATLAB is prompting the user for input information. The
information typed after the period in the user input information. Bold type indicates comments

about program input and/or output. All the figures are output.

Loading a Flaw (within the uTR) and Reprocessing the TR

>> eddyc
Is this "P"DD or "E"TSS data. E
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Enter Manufacturer of Steam Generator (B, C or W) or ETSS #. 96005
Input ECT saved data filename (ex. T24b01_TO80R025 1, no .mat needed). DHROOPC0511066 5
Is this a "S"aved data file or a command "W'"indow data file? S

ETSS or PDD Input Information

The origin (E = ETSS or P = PDD) of the data was E

The EC Data filename was DHROOPC0511066_5

The Steam Generator type or ETSS # was 96005

The PDD or ETSS location was 771 , doublecheck flaw location for the given filename!
The PDD or ETSS Flaw Magnitude was 0.72425

The PDD or ETSS Phase Angle was 85.113

ETSS or PDD Flaw Classification and Characterizations =—=—=—=

The PDD or ETSS Flaw Type was PI
The PDD or ETSS Percent Thru-wall was 53
ETSS characteristics = 0.085 0.055

([N}

Does the data appear to be correct ("y"es or "n"0)? y

Figures F1 through F3 are generated.

Does user want to "l"oad the data cell into the uTR training cell or "c"heck flaw. |

Input the uTR run number. 99

Is this the first cell added to the uTR cell array? n

Does user want to input more data into uTR matrix, enter "y"es. n

Does user want to view statistical data for uTR Feature Matrix, enter 'y"es. y

Input the number feature families in the feature vector (usually 5). 5

Enter the last position for each of the above feature families in MATLAB format ([2 21 23 48
51)). [2 21 234851]

Figure F4 is generated.
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+- WU/4 Points Around Flaw
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Figure F1. ECT Resistance Signal (Lissarious and Component Plots) of Flaw

DHROOPCO0511066_5.
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+-WU/4 Points Around Flaw

EC Flaw Signal DHROOPCO5110865 Channel #2
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Figure F2. ECT Reactance Signal (Lissarious and Component Plots) of Flaw

DHROOPCO0511066_5.
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CWT Modulus for the Mixed, Complex, Differential EC Signal E-36005-DHROOPCO51 l'.l-?\E5

Scale

Data Point

Figure F3. CWT of the ECT Resistance Signal for Flaw DHROOPCO0511066 _5.
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Scatter Plots ofFeature Group #1 for each Feature Variable
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Figure F4. Scatter Plot of Raw Feature Family 1 of the ECT Flaw DHROOPC0511066_5.
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Number of columns (variables) for feature group 2 = 19

Enter absolute coeff groupings in cell format {1:56:10 11:15 16:19}
or geometric groupings in cell format {1:56:9 10:14 15:19 20:24}. {1:56:1011:15 16:19}

Figures F5 through F9 are generated.

Number of columns (variables) for feature group 3 =2
Waming: Divide by zero.
> In C:\Patrick\eddym\uTR _statistics.m at line 79

In C:\Patrick\eddym\EddyC.m at line 198

The non-variance (defined as <= 0.010000) deleted columns for the Flaw-type # 4 Feature Matrix

was/are: 6

Number of columns (variables) for feature group 4 = 24

Enter absolute coeff groupings in cell format {1:5 6:10 11:15 16:19}
or geometric groupings in cell format {1:56:9 10:14 15:19 20:24}. {1:56:9 10:14 15:19 20:24}

Number of columns (variables) for feature group 5 =3

Figures F10 through F16 are generated.

If uTR was fully loaded, user should "s"ave the statistical information .n

”.,nrn ",

Does user want to process the uTR Feature Matrix, enter "y"es or "n"o. y

The non-variance (defined as = 0) deleted columns for the Feature Matrix

was/are: 29

", "

Does user want to edit feature vector ("y"es or "n"o). n
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Scatter Plots of Feature Group #2 subgroup 1 for each Feature Variable
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Figure FS. Scatter Plot of Raw Feature Family 2, Subgroup 1, of ECT Flaw

DHRO0OPCO051

1066_5.
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Figure F6. Scatter Plot of Raw Feature Family 2, Subgroup 2, of ECT Flaw
DHROOPCO0511066_5.
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Scatter Plots of Feature Group #2 subgroup 3 for each Feature Variable
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Figure F7. Scatter Plot of Raw Feature Family 2, Subgroup 3, of ECT Flaw
DHRO0PC0511066_5.

188



Scatter Plots of Feature Group #2 subgroup 4 for each Feature Variable
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Figure F8. Scatter Plot of Raw Feature Family 2, Subgroup 4, of ECT Flaw
DHROOPCO0511066_5.

189



Scatter Plots of Feature Group #2 subgroup 4 for each Feature Variable
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Figure F9. Scatter Plot of Raw Feature Family 2, Subgroup 5, of ECT Flaw

DHROOPC0511066_5.
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Scatter Plots of Feature Group #3 for each Feature Variable
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Figure F10. Scatter Plot of Raw Feature Family 3 of ECT Flaw DHROOPCO0511066_5.
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Scatter Plots of Feature Group #2 subgroup 4 for each Feature Variable
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Figure F11. Scatter Plot of Raw Feature Family 4, Subgroup 1, of ECT Flaw
DHROOPC0511066_5.
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Scatter Plots of Feature Group #4 subgroup 2 for each Feature Variable
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Figure F12. Scatter Plot of Raw Feature Family 4, Subgroup 2, of ECT Flaw
DHROOPCO0511066 5.
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Scatter Plots of Feature Group #4 subgroup 3 for each Feature Variable
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Figure F13. Scatter Plot of Raw Feature Family 4, Subgroup 3, of ECT Flaw
DHRO0PC0511066_5.
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Scatter Plots of Feature Group #4 subgroup 4 for each Feature Variable
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Figure F14. Scatter Plot of Raw Feature Family 4, Subgroup 4, of ECT Flaw
DHROOPCO0511066 5.
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Scatter Plots of Feature Group # for each Feature Variable
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Figure F16. Scatter Plot of Raw Feature Family 5 of ECT Flaw DHROOPCO0511066_5.
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Percent Explained for TR Matrix =
31.721686
26.634286
11.331735
7.747438
7.094627
4.490173
2.888783
2.127487
1.645217
1.258826
1.046744
0.811940
0.446563
0.243495
0.169424
0.158936
0.094925
0.047941
0.025805
0.013967

Input the number of PC"’s to retain. 15

Percent Explained for kept PCs = 99.658426

Input TR run number (actually a letter; a through z). z

Does user want to view PCA data for TR Feature Matrix, enter "y"es. y

Does user want a "2"D or "3"D plot for multiple D data? 3

Figures F17 through F20 are generated.
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PC's#1,2, 3,4 &5 Plotted for processed - TR Data Set E@IE,Q: with 4 Flawtypes
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Figure F18. Plot of the First Five Major PCs of ECT Flaw DHROOPC0511066_S5.
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Figure F19. Plot of the T2 for All Datain TR_E 99a.
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Figure F20. Plot of Q for All Datain TR_E_99a.
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Procede with Classification of TR data ("y"es or "n"o). y
Does user want a "2"D or "3"D plot for multiple D data? 3

Bayesian Classification Results for

Data origin was E
Data Group was 96005
The uTR Data run number was 99

The TR Data run number was z

Does user want to classify using original features ("y"es or "n"o). n

Does user want to check a "s"ingle flaw from file or "a"ll? s

Enter which flaw (page #) to check against each FV data. 92

ClassPCA = 4
The Bhattacharyya Boundary (or maximum probablity of error percentage) = 0.14

The MATLAB output from this points was exactly as detailed in Appendix D.

Neural Network Characterization Results for =—=—

Data origin was E
Data Group was 96005

The Data run number was 99 z

=== Correlation Analysis for Flawtype 1

CAl=

0.7052 0.6900 0.4739
0.6696 0.7075 0.4654
-0.3036 0.4975 -0.1635
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-0.0986 0.3694 -0.0445
0.1632 -0.2494 0.0962
-0.3982 0.2568 -0.0089
0.5827 -0.0321 -0.0108
-0.0023 -0.0384 -0.1748
0.1089 -0.0153 0.1041
0.6166 0.2352 0.2155
0.2680 -0.1114 0.6367
0.4193 0.0903 0.2114
-0.0389 -0.2948 0.1157
-0.0127 -0.0498 -0.0724
-0.2712 0.2401 0.0845
1.0000 0.0915 0.5775
0.0915 1.0000 0.3089
0.5775 0.3089 1.0000

Neural Network Analysis for Flawtype 1 =—=

Number of neurons for the hidden layer (5). 7
Desire SSE goal (0.05). 0.05

TRAINBR, Epoch 0/200, SSE 367.926/0.05, SSW 33.3812, Grad 1.85e+002/1.00e-010, #Par
1.36e+002/136

TRAINBR, Epoch 10/200, SSE 3.59395/0.05, SSW 7.48435, Grad 2.47e+000/1.00e-010, #Par
3.47¢+001/136

TRAINBR, Epoch 20/200, SSE 2.59448/0.05, SSW 9.10421, Grad 1.23e+000/1.00e-010, #Par
3.84e+001/136

TRAINBR, Epoch 30/200, SSE 2.30931/0.05, SSW 9.8587, Grad 9.06e-001/1.00e-010, #Par
3.95e+001/136
TRAINBR, Epoch 40/200, SSE 2.01141/0.05, SSW 10.898, Grad 8.20e-001/1.00e-010, #Par
4.13e+001/136
TRAINBR, Epoch 50/200, SSE 1.47584/0.05, SSW 13.2834, Grad 7.03e-001/1.00e-010, #Par
4.49¢+001/136
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TRAINBR, Epoch 60/200, SSE 0.821089/0.05, SSW 17.3803, Grad 5.25e-001/1.00e-010, #Par
5.03e+001/136

TRAINBR, Epoch 70/200, SSE 0.344223/0.05, SSW 21.7771, Grad 3.15e-001/1.00e-010, #Par
5.85e+001/136

TRAINBR, Epoch 80/200, SSE 0.179035/0.05, SSW 23.5168, Grad 3.45e-001/1.00e-010, #Par
6.23e+001/136

TRAINBR, Epoch 90/200, SSE 0.0577469/0.05, SSW 26.4792, Grad 2.03e-001/1.00e-010, #Par
6.66e+001/136

TRAINBR, Epoch 91/200, SSE 0.0494963/0.05, SSW 26.7537, Grad 1.61e-001/1.00e-010, #Par
6.75e+001/136

TRAINBR, Performance goal met.

Target Flaw characterization vector for flawtype # 1

Columns 1 through 7

9.0000 40.0000 9.0000 23.0000 60.0000 12.0000 22.0000
195.0000 75.0000 75.0000 75.0000 360.0000 45.0000 45.0000
1.4000 1.0000 1.0000 1.0000 3.0000 0.3300 0.3000

Columns 8 through 14

38.0000 46.0000 20.0000 30.0000 40.0000 50.0000 57.0000
45.0000 45.0000 90.0000 90.0000 90.0000 90.0000 90.0000
0.4500 0.3550 3.0000 3.0000 3.0000 3.0000 3.0000

Columns 15 through 21

66.0000 80.0000 90.0000 100.0000 30.0000 38.0000 44.0000
90.0000 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000
3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
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Columns 22 through 25
60.0000 66.0000 88.0000 80.0000
90.0000 90.0000 90.0000 90.0000
3.0000 3.0000 3.0000 3.0000
NN Flaw characterization vector for flawtype # = 1
Y =
Columns 1 through 7
8.7877 39.4014 8.7552 24.2352 60.2877 11.8228 27.3298

191.9851 76.1551 75.4915 72.7176 358.0414 46.4620 42.3095
1.4078 1.0147 09771 1.0997 2.9936 0.3468 0.3005

Columns 8 through 14

38.1854 40.8894 19.7705 29.9228 39.7991 50.3060 55.6477
47.7518 47.2349 88.6879 95.4072 91.1491 91.0565 87.4596
0.4710 0.3318 2.9359 3.0109 3.0054 2.9823 2.9787
Columns 15 through 21

67.3235 78.7898 89.4428 100.5608 30.2425 37.8442 43.8455
94.0945 88.1485 89.1663 90.0727 90.0044 91.4789 88.2982
29932 3.0160 2.9995 3.0133 2.9981 2.9873 2.9589

Columns 22 through 25

60.6071 66.8091 87.8160 79.1022
89.9614 83.3287 95.1711 89.5176
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29922 29737 3.0102 3.0044
The MSE between Tn and Yn for flawtype # 1 = 0.0007
Correlation Coeff between T and Y for flawtype # 1 variable 1 = 0.9981
Correlation Coeff between T and Y for flawtype # 1 variable 2 = 0.9991

Correlation Coeff between T and Y for flawtype # 1 variable 3 = 0.9997

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 1, 2 ... with 5al being full run ID). 7

Figures F21 through F23 are generated.
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Figure F21. Plot of the Tn vs Yn for Characteristic1 for Flaw-type 1 (with Regression
Information) for All Data in TR_E_99a.
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Conelation between Target Data and Output Data for flawlype 1 variable 2

O Data Points
—— Best Linear Fit
e A=T

R=0999

Figure F22. Plot of the Tn vs Yn for Characteristic2 for Flaw-type 1 (with Regression
Information) for All Data in TR_E 99a.
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Figure F23. Plot ofthe Tn vs Yn for Characteristic3 for Flaw-type 1 (with Regression
Information) for All Data in TR_E_99a.
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=== Correlation Analysis for Flawtype 2 =—=—

CA2=

0.5881 -0.3491 0.2973
-0.1108 -0.0145 -0.0473
0.3212 -0.3714 0.4313
0.2019 -0.0563 0.2273
0.2863 -0.1671 0.5037
-0.6862 0.6603 -0.3678
0.0050 0.1402 -0.0987
0.2532 -0.0417 0.4722
-0.3000 0.0909 -0.4188
-0.2661 0.1728 -0.2676
0.4565 -0.2999 0.5258
-0.2139 0.4482 -0.0378
0.1444 0.0834 -0.0024
-0.3258 0.4884 -0.0169
0.0768 -0.0750 0.2026
1.0000 -0.7271 0.4758
-0.7271 1.0000 -0.4864
0.4758 -0.4864 1.0000

=== Neural Network Analysis for Flawtype 2 =—=—

Number of neurons for the hidden layer (5). 7
Desire SSE goal (0.05). 0.05

TRAINBR, Epoch 0/200, SSE 173.156/0.05, SSW 33.1112, Grad 1.35¢+002/1.00e-010, #Par
1.36e+002/136
TRAINBR, Epoch 10/200, SSE 8.85904/0.05, SSW 2.03044, Grad 7.60e+000/1.00e-010, #Par
1.47e+001/136
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TRAINBR, Epoch 20/200, SSE 1.78626/0.05, SSW 5.89654, Grad 1.13e+000/1.00e-010, #Par
3.03e+001/136

TRAINBR, Epoch 30/200, SSE 0.548795/0.05, SSW 10.5305, Grad 5.18e-001/1.00e-010, #Par
4.12¢+001/136

TRAINBR, Epoch 40/200, SSE 0.069924/0.05, SSW 15.1878, Grad 8.65¢-001/1.00e-010, #Par
5.26e+001/136

TRAINBR, Epoch 41/200, SSE 0.0424465/0.05, SSW 15.0677, Grad 1.59e-001/1.00e-010, #Par
5.33e+001/136

TRAINBR, Performance goal met.

Target Flaw characterization vector for flawtype # 2

Columns 1 through 7

58.0000 63.0000 65.0000 68.0000 71.0000 73.0000 75.0000
0.0850 0.0860 0.0950 0.0980 0.0980 0.0930 0.0950
0.3450 0.2000 0.2290 0.2160 0.2240 0.2240 0.2230

Columns 8 through 14
76.0000 78.0000 79.0000 82.0000 84.0000 87.0000 87.0000
0.0900 0.0900 0.0820 0.0820 0.0730 0.0740 0.0700

0.2280 0.2290 0.3540 0.2270 0.2310 0.2390 0.2330

Columns 15 through 21
98.0000 95.0000 92.0000 76.0000 60.0000 60.0000 37.0000

0.0680 0.0780 0.0780 0.0910 0.0880 0.1962 0.2110
0.2660 0.3100 0.3320 0.2150 0.2700 0.2700 0.0754
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NN Flaw characterization vector for flawtype # =2
Y=
Columns 1 through 7
58.9398 61.7120 66.6127 68.4143 71.6642 72.5653 75.4228
0.0846 0.0906 0.0949 0.0955 0.0967 0.0924 0.0981
0.3405 0.2035 0.2295 0.2190 0.2180 0.2243 0.2273
Columns 8 through 14
75.4972 77.8533 79.0286 80.7119 82.9806 86.3088 87.4536
0.0930 0.0917 0.0822 0.0756 0.0760 0.0747 0.0703
0.2287 0.2324 0.3506 0.2245 0.2313 0.2364 0.2339
Columns 15 through 21
97.8593 94.7830 92.0590 76.2217 60.9373 59.3602 37.7817
0.0676 0.0775 0.0782 0.0899 0.0880 0.1950 0.2077
0.2650 0.3100 0.3322 0.2154 0.2685 0.2685 0.0756
The MSE between Tn and Yn for flawtype # 2 = 0.0007
Correlation Coeff between T and Y for flawtype # 2 variable 1 = 0.9987

Correlation Coeff between T and Y for flawtype # 2 variable 2 = 0.9980
Correlation Coeff between T and Y for flawtype # 2 variable 3 = 0.9991

(Y1)

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 1, 2 ... with 5al being full run ID). 7

Figures F24 through F26 are generated.
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Figure F24. Plot of the Tn vs Yn for Characteristic 1 for Flaw-type 2 (with Regression
Information) for All Data in TR_E_99a.
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Correlation between Target Data and Output Data for flawtype 2 variable 2
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Figure F25. Plot of the Tn vs Yn for Characteristic 2 for Flaw-type 2 (with Regression

Information) for All Data in TR_E_99a.
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Dlll Points
I Best Linear Fit
|- A=T

Figure F26. Plot of the Tn vs Yn for Characteristic 3 for Flaw-type 2 (with Regression
Information) for All Data in TR_E_99a.
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=== Correlation Analysis for Flawtype 3 =——

CA3 =

0.8588 0.0000
-0.2768 0.0000
-0.0593 0
-0.4158 0.0000
-0.1101 0.0000
-0.7902 -0.0000

0.6935 -0.0000
-0.3207 0.0000

0.3296 -0.0000
-0.6418 0.0000
-0.1975 0.0000
-0.3533  0.0000

0.3366 0.0000

0.0425 -0.0000
-0.1497 -0.0000

1.0000 0

0 1.0000

====Neural Network Analysis for Flawtype 3

Number of neurons for the hidden layer (35). 7
Desire SSE goal (0.05). 0.05

Warning: Some maximums and minimums are equal. Those targets won't be transformed.
> In C:\matlabR 12\toolbox\nnet\nnet\premnmx.m at line 77
In C:\Patrick\eddym\NN_char.m at line 71
TRAINBR, Epoch 0/200, SSE 70.9952/0.05, SSW 31.1861, Grad 7.04e+001/1.00e-010, #Par
1.28e+002/128
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TRAINBR, Epoch 10/200, SSE 1.05778/0.05, SSW 1.66063, Grad 4.18e+000/1.00e-010, #Par
1.32¢+001/128
TRAINBR, Epoch 20/200, SSE 0.176181/0.05, SSW 2.7885, Grad 1.09e-001/1.00e-010, #Par
2.03e+001/128
TRAINBR, Epoch 29/200, SSE 0.0296906/0.05, SSW 4.87417, Grad 4.01e-001/1.00e-010, #Par

2.64e+001/128
TRAINBR, Performance goal met.
Waming: Some maximums and minimums are equal. Those inputs won't be transformed.
> In C:\matlabR12\toolbox\nnet\nnet\posamnmx.m at line 59
In C:\Patrick\eddym\NN_char.m at line 89

Target Flaw characterization vector for flawtype # 3

Columns 1 through 7

17.0000 61.0000 10.0000 26.0000 89.0000 37.0000 46.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 8 through 14

79.0000 37.0000 50.0000 84.0000 55.0000 61.0000 67.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 15 through 21

26.0000 70.0000 90.0000 74.0000 46.0000 80.0000 50.0000
0.2750 0.2750 0.2750 0.2750 0.2750 0.2750 0.2750

Columns 22 through 24
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32.0000 90.0000 70.0000
0.2750 0.2750 0.2750

NN Flaw characterization vector for flawtype # = 3

Y=

Columns 1 through 7

20.2465 61.1859 12.2306 26.0512 88.1133 34.4329 47.1371
0.2748 0.2749 0.2746 0.2750 0.2753 0.2746 0.2746

Columns 8 through 14

78.3384 36.2568 49.9571 84.1740 57.4455 62.6462 66.1788
0.2751 0.2748 0.2748 0.2751 0.2751 0.2748 0.2749

Columns 15 through 21

27.4545 70.4676 90.4883 74.4101 44.6013 80.1254 51.2731
0.2745 0.2749 0.2751 0.2751 0.2752 0.2755 0.2749

Columns 22 through 24

32.5809 90.0424 67.5066
0.2744 0.2736 0.2748

The MSE between Tn and Yn for flawtype # 3 = 0.0006

Correlation Coeff between T and Y for flawtype # 3 variable 1 = 0.9984
Waming: Rank deficient, rank =1 tol= 2.6107e-014.
> In C:\matlabR 12\toolbox\nnet\nnet\postreg.m at line 57

In C:\Patrick\eddym\NN_char.m at line 101
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Waming: Divide by zero.
> In C:\matlabR12\toolbox\nnet\nnet\postreg.m at line 77
In C:\Patrick\eddym\NN_char.m at line 101
Correlation Coeff between T and Y for flawtype # 3 variable 2 = -Inf

Does user want to save the generated NN and info ("y"es or "n"0)? y

NN char run number (usually 1, 2 ... with 5al being full run ID). 7

Figures F27 and F28 are generated.
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Corelation between Target Data and Output Data for flawtype 3 variable 1
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Figure F27. Plot of the Tn vs Yn for Characteristic 1 for Flaw-type 3 (with Regression
Information) for All Data in TR_E 99a.
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Figure F28. Plot ofthe Tn vs Yn for Characteristic 2 for Flaw-type 3 (with Regression
Information) for All Data in TR_E_99a.
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==== Correlation Analysis for Flawtype 4

CA4 =

0.5167 0.2671 0.3746
0.3657 0.2021 0.1875
-0.2555 -0.2702 -0.4200
-0.1643 -0.0969 0.1937
0.1572 0.1360 -0.1060
-0.2524 -0.3377 -0.3395
-0.0075 -0.1642 -0.0339
-0.6654 -0.3910 -0.4161
0.8033 0.4386 0.1723
-0.3731 -0.0549 0.1457
-0.0153 0.0057 0.4262
0.2793 0.2733 -0.1246
0.1412 0.0736 -0.0308
-0.0824 0.0820 0.0152
0.1557 0.0484 -0.2163
1.0000 0.3808 0.2667
0.3808 1.0000 0.2501
0.2667 0.2501 1.0000

Neural Network Analysis for Flawtype 4

Number of neurons for the hidden layer (5). 7
Desire SSE goal (0.05). 0.05

TRAINBR, Epoch 0/200, SSE 226.608/0.05, SSW 37.0335, Grad 1.29e+002/1.00e-010, #Par

1.36e+002/136
TRAINBR, Epoch 10/200, SSE 11.0186/0.05, SSW 1.82827, Grad 3.83e+000/1.00e-010, #Par

1.38e+001/136
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TRAINBR, Epoch 20/200, SSE 10.3251/0.05, SSW 2.02656, Grad 2.92e+000/1.00e-010, #Par
1.51e+001/136
TRAINBR, Epoch 30/200, SSE 10.0814/0.05, SSW 2.10868, Grad 2.52e+000/1.00e-010, #Par
1.56e+001/136
TRAINBR, Epoch 40/200, SSE 9.97086/0.05, SSW 2.15227, Grad 2.35¢+000/1.00e-010, #Par
1.60e+001/136
TRAINBR, Epoch 50/200, SSE 9.90652/0.05, SSW 2.18122, Grad 2.27¢+000/1.00e-010, #Par
1.62e+001/136
TRAINBR, Epoch 60/200, SSE 9.87129/0.05, SSW 2.19831, Grad 2.23e+000/1.00e-010, #Par
1.63e+001/136
TRAINBR, Epoch 70/200, SSE 9.85417/0.05, SSW 2.2069, Grad 2.21e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 80/200, SSE 9.84603/0.05, SSW 2.21104, Grad 2.20e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 90/200, SSE 9.8421/0.05, SSW 2.21306, Grad 2.20e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 100/200, SSE 9.84016/0.05, SSW 2.21407, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 110/200, SSE 9.83918/0.05, SSW 2.21459, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 120/200, SSE 9.83867/0.05, SSW 2.21486, Grad 2.19¢+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 130/200, SSE 9.83841/0.05, SSW 2.215, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 140/200, SSE 9.83827/0.05, SSW 2.21508, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 150/200, SSE 9.83819/0.05, SSW 2.21512, Grad 2.19¢+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 160/200, SSE 9.83815/0.05, SSW 2.21514, Grad 2.19¢+000/1.00e-010, #Par
1.64e+001/136
TRAINBR, Epoch 170/200, SSE 9.83813/0.05, SSW 2.21516, Grad 2.19¢+000/1.00e-010, #Par
1.64e+001/136
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TRAINBR, Epoch 180/200, SSE 9.83812/0.05, SSW 2.21516, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136

TRAINBR, Epoch 190/200, SSE 9.83811/0.05, SSW 2.21517, Grad 2.19¢+000/1.00e-010, #Par
1.64e+001/136

TRAINBR, Epoch 200/200, SSE 9.83811/0.05, SSW 2.21517, Grad 2.19e+000/1.00e-010, #Par
1.64e+001/136

TRAINBR, Maximum epoch reached.

Target Flaw characterization vector for flawtype # 4

Columns 1 through 7

30.0000 47.0000 46.0000 29.0000 29.0000 42.0000 37.0000
0.0850 0.0650 0.0650 0.0550 0.0550 0.0800 0.0750
0.0300 0.0650 0.0350 0.0500 0.0500 0.0580 0.0720

Columns 8 through 14
47.0000 44.0000 37.0000 47.0000 44.0000 62.0000 67.0000
0.0800 0.1000 0.0450 0.1150 0.1150 0.1000 0.1400

0.0450 0.1650 0.0450 0.0900 0.0450 0.1100 0.0900

Columns 15 through 21
62.0000 67.0000 44.0000 77.0000 53.0000 44.0000 77.0000

0.1000 0.1400 0.1450 0.0850 0.0850 0.1450 0.0850
0.1100 0.0900 0.0400 0.0500 0.0550 0.0400 0.0500

Column 22

53.0000
225



0.0850
0.0550

NN Flaw characterization vector for flawtype # = 4
Y=

Columns 1 through 7

36.0383 45.5713 43.9003 40.2896 33.2587 52.9112 45.1787
0.0750 0.0940 0.0801 0.0832 0.0683 0.0949 0.0845
0.0477 0.0743 0.0457 0.0820 0.0660 0.0554 0.0471
Columns 8 through 14

38.0308 41.2692 38.9532 46.1087 39.2946 59.6988 64.0552
0.0753 0.0832 0.0761 0.0937 0.0780 0.1080 0.1156
0.0440 0.0784 0.0483 0.0774 0.0539 0.0930 0.0756
Columns 15 through 21

60.8648 67.7177 53.8559 60.7949 50.3789 54.7772 63.1460
0.1103 0.1203 0.0980 0.1061 0.0914 0.1009 0.1104
0.0904 0.0871 0.0675 0.0643 0.0638 0.0681 0.0697
Column 22

51.7842

0.0950

0.0679

The MSE between Tn and Yn for flawtype # 4 =0.1491
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Correlation Coeff between T and Y for flawtype # 4 variable 1 = 0.8594
Correlation Coeff between T and Y for flawtype # 4 variable 2 = 0.6047
Correlation Coeffbetween T and Y for flawtype # 4 variable 3 = 0.6434
Does user want to save the generated NN and info ("y"es or "'n"0)? y

NN char run number (usually 1, 2 ... with 5al being full run ID). 7
>>

Figures F29 through F31 are generated.
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Figure F29. Plot of the Tn vs Yn for Characteristic 1 for Flaw-type 4 (with Regression
Information) for All Data in TR_E_99a.
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Correlation between Target Data and Output Data for flawtype 4 variable 2
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Figure F30. Plot of the Tn vs Yn for Characteristic 2 for Flaw-type 4 (with Regression
Information) for All Data in TR_E 99a.
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Figure F31. Plot of the Tn vs Yn for Characteristic 3 for Flaw-type 4 (with Regression
Information) for All Data in TR_E_99a.
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Checking a Flaw

>> eddyc

Is this "P"DD or "E'TSS data. E

Enter Manufacturer of Steam Generator (B, C or W) or ETSS #. 96001

Input ECT saved data filename (ex. T24b01_TO80R025 1, no .mat needed). DHRO0BC0661006 1

Is this a "S"aved data file or a command "W"indow data file? S

ETSS or PDD Input Information

The origin (E =ETSS or P =PDD) of the data was E

The EC Data filename was DHR00BC0661006 1

The Steam Generator type or ETSS # was 96001

The PDD or ETSS location was 657 , doublecheck flaw location for the given filename!
The PDD or ETSS Flaw Magnitude was 3.9498

The PDD or ETSS Phase Angle was 98.503

ETSS or PDD Flaw Classification and Characterizations

The PDD or ETSS Flaw Type was TH
The PDD or ETSS Percent Thru-wall was 57
ETSS characteristics = 90 3

Does the data appear to be correct ("y"es or "n"0)? y

Figures F32 through F34 are generated.
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+-WU4 Points Around Flaw
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Figure F32. ECT Resistance Signal (Lissarious and Component Plots) of Flaw

DHRO00BC0661006_1.
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+-WU4 Points Around Flaw

EC Flaw Signal DHROOBCOBBIN06, Channel #2
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Figure F33. ECT Reactance Signal (Lissarious and Component Plots) of Flaw

DHRO00BC0661006 1.
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CWT Modulus for the Mixed, Complex, Differential EC Signal E-ﬁlH-DHF*lI]BCIZGB[IIS1

Scale

Data Point

Figure F34. ECT Resistance Signal (Lissarious and Component Plots) of Flaw
DHRO00BC0661006_1.
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Does user want to "l"oad the data cell into the uTR training cell or "c"heck flaw. ¢

Input the uTR run number. 2

Input the TR run number. a

Procede with Classification of flaw data ("y"es or "'n"0). y

Does user want a "2"D or ""3"D plot for multiple D data? 3

Figure F35 is generated.

Bayesian Classification Results for

Data origin was E
Data Group was 96001
The uTR Data run number was 2

The TR Data run number was a

U /)

Does user want to classify using original features ("y"es or "'n"o). n

The flaw has been classified as flawtype 1 (1=TH, 2=IM, 3=WA and 4=PI)

using a bayesian classification system.

The Bhattacharyya Boundary (or maximum probablity of error percentage) =0.11

(/)

Is this the correct classification ("y"es or "'n"o). y
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PC for 4 flawtypes and Example Flaw
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Figure F35. 3D Plot of the First three PCs of Flaw DHR0O0BC0661006
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==—=Neural Network Characterization Results for

Data origin was E
Data Group was 96001
The Data run numberwas 2 a

NN char run number. 5

The calculated and actual flaw characteristics are =

-14.5852 57.0000
-0.6895 90.0000
-1.5407 3.0000

The MSE between actual and calculated characterisitcs =

MSE _flaw =

4.4565e+003

If user wants to input test data into uTR and TR matrix, enter "yes". n

Does user want to continue the EddyC program ("y"es or "n"0)? n

??? Error using =—> eddyc

User did not want to continue EddyC!

>>
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Appendix G. MATLAB Code for EddyC.m and

Associated Programs

EddyC.m

$

$ EddyC.m

%

% This was the main program for the EC Data classification and
characterization routine

%

% The program was ran after data has been preprocessed using the eddym
system or

% the program can load preprocessed EC data saved in .mat format
(after eddym

% preprocessing)

%

data_origin=input('Is this "P"DD or "E"TSS data. ','s');

Group=input ('Enter Manufacturer of Steam Generator (B, C or W) or ETSS #.
'y 's');

filename=input ('Input ECT saved data filename (ex. T24b0l1_TO80R025 1, no .mat
needed). ','s');

data_type=input ('Is this a "S"aved data file or a command "W"indow data file?

'y'8'):
$ This segement of programming will properly load either type of data
if data_type=='S'

[data_cell, X, flaw_phase, flaw_mag, flaw_loc, feature_vector,CWT_coef, flaw_type, pTW
+ETSS_char]=ViewDataXf (data_origin, Group, filename) ;

elseif data_type=='W'

[X,flaw_loc, flaw_phase, flaw_mag, flaw_type, pTW, ETSS_char]=ViewData(data_origin, G
roup, filename, x, MIDRANGE, ANGLE MAG) ;

else
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error ('Must enter an "W" or an "S"')

end

$ Resultant variables in the command space: X (extracted flaw data), flaw_loc,
phase, mag, type, % TW,
% Group, filename and ETSS_char (may be null set if data was PDD)

[r,c]l=size(X);

$ Visual conformation of data

fprintf('\rThe origin (E = ETSS or P = PDD) of the data was %s \r',6data_origin)
fprintf ('The EC Data filename was %s \r',6 filename)

fprintf ('The Steam Generator type or ETSS # was %s \r', Group)

fprintf('The PDD or ETSS location was %0.5g , doublecheck flaw location for the
given filename! \r', flaw_loc)

fprintf ('The PDD or ETSS Flaw Magnitude was %0.5g \r', flaw_mag)

fprintf ('The PDD or ETSS Phase Angle was %0.5g \r',6 flaw_phase)

fprintf ('\r\n ======== ETSS or PDD Flaw Classification and Characterizations

fprintf ('\n\rThe PDD or ETSS Flaw Type was %s \r',flaw_type)
fprintf ('The PDD or ETSS Percent Thru-wall was %.2g \r',6 pTW)
if data_origin == 'E'
fprintf ('ETSS characteristics = ');fprintf('$0.5g ',ETSS_char');

end

fprintf (“\r\n\n") ;
vis_review=input ('Does the data appear to be correct ("y"es or "n"o)? ','s');
if vis_review=='n'

error ('Problem with data')

end
if data_type == 'W'

$ Extract 1D feature from the Mixed Imaginary Differential Channel (Column 1 in

X)

Xdiff=imag (X(:,1));
[fextlDdiff]=oneDfext (Xdiff, 'y');
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$ Visual conformation of data

fprintf ('\rDo 1D features for the mixed, imaginary, differential EC data\n')
vis_review=input (' appear to be correct ("y"es or "n"o)? ','s');
if vis_review=='n'

error ('Problem with data')

end

$ Extract 1D features from the Imaginary Mixed Absolute Channel (Column 2 in X)

if c>1
Xabs=imag (X (:,2));
[fextlDabs]=absfext (Xabs, 'y"'):
fprintf('\rDo the 1D features for the mixed, imaginary, absolute data\n')
vis_review=input (' appear to be correct ("y"es, "n"o)? ','s');
if vis_review=='n'
error ('Problem with data')
end
else
fextlDabs=[]: % NO Absolute signal from EddyM

end

$ CWT calculation and feature extraction using the differential EC data

[geofext, imagefext, CWT_coef]=CWTfext (X(:,1),filename,'y"');

$ Visual conformation of the cwt coefs of the differential data
fprintf ('\rDoes the CWT of the mixed, complex, differential EC data\n')
vis_review=input (' appear to be correct ("y"es or "n"o)? ','s');
if vis review=='n'

error ('Problem with data')

end

%
$ At this point, all features have been generated or input, none have been

normalized. The features are:

%

% 1. fextlDdiff (1D-diff),

% 2. fextlDabs (1D-abs),

% 3. geofext (Geomoments),

% 4. imagefext (Image-processed) and
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% 5. Input PDD (Phase and Magnitude)

%

$ Also the OutputPDD vector was available.

%

$ Combine Input, fextlDabs, fextlDdiff, geofext and imagefext to form
feature vector

%

feature_vector=[flaw_phase flaw mag fextlDabs fextlDdiff geofext imagefext];
% position of feature families [2 21 23 48 51]

% Final exit before uTR addition

fprintf ('\rDo ALL features for the data appear to be correct\n')
vis_review=input (' ("y"es, to continue or "n"o, exit program)? ','s');
fprintf ('\r\n')
if vis_review=='n'

error ('Problem with data')

end

%
$ ALL the information was loaded into a nested cell called data_cell

%

% data cells first column
data_cell{1l,1}{1,1}=data_origin;
data_cell{1l,1}{2,1}=Group;
data_cell{l,1}{3,1}=filename;

% data_cells second column
data_cell{l,2}{1,1}=X;
data_cell{1l,2}{2,1}=[flaw_mag flaw_phase];
data_cell{l,2}{3,1}=flaw_loc;
data_cell{l,2}{4,1}=feature_vector;

data_cell{1,2}{5,1}=CWT_coef;

$ data_cells third column
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data_cell{1,3}{1,1l}=flaw_type;
data_cell{1,3}{2,1}=pTW;
data_cell{1l,3}{3,1}=ETSS_char;

% Save the Individual extracted EC data Information in Cell format.

eval(['save ' data_origin ' ' Group '_' filename ' data_cell;']);

fprintf('\nData Cell %s_%s_%s has been saved.\n\r', data_origin, Group, filename) ;

end

CARAEE AR AR R R AR R R AR AR AR AR R AR AR AR AR AR AR AR AR AR AR AR A LA AR AR A AR AR AR AL AR AL
CAEAEEEE AR EEEE

%

%
% Data Loading, uTR to TR processing, PCA Processing and CWT Template
calculation %
%

%
% User was prompted to load data into matrix if desired, then has option to
test matrix, %
% continue loading or test individual flaw

%

%

%
CAREARAE AR AR EEE AL EEE R AR AR AR AR AEEEEAEEEEEEEEEEEEEEEEEEE AR R AR EE AR EE AL
FTIBLTBLELLH%S

fprintf('\n"');

load_data=input ('Does user want to "l"oad the data cell into the uTR training
cell or "c"heck flaw. ','s');

fprintf('\n"');

if load data == 'l1'

uTR_run_number=input (' Input the uTR run number. ','s');

[uTR]=LoadMatrix(data_origin,Group, filename,data_cell, uTR_run_number) ;

AR R AR AR R R AR AR R R AR AR AR AR A AR AR R AR AR AR AR AR R AR AR AR AR AL AR AL AR AL AR AL
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$
$ Each uTR cell array page contains the information for one flaw %
% in a 1X3 nested cell array %
$
$
% cl c2
€3 %

% | Origin | Original Signal X | flaw type |

%
% | Group | Magnitude and Phase | $ Through Wall |

$
$ R1 | filename | flaw location | flaw character |

$
% | | Feature Vector | |

%
% | | CWT |

$
%

$

$

$

AR AR AR R AR AR AR AR AR AR AR AR AR AR AR LR AR AR AR AR AER AL RAER AR AR AEE AR AEE AR AEAEE RE L

load_more=input ('Does user want to input more data into uTR matrix, enter

"y"eS. l,"sl);

if load more == 'y'

error ('Restart EddyC and Continue loading uTR') % Exit program and

continue loading data

end

% uTR shuffle to group like flaws together.

[uTR, Z, index, sorting matrix]=uTR_shuffle (uTR) ;

$ After uTR loading was completed, basic scatter plots and statistical

analysis may be done for

% each feature group (or family)

stat_check=input ('Does user want to view statistical data for uTR Feature

Matrix, enter "y"es.

rts'y ;
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if stat_check == 'y’
[uTR_stats]=uTR_statistics (uTR);
stat_save=input ('If uTR was fully loaded, wuser should "s"ave the

statistical information .','s');

if stat_save == 's'
if data_origin == 'P'
eval(['save SuTR_' data_origin '_' Group ' ' uTR_run number '
SuTR;'])
else
eval(['save SuTR_' data_origin '_' uTR run_number ' SuTR;'l])
end
end
end

EAEEEE AR AR AEEREAEEREAEEREAREREAREREAREREEREREEREREEREREEREEEEREREEEEEEEREEEEEE
LAEAREEE AR EREEEEREEREAEE LT

%

%

% Format of SuTR cell |page, each row would be a FEATURE type
%

% (DO NOT USE THIS INFO FOR ANY OTHER PURPOSE) :
%

%

%

% Cis c2 C3
c4 €5 %

% R1 | Load Files (cells) | Transformed Matrix | std_mean
cov_matrix | del columns | %

%

%

LA RE AR R R AR R R AR R RE AR R AR AR AR AR AR AR A LA R AR AR A AR AR A AR AR AR AR A LA AR AR AR A AR L
FEEHTELIBLILLILIILIBLDLE%S

$ At this point, the user has the uTR cell.
$ PCA and cwt template compression, seperate into an array with like flaws

grouped together

continue_program=input ('Does user want to process the uTR Feature Matrix,
enter "y"es or "n"o. ','s');
if continue_program == 'n'

error ('Exiting EddyC Program') % Exit program and continue loading data
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end

[TR, TR_run_number]=uTR_process (uTR,data_origin, Group,uTR_run_number, 'y');

% loading was finished, process uTR into TR

AR A AR AR A AR AR AR R AR AR R AR AR R A AR AR AR AR AR A AR AR AR AR A A AR AR A LA A AR AR A A A LA
%

%

% Individual Page TR setup each page represents a flawtype. %
%

%
% €l c2

%
$ R1 | del_col | break file for Fl %
% R2 | std_mean | cwt_comp_mat for F1
%

$ R3 | Tn | flawtype matrix for F1 %
% R4 | PCcTR | flawchar matrix for F1 %
% RS | newdata | PCA_data{5,1} for F1 %
% R6 | tsquare | PCA_data{6,1} for F1 %
% R7 | QTR | PCA_data{7,1} for F1 $
% R8 | empty | cwts_raw for Fl %
%

%

AR R AR AR R AR AR AR AR AE R AR AR R AR AR A AR AR A AR AR A AR AR A A AR AL AR AL AR AL AR EE L AR AL R A

$ Note that the cwt examples are scaled from 0 to 1.

$ Plotting PCA data

PCA_check=input ('Does user want to view PCA data for TR Feature Matrix,
enter "y"es. ','s'):
if PCA _check == 'y’
proc_TR_PCA plot (uTR,TR,data_origin,Group,uTR_run_number, TR_run_number) ;

end

continue_p=input ('Procede with Classification of TR data ("y"es or "n"o).
'y's');
if continue p == 'n'
error ('TR processing complete, exiting EddyC program.')

end
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elseif load _data == 'c'

% For the test_cell: 1load the appropriate TR and use the processed
variables stored to likewise process
% the cell data
uTR_run_number=input ('Input the uTR run number. ','s');
TR_run_number=input (' Input the TR run number. ','s');
fprintf('\n"')
if data_origin == 'P'
eval (['load uTR_' data_origin '_' Group ' ' uTR_run_number ';'])
% loads appropriate uTR
eval (['load TR_' data_origin '_' Group '_' uTR_run number TR_run_ number
's']) % loads appropriate TR
else
eval (['load uTR_' data_origin '_' uTR_run number ';'])
% loads appropriate uTR
eval(['load TR_' data_origin '_' uTR_run_number TR run_number ';'l])
% loads appropriate TR
end
[r,c,d]=size(TR);
$eval ([' [processed_data_' SG ']=data_process(TR,data_cell);']) % process

test data, returns processed data

continue_p=input ('Procede with Classification of flaw data

‘,'S');
fprintf ('\n")
if continue_p == 'n'

error ('Flaw data processing complete, exiting EddyC program.')

end

else

error ('Programming Problem ... Entered wrong answer.')

end
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LAR AR A AR AR A LA AR AR A LA AR AR AR ARERE AR ARARA R AR AREREEEARARE AR AR ARERE AR ALERE T

%
%
$ CLASSIFICATION ROUTINE
$
$
$
T2 LRI LLIL LRI LLITILLTLLTILRLLILALLILLLLILILLLLLLLILILLILILLLLILLRLILRRLRY
if load_data == '1'
PCA_plot (TR{5,1,1},break points); $ Plot PCA TR

$ Bayes classification

[classnonPCA, wrongnonPCA, classPCA,wrongPCA, g, BB]=bayes_class (uTR, TR,data_origin
,Group, uTR_run_number, TR_run_number) ;

fprintf('\nThe Bhattacharyya Boundary (or maximum probablity of error
percentage) = $2.2f \n\n',BB)

$ NN classification
$[net, Y, flaw_type,NN_class_run_number]=NN_class (uTR, TR,data_origin, Group,uTR_ru
n_number, TR_run number) ;

$ CWT Template Matching

% [temp_match_info,cwt_class_temp]=cwt_template_result (TR, 'y'):
elseif load data == 'c'

$ data for flaw, should already be loaded from ViewdataXF output

flaw_feature_vector=feature_vector;

cwt_flaw=CWT_coef;

$ Data from TR

PC=TR{4,1,1}; $ PCA transformation matrix
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std_mean=TR{2,1,1};

preprocessing columns

de

matrix=TR{5,1,1};

1 col=TR{1,1};

compressed TR data for all flawtypes

fo

end

r i=l:d

if i==

flawtype matrix=TR{3,2,1i};

else

flawtype matrix=[flawtype matrix;TR{3,2,1i}1];

end

flawchar matrix{i, 1}=TR{4,2,1i};

% mean and std for

Extractes

% Flawtypes

EARR AR R R A AR AR AR AR AR AR AR AL AR A LR AR AR AR AR AR A AR AR AR AR AR AR AR AL AR

%

$

$ Individual Page TR setup each page represents a flawtype.

R3
R4
R5
R6
R7
R8

o® o° oP o0 o o oP

%
| del col

| std_mean

| srTR

| pcTR

| newdata
| tsquare
I QTR

Cl

|
|

| FV_reinsertion |

break_file for Fl

cwt_comp mat for Fl

flawtype matrix for Fl
flawchar matrix for F1
PCA_data{5,1} for Fl1
PCA_data{6,1} for Fl
PCA data{7,1} for F1

cwts raw for Fl

$

C2

o° o° o0 o o o

LARAREAREREEEEAREREEEEREERERREREAEEEEEEREARERERREREEREEEREREAEEREREEEERE L

% flaw feature vector must be pre-processed

flaw_feature_vector(:,del_col)=[];

variance columns
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[rfull, cfull]l=size(flaw_feature_vector);

stdT=std mean(l, :);meanT=std _mean(2,:); % std and

mean preprocessing

flaw_feature_vector=flaw_feature_vector-meanT (ones(rfull,1),:);

flaw_feature_vector=flaw_feature_vector./stdT (ones(rfull,1),:):

if isempty(TR{8,1,1}) == 0 % extracts appropriate cols
before PCA, if needed
FV_reinsertion=TR{8,1,1};
del_T=flaw feature vector(:,FV_reinsertion);
flaw_feature_vector(:,FV_reinsertion)=[];

end

PCAflaw=flaw_feature_vector*PC; $ PCA transformation of flaw FV

(after extraction, if needed)

if isempty(TR{8,1,1}) == 0 % reinsertion of extracted FV
cols, if needed
flaw=[PCAflaw del_T];
else
flaw=PCAflaw;

end
[break_points,num_breaks,break_file]=break point_b (uTR);

PCA_plot (matrix,break_points, flaw);
% Plot PCA processed TR and flaw

% MATLAB classification program

[classnonPCA, wrongnonPCA, classPCA, wrongPCA, g, BB]=bayes_class (uTR, TR,data_origin

s Group, uTR_run_number, TR_run_number, flaw) ;

fprintf('The flaw has been classified as flawtype %1.0f (1=TH, 2=IM, 3=WA
and 4=PI)\n',classPCA)

fprintf('\tusing a bayesian classification system.\n')

fprintf('\nThe Bhattacharyya Boundary (or maximum probablity of error

percentage) = %$2.2f \n\n',BB)
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$ Classification Correct ?

correct class=input('Is this the correct classification ("y"es or "n"o).
'y'8"): )
if correct_class == 'y'
flaw_type=classPCA;
else
flaw_type=input ('The correct flaw classification was (1=TH, 2=IM, 3=WA
and 4=PI).');

end

% [net, Y, flaw_type,NN_class_run_number]=NN_class(uTR,TR,data_origin, Group, uTR_ru

n_number, TR_run_number, filename, flaw) ;
$ CWT template classification
% [temp match_info,cwt_class_temp]=cwt_template_result (TR, 'y',6data_cell);
% Peak locations and value
$info_Cnl=[norm_sumCnl peakvall maxxl maxyl];
$info_Cn2=[norm_sumCn2 peakval2 minx2 miny2];
else
error ('Programming Problem ... Entered wrong answer.')
end

% STOP - PROGRAMMING FROM THIS POINT FOWARD IS NOT CORRECT

LARAEEERE AR AEEREEREEEEREARERERREAEEREREEREAREREERERREEEEREREREEREREEREREE
CHARACTERIZATION ROUTINE

%
%
%
%
%
%

LAREAEEEE AR AR AR R AR R AR AR AR AR R AR R AR R AR AR AR AR AR AR AR A AR AR
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if load_data == '1'

% Seperate flaw using classification

$ Use compressed feature vector to train NN

[net, ¥,NN_char_run number]=NN_char (uTR, TR,data_origin, Group, uTR_run_number,TR_r

un_number) ;

$ Check results

% Save trained NN

elseif load_data == 'c'

[net, Y¥,NN_char_run number]=NN_char (uTR,TR,data_origin, Group, uTR_run_number,TR_r
un_number, filename, flaw, flaw_type) ;

flaw_char=[data_cell{1l,3}{2,1} data_cell{1l,3}{3,1}]1"';

[rflaw,cflaw]=size (flaw_char);

MSE_flaw=sum(sum( (flaw_char-Y).”2))/(rflaw*cflaw);

fprintf ('\nThe calculated and actual flaw characteristics are = \n');

[Y flaw_char]

fprintf('\nThe MSE between actual and calculated characterisitcs =

$.6f\n");
MSE_flaw
end
$ Load test data into datamatrix if desired, then continue if desired. This

was probably OK

if load data == 'c'
fprintf ('\n'")
load_more=input ('If user wants to input test data into uTR and TR matrix,
enter "yes". ','s');
if load more == 'y'

correct_flawtype=input ('Is EddyC classification correct ("y"es or "n"o).

'y 's');
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if correct_flawtype == 'n'
fprintf (' \nWA=Wear Type 1, WB=Wear Type 2, IGA=1IG, SCC=SC,
IGA/SCC=IS")
fprintf ('\n PWSCC=PW, Thin=TH, Impengement=IM, Pitting=PI,
Fatigue=FA\n')
fprintf (' Multiple=MU\n')
flaw_type=input ('Input PDD or ETSS flaw type from above list.
'y 's");
end
pTW=input ('Input %TW. ');

flaw_char=input ('Input other flaw characteristics in vector notation.

data_cell{1l,3}{1,1}=flaw_type;
data_cell{1,3}{2,1}=pTwW;
data_cell{1,3}{3,1}=ETSS_char;

eval ([' [uTR]=LoadMatrix(data_origin, Group, filename,data_cell,uTR_run_number) ;']

) % Load test data into uTR data set

eval ([' [TR,TR_run_number]=uTR_process (uTR,data_origin, Group, uTR_run_number, ''y'
"1:'1) $ loading was finished, process uTR into TR
end
continue_p=input ('Does user want to continue the EddyC program ("y"es or
"n"0)? ','s');
if continue p == 'n'
error ('User did not want to continue EddyC!')
elseif continue p == 'y'
['continue EddyC']
else
['Wrong input, EddyC was continuing']
end

end

ViewDataXf.m

function
[data_cell, X, flaw_phase, flaw_mag, flaw_loc, feature_vector,CWT_coef, flaw_type, pTW

,ETSS_char]=viewDataXf (data_origin, Group, filename) ;
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%

% viewDataXf.m

$

$ function

[data_cell, X, flaw_phase, flaw_mag, flaw_loc, feature_vector,CWT_coef, flaw_type, pTW

+ETSS_char]=viewDataXf (data_origin, Group, filename) ;

%

% Allows user to view processed ECT data saved in .mat format.
% Save variable should be X and was also complex.

%

eval (['load ' data_origin '_' Group ' ' filename '.mat;']):

$ data_cell was loaded, extract information

CARARARE AR AR A EE AR AR AR A LA AR AR A RE AR AR AR AR AR A AR AR AL AR AR AR A AR AR A LA AR AR AR AR AL
%

$
$ Each uTR cell array page contains the information for one flaw $
% in a 1X3 nested cell array %
%
$
% cl (674
C3 $

$ | Origin | Original Signal X | flaw type |

$
% | Group | Magnitude and Phase | % Through Wall |

%
$ R1 | filename | flaw location | flaw character |

%
$ | | Feature Vector | |

%
% | | CWT | |

%
%

%

%

%
CARARARE AR AR AR A RE AR AR A RE AR A LA AR AR A LA AR AR AR A AR AR AR A AR AR AR AR AR A AR AR A LA AR A AL ]

253



% data_cells second column

X=data_cell{1,2}{1,1};
flaw_mag=data_cell{1l,2}{2,1}(1);
flaw_phase=data_cell{1,2}{2,1}(2);
flaw_loc=data_cell{1,2}{3,1};
feature_vector=data_cell{1,2}{4,1};
CWT_coef=data_cell{1,2}{5,1};

% data cells third column

flaw_type=data_cell{1l,3}{1,1};
pTW=data_cell{1,3}{2,1};
ETSS_char=data_cell{1l,3}{3,1};

[r,c]=size(X);

% Removal of bias

$Xavg=mean (X) ; X=X-Xavg(ones(r,1),:);

% Determine midpoint of data and interval

if rem(r,2)==0
m_pt=r/2;

else
m_pt=(r-1)/2+1;

end

m_int=[m_pt-round(r/4):1:m_pt+round(r/4)];

% Visual Review of Signal

for i=1:c

stdl=std(real (X(:,1)));std2=std(imag(X(:,1i))):

% Adjust threshold limits with the mean of signal

threshold Rl=stdl+mean(real(X(:,i)));threshold R2=-stdl+mean(real(X(:,1i))):
$real limits

threshold Il=std2+mean(imag(X(:,1i)));threshold_I2=-std2+mean(imag(X(:,1i)));
$imag limits

figure;
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subplot(2,2,1) ;plot(real X(:,1i)),imag (X (:,1)), 'b-
',real X(m_int,i)),imag X (m_int,i)),"'r-"', ...

real (X(m_pt,i)),imag(X(m_pt,i)),'kd');
grid on;
title(['EC Flaw Signal ' filename ' Channel #' num2str(i)]):
xlabel ('Real Component'):;ylabel ('Imaginary Component')
subplot (2,2, 2) ;plot (real (X(m_int,i)),imag(X(m_int,i)), 'r-
'yreal(X(m_pt,i)),imag (X(m_pt,i)), 'kd');grid on;
title(['+/- WL/4 Points Around Flaw']):
xlabel ('Real Component'):;ylabel ('Imaginary Component')
subplot (2,2,3) ;plot([l:r],real (X(:,1i)),'b-',m_int,real (X(m_int,i)), 'r-
'ym_pt,real (X(m_pt,i)),'kd’,

[1:r],threshold Rl*ones(r,1), 'm--', [1l:r],threshold R2*ones(r,1), 'm--");
grid on;axis tight% ([0 r 1l.l1*min(real(X(:,i))) 1.l*max(real(X(:,i)))1):
title('Real Component of EC Signal');
xlabel ('Data Point');ylabel ('Magnitude’)
subplot (2,2,4);plot ([1l:r],imag(X(:,1i)), 'b-"',m_int,imag(X(m_int,i)), 'r-
';m_pt,imag (X(m_pt,i)), 'kd', ...

[1:r],threshold Il*ones(r,1), 'm--',[l:r],threshold I2*ones(r,1), 'm--");
grid on;axis tight% ([0 r 1.1*min(imag(X(:,1i))) 1.l*max(imag(X(:,1i)))1):
title('Imaginary Component of EC Signal')
xlabel ('Data Point') ;ylabel ('Magnitude’')

end

$ CWT review

figure;

surf (CWT_coef) ;

colormap Jjet;shading interp:

xlabel ('Data Point');ylabel('Scale'):

title(['CWT Modulus for the Mixed, Complex, Differential EC Signal

data_origin '-' Group '-' filename])

ViewData.m

function
[X,flaw_loc, flaw_phase, flaw_mag, flaw_type, pTW, ETSS_char]=viewData(data_origin, G
roup, filename, x, MIDRANGE, ANGLE_MAG) ;
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viewData.m

%
%
%
% function [X,Group, flaw_loc, flaw_phase, flaw_mag, flaw_type, pTW,ETSS_char]=
% viewData (data_origin,Group, filename, x, MIDRANGE, MAG_ANGLE) ;

%

% Allows user to view loaded ECT data in conjuction with the EDDYM system.
The program prompts the

% user to input the PDD given flaw characteristics and the Eddym
data channel number.

%
data_chan=input (' Input the data channels to be viewed. ');
% Enter PDD data and flaw characterisitics

fprintf ('\nDoes user want to use eddym info (midpoint, phase and mag)\n')
eddym_info=input (' for the windowed data ("y"es or "n"o)? ','s');
if eddym_info == 'y'

flaw_loc=MIDRANGE;

flaw_mag=ANGLE_MAG(2);

flaw_phase=ANGLE MAG(1);

else
flaw_loc=input ('Enter PDD or ETSS flaw location. ');
flaw_mag=input ('Input PDD or ETSS given flaw Magnitude. ');
flaw_phase=input ('Enter PDD or ETSS given Phase Angle. ');
end

fprintf ('\nWA=Wear Type 1, WB=Wear Type 2, IGA=IG, SCC=SC, IGA/SCC=IS')
fprintf ('\n PWSCC=PW, Thin=TH, Impengement=IM, Pitting=PI, Fatigue=FA\n')
fprintf (' Multiple=MU\n')

flaw_type=input ('Input PDD or ETSS flaw type from above list. ','s');
fprintf('\n'")

pTW=input ('Enter PDD or ETSS given Percent Thru-wall. ');

% Input ETSS Characterization Data from Blueprints

[ETSS_char]=ETSS_input;
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% Remember, data in command window in column format. This segement extracts
and combines bothlreal and

% imag components, then combines to form a complex file, then mean-
subtracts. The X file now would have

$ data_chan # of columns with 97 data points
WL=48; $ sets maximum 1/2 window length
$ x was original MATLAB window data set, X was extracted data segment

for i=l:length(data_chan)
X(:,1i)=x(flaw_loc-WL:flaw_loc+WL,2*data_chan(i)-1)+j*x(flaw_loc-
WL:flaw_loc+WL,2*data_chan(i));
if i==
X(:,1i)=X(:,1i)-mean(X(:,1i)):; % only subtract mean from the differential
signal
end

end
[r,c]l=size(X);
$ Determine midpoint of data and interval

if rem(r,2)==0
m_pt=r/2;

else
m_pt=(r-1)/2+1;

end
m_int=[m_pt-round(WL/4):1l:m pt+round(WL/4)];
$ Visual Review of Signal

forwi=l:c

stdl=std(real (X(:,1))) sstd2=std(imag(X(:,1)));

% Adjust threshold limits with the mean of signal

threshold Rl=stdl+mean(real(X(:,1i)));threshold R2=-stdl+mean(real (X(:,1)));
$real limits

threshold_Il=std2+mean(imag(X(:,1i)));threshold I2=-std2+mean(imag(X(:,1i)));
$imag limits

figure;
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subplot (2,2,1) ;plot (real(X(:,1i)),imag(X(:,1i)), "'b-
'yreal (X(m_int,i)),imag (X(m_int,i)),"'r-', ...

real (X(m_pt,i)),imag(X(m_pt,i)), 'kd");
grid on;
title(['EC Flaw Signal ' filename ' Channel #' num2str(data_chan(i))]):
xlabel ('Real Component') ;ylabel ('Imaginary Component')
subplot (2,2, 2) ;plot (real (X(m_int,1i)),imag (X(m_int,i)), "r-
'yreal (X(m_pt,1i)), imag (X(m_pt,i)), 'kd');grid on;
title(['+/- WL/4 Points Around Flaw']);
xlabel ('Real Component') ;ylabel ('Imaginary Component')
subplot (2,2,3);plot([l:r],real(X(:,i)),'b-',m int, real(X(m_int,i)),'r-
'ym_pt,real X(m _pt,i)), "kd’,

[1:r],threshold Rl*ones(r,1),'m--',[1l:r],threshold R2*ones(r,1), 'm--
') ;set(gca, 'xtick', [0:5:r]);
grid onjaxis tight% ([0 r 1l.1*min(real(X(:,1i))) l.l*max(real(X(:,1i)))]):
title ('Real Component of EC Signal'):
xlabel ('Data Point');ylabel ('Magnitude’')
subplot (2,2, 4) ;plot([1l:r],imag(X(:,i)),'b-',m_int,imag(X(m_int,i)), 'r-
',m_pt,imag (X (m_pt,i)), 'kd',

[1:r],threshold Il*ones(r,1), 'm--',[1l:r],threshold I2*ones(r,1), 'm—-
') sset (gca, 'xtick', [0:5:r]);
grid onjaxis tight% ([0 r 1l.1*min(imag(X(:,1i))) 1l.l*max(imag(X(:,1i)))1):
title('Imaginary Component of EC Signal')
xlabel ('Data Point');ylabel ('Magnitude’)

end

% Check 97 data points, Is another flaw located within the interval?

fprintf ('\nIs window length appropriate,\n')

WL_ok=input (' "y"es or "n"o (no more than one flaw in data window)? ','s');
if WL ok == 'n'

WL=input (' Input appropriate 1/2 window length for re-extraction of data
segment. ');

$noise_window=input ('Input smallest length noise segment of windowed signal.

'):

for i=l:length(data_chan)
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Xn(:,i)=x(flaw_loc-WL:flaw_loc+WL,2*data_chan(i)-1)+j*x(flaw_loc-
WL:flaw_loc+WL,2*data_chan(i));

if i==

Xn(:,1i)=Xn(:, i) -mean(Xn(:,1i)):; $ only subtract mean from the
differential signal

end

$if i==

$ bias_abs=input ('Does Imag Absolute Signal need bias adjustment ("y"es
or "n"o). ','s'"):

% if bias_abs == 'y'

$ bias_add=input ('Input amount of bias to add to signal. ');

% Xn(:,1i)=Xn(:,i)+bias_add.* (ones(r,c)+j*ones(r,c));

% end

% end

[r,c]l=size(Xn(:,1));
end

X=Xn;

[r,c]l=size (X);

$ Determine midpoint of data and interval

if rem(r,2)==
m_pt=r/2;

else
m_pt=(r-1)/2+1;

end
m_int=[m_pt-round(WL/4) :1:m_pt+round (WL/4)]:
$ Visual Review of Signal

for i=1l:c
stdl=std(real (X(:,1i)));std2=std(imag(X(:,1))):
% Adjust threshold limits with the mean of signal
threshold Rl=stdl+mean(real (X(:,1i)));threshold R2=-

stdl+mean (real (X(:,1i))):; %real limits
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threshold_Il=std2+mean(imag(X(:,1i)));threshold I2=-
std2+mean (imag (X (:,1))); %imag limits
figure;
subplot (2,2,1) ;plot(real (X(:,1i)),imag(X(:,1i)), 'b-
',real(X(m_int,i)),imag (X(m_int,i)),"'r-', ...
real (X(m_pt,i)), imag (X (m_pt,1)),'kd");
grid on;
title(['EC Flaw Signal ' filename ' Channel #' num2str(data_chan(i))]);
xlabel ('Real Component');ylabel ('Imaginary Component')
subplot (2,2,2);plot(real (X(m_int,i)),imag (X (m_int,1i)), 'r-
',real (X(m_pt,i)),imag (X(m _pt,i)), 'kd");grid on;
title(['+or- WL/4 Points Around Flaw']) ;xlabel ('Real
Component') ;ylabel ('Imaginary Component')
subplot (2,2,3) ;plot ([l:r],real(X(:,1)),"'b-',m _int,real (X(m_int,i)), 'r-
'ym_pt,real X(m _pt,i)), 'kd',
[1:r],threshold Rl*ones(r,1), 'm--', [1l:r],threshold R2*ones(r,1), 'm--
')
grid onj;axis tight% ([0 r 1l.l*min(real(X(:,1))) 1l.l*max(real(X(:,1i)))]):
title('Real Component of EC Signal');xlabel ('Data
Point') ;ylabel ('Magnitude')
subplot (2,2,4) ;plot ([1l:r],imag(X(:,1)),'b-",m_int, imag(X(m_int,i)), 'r-
'ym_pt,imag X (m_pt,i)), 'kd’',
[1:r],threshold Il*ones(r,1),'m--',[1l:r],threshold I2*ones(r,1), 'm--
')
grid on;axis tight% ([0 r 1.l1*min(imag(X(:,1))) 1l.l*max(imag(X(:,1i)))]):
title('Imaginary Component of EC Signal')
xlabel ('Data Point') ;ylabel ('Magnitude’)

end

end

oneDfext.m

function [fext]=oneDfext (signal,plotyn);

%
% oneDfext.m
%

% function [fext]=oneDfext (signal,plotyn);
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%
$ 1D Feature Extraction program. Will load a 1D imaginary signal and

$ detect packets of energy and characterize them (fext). Plotyn allows

% the user to plot the individual ROIs with Peaks
]
Y=signal;

[r,c]l=size(Y);

$The data vector should be in column format

$ if X was a row formatted data vector, then invert the matrix

if c>r
Y=Y';
[r,cl=size(Y);

end

% STD Calculation

Y=Y-mean (Y) ;
stdi=std(Y):
thresholdI=stdi;

$ Same PeakID and ROI Process for the imaginary signal

[maximaI]=peakID (Y, thresholdI, 'n'):;

[maxrI,maxcl]=size (maximal);

$ if no ROI's are apparent, use mid point of data and assume 1 peak

if isempty(maximal)==

mROIi=round (r/2) ;

ROIdist=32;

maxIavg=0;

numROIi=1;

fprintf('\rNo peaks above STD were detected in the Mixed
Differential Data\n\r')
elseif maxrI ==

mROIi=maximalI (1) ;

ROIdist=32;

maxIavg=0;
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numROIi=1;

fprintf ('\rOne peak above STD were detected in the Mixed Imaginary
Differential Data\n\r')
elseif maxrI > 1

$ Must have more than one peak
ROIdist=32;
maxIavg=mean (abs (maximaI(:,2))):
% ROI centers Maximum Distance apart

[MROIi, numROIi]=R0OIcal (Y, maximaI, ROIdist) % Use average

peak mags /std

end

% Plot Peaks and middle of ROIs only if there are peaks

if maxrI >= 1

if plotyn=='y'

figure;

peakID(Y, thresholdI, 'y');axis tight;

hold on

plot (l:r, [thresholdI*ones(r,1l) -thresholdI*ones(r,1l)],'r--");
plot (mROIi, 0, 'kd'):;

title(['Mixed, Imaginary, Differential EC Signal with threshold = B
num2str (thresholdI)])

xlabel ('Point')

ylabel ('Magnitude')

$hold off;

end

% Check for Multiple ROIs in complex data

multiROIr (Y, ROIdist,mROIi, numROIi, thresholdI);
hold off;

% Determine mean ROI positions using both Real and Imag data

pROI=mean (mROIi) ;
pROI=round (pROI) ;

% Setup ROI intervals for full signal and plot EC
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$if plotyn=='y' & ( numROIr > 1 | numROIi > 1 )
$for i=l:length (pROI)
% ROI(:,1i)=Y(pROI(:,i)-ROIdist/2:pROI(:,1i)+R0OIdist/2);

$ figure;

% subplot(3,1,1);plot(ROI(:,1i)):;

% title(['ROI #' num2str(i) ' Eddy Current Signal'])
% ylabel ('Magnitude')

% subplot (3,1,2) ;plot(real (ROI(:,1i))):

% title('Real Eddy Current Signal')

% ylabel ('Magnitude')

% subplot (3,1, 3) ;plot (imag (ROI(:,1i))):

% title('Imaginary Eddy Current Signal')
% xlabel ('Point')

$ ylabel ('Magnitude')

$end

$end

$ Feature Extraction. If there are no peaks, assign 0 values

[maxI, Imax]=max (maximalI(:,2),[],1):

[minI, Imin]=min (maximaI(:,2),[],1):

if isempty(maximal)==
numpeaksI=length (maximaI(:,1));
DpeaksI=maximal (Imax,1l)-maximaI (Imin,1);
$distance=pdist (maxI-minI) /stdi;
peaktopeak= (maxI-minI) /stdi;

else
numpeaksI=0;DpeaksI=0;peaktopeak=0;

end

fext=[DpeaksI peaktopeak]:

else % NO PEAKS DETECTED

fext=[0 0];

end
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peakID.m

function [maxima]=peakID(signal, threshold, graph) ;

%

% [maxima]=peakID (signal, threshold, graph)

%
% peakID.m Locates peaks within data sets
%

yt=signal;
$yt=yt-mean (yt) ;

$ zeroing of values in signal (less than y)
signal
ind=(find (yt<threshold & yt>-threshold))
if yt(ind)>0
yt (ind) =threshold;
else
yt (ind)=-threshold;
end
% finding local maxima
datasize = length(yt):
[r,cl=size(yt):
maxima=[];
count = 0;
for i = 2 : datasize-l
if ( ((yt(i-1) < yt(i)) & (yt(i+l) < yt(i)))

threshold level

[ ((yt(i-1) > yt(i)) & (yt(i+l) > yt(i))) )

count = count+l;
maxima (count,:) = [i yt(i)]:
end

end

% Plot signal with maxima
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if isempty(maxima)==
[rmax, cmax]=size (maxima) ;
if (graph=='y')
plot (signal) ;hold on;
plot (maxima(:,1) ,maxima(:,2), 'ro'");
plot (threshold*ones(r,1), 'r--");
plot (-threshold*ones(r,1), 'r--");
axis tight;
aux=axis;
if rmax<16
for k=1:rmax
sf=sprintf ('%.2£f,%.2f', maxima (k, 1) ,maxima (k,2));
text (aux (2)*4.5/6,aux (4) - ((aux(4) -aux (3)) /20) *k, sf)
end
end
title(['Data Number vs. Magnitude'])
xlabel ('Data Number')
ylabel ('Magnitude')
hold off;
end
else
if (graph=='y'")
plot (signal);
hold on;
plot (threshold*ones (r,1), 'r--");
plot (-threshold*ones(r,1), 'r--"');
axis tight;
aux=axis;
sf=sprintf('$s', '"No Peaks Detected'):;
text (aux (2) *4/6,aux (4) - ( (aux (4) —aux(3)) /20), sf) ;
title(['Data Number vs. Magnitude']):
xlabel ('Data Number')
ylabel ('Magnitude')
hold off;
end
maxima=[];

end
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ROIcal.m

function [mROI,numROI]=ROIcal (signal,maxima,ROIdist):;
function [mROI, numROI]=ROIcal (signal,maxima, ROIdist)
Inputs: signal
maxima = Peaks detected by peakid

ROIdist = determined in oneDfext

Outputs: mROI = Middle point of ROIs
numROI = Number of ROIs

ROI center determinations for a signal

0 o O O o OO o o K o o oP

[maxr, maxc]=size (maxima) ;

% ROI region distance adjustment

ROIx=[]:
mROI=[];
numROI=[];
1=1;3=1;
if maxr==
ROIx=maxima(:,1);
mROTI (1) =ROIx;
else
for i=2:maxr
Pl=maxima (i-1,1);
P2=maxima (i, 1) ;
distplp2=P2-P1;
if distplp2>=ROIdist
ROIx=maxima (j:i-1):
mROI (1) =round (mean (ROIx)) ;
1=1+1;

j=1i;
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if i==maxr
ROIx=maxima (j:1i);
mROI (1) =round (mean (ROIx)) ;
end
end
end

numROI=1length (mROI) ;

multiROIr.m

function multiROIr (Y, ROIdist,mROIi, numROIi, thresholdI):;

$

$ function multiROIr (Y,ROIdist,mROIi, numROIi,thresholdI):;

%

$ Warning of multiple ROI's, if ROI ceneters > 32 points
accomplished using the real and

% imag components seperately.

$

[r,c]l=size(Y);

$ for Imag data

if mROIi>=2

for i=1l:length (mROIi)-1

d=mROIi (i+1)-mROIi (i) ;
if d>ROIdist

fprintf ('\rWarning: ROI centers > 32 Points Apart.

Flaws!\n\zr')
plot (Y):

apart.

May be

text (5,1.25*min(Y), '"Warning: ROI centers > 32 Points Apart.

seperate Flaws!');

hold on
plot (thresholdI*ones(r,1),'r--");
plot (-thresholdI*ones(r,1), 'r--");

for i=1:numROIi
plot (mROIi (i), 0, 'kdiamond')
end
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title(['Mixed, Imaginary Differential EC Signal with threshold = '
num2str (thresholdI)])
xlabel('Point"')
ylabel ('Magnitude')
hold off
end
end

end

absfext.m

function [fext]=absfext(signal,plotyn):

%

% absfext.m

%

% function [fext]=absfext(signal,plotyn):;

%

$ Absolute Signal Feature Extraction program. Will load an absolute signal and
% detect packets of energsignal and characterize them (fext). Plotsignaln

allows the user

% to plot the individual ROIs with Peaks.

% The loop index tells the user which signal (loop) causes the problem
%

Y=signal;

[r,c]l=size(Y);

$The data vector should be in column format

% if X was a row formatted data vector, then invert the matrix

if c>r
Y=Y"';
[r,c]=size(Y);

end

$ STD Calculation

stdfull=std(Y):
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thresholdl=stdfull+mean(Y) ;threshold2=-stdfull+mean(Y) ;

$ Visual Review of Abs singal

figure;

plot (Y) ;hold on;axis tight;

plot (thresholdl*ones(r,1), 'r=--");

plot (threshold2*ones(r, 1), 'r--");

plot (mean (Y) *ones (r,1), 'g--");

title(['Mixed, Imaginary, Absolute EC Signal with
num2str ([thresholdl threshold2])])

xlabel ('Point')

ylabel ('Magnitude’')

hold off;

fprintf ('\nIs there information contained in the ');

vis_review=input ('\n Mixed, Imaginary Absolute Signal ("y"es or "n"o)? ',

thresholds

% Feature Extraction only to be done if abs signal has information

if vis_review == 'y'

% Peak Identification

[maxima, num_int, IP, FP]=peakIDabs (Y, thresholdl, threshold2, 'n');

if isempty(maxima) == 1

ROIdist=round(r/2)-1;
maxavg=0;

average peak mags /std
mROI=round (length(Y)):;
numROI=0;
IP=1;FP=length(Y);
intervals=[IP;FP];

else

ROIdist=round(r/2)-1;
maxavg=mean (abs (maxima(:,2))):

% Use average peak mags /std
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[mMROI, numROI]=ROIcal (Y, maxima, ROIdist);

intervals=[IP';FP'];

end

% Plot Peaks and middle of ROIs

if plotyn=="y'

peaklIDabs (Y, thresholdl, threshold2, 'y');axis tight;

hold on;

plot (mean (Y) *ones (r,1),'g--"):

aux=axis;

if isempty(maxima)==
plot (mROI, aux(3), 'kd'");
for i=l:num int

plot (IP(1i),aux(3),'gd');plot (FP(i),aux(3),'gd');
end
sf=sprintf ('Intervals above (or below) STD \n (IP , FP) \n'):;
text (aux (2)*1/25, aux (4) - ((aux (4) —aux (3)) /15) ,sf) ;
sf=sprintf(' %.0f , %.0f \n',intervals);
text (aux(2)*1/20, aux (4) - ( (aux (4) —aux(3)) /5) ,sf) ;
title(['Mixed, 1Imaginary, Absolute EC Signal with thresholds = '
num2str ( [thresholdl threshold2])])

xlabel ('Point')
ylabel ('Magnitude')
hold off

end

end

$ Check for Multiple ROIs in data

multiROIa (Y, mROI, numROI,ROIdist, thresholdl,threshold?2):

$ Extract portion of data above threshold around maximum peak
if isempty (maxima)==

[maxI, Imax]=max (maxima(:,2), [],1):

end

$ Slect appropriate data interval
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interval=input ('\nInput interval start and finish numbers for the data in

MATLAB [ ] format. ');

intial_point=interval(l);final point=interval(2);
newsignal=Y(intial_point:final_point);

newsignal=newsignal-newsignal (1) ; $ This sets the first point of
newsignal at (0,0)

lengthNS=length (newsignal) ;

Xsignal=[0:1lengthNS-1]"';

lengthXs=length (Xsignal);

$ Polyfit Feature Extraction

if lengthNS < 20 & lengthNS >=3
npolycoef=lengthNS-2;
[coeff, S]=polyfit (Xsignal, newsignal, npolycoef) ;
[Y,delta]=polyconf (coeff,Xsignal,S,0.1):;
residuals=newsignal-Y;
ErrorSqr=sum(residuals.*2);

elseif lengthNS <= 2
coeffabs=newsignal;Y=newsignal;residuals=0;ErrorSqr=0;npolycoef=lengthNS-2;

else
npolycoef=18;
[coeff, S]=polyfit (Xsignal, newsignal, npolycoef) ;
[Y,delta]=polyconf (coeff,Xsignal,S,0.1);
residuals=newsignal-Y;
ErrorSqr=sum(residuals.”2);

end

% Set coeffabs vector length to 18, then pad with 0 was nessicary

if lengthNS < 20
coeff=[zeros (1,18-npolycoef) coeff];

end

$ Plot original data and polyfitted data
if plotyn=='y'

if lengthNS<2
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['No plot needed, only one point above threshold. Use y value of

point.']
else

figure;

subplot (2,1,1) ;plot (Xsignal, newsignal, 'bs-',Xsignal, Y, 'ro-"') ;axis tight;

title ('Extracted Mixed, Imaginary, Absolute EC Signal and Polyfitted
Approximation');

legend([' = Original'], [' = Fitted'],0);

ylabel ('Magnitude')

subplot (2,1, 2) ;plot (residuals.”2) ;axis tight;

title('Absolute Value of Residuals'):

aux=axis;

sf=sprintf ('Sum Error”*2 = %.7f',ErrorsSqr):

text (aux(2)*4/6,aux(4) - ((aux(4)-aux(3))/15),sf):

ylabel ('Magnitude') ;

xlabel ('Point"')

end

end

% Sort maxima by magnitude

$maxima=[maxima(:,2) maxima(:,1) maxima(:,3) maxima(:,4)];

% [maxsort, ind]=sort (maxima) ;

$maxima=maxima (ind(:,1),:):

$maxima=[maxima(:,2) maxima(:,1l) maxima(:,3) maxima(:,4)]1:;$%

% Feature Vector Generation

fext=[coeff];

elseif vis_review == 'n’ $ NO INFORMATION IN SIGNAL
fprintf ('\nNo Information detected in Mixed Imaginary Absolute Datal\n\r')
coeff=zeros(1,19);

fext=[coeff];

end
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PeakIDabs.m

function [maxima,k,IP,FP]=peaklIDabs (signal,thresholdl, threshold2,graph):
$

% [maxima, k, IP, FP]=peakIDabs (signal, thresholdl, , threshold2, graph)

$

$ peakIDabs.m Locates peaks and peak intervals within abs imag data sets

%

Y=signal;
datasize = length(Y):

[r,c]l=size(Y);

$ finding local maxima

maxima=[];
countA = 0; countB = 0;
for i = 2 : datasize-1
if Y(i) > thresholdl | Y(i) < threshold2

countB = countB+1;

if ((Y(i-1) < Y(1)) & ((Y(i+41) < Y(i)))) | ((Y(i-1) > Y(i)) & ((Y(i+l) >
Y@in)))
countA = countA+l;
maxima (countad, :) = [i Y(i)];
end
points (countB)=i;
end
end

$ Intervals around peaks that are above threshold

l=length(points) ;
k=1;FP=[];
IP(1l)=points(1);
for i=1:1-1
if (points(i+l) - points(i)) ~=1
FP (k) =points (i) ;
IP(k+1)=points (i+l);
k=k+1;
end
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if i == 1-1
FP (k) =points (i+1):

end
end
points; % points above threshold
ki $ k = number of data intervals above threshold
maxima; $ peaks above threshold
IP=IP'; $ IP = Initial Point of intervals
FP=FP'; % FP = Final Point of intervals

$ Insert 0's for no peaks

if (graph=='y')

figure;

if isempty(maxima)==

points=[]:maxima=[];

plot (Y) ;hold on;

plot (thresholdl*ones(r,1),'r--");

plot (threshold2*ones(r,1),'r—-");

axis tight;

aux=axis;

sf=sprintf('$s', '"No Peaks Were Detected'):;

text (aux(2) *4/6,aux(4) - ((aux (4) —aux(3)) /20), sf)
title(['Data Number vs. Magnitude'])
xlabel ("Data Number')

ylabel ('Magnitude')

hold off;

else

[rmax, cmax]=size (maxima) ;
plot (Y) ;hold on;

plot (maxima(:,1),maxima(:,2), 'ro'")
plot (thresholdl*ones (r,1), 'r--"):
plot (threshold2*ones(r,1), 'r--");
axis tight;

aux=axis;

if rmax<16
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for k=l:rmax
sf=sprintf('%$.2f,%.2f',maxima (k,1),maxima(k,2));
text (aux (2)*4.5/6,aux(4) - ( (aux(4) -aux(3)) /20) *k, sf)
end
end
title(['Data Number vs. Magnitude'])
xlabel ('Data Number')
ylabel ('Magnitude')
hold off;

end

end

MultiROIabs.m

function multiROIa (¥, mROI, numROI, ROIdist, thresholdl, threshold2);

%

$ function multiROIa (Y, mROI,numROI,ROIdist,threshold);

%

$ Warning of multiple ROI's, if ROI ceneters > 32 points apart.
%

[r,c]l=size(Y):
if mROI>=2
for i=1l:1length (mROI)-1
d=mROI (i+1)-mROI (i) ;
if d>ROIdist
fprintf ('\rWarning: ROI centers > 32 Points Apart. May be seperate
Flaws!\n\r')
figure;
peakIDabs (Y, thresholdl, threshold2, 'y"'):
text (5,0.95*max(Y), '"Warning: ROI centers > 32 Points Apart. May be
seperate Flaws!');
hold on
plot (thresholdl*ones(r,1), 'r') ;plot (threshold2*ones(r,1), 'r'):

for i=1:numROI
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plot (mROI (i), 0, 'kdiamond"')
end
title(['Mixed Imaginary Absolute Eddy Current Signal with thresholds =
' num2str([thresholdl threshold2])])
xlabel ('Point')
ylabel ('Magnitude')
hold off
end
end

end

CWrTfext.m

function [geofext, imagefext,coef]=CWTfext (signal, filename,plotyn):

%

$ CWTfext.m

%

$ function [geofext, imagefext,coef]=CWTfext (signal,plotyn, filename) ;

%

$ CWT Feature Extraction program. Will load a signal, exicute a 24-level CWT
with the

$ specified wavelet on the selected EC freqs. The CWT coeff are then sent to a
geomoments

$ and image-processing feature extraction routine

%

$ Plotyn allows the user to plot the individual EC flaws

%

signal=signal-mean (signal) ;

coef=cwt (signal, 1:24, 'biorl.5");

% Generate cwt modulas coefficients

coef=abs (coef) ;

[r,c]l=size(coef);

$ Visual Examintaion of the CWT

if plotyn=='y'
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figure,

surfc(coef) ;shading interp;

axis([0 c 0 r 0 1l.1*max(max(abs(coef)))]):

title(['CWT Modulus for the Mixed, Complex, Differential EC Signal '
filename])

xlabel ('Distance')

ylabel ('Scale or Frequency')
end
$ Feature Extraction using Geometric Moments
[geofext ] =geomomentfext (coef) ;
% Feature Extraction using Image Processing
[imagefext]=imfext (coef, 'n');
% Pad cwt_mag with 0's was signal length was < 97 (1/2 Window of 48)
if c<97

pad=zeros (r, round ((97-c)/2));

coef=[pad coef pad];

[r,c]l=size (coef);

end

geomomentfext.m

function [geofext]=geomomentfext (coef) ;
$ Feature Extraction from CWT coeff using geometric moments
[rcwt, ccwt]=size (coef) ;

[G, GN]=geomoment (coef, 4,4, [0 ccwt], [1 rcwt]):

[r,c]l=size(G);

$ Restacking from matrix to vector
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n=1;
for i=1l:r
for j=1l:c
Gvect (n)=G(1i,3);
n=n+1;
end

end
geofext=Gvect;
$ Omit x0 y0 geometric moment if desired

$omit_OO=input ('Does User want to omit the 00 moment (y or n). ','s');
$if omit_00=='y'

% omit=[1 26 51 76 101];

% geofext (omit)=[];

$end

geomoment.m

function [G,C,Cn,HU] = geomoment (M, xp, yq,Xif, Yif)
%
$Geometric Moments Calcualtion [G,C,Cn, HU]=Geomoment (M, xp, yq, Xif, Yif)
%
$This program calculates for digitial images:
1. geometric moments . The x moments will be translation invariant.
Centralized Moments. X and Y are translation invariant.

%

% 2

% 3. Normalized Central Moments
% 4. Hu's 7 Invariant Moments

%

$Inputs: magnitude matrix of digital image, M;

% starting and final value row vector for x (x initial and x final), Xif;
% starting and final value row vector for y (y initial and y final), Yif;
% vector of geometric moments to be calculated, xp and yq.

%

$Outputs:geometric moments vector (G), Central moments (C) and Normalized
(Cn) and HU's Moments (HU).
%
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[rM, cM]=size (M) ; $ rM = # of row, cM = # of columns

% Extract initial and final values for x and y

xi=Xif(1,1);yi=Yif(1,1):;xf=Xif(1,2);yf=Yif(1,2);

% Set up x and y value vectors

rangexold=xf-xi;

rangeyold=yf-yi;

deltax=rangexold/cM;
deltay=rangeyold/rM;

xinit=xi+deltax; % First step from initial wvalues

yinit=yi+deltay:

x=xinit:deltax:xf;

y=yinit:deltay:yf:;

% Ranging x and y axis: x~[-1,+1] and y~[-1,+1]

rangex=(1-(-1)) ;rangey=(1-(-1));

newx=(rangex/rangexold) . *x+ (1- (rangex*xf) /rangexold) ;

newy= (rangey/rangeyold) . *y+ (1- (rangey*yf) /rangeyold) ;

% Calculation of xbar (and ybar, though not used) for translation invariant

% X axis of the central moment

mO0O0=sum (sum (M) ) ;

ml0=sum(sum(newx*M'));

mO0l=sum (sum(newy*M)) ;

xbar=m10/m00; % Notice that xbar and ybar are not = meanx
and meany

ybar=m01/m00;

% Calculation of geometric moments Matrix (G), Central Moments (C) and

Normalized Central Moments (Cn)

for i=0:1:xp
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for j=0:1:yq
Z1=( (newx-xbar) .”i) *M' * (newy.”j) '; $ Invariant in the x
direction, Not in the y.
$72=(newx.”i)*M'* (newy.”j) ';
G(i+l,3+1)=21;
22=( (newx-xbar) .”i) *M' * ( (newy-ybar) .”j)'; $ Central Moment calc,
invariant in x and y directions
C(i+1,§+1)=22;
gamma= (i+j+2) /2;
Cn(i+1,j+1)=22/(C(1,1) ~gamma) ; % Normalized Central Moment
calc, invariant to translation and scaling
end

end
% Zero out extremely small + and - numbers for G
for i=0:1:xp
for j=0:1:yq
if abs (G(i+1,3j+1))<0.0000009
G (i+1, 3+1)=0;
end

end

end

$ 7 Moments of Hu, first define needed coefficients (xp and yq must be > 3)

if xp >3 & yqg > 3

nu00=Cn(1,1);

% 1lst and 2nd Moments of HU

null=Cn(2,2);
nu02=Cn(1, 3) ;nu20=Cn(3,1);

phi_1=nu20+nu02;
phi_2=(nu20-nu02)~2+4*null"2;

% 3rd - 7th Moments of HU

nu0l1=Cn (1, 2) ;nul0=Cn(2,1);
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nu03=Cn(1l,4) ;nu30=Cn(4,1);
nul2=Cn (2, 3);nu21=Cn(3,2);

phi_3=(nu30-3*nul2)*2+ (nu03-3*nu2l)*2;

phi_4=(nu30+nul2) *2+ (nu03+nu2l) *2;

phi 5=(nu30-3*nul2) * (nu30+nul2) * ( (nu30+nul2)*2-3* (nu21+nul3) *2) + (nud3-

3*nu2l) * (nu03+nu2l)* ( (nu03+nu2l) *2-3* (nul2+nu30)*2) ;

phi_6=(nu20-nu02) * ( (nu30+nul2) *2- (nu21+nu03) ~2) +4*null* (nu30+nul2) * (nu03+nu2l) ;
phi_7=(3*nu21-nu03) * (nu30+nul2) * ( (nu30+nul2) *2-3* (nu21+nul03) *2) + (nu30-

3*nul2) * (nu21+nu03) * ( (nu03+nu2l) ~*2-3* (nu30+nul2)*2) ;

% Form HU vector with the 7 moment

HU=[phi 1 phi 2 phi 3 phi 4 phi 5 phi_ 6 phi_71]:

else

HU=['Degree 0f Moments Not greater than 4 ... Hu"s Moments could NOT be
Calculated']

end

Imfext.m

function [imagefext]=imfext (mag,plotyn):;

imfext.m : Calcuates the weighted area, euler number,
RR and Geometric moments. The area, euler and RR are calculated
after normalizationwith a specified threshold.

plotyn = plotting, yes or no.

function [imagefext]=imfext (mag,plotyn);

o0 d° OdP o0 P O o0 oP P

x=mag ;

[r,c]l=size(x);
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if plotyn=='y'

surf (x) ; shading interp:
title('Transformation')
xlabel ('Time (or Distance)')
ylabel ('Scale or Frequency')

end

max=1;min=0;

[normx]=matnorm(x, max,min) ;

% Use 2Dstd to set threshold

threshold=1;
[magthresh, stdx, thresholdstd]=matthresh(normx, threshold) ;

if plotyn=='y'

figure,

surf (magthresh) ; shading interp;
title('Transformation')

xlabel ('Time (or Distance)')
ylabel ('Scale or Frequency')

end

% Greyscale image of normalized cwt

if plotyn=='y'

figure, imshow (x) ;

end

% Edge detection using greyscale

bwedge=edge (magthresh, 'sobel') ;

bwl=bwmorph (bwedge, 'clean') ;
if plotyn=='y'

figure, imshow (bwl) ;
end

% Use IP to process in Binary

bwx=im2bw (x, thresholdstd) ;
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if plotyn=='y'
figure, imshow (bwx)

end

bwperimx=bwperim (bwx, 8) ;

if plotyn=='y'
figure, imshow (bwperimx)

end

% Calc # ON pixels for total area, perimeter and Roundness

% Ratio (RR)

areasum=sum (sum(bwx) ) ;

perimsum=sum (sum(bwperimx)) ;

% Calculate Features

xarea=bwarea (bwx) ;
xeuler=bweuler (bwx, 8) ;

RR=(perimsum~2) / (4*pi*areasum) ;

imagefext=[xarea xeuler RR];

Loadmatrix.m

function [uTR]=LoadMatrix(data_origin, Group, filename,data_cell,uTR_run_number) ;

%

% function [uTR]=LoadMatrix(data_origin, Group, filename,data_cell);

$

$ This program loads the processsed feature vectors into individual feature
matrices according to feature

% type and SG manufacturer

%

[r,c,d]=size(data_cell);
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% Load each feature vector into feature vector matrices (for each type)

first=input ('Is this the first cell added to the uTR cell array? ','s'):;
if first=='y'

uTR=data_cell;

if data_origin == 'P'

eval (['save uTR_' data origin '_' Group '_' uTR_run_number ' uTR;'])

else
eval (['save uTR_' data_origin '_' uTR_run_number ' uTR;'])

end

else

if data_origin == 'P'
eval(['load uTR_' data_origin '_' Group '_' uTR_run_number ';'])
uTR=cat (3, uTR,data_cell):; % generate the

updated uTR using data_cell and old uTR

eval (['save uTR_' data_origin '_' Group ' ' uTR_run number ' uTR;'])
else

eval (['load uTR_' data_origin '_' uTR_run_number ';'])

uTR=cat (3, uTR,data_cell); % generate the

updated uTR using data_cell and old uTR
eval (['save uTR_' data_origin '_' uTR_run number ' uTR;'])
end

end

EE R A A AR E R ALEEE AR AREER AL AAEEEERERAAEEEEERRARAEEEERRLAAREE R R AR R R AREEE]
TEEITTEELER3%%

%

%

$ User may save the matrix or continue load or save the constructed matrix.
%

% The Train matrix example name :
%

%

%

% uTR_P b 1 = unprocessed Training cell of PDD data for a B&W SG, run
number 1. %

%

%
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%

%
$ Each uTR cell array page contains the information for one flaw %
% in a 1X3 nested cell array %
%
%
% C1 c2
€3 %

% | Origin | Original Signal X | flaw type |

%
% | Group | Magnitude and Phase | $% Through Wall |

%
$ R1 | filename | flaw location | flaw character |

%
% | | Feature Vector | |

%
% | | CWT |

%
%

%

%

%
EAEAREREEE AR AR ERE AR AREREAREREARARAREAEAREREREAREREREAREREREARAREREEEEEEEE L]

uTR_shuffle.m

function [uTR_sorted, Z, index, sorting_matrix]=uTR_shuffle (uTR) ;

%

% uTR_shuffle

%

$ This program shuffles rows of uTR data such that, first data_origin, then,
flaw_type

% thenGroup and finally filename are used to shuffle the uTR pages.

%

[r,c,d]=size(uTR);

285



CAREARE AR AR AREARE AR AEAREAREREAEEREAEARE AR AR AR AEE R AL ERE AR LA R AL AR AL

$

%

$ Each uTR cell array page contains the information for one flaw

% in a 1X3 nested cell array.

%
% Cl
c3
% | Origin
%
% | Group
%
$ R1 | filename
%
% |
%
% |
%
%
%

%
Original Signal X

Magnitude and Phase

flaw location

Feature Vector

| CWT

c2

| flaw type |

| $ Through wWall |

| flaw character |

%

CARAAEARE AR AREAREAEEREAREREAREREAREREAEEAREREAREREALEREELEEEREAEEREEEEEEAEE R

$ Generate a cell with the pertainent shuffling info

for i=1:d

sorting matrix{i,1}=uTR{1,3,i}{1,1};

sorting matrix{i,2}=uTR{1,1,i}{1,1};

sorting matrix{i,3}=uTR{1,1,i}{2,1};

sorting_matrix{i, 4}=uTR{1,1,i}{3,1};

end

$ Flaws are sorted by the order of columns in the sorting matrix,

was given highest priority
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[Z, index]=sortrows (sorting_matrix); $ sorting matrix has 4 columns
and multiple rows.
uTR_sorted=uTR(:, :, index) ; $ Each row represents a page

(example flaw)

uTR_statistics.m

function [uTR_stats, Ts]=uTR_statistics (uTR);

$

% uTR_statistics

%

$ function [uTR_stats]=uTR_statistics (uTR);

$

$ This program will extract feature data in groups and perform staistical
analysis

% on each group seperately and together

$
if nargin == $ No uTR loaded
data_origin=input ('Data origin ("P"DD or "E"TSS). ','s');
run_number=input (' Input uTR run number. ','s');
if data_origin == 'P'
Group=input ('Enter steam generator type (B, C or W). ','s'):
eval (['load uTR_' data_origin ' ' Group '_' run number ';']);
else
eval(['load uTR_' data_origin '_' run number ';']);
end
end

CAAA AR AR AR A AR AR A AA AR ARARE AR AR ARARE AR ARARE AR ARARE AR ARARE AR ARARAREAEARERE AR AL
%

$
$ Each uTR cell array page contains the information for one flaw %
$ in a 1X3 nested cell array %
$
%
% C1 c2
€3 $
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% | Origin | Original Signal X | flaw type |

%

% | Group | Magnitude and Phase | % Through Wall |
%

% R1 | filename | flaw location | flaw character |
%

% | | Feature Vector | |
%

% | | CWT |
%

%

%
%

%
CAEE AR AR AR R R AR AR AR AR AR AR AR R AR R AR AR AR AR AR AR AR AR AR R AR R AR AR AR R A

[r,c,d]l=size (uTR) ;

% Extracts each loadfile, FV and output from each page of the uTR

for i=1l:d
load_files{i,1}=uTR{1,1,1i}{3,1}; % individual cells for each filename
T (i, :)=uTR{1,2,1}{4,1}; % feature vector matrices
Output (i, :)=uTR{1,3,1}{1,1}; $ flawtype

end

number feature=input('Input the number feature families in the feature vector
(usually 5). '"):
feature_cutoff=input ('Enter the last position for each of the above feature

families in MATLAB format ([2 21 23 48 51]). ');

% feature_vector=[flaw_phase flaw_mag fextlDabs fextlDdiff geofext imagefext];
position of feature families [2 21 23 48 51]

$geomoment _extract=input (' Input which geometric moments to view (in vector form

oo [1 7 A3 191°25]). '):

% Statistical Proccesing using only the related feature groups 1 at a time

for i=l:number_feature
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$ Extract feature families

if i==
Tp=T (:,1:feature_cutoff(i));
else
Tp=T(:, feature_cutoff (i-1)+1l:feature_cutoff(i));

end

$ Look at Geomoments 11, 22, 33, 44 and 55
$if 1 ==

% Tp=Tp(:, [1 7 13 19 25]);

$end

$ finds the zero columns

del col_1=[find(var (Tp)==0)1];

$ Process

[rfull, cfull]=size(Tp);
stdT=std(Tp) ;varT=var (Tp) ;
Tp=Tp./stdT (ones (rfull, 1), :);
meanT=mean (Tp) ;

Tp=Tp-meanT (ones (rfull,1),:);

% finds low variance columns from the processed

% data for each feature type

variance_level=0.01;
del col_2=[find(abs(var (Tp))<=variance_ level)];%del col v=[find(var (Tp)==0)1];
del _col=[del_col_1 del_col_2];

if isempty(del_col) ==

del_col=sort (del_col);

del col(:,diff(del_col)==0)=[];

fprintf('\nThe non-variance (defined as <= %0.6f) deleted columns for the
Flaw-type # %1.0f Feature Matrix\n', variance level, i)

fprintf (' was/are: ')

fprintf (' %2.0f ',del_col')

fprintf('\r\n"')

else
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del col=[];

end

% previous line remembers which cols =[];

Tp(:,del _col)=[];[rfull,cfull]=size(Tp);
fprintf ('\nNumber of columns (variables) for feature group %1.0f = %1.0f
\n', i, cfull)

% Usefull stats

% [mu, sigma, muci, sigmaci]=normfit (Tp) ;
$norm_param(i, :)={mu sigma muci sigmaci};
std_mean=[stdT;meanT];

cov_matrix=cov(Tp);

% Plotting

labelxy=['Feature#l';'Feature#2';'Feature#3';'Feature#4';'Feature#5'];
flaw_color=['rgmcbk'];flaw_mark=['oxd+p.'];
if cfull >= 5 % Only for geomoments

fprintf (' \nEnter absolute coeff groupings in cell format {1:5 6:10 11:15
16:19}\n")

groupings=input (' or geometric groupings in cell format {1:5 6:9 10:14
15419 20:24). '9;

[r_group,c_groupl=size (groupings);

for j=l:c_group

figure;gplotmatrix (Tp(:,groupings{j}), [],Output(:,1:2),flaw_color, flaw_mark,'',

'on', 'hist"',

labelxy(1l:1length(groupings{j}),:),labelxy(1l:length(groupings{j}),:)):
title(['Scatter Plots of Feature Group #' num2str(i) ' subgroup '
num2str(j) ' for each Feature Variable']);
gname (load_files);
end

else

figure;gplotmatrix (Tp, [],Output(:,1:2),flaw_color, flaw_mark,'','on', 'hist', labe
1xy(1l:cfull, :),labelxy(l:cfull, :));
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title(['Scatter Plots of Feature Group #' num2str(i) ' for each Feature
Variable']);gname (load_files);

end

% Baysiean pdf approximation using each information for each flawtype
$for j=1:length (cfull)

% normalpdf=normpdf (-10:0.1:10,norm_param{i, 1} (j),norm param{i,2}(j));
% figure;plot (normalpdf) ;hold on;

$end

$hold off;

% Save statistics

if nargout >=1

uTR_stats{i, 1l}=load_files;uTR_stats{i, 2}=Tp;uTR_stats{i, 3}=std_mean;uTR_stats{i

s4}=cov_matrix;uTR_stats{i, 5}=del col;

end
if i==
Ts=Tp;
else
Ts=[Ts Tp]l:
end
end

LAEAREE AR AR A AR AR A A AR AR AR R AR AR AR AR AR AR R AR AR AR R AR A A A AR R R R AR AR LA ]
CAEE AR AL AR R AR AL LA EE AEE L]

%

%

$ Format of last cell page, each row would be a FEATURE type
%

% (DO NOT USE THIS INFO FOR ANY OTHER PURPOSE) :
$

%

%

% Cill c2 c3
c4 €5 %
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% Rl | Load Files (cells) | Transformed Matrix | std_mean |
cov_matrix | del columns | %

$

$

SRR R R e e A R R L L e R R A
FETILLLLLIILEIBILLLLLEE8%%

uTR_process.m

function

[TR, TR_run_number]=uTR_process (uTR,data_origin, Group,uTR_run_number,plotyn);

%

$ function [TR]=uTR_process (uTR,data_origin, Group, uTR_run_number, plotyn) ;

%

$ At this point the user has the uTR cell.

%

% For the uTR cell: compress and perform PCA and cwt template compression,
seperate into an array

% with like flaws grouped together

%

[r,c,d]=size (uTR) ;
R R R R R R AR R

%
%

$ Each uTR cell array page contains the information for one flaw %
$ in a 1X3 nested cell array. %
%
%
$ el c2
c3 %

% | Origin | Original Signal X | flaw type |

$
% | Group | Magnitude and Phase | $ Through Wall |

%
$ R1 | filename | flaw location | flaw character |

$
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% | | Feature Vector | |

%
% l | CWT | |
%
%
%
$

%
CARARARAEA AL AR A A AR AR ARERAEARERE AR A AR ARE RS AR AEAREREARARERE AR ARERE AR AL AR AL AR L

$ Breakpoint detection
[break_points,num_breaks, break file]=break_point_b (uTR);

for i=1:d
load files{i,1l}=uTR{1l,1,i}{3,1};
Group matrix{i,1}=uTR{1,1,i}{2,1};
CWT_mag(:,:,1i)=uTR{1,2,i}{5,1};
feature_vector_matrix(i,:)=uTR{1,2,i}{4,1};
flawtype matrix (i, :)=uTR{1,3,i}{1,1};
flawchar_matrix{i,1}=[uTR{1,3,i}{2,1} uTR{1,3,1}{3,1}];

end

$ PCA Process feature vector matrix

%

$PCA_data{l,1}=del_col; columns are deleted from FV, no variance
$PCA_data{2,1l}=std_mean;

$PCA_data{3,1}=srTR;

$PCA_data{4, 1}=pcTR;

$PCA_data{5, l}=newdata;

$PCA_data{6, 1}=tsquare;

$PCA_data{7,1}=QTR;

$PCA_data{8,1}=FV_reinsertion; features are extracted before PCA then

reinserted after PCA
[PCA_data]=PCAmatrix(feature_vector matrix,'y');
$ CWT template calculation, cwt_comp mat was compresed template in cell array

format, cwts_raw was all processed

% cwts (not compressed template) before compression.
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[cwt_comp _mat,cwts_raw]=cwt_compress (CWT_mag,uTR); %

array 1 x # of flawtypes

$ construct TR cell using the PCA results and the CWT
files and outputPDD

if num breaks== $ NO FLAWTYPE SUBSETS

col one{l,1}=PCA data{l,1};
col _one{2,1}=PCA_data{2,1};
col_one{3,1}=PCA _data{3,1};
col_one{4,1}=PCA_data{4,1};
col _one{5,1}=PCA_data{5,1};
col_one{6,1}=PCA_data{6,1};
col_one{7,1}=PCA_data{7,1};
col _one{8,1}=PCA_data{8,1};

col_two{l,1l}=break file;
col_two{2,1l}=cwt_comp_mat;
col _two{3,1}=flawtype matrix;
col_two{4,1l}=flawchar matrix;
col _two{5,1}=[];

col _two{6,1}=[];
col_two{7,1}=[];

col _two{8,1l}=cwts_raw;

TR=cat (2,col_one,col_two);

else

for i=l:num breaks

if i ==

col one{l,1}=PCA_data{l,1};
col _one{2,1}=PCA_data{2,1};
col_one{3,1}=PCA_data{3,1};
col_one{4,1}=PCA data{4,1};
col _one{5,1}=PCA_data{5,1};
col one{6,1}=PCA_datai{6,1};
col_one{7,1}=PCA _data{7,1};
col_one{8,1}=PCA_data{8,1};

294

cwt_comp_mat was

results,

raw cwts,

cell

load



col two{l,l}=break file(l,i);

col two{2,1l}=cwt_comp mat(1l,i);

col _two{3,1l}=flawtype matrix (l:break_points(l),:);
col_two{4,l}=flawchar matrix(l:break points(l),:);
col two{5,1}=PCA_data{5,1} (l:break_points(l),:);
col two{6,1}=PCA_data{6,1} (l:break_points(1l));
col_two{7,1}=PCA_data{7,1} (l:break_points(l));

col two{8,l}=cwts_raw{l,1};

TR1l=cat (2,col_one,col_two);

TR=TR1;

else

col one{l,1}=PCA_data{l,1};
col _one{2,1}=PCA_data{2,1};
col one{3,1}=PCA data{3,1};
col_one{4,1}=PCA_data{4,1};
col _one{5,1}=PCA_data{5,1};
col one{6,1}=PCA_data{6,1};
col_one{7,1}=PCA_data{7,1};
col one{8,1}=PCA data{8,1};

col _two{l,l}=break_file(l,i);

col two{2,1l}=cwt_comp mat (1,1i);

col two{3,1l}=flawtype matrix (break points(i-1)+1l:break_points(i),:);
col_two{4,l}=flawchar matrix(break points(i-1l)+l:break points(i),:);
col _two{5,1}=PCA_data{5,1} (break points(i-1)+l:break points(i),:);
col two{6,1}=PCA_data{6,1} (break_points(i-1)+l:break points(i));
col_two{7,1}=PCA data{7,1} (break_points(i-1)+l:break points(i)) s

col two{8,1}=cwts_raw{l,i};
eval(['TR' num2str (i) '=cat(2,col_one,col_two);'])
eval(['TR=cat (3, TR, TR' num2str(i) ');'])

end

end

end
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PCA_data{l,1}=del_col;
PCA_data{2,1}=std_mean;
PCA_data{3,1}=srTR;
PCA_data{4,1}=pcTR;
PCA_data{5,1l}=newdata;
PCA_data{6,1l}=tsquare;
PCA_data{7,1}=QTR;

o0 o0 P o° o0 o o oP

PCA_data{8,1}=FV_reinsertion;

col _one{l,1}=PCA_data{l,1};
col one{2,1}=PCA _data{2,1};
col one{3,1}=PCA_data{3,1};
col_one{4,1}=PCA_data{4,1};
col one{5,1}=PCA_data{5,1};
col _one{6,1}=PCA_data{6,1};
col one{7,1}=PCA_data{7,1};

o0 o° o° od° oP odP O o

col _one{8,1}=FV_reinsertion;

col two{l,l}=break_file(1,i);

col two{2,1l}=cwt_comp mat(1l,i);

col two{3,1l}=flawtype matrix(l:break points(l),:);
col two{4,l}=flawchar matrix(l:break_points(1l),:):
col two{5,1}=PCA data{5,1}(l:break_points(1l),:);
col two{6,1}=PCA_data{6,1} (l:break_points(1l),:);
col two{7,1}=PCA_data{7,1} (l:break_points(l),:);

o° o0 o oP o° odP odo oP

col _two{8,1l}=cwts_raw{l,i};

EEE R R R R A R R R R R R R R A A R R R R R R R R R R A E R R R R R R A A A R R R R R R LA A L ]
%

$
% Individual Page TR setup each page represents a flawtype.

%
% cil c2
%
% R1 | del col | break file for Fl
% R2 | std_mean | cwt_comp_mat for F1
%
% R3 | srTR | flawtype matrix for F1 $
% R4 | pcTR | flawchar_matrix for F1 %
% R5 | newdata | PCA_data{5,1} for Fl1 %
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% R6 | tsquare | PCA_data{6,1} for F1 %

% R7 | QTR | PCA_data{7,1} for F1 %
% R8 |FV_reinsertion | cwts_raw for Fl %
%

%

CAEA AR R AR AR AR AR AR AR A AR AR AR E R AR AR AR R AR AR AR AR AR R ARERE AR AREEEEE AR L]

if plotyn == 'y'
for i=l:num breaks
figure;plot (TR{3,1,1i});axis tight;
title(['Mean-centered, STD normalized Data Features for flawtype #'
num2str(i)]);
xlabel ('Data Number');ylabel ('Magnitude’):;
figure;plot (TR{3,1,1i}');axis tight;
title ([ 'Mean-centered, STD normalized Data Features for flawtype #'
num2str(i)]):
xlabel ('Feature Number');ylabel ('Magnitude'):;
end

end

% Save TR data files

TR_run_number=input ('Input TR run number (actually a letter; a through z).

!, LsY);
if data_origin == 'P'

eval(['save TR_' data origin '_' Group '_' uTR_run_number TR run_number '
TR; 'J) $ save TR cell
else

eval(['save TR_' data_origin '_' uTR_run_number TR run number ' TR;'])

% save TR cell

end
PCAmatrix.m

function [PCA_data]=PCAmatrix (feature_vector matrix,plotyn);

%
% PCAmatix.m
%
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% PCA Calculations for a specified manufacturer (all flaw types are included).

%

[r,c,d]=size(feature_vector_matrix);

% feature vector

T=feature_vector matrix;

% deletes 0 variance columns
del col=[find(var(T)==0)1];
T(:,del_col)=[];

fprintf ('\nThe non-variance (defined as == 0)
Matrix\n')

fprintf (' was/are: ')

fprintf (' %2.0f ',del _col')

fprintf ('\r\n')

% mean-centering

meanT=mean (T) ;
T=T-meanT (ones (r,1),:);
stdT=std (T);
T=T./stdT(ones(r,1),:);
std_mean=[stdT;meanT]; % Save std and mean
$if isempty(del_col m) ==
% del col=[del col m del col v];
% del_col=sort (del _col);

% del col(:,diff (del_col)==0)=[];
% fprintf ('\nThe non-variance
Feature Matrix\n', variance_level)
% fprintf (' was/are: ')

% fprintf (' %2.0f ',del col')
% fprintf ('\r\n'")

$else

% del col=[]:

$end

$T(:,del_col)=[];

298

deleted columns for the Feature

| isempty(del _col_v) == 0

(defined as <= %0.6f) deleted columns for the



% PCA Calculations

[Tn, newdata, pcT, tsquare, QT,FV_col_del,del T,FV_reinsertion]=PCAmatrixcalc(T);

$ Saves each featuretype newdata, tsquare and QTR into one cell.
%

% del_col ... Deleted Columns for each feature type

% newdata ... New data matrix

% std_mean ... std and mean for the TR featuretype

$ pcT ... Transformation matrices

$ tsquare ...

% QT

if isempty(del T)==0 & isempty(FV_col_del)==
newdata=[newdata del_T]; $ Reinserts nonPCA
processed columns

elseif isempty(del T)==0 & isempty(FV_col del)==

del_col=[del_col FV_col_del]; $ Also add deleted
columns from editing
end
$ Plotting
if plotyn == 'y'
figure;plot (newdata) ;title ('PCA Data Features');xlabel ('Data

Number') ;ylabel ('Magnitude’') ;

figure;plot (tsquare', 'b+') ;gname;title ('T-squared') ;xlabel ('Data
Number') ;ylabel ('Magnitude') ;

figure;plot (QT, 'b+') ;gname;title ('QT') ;xlabel ('Data
Number') ;ylabel ('Magnitude');

end

$PCA_data{l,1}=del_col;
$PCA_data{2,1l}=std _mean;
$PCA_data{3,1}=srTR;
$PCA_data{4, 1}=pcTR;
$$PCA_data{5,1}=newdata;
$PCA_data{6,l}=tsquare;
$PCA_data{7,1}=QTR;
$PCA_data{8,1}=FV_reinsertion;
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if nargout>=1
PCA_data{l,1l}=del_col;
PCA_data{2,1l}=std_mean;
PCA_data{3,1}=Tn;
PCA_data{4,1}=pcT;
PCA_data{5,1l}=newdata;
PCA_data{6,1l}=tsquare;
PCA_data{7,1}=QT;
PCA_data{8,1}=FV_reinsertion;

end

PCAmatrixcalc.m

function
[Tn, newdata, PC, tsquare,QT, FV_col_del,del T,FV_reinsertion]=PCAmatrixcalc(matrix
)i

$

% PCAmatrixcalc.m

%

% function
[T, newdata, PC, tsquare, QT, std_mean,FV_col _del,del T,FV_reinsertion]=PCAmatrixcal
c(matrix);

%

T=matrix; % feature_vector=[flaw_phase flaw_mag fextlDabs fextlDdiff geofext
imagefext];

$position of feature families [2 21 23 48 51]

fprintf('\n'")
edit_FV=input ('Does user want to edit feature vector ("y"es or "n"o). ','s');
if edit_FV =='y'
fprintf (' \nFeature Vector families are [1:2 3:21 22:23 24:48 49:51] \n')
fprintf (' use deleted columns to adjust families. \n\n')
FV_col_del=input ('Input FV columns for deletion (in [] format). ');
del T=T(:,FV_col_del);
T(:,FV_col _del)=[];

300



feature_reinsertion=input ('Reinsert extracted features

"n"e) . 'yvs");
if feature_reinsertion=='y'
FV_reinsertion=FV_col_del;
FV_col_del=[];
end
else
FV_reinsertion=[];
FV_col_del=[];
del_T=[];

end

Tn=T;

[r,c]=size(Tn);

% Z-scores for T

[Z]=zscore(Tn);

$PCA calculations

[PC, SCORE, LATENT, tsquare] =princomp (Tn) ;

[pcT, varT, expT]=pcacov (cov(Tn)) ;

% PCA explaied variances

fprintf ('\n Percent Explained for TR Matrix = \n')
if c<20

explained=100*LATENT/sum (LATENT) ;

fprintf ('\t\t%.6£f\r', explained)

else

explained=100*LATENT (1:20, :) /sum (LATENT (1:20, :));

fprintf ('\t\t%.6£f\r',explained)

end

% Number of PC to retain

fprintf ('\r\n\n")

PCA_num=input ('Input the number of PC"s to retain. ');

fprintf('\r\n')
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$ % retained variance

fprintf ('Percent Explained for kept PCs = %.6f \n\n', sum(explained(1l:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:, 1:PCA_num) ;
PC=PC(:,1:PCA_num) ;
newdata=SCORE;
[rnd, cnd]=size (newdata) ;
QT=zeros(1l,r);
for i=1:r
QT (i)=Tn (i, :) * (eye(c,c)-PC*PC')*Tn (i, :)"':

end

$pcT=pcT (:, 1:PCA_num);
$newdata=T*pcT;
% [rnd, cnd]=size (newdata) ;
$tsquare=zeros (cnd, rnd) ;
$for i=l:cnd
% for j=1:rnd
%
tsquare (i, j)=srT(j,:) *pcT(:,1i)*(inv(diag(eigcovT(i)))) *pcT(:,1i) '*srT(j,:)"':
$ end
$end
$sprintf (' \tPercent Explained for TR or TE Matrix = ')
$if cfull<10

% sprintf ("\t\t%.6£f\r', expT)
$else

$sprintf ("\t\t%.6£f\r',expT(1:10,:))
$end

proc_TR_PCA_plot.m

function
[Ysqr, Z,T]=proc_TR_PCA plot (uTR,TR,data_origin, Group,uTR_run_number, TR_run_numb

er);

$ proc_TR_PCA plot.m
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%

$ function [Ysqr,Z,T]=proc_TR_PCA plot (TR);

%

$ Extracts TR feature matrix data (post PCA) and plots

% PC's together allowing for outlier IDing also basic cluster

% analysis
%

if nargin ==
run_number=input ('Input TR data number. ','s');

data_origin=input ('Enter data origin, "P"DD or "E"TSS. ','s');

if data_origin == 'E'
eval(['load TR_' data_origin '_' uTR_run_number TR _run_number ';']);
else
Group=input ('Enter data group (b, c or w for PDD). ','s');
eval (['load TR_' data_origin '_' Group '_' uTR run number TR_run_number
RARDY/
end
end

CARARARA AR ARE AR LA AR ARE AR ARA AR AR ARARE AR A AR AL ARE AR AR AR ARARE AR AR AR ERE AR AL
%

%

$ Individual Page TR setup each page represents a flawtype. %
$

$
% (chl C2

$
$ R1 | del col | break file for F1 %
$ R2 | std_mean | cwt_comp_mat for Fl
%

$ R3 | srTR | flawtype matrix for F1 $
$ R4 | pPcTR | flawchar matrix for F1 %
$ RS | newdata | PCA_data{5,1} for F1 $
% R6 | tsquare | PCA_data{6,1} for F1 %
$ R7 | QTR I PCA_data{7,1} for F1 %
$ R8 | empty I cwts_raw for Fl $
%

%

CARAR AR AL A AR AL A AR AR A RE AR A A A LR AR AR AR AR AR A AL A AR AR AR AR AR A AR AR AR A LA AR AL A AR
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% PCA Process feature vector matrix
%

$PCA_data{l,1}=del _col;
$PCA_data{2,1}=std_mean;
$PCA_data{3,1}=srTR;
$PCA_data{4,1}=pcTR;
$PCA_data{5,1l}=newdata;
$PCA_data{6,l}=tsquare;
$PCA_data{7,1}=QTR;

[r,c,d]l=size(TR);
for i=1:d
if i==
load_files=[TR{1,2,i}{:,:}];
PDDoutput=[TR{3,2,1}];
FVmatrix=[TR{5,2,1i}];
else
load_files=[load files;TR{1,2,i}{:,:}];
PDDoutput=[PDDoutput;TR{3,2,1i}1];
FVmatrix=[FVmatrix;TR{5,2,1i}1];
end

end

[break_points,num_breaks,break_file]=break_point_b (uTR);

$ 3D or 2D plot of all flaw examples IDed by flawtype.

PCA_plot (FVmatrix,break points);

title(['FV PC Plot for processed - TR Data Set ' data_origin '_' Group '_'
uTR_run number TR_run number ' with ' num2str(num breaks) ' Flawtypes'])
$PCA_plot (absmatrix,break _points_abs);

$title (['Abs. Poly Coeff Plot for processed - TR Data Set # J
num2str(data_file number) ' with ' num2str (num breaks) ' Flawtypes'])

$ 2D PC plots for 1 & 2, 2 & 3, 1 & 3

flaw_color=['rgmcbk'];flaw mark=['oxd+p.'];
numPC=["'PC#1';'PC#2';'PC#3"';"'PC#4"';'PC#5'; 'PC#6'];
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figure;gplotmatrix (FVmatrix(:,1:5), [],PDDoutput(:,1:2),flaw_color, flaw_mark,'',
'on', 'hist', numPC(1:5,:),numPC(1:5,:));

$plot (matrix(:,1),matrix(:,2), 'bo');%axis tight;xlabel('PC#1l');ylabel('PC#2"');
title(['PC''s #1, 2, 3, 4 & 5 Plotted for processed - TR Data Set ' data_origin
' ' Group '_' uTR_run_number TR_run number ' with ' num2str(num breaks) '
Flawtypes']):

gname (load_files);

figure;gplotmatrix (FVmatrix(:,1:2), [],PDDoutput(:,1:2), flaw_color, flaw_mark,'’,
'on', 'hist',numPC(1:2,:),numPC(1:2,:));

$plot (matrix(:,1), matrix(:,2), 'bo') ;%axis tight;xlabel ('PC#1') ;ylabel ('PC#2');
title(['PC #1 & 2 Plot for processed - TR Data Set ' data_origin '_' Group '_'
uTR_run number TR_run number ' with ' num2str(num breaks) ' Flawtypes']):;

gname (load_files);

figure;gplotmatrix (FVmatrix(:, [1

31),[1,PDDoutput (:,1:2), flaw_color, flaw_mark,'','on', 'hist',numPC([1

8l 2 )/ numBC([ I 8], );

$plot (matrix(:,1) ,matrix (:,3), 'bo')%axis tight;xlabel ('PC#1') ;ylabel('PC#3');
title(['PC #1 & 3 Plot for processed - TR Data Set ' data_origin '_' Group '_'
uTR_run_number TR_run_number ' with ' num2str(num breaks) ' Flawtypes']):;

gname (load_files);
figure;gplotmatrix(Fvmatrix(:,2:3), [],PDDoutput(:,1:2), flaw_color, flaw_mark,'',
'on', 'hist',numPC(2:3,:),numPC(2:3,:))

$plot (matrix(:,2),matrix (:,3), 'bo') ;%axis tight;xlabel ('PC#2');ylabel ('PC#3"'):
title(['PC #2 & 3 Plot for processed - TR Data Set ' data_origin '_' Group '_'
uTR_run number TR_run number ' with ' num2str(num breaks) ' Flawtypes']):

gname (load_files);

% 2D plots for 1lst 5 coeffs

$flaw_color=['rgmcbk'];flaw_mark=['oxd+p.'];
$numPC=["'coef#l';'coef#2'; "'coef#3'; 'coef#4'; " 'coef#5'];

$figure;gplotmatrix (absmatrix(:,1:5), [], PDDoutput_abs (:,1:2), flaw_color, flaw_ma
rk,'','on', 'hist',numPC(1:5, :),numPC(1:5,:)):

$title(['Coefs #1, 2, 3, 4 & 5 Plotted for processed - TR Data Set # '
num2str(data_file number) ' for all Flawtypes']):

$gname (load_files_abs);

% CLUSTER ANALYSIS

pdist_type='Mahal';
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Y=pdist (FVmatrix, pdist_type);

Ysqr=squareform(Y) ;

linkage_type='centeriod';

Z=linkage (Y, linkage_type);

graph_title=['Automated Linkage between Flaw Examples using ' pdist_type '
distance and ' linkage type ' linkage'];

dendrogram(z,0) ;title(graph_title);xlabel ('Flaw Example #');ylabel('Level of
Linkage');

T=cluster (Z,2);

% END CLUSTER ANALYSIS

PCA_plot.m

function PCA_plot (matrix,break_points, flaw);

%

$ PCA_plot.m

$

% function PCA plot (matrix,break points, flaw);

%

$ Calculate new data flaw centers (individually and all together)
%

for i=l:length(break_points)
if i==
flaw_data{l,i}=matrix (l:break points(l),:);
else
flaw_data{l,i}=matrix(break points(i-1)+1l:break points(i),:):
end

end

if (nargin == 2) % TR file (without flaw) processing
% Processed TR files need to only have the following cells for each page:
%

% cwt_examples, cwt_template, Feature vector compressed data, fextlDabs

data, PDDoutput and filenames
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[a,b]=size (matrix); % Number of PC's retianed
[r,c]l=size(flaw_data); % c = Number of flaws
flaw_mark=['ro';'gx';'md';'ct+';'bp';'k."']:
flaw_center mark=['rs';'gs';'ms';'cs';'bs';'ks'];

markerID={"'Flaw #1';'#1 Center';'Flaw #2';'#2 Center';'Flaw #3';'#3

Center';'Flaw #4'; ...
'#4 Center';'Flaw #5';'#5 Center';'Flaw #6';'#6 Center';'Flaw

#7';'#7 Center';;'Flaw #8';'#8 Center'};

data_plot_dim=input ('Does user want a "2"D or "3"D plot for multiple D data?

')
figure;
for i=1l:c

F_center=mean(flaw_data{1l,1i}); % center of feature type

cluster for a specified flawtype

F_variance=var(flaw_data{l,i}); % variance of feature type

cluster for a specified flawtype

if b == % Dimension of data

plot (flaw_data{1l}, flaw_mark(i, :)) ;hold on;

plot (F_center, flaw_center mark(i, :));legend (markerID(l:2*c,:),-1);
elseif b ==
plot (flaw_data{i} (:,1), flaw_data{i} (:,2), flaw_mark(i, :));hold on;

plot (F_center(l),F_center(2),flaw_center mark(i,:));legend(markerID(1l:2*c,:), -

1);
elseif b > 2
if data_plot_dim==

plot3(flaw_data{i} (:,1),flaw_data{i}(:,2), flaw_data{i} (:,3), flaw_mark(i,:)) shol

d on;grid on;
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plot3(F_center(l),F_center(2),F_center(3), flaw_center mark(i,:));legend (markerI
D(1l:2*c,:),-1);
xlabel ('PC#1');ylabel ('PC#2');zlabel ('PC#3');title(['PC for
num2str(c) ' flawtypes'l]);
else

plot(flaw_data{i} (:,1), flaw_data{i} (:,2), flaw_mark(i, :));hold on;

plot (F_center (1), F_center(2), flaw_center _mark(i,:));legend(markerID(l:2*c,:),
1);

xlabel ('PC#1');ylabel ('PC#2');title(['PC for : num2str(c)
flawtypes']);

end
end
end
hold off;
elseif (nargin == 3) % Flaw data and TR data already processed
FEETEILILILLILILILLTLILITILITLTILILITLLLILILILLLLILITILITLTITILILL22333%%%%
%

%
$ Individual Page TR setup each page represents a flawtype.

%
%
%
% C1 c2
%
$ R1 | del col | break file for F1 %
% R2 | std_mean | cwt_comp mat for Fl
%
% R3 | srTR | flawtype matrix for F1 %
% R4 | pcTR | flawchar_matrix for F1 %
% RS | newdata | PCA_data{5,1} for F1 %
% R6 | tsquare | PCA_data{6,1} for F1 %
% R7 | QTR | PCA data{7,1} for F1 %
% R8 | FV_reinsertion | cwts_raw for Fl %
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%
CARA A AR AR A LA AR AR AREREAREAEARE AR AR AR AREREAEALAREEE AR AREREEEAREREREAEARERE

[a,b]=size (matrix); $ Number of PC's retianed

[r,c]l=size(flaw_data); % c = Number of flaws

data_plot_dim=input ('Does user want a "2"D or "3"D plot for multiple D data?
')

figure;
flaw_mark=['ro';'gx';'md';'c+';'bp']l;
flaw_center_mark=['rs';'gs';'ms';'cs';'bs'];

markerID={'Flaw';'Flaw #1';'#1l Center';'Flaw #2';'#2 Center';'Flaw #3';'#3

Center';'Flaw #4'; ...
'#4 Center';'Flaw #5';'#5 Center'};

for i=l:c

F_center=mean(flaw_data{1l,i}):; $ center of feature type

cluster for a specified flawtype
F_variance=var (flaw_data{l,i}); % variance of feature type

cluster for a specified flawtype

if b == $ Dimension of data

plot (flaw(l), 'k”') ;hold on;grid on;
plot (flaw_data{l}, flaw_mark(i, :));hold on;
plot (F_center, flaw_center mark(i,:));%legend(markerID(1l:2*c,:),-1);

elseif b == 2

plot (flaw(1l), flaw(2), 'k*') ;hold on;grid on;
plot (flaw_data{i}(:,1),flaw_data{i}(:,2), flaw_mark(i, :));hold on;

plot (F_center(l),F_center(2),flaw_center_mark(i, :));%legend(markerID(1l:2*c,:), -

1);
elseif b > 2

if data_plot_dim==3
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plot3 (flaw(l), flaw(2),flaw(3), 'k*') ;hold on;grid on;

plot3(flaw_data{i}(:,1), flaw_data{i}(:,2), flaw_data{i}(:,3), flaw_mark(i,:));hol

d on;grid on;

plot3(F_center(l),F_center(2),F_center(3), flaw_center mark(i,:)) ;%legend(marker
ID(1*:2*c, :), 1) ;
xlabel ('PC#1');ylabel ('PC#2');zlabel ('PC#3');title(['PC for !
num2str(c) ' flawtypes and Example Flaw']);
else
plot(flaw(l),flaw(2), 'k*') ;hold on;grid on;
plot(flaw_data{i} (:,1), flaw_data{i} (:,2), flaw_mark(i, :));hold on;

plot (F_center (1), F_center(2), flaw_center mark(i,:));%legend(markerID(1l:2*c,:),~
1);

xlabel ('PC#1') ;ylabel ('PC#2');title(['PC for ! num2str (c) :
flawtypes and Example Flaw']);

end

end
end

else

['Wrong number of input arguments']

end

bayes_class.m

function
[classnonPCA, wrongnonPCA, classPCA,wrongPCA, g, BB]=bayes_class (uTR,TR,data_origin

s Group, uTR_run_number, TR_run_number, flaw) ;

%

% bayes_class.m

%

% function
[classnonPCA,wrbngnonPCA,classPCA,wrongPCA,g]=bayes_class(uTR,TR,data_origin,Gr

oup, run_number) ;
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%

% Classifies Y given data X. Number of columns denotes number of variables,
number

% of row for X was number of examples. X may contain many classes. Send one
Y at

% a time.

%

fprintf ('\r\n===== Bayesian Classification Results for ===== \n\n');

if nargin ==

data_origin=input ('Input TR data origin ("P"DD or "E"TSS). ','s'):;

Group=input ('Enter steam generator type (b, ¢ or w) or ETSS Group #.
Yy 8"

uTR_run_number=input ('Input uTR run number. ','s');

TR_run_number=input ('Input TR run number. ','s');

eval(['load TR ' data origin ' ' Group ' ' uTR run number TR run number
') B ) B ) S -

eval(['load uTR ' data origin ' ' Group ' ' uTR_run number TR run_number
i) B ) ) B o B
else

fprintf('Data origin was %s',data_origin);

fprintf ('\nData Group was %s',Group);

fprintf ('\nThe uTR Data run number was %s',uTR_run_ number) ;

fprintf ('\nThe TR Data run number was %s\n\n', TR_run_ number);

end

CAEAEEEE AR AEEREEERAEAREEEEEAEEREEEEEEEEEEEEAEEEEEEEEEEEEEEEREEEEEEREEEEREE
%

%
% Individual Page TR setup each page represents a flawtype. %
%
%
% ol c2
%
% R1 | del _col | break_file for F1 %
% R2 | std_mean | cwt_comp_mat for F1
%
% R3 | srTR | flawtype_matrix for F1 %
% R4 | pcTR | flawchar_matrix for F1 %
$ R5 | newdata | PCA_data{5,1} for F1 %
% R6 | tsquare | PCA_data{6,1} for F1 %
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$ R7 | QTR | PCA_data{7,1} for F1 %
% R8 | empty | cwts_raw for Fl %

%
CARE AR AR R AREEEAEEEEALEEEAEEEE AR AEEEE AR AR AR ALE AR R R

[r,c,d]=size (TR);
$for i=1l:d
if i==
load files=[TR{1,2,i}{:,:}]:
PDDoutput=[TR{3,2,1i}];

%

%

%

% else
% load_files=[load_files;TR{1,2,i}{:,:}1];
% PDDoutput=[PDDoutput;TR{3,2,1}];

% end

$end

PCAmatrix=TR{5,1,1};

% Bhatacharyya Bounds Calculation
% k=NCHOOSEK (d,2), perms(1l:4)

P1=1/d;P2=P1;sP12=sqrt (P1*P2) ; % assume equal probability for
any flawtype
k=1;
for i=1:d
PCAdatal=TR{5,2,1i};
meanl=mean (PCAdatal) ;
covl=cov (PCAdatal) ;covl=diag(diag(covl,0));
detcov (i)=det (covl) ;
for j=1l:d
if (3 ~=1) & (3 > 1)
PCAdata2=TR{5,2,3};:
mean2=mean (PCAdataZ2) ;
cov2=cov (PCAdata2) ; cov2=diag(diag(cov2,0)) ;
meanl2=mean2-meanl;covl2=(covl+cov2)./2;

$k12=1/8* (meanl2) * (inv (covl2)) * (meanl2) "

k12=1/8* (meanl2) * (inv (covl2) ) * (meanl2) '+1/2*log(det (covl2)/ (sqrt (det (covl) *det (
cov2))));
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BBij (k) =sP1l2*exp (-k12) ;
detcovl2 (k) =det (covl2) ;
k=k+1;
end
end
end

BB=sum(BBij) ;

$ Classify using non_PCA features

nonPCAclass=input ('Does user want to classify using original features ("y"es or
"n"o). ','s'):
fprintf('\n')
if nonPCAclass=='y'
feature_columns=input ('Define feature columns in MATLAB vector format. ');
feature_vector=TR{3,l,1}(:,feature_columns);
$feature_vector_bas=TR{3,1,1}(:,[1:2 14:15 40:42]); % Deletes the
abspoly's and geos features
$feature_vector_abs=TR{3,1,1}(:, [3:13]); % Deletes the geo
and basic features
$feature_vector_geo=TR{3,1,1}(:, [16:39]); % Deletes the abs
and basic features

end

% break information

[break_points, num_breaks,break file]=break point_ b (uTR):

% Must convert PDDoutput from string to number

for j=l:num breaks
[rb,cb]=size (break_file{1l,3}):
if j==
g=j*ones (rb,1):
else
g=[g:Jj*ones(rb,1)];
end

end

% Check what? TR or data_cell
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% testing TR load data or a data_cell

if nargin == % Testing a TR

check_all=input ('Does user want to check a "s"ingle flaw from file or
"a"l1? ','s');
if check all == 's'
which_flaw=input ('Enter which flaw [page and stack position] to check
against each FV data. ');
flaw=TR{5, 2,which_flaw (1) } (which_ flaw(2),:);
else
flaw=PCAmatrix;

end

% Now classify

classPCA=classify(flaw, PCAmatrix, g);

wrongPCA=find (abs (diff ([classPCA g],1,2))~=0)";

fprintf ('\nWrong classifications for the PCA data:\n')

fprintf (' %2.0f ', wrongPCA)

fprintf('\n')

fprintf (' \nPercentage of Wrong Classifications for the PCA data = %2.2f
\n\n',100*length (wrongPCA) /length(classPCA));

if nonPCAclass == 'y'
classnonPCA=classify(feature_vector, feature_vector,g);
wrongnonPCA=find (abs (diff ([classnonPCA g],1,2))~=0)";
fprintf ('\nWrong classifications for the basic features:\n')
fprintf (' %2.0f ',wrongnonPCA)
fprintf('\n')
fprintf (' \nPercentage of Wrong Classifications for the nonPCA data =
$2.2f \n\n', 100*length (wrongnonPCA) /length (classnonPCA)) ;
else
classnonPCA=[] ;wrongnonPCA=[] ;

end

elseif nargin == % Testing a data cell

classPCA=classify(flaw, PCAmatrix, g) ;classnonPCA=[];wrongnonPCA=[] ;wrongPCA=[];
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end

break_point_b.m

function [break points,num breaks,break file]=break point_ b (uTR);

$ break_point b.m

%

$ function [break points,num_breaksbreak file]=break point_ b (uTR);
%

$ Break Point determination.

%
[r,c,d]=size (uTR) ;

AR AR A AR AR AR R AR AR AR AL AER AR AEEER AR AER AR AR AR AEEAREE AR AR EEREEEEEEE AR AEE AR EEE
%

%
$ Each uTR cell array page contains the information for one flaw %
% in a 1X3 nested cell array. $
$
%
% Ccl c2
c3 %

$ | Origin | Original Signal X | flaw type |

$
% | Group | Magnitude and Phase | % Through Wall |

$
$ R1 | filename | flaw location | flaw character |

$
% | | Feature Vector | |

$
% | | CWT | |

%
$

%

$
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% Generate a cell with the pertainent shuffling info

for i=1:d

sorting matrix{i,1}=uTR{1,3,i}{1,1}; % flaw type
sorting matrix{i,2}=uTR{1,1,i}{1,1}; % Origin
sorting matrix{i,3}=uTR{1,1,1i}{2,1}; % Group
sorting matrix{i,4}=uTR{1,1,1i}{3,1}; % filename

end

for i=1:d
flaw_type vector(i,l)=sorting matrix{i, 1} (1);
flaw_type_ vector (i, 2)=sorting matrix{i, 1} (2);

end

file number diff=diff(flaw_type_ vector',2);

[r,c]l=size(sorting matrix(:,1));

if r==1 | sum(abs(file_number_ diff)) == 0
break_points=0;num_breaks=0;break file=sorting matrix;
else
break _points=find(file number_ diff~=0);
break_points=[break points r];
num_breaks=length (find (file_number diff~=0))+1;

end

for i=1l:num breaks
if 1 ==
break_file{l,i}=sorting matrix(l:break_points(1l),:);
else
break file{l,i}=sorting_matrix (break points(i-1)+1l:break points(i),:);
end

end

NN_char.m
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function

[net,Y,NN_char_ run number]=NN_char (uTR, TR,data_origin, Group, uTR_run_ number,TR_r

un_number, filename, flaw, flaw_type) ;

% [net,Y]=NN_char (uTR, TR,data_origin, Group, run_number, flaw) ;

fprintf ('\r\

if nargin ==

n===== Neural Network Characterization

data_origin=input ('Input TR data origin ("P"DD or

"E"TSS) N l,lsl)’.

Group=input ('Enter steam generator type (b, c or w) or ETSS Group #.

l"sl);

run_number=input ('Input TR run number. ','s');

eval(['load TR_'

'7'1);

eval (['load uTR '

':'1):

else

fprintf ('\nData origin was %s',data_origin);

fprintf ('\nData Group was $%s',Group):

data_origin '_' Group '_' uTR_run number TR_run_number

data_origin '_' Group '_' uTR run number TR _run_ number

fprintf ('\nThe Data run number was %s %s\n',uTR_run number, TR_run_ number);

end

CAEAREEE AR A AR AR A LA AR AR AR AR AL ARE AR ARERE AR ALAEEEARAREREARALEEE AR ARERERE LT

$
%
% Individual Page TR setup each page represents a flawtype. %
$
$
% C1 c2
%
% R1 | del col | break_file for F1 %
% R2 | std_mean | cwt_comp mat for Fl
$
$ R3 | srTR | flawtype matrix for F1 %
% R4 | pcTR | flawchar matrix for F1 %
% R5 | newdata | PCA_data{5,1} for F1 %
% R6 [ tsquare | PCA_data{6,1} for F1 %
$ R7 | QTR | PCA_data{7,1} for F1 %
% R8 | empty | cwts_raw for F1 %
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%

LA AR AR A EE AR AR R AR A RE AR AR AR A AR AR A AR A RE AR AR AR AR AR AR AR AR AR AR

[rTR, cTR,dTR]=size (TR) ;
[ruTR, cuTR, duTR]=size (uTR) ;

% break information

[break_points,num breaks,break file]=break point_b (uTR);

if nargin == 6 % Train NN

for i=1:dTR % loop number = flawtype

PCAmatrix=TR{5,2,1i};

[a,b]=size(TR{5,2,1i});

if i>1

clear T;

end

for j=1l:a
T(3,:)=TR{4,2,i}{3,1}(:,2):

end

% Corelation Analysis of P and T

fprintf ('\n===== Correlation Analysis for Flawtype %1.0f
eval ([ 'CA=corrcoef ([PCAmatrix T)]); [rCA, cCA]l=size (CA);"'])
eval (['"CA' num2str (i) '=CA(1l:rCA,16:cCA)'])

% Neural Network

fprintf ("===== Neural Network Analysis for Flawtype %1.0f
Sl=input ('Number of neurons for the hidden layer (5). '):;
goal=input ('Desire SSE goal (0.05). ');

fprintf('\n'")

]

PCAmatrix';

T =1T";
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[Pn, minp, maxp, Tn, mint,maxt ]=premnmx (P, T) ; $ T
must be scaled

% [Pn, meanp, stdp, Tn, meant,stdt]=prestd (P, T);

[R,Q)=size (Pn); [S2,Q]=size (Tn); $ Tn
and T are the same size

% NEWFF (PR, [S1 S2...SN1l], {TF1 TF2...TFNl},BTF,BLF,PF) takes,

% PR - Rx2 matrix of min and max values for R input elements.

% Si - Size of ith layer, for N1 layers.

% TFi - Transfer function of ith layer, default = 'tansig'.

% BTF - Backprop network training function, default = 'trainlm'.

% BLF - Backprop weight/bias learning function, default =
'learngdm'.

% PF - Performance function, default = 'mse'.

% and returns an N layer feed-forward backprop network.

net = newff (minmax(Pn), [S1 S2],{'tansig' 'purelin'}, 'trainbr'); % Setup

NN

net.trainParam.goal = goal;

$net.trainParam.mc = 0.95;

net.trainParam.show = 10;

net.trainParam.epochs = 200;

net = train(net,Pn, Tn):; % use
Tn

Yn = sim(net, Pn);
Y = postmnmx (Yn,mint,maxt) ; % using
this since Tn was scaled

%Y = poststd (¥Yn,meant, stdt);

MSE_TnYn=sum(sum((Tn—Yn).“2))/(S2*Q); $ MSE

between Tn and Yn matrices

fprintf ('\nTarget Flaw characterization vector for flawtype # %1.0f

\n!,i)

T

fprintf('\nNN Flaw characterization vector for flawtype # = $%1.0f
\n',1i)

b

fprintf('\nThe MSE between Tn and Yn for flawtype # %1.0f = %.4f

\n\n',i,MSE_TnYn)

for k=1:S2
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figure; [m, b, r] = postreg(Y(k,:),T(k,:)):% Performs a linear
regression between the network and the target

title(['Correlation between Target Data and Output Data for
flawtype ' num2str (i) ' variable ' num2str(k)])

fprintf ('Correlation Coeff between T and Y for flawtype # %1.0f
variable %1.0f = %1.4f \n',i, k, r)

end

fprintf('\n')

save_net=input ('Does user want to save the generated NN and info ("y"es
or "n"o)? ','s');
if save_net == 'y'
NN _char run number=input ('NN char run number (usually 1, 2 ... with

5al being full run ID). ','s');

eval (['save net_char ' data_origin '_' uTR_run number TR _run number
NN_char_run number ' ' num2str(i) ' net minp maxp mint maxt;']);
$eval(['save net_class_' data_origin ' NN _run_number '
num2str(i) ' net meanp stdp meant stdt;']):
else

NN_char_ run number=[];
end
fprintf('\n"')
end
end
if nargin == % Characterize flaw with NN
NN_char_ run_number=input ('NN char run number. ','s');
eval(['load net_char_' data_origin '_' uTR_run_number TR_run_number
NN_char run number ' ' num2str(flaw_type) ';']);
[r,c]=size(flaw);

$ mnmx scaling

scaled flaw = 2.* (flaw-minp (ones(r,1),:)) ./ (maxp (ones (r,1),:) -

minp (ones(r,1),:)) - ones(r,1);

unscaled_Y = sim(net,scaled_flaw');
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Y = postmnmx (unscaled_Y, mint,maxt);

end

Xvalidate.m

% Xvalidate.m

clear predicted_class actual_class;

[r,c,d])=size (uTR);

CARAAE AR ARE AR AREEEARARAREAE AR AR AR ARERERERE AR EARAREREEAREREEREREEEEREREEEARE
%

%
$ Each uTR cell array page contains the information for one flaw %
% in a 1X3 nested cell array %
$
%
$ c1 G2
Cc3 $
% | Origin | Original Signal X | flaw type |
%
% | Group | Magnitude and Phase | % Through Wall |
%
$ R1 | filename | flaw location | flaw character |
%
% | | Feature Vector |
%
% | | CWT | |

%
CARE AR A AR AR A EE AR AR A AR AR AR ARE R AR AR AR AR A AR AR E R AR E R A AR A AL LR

% feature_vector=[flaw_phase flaw_mag fextlDabs fextlDdiff geofext imagefext];
% position of feature families [2 21 23 48 51)
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% redivided and assemble 23 subgroups or sg $%FFFFFLILEELLLLLLEILRLLLLEILRRS

k=1;
for i=1l:d
if mod(i,23)~=0
$eval (['sg' num2str(mod(i,4)) '(k,:)=uTR{1,2,i}{4,1}:'])
$eval (['sgf' num2str(mod(i,4)) '(k,:)=uTR{1,1,i}{3,1} ;'])
$eval (['sgt' num2str(mod(i,4)) '(k,:)=uTR{1,3,1i}{(1,1} :'])
eval(['sg' num2str(mod(i,23)) '{k,1}=uTR{1,2,1i}{4,1};'])
eval (['sg' num2str(mod(i,23)) '{k,2}=uTR{1,1,1i}{3,1}:'])
eval(['sg' num2str(mod(i,23)) '{k,3}=uTR{1,3,1i}{1,1};'])
else
$eval(['sg' num2str(4) '(k,:)=uTR{1,2,1}{4,1};'])
$eval (['sgf' num2str(4) ' (k,:)=uTR{1,1,1i}{3,1}:;'])
$eval(['sgt' num2str(4) ' (k,:)=uTR{1,3,i}{1,1}:'])
eval (['sg' num2str(23) '{k,1l}=uTR{1,2,i}{4,1}:"'])
eval (['sg' num2str(23) '{k,2}=uTR{1,1,i}{3,1}:'])
eval (['sg' num2str(23) '{k,3}=uTR{1,3,i}{1,1}:'])
k=k+1;
end

end

feature_breaks=[2 21 23 48 51];
D=1;

for i=l:length(feature breaks) % feature families

if i==
del_group=1:feature_breaks(l);
else
del group=feature breaks(i-1)+1:feature_breaks(i):

end

for j=1:23 % subgroup formations

clear T X C Y gC gT newdataC newdataT Del_ GroupX Del_ GroupY;

z=1:23;
z(3)=[1; % deletes number j from 2
eval(['X=cat(1l,sg’ num2str(z(1)) ',sg’' num2str(z(2)) ', sg’

num2str(z(3)) ',sg' num2str(z(4))
',s8g' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
',sg' num2str(z(8))
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',sg' num2str(z(9)) ',sg'

',sg' num2str(z(12))

',sg' num2str(z(13)) ',sg'
',sg' num2str(z(16)) ...

',sg' num2str(z(17)) ',sg'
',sg' num2str(z(20)) ...

',sg' num2str(z(21)) ',sg'
Training

eval (['Y=sg' num2str(j) ':;'])

Checking

[rY,cY]=size(Y);

[£X, cX]=size (X);

[Z,index]=sortrows (X (:,3)):
and multiple rows.

X=X (index, :);

[Z2,index]=sortrows (Y (:,3)):

Y=Y (index, :);clear Z;

for k=1:rX

Del GroupX(k, :)=X{k, 1} (:,del_group);

feature group
X{k,1} (:,del_group)=[]:
T(k, :)=X{k, 1};
end

for k=l:rY

Del_ GroupY (k, :)=Y{k, 1} (:,del_group);

feature group
Y{k,1} (:,del_group)=[];
C(k, :)=Y{k, 1};

end

% Pre-Processing C and T
del col=[find(var(T)==0)1];
T(:,del_col)=[];

C(:,del _col)=[];
[rT,cT]=size(T);
[rC,cCl=size (C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:);
C=C-meanT (ones (xC,1),:);

stdT=std (T) ;
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cols

T=T./stdT (ones (xT,1),:):
C=C./stdT (ones(xC,1),:):

$ Pre-Processing Deleted Groups
del col R=[find(var (Del_ GroupX)==0)];

Del GroupX(:,del_col R)=[];

Del GroupY(:,del col R)=[]:

[rT,cT]=size (Del_GroupX) ;

[rC, cCl=size(Del_GroupY) ;

$ mean-centering

meanT=mean (Del GroupX) ;

Del GroupX=Del GroupX-meanT (ones(rT,1),:);
Del GroupY=Del GroupY-meanT (ones(rC,1),:);
stdT=std (Del_ GroupX) ;
Del_GroupX=Del_GroupX./sth(ones(rT,l),:);
Del GroupY=Del GroupY./stdT(ones(xC,1),:):

% Create classification vectors, must use numbers

for L=1:rT
if prod (double (X{L, 3}))==5621 $ IM
gT (L) =1;
elseif prod(double (X{L,3}))==5655 % WA
gT (L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L) =3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L) =4;
end
end
for L=1:rC
if prod(double (Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double (Y{L,3}))==5655 $ WA
gC(L)=2;
elseif prod(double (Y{L,3}))==5840 $ PI
gC (L) =3;
elseif prod(double (Y{L,3}))==6048 $ TH
gC (L) =4;

end
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end

% classify using raw features

if length(del_group)<18
predicted_class_R{D,l}=classify(Del_GroupY,Del GroupX,gT)';
actual class_R{D,1}=gC;
incorrect_R{D,1l}=find(abs(diff ([predicted class R{D,1}'
actual class R{D,1}'],1,2))~=0)";
if isempty(find (abs (diff ([predicted _class_R{D, 1}’
actual_class_R{D,1}'],1,2))~=0)")==
incorrect_R{D,1}=0;
family incorrect_R{j,1}=0;
else
incorrect R{D,1l}=find (abs(diff ([predicted_class_R{D,1}'
actual class_R{D,1}'],1,2))~=0)";
family incorrect_R{j,l}=find(abs(diff ([predicted class R{D,1}"’
actual_class_R{D,1}'],1,2))~=0)";
end

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT,varT, expT]=pcacov (cov(T)) ;

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT(1:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf ("\t\t%.6f\r', explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs = %.6f
\n\n', sum(explained (1: PCA_num)))

$ Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; $ Transformed C

$ classify using PCs

predicted class{D,l}=classify(newdataC,newdataT,gT)"';
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actual class{D,1}=gC;
% Keeps up with incorrects

if isempty(find (abs (diff ([predicted_class{D, 1}’
actual_class{D,1}'],1,2))~=0)")==1
incorrect{D, 1}=0;
family incorrect{j,1}=0;
else
incorrect{D,1}=find (abs (diff ([predicted class{D, 1}"
actual_class{D,1}'],1,2))~=0)"';
family incorrect{j,1l}=find(abs (diff ([predicted_class{D,1}"'
actual class{D,1}'],1,2))~=0)";

end

D=D+1;
end

% family incorrects using raw data
if length(del_group)<18
[r,cl=size(family incorrect_R):;
for n=1:r
if family incorrect R{n,1}==0
family Incorrect_total R(n)=0;
else
family Incorrect_total R(n)=length(incorrect_R{n,1});
end
end
deleted family=i;
family Incorrect_percentage R=sum(family Incorrect_total R)/(r*4)*100;
fprintf ('The incorrect percentage for raw deleted family %1.0f = %2.2f
\n',i, family Incorrect percentage R)

clear family incorrect_R family Incorrect_total R:

end

% family incorrects
[r,c]l=size(family incorrect):;
for n=1:r

if family incorrect{n,1}==0
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family Incorrect_total (n)=0;
else
family Incorrect_total(n)=length(incorrect{n,1});
end
end
deleted family=i;
family Incorrect_percentage=sum(family Incorrect_total)/(r*4)*100;
fprintf ('The incorrect percentage without deleted family %1.0f = $%2.2f
\n',i,family Incorrect_percentage)

clear family incorrect family Incorrect_ total;

end

$ all results

[r,c]l=size(incorrect);
for i=l:r
if incorrect{i,l}==
Incorrect_total(i)=0;
else
Incorrect total(i)=length(incorrect{i,1});
end

end

Incorrect_percentage=sum(Incorrect_ total)/(r*4)*100;
fprintf ('The average incorrect percentage for deleted families = %2.2f

\n', Incorrect_percentage)
$ All Feature Families included %%%%%%%%%%%22222222343439222293222222223%%%%
D=1;

for j=1:23 % subgroup formations

clear T X C Y gC gT newdataC newdataT;

z=1:23;
z(3)=I[1; $ deletes number j from 2
eval (['X=cat (1, sg' numZ2str(z (1)) ', sqg' num2str (z(2)) 1,/sg”

num2str(z(3)) ',sg' num2str(z(4))

',sg' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
',sg' num2str(z(8))

',sg' num2str(z(9)) ',sg' num2str(z(10)) ',sg' num2str(z(1l1l))
',sg' num2str(z(12))
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',sg' num2str(z(13)) ',sg' num2str(z(14)) ',sg' num2str(z(1l5))
',sg' num2str(z(16))

',sg' num2str(z(17)) ',sg' num2str(z(18)) ',sg' num2str(z(19))
',sg' num2str (z(20))
',sg' num2str(z(21)) ',sg' num2str(z(22)) '):;']) $ X =
Training
eval(['Y=sg' num2str(j) ';']) $ Y =
Checking

[rY,cY]=size(Y):

[rX, cX]=size (X);

[Z, index]=sortrows (X(:,3)); % sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows (Y (:,3));

Y=Y (index, :) ;clear Z;

for k=1:rX

T(k, :)=X{k,1}; $ extracts Training data
end
for k=1l:rY

C(k, :)=Y{k,1}; $ extracts Checking data
end

$ Pre-Processing

del col=[find(var(T)==0)1]; $ 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[];
[rT,cT]=size (T):
[rC,cCl=size(C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:);
C=C-meanT (ones (rC,1),:);
stdT=std(T)
T=T./stdT (ones (xT,1),:);
C=C./stdT (ones(rC,1),:);

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 & IM
gT (L)=1;
elseif prod(double (X{L,3}))==5655 % WA
gT (L) =2;
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elseif prod(double (X{L,3}))==5840 $ PI

gT (L) =3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L) =4;
end
end
for L=1:xC
if prod(double(Y{L, 3}))==5621 $ IM
gC(L)=1;
elseif prod(double(Y{L,3}))==5655 % WA
gC (L) =2;
elseif prod(double(Y{L,3}))==5840 % PI
gC(L)=3;
elseif prod(double (Y{L,3}))==6048 % TH
gC(L)=4;
end
end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT,varT, expT] =pcacov (cov (T)) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT (1:PCA_num, :) /sum(LATENT (1:PCA_num, :));

$fprintf (" \t\t%.6£f\r', explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs = $.6f
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

% classify using PCs

predicted_class_all_4{D,1l}=classify(newdataC,newdataT,gT)";
actual _class_all 4{D,1}=gC;

% Keeps up with incorrects
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wrong_flaw=find(abs(diff([predicted class_all 4{D,1}'
actual_class_all 4{D,1}'],1,2))~=0)";
if isempty(wrong_ flaw)==
incorrect_all 4{D,1}=0;
else
incorrect_all 4{D,l}=wrong_flaw;
[t,u]l=size (wrong_flaw);
for a=1l:u
incorrect_all 4{D, l+a}=Y{wrong_flaw(a),2};
end

end

D=D+1;

end

$ all results

[r,c]l=size(incorrect_all 4);
for i=1:r
if incorrect_all 4{i,1}==0
Incorrect_total all 4(i)=0;
else
Incorrect_total all 4(i)=length(incorrect_all 4{i,1});
end

end

Incorrect_percentage_all_ 4=sum(Incorrect_total_all 4)/(r*4)*100;
fprintf ('The incorrect percentage using all feature families (4 extracted) =

$2.2f \n', Incorrect_percentage_all_4)

$ Extract One %3¥332A2ITIVLILIVLILLILILIILILTIRILLIRLILILRILBILI2989%3%%%

D=1;

for j=1:92 % subgroup formations

clear T X C Y gT gC newdataC newdataT Del_ GroupX Del_ GroupY;

% extract Y and X
Y{1l,1}=uTR{1,2,3}{4,1};¥Y{1,2}=uTR{1,1,3}{3,1};Y{1,3}=uTR{1,3,3}{1,1};
X=uTR;X(:,:,3)=[1:
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for P=1:91
X1{P,1}=X{1,2,P}{4,1};X1{P,2}=X{1,1,P}{3,1}:;X1{P,3}=X{(1,3,P}{1,1};

end

X=X1l;clear X1;

[rY,cY]=size(Y):

[rX,cX]=size (X):;

[Z, index]=sortrows (X(:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z2,index]=sortrows (Y (:,3)):

Y=Y (index, :) ;clear Z;

for k=1l:rX

T(k, :)=X{k,1}; % extracts Training data
end
for k=1l:rY

C(k, :)=Y{k,1}; $ extracts Checking data
end

$ Pre-Processing C and T
del col=[find(var(T)==0)]; % 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[];
[rT,cT]=size(T);
[rC,cC]l=size(C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (xT,1),:);
C=C-meanT (ones (xC,1),:):
stdT=std (T) ;
T=T./stdT (ones (rT,1),:);
C=C./stdT (ones (xC,1),:):

% Create classification vectors, must use numbers

for L=1:zT
if prod(double (X{L,3}))==5621 $ IM
gT (L)=1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L) =2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L) =3;

elseif prod(double (X{L,3}))==6048 $ TH
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gT (L)=4;
end

end

if prod(double(Y{1,3}))==5621 $ IM
gC=1;

elseif prod(double(Y{1l,3}))==5655 $ WA
gC=2;

elseif prod(double(Y{1,3}))==5840 $ PI
gC=3;

elseif prod(double(Y{1,3}))==6048 % TH
gC=4;

end

$PCA calculations

[PC, SCORE, LATENT, t square] =princomp (T) ;

[pcT, varT, expT]=pcacov (cov (T)) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT (1:PCA_num, :) /sum(LATENT (1:PCA_num,:));

$fprintf ('\t\t%.6£f\r',explained)

% retained variance

$fprintf ('\nPercent Explained for kept PCs
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:, 1: PCA_num) ;

PC=PC(:,1:PCA_num) ;

newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

% classify using PCs

predicted class_all_1{D,l}=classify(newdataC, newdataT,gT)";
actual_class_all 1{D,1}=gC;

% Keeps up with incorrects

wrong flaw_all l=find(abs (diff([predicted_class_all_1{D,1}
actual _class_all 1{D,1}]1))~=0)";
if isempty(wrong_flaw_all 1)==
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incorrect_all 1{D,1}=0;
incorrect_all _1{D,2}=0;
else
incorrect_all 1{D,1l}=wrong_flaw_all 1;
incorrect_all_1(D,2}=Y{1,2};

end

D=D+1;

end

$ all results extracting one

[r,c]l=size(incorrect_all 1);
for i=l:r
if incorrect_all 1{i,1}==0
Incorrect_total_all 1(i)=0;
else
Incorrect_total_all 1l(i)=length(incorrect_all 1{i,1});
end

end
Incorrect_percentage_all l=sum(Incorrect_total_all_1l)/r*100;

fprintf ('The average incorrect percentage (extracting one) using all feature

families = %2.2f \n', Incorrect percentage _all 1)

Xvalidate_B.m

$ Xvalidate B.m

clear predicted_class actual class predicted_class_R actual_class_R

predicted_class_R1l actual_class_R1l;
[r,c,d]=size (uTR);

CARA AR AR AR ARE AR AR ARARE AR AR AR AR ARE AR AR AREREALAREREARERE AR ARAREARAREREAEEEERE R
%
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% Each uTR cell array page contains the information for one flaw %

% in a 1X3 nested cell array

%
%
€3

% | Origin
%

% | Group
%

% R1 | filename
%

% |
%

% |
%

%

%

Cl

%
Original Signal X

Magnitude and Phase

flaw location

Feature Vector

| CWT

c2

flaw type |

$ Through Wall |

flaw character |

%

AR AR R AR AR AR AR A AR AR AR AR AR LR R AR R R AR R AR R AR AR AR R R AR AL LR R A AL

% feature_vector=[flaw phase flaw mag fextlDabs fextlDdiff geofext imagefext];

% position of feature families [2 21 23 48 51]

% Extract One, Use one feaute group at a time $3¥FEFIIFIILIITL3I3332333%8%3%%%

feature breaks=[2 21 23 48 51];

D=1;E=1;

for i=1l:length(feature_breaks)

D=1;

if i==1

group=1: feature_breaks (1) ;

else

% feature families

group=feature_breaks (i-1)+1:feature breaks (i)

end
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if length(group) < 20

for j=1:92 % subgroup formations

clear T X X1 C Y gC gT;

$ extract Y and X

Y{1,1}=uTR{1,2,3}{4,1};¥{1,2}=uTR{1,1,3}{3,1};Y{1,3}=uTR{1,3,3}{1,1};

X1=uTR;

X1(:,:,3)=I[1:

for P=1:91

X{p,1}=X1{1,2,P}{4,1};x{P,2}=X1{1,1,P}{3,1};:X{P,3}=X1{1,3,P}{1,1};

end

[rY,cY]=size(Y);

[rX,cX]=size(X);

[Z,index]=sortrows (X(:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows (Y (:,3)):

Y=Y (index, :);clear Z;

for k=1:rX

T(k,:)=X{k,1} (:,group); % Retains the extracted feature group
end
for k=1l:rYy

C(k, :)=Y{k, 1} (:,group); $ Retains the extracted feature group
end

$ Pre-Processing C and T
del_col=[find(var(T)==0)]; % 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[];
[rT,cT]=size(T);

[xC, cC]l=size (C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1), :):
C=C-meanT (ones (rC,1),:);
stdT=std(T);
T=T./stdT (ones (rT,1),:);
C=C./stdT (ones (xC,1),:);

$ Create classification vectors, must use numbers
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for L=1:rT
if prod(double (X{L, 3}))==5621 $ IM
gT(L)=1;
elseif prod(double (X{L, 3}))==5655 $ WA
gT(L)=2;
elseif prod(double (X{L, 3}))==5840 $ PI
gT (L) =3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L) =4;
end
end
for L=1:rC
if prod(double (Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double (Y{L,3}))==5655 $ WA
gC(L)=2;
elseif prod(double (Y{L, 3}))==5840 $ PI
gC(L)=3;
elseif prod(double (Y{L,3}))==6048 $ TH
gC(L)=4;
end

end

% classify using raw features

predicted_class_R1{D,1l}=classify(C,T,gT)"';

actual class_R1{D,1}=gC;

wrong_flaw_Rl=find(abs(diff ([predicted_class_R1{D, 1}
actual_class_R1{D,1}]))~=0)"';

if isempty(wrong_flaw_Rl)==
incorrect_R1{D,1}=0;
incorrect_R1{D,2}=0;
incorrect_R1_all{E,1}=0;
incorrect_R1l_all{E,2}=0;

else
incorrect_R1{D, 1l}=wrong_flaw_R1;
incorrect_R1{D,2}=Y{1,2};

incorrect R1_all{E,l}=wrong_flaw R1l;
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incorrect_R1_all{E,2}=Y{1,2};

end

D=D+1;E=E+1;

end

$ family incorrects using raw data

[r,c]=size(incorrect_R1);
for n=1:r
if isempty(incorrect_Rl{n,1}) == 1 | incorrect_ Rl{n,1l} == 0
Incorrect_total R1l(n)=0;
else
Incorrect_total Rl (n)=length(incorrect_Rl{n,1});
end

end

Incorrect_percentage_Rl=sum(Incorrect_total R1)/r*100;
fprintf ('The incorrect percentage (extract one, NO PCA) for family

$1.0f = %2.2f \n', i, Incorrect_percentage R1)

clear incorrect_R1;

clear Incorrect_total R1;
clear Incorrect_percentage_R1;
clear predicted_class_Rl;

clear actual_class_R1;

end

clear D;

end

% all results for that feature family

[r,c]=size(incorrect_R1l_all);

for i=1l:r

if incorrect Rl _all{i,1}==0
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Incorrect_total R1 _all(i)=0;
else

Incorrect_total R1_all(i)=length(incorrect_R1_all{i,1});
end

end

Incorrect_percentage R1_all=sum(Incorrect_total R1_all)/r*100;
fprintf ('The average incorrect percentage (extract one, NO PCA) for

families = %2.2f \n', Incorrect_percentage_R1l_all)

$ Extract 1, use CWT information %3333 323332232LILLIILLILLB88398%%%

D=1;

CWT=[24:51];

for j=1:92 % subgroup formations
clear T X X1 C Y gC gT newdataC newdataT;
% extract Y and X

Y{1,1}=uTR{1,2,3}{4,1};Y{1,2}=uTR{1,1,3}{3,1};¥{1,3}=uTR{1,3,3}{1,1};

X1=uTR;
X1(:,:,3)=01:
for P=1:91

all

X{P,1}=X1{1,2,P}{4,1};X{P,2}=X1{1,1,P}{3,1};X{P,3}=X1{1,3,P}{1,1};

end
[rY,cY]=size(Y);
[rX, cX]=size (X) ;

[Z, index]=sortrows (X(:,3)); $ sorting matrix has 1 columns

and multiple rows.
X=X (index, :);
[Z,index]=sortrows (Y (:,3));

Y=Y (index, :) ;clear Z;

for k=1:rX

T(k, :)=X{k, 1} (:,CWT) ; % Retains the extracted feature group
end
for k=1l:rY

C(k, :)=Y{k, 1} (:,CWT); % Retains the extracted feature group
end

$ Pre-Processing C and T

del_col=[find(var(T)==0)]; % 0 Varaince cols
T(:,del_col)=[];

C(:,del _col)=[];
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[T, cT]=size(T);

[rC,cC]=size(C);

$ mean-centering

meanT=mean (T) ;

T=T-meanT (ones (rT,1),:);

C=C-meanT (ones (rC,1),:);

stdT=std(T);

T=T./stdT (ones (xT,1),:);

C=C./stdT (ones (xC,1),:);

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov (T)) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')
explained=100*LATENT (1:PCA_num, :)/sum(LATENT (1:PCA_num, :)) ;
$fprintf ("\t\t%.6£f\r',explained)

$ retained variance

$fprintf (' \nPercent Explained for kept PCs

\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's
SCORE=SCORE (:, 1:PCA_num) ;
PC=PC(:,1:PCA_num) ;

newdataT=SCORE; $ Transformed T

newdataC=C*PC; $ Transformed C

$ Create classification vectors, must use numbers

for L=1:xT
if prod(double (X{L,3}))==5621 $ IM
gT (L) =1;
elseif prod(double (X{L,3}))==5655 $ WA
gT(L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L)=3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L)=4;
end
end
for L=1:rxC

if prod(double(Y{L,3}))==5621 % IM
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gC(L)=1;
elseif prod (double (Y{L,3}))==5655 $ WA

gC(L)=2;

elseif prod(double (Y{L,3}))==5840 $ PI
gC(L)=3;

elseif prod(double (Y{L,3}))==6048 % TH
gC(L)=4;

end

end

% classify using raw features

predicted_class_CWT{D,l}=classify(newdataC,newdataT,gT)"';

actual_class_CWT{D,1}=gC;

wrong_flaw_CWT=find(abs (diff ([predicted class_CWT{D, 1}
actual_class_CWT{D,1}]))~=0)"';

if isempty(wrong_ flaw_CWT)==1 | wrong_flaw CWT == 0
incorrect_CWT({D,1}=0;
incorrect CWT{D,2}=0;
else
incorrect CWT{D, 1}=wrong_flaw CWT;
incorrect CWT({D,2}=Y{1,2};

end

D=D+1;

end

% family incorrects using raw data

[r,c]l=size(incorrect CWT);
for n=1:r
if isempty(incorrect CWT{n,1}) == 1 | incorrect CWT{n,1} == 0
Incorrect_total CWT(n)=0;
else
Incorrect_total CWT (n)=length (incorrect CWT{n,1});
end
end

Incorrect_percentage CWT=sum(Incorrect_total CWT)/r*100;
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fprintf ('The incorrect percentage (extract one, PCA) only using CWT =

$2.2f \n',Incorrect_percentage_CWT)

$clear incorrect_ CWT Incorrect_total CWT Incorrect_percentage_ CWT;

% Extract One without CWT 2332333333333 3233233323332332233223322388338833833%%

D=1;
del CWT=[24:51];

for j=1:92 % subgroup formations

clear T X C Y gT gC newdataC newdataT;

% extract Y and X

Y{1,1}=uTR{1,2,3}{4,1}:;Y{1,2}=uTR{1,1,3}{3,1}:¥{(1,3}=uTR{1,3,3}{1,1};

X=uTR;X(:,:,3)=[]1;

for P=1:91

X1{pP,1}=X{1,2,P}{4,1};X1{P,2}=X{1,1,P}{3,1};X1{P,3}=X{1,3,P}{(1,1};

end

X=X1l;clear X1;

[rY,cY]=size(Y):

[£X,cX]=size (X);

[Z, index]=sortrows (X (:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :) ;

[Z, index]=sortrows (Y(:,3));

Y=Y (index, :) ;clear Z;

for k=1:rX
X{k,1} (:,del CWT)=[]; % Extracts feature family
T(k,:)=X{k,1}; % extracts Training data
end
for k=1:rY
Y{k, 1} (:,del_CWT)=[]; % Extracts feature family
C(k, :)=Y{k, 1}; % extracts Checking data
end

% Pre-Processing C and T

del col=[find(var(T)==0)]; % 0 Varaince cols
T(:,del_col)=[];

C(:,del_col)=I[];

[rT,cT]=size(T);
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[rC,cC]l=size(C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (xT, 1), :):;
C=C-meanT (ones (xC,1),:);
stdT=std(T) ;
T=T./stdT (ones (rT,1),:):
C=C./stdT (ones (rC,1), :):

% Create classification vectors, must use numbers

for L=1:rT
if prod (double (X{L,3}))==5621 $ IM
gT(L)=1;
elseif prod (double (X{L,3}))==5655 % WA
gT (L) =2;
elseif prod(double (X{L, 3}))==5840 $ PI
gT (L) =3;
elseif prod(double (X{L, 3}))==6048 % TH
gT (L) =4;
end
end

if prod(double(Y{1,3}))==5621 % IM
gc=1;

elseif prod(double(Y{1l,3}))==5655 $ WA
gC=2;

elseif prod(double (Y{1l,3}))==5840 % PI
gC=3;

elseif prod(double(Y{1,3}))==6048 % TH
gC=4;

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov (T)) :

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')
explained=100*LATENT (1: PCA_num, :)/sum (LATENT (1: PCA_num,
$fprintf ('\t\t%.6£f\r',explained)
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$ retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:, 1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; $ Transformed T

newdataC=C*PC; $ Transformed C

% classify using PCs

predicted_class_delCWT{D, l}=classify(newdataC, newdataT, gT)"';
actual_class_delCWT{D,1}=gC;

$ Keeps up with incorrects

wrong_flaw_delCWT=find (abs (diff ([predicted class_delCWT{D, 1}
actual_class_delCWT{D,1}]))~=0)"';
if isempty(wrong_flaw_delCWT)==
incorrect_delCWT{D, 1}=0;
incorrect_delCWT{D,2}=0;
else
incorrect_delCWT{D, l}=wrong_flaw_delCWT;
incorrect_delCWT({(D, 2}=Y{1,2};

end

D=D+1;

end

$ all results extracting one

[r,cl=size(incorrect_delCWT);
for i=l:r
if incorrect_delCWT{i, 1}==0
Incorrect_total delCWT(i)=0;
else
Incorrect_total_delCWT (i)=length (incorrect_delCWT{i,1});

end
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end

Incorrect_percentage_delCWT=sum(Incorrect_total_delCWT)/r*100;
fprintf ('The incorrect percentage (extract one, PCA) NO CWT info = %2.2f

\n', Incorrect percentage_delCWT)

% Extract One #3333 33383ttt ettt ttt ittt asassasasassassssssdssdsasass st sy

D=1;

for j=1:92 % subgroup formations

clear T X X1 C Y gT gC newdataC newdataT;

% extract Y and X

Y{1,1}=uTR{1,2,3}(4,1}:;Y{1,2}=uTR{1,1,3}{(3,1}:;Y{1,3}=uTR{1,3,3}{1,1};

X=uTR;X(:,:,3)=[1:

for P=1:91

X1{P,1}=X{1,2,P}{4,1};:;X1{(P,2}=X{1,1,P}(3,1};X1{P,3}=X{1,3,P}({1,1};

end

X=X1l;clear X1;

[rY,cY]=size(Y);

[rX,cX]=size (X);

[Z,index]=sortrows (X (:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows (Y(:,3));

Y=Y (index, :);clear Z;
for k=1:rX

T(k,:)=X{k,1}; $ extracts Training data
end
for k=1:rY

C(k, :)=Y{k,1}; % extracts Checking data
end

% Pre-Processing C and T

del_col=[find(var (T)==0)1; % 0 Varaince cols
T(:,del_col)=[];

C(:,del_col)=[];

[xT,cT]=size(T);

[rC,cCl=size(C);

$ mean-centering

meanT=mean (T) ;

T=T-meanT (ones (xrT,1),:);
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C=C-meanT (ones (rC,1), :);
stdT=std (T):

T=T./stdT(ones (rT,1),:);
C=C./stdT (ones(xC,1),:);

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 $ IM
gT (L) =1;
elseif prod(double (X{L,3}))==5655 $ WA
gT(L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT(L)=3;
elseif prod(double(X{L,3}))==6048 $ TH
gT (L)=4;
end
end

if prod(double(Y{1,3}))==5621 % IM
gC=1;

elseif prod(double(Y{1l,3}))==5655 $ WA
gC=2;

elseif prod(double(Y{1,3}))==5840 $ PI
gC=3;

elseif prod(double(Y{1,3}))==6048 % TH
gC=4;

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;
[pcT,varT, expT]=pcacov (cov (T)) :

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix

= \n")

explained=100*LATENT(1:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf (' \t\t%.6£f\r', explained)
% retained variance

$fprintf (' \nPercent Explained for

\n\n', sum(explained(1:PCA_num)))

% Keep selected PC's
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SCORE=SCORE (:,1: PCA_num) ;
PC=PC(:,1:PCA_num) ;
newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

% classify using PCs

predicted class_all_1{D,l}=classify(newdataC, newdataT,gT)"';
actual_class_all 1{D,1}=gC;

% Keeps up with incorrects

wrong_flaw_all 1=find(abs(diff([predicted class_all 1{D, 1}
actual_class_all_1{D,1}]))~=0)";
if isempty(wrong_flaw_all 1)==
incorrect_all 1{D,1}=0;
incorrect_all 1{D,2}=0;
else
incorrect_all 1{D,l}=wrong_flaw_all 1;
incorrect_all 1{D,2}=Y{1,2};

end

D=D+1;

end

% all results extracting one

[r,cl=size(incorrect_all _1);
for i=l:r
if incorrect_all 1{i,1l}==
Incorrect_total_all 1(i)=0;
else
Incorrect_total_all 1(i)=length(incorrect_all 1{i,1});
end

end

Incorrect_percentage_all l=sum(Incorrect_total_all 1)/r*100;
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fprintf

('"The average incorrect percentage (extract one, PCA) using all feature

families = %2.2f \n\n',6 Incorrect_percentage all 1)

$ Extract 4,

k=1;

for i=1

R(a!

if mod (i, 23)~=0

$eval (['sg' num2str(mod(i,4)) '(k,:)=uTR{1,2,i}{4,1};'])
$eval (['sgf' num2str (mod(i,4)) '(k,:)=uTR{1,1,i}{3,1} ;'])
geval (['sgt' num2str (mod(i,4)) '(k,:)=uTR{1,3,i}{1,1} ;'])

eval (['sg' num2str (mod(i,23)) '{k,1}=uTR{1,2,i}{4,1}:'])
eval(['sg' num2str (mod(i,23)) '{k,2}=uTR{1,1,i}{3,1};'])
eval(['sg' num2str (mod(i,23)) '{k,3}=uTR{1,3,i}(1,1};'])

else

end

end

$eval (['sg' num2str(4) '(k,:)=uTR{1,2,i}{4,1};'])

$eval (['sgf' num2str(4) '(k,:)=uTR{1,1,i}{3,1}:;'])
$eval (['sgt' num2str(4) '(k,:)=uTR{1,3,1i}{1,1};'])
eval (['sg' num2str(23) '{k,1}=uTR{1,2,i}{4,1};'])

eval(['sg' num2str(23) '{k,2}=uTR{1,1,i}{3,1};'])

eval (['sg' num2str(23) '{k,3}=uTR{1,3,i}{1,1}:'])

k=k+1;

feature breaks=[2 21 23 48 51];

D=1;

for i=1

if

els

end

for

:length (feature_breaks) % feature families

i==
del group=1l:feature breaks(1l);
e

del_group=feature_ breaks(i-1)+1l:feature_breaks (i)

j=1:23 % subgroup formations

clear T X C Y gC gT newdataC newdataT Del_GroupX Del_ GroupY;
z=1:23;

z(3)=I[1: % deletes number j from Z

eval (['X=cat (1, sg"’ num2str (z (1)) !, sgt num2str (z(2))

num2str (z(3)) ',sg' num2str (z(4))
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',sg' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
',sg' num2str(z(8))

',sg' num2str(z(9)) ',sg' num2str(z(10)) ',sg' num2str(z(1ll1l))
',sg' num2str(z(12))
',sg' num2str(z(13)) ',sg' num2str(z(14)) ',sg' num2str(z(15))
',sg' num2str(z(16))
',sg' num2str(z(17)) ',sg' num2str(z(18)) ',sg' num2str(z(19))
',sg' num2str(z(20))
',sg' num2str(z(21)) ',sg' num2str(z(22)) ');']) $ X =
Training
eval (['Y=sg' num2str(j) ';']) $ Y =
Checking

[rY,cY])=size(Y):

[rX,cX]=size (X);

[Z,index]=sortrows (X (:,3)); % sorting matrix has 1 columns
and multiple rows.

X=X (index, :):

[Z2,index]=sortrows (Y (:,3)):

Y=Y (index, :);clear Z;

for k=1l:rX
Del GroupX(k,:)=X{k,1} (:,del_group); % Retains the extracted
feature group
X{k,1} (:,del_group)=[]: % Extracts feature family
T(k, :)=X{k, 1}; $ extracts Training data
end
for k=1:rY
Del GroupY(k,:)=Y{k,1} (:,del_group):; $ Retains the extracted
feature group
Y{k,1}(:,del_group)=[]; % Extracts feature family
C(k, :)=Y{k,1}; % extracts Checking data
end
% Pre-Processing C and T
del_col=[find (var (T)==0)]; % 0 Varaince cols

T(:,del_col)=[];
C(:,del_col)=[];
[T, cT])=size(T);
[rC,cCl=size(C) ;
% mean-centering
meanT=mean (T) ;

T=T-meanT (ones (xrT,1),:):
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cols

C=C-meanT (ones (xrC,1),:):

stdT=std (T) ;

T=T.
C=C.

/stdT (ones (xT, 1), :):
/stdT (ones (xC,1),:):

$ Pre-Processing Deleted Groups

del

col R=[find(var(Del_GroupX)==0)];

Del GroupX(:,del_col R)=[];

Del GroupY(:,del_col R)=[];

[T,

cT]=size(Del_GroupX);

[rC,cC]=size (Del_GroupY) ;

% mean-centering

meanT=mean (Del_GroupX) ;

Del_GroupX=Del GroupX-meanT (ones(rT,1),:);

Del GroupY=Del GroupY-meanT (ones(xC,1),:);
stdT=std (Del_GroupX) ;
Del_GroupX=Del_GroupX./sth(ones(rT,l),:);

Del GroupY=Del GroupY./stdT (ones (rC,1),:);

% Create classification vectors, must use numbers

for

end

for

L=1:xT
if prod(double (X{L,3}))==5621 %
gT(L)=1;

elseif prod(double(X{L,3}))==5655

gT(L)=2;

elseif prod(double (X{L,3}))==5840
gT (L)=3;

elseif prod(double (X{L,3}))==6048
gT (L) =4;

end

L=1:rC

if prod(double (Y{L,3}))==5621 %
gC(L)=1;

elseif prod(double(Y{L, 3}))==5655
gC(L)=2;

elseif prod(double (Y{L,3}))==5840
gC(L)=3;

elseif prod(double(Y{L,3}))==6048
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gC(L)=4;
end

end

% classify using raw features

if length(del_group)<18
predicted class_R{D,1l}=classify(Del_GroupY,Del_ GroupX,gT)';
actual_class_R{D,1}=gC;
incorrect_R{D,1l}=find(abs (diff ([predicted_class_R{D,1}'
actual_class_R{D,1}'],1,2))~=0)";
if isempty (find (abs (diff ([predicted_class_R{D, 1}’
actual _class_R{D,1}'],1,2))~=0)")==
incorrect_R{D,1}=0;
family incorrect R{j,1}=0;
else
incorrect_R{D,1}=find(abs(diff ([predicted_class_R{D,1}"'
actual class_R{D,1}'],1,2))~=0)";
family incorrect_R{j,1l}=find(abs(diff ([predicted_class_R{D,1}'
actual class_R{D,1}'],1,2))~=0)"';
end

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov(T)) ;

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT (1:PCA_num, :) /sum(LATENT (1:PCA_num, :));

$fprintf ("\t\t%.6£f\r',explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs = %.6f
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num) ;

newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

% classify using PCs
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predicted_class{D,l}=classify(newdataC,newdataT,gT)"';
actual_class{D,1}=gC;

% Keeps up with incorrects

if isempty(find (abs (diff ([predicted_class{D, 1}’
actual_class{D,1}'],1,2))~=0)")==
incorrect{D,1}=0;
family incorrect{j,1}=0;
else
incorrect{D,l}=find(abs (diff ([predicted_class{D,1}'
actual_class{D,1}']1,1,2))~=0)";
family incorrect{j,1}=find(abs(diff ([predicted_class{D,1}'
actual _class{D,1}'],1,2))~=0)";

end

D=D+1;
end

$ family incorrects using raw data
if length(del_group)<18
[r,c]l=size(family_ incorrect R);
for n=l:r
if family incorrect R{n,1}==0
family Incorrect_total R(n)=0;
else
family Incorrect_total R(n)=length(incorrect R{n,1});
end
end
deleted_family=i;
family Incorrect_percentage R=sum(family Incorrect_total R)/(r*4)*100;
fprintf ('The incorrect percentage (extract 4, NO PCA) for raw deleted
family $1.0f = %2.2f \n', i, family Incorrect_percentage R)
clear family incorrect R family Incorrect_total R;

end

$ family incorrects

[r,cl=size(family_ incorrect);
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for n=1:r
if family incorrect{n,l}==
family Incorrect_total(n)=0;
else
family Incorrect_total (n)=length(incorrect{n,1});
end
end
deleted family=i;
family Incorrect_percentage=sum(family Incorrect_total)/(r*4)*100;
fprintf ('The incorrect percentage (extract 4, PCA) without deleted family
$1.0f = %2.2f \n',i,family_Incorrect_percenfage)

clear family incorrect family Incorrect_total;
end
% all results

[r,c]=size(incorrect) ;
for i=1l:r
if incorrect{i,1l}==0
Incorrect_total (i)=0;
else
Incorrect_total (i)=length(incorrect{i,1});
end

end

Incorrect_percentage=sum(Incorrect_total)/(r*4)*100;
fprintf ('The average incorrect percentage (extract 4, NO PCA) for deleted

families = %2.2f \n',Incorrect_percentage)

% Extract 4, All Feature Families included
FEEEITETLILILITIILILILILILITLTLILILILIEI5S%S

D=1;
for j=1:23 % subgroup formations

clear T X C Y gC gT newdataC newdataT;

z=1:23;

z(3)=[1: % deletes number j from 2

eval (['X=cat (1, sg' num2str(z (1)) ',sg' num2str (z(2)) ', sqg’
num2str (z(3)) ',sg' num2str(z(4))
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',sg' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
,8g' num2str(z(8))

',sg' num2str(z(9)) ',sg' num2str(z(10)) ',sg' num2str(z(1l1l))
',sg' num2str(z(12))

',sg' num2str(z(13)) ',sg' num2str(z(14)) ',sg' num2str(z(1l5))
,sg' num2str(z(16)) ...

',sg' num2str(z(17)) ',sg' num2str(z(18)) ',sg' num2str(z(19))
',sg' num2str(z(20))
',sg'" num2str(z(21)) ',sg' num2str(z(22)) ');'l) $ X =
Training
eval (['Y=sg' num2str(j) ':']) % XY=
Checking

[rY, cY]=size (Y):

[rX,cX]=size (X);

[Z2, index]=sortrows (X(:,3)): $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows (Y(:,3));

Y=Y (index, :) ;clear Z;

for k=1l:rX

T(k, :)=X{k,1}; % extracts Training data
end
for k=1l:rY

C(k, :)=Y{k, 1}; $ extracts Checking data
end

$ Pre-Processing

del col=[find(var(T)==0)1]; % 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[]-;

[rT, cT)=size(T):
[rC,cCl=size (C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:);
C=C-meanT (ones (rC,1),:);
stdT=std (T):
T=T./stdT(ones(rT,1),:);
C=C./stdT (ones(rC,1),:):

% Create classification vectors, must use numbers

for L=1:xT
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if prod(double (X{L,3}))==5621 $ IM

gT (L) =1;
elseif prod(double (X{L, 3}))==5655 % WA

gT (L) =2;

elseif prod(double (X{L,3}))==5840 $ PI
gT (L) =3;

elseif prod(double (X{L,3}))==6048 $ TH
gT (L) =4;

end

end
for L=1:rC

if prod(double(Y{L,3}))==5621 $ IM
gC(L)=1;

elseif prod(double(Y{L,3}))==5655 % WA
gC(L)=2;

elseif prod(double(Y{L, 3}))==5840 $ PI
gC(L)=3;

elseif prod(double (Y{L, 3}))==6048 $ TH
gC(L)=4;

end

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov(T)) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT (1:PCA_num, :) /sum(LATENT (1:PCA_num, :));

$fprintf (' \t\t%.6£f\r’',explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

$ classify using PCs
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predicted class_all 4{D,l}=classify(newdataC,newdataT,gT)"';
actual_class_all 4{(D,1}=gC;

% Keeps up with incorrects

wrong_flaw=find (abs (diff ([predicted_class_all 4{D,1}"'
actual class_all 4{(D,1}'],1,2))~=0)";
if isempty(wrong_flaw)==
incorrect_all 4{D,1}=0;
else
incorrect_all 4{D,l}=wrong_ flaw;
[t,u]l=size (wrong flaw);
for a=1l:u
incorrect_all 4({(D, l+a}=Y{wrong flaw(a),2};
end

end
D=D+1;
end
$ all results

[r,c]l=size(incorrect_all 4);
for i=l:r
if incorrect_all 4{i,1l}==
Incorrect_total all 4(i)=0;
else
Incorrect_total_all 4(i)=length(incorrect_all 4{i,1});
end

end

Incorrect_percentage_all 4=sum(Incorrect_total_all 4)/(r*4)*100;
fprintf ('The average incorrect percentage (extract 4, PCA) using all feature

families = %2.2f \n',Incorrect_percentage_a11_4)

Xvalidate_ Bl.m

$ Xvalidate Bl.m
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clear predicted_class actual_class predicted class_R actual_class_R

predicted_class_R1l actual_class_Rl;

[r,c,d]=size (uTR) ;

LA R AR AR AR A AR AR R AR A ARERE AR ARERE AR EREREAREREREEREREREEEERERREREREEREREREEEERE
%

%
$ Each uTR cell array page contains the information for one flaw %
% in a 1X3 nested cell array %
%
%
% C1 c2
C8 %

% | Origin | Original Signal X | flaw type |

%
% | Group | Magnitude and Phase | % Through Wall |

%
% R1 | filename | flaw location | flaw character |

%
% | | Feature Vector |

%
% | | CWT I |

%
%

%

%

%
LA A AR AR R AREREARE R AR AREREAREREEREEEEREREEREREEREREAREREAEEREREEREREEEEREAEE

% feature_vector=[flaw_phase flaw_mag fextlDabs fextlDdiff geofext imagefext];
% position of feature families [2 21 23 48 51]

% Extract One, Use one feaute group at a time F¥IFFTFIFTILILLILILLLLILLILL89%%%
feature _breaks=[2 21 23 48 51];

D=1;E=1;

for i=l:length(feature_breaks) % feature families
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D=1;

if i==

group=1:feature_breaks (1) ;

else

end

$if

for

group=feature breaks(i-1)+1l:feature breaks(i);

length(group) < 20

j=1:92 $ subgroup formations

clear T X X1 C Y gC gT;

% extract Y and X

Y{1,1}=uTR{(1,2,3}{4,1};¥{1,2}=uTR{1,1,3}(3,1};Y{1,3}=uTR{1,3,3}{1,1};

X1=uTR;

X1(:,:,3)=I1:

for P=1:91
X{P,1}=X1(1,2,P}{4,1};X{P,2}=X1{1,1,P}{3,1};:;X{P,3}=X1{1,3,P}{1,1};

end

[rY,cY]=size(Y);

[rX,cX]=size (X);

[Z, index]=sortrows (X (:,3)): $ sorting matrix has 1 columns

and multiple rows.

25])=I[1:

X=X (index, :);
[Z,index]=sortrows (Y(:,3)):

Y=Y (index, :);clear Z;

for k=1:rX

T(k, :)=X{k,1} (:,group) ; % Retains the extracted feature group
end
for k=1l:rY

C(k,:)=Y{k,1} (:,group); % Retains the extracted feature group
end
if length(group) > 20 % Geometric moments

T(:,[5 10 15 20 21 22 23 24 25])=[];C(:,[5 10 15 20 21 22 23 24

$ extracts the 4th order moments

end
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% Pre-Processing C and T
del col=[find(var(T)==0)1]; % 0 Varaince
T(:,del_col)=[];

C(:,del _col)=[];
[rT,cT]=size(T);
[rC,cC]l=size(C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:):
C=C-meanT (ones (rC,1),:);
stdT=std(T) ;
T=T./stdT (ones (rT,1),:);
C=C./stdT (ones(xC,1),:);

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 $ IM
gT (L)=1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L)=3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L) =4;
end
end
for L=1:rC
if prod(double(Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double(Y{L,3}))==5655 % WA
gC(L)=2;
elseif prod(double (Y{L,3}))==5840 % PI
gC(L)=3;
elseif prod(double (Y{L,3}))==6048 % TH
gC (L) =4;
end

end
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% classify using raw features

predicted class_R1{D,1l}=classify(C, T, gT)"';
actual_class_R1{D,1}=gC;
wrong_flaw_R1l=find (abs (diff ([predicted_class_R1{D, 1}

actual_class_R1{D,1}]))~=0)"';

end

if isempty(wrong_flaw_Rl)==
incorrect_R1{D,1}=0;
incorrect_R1{D,2}=0;
incorrect_R1_all{E,1}=0;
incorrect_R1_all{E,2}=0;

else
incorrect_R1{D,l}=wrong_flaw_R1l;
incorrect_R1{D,2}=Y{1,2};
incorrect_R1_all{E,l}=wrong_flaw_R1;
incorrect_R1_all({E,2}=Y{(1,2};

end

D=D+1;E=E+1;

$ family incorrects using raw data

$1.0f

[r,cl=size(incorrect_Rl);
for n=1:r
if isempty(incorrect R1l{n,1}) == 1 | incorrect_Rl{n,1l} ==
Incorrect_total R1l(n)=0;
else
Incorrect_total_ Rl (n)=length(incorrect_Rl{n,1});
end

end

Incorrect_percentage_Rl=sum(Incorrect_total R1)/r*100;
fprintf('The incorrect percentage (extract one, NO PCA) for

%2.2f \n',i,Incorrect_percentage_Rl)

clear incorrect_R1;

clear Incorrect_total RI1;
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clear Incorrect_percentage R1;
clear predicted class_R1;

clear actual_class_R1;

$end

clear D;

end

% all results for that feature family

[r,c]l=size(incorrect Rl all);
for i=1l:r
if incorrect_R1_all{i,1}==0
Incorrect_total R1 _all(i)=0;
else
Incorrect_total Rl _all(i)=length(incorrect_ Rl all{i,1l});
end

end

Incorrect_percentage Rl _all=sum(Incorrect_total Rl all)/r*100;
fprintf ('The average incorrect percentage (extract one, NO

families = %2.2f \n', Incorrect_percentage_ Rl _all)

% Extract 1, use only CWT information ¥%%%333%333333333333333333333383%%%%%%

D=1;

CWT=[24:51];

for j=1:92 % subgroup formations
clear T X X1 C Y gC gT newdataC newdataT;
% extract Y and X

Y{1,1}=uTR{1,2,3}{4,1};Y{1,2}=uTR{1,1,3}{3,1};Y{1,3}=uTR{1,3,3}{1,1};

X1=uTR;
X1(:,:,3)=I[1;
for P=1:91

PCA)

for

all

X{p,1}=X1{1,2,P}{4,1};X{P,2}=X1{1,1,P}{3,1}:X{P,3}=X1{1,3,P}{1,1};

end
[rY,cY]=size(Y):
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[£X, cX]=size (X);

[Z,index]=sortrows (X (:,3)); $ sorting matrix has 1 columns

and multiple rows.

25])=[1:

X=X (index, :):
[2,index]=sortrows (Y (:,3)):

Y=Y (index, :);clear 2Z;

for k=1:rX

T(k, :)=X{k,1} (:,CWT): % Retains the extracted feature group
end
for k=1:rY

C(k, :)=Y{k, 1} (:,CWT); % Retains the extracted feature group
end

T(:, [5 10 15 20 21 22 23 24 25])=[];C(:,[5 10 15 20 21 22 23 24
% extracts the 4th order moments

% Pre-Processing C and T

del col=[find(var(T)==0)1]; $ 0 Varaince cols

T(:,del_col)=[];

C(:,del_col)=I[]:

[rT,cT])=size(T);

[rC,cC]=size(C) ;

% mean-centering

meanT=mean (T) ;

T=T-meanT (ones(rT,1),:):

C=C-meanT (ones (xrC,1),:);

stdT=std(T) ;

T=T./stdT (ones (rT,1),:);

C=C./stdT (ones(xC,1),:);

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT] =pcacov (cov (T) ) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT(1:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf ('\t\t%.6£\r',explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs = $.6f

\n\n', sum(explained (1:PCA_num)))

$ Keep selected PC's
SCORE=SCORE (:,1:PCA_num) ;
PC=PC(:,1:PCA_num);
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newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 $ IM
gT(L)=1;
elseif prod(double (X{L,3}))==5655 % WA
gT(L)=2;
elseif prod(double (X{L,3}))==5840 % PI
gT (L) =3;
elseif prod(double (X{L,3}))==6048 % TH
gT (L)=4;
end
end
for L=1:rC
if prod(double (Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double(Y{L,3}))==5655 $ WA
gC(L)=2;
elseif prod(double(Y{L,3}))==5840 $ PI
gC(L)=3;
elseif prod(double (Y{L,3}))==6048 % TH
gC(L)=4;
end

end

% classify using raw features

predicted_class_CWT({D, l}=classify(newdataC,newdataT, gT)';

actual_class_CWT{D,1}=gC;

wrong_flaw_CWT=find (abs (diff ([predicted class_CWT{D, 1}
actual_class_CWT{D,1}]))~=0)"';

if isempty(wrong flaw_CWT)==1 | wrong_flaw_CWT == 0
incorrect CWT{D, 1}=0;
incorrect CWT{D,2}=0;
else
incorrect_CWT{D, l}=wrong_flaw_CWT;
incorrect CWT{D,2}=Y{1,2};
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end

D=D+1;

end

% family incorrects using raw data

[r,c]l=size(incorrect CWT);
for n=1l:r
if isempty(incorrect CWT{n,1l}) == 1 | incorrect CWT{n,1} == 0
Incorrect_total CWT(n)=0;
else
Incorrect_total CWT (n)=length(incorrect CWT{n,1});
end
end
Incorrect_percentage CWT=sum(Incorrect_total CWT)/r*100;
fprintf ('The incorrect percentage (extract one, PCA) only using CWT =

$2.2f \n', Incorrect_percentage_ CWT)

$clear incorrect CWT Incorrect_total CWT Incorrect_percentage_ CWT;

$ Extract One without CWT 3233333333333 333333233222333233223222323322338339%833%

D=1;
del CWT=[24:51];

for j=1:92 % subgroup formations

clear T X C Y gT gC newdataC newdataT;

% extract Y and X

Y{1,1}=uTR{1,2,3}{4,1};Y{1,2}=uTR{1,1,3}{3,1};Y{1,3}=uTR{1,3,3}{1,1};

X=uTR;X(:,:,3)=[]:

for P=1:91
X1{p,1}=X{1,2,P}{4,1};X1{P,2}=X{1,1,P}{3,1};X1{P,3}=X{1,3,P}{1,1};

end

X=X1;clear X1;

[rY,cY]=size(Y);

[rX,cX]=size (X);
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[Z,index] =sortrows (X (:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z, index]=sortrows (Y (:,3)):

Y=Y (index, :) ;clear Z;

for k=1:rX
X{k,1}(:,del _CWT)=[]; % Extracts feature family
T(k, :)=X{k,1}; % extracts Training data
end
for k=1:rY
Y{k,1}(:,del CWT)=[]; % Extracts feature family
C(k, :)=Y{k,1}; % extracts Checking data
end

% Pre-Processing C and T
del col=[find(var(T)==0)1]; % 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[];
[rT,cT])=size(T);
[rC,cC])=size(C) ;

$ mean-centering
meanT=mean (T) ;
T=T-meanT (ones (xT,1),:);
C=C-meanT (ones (xC,1),:);
stdT=std(T) ;
T=T./stdT (ones (rT,1),:);
C=C./stdT (ones (rC,1),:);

% Create classification vectors, must use numbers

for L=1:xT
if prod(double (X{L,3}))==5621 $ IM
gT (L) =1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L) =2;
elseif prod(double (X{L, 3}))==5840 $ PI
gT(L)=3;
elseif prod(double (X{L,3}))==6048 % TH
gT (L)=4;
end
end
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if prod(double(Y{1l,3}))==5621 $ IM
gC=1;

elseif prod(double(Y{1,3}))==5655 % WA
gC=2;

elseif prod(double(Y{1,3}))==5840 % PI
gC=3;

elseif prod(double(Y{1l,3}))==6048 % TH
gC=4;

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT] =pcacov (cov (T) ) ;

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT(1:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf ('\t\t%.6£\r', explained)

$ retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n’,sum(explained(l:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; $ Transformed C

$ classify using PCs

predicted_class_delCWT{D,1l}=classify(newdataC, newdataT, gT)";
actual_class_delCWT({D,1}=gC;

% Keeps up with incorrects

wrong_flaw_delCWT=find (abs (diff ([predicted_class_delCWT{D, 1}
actual_class_delCWT{D,1}]))~=0)"';
if isempty(wrong flaw_delCWT)==
incorrect_delCWT{D,1}=0;
incorrect_delCWT({D,2}=0;

else
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incorrect_delCWT{D,1l}=wrong_flaw_delCWT;
incorrect_delCWT{D,2}=Y{1,2};

end

D=D+1;

end

% all results extracting one

[r,cl=size(incorrect_delCWT);
for i=1l:r
if incorrect_delCWT{i,1l}==
Incorrect_total delCWT (i)=0;
else
Incorrect_total_ delCWT (i)=length (incorrect_delCWT({i,1}):
end

end

Incorrect_percentage delCWT=sum(Incorrect_total delCWT)/r*100;
fprintf ('The incorrect percentage (extract one, PCA) NO CWT info = %2.2f

\n', Incorrect_percentage_ delCWT)

% Extract One %%¥%3%3323FTIHTILLLILTILILLITILIULILILLITILRITILRIIBIB989%%%%%

D=1;

for j=1:92 % subgroup formations

clear T X X1 C Y gT gC newdataC newdataT;

% extract Y and X

Y{1,1}=uTR{1,2,3}{4,1};Y{(1,2}=uTR{1,1,3}{(3,1};Y{1,3}=uTR{1,3,3}{1,1};

X=uTR;X(:,:,3)=[1:

for P=1:91
X1{P,1}=x{1,2,P}{4,1};X1{P,2}=X{1,1,P}{3,1};X1{P,3}=X{1,3,P}{1,1};

end

X=X1;clear X1;

[rY,cY]=size(Y);

[rX,cX]=size (X);
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[Z,index]=sortrows (X (:,3)); % sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows(Y(:,3)):

Y=Y (index, :) ;clear Z;

for k=1:rX

T(k, :)=X{k,1}; $ extracts Training data
end
for k=1l:rY

C(k, :)=Y{k,1}: % extracts Checking data
end

% Pre-Processing C and T
del col=[find(var(T)==0)]; $ 0 Varaince cols
T(:,del_col)=[];
C(:,del_col)=[];

[rT, cT]=size(T);
[rC,cCl=size (C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:);
C=C-meanT (ones (rC,1),:);
stdT=std (T) ;
T=T./stdT (ones (xT,1),:);
C=C./stdT (ones (xC,1),:);

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 $ IM
gT (L) =1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L) =3;
elseif prod (double (X{L, 3}))==6048 % TH
gT (L) =4;
end
end

if prod(double(Y{1,3}))==5621 % IM
gC=1;
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elseif prod(double(Y{1l,3}))==5655 $ WA

gC=2;

elseif prod(double(Y{1l,3}))==5840 $ PI
gC=3;

elseif prod(double(Y{1l,3}))==6048 $ TH
gC=4;

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov (T)) ;

$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT(1:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf (' \t\t%.6f\r', explained)

$ retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n', sum(explained (1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; $ Transformed C

$ classify using PCs

predicted_class_all_1{D,1l}=classify(newdataC,newdataT,gT)"';
actual_class_all 1{D,1}=gC;

$ Keeps up with incorrects

wrong_flaw_all l=find(abs(diff ([predicted class_all 1{D, 1}
actual_class_all 1{D,1}]1))~=0)"';
if isempty(wrong_flaw_all 1)==
incorrect_all 1{D,1}=0;
incorrect_all 1{D,2}=0;
else
incorrect_all 1{D,1l}=wrong_flaw_all 1;
incorrect_all_1{D,2}=Y{1,2};

end
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D=D+1;

end

$ all results extracting one

[r,cl=size(incorrect_all 1);
for i=1:r
if incorrect_all 1{i,1}==0
Incorrect_total_all 1(i)=0;
else
Incorrect_total_all 1(i)=length(incorrect_all 1{i,1});
end

end

Incorrect_percentage _all l=sum(Incorrect_total all 1)/r*100;
fprintf ('The average incorrect percentage (extract one, PCA) using all feature

families = %2.2f \n\n', Incorrect_percentage_all_1)

$ Extract 4, look at ind. feature families %3333 HHFFFIIIIITILTLHH23%%%%

k=1;
for i=1:d
if mod (i, 23)~=0
$eval(['sg' num2str (mod (i, 4)) '(k,:)=uTR{1,2,1i}{4,1}:'])
$eval(['sgf' num2str (mod(i,4)) '(k,:)=uTR{1,1,i}{3,1} ;'])
$eval (['sgt' num2str(mod(i,4)) '(k,:)=uTR{1,3,i}{1,1} ;'])
eval (['sg' num2str (mod(i,23)) '{k,1}=uTR{1,2,i}{4,1}:'])
eval (['sg' num2str(mod(i,23)) '{k,2}=uTR{1,1,i}{3,1}:;'])
eval (['sg' num2str(mod(i,23)) '{k,3}=uTR{1,3,i}{1,1};'])
else

$eval(['sg' num2str(4) '(k,:)=uTR{1,2,i}{4,1}:'])

$eval(['sgf' num2str(4) '(k,:)=uTR{1,1,i}{3,1};'])
$eval (['sgt' num2str(4) '(k,:)=uTR{1,3,i}{1,1};'])
eval (['sg' num2str(23) '{k,1}=uTR{1,2,i}{4,1}:'])

eval (['sg' num2str(23) '{k,2}=uTR{1,1,1i}{3,1}:;'])

eval (['sg' num2str(23) '{k,3}=uTR{1,3,i}{1,1};'])

k=k+1;
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end

end

feature_breaks=[2 21 23 48 51];
D=1;

for i=l:length(feature_breaks) % feature families

if i==
del_group=l:feature_breaks(1l);
else
del group=feature_ breaks (i-1)+1:feature_breaks(i);

end

for j=1:23 % subgroup formations

clear T X C Y gC gT newdataC newdataT Del_ GroupX Del_ GroupY;

z=1:23;
z(3)=I[1; % deletes number j from 2
eval (['X=cat(1,sqg’ num2str(z (1)) ', sg' num2str(z(2)) ‘risg’
num2str(z(3)) ',sg' num2str(z(4))
',sg' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
',sg' num2str(z(8))
',sg' num2str(z(9)) ',sg' num2str(z(10)) ',sg' num2str(z(1l1l))
',sg' num2str(z(12))
',sg' num2str(z(13)) ',sg' num2str(z(14)) ',sg' num2str(z(15))
',sg' num2str(z(16))
',sg' num2str(z(17)) ',sg' num2str(z(18)) ',sg' num2str(z(19))
',sg' num2str (z(20))
',sg' num2str(z(21)) ',sg' num2str(z(22)) ');']) $ X =
Training
eval (['Y=sg' num2str(j) ';']) $ Y =
Checking

[rY,cY]=size(Y):;

[£X,cX]=size (X);

[Z,index]=sortrows (X (:,3)); $ sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z2,index]=sortrows (Y(:,3));

Y=Y(index, :) ;clear Z;

for k=1:rX

Del_ GroupX(k,:)=X{k,1} (:,del_group); % Retains the extracted

feature group
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feature

cols

X{k,1}(:,del_group)=[];

T(k, :)=X{k,1};
end
for k=1l:rY

Del GroupY(k,:)=Y{k,1} (:,del_group);
group

Y{k,1}(:,del_group)=[];

C(k, :)=Y{k, 1};

end

$ Pre-Processing C and T
del col=[find(var(T)==0)];
T(:,del_col)=[]1;

C(:,del _col)=[];
[rT,cT]=size(T);
[rC,cC]=size(C);

$ mean-centering
meanT=mean (T) ;
T=T-meanT (ones (rT,1),:);
C=C-meanT (ones (rC,1),:);
stdT=std (T) ;
T=T./stdT (ones (rT,1),:);
C=C./stdT (ones(rC,1),:);

% Pre-Processing Deleted Groups
del_col R=[find(var(Del_GroupX)==0)];

Del GroupX(:,del_col R)=[]:

Del GroupY(:,del_col R)=[]:

[rT,cT]=size (Del_GroupX) ;

[rC,cC]=size (Del_GroupY) :

$ mean-centering

meanT=mean (Del_GroupX) ;

Del_GroupX=Del_ GroupX-meanT (ones (rT,1),:);
Del GroupY=Del GroupY-meanT (ones(rC,1),:);
stdT=std (Del_GroupX) ;
Del_GroupX=Del_GroupX./sth(ones(rT,l),:);
Del_GroupY=Del GroupY./stdT (ones(rC,1),:);

Extracts feature family

extracts Training data

$ Retains the extracted

Extracts feature family

extracts Checking data

0 Varaince cols

% 0 Varaince

% Create classification vectors, must use numbers
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for L=1:rT
if prod(double (X{L,3}))==5621 % IM
gT (L)=1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L)=2;
elseif prod(double (X{L,3}))==5840 $ PI
gT (L) =3;
elseif prod(double (X{L,3}))==6048 % TH
gT (L)=4;
end
end
for L=1:rC
if prod(double(Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double (Y{L, 3}))==5655 % WA
gC(L)=2;
elseif prod(double (Y{L,3}))==5840 $ PI
gC(L)=3;
elseif prod(double (Y{L,3}))==6048 $ TH
gC (L) =4;
end

end

% classify using raw features

if length(del_group)<18
predicted_class_R{D, l}=classify(Del_GroupY, Del_GroupX,gT)"';
actual_class_R{D, 1}=gC;
incorrect_R{D,1l}=find(abs (diff ([predicted_class_R{D,1}"'
actual_class_R{D,1}'],1,2))~=0)";
if isempty(incorrect R{D,1})==
incorrect_R{D,1}=0;
family incorrect_R{j,1}=0;
else
family incorrect_R{j,1l}=incorrect_R{D,1};
end

end

$PCA calculations
[PC, SCORE, LATENT, tsquare]=princomp (T) ;

[pcT, varT, expT]=pcacov (cov(T) ) ;
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$ PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')

explained=100*LATENT(l:PCA_num,:)/sum(LATENT(l:PCA_num,:));

$fprintf ('\t\t%.6£f\r',explained)

$ retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n', sum(explained(1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:,1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; % Transformed C

$ classify using PCs

predicted_class{D,l}=classify(newdataC,newdataT,gT)"';

actual class{D,1}=gC;

incorrect({D, 1}=find(abs (diff ([predicted class{D, 1}’
actual class{D,1}'],1,2))~=0)";

% Keeps up with incorrects

if isempty(incorrect(D,1})==1
incorrect{D,1}=0;
family incorrect({j,1}=0;

else
family incorrect(j,l}=incorrect{D,1};

end

D=D+1;

end

$ family incorrects using raw data
if length(del_group)<18
[r,cl=size(family incorrect R);
for n=1:r
if family incorrect_R{n,1}==0

family Incorrect_total R(n)=0;
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else
family Incorrect_total R(n)=length(incorrect_R{n,1});
end
end
deleted family=i;
family Incorrect_percentage R=sum(family_ Incorrect_total R)/(r*4)*100;
fprintf ('The incorrect percentage (extract 4, NO PCA) for raw deleted
family %1.0f = %2.2f \n',i, family Incorrect_percentage R)
clear family_ incorrect R family Incorrect_total R
family Incorrect_percentage R;

end

$ family incorrects
[r,c]l=size(family incorrect);
for n=1l:r
if family incorrect{n,1}==0
family Incorrect_total (n)=0;
else
family Incorrect_total (n)=length(incorrect{n,1});
end
end
deleted_ family=i;
family Incorrect_percentage=sum(family Incorrect_total)/(r*4)*100;
fprintf ('The incorrect percentage (extract 4, PCA) without deleted family
$1.0f = %2.2f \n', i, family Incorrect_percentage)

clear family_ incorrect family Incorrect_total family Incorrect_percentage;
end
$ all results

[r,c]l=size (incorrect);
for i=1l:r
if incorrect{i,1l}==0
Incorrect_total(i)=0;
else
Incorrect_total (i)=length(incorrect{i, 1});
end

end

Incorrect_percentage=sum(Incorrect_total)/(r*4)*100;
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fprintf ('The average incorrect percentage (extract 4, NO PCA) for deleted

families = %2.2f \n', Incorrect_percentage)

% Extract 4, All Feature Families included
R R R R R R R R A R R R R R R R R R R R R R R R A R R ]

D=1;
for j=1:23 % subgroup formations
clear T X C Y gC gT newdataC newdataT;
z=1:23;
z(3)=I[1: % deletes number j from 2
eval ([ 'X=cat (1, sg' num2str(z (1)) ', sqg' num2str(z(2)) ',sqg'
num2str(z(3)) ',sg' num2str(z(4))
',sg' num2str(z(5)) ',sg' num2str(z(6)) ',sg' num2str(z(7))
',sg"'" num2str(z(8))
',sg' num2str(z(9)) ',sg' num2str(z(10)) ',sg' num2str(z(l1l))
',sg' num2str(z(12))
',sg' num2str(z(13)) ',sg' num2str(z(l4)) ',sg' num2str(z(1l5))
',sg' num2str(z(16))
',sg' num2str(z(17)) ',sg' num2str(z(18)) ',sg' num2str(z(19))
',sg' num2str(z(20)) )
',sg' num2str(z(21)) ',sg' num2str(z(22)) '):'l) 8 X =
Training
eval (['Y=sg' num2str(j) ':']) 'Y =
Checking

[rY,cY]=size(Y);

[rX,cX]=size (X);

[Z,index]=sortrows (X(:,3)); % sorting matrix has 1 columns
and multiple rows.

X=X (index, :);

[Z,index]=sortrows (Y (:,3));

Y=Y (index, :) ;clear Z;

for k=1l:rX

T(k, :)=X{k,1}; % extracts Training data
end
for k=1l:rY

C(k, :)=Y{k, 1}; % extracts Checking data
end

$ Pre-Processing
del col=[find(var (T)==0)]; % 0 Varaince cols

T(:,del _col)=[];
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C(:,del_col)=[];
[rT,cT]=size(T);
[rC,cC]l=size(C);

% mean-centering
meanT=mean (T) ;
T=T-meanT (ones (xT,1),:);
C=C-meanT (ones (xC,1),:);
stdT=std(T) ;
T=T./stdT (ones (xrT,1),:);
C=C./stdT (ones(xC,1),:);

% Create classification vectors, must use numbers

for L=1:rT
if prod(double (X{L,3}))==5621 % IM
gT (L)=1;
elseif prod(double (X{L,3}))==5655 $ WA
gT (L) =2;
elseif prod(double (X{L,3}))==5840 % PI
gT (L) =3;
elseif prod(double (X{L,3}))==6048 $ TH
gT (L)=4;
end
end
for L=1:rC
if prod(double(Y{L,3}))==5621 $ IM
gC(L)=1;
elseif prod(double (Y{L,3}))==5655 % WA
gC(L)=2;
elseif prod(double (Y{L,3}))==5840 $ PI
gC(L)=3;
elseif prod(double(Y{L,3}))==6048 $ TH
gC(L)=4;
end

end

$PCA calculations

[PC, SCORE, LATENT, tsquare]=princomp (T) ;
[pcT, varT, expT]=pcacov (cov (T) ) ;

% PCA explaied variances

PCA_num=15;

$fprintf ('\n Percent Explained for TR Matrix = \n')
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explained=100*LATENT (1:PCA_num, :) /sum (LATENT (1:PCA_num, :));

$fprintf ('\t\t%.6£f\r',explained)

% retained variance

$fprintf (' \nPercent Explained for kept PCs
\n\n', sum(explained(1:PCA_num)))

% Keep selected PC's

SCORE=SCORE (:,1:PCA_num) ;

PC=PC(:, 1:PCA_num);

newdataT=SCORE; % Transformed T

newdataC=C*PC; $ Transformed C

% classify using PCs

predicted_class_all 4{D,1l}=classify (newdataC,newdataT,gT)"';

actual class_all 4{D,1}=gC;

wrong_flaw=find (abs (diff ([predicted class_all 4{D,1}"'
actual class_all 4{(D,1}'],1,2))~=0)";

% Keeps up with incorrects

if isempty(wrong_flaw)==
incorrect_all 4{(D,1}=0;
else
incorrect_all 4({(D,l}=wrong_flaw;
[t,u]l=size (wrong_flaw);
for a=1l:u
incorrect_all 4{D,1l+a}=Y{wrong flaw(a),2};
end

end

D=D+1;

end

% all results

[r,c]=size(incorrect_all 4);
for i=1l:r
if incorrect_all 4{i, 1}==0
Incorrect_total_all 4(i)=0;

else
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Incorrect_total_all 4(i)=length(incorrect_all 4{i,1});
end

end
Incorrect_percentage_all 4=sum(Incorrect_total_all 4)/(r*4)*100;

fprintf ('The average incorrect percentage (extract 4, PCA) using all feature

families = %2.2f \n', Incorrect_percentage_all 4)
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