
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2003 

Geographic information system (GIS) and epidemiological Geographic information system (GIS) and epidemiological 

associations among foodborne pathogens at the farm associations among foodborne pathogens at the farm 

Kimberly Denise Lamar 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Lamar, Kimberly Denise, "Geographic information system (GIS) and epidemiological associations among 
foodborne pathogens at the farm. " PhD diss., University of Tennessee, 2003. 
https://trace.tennessee.edu/utk_graddiss/5148 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Kimberly Denise Lamar entitled "Geographic 

information system (GIS) and epidemiological associations among foodborne pathogens at the 

farm." I have examined the final electronic copy of this dissertation for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy, with a major in Food Science and Technology. 

Frances Ann Draughon, Major Professor 

We have read this dissertation and recommend its acceptance: 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council: 

I am submitting herewith a dissertation vvritten by Kimberly Denise Lamar entitled 
" Geographical Information System (GIS) and Epidemiological Associations 
Among Foodbome Pathogens at the Farm." I have examined the final paper 
copy of this dissertation for form and content and recommend that it be accepted 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 
with a major in Food Science and Technology. 

We have read this dissertation 
and recommend its acceptance: 

Frances Ann Draughon, Major Professor 

Acceptance for the Council: 

Vice Provost and 
Dean of Graduate Stu 

�, 



GEOGRAPHIC INFORMATION SYSTEM (GIS) AND 
EPIDEMIOLOGICAL ASSOCIATIONS AMONG 
FOODBORNE PATHOGENS AT THE FARM 

A Dissertation 
Presented for the 

Doctor of Philosophy 
Degree 

The University of Tennessee, Knoxville 

Kimberly Denise Lamar 
August 2003 





DEDICATION 

This dissertation is dedicated to my mother 

Samella B. Lamar 

Whose hard work, sacrifice, and love has made my accomplishments possible 

iii 



ACKNOWLEDGEMENTS 

I want to thank You, GOD, for all the blessings you have given me. It is only by 
your grace, and through your divine mercy, that I have made it this far. 

Thank you, Mom, for being my rock and supporting me when times were hard. 
Thank you for believing in me and reminding me to "keep going, it will pay off in 

the end." I Love You! 

I would like to thank my major professor, Dr. France A. Draughon. You are the 
strongest woman I know. I admire you so much for continuing to push forward, 

regardless of the obstacles life placed in your way. The support and 
encouragement you gave helped me through some very difficult times. You 

motivated me to wake up every morning with the drive for success. 
THANK YOU! THANK YOU! 

I would like to thank everyone in Dr. Draughon's research group. You have been 
the most fun and supporting group individuals I have ever met. It was a blessing 

to have been a part of a wonderful group. You are my family, and I will miss 
each and every one of you. Thank you Valerie Ling for all the prayers and words 

of encouragement. I continue to keep you in my prayers as well. 

V 



ABSTACT 

Geographic Information System (GIS), a computer mapping and analysis 

technology, has emerged as an innovative epidemiological tool in a variety of 

disciplines. However, the application of GIS to food safety research has received 

little attention. This study utilized GIS and automated riboprinting technology to 

examine relationships that existed between animals and their environments, 

monitoring transmission of pathogens on the farm environment and to nearby 

surface water environments. 

A comprehensive epidemiological survey was conducted at The University 

of Tennessee, Knoxville Experiment Station research dairy farm. More than 

40,000 animal and environmental samples were analyzed for Salmonella, 

Campylobacter jejuni and Escherichia coli 0157:H?. A survey of the Tennessee 

River, adjacent The University of Tennessee research dairy farm, was also 

conducted to determine the incidence of these pathogens in the river. 

Automated riboprinting was used to compare bacterial isolates from various 

species, locations, and sample types. 

Salmonella (32%) was the most frequent pathogen isolated on the farm, 

followed by C. jejuni (21 %) and E. coli 0157:H? (2%). Feed, bedding, water, 

insects and bird droppings were identified as significant vectors of transmission 

of pathogens to animals and farm environments. Results of this study indicate 

that controlling access to animal feed and water sources by insects and wild 

birds could reduce transmission of pathogens to dairy animals and farm 

environments. 
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Neither C. jejuni nor E. coli 0157:H? were recovered from the Tennessee 

River. However, Salmonella was isolated from sampling sites upstream and 

downstream from the dairy farm. Salmonella was recovered at increased 

frequency in the Tennessee River at the dairy farm and sites upstream from the 

farm. Salmonella ser. Senftenberg, Typhimurium, Havana and Newport were the 

most frequently isolated Serotypes at the dairy farm and from the river. 

Salmonella ser. Havana, isolated from farm and river water samples, was the 

only detected serotype showing similar riboprint patterns. Based on pathogens 

isolated at the farm and not in the river, the variable pattern of Salmonella 

isolation in the river, and detection of few similar Salmonella serotypes, it was 

concluded that the dairy farm did not contribute significantly to contamination of 

the river. 
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PARTI 

LITERATURE REVIEW 



In the United States, foodborne disease contributes to an estimated 76 

million cases and 500 deaths annually (CDC, 2002a). Current research indicates 

that a broad array of pathogens contaminate our food supply. Although most 

foodborne pathogens can be controlled in the kitchen by consumers, they are 

not; therefore, risk reductions are needed at every point from farm-to-table. 

Salmonella, Campylobacter jejuni and Escherichia coli O157:H?, frequently 

associated with foods of animal origin, are among the most common pathogens 

implicated in cases of foodborne disease (Potter, 1994). Knowledge of factors 

that affect shedding of these pathogens by food producing animals could help 

reduce transmission of pathogens at the farm, thus decreasing the risk of 

contamination throughout the rest of the food chain. 

An estimated 2 million to 4 million cases of salmonellosis occur annually in 

the United States (FDA, 1992). In the United States, the annual cost of 

foodborne salmonellosis in humans has been estimated at $0.6 billion to $3.5 

billion, making salmonellosis one of the most costly human foodborne diseases 

(Busby et al., 1996). Human outbreaks of salmonellosis in the United States are 

frequently associated with foods of animal origin. Eggs, poultry, meat and meat 

products are commonly identified vehicles for transmission of salmonellosis to 

humans (Jay, 2000). The occurrence of Salmonella in food products poses 

significant health risks to consumers. Non-typhoid and non-paratyphoid strains 

of Salmonella generally cause enteroco/Jl:is, characterized by self-limiting 

diarrhea, severe abdominal pain, nausea, vomiting, and fever. Symptoms of 
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Salmonella typhi and Salmonella paratyphi differ from non-typhoid Salmonella. 

Enteric fever is the illness resulting from exposure to S. typhi and S. 

paratyphi, characterized by translocation from the intestinal tract deep into 

human tissue. The disease can lead to a chronic carrier state, causing 

asymptomatic carriers to intermittently shed Salmonella (D'Aoust, 2001 ). 

Farm animals may frequently be intestinal carriers of Salmonella, and 

fecal shedding of the organism is the primary mode of on-farm contamination 

(Oosterom, 1991 ). Salmonella can be shed in milk and can cause illness in 

people consuming raw milk or milk contaminated after pasteurization (Werner et 

al., 1984). Additionally, milk may also become contaminated by fecal material 

during collection. In 1984, cheddar cheese made from both pasteurized and heat 

treated (non-pasteurized) bovine milk was incriminated as the source of 2700 

cases of humans salmonellosis (D'Aoust et al., 1985). This was the largest 

recorded Salmonella outbreak in the United States. A cross-connection between 

raw and pasteurized milk lines was responsible for this outbreak (D'Aoust et al. , 

1985). 

Salmonella may also contmninate carcasses at slaughter and cause 

illness in people consuming contaminated meat (Smith et al. , 1994). Raw 

ground beef is a well-known vehicle for transmission of Salmonella. Cull dairy 

cattle, which are the source of much of the hamburger consumed in the United 

States, represent important potential reservoirs for human salmonellosis. The 

rate of Salmonella shedding by cull dairy cattle reportedly ranges from 0.46 to 

18.1 % (Gay et al., 1994; Murinda et al. , 2002). Gay et al. (1994) surveyed 1289 
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cull dairy cattle in Washington State for fecal _shedding of Salmonella. The rate 

of fecal shedding by cull dairy cattle in Washington state was estimated at 0.46 to 

0.92%. In a survey of cull dairy cattle from 30 dairy farms in east Tennessee, 

Salmonella were isolated from 23.3% of the farms surveyed, with 2.17% of fecal 

samples testing positive for Salmonella (Murinda et al., 2002). Differences in 

isolation rates of Salmonella can be attributed to variations in isolation and 

confirmation methodologies used in the studies. Higher isolation rates for 

Salmonella were observed in healthy beef cattle. In 1998, a national study was 

conducted on health and management of cattle in feedlot environments 

(Fedorka-Cray et al., 1998). A total of 4,977 samples were collected from 100 

feedlots in 13 states having the majority of feedlot cattle production in the United 

States. Salmonella were recovered from 38% of the feedlots surveyed, however 

results varied by season and geographic region (Fedorka-Cray et al., 1998). 

Campylobacter jejuni is the most frequent cause of foodborne disease in 

humans in the United States, causing approximately 2.4 million illnesses 

annually, and causes and estimated 100 deaths per 10,000 cases (Tauxe, 1992). 

The high frequency of infection may be due to the low infectious dose of C. jejuni, 

which ranges from 100 to 500 organisms (Mead et al., 2000). Symptoms of 

Campylobacteriosis include diarrhea, abdominal cramps, abdominal pain, and 

fever. The pathogen is also known to contribute to the development of Guillain

Barre syndrome, an illness characterized by nerve damage and possible 

paralysis (CDC, 2002a). An estimated qne case of Guillain-Barre syndrome 
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occurs per every 1000 cases of Campylobacteriosis. Up to 40% of patients with 

the syndrome have evidence of prior Campylobacter infection (Allos, 1997). 

Campylobacter infections are usually sporadic, occurring during summer 

and early fall, and usually follow ingestion of improperly handled or improperly 

cooked foods (Tauxe, 1992). Although human infection from Campylobacter is 

commonly associated with consumption of contaminated poultry products, 

several sporadic cases have been linked to consumption of contaminated beef, 

pork, water, and raw milk (Nielson et al., 1997). Raw milk was implicated as the 

source of infection in 30 of 80 outbreaks of human Campylobacteriosis reported 

to CDC between 1973 and 1992 (Hopkins et al. , 1984; Schmid et al., 1987). In a 

Seattle case control study conducted by the King County Department of Public 

Health (1984) consumption of raw milk was implicated in 17% of 218 illnesses 

related to C. jejuni infection. In Iowa, another milk related outbreak occurred in 

which 30% of 46 illnesses from C. jejuni were linked to consumption of raw milk 

(Schmid, 1987). 

Campylobacter jejuni is a common organism of the intestinal tract of cattle. 

Feedlot cattle are more likely than grazing animals to carry Campy/obacter 

species (Giacoboni et al., 1993). In a survey of 100 beef cattle at slaughter, C. 

jejuni was recovered from 50% of animals tested (Garcia et al., 1985). Also, a 

1985 retail survey indicated that C. jejuni was detected in 2 to 5% of raw ground 

beef and beef flank samples (Stern et al. ,  1985). Results from these studies 

indicate that risk of human infection may be reduced by targeting controls in food 

animal production, processing, and handling of foods of animal origin. 
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Escherichia coli O157:H7 causes an estimated 62,000 illness and 52 

deaths annually in the United States (Mead et al., 2000). Escherichia coli 

O157:H7 produces one or two potent cytotoxins, designated as Shiga toxins 1 

and 2, or verotoxins 1 and 2. While other serotypes of shiga toxin producing E. 

coli may cause human illness, E. coli O157:H7 is the most commonly identified 

and most important member of the shiga toxin-producing group of pathogens 

(Tarr, 1994). Escherichia coli O157:H7 is a major public health threat because of 

its ability to cause serious and potentially life-threatening illnesses. Illness 

resulting from infection with E. coli O157:H7 can. range from self-limiting, watery 

diarrhea to development of hemolytic uremic syndrome (HUS) and thrombotic 

thrombocytopenic purpura (Padhye and Doyle, 1992). 

A number of reservoirs of E. coli O157:H7 have been identified, the most 

common being cattle, sheep, deer and water (Doyle et al. ,  1997; Keene et al. , 

1997; Kudva et al. , 1996). Animals shed the organism in their feces, resulting in 

the possibility of cross-contamination of a wide variety of foods and subsequent 

foodborne transmission to humans. In 1992, two major outbreaks of E. coli 

O157:H7 occurred in Oregon and Michigan (Riley et al., 1983). The Oregon 

outbreak involved 26 cases with 19 hospitalizations. The Michigan outbreak 

involved 21 cases with 14 hospitalizations. The illnesses were epidemiologically 

linked to undercooked hamburgers from the same fast food restaurant chain. 

Escherichia coli O157:H7 was isolated from patients as well as from frozen 

ground beef patties. The same meat processor supplied the hamburger patties to 

restaurants in both states (Riley et al. , 1983). 
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In a study by Martin et al. (1986), raw milk was recognized as a vehicle of 

transmission of E. coli O157:H7 in 1986. Two children from different families 

developed hemorrhagic colitis and HUS after drinking raw milk from dairy farms. 

Escherichia coli O157:H7 was isolated from the stool of patients and the feces of 

healthy heifers on both farms (Martin et al., 1986). Duncan et al. (1987) isolated 

shiga toxin-producing E. coli from seven cows at a farm where a class of 

kindergarten children became ill after drinking raw milk. Three of the children 

developed HUS (Duncan et al., 1987). 

Escherichia coli O157 :H7 infection associated with undercooked ground 

beef and raw milk has led investigations to the role of cattle as the major 

reservoir of the pathogen. Despite the disease-causing potential for E. coli 

O157:H7 in humans, the organism does not appear to cause disease in cattle 

(Montenegro et al., 1990). Therefore, healthy cattle harboring the pathogen may 

enter the food chain. Estimates of the prevalence of E. coli O157:H7 in health 

cattle range from 3.5 to 40% depending on diagnostic methods and on the cattle 

popu lation under  study (Busato et a l . ,  1 998). However, accord i ng to Cu l lar  

(1995), there appears to be no difference in the prevalence of E. coli O157 :H7 in 

animals raised on dairies, in beef feedlots, or on cow-calf operations. 

Hancock et al. (1994) demonstrated that E. coli O157:H7 can be isolated 

from the feces of asymptomatic cattle. In a Washington State study of 60 dairy 

cattle and 25 beef cattle, E. coli O157 :H7 was found in 0.28, 0. 71, and 0.33% of 

fecal samples from dairy, pastured beef, and feedlot beef cattle, respectively 

(Hancock et al., 1994). As many as 16% of the beef cattle and 8.3% of dairy 
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cattle herds were infected with the pathogen . Cattle management practices , in 

this case, were shown to reduce human exposure to E. coli O1 57:H7. E. coli 

O1 57 :H7 positive herds were smaller and tended to i rrigate grazing land with 

fecal slurry. Also, positive herds showed a shorter interval between application 

of the fecal slu rry and grazing of the land by cattle (Hancock et al . ,  1 994) . In  a 

second study, Hancock et al . ( 1 997) estimated the prevalence of E. coli O1 57 :H7 

in feedlot cattle in  the United States. Fecal samples from cattle in  1 00 feedlots in 

1 3  states were cu ltu red bacteriologically for E. coli O1 57 :H7. Escherichia coli 

O1 57 :H7 was isolated from 1 .8% of 1 1 ,881 fecal samples. One or more samples 

tested positive for the pathogen in 63 of the 1 00 feedlots tested. The prevalence 

of E. coli O1 57 :H7 was highest in the pens with cattle shortest on feed. Also, 

animal clusteri ng in several pens may have contributed to the high prevalence of 

E. coli O1 57 :H7 at many of the feedlots. Resu lts from these studies indicate that 

there are differences in prevalence of cattle shedding E. coli O1 57 :H7 among 

herds and that associations exist between prevalence in cattle and herd 

management practices. 

SURVEILLANCE OF FOODBORNE PATHOGENS 

The word "survei l lance," derived from the French word "survei l ler," means 

to watch over, to supervise , or to contro l (Bryan et al . ,  1 997) . Surveil lance 

implies the conti nuous observation of al l  aspects of the occu rrence and spread of 

a d isease that are pertinent to i ts u ltimate control (Bryan, 1 988) . The reporting of 

foodborne and waterborne disease in the United States began more than 50 

years ago. During this t ime, state and territorial health officers, concerned with 
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high morbidity and mortality associated with typhoid fever and infantile diarrhea, 

recommended that cases of "enteric fever" be investigated and reported. The 

objective of investigating and reporting these cases was to obtain information 

regarding the role of food, water and milk in outbreaks of intestinal illness. In 

1923, the Public Health Service began publishing summaries of outbreaks of 

gastrointestinal illness attributed to milk. However, in 1938, they began 

publishing summaries of outbreaks attributed to all foods. In 1961, the Centers 

for Disease Control (CDC) assumed the responsibility for publishing summaries 

of foodborne disease. These early surveillance and reporting measures led to 

the enactment of public health measures that had a profound impact in 

decreasing the incidence of enteric disease. Since the 1960's the quality of 

foodborne disease reports has improved due to more active participation by state 

and federal agencies in the investigation of outbreaks (Bean et al., 1996). 

Surveillance of foodborne pathogens is necessary for preventing the 

spread of foodborne disease. As foodborne pathogens are identified, they 

become the subject of epidemiological i nvest igatio ns and studies of the ir  

pathogenicity, ecology, and methods of detection. A major component of 

foodborne pathogens surveillance includes gathering data on prevalence of the 

etiological agents of disease, vehicles of spread of these agents, and their 

common reservoirs. Newly identified vehicles may indicate changes in practices 

that commonly lead to contamination, survival, and amplification of etiological 

agents or factors that influence these events. In addition, data on reservoirs of 
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important pathogens can suggest needs for modifications i n  agricu ltu ral, food 

processing, and san itation practices (Guzewich et al. , 1 997) . 

Although there are several types of disease surveil lance systems, two 

types are important to foodborne pathogens surveil lance. These include 

laboratory isolation of foodborne pathogens from humans and animals and 

hazard surveil lance (Guzewich et al . ,  1 997). Isolations of foodborne pathogens 

from humans usually come from ill persons, from which physicians obtain cl in ical 

specimens. Isolations from animals are usually obtained from animals being 

treated by veteri narians or as a result of surveys of a foodborne pathogen of 

contemporary concern (Bryan et al . ,  1 997) . 

The CDC Emerging Infections Program Foodborne Diseases Active 

Surveil lance Network (FoodNet) co llects data on 1 O foodborne d iseases in 9 

states (California, Colorado, Connecticut, Georgia, New York, Maryland , 

Minnesota, Oregon, and Tennessee)- to mon itor foodborne i l lness (CDC, 2002a). 

FoodNet's goals include estimating the annual frequency and severity of 

foodborne diseases, and determin ing how much foodborne i l l ness is due to 

consumption of specific foods such as meat, poultry, and eggs. The core of 

FoodNet is laboratory-based active surveil lance at over 300 cl inical laboratories. 

I nformation is col lected on every laboratory-diagnosed case of bacterial 

pathogens i nclud ing Salmonella, Shigella, Campylobacter, Escherichia coli 

01 57:H7, Listeria monocytogenes, Vibrio and parasitic organisms. For more 

precise classification, cl in ical isolates are sent from FoodNet sites to CDC for 
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further testing, including antibiotic resistance, phage_ typing, and molecular 

subtyping (CDC, 2002a). 

PulseNet is a national network of public health laboratories that performs 

DNA fingerprinting on foodborne bacterial isolates from outbreak cases. 

PulseNet performs DNA fingerprinting by Pulsed Field Gel Electrophoresis 

(PFGE) on disease causing bacterial isolates from humans and from suspected 

foods. The network identifies and labels fingerprint patterns and compares 

patterns through an electronic database at CDC to identify related strains. 

Through PulseNet, scientists are able to rapidly determine whether an outbreak 

is occurring, even if affected persons are geographically separated. Outbreaks 

and their causes can be identified in a matter of hours rather than days or weeks 

(CDC, 2002b). 

Hazard surveillance has been used primarily in the assessment of 

occupational diseases and environmental exposures. It is the surveillance of the 

occurrence of and distribution of biological, chemical or physical hazards. 

Foodborne hazards are those hazards that affect contamination, survival, or 

proliferation of pathogens (Bryan et al., 1 997). Hazard surveillance is the main 

focus of the hazard analysis component of the Hazard Analysis Critical Control 

Point (HACCP) approach. Surveillance information regarding vehicles and 

contributing factors of foodborne disease is used to identify critical control points 

where monitoring is necessary to ensure elimination, prevention, or reduction of 

foodborne hazards (Bryan, 1988) .  
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Several hazards, including certain chemical , physical, and microbiological 

hazards, originate on farms. As processors develop programs to control these 

hazards, they are l ikely to look to farmers to reduce the risk of these hazards in 

primary production. Development of on farm systems to control hazards on 

farms, such as application of the HACCP approach, has been advocated as a 

relatively simple approach that integrates with other systems developed for 

slaughter and processing (Noordhuizen and Welpelp, 1 996 ) .  

The Food Safety Inspection Service (FSIS) of the U.S. Department of 

Agriculture, is responsible for ensuring the safety, wholesomeness, and accurate 

labeling of meat, poultry, and egg products. In 1 996 , FSIS issued the Pathogen 

Reduction; HACCP rule, which sets pathogen reduction performance standards 

tor Salmonella in slaughter plants and plants producing raw ground meat 

products. FSIS col lects and analyzes HACCP Salmonella samples in order to 

verify plant compliance with the Pathogen Reduction and HACCP rule (Food 

Safety and Inspection Service, 2002). Recent data released by the CDC indicate 

that foodborne illness is declining in the United States, and that the prevalence of 

Salmonella in meat and poultry has declined since the implementation of the 

Pathogen Reduction/HACCP Rule (CDC, 2002a) . 

RISK ASSESSMENT AND RISK MANAGEM ENT 

Outbreaks of foodborne il lness and recalls of various meat and poultry 

products over the past few years have reinforced the need for more effective 

measures to control foodborne pathogens at the farm. In 1 998 the United States 

Department of Agriculture recommended a shift from traditional plant-based 
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inspections to prevention-oriented systems based on risk assessment at the farm 

(Food Safety and Inspection Service, 1998). 

Risk is the chance that an event or exposure will lead to some disease, 

condition, disability, or even death. Risk factors are those behaviors, events, or 

exposures associated with occurrence of disease, condition, disability or death. 

The more exposure to risk factors, the greater the probability of occurrence of a 

specific disease or other negative result (Timmreck, 1994). Risk assessment is 

defined as the qualitative and quantitative process used to evaluate hazardous 

conditions and characterize the resulting risk. Risk assessment uses the tools of 

science, engineering, and statistics to analyze risk-related information and to 

estimate and evaluate the magnitude of outcomes harmful to humans and the 

environment. The process of risk management integrates results of risk 

assessment with economic, social, political and legal concerns to develop a 

course of action to prevent a problem (Walker, 1997). 

Components of risk assessment include hazard identification, exposure 

assessment, dose-response assessment, and risk characterization (Timmreck, 

1994; Walker, 1997). When risk assessment of foodborne pathogens is applied 

at the farm, hazard identification is used to identify foodborne pathogens of 

interest in farm animals and farm environments. Exposure assessment is used 

to identify routes of exposure as well as the number of species and areas of 

exposure to the foodborne pathogens of interest. The amount or dose response 

assessment is used to determine the incidence of these pathogens in farm 

animals and farm environments and to determine the relationships between 
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similar pathogens isolated from different sites. Utilizing sound principles of risk 

assessment is vital to communicating risk, setting priorities, developing risk 

management programs, and evaluating control efforts (Walker, 1997). 

GEOGRAPHICAL INFORMATION SYSTEMS (GIS) 

Surveillance systems used to monitor foodborne pathogens at the farm 

require the application of epidemiological sciences to data concerning reservoirs, 

environmental factors and farm management practices that favor the existence 

and spread of pathogens throughout the animal population .  The Geographic 

I nformation System, or G IS, has recently emerged as an innovative and 

important component of many projects in public health and epidemiology. G IS is 

a powerful computerized mapping and analysis technology that allows large 

quantities of information to be viewed and analyzed within a geographic context 

(Clarke et al., 1996) .  GIS offers a coordinated and integrated approach to 

manage, analyze, and present large amounts of spatial and non-spatial data. 

G IS links non-graphic data (e.g. levels of pathogens) with graphic map features 

to allow a wide range of information processing and display operations, as well 

as map production, analysis, and modeling (Vine et al., 1997). Epidemiologists 

have traditionally used maps when analyzing associations between location ,  

environment, and disease. G IS  technology is currently being applied to a variety 

of public health issues, including the study of variations in disease frequency and 

health status, and measurement of health care delivery and resource allocation 

(Tim, 1995). Public health researchers, for example, have used G IS to map and 

study cancer mortality. Other disciplines now utilizing G IS include forestry, 
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transportation planning, emergency services delivery, marketing, surveying, and 

criminal justice (Tim, 1995). 

Environmental health professionals are asked frequently to address 

whether exposure to certain environmental contaminants have led to adverse 

health effects. However, they are usually limited in their ability to properly 

address the issues in a timely and cost-effective fashion. Modern computer 

technologies, such as GIS, provide cost-effective epidemiological tools for 

evaluating relationships that exist between the environment and factors 

potentially affecting health outcomes. 

Advances in GIS may prove to be a valuable tool in food safety research 

and surveillance of foodborne diseases. Utilization of GIS in food safety 

research will allows for improved monitoring and instantaneous visualization of 

the transport of foodborne pathogens in the environment. The use of this 

technology may reduce the time required to analyze numerical output and enable 

users to identify critical areas of non-point source pollution and to perform 

various "what if" scenarios to support the decision making process. G IS  wil l  

allow researchers to visualize and analyze information in new ways, and reveal 

previously hidden relationships, patterns, and trends. 

PURPOSE OF CURRENT RESEARCH 

Epidemiological data suggest that our most important foodborne hazards 

are Salmonella, C. jejuni, and E. coli 0157:H7, and foods of animal origin are 

most often associated with infectious foodborne disease than other foods (Potter, 

1994). Salmonella, C. jejuni, and E. coli 0157:H7 all share the common 
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characteristic of having an animal reservoir from which they can spread to 

humans; therefore, risk reductions at every point from farm-to-table are 

necessary. Development of efficient, on-farm strategies to control foodborne 

pathogens requires knowledge of basic epidemiology such as the prevalence 

and distribution of pathogens on animals and in the environment. The purpose of 

this research was to provide a detailed and comprehensive epidemiological 

characterization of Salmonella, C. jejuni, and E. coli 0157:H? in dairy cattle 

animals, farm environments, and nearby surface water. G IS and molecular 

typing methodology were used as epidemiological tools to examine relationships 

that exist between animals and their environments. Risk assessment and risk 

analysis were used to evaluate how various farm management practices 

influence factors such as contamination, proliferation, and transmission of 

Salmonella, C. jejuni, and E. coli 0157:H? on the farm. The overall goal of this 

research was to generate a descriptive risk assessment model to which future 

data could be applied to develop farm management strategies to reduce 

contamination with foodborne pathogens in production environments. 
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ABSTRACT 

A comprehensive epidemiological survey was conducted to determine the 

prevalence of Salmonella, Campylobacter jejuni, and Escherichia coli O1 57 :H7 in 

dairy animals and dairy farm environments. The experimental design included 

321 dairy cows (lactating and non-lactating) and calves from The University of 

Tennessee, Knoxville Experiment Station research dairy farm. Samples were 

collected monthly for 1 2  months from dairy cows, calves, feed and the farm 

environment, which included pastures, barns, bedding, soil , bulk tank milk, 

milking equipment, air, insects, and wild birds. A total of 45,732 samples were 

analyzed for Salmonella, C. jejuni, and E. coli O1 57:H7 using modifications of the 

Food and Drug Administration, Bacteriological Analytical Manual enrichment, 

isolation, and confirmation protocols, previously validated for each sample type. 

A Geographic Information System (GIS) was used to examine relationships that 

exist between animals and their environments. 

A strong seasonal influence occurred with the isolation of Salmonella and 

C. jejuni at the farm. The prevalence of Salmonella isolated from dairy animals, 

feed, and dairy farm environments was 32%. Salmonella isolation was highest in 

the summer (48%) in both cows and calves. Salmonella isolation during winter, 

spring, and summer months was between 24% and 26%. Feed (59%), bedding 

materials (47%), water (40%), bird droppings (34%) and insects (39%) were 

identified as significant sources of Salmonella. The prevalence of 

Campylobacter jejuni isolated at the farm was 21 %. Isolation of C. jejuni was 

significantly higher during winter (28%) and fall (29%). Bird droppings (33%) 
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were strongly correlated (P � 0.05) with contamination of feed (40%) and water 

(60%) sources. The prevalence of E. coli O157 :H? at the farm was only 2 %. 

Isolation was very infrequent throughout the entire study period. No statistical 

differences (P � 0.05) were observed among sample type. Data generated from 

the current research were used to devise strategies to reduce pathogen 

contamination at the farm through environmental management and risk 

assessment. 

INTRODUCTION 

Environmental sources of contamination are recognized as important links 

in the transmission chain of foodborne pathogens. Foods of animal origin are 

more often associated with foodborne disease than other foods (Potter, 1994), 

however, very little information is available on the significance of the farm 

environment's role in the survival and transmission of foodborne pathogens. 

Although carriage of Salmonella is common in all types of cattle, specific 

reports on the disease and recovery of Salmonella from cattle tend to focus on 

dairy cattle (Smith et al., 1 994; Kabgambe et al. , 2000). Smith et al. ( 1 994) 

evaluated the prevaJence of Salmonella in cattle and in the environments of 60 

California dairy farms. Samples for bacteriologic analysis were collected from 

pooled feces from calves, swabs of wet areas and feces from calf pens and 

hospital pens, drag samples from wastewater lagoons, and animal feed. Overall, 

45 of 60 (75%) California dairies tested positive for Salmonella. This high 

percentage of California dairies testing positive for Salmonella was not 

necessarily surprising, in view of the poor farm management practices used on 
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many of the farms. The overall sanitation at many of the farms was poor. Farm 

management practices identified as contributing to the Salmonella contamination 

included the following: Feed was not routinely tested for contamination with 

pathogens; new animals added to the herd were not tested for pathogens; sick 

animals or known Salmonella carriers were not culled; control of rodents and wild 

birds was poor; and lagoon wastewater was recycled and used as flush water 

{Smith et al. , 1 994}. 

In 1996, Kabagambe et al. {2000} examined farm management practices 

associated with fecal shedding of Salmonella by dairy cows. Fecal samples 

from 4299 dairy cows in 91 herds were tested for fecal shedding of Salmonella. 

Salmonella fecal shedding was detected in 27.5% of the dairy herds surveyed. 

The most important risk factors identified for fecal shedding of Salmonella 

included use of flush water systems, feed, herd size, and region. However, the 

precise roles of each of these factors in the shedding of Salmonella were not 

identified {Kabagambe et al., 2000}. The results from this study identified factors 

associated with increased risk of shedding of Salmonella in dairy cattle. Factors 

that have been postulated to increase the risk of fecal shedding of Salmonella 

include season of the year, feeding contaminated feeds to cattle, and improper 

manure management (Wray and Davies, 1996; Anderson et al. , 1997). Also, 

new cattle introduced into herds, feed, rodents and birds with access to cattle 

feed sources may be sources of Salmonella at the farm (Evans, 1996}. An 

integrated approach to control these multiple sources of contamination at the 
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farm is necessary for _reducing the risk of Salmonella shedding among dairy 

cattle (Kabgambe et al., 2000). 

Healthy cattle may be reservoirs for a variety of Campylobacter species. 

Campylobacter jejuni and C. coli have been isolated frequently from healthy 

livestock and are assumed to be part of the normal intestinal flora of bovines 

(Busato et al., 1998). The prevalence of C. jejuni in dairy cattle ranges from 5 to 

53%, depending on method of isolation, age of the animal, season the year, and 

type of samples analyzed (Wesley et al. , 2000). Younger animals are more often 

colonized with Campylobacter than older animals (Giacoboni et al. , 1993), and 

recovery rates are highest during the cold season (Carter et al. , 1987). 

Wesley et al. (2000) examined the prevalence of C. jejuni in healthy US 

dairy herds. Over 2000 fecal samples were collected from a combination of 31 

milk cow dairy operations, 13 farms on which lactating cows were culled, and 36 

market operations in 23 states. Campylobacter jejuni was detected in 37. 7% of 

dairy cattle fecal samples. Campylobacter jejuni was recovered more frequently 

f rom fecal samples obtained from large versus smal l  herds .  Also , comming l ing of 

culled cattle with healthy cattle facilitated the transmission of C. jejuni throughout 

the herds and farm environments (Wesley et al., 2000). 

In a survey of 13 dairy farms, C. jejuni was recovered from 5% of 904 milk 

samples and 22% of 904 cow fecal samples (Beumer et al., 1988). A second 

study, conducted by Humphrey and Beckett (1987), surveyed 12 English dairy 

farms for contamination of cattle with C. jejuni. Campylobacter jejuni was 

isolated from 24% of 668 cattle rectal swab samples. Dairy farms in which 
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Campylobacter was not isolated used chlorinated drinking water for animals. 

Dairies testing positive for Campylobacter used river water as an animal drinking 

water source. Several studies have identified unchlorinated drinking as a vehicle 

of transmission of Campylobacter to the dairy farm environment (Humphrey and 

Beckett, 1987). Several potential measures to control C. jejuni at the farm 

included sanitation, water treatment, and vector control. 

Dairy cattle have been implicated as principle reservoirs of Escherichia 

coli O157 :H7, with undercooked ground beef and raw milk being the major 

vehicles of foodborne outbreaks (Zhao et al., 1995). The involvement of cattle in 

the spread of the pathogen has focused research on the farm and farming 

practices that may contribute to the presence of the pathogen in herds. 

Escherichia coli 0157 is believed to be widespread on US dairy farms, 

but at very low prevalence (Hancock et al., 1994 ; Zhao et al., 1995). Estimates 

of the prevalence of E. coli O157:H7 in health cattle range from 3.5 to 40% 

depending on diagnostic methods and on the cattle population under study 

(Busato et al. , 1998). The herd prevalence for E. coli O157 :H7 can range from 

up to 70% in some dairy herds and 63% in US feedlots (Hancock et al., 1997). 

The prevalence for individual cattle within herds is relatively low and ranges from 

0 to 5.5%. Surveys suggest that fecal shedding is intermittent and variable in 

cattle (Zhao et al., 1995). 

The purpose of the present research was to determine the prevalence of 

Salmonella, Campylobacter jejuni and E. coli O157:H? recovered from dairy farm 

animals and farm environments. A Geographic Information System (GIS) was 
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used to identify critical sources of contamination at the farm and identify the 

vehicles by which Salmonella, Campylobacter jejuni, and E. coli O157:H? were 

spread among dairy cattle. Results of the study were used to devise farm 

management strategies to reduce the risk of · transmission of foodborne 

pathogens at the farm. 

MATERIALS AND METHODS 

Experimental Design 

The University of Tennessee, Knoxville Experiment Station Dairy 

Research Herd consisted of 251 cows and 170 calves (80% Holsteins and 20% 

Jerseys). The herd annually averages 10,896 kg of milk per cow for Holsteins 

and 7,718 kg of milk per cow for Jerseys. Cows in the research herd were 

milked twice daily in a 12-stall trigon parlor equipped with a DeLaval milking 

machine system (De Laval, Kansas City, MO). Pre-milking and post-milking teat 

disinfections were practiced regularly. Lactating cows were housed in free stalls 

bedded with sawdust and were fed a total mixed ration daily. All cows were dried 

off approximately eight weeks before expected calving and al l quarters of cows 

were infused with antibiotic preparations approved for use in non-lactating cows 

following the last milking of lactation. Calves were housed in individual calf 

hutches and were fed discarded milk or milk replacer until weaning. After 

weaning, calves were moved to group pens bedded with sawdust. 

All samples were collected and processed by the Food Safety Center 

Research Team at The University of Tennessee, which included Willie Taylor, 
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Philipus Pangloli, M ichelle Saul, Andy Doan, _and myself. Samples were 

collected monthly for a period of 12 months. 

Animal Sampling 

Oral, rectal and hair samples were collected from both cows and calves. 

All samples were collected in duplicate. Oral samples were taken from the i nner 

surface of the oral cavity using sterile cotton swabs. Hair samples were obtained 

by swabbing the back and neck areas using swabs moistened with buffered 

peptone broth. The peri-anal area was cleaned with sterile gauze soaked in 

sterile saline and fecal samples were obtained from the rectum usi ng occluded 

sterile swabs (Accu-Med Corporation, Milford, OH) . After sample collection, 

swabs were placed into sterile tubes contain ing 5 ml of lactose broth (Becton, 

Dickinson and Company, Franklin Lakes, NJ) and kept on ice until processing. 

Foremilk samples were obtained from lactating cows by drawing 2 ml of milk i nto 

sterile tubes, without discarding the first four streams. Bulk tank milk samples 

were obtained by immersi ng a sterile container into the bulk tank. Milk samples 

were kept on ice until processed. 

Environmental Sampling 

Environmental samples included bedding, feed, water, air, manure slurry, 

and from milking equipment. Samples of bedding were collected from stalls, 

maternity pens, dry cow facilities, and calf facilities. Samples were collected from 

two locations in the center of the stall and from points approximately one-third the 

distance from each external wall to the center of the box stall or housing area. 
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Bedding samples (approximately 1 kg) were placed into sterile plastic bags, 

mixed thoroughly and kept at room temperature until processed. 

Approximately 200 g of the total mixed ration at the time of feeding and 

200 g of feed remaining in the feed bunk 4 h after feeding were collected from 

the feed bunk using sterile feed scoops. Samples were placed into sterile plastic 

bags and kept at room temperature until processed. Cattle drinking water 

samples were collected directly from water troughs. Water samples were 

obtained in duplicate. 

Samples were collected from milking machine liners by swabbing areas of 

the liners that directly contacted teat skin with sterile cotton swabs moistened 

with sterile water. Swabs were placed into sterile tubes containing 5 ml LB and 

kept on ice until processed. 

Air sampling was performed as described by Rahkio and Korkeala (1 997) 

using an Andersen two-stage viable particle sizing sampler (Andersen Sampler 

Inc., Atlanta, GA) and differential plating media. 

I nsects and other  wi ld l ife samples i nc lud ing arthropods and f l ies wer:e 

trapped using vinyl tube traps and fly strips as described by Gregory et al. 

(1997). Traps were placed 24 h prior to site visits, and specimens were collected 

the following day. Traps and fly strips were placed at representative locations 

within the cow and calf facility, with a minimum of 5 locations per facility. 

Droppings from wild birds were obtained from several farm environmental sites 

including fencing along the farm and gates enclosing animal housing areas. 
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Isolation and Identification of Salmonella 

Culture media, reagents (FDA, 1 998), equipment and materials used for 

isolation and confirmation of Salmonella are described in the BAM protocol. 

Sample preparation varied depending upon sample type. Positive control 

cultures of typical Salmonella, and atypical Salmonella (S. arizonae, American 

Type Culture Collection 1 2325, lactose +, sulfide +; S. abortus equi, American 

Type Culture Collection 9842, lactose -, sulfide -) were prepared and used as a 

reference for each analysis. Samples were direct plated onto bismuth sulfite 

agar (Becton, Dickinson and Company, Franklin Lakes, NJ) and XL T agar 

(Becton, Dickinson and Company, Franklin Lakes, NJ) for possible enumeration 

and also placed into lactose enrichment broth followed by enrichment in 

tetrathionate broth at 42Q C and Rappaport Vassiliadis Broth (Becton, Dickinson 

and Company, Franklin Lakes, NJ) at 35Q C. Differential plating was conducted 

on bismuth sulfite agar, XLD agar (Becton, Dickinson and Company, Franklin 

Lakes, NJ), hektoen enteric agar (Becton, Dickinson and Company, Franklin 

Lakes, NJ) and Brilliant Green Agar (Becton, Dickinson and Company, Franklin 

Lakes, NJ). Colonies typical of Salmonella were selected from differential plates 

(three from each plate) and inoculated onto triple sugar iron (TSI) medium 

(Becton, Dickinson and Company, Franklin Lakes, NJ). Colony morphology, 

biochemical testing, and serological testing were performed as described in BAM 

(Andrews et al. , 1 995; FDA, 1 998). Procedure for the latex agglutination test 

involved adding a drop of latex solution to a sample card , mixing a loopful of 

sample with the latex solution (1 O - 1 2  sec.) and observing for an agglutination 
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reaction. Agglutination positive reactions resulted in_ a thick, stringy appearance 

to the sample mixture. 

Isolation and Identification of Campylobacter jejuni 

Samples were pre-enriched for 5 h in Campylobacter enrichment broth 

(CEB) (Oxoid Inc., New York, USA) and Bolton Broth (BB) (Oxoid Inc., New York, 

USA). Samples were placed in a 30Q C incubator for 3 h, then in a 37Q C 

incubator for 2 h. After enrichment, all samples were streaked onto 

Campylobacter blood-free selective agar plates, with supplements (Oxoid Inc., 

New York, USA). The plates were incubated under microaerophilic conditions for 

24 h at 42 ° C. Presumptive positive colonies were confirmed biochemically as 

C. jejuni with glucose fermentation, hippurate hydrolysis and oxidase reactions. 

Serological confirmation with polyvalent somatic O antigens latex agglutination 

test (Oxoid Inc., New York, USA). Procedure for the latex agglutination test 

involved adding a drop of latex solution to a sample card , mixing a loopful of 

sample with the latex solution (1 O - 12 sec.) and observing for an agglutination 

react ion .  Agg lut i nat ion  positive react ions resulted i n  a th ick, str i ngy appearance 

to the sample mixture. 

Isolation and Identification of Escherichia coli 0157:H7 

Samples for Escherichia coli 0157:H7 isolation were enriched in trypticase 

soy broth (Becton, Dickinson and Company, Franklin Lakes, NJ) and incubated 

in a shaking water bath at 372 C for 18- 24 h. Upon incubation, a loopful of 

enriched samples was streaked onto CT-SMAC (Becton, Dickinson and 

Company, Franklin Lakes, NJ) and EMB plates (Becton, Dickinson and 
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Company, Franklin Lakes, NJ) for isolation. �lates were incubated at 35Q C for 

18 - 24 h. Typical , non-sorbitol fermenting E. coli 0157 colonies were picked up 

from each plate and inoculated on TSAYE slants (Becton, Dickinson and 

Company, Franklin Lakes, NJ) . Slants were incubated at 35Q C for 18- 24 h. 

The isolates on TSAYE were used for biochemical and serological testing. 

Isolated cultures were tested for indole and citrate biochemical reactions (FDA, 

1998). Isolates were serological ly confirmed with 0157 antiserum and latex 

agglutination tests (0xoid Inc., New York, USA). Procedure for the latex 

agglutination test involved adding a drop of latex solution to a sample card, 

mixing a loopful of sample with the latex solution (1 O - 12 sec.) and observing for 

an agglutination reaction. Agglutination positive reactions resulted in a thick, 

stringy appearance to the sample mixture. 

Geographic Information System (GIS) Analysis 

An aerial photograph taken of the dairy farm was scanned into ArcView® 

GIS version 3.2 (Environmental Systems Research Institute, Redlands, CA) and 

used as the basemap onto which the spatial information was layered. Data 

generated from microbial analyses of animal and environmental samples 

(number of confirmed pathogens isolated at specific points on the farm) were 

imported into the ArcVie'h® project. Data were sorted and grouped by quarter 

(1st, 2"<\ 3rd
, and 4t�, analyzed to give percent of pathogens isolated at each 

point on the farm, and plotted onto the basemap. Cartographic software, 

Macromedia Freehand 9.0® (Macromedia lnc.,NY, USA ), was used to visually 
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display data on the map. A series of colors and shapes were used for improved 

visualization of the data. 

Data Analysis 

Data were stored and coded as positive or negative for the presence or 

absence of Salmonella in animal and environmental samples. Categorical 

statistical data analyses were performed using SAS version 8.2 (SAS® Institute, 

Cary, NC, USA). Chi-Square (X 2) analysis was performed to determine 

correlations among sample types. ArcVievv® G IS version 3.2 was used to 

perform advanced statistical analyses of spatial data, including cluster analyses, 

and Poisson probability distributions. 

RESULTS 

The microbiological survey of The University of Tennessee research dairy 

farm represents over 40,000 samples from dairy cows, calves, and the farm 

environment. Dairy animals and environmental samples were analyzed for the 

presence of Salmonella, Campylobacter jejuni, and Escherichia coli O 157:H7 

(Table 1 ) .  

A total of 1 2,480 animal, feed, and environmental samples were analyzed 

for the presence of Salmonella. Of these samples 3994 (32%) tested positive for 

Salmonella. Bedding materials (47%), insects (39%), bird droppings (34%), dry 

cows (33%), and calves (33%) were significant sources of Salmonella on the 

dairy farm (Table 1 ). Isolation of Salmonella from dairy animals, feed , and farm 

environments varied significantly by quarter (Table 2). Salmonella isolation was 

highest in the summer (48%) in dry cows (42%), lactating cows (68%) and calves 
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Table 1. Prevalence of Salmonella, Campylobacter jejuni and Escherichia 
coli O157:H7 recovered from dairy cows·, ca lves and farm environments. 

% Positive pathogen isolated 
(N = 37036) 

E. coli 
Salmonella C. jejuni O157:H7 

Sample Sample type (n = 12480) (n = 12546) (n : 12010) 
Lactating Cow Animal8 1 4A 34G 4 

Dry Cow Animal0 33tsG 31{.; 2 
Calves An imalc 331:j\.J 281:jl.i 1 

Feedbunk Feed 1 8A 221:S 1 
Si lage Feed 53u1: 12A ND 
TMR Feed 59E 40D ND 

Water Trough Feed 46u 601: 6 
Calf Sipper Feed 241:S 11A ND 

Bedding - Cow0 Environment 47u 5A ND 
Bedding -Calf Environment 47u ND 1 

Bird Droppings Environment 34(.; 33c ND 
Soi l  - Lactating Environment 36Li 201:S 9 
Soi l  - Maternity Environment 1 5

A 201:S 2 
Soi l  - Calf Environment 1 1 A 5A ND 

Manure Environment 1 6A 7A ND 
Air - Calf Environment 15A 1 4A ND 

Insect - Calf Environment gvu 17A 2 

TOT AL (average %) 32 21 2 

3Lactating cow animal samples include oral, rectal, hair, teat and foremilk 
bDry cow samples included oral, rectal, and hair. 
cCalf samples included oral , rectal ,  and hair. 
dBedding materials included sand, sawdust, and grass. 
Means fol lowed by different superscripts in the same column are s ignif icantly d ifferent at P � 0.05.  
ND = not detected 
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Table 2. Seasonal i ncidence of Salmonella isolated from dairy farm cows, 
calves and farm environm·ents . 

% Positive Salmonella isolated 
season (auarter8) 

Sample Winter Spring Summer 
(N = 1 2480) Sample type (1 st) (2"d) (3rd) 

Lactating Cow Animalb 39 11 25 A 68 C 

Dry Cow Animaf 45 11 24 A 42B 

Calves Animal0 20 A 31 A 52 1:3 

Feedbunk Feed 1 2  A 27 A 23 A 

Silage Feed 22 A 62 tK, 
84-c 

TMR Feed 36 A 38 A 92 t:i 

Water Trough Feed 33 A 81  G 28 A 

Calf Sipper Feed ND 1 1  A 63 B 

Bedd ing - Cowe Environment 56 l_; 1 9 A 66-c 

Bedding -Calf Environment ND ND 1 9 
Bird Droppings Environment 50 t:iG 1 3 A 72 C 

Soil - Lactating  Environment 23 A 1 7 A 68 --c 
Soi l - Matern ity Environment 1 2  A ND 26 A 

Soil - Calf Environment 26 A 1 0 A 8 A 

Manure Environment 1 2  A 25 A 8 A 

Ai r - Calf Environment 22 A 1 9 A 1 7 A 
Insect - Calf Environment 41 11 22 A 73 -C 

TOT AL (average %) 26A 25A 488 

3Quarters during the 1 2-month sampl ing period : 1 st (January - March) ; 
2nd (Apri l - June) ; 3rd (July-September) ; 4th (October - December) . 
blactating cow samples include oral , rectal , hai r, teat and foremilk. 
cory cow samples include oral , rectal and hair. 
dCalf samples include oral , rectal and hair. 
ecow bedding materials sand, sawdust, and grass . 
Means fol lowed by different superscripts (A - C) in  the same row are 
significantly different at P < 0.05. 
ND, not detected. 
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(52%). Feed (84-92%), water (63%), bedding {66%), bird droppings (72%), and 

insects (73%) were significant sources of Salmonella during the summer. There 

was no significant difference (P � 0.05) observed with isolation of Salmonella 

during the winter, spring or fall. Feed and bedding samples were consistently 

positive for Salmonella throughout the entire sampling period. 

Salmonella isolated from sippers (water; P = 0.029)) and bedding (grass, 

P = 0.053) were strongly correlated with Salmonella isolated from calves. 

Salmonella isolated from cow bedding (sand and sawqust) samples was 

correlated with Salmonella isolated from water troughs (P = 0.014) and from feed 

(TMR; P = 0.046) samples. 

A total of 12,546 samples were analyzed for the presence of 

Campylobacter jejuni. Of these samples, 2 ,635 (21 %) tested positive for the 

presence of C. jejuni (Table 1 ). Feed (60%), water (60%) and bird droppings 

(33%) were significant sources of contamination of lactating cows (34%), dry 

cows (31 %) and calves (28%). Isolation of C. jejuni from lactating cows was 

strongly correlated with isolation of C. jejuni from water troughs (P = 0.015), TMR 

(P = 0.054), and bedding (P = 0.043). 

Isolation of C. jejuni varied significantly by season (Table 3). Isolation of 

C. jejuni was highest during the winter (28%) and fall (29%). During the winter, 

lactating cows (30%), dry cows (40%), feed (50%), water (58%), bird droppings 

(70%) and insects ( 41 %) were significant sources of C. jejuni. During the fall, 

C. jejuni was prevalent in both cows (45-61 %) and calves (56%}, as well as in 

Feed (28-83%), soil (42%) and bird droppings (34%). 
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Table 3. Seasonal incidence of Campylobacter jejuni isolated from dairy 
cows, calves and farm envi ro·nments. 

% Positive Campylobacter jejuni 
isolated 

season (quarter3
) 

Sample Winter Spring Summer 
(N = 1 2546) Sample type (1 st) (2"d) (3rd) 

Lactating Cow Animal0 30 A 21 A 20 A 
Dry Cow Animalc 40 lj 18  A 22 A 

Calves Animala 1 6  A 34 ti 4 A 

Feedbunk Feed 31 lj 1 8  A 3 A 
Si lage Feed 20 A ND ND 
TMR Feed 50 ti 1 7  A B A 

Water Trough Feed 58 ti 83 v 81 v 

Calf Sipper Feed 7 A 21 A ND 
Bedding - Cowe Environment 6 A ND ND 
Bedding -Calf Environment ND ND ND 

Bird Droppings Environment 70 v 26 A ND 
Soi l  - Lactating Environment 28 AO 1 1  A ND 
Soi l  - Maternity Environment 33 lj 22 A ND 

Soi l  - Calf Environment 20 A ND ND 
Manure Environment g A ND g A 

Ai r - Calf Environment 1 4  A 31  A 1 1  A 

. Insect - Calf  Environment 41 1:3 ND ND 
TOT AL (average %) 28H 18A gA 

3Quarters during the 1 2-month sampling period : 1 st (January - March); 2nd 

(April - June); 3rd (July-September); 4th (October - December). 
blactat ing cow samples i nclude oral ,  rectal ,  hai r, teat and foremi lk .  
cDry cow samples include oral, rectal and hair. 
dCalf ·samples include oral, rectal and hair. 
ecow bedding materials sand, sawdust, and grass. 
Means followed by different superscripts (A - C) in the same row are 
significantly different at P < 0.05. 
ND, not detected. 
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Fal l  
(4th) 
61 lj 

45 lj 

56 G 

37 ti 

28 A 
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1 7  A 
1 6  A 
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ND 
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42 lj 
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ND 
1 1  A 
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A total of 12,010 samples were analy�ed for the presence of E. coli 

O157:H7. Of these samples only 240 (2%) tested positive (Table 1 ) .  Although 

the isolation of E. coli O157:H7 was infrequent throughout the entire study 

period, a key source of contamination was water from watering troughs (6%) . 

Raw milk stored as bulk tank milk (BTM) on dairy farms can be a source of 

foodborne pathogens. Several studies have identified pathogens, such as 

C. jejuni, E. coli 0157: H7 and Salmonella in farm BTM. However, the 

prevalence rates of these pathogens varied considerably among surveys. 

Jayarao and Henning (2001) examined bulk tank milk from 131 dairy farms in 

eastern South Dakota and western Minnesota for the presence of C. jejuni, E. 

coli O157:H7 and Salmonella Results showed that 27% of BTM samples 

contained one or more pathogens. This prevalence paralleled the rate of 25% 

from BTM in eastern Tennessee and southwestern Virginia, which also contained 

one or more pathogens (Rohrbach et al., 1992). 

A total of 8,696 samples were collected from the milking parlor and BTM 

and analyzed for the presence of Salmonella, C. jejuni, and E. coli O157:H7 

(Table 4) . The prevalence of Salmonella was 26% from the milking parlor, 

milking equipment and BTM. Significant sources of potential transmission of 

Salmonella included air (66%), insects (56%), and milking equipment (28%). 

Salmonella was isolated from the milking parlor floor (17%) and bulk tank milk 

(11 %). Isolation of Salmonella in manure (P  = 0 .004) and bedding (P  =0.014) 

samples were strongly correlated with isolation of Salmonella isolation from the 

milking parlor floor. Salmonella isolation from lactating cows (P  = 0 .03) and soil 
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Table 4. Prevalence of Salmonella, Campylobacter jejuni and Escherichia 
coli 0157:H7 recovered from the mi lking parlor ·and bulk tank mi lk  supply. 

% Positive pathogen isolated 
(N = 8696) 

Salmonella C. jejuni E. coli 0157:H7 
Sample (n = 3360) (n = 2900) (n = 2436) 

Parlor Wal ls 2a 1 53 ND 

Parlor Floor 1 7b ND ND 

Parlor Ai r 66d 23b 6 

Parlor Insects 56d 39c 4 

Equip - Liners 28bc 26bc 1 

Equip - Cups 1 a 1 43 ND 

Bulk Mi lk  1 1 3 1 53 ND 

TOTAL 26 1 9  2 (average %) 

Means fo l lowed by d ifferent lower case superscripts (a - d) i n  the same 
column are significantly different at P < 0.05. 
ND, not detected. 
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{P = 0.05) were correlated with Salmonella isolation from mi lking equipment and 

BTM. 

Campylobacter jejuni was isolated at a prevalence of 1 9% from the mi lking 

parlor and BTM. Campylobacter jejuni was isolated from the mi lking parlor floor 

{ 1 5%) and BTM { 1 5%) . Air {23%) , insects {39%) and mi lking equipment {26%) 

were significant sources of contamination of C. jejuni. Lactating cow animal 

{P = 0 .05) and lactating cow soil {P = 0.026) were correlated with the prevalence 

of C. jejuni on mi lking equipment. 

Escherichia coli O1 57:H7 was not isolated from the mi lking parlor or BTM 

samples. Resu lts emphasize the importance of continued di l igence in the 

application of hygiene programs within dairies. However, E. coli O1 57:H7 was 

isolated from air {6%) and insects {4%) collected in the parlor as well as from 

milking equipment l iners {1 %) . 

The spatial distribution of Salmonella, C. jejuni, and E. coli O1 57:H7 

isolated at The University of Tennessee research dairy farm are displayed in 

Figure 1 .  The G IS map reveals a higher concentration of pathogens isolated at 

the center of the farm . Pathogen isolation was less frequent along the perimeter 

of the farm. Overal l ,  Salmonella was the pathogen isolated most frequently at 

the dairy farm (Figure 2) .  Iso lation of Salmonella was more prevalent near the 

center of the farm . Lactating cows, feed, bird droppings, and insects were 

common sources of Salmonella. Isolation of C. jejuni and E. coli O1 57:H? was 

sporadic throughout the dairy farm . Water, lactating cows, dry cows, and calves 

were common sources of both C. jejuni and E. coli O1 57:H?. 
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Pathogen Isolated from Dairy Farm 
Animals and Environments 

• Salmonella 

■ Campylobacter jejuni 

E. coli 0167:H7 

Figure 1 .  Spatial analysis of Salmonella, Campylobacter jejuni and 
Escherichia coli 01 57:H7 isolated from dairy farm environments. 
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Pathogen Isolated from Dairy Farm 
Animals and Environments 

'I ISCJllted from 
DailYA _ and 

■ Salmonella mEmdnmmeftt 

46 - 60 

31 - 45 
■ Campylobacter jejuni 

E. coli 0167:H7 __ __._-+-- 16 - 30 

Feed samples includes feed bunk, silage, and total mixed rations 
Water samples include watering troughs and calf sippers 
Bird Droppings from fencing surrounding animal pasture and feeding areas 
Insects from animal housing facilities 

0 - 15 

Figure 2. Geograph ic distribution of Salmonella, Campylobacter jejuni and 
Escherichia coli 01 57:H7 isolated from dai ry cows, calves and farm 

environments. 
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DISCUSSION 

The farm environment as a whole represents an array of possible 

reservoi rs for Salmonella, C. jejuni, and E. coli 01 57:H7. Contamination is l ikely 

to occur from pathogens shed in the feces of farm animals. Once pathogens are 

present in the environment, they may be disseminated to other sites by 

rainwater, wind , removal and spreading of manure, as wel l  as by the animals 

themselves. Resu lts of this study demonstrate that feed, water and bedding 

were identified as common routes by which Salmonella, C. jejuni, and E. coli 

01 57:H7 spread to cows and calves. Although sources of fecal contamination 

on farms are easy to identify, control l ing transmission of pathogens throughout 

farm envi ronments may be difficu lt to achieve. Based on survey results, several 

farm management strategies were suggested for control of foodborne pathogens. 

Commons sources of contamination for all pathogens were feed and 

water. Access to water and feed sources by wild bi rds and insects was a major 

contributing factor to contamination of these sources. Replication in feed 

seemingly increased the potential for colonization in animals. Wild birds cou ld 

readi ly contaminate cattle feed as wel l  as the environment. According t a review 

by Davies and Wray ( 1 997) , contaminated bi rd droppings have been found in 

feedmil l envi ronments. Starlings, blackbirds, and pigeons are common pests on 

many farms. They feed directly from feedbunks or search for undigested food in 

livestock droppings. Feeding on feces is l ikely a means of ingesting large 

numbers of fecal microorganisms (Davies and Wray, 1 997) . 
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At The University of Tennessee resea�ch dairy farm, wild birds and insects 

were significant to the contamination of feed and water sources. Wild birds were 

a major reservoir of both Salmonella and C. jejuni. Investigators have reported 

an association between various bird species contaminating feed and the 

transmission of Salmonella to cattle (Coulson et al., 1 983; Glickman et al., 1 981 ; 

Johnson et al., 1 979). Bird droppings have been shown to be associated with 

the presence of Salmonella in feeds on swine farms (Harris et al., 1 997). 

Campylobacter jejuni has been recovered from gulls, waterfowl, cranes, geese, 

doves, and falcons (Whelan, 1 988). Insects can also act as vectors for C. jejuni. 

In a study conducted by Rosef and Kapperud (1 983), the carrier rate for C. jejuni 

in flies on a single poultry farm was 51 % and 43% on a nearby swine farm. 

Measures to reduce pathogens in feed and water should be implemented. 

Insects, birds, rodents and domestic animals should be excluded from farms and 

animal housing facilities. Animals can acquire a number of pathogens from 

water. Efforts should be made to limit contamination of water sources by grazing 

animals, farm effluent and human sewage. Pathogens present in the saliva and 

tonsils of calves and other animals contaminate drinking bowls and buckets. 

Good quality water should be used and regular cleaning of these sources is 

needed to limit the spread of infection. 

Isolation of pathogens from bedding (cow and calf) at The University of 

Tennessee research dairy farm was correlated with isolation of pathogens from 

feed, water and animals samples. Bedding contributes to cow comfort, udder 

health and milk quality. Clean, dry bedding for animals promotes cleanliness and 
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inhibits microbial growth. Proper bedding management is critical for the effective 

control of pathogens in the farm environment. Bedding type and quality may 

impact udder health and the incidence of mastitis in animals (Smith and Hogan, 

2000). Sand and sawdust were the two materials used as bedding for cows. 

Sawdust is beneficial in its ability to absorb moisture, however, this material will 

support growth of bacteria when mixed with manure and urine (Hogan et al. , 

1989). Bacterial counts of used sand bedding are often significantly lower than in 

organic bedding materials (Zehner et al. , 1986). Accumulation of excessive 

amounts of manure, mud or urine may cause a rapid deterioration of bedding 

quality due to severe contamination of the bedding. 

Hygienic conditions are the major factors to monitor when controlling 

pathogens at the farm. Heavy soiling of animals is caused by poor housing 

conditions where there is irregular removal of manure, inadequate bedding, and 

holding animals on muddy ground. The herd environment must be kept clean, 

dry and comfortable for animals. Also, farm management must minimize 

conditions that increase exposure to environmental pathogens, such as 

overcrowding, elevated temperatures and humidity in barns, poor ventilation, 

accumulation of manure, urine, and water in housing areas, and access to 

muddy lots. The design and construction of build ings in which animals are 

housed should allow effective cleaning and disinfection and removal of manure. 

Data generated from this study permit science-based, risk management 

decisions to be made regarding the exposure and contamination of animals by 

pathogens and the significance of geographic and temporal factors on 
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management of pathogens on the farm . The conditions caused by envi ronmental 

factors are complex. This made it difficult to clearly identify causal factors for 

contamination,  as causation is usual ly from an array of sources and risk facto rs. 

The results of this study indicated that a wide array of animal and envi ronmental 

factors contributed to the shedding of foodborne pathogens on the farm and 

subsequent envi ronmental contamination.  Significant sources of pathogen 

transmission on the farm were identified as feed , water, bedd ing,  insects , and 

wild bi rd droppings. Therefore , it can be concluded that monito ring and 

control l ing pathogens in these sources could reduce pathogen transmission to 

dai ry cows calves and farm environments . 

The development of computerized models using G IS provided robust 

analyses and depictions of how management practice at the farm influenced the 

occurrence and persistence of foodborne pathogens. Regard less of the high 

variation in  shedding contamination from the farm survey, there is no doubt that 

on-farm food safety wou ld benefit from programs that identify animal production 

practices and farm management practices that min imize pathogens at the farm . 
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PART I l l  

INCIDENCE OF SALMONELLA, CAMPYLOBACTER JEJUNI, AND 

ESCHERICHIA COL/ 01 57:H7 IN  THE TENNESSEE RIVER 
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ABSTRACT 

Surface waters may play an important rol� in transmission of pathogenic 

agents via agricultural runoff, l ivestock, urban runoff , and illegal dumping or 

discharges from boats. These agents can return to humans by various routes, 

such as use of water for recreational sports, irrigation of crops, and as drinking 

water. Therefore, pollution of rivers is of particular importance. A microbiological 

survey of the Tennessee River, adjacent to The University of Tennessee 

research dairy farm , was conducted to determine the prevalence of Salmonella, 

Campylobacter jejuni, and Escherichia coli 0157 :H7.  Fecal co//Jorms were also 

examined as possible indicators of the presence or absence of pathogens in the 

river. A Geographic Information System (G IS) was used to examine possible 

relationships between contamination with Salmonella, C. jejuni, and E. coli 

O157 :H7 at the dairy farm and subsequent contamination of the Tennessee 

River. 

Neither C. jejuni nor E. coli O157 :H7 were recovered from the Tennessee 

River water samples, however, Salmonella (33%) was isolated from all sampl ing 

sites along the river. The concentration of fecal coliforms in river water samples 

ranged from 37 to > 2400 Most Probable Number per 100 ml water. No 

correlation (P > 0.05) was found between the indices of fecal contamination and 

Salmonella recovered from the Tennessee River. 

GIS analysis revealed a decrease in isolation of Salmonella from sites 

directly across (11 %) and directly downstream (11 %) from the dairy farm (56%). 

However, Salmonella was isolated at a prevalence of 44% from sites upstream 
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from the farm. Based on the lack of bacterial species isolated from the river as 

opposed to those recovered from the dairy farm, and the variable pattern of 

pathogen isolation from the river, it can be concluded that The University of 

Tennessee research dairy farm did not contribute significantly to contamination of 

the Tennessee River. 

INTRODUCTION 

Surface waters, which include rivers, streams, lakes, and ponds, play an 

important role in the transmission of waterborne pathogens in the environment 

(Reinert and Hroncich, 1 990). Sources of surface water contamination are 

classified as point or non-point. Point sources are known and can be 

documented, facilitating their control under food management practices. 

However, non-point sources of contamination are not known. They include, but 

are not limited to agricultural runoff, livestock, urban runoff, landfills, land 

development, recreational activities, and illegal dumping or discharges. Non

point sources are much more difficult to control than point sources, thus 

presenting a greater public health threat (Reinert and Hroncich, 1990). 

Microbial waterborne pathogens of concern may enter water systems via 

fecal contamination. Waterborne enteric bacteria include both human-associated 

and zoonotic species, such as Salmonella, Campylobacter jejuni, and 

Escherichia coli 01 57:H7. These pathogens are ubiquitous in aquatic systems 

and have been isolated from various drinking, recreational, and surface water 

sources (Nataro and Levin, 1994). Outbreak cases of human and animal 

salmonellosis have been attributed to environmental contamination with sewage 
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effluent, septic tank effluent, and various wastewater sources (Reilly et al., 1981 ) .  

In the United States, from 1978 to 1986, water was identified as the source of 

19% of 57 reported C. jejuni outbreaks. Water-related outbreaks generally 

involved drinking untreated surface water or drinking inadequately treated water 

(Tauxe, 1992) .  The first reported outbreak of E. coli 0157:H7 from water was 

reported in 1989. Water samples from 15 streams and reservoirs in Philadelphia, 

Pennsylvania were evaluated for the presence of the pathogen. Wildlife , 

especially deer, was implicated in the contamination of the water, as no dairy or 

cattle farms were located upstream. Human contamination of the water was 

considered unlikely (McGowan et al., 1989) .  In another waterborne E. coli 

0157:H7 outbreak in Africa, Isaacson et al . (1993) isolated E. coli 0157:H7 from 

18% of 76 river water samples, and one domestic water storage drum. Heavy 

rain, fol lowing a period of drought, was implicated as the cause of the water 

contamination. Contamination resulted in the flushing of contaminated cattle 

carcasses and manure into surface waters. This was verified through the testing 

of cattle manure and insects at the same time of water testing ( Isaacson et al. , 

1993) .  

The Tennessee River is a popular recreational water source, which is 

used commonly for recreational fishing and boating activities. The river is also 

used both as a source for irrigation and as a source for local waterworks in 

Knoxville , Tennessee. The Tennessee River's main navigational channel is 652 

miles long. It officially begins a mile above Knoxville , Tennessee ,  and eventually 

empties into the Ohio River at Paducah, Kentucky. The Tennessee River flows 
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East to West along the perimeter of the University of Tennessee Dairy farm. 

Agricultural runoff and livestock are common sources of contamination of surface 

water sources. Therefore, it was of particular interest to evaluate the prevalence 

of common foodborne pathogens in river water. 

Risk assessment approaches have been useful to systematically identify, 

analyze, quantify, and characterize the risk of specific waterborne illness (Sobsey 

et al. ,  1993). The use of a Geographic Information System (GIS), as a risk 

assessment tool, may be used in identifying areas with increases levels of 

pathogens as well as the transport of theses pathogens throughout the water 

system. G IS also simplifies the identification of infectious agents with multiple 

transmission routes. 

A microbiological survey of the Tennessee River was conducted to 

determine the prevalence of Salmonella, C. jejuni, and E. coli 0157:H? at 

sampling sites upstream and downstream from the University of Tennessee dairy 

farm. Fecal coliforms were also examined as possible indicators of the presence 

or absence of these pathogens in the river. G IS was used in th is study to 

examine possible relationships between contamination with Salmonella, 

Campylobacter jejuni, and E. coli 0157:H? at the dai ry farm and subsequent 

contamination of the Tennessee River adjacent to the farm. 

MATERIALS AND METHODS 

River Sampling 

The Tennessee River, which runs along the perimeter of The University of 

Tennessee research dairy farm, was evaluated for the presence of Salmonella, 
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Campylobacter jejuni, Escherichia coli O157:H7, and fecal coliforms. Water 

samples were collected at five sites along the Tennessee River (Figure 3) : The 

water treatment facility, poultry farm, dairy farm, naval reserve area, and the 

Agricultural Campus, directly across from the dairy farm. 

Water sampling was conducted over a 6-month period (January - June). 

During each sampling period, three, 3 L samples per pathogen, were collected 

from each of the five river sampling sites. Samples were collected in sterile 1 L 

Nalgene bottles by submerging the bottles into the river at a depth of 3 ft, at a 

distance of 3 ft from the river shoreline at each sampling site. Samples were 

stored under refrigeration, and processed within 6 hours of collection. Isolation 

and identification of Salmonella, C. jejuni and E. coli O157:H? was conducted in 

accordance with the procedures described in the Food and Drug Administration's 

Bacteriological Analytical Manual (FDA, 1998) . 

Isolation and Identification of Salmonella 

River water sample (3 liters per sample) were filtered through 0.45 • m 

paper filters (Millipore Corp., ). Filters were added to 100 ml of lactose broth for 

pre-enrichment. Samples were pre-enriched for 24 h at 35 ° C. Following pre

enrichment 0.1 ml was transferred into 9.9 ml of Rappaport-Vassiliadis broth 

(Becton, Dickinson and Company, Franklin Lakes, NJ). Samples were then 

enriched in RV broth for 24 h at 42 ° C. After the enrichment phase, samples from 

each RV tube were streaked onto bismuth sulfite and XL T 4 agar plates. All 

plates were incubated for 24 h at 35 ° C. Typical colonies were then picked from 

each plate and streaked onto a tryptic soy agar (Becton, Dickinson and 
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ao istance from Dairy Farm (km ) :  S ite 1 (E 4 .2 km ) ;  S ite 2 (E 3 . 6  km ) ;  S ite 3 (N E 2 .7  km } ;  
S ite 4 (SW 4 .5  km ) 
The Tennessee R iver f lows from East to W e st .  

Figure 3. The Un iversity of Tennessee research dairy farm and Tennessee 
River sampling sites. 
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Company, Franklin Lakes, NJ) slant to provide adequate growth of each isolate 

for further testing. All tryptic soy agar slants were incubated for 24 h at 35 ° C. 

Each isolate was then inoculated into triple sugar iron agar (Becton, 

Dickinson and Company, Franklin Lakes, NJ) slants. All slants were incubated 

for 24 h at 35 ° C. In triple sugar iron agar, Salmonella typically produces an 

alkaline (red) slant and an acid (yellow) butt, with or without H2S production. 

Samples testing positive for Salmonella in triple sugar iron agar were confirmed 

using the API  20E identification system for Enterobacteriaceae (bioMerieux I nc., 

Durham, NC). Salmonella isolates were confirmed serologically, by somatic (0 ) 

antigen analysis, using the Salmonella antisera poly A, B, C, D, E ,  � and G 

(Becton, Dickinson and Company, Franklin Lakes, NJ). All Salmonella-positive 

samples were inoculated onto fresh tryptic soy agar slants, incubated for 24 h at 

35 ° C, and stored under refrigeration for further testing. 

Isolation and Identification of Campylobacter jejuni 

River water sample (3 liters per sample) were filtered through 0.45' •m 

paper filters (Cuno corporation , Meriden, CA ). The filters were added to 100 ml 

of Bolton Broth (Oxoid I nc., New York, USA) for enrichment. Samples were 

incubated for 42 h at 42 ° C in an anaerobic jar under microaerophilic conditions 

generated by the CampyPak Microaerophilic System (Becton Dickinson 

Biosciences, Franklin Lakes, NJ). After enrichment, all samples were streaked 

onto Campylobacter blood-free selective agar plates, with supplements (Oxoid 

Inc., New York, USA). The plates were incubated under microaerophilic 

conditions for 24h at 42 ° C. Typical colonies were then subjected to oxidase, 
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catalase, and glucose (1 %) tests. Samples testing positive for Campylobacter 

were then confirmed using API Campy strips to confirm that they were 

Campylobacter colonies. All Campylobacter isolates were confirmed serologically 

using latex agglutination tests ( Integrated Diagnostic, Inc.) for C. jejuni, C. coli, 

and C. lardis. Procedure for the latex agglutination test involved adding a drop of 

latex solution to a sample card , mixing a loopful of sample with the latex solution 

(1 0 - 12 sec.) and observing for an agglutination reaction. Agglutination positive 

reactions resulted in a thick, stringy appearance to the sample mixture. 

Isolation and Identification of Escherichia coli 0157:H7 

River water sample (3 liters per sample) were filtered through 0.45 em 

paper filters (Millipore Corporation, Billerica, MA). The filters for each water 

sample were added to 100 ml of modified tryptic soy broth with added Novobiocin 

(Becton, Dickinson and Company, Franklin Lakes, NJ) and incubated for 18 h at 

37 ° C in a shaking incubator. The samples were streaked onto sorbitol 

MacConkey agar (Becton, Dickinson and Company, Franklin Lakes, NJ) 

supplemented with sod ium tel lurite and cefixi me (Becton ,  Dickinson and 

Company, Franklin Lakes, NJ) and incubated for 18 h at 37 ° C. After incubation, 

non sorbitol-fermenting colonies were picked from the plates and streaked onto 

tryptic soy agar slants. The slants were incubated for 18 h at 37 ° C. Colonies 

were biochemically confirmed by indole, citrate, and Methyl red, Vogues 

Proskauer tests. Isolates testing positive for E. coli were also confirmed 

biochemically using the API 20 E identification system for Enterobacteriaceae 

(bioMerieux). Isolates were tested for the 0157 and H7 antigens using latex 
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agglutination . Procedure for the latex agglutination test involved adding a drop of 

latex solution to a sample card, mixing a loopful of sample with the latex solution 

(1 0 - 12 sec.) and observing for an agglutination reaction. Agglutination positive 

reactions resulted in a thick, stringy appearance to the sample mixture. 

Fecal Coliform Analysis 

Fecal co/Jlorms (non- O157 :H7 E. co/1) were analyzed using the Most 

Probable Number (MPN) 3 tube, 3 dilution (0.1 ml, 1.0 ml, and 1 0 ml) method. 

River water samples, 0.1 ml, 1.o0 ml and 1 0 ml respectively, were added to 

tubes containing 9 ml of EC medium with 4-methylumbelliferyl- • -D-glucoronide 

(EC-MUG, Becton, Dickinson and Company, Franklin Lakes, NJ). Tubes were 

incubated for 24 h at 37 ° C. The tubes were examined under long-wave (365nm) 

ultraviolet light, and tubes showing • -glucoronidase activity (fluorescence) were 

considered positive for E. coli. The concentration of fecal co/iforms (E. coll) per 

100 ml of water was determined using the MPN table based on the number of 

fluorescent positive tubes. 

Geographic Information System (GIS) Analysis 

An aerial photograph taken of the dairy farm and the Tennessee River 

was scanned into ArcView® GIS version 3.2 (Environmental Systems Research 

Institute, Redlands, CA) was used as the basemap onto which the spatial 

information was layered. Data generated from microbial analyses of river water 

samples (number of confirmed pathogens isolated at specific points along the 

river) were imported into the ArcVie'MID project. Data were sorted and grouped 

by sampling site (water treatment facil ity, poultry farm, dairy farm, naval reserve 
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area, and the Agricultural Campus, d irectly across from the dairy farm), analyzed 

to give percent pathogen isolated at each site, and plotted onto the basemap. 

Cartographic software, Freehand 9.0® (Macromedia, NY, USA), was used to 

visually display data on the map. A series of colors and shapes were used for 

improved visualization of data. 

Data Analysis 

Data were stored and coded as positive or negative for the presence or 

absence of Salmonella, C. jejuni, and E. coli 01 57:H7, in river water samples. 

The prevalence of E. coli 01 57 :H7 was calculated as the number of positive 

water samples d ivided by the total number of water samples tested. Data 

analyses were performed using SAS version 8 .2 (SAS® Institute, Cary, NC, 

USA). A Chi-square test was used to test for associations between shedding of 

Salmonella, C. jejuni, and E. coli 01 57:H7 at the farm and isolation of the 

pathogens from the river. ArcVie'MID GIS version 3.2 was used to perform 

advanced statistical analyses of spatial data, including cluster analyses, multiple 

regression ,  and Poisson probabil ity d istributions .  

RESULTS 

River water samples were collected from the Tennessee River at sites 

upstream and downstream from The University of Tennessee research dairy 

farm dairy farm. The Tennessee River flows from East to West. The results of the 

microbiological survey of the Tennessee River are shown in Table 5. Water 

samples (N = 1 35) were analyzed and Salmonella was recovered at an overall 
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Table 5. The prevalence of Salmonella, Campylobacter jejuni and 
Escherichia coli 01 57:H7 in  the Tennessee River. 

% Pathogen isolated 
(N = 1 35) 

R iver Salmonella C. jejuni E. co/i 01 57:H7 
sampl ing site8 (n = 45) (n = 45) ( n  = 45) 

Site 1 44 0 0 

Site 2 44 0 0 

Site 3 1 1  0 0 

Site 4 1 1  0 0 

Dai ry Farm 56 0 0 

TOTAL 33 0 0 

aoistance from Dairy Farm (km) : Site 1 (E 4.2 km) ; Site 2 (E 3.6 km) ; Site 3 (NE 2.7 km) ; 
Site 4 (SW 4.5 km) 

O = not isolated · 
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frequency of 33% from all sampling sites along the dairy farm. The highest 

levels of Salmonella recovered from the river were observed at the dairy farm 

(56%) and sampling sites 1 and 2 (44%) respectively. The lowest level of 

Salmonella (11 %) was recovered from sampling sites 3 and 4. 

Sampling of the Tennessee River was carried out over a period of 6 

months (January - June). However, no significant seasonal variations were 

observed with isolation of Salmonella. Results of G IS analyses (Figure 4) 

indicate that high levels of Salmonella were observed at the dairy farm (56%) and 

sites 1 (44%) and site 2 (44%) upstream from the dairy farm. Lower levels of 

Salmonella were observed at sites 3 (11 %) , which is directly across from the 

farm, and site 4 (11 %), downstream from the farm. Based on these results, it 

can therefore be suggested that a source other than the dairy farm may have 

contributed to the contamination of the Tennessee River. 

Fecal coliforms were also evaluated as possible indicators of the presence 

or absence of Salmonella, C. jejuni, and E. coli 0157:H? in the Tennessee River. 

Fecal co/tlorms are defi ned as facultative anaerobic, G ram-negative, non-spore 

forming rods that ferment lactose, with acid production and gas formation 

occurring within 24 hours at 44.5 ° C (American Public Health Association, 1995) .  

Coliforms are commonly used as indicators of fecal contamination or water 

pollution from sewage. In particular, E. coli has been demonstrated to be a more 

specific indicator for the presence of fecal contamination within the fecal coliform 

group of bacteria (Bej et al., 1991 ). Results of fecal coliform analysis and 
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% Salmonella isolated 
from river sampling site 

1 1 % 

44% 

56% 

Distance from Dairy Farm (km): Site 1 (E 4.2 km) ; Site 2 (E 3.6 km); Site 3 (NE 2.7 km); 
Site 4 (SW 4.5 km) 

The Tennessee River flows from East to West. 

Figure 4. Geographic distribution of Salmonella isolated from the 
Tennessee River. 
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iso lation from the Tennessee River of Salmonella are presented in Table 6.  The 

concentration of fecal coliforms in river water samples ranged from 37 to > 2400 

MPN per 1 00 ml water. No correlation (P > 0.05) was found between the indices 

of fecal contamination and Salmonella recovered from the Tennessee River. 

G IS analysis of fecal coliform data (Figure 5) indicate that the highest 

levels of fecal coliforms in the river were recovered from water samples taken at 

the dairy farm (570 MPN per 1 00 ml  water) , from site 2 (2000 MPN per 1 00 ml 

water) , and from site 4 (220 MPN per 1 00 ml water) . The high level of fecal 

coliforms directly downstream (site 4) from the dai ry farm might be attributed to 

agricu ltu ral runoff from the dai ry farm . However, higher counts of fecal coliforms 

were obtained di rectly upstream (site 2) from the dairy farm. Fecal coliform 

counts were lowest at this site (37 MPN per 1 00 ml water) , however, coliform 

counts showed an increase from this site as water flowed downstream from East 

to West. 

Use of E. coli as an ind icator of the possible presence of pathogenic 

microorganisms is and has been extremely useful to protect public health . 

However, use of indicator bacteria, regardless of which ones are used , are only 

tools and have l imitations. The presence of high levels of fecal coliforms i n  water 

systems may not always correlate with the presence of pathogens, such as 

Salmonella, C. jejuni, and E. coli O1 57:H7 (Bej et al . ,  1 991 ) .  
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Table 6. The relationship between fecal co/iforms and the presence or 
absence of Salmonella in the Tennessee River. 

Fecal coliforms Salmonella 
(E. coli) Positive Negative 

MPN index per 1 00 ml water (n = 1 5) (n = 30) 

3.7 x 101 4 5 
8.9 X 101 1 8 
2.2 X 102 1 8 
5.7 X 102 5 4 
2.0 X 103 4 5 

No significant differences (P > 0.05) 
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Fecal coliforms 
(E. coli) 

MPN index per 1 00 ml 
W::lfP-r 

0 < 1 X 1 0
2 

1 X 1 0
2 

< 5 X 1 0
2 

5 X 1 0
2 

< 1 X 1 0
:i 

Distance from Dairy Farm (km): Site 1 (E 4.2 km); Site 2 (E 3.6 km); Site 3 (NE 2.7 km); 
Site 4 (SW 4.5 km) 
The Tennessee River flows from East to West. 

Figure 5. Geographic distribution of fecal co/iforms isolated from the 
Tennessee River. 

(MPN per 1 00 ml water) 
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DISCUSSION 

Results of this research indicated that Salmonella was ubiquitous in the 

Tennessee River. Neither C. jejuni nor E. coli 0157:H7 was recovered from the 

Tennessee River. According to a review by Roszak and Collwell (1987) the 

absence of C. jejuni may have in river water samples may be due to temporal 

physiological and morphological transitions in which Campylobacter spp. 

undergoes in aquatic systems. During these stages of transition, Campylobacter 

spp. may retain metabolic activity but demonstrate non-culturability on 

conventional growth media, resulting in a viable but non-culturable state (Roszak 

and Colwell, 1987). In aquatic environments E. coli 0157:H7 is subjected to a 

variety of stresses, such as temperature, lack of nutrients, and oxidative stress. 

As result of exposure to these stresses, the organism may enter a sublethally 

injured state (Sinclair and Alexander, 1984). The inability to isolate E. coli 

0157:H7 from river water samples may be a consequence of the presence of the 

organism in low numbers in comparison with other microorganisms and the 

inability of the selective procedures employed to recover stressed cells (Pyle et 

al. , 1995). 

Due to the wide array of environmental reservoirs for Salmonella, the 

source of transmission of the pathogen in the Tennessee River was difficult to 

identify. At the research dairy farm, insects and bird droppings were identified as 

significant sources of transmission of pathogens to dairy animals and farm 

environments. Insects and birds may have been significant vectors of 

transmission of Salmonella along the Tennessee River. Birds are of particular 
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importance to isolation of Salmonella at sites upstream from the farm. River 

sampling site 2 1 i n  particular 1 was located directly beneath The University of 

Tennessee research poultry farm, also located upstream (east) of the dairy farm. 

High levels of Salmonella at sites 1 and 2 may also have been influenced by 

pathogen runoff due to rainfall from the poultry farm. 

Both GIS and microbiological analyses revealed high prevalence of 

Salmonella in the Tennessee River at the dairy farm and at sites upstream from 

the farm. The Tennessee River flows east to west in direction. However! under 

currents 1 winds and other environmental factors may have resulted in shifts in the 

pattern of water flow. These factors may have contributed to the isolation pattern 

for Salmonella isolation from the river. Based on results of microbiological 

analysis at the dairy farm and the river water along the farm's perimeter1 it was 

clear that significant effluent runoff of Salmonella occurred. However, based on 

the lack of other pathogens isolated at the farm and not isolated from the river 1 it 

can be concluded that The University of Tennessee research dairy farm did not 

contribute s ign if icantly to transmission of pathogens along the length of the river 

studied. It can therefore be suggested that sources other than the dairy farm 

contributed to contamination of the river. 
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ABSTRACT 

The Geographic Information System (GIS) and molecular characterization 

procedures were used to determine diversity and associations among Salmonella 

isolates from different species, locations, and agricultural runoff. Previously 

characterized Salmonella isolates were obtained following microbiological 

surveys of the University of Tennessee research dairy farm and the Tennessee 

River adjacent to the farm, and compared to isolates from various animal and 

environmental sources received from Washington State University. Salmonella 

isolates were further characterized using both the Analytical Profile Index (AP I )  

20 E for Enterobacteriaceae and polyvalent somatic O Salmonella antiserum. 

Automated Riboprinting with the PVL/1 I restriction enzyme was used to subtype 

the isolates. 

Salmonella isolates (N = 1 90) were riboprinted using the Automated 

Riboprinter® Characterization System. The most frequently isolated Salmonella 

serotypes were Salmonella ser. Senftenberg (26), Typhimurium (25), Havana (8), 

and Newport (8). Comparison of Salmonella isolates recovered from Tennessee 

and Washington State revealed significant geographic correlations and 

similarities among isolates common to dairy cattle and farm environments. 

INTRODUCTION 

Molecular epidemiology is based on the use of a series of techniques of 

molecular biology to analyze microbiological traits that enable the differentiation 

of strains. Molecular typing methods may be categorized as phenotypic methods 

and genotypic methods. Phenotypic methods are those that detect 

77 



characteristics expressed by the organism . Genotypic methods are those that 

involve di rect DNA analysis of chromosomal and extrachromosomal genetic 

elements. Molecu lar typing methods based on the analysis of chromosomal 

DNA or DNA fingerprinting has been shown to have broad applications in  publ ic 

health (Swaminathan and Matar, 1 993) .  

The Automated Riboprinting Characterization System is a molecu lar 

typing technology capable of rapid ly identifying and characterizing isolates of a 

variety of microorganisms. This automated system was designed to reduce the 

time involved in  sample preparation and processing (Bruce, 1 996) . The 

Riboprinter uses standardized ribotyping procedures to generate ribopri nt 

patterns for foodborne pathogens. Identification of isolates is accomplished by 

band matching of the riboprint patterns in the database (Oscar, 1 998). This 

comparison results in the identification of the target organism at a genus, species 

and strain level .  The automated system also compares patterns of each new 

sample against al l other patterns run on the system (Bruce, 1 996). Automated 

Ribopri nti ng has usefu l appl ications i n  Epidem iology as wel l  as i n  areas of food 

processing. Wiedmann et al. ( 1 995) evaluated the use of the automated 

Riboprinter to compare Listeria isolates from 4 separate outbreaks involving 

cattle , sheep, and goats. I n  3 of 4 outbreaks, the same strain of L 

monocytogenes appeared in si lage and iso lates from infected an imals. Results 

from this study strongly impl icated si lage as the sou rce of infection (Wiedmann et 

al . ,  1 995). 
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There are currently more than 2500 serovars of Salmonella (Swaminathan 

and Matar, 1993). Salmonella serovars are classified within two species: 

Salmonella enterica and Salmonella bongori. All Salmonella species are 

potentially pathogenic to humans (D'Aoust, 2001 ). The majority (59%) of the 

2500 Salmonella serovars belong to S. enterica subspecies. Within the S. 

enterica subspecies, the most common O-antigen serogroups are A, B, C 1 , C2, 

D, and E. Strains in these serogroups cause approximately 99% of Salmonella 

infections in humans and warm-blooded animals (Brenner et al., 2000). 

Studies of animals have shown that certain Salmonella serotypes are 

more virulent than others, and that certain serotypes are more "human adapted" 

and more likely to cause invasive disease (Taylor et al. , 1993). The difference in 

ability to cause human illness may be determined by segregation of isolate 

populations among humans and animals. In other words, certain serotypes may 

be transmitted preferentially within human populations, whereas other serotypes 

may be limited primarily to animal populations (Sarwari et al., 2001 ). 

According to a review by Olsen et al. (2001 ) , from 1987 to 1997, 441 ,863 

humans Salmonella isolates of known serotype were reported to CDC related to 

human illness. The top 5 reported Salmonella serotypes were S. Typhimurium 

(24%), Enteritidis (22%), Heidelberg, Newpo�, and Hadar (Olsen et al., 2001 ). 

The United States Department of Agriculture, Plant Health Inspection Service, 

conducted a two-year study, from 1990 to 19991 to identify Salmonella serotypes 

commonly associated with healthy and ill feedlot cattle (Centers for Epidemiology 

and Animal Health, 1995). Serotypes most commonly recovered from healthy 
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cattle were S. Anatum, Montevideo, Muenster, Kentucky, and Newington. 

Salmonella serotypes commonly recovered from ill cattle were S. Typhimurim, 

Dublin, Typhimurium, Cerro, and Newport (Centers for Epidemiology and Animal 

Health, 1995). Data from these studies suggest commonalities among 

Salmonella serotypes isolated from cattle and those isolated from humans, 

thereby indicating a potential risk to human health. 

During 1999, Centers for Disease Control and Prevention reported 10,697 

laboratory-confirmed cases of nine diseases under surveillance by the 

Foodborne Disease Active Surveillance Network (CDC, 2001 ). Among the 4000 

Salmonella isolates serotyped, the top five serotypes identified from human 

cases were S. Typhimurium (24%), Enteritidis (10%), Newport (9%), Heidelberg 

(7%) and Muenchen (6%) (CDC, 2000). In 2000, 12,631 laboratory-confirmed 

cases of nine diseases were identified under FoodNet surveillance. Salmonella 

Typhimurium (23%), Salmonella Enteritidis (15%), Salmonella Newport (11 %) 

and Heidelberg (7%) were also the most commonly identified Salmonella 

serotypes identified in 2000 (CDC, 2001 a). 

Salmonella Enteritidis and S. Typhimurium have both gained significant 

public health attention with regards to numerous foodborne illness outbreaks 

being linked to the two pathogens. Illness resulting from S. Enteritidis has long 

been linked to consumption of fresh shell eggs and egg products (D'Aoust, 

2001 ). S. Enteritidis presents a unique public health concern because of its 

transovarian transmission and localization within the egg magma. Commercial 

egg sanitizing practices targeting the surface of the egg are ineffective in 
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elimination internal contamination (D'Aoust, 2001 ). Multiple strains of Salmonella 

ser. Typhimurium DT1 04 should be of great public health concern due to 

resistance of the pathogen to multiple antibiotics used commonly in medical and 

veterinary practices. Also, illness due to S. Typhimurium DT1 04 is generally 

more severe than illness associated with other Salmonella species (Doyle, 1 997). 

The purpose of this study was to use the Geographic Information System 

(GIS) and automated Riboprinting to examine relationships that exist between 

animals and their environments. A representative sample of Salmonella isolates, 

from The University of Tennessee research dairy farm, the Tennessee River, and 

Washington State University, were riboprinted to determine diversity and 

associations among isolates from different species, locations, and runoff. 

MATERIALS AND METHODS 

Salmonella Isolates 

For comparison, 55 previously characterized Salmonella isolates were obtained 

following a 1 2-month microbiological survey of The University of Tennessee 

research dairy farm animals and farm environments. Also, Salmonella isolates 

(n = 3 1 ) were obtained following a 3-month survey of the Tennessee River 

adjacent to the University of Tennessee dairy farm. These Salmonella isolates 

were compared to isolates of Salmonella received from Washington State 

University. Salmonella in Washington State (n = 1 04) were isolated from various 

sources including animals, feed, water, and soil. 
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Sample Preparation 

Salmonella samples were streaked onto brain heart infusion agar (BH I) 

plates. BHI  plates were incubated for 18 h at 37° C. A Gram stain of each isolate 

was performed prior to preparation of the samples for Riboprinting. An isolated 

bacterial colony was picked from the agar plate and added to 200 ml of sample 

buffer. The sample was vortexed for 5 sec. A 30 ml sample suspension was 

pipetted into the appropriate well of the sample carrier. The Riboprinter® system 

can automatical ly process up to 32 samples in 8 h. The sample carrier was 

placed into the heat treatment station to undergo a series of heating and cooling 

phases. Afterwards, 5 ml of lysing agents A and B were added to each sample 

well in the carrier. 

Automated Riboprinting 

The Riboprinter Microbial Characterization System® (Qualicon, Inc., 

Wilmington, DE) was used to generate a standardized digital Riboprint pattern for 

the confirmed Salmonella isolates. Sing le Pvul l (restriction enzyme) 

identification Ribopr int patterns were obtained for all Salmonella isolates . . The 

sample carrier, containing 8 prepared samples, was loaded into the instrument 

along with the required consumables for that batch. 

Once strain-tracking and related sample information was entered, the 

instrument automatically processed strains. The instrument carried out cell lysis 

and restriction digestion and loaded the restricted DNA onto an agarose gel . 

Electrophoresis and direct blotting onto a nylon membrane were carried out, 

followed by hybridization of the membrane with a labeled probe. Following 

82 



development of the image by use of a chemil�minescent substrate, the image 

was digitized using a low light camera. The software extracted information from 

the image. It recognized data lanes on the image and distinguished between the 

reference marker and sample lanes. The pattern for each lane consisted of a 

series of light and dark bands. The system automatically compared the Riboprint 

pattern generated for each new sample to the patterns stored for all other 

samples in the database. 

Sero typing 

Confirmation of Salmonella isolates using polyvalent somatic (0) 

antiserum (Bacto Salmonella Antisera Poly A, B, C, D, E, F and G; Becton, 

Dickinson and Company, Franklin Lakes, NJ) was performed on isolates 

identified as Salmonella by riboprinting. 

Geographic Information System (GIS) Analysis 

An aerial photograph taken of the dairy farm and the Tennessee River 

was scanned into Arc View® G IS version 3.2 (Environmental Systems Research 

Institute, Redlands, CA) and used as the basemap onto which the spatial 

information will be layered. Data generated from Riboprint analyses of 

Salmonella isolates from The University of Tennessee research dairy farm and 

the Tennessee River were imported into the ArcView® project and plotted onto 

the basemap. Cartographic software, Freehand 9.0® (Macromedia, NY, USA), 

was used to visually display data on the map. A series of colors and shapes 

were used for improved data visualization. 
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Data Analysis 

SAS GIS version 8.2 was used to generate GIS maps for comparison of 

Salmonella isolates recovered from the Tennessee dairy farm animals, farm 

environments, and the Tennessee River to those recovered from animals, farm 

environments, and human clinical isolates from Washington State. 

The Riboprinter Microbial Characterization System enabled comparison, 

correlation, and generation of similarity ind ices among Salmonella isolates. 

ArcVie'MID G IS version 3.2 was used to perform advanced statistical analyses of 

spatial data, includ ing cluster analyses, and Poisson probability distributions. 

RESULTS 

The Riboprinter® system extracts patterns that are like fingerprints of 

individual bacterial samples. These patterns can be used to characterize or 

group samples, since similarities and differences in patterns revealed similarities 

and d ifferences among the bacteria themselves. Patterns can be used also to 

identify the genus and species (or serotype for Salmonella) of samples. A total of 

1 90 Salmonella i so lates were R iboprinted , us ing the Automated Riboprinter® 

Characterization System, to compare isolates from various species, locations, 

and samp1e types. Salmonella isolates were obtained from epidemiological 

surveys of The University of Tennessee dairy farm and the Tennessee River, as 

well as from Washington State University. 

A total of 55 Salmonella isolates from the research dairy farm survey were 

riboprinted (Table 7). Dairy farm Salmonella isolates riboprinted as Salmonella 

ser. Senftenberg (23), Typhimurium (5), Havana (4), lnfantis (3) Harfort (2), and 
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Table 7. Serotypes of Salmonella isolated from dairy farm an imal and 
environmental samples. 

Salmonella serotype 
number 

T 5 

s 

Insects 
Soil 

Cow mouth 
Cow beddin 
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"other "Salmonella (18). Salmonella ser. Senftenberg was isolated predominantly 

from silage samples. Salmonella ser. Senftenberg isolates from silage samples 

were compared (Figure 6) and all isolates (lanes 1 - 8) showed very similar 

riboprint patterns (comparison � 97%). These results indicate that Salmonella 

contamination may have been from a common source. Salmonella ser. Havana, 

which was isolated from cow oral and bedding samples, also showed similar 

riboprint patterns(Figure 7). Patterns 1-4 from cow mouth samples, displayed 

similar riboprint patterns (comparison � 98%). Lanes 5-8, riboprint patterns of 

Salmonella ser. Havana isolates from cow bedding samples, were not similar 

(comparison � 75%). However, 1 of the 4 bedding isolates showed similar 

riboprints to Salmonella ser. Havana isolated from cow mouth samples 

(comparison > 98%). 

A total of 31 Salmonella isolates from the Tennessee River survey were 

Riboprinted (Table 8). A variety of Salmonella serotypes were detected in 

Tennessee River water samples including, Salmonella ser. Newport (4), 

Senftenberg (3) , Waycross (3) ,  Berkeley (3) and Havana (2) . The serotype 

distribution of Salmonella isolates from the Tennessee River is displayed in 

Figure 8. Salmonella ser. Berkeley, which was isolated from the river at the dairy 

farm and at site 1 (4.2km East, upstream), displayed similar riboprint patterns 

(comparison �95%; Figure 9). 
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Figure 6. Riboprint patterns of Salmonella ser. Senftenberg isolated from 
dai ry farm envi ronments. 

Figure 7. Riboprint patterns of Salmonella ser. Havana isolated from dairy 
farm envi ronments. 
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Table 8. Serotypes of Salmonella isolated from the Tennessee River. 

Salmonella serotype 
number 

Ban kok 1 
Berkeley (3) 

California (2) 

Enteritidis 1 
Gombe 1 
Havana (2) 

Senftenberg (3) 

Wa cross 3 

Water Treatment 
Dai Farm Runoff 
Water Treatment 
Dai Farm Runoff 
Dairy Farm Runoff 
UT Ag ricu ltu ral 
Cam us 

Water Treatment 
Dai Farm Runoff 
Poult Farm Runoff 
Water Treatment 
Poult Farm Runoff 
Water Treatment 
Naval Reserve 
Poult Farm Runoff 
Dai Farm Runoff 
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Salmonella Serotype 
(Number Isolated) 

Newport (4) 

■ Senftenberg (3) 

Waycross (3) 

Berkeley (3) 

Havana (2) 

Distance from Dairy Farm (km) : Site 1 (E 4.2 km) ; Site 2 (E 3.6 km) ; Site 3 (NE 2.7 km) ;  
Site 4 (SW 4.5 km) 

The Tennessee River flows from East to West. 

Figure 8. Serotype distribution of Salmonella iso lated from the Tennessee 
River. 
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Lane 1 :  Salmonella ser. Berkeley isolated from Dairy Farm 
Lane 2: Salmonella ser. Berkeley isolated from Tennessee River 

Figure 9. Salmonella ser. Berkeley isolated from the Tennessee River. 
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Salmonella ser. Havana also isolated from ri�er water samples collected at the 

dairy farm and site 1, displayed similar riboprint patterns (comparison � 95%; 

Figure 10). 

Salmonella Isolated from the Tennessee River were compared to 

Salmonella isolates from the dairy farm (Figure 11 ). Salmonella isolates from the 

Tennessee River did not show similar riboprint patterns to Salmonella isolated at 

the dairy farm. Results of GIS analysis revealed that serotypes showing similar 

riboprint patterns were isolated more frequently at sites upstream from the dairy 

farm. This dairy farm did not appear to be a significant source of contamination 

of the Tennessee River. It can be suggested that a source other than The 

University of Tennessee research dairy farm may be sources of these specific 

Salmonella serotypes isolated from the Tennessee River. 

Washington State University provided The University of Tennessee Food 

Safety Research Group with Salmonella isolates various animal species and 

sample types isolated over a 15-year period (Table 9). Although a variety of 

Salmonella Serotypes were detected amongst the Washington State isolates, 

Salmonella ser. Typhimurium (20), Cerro (6), Anatum (4), Hadar (4), Meleagridis 

(4), and Newport (4) serotypes most frequently detected by riboprinting. 

Salmonella ser. Typhimurium was commonly isolated from bovine feces and feed 

samples (Figure 12). Bovine feces samples collected in 1995, 1998, 1999 and 

2000 showed similar Riboprint patterns (comparison � 95%). 
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Lane 1 :  Salmonella ser. Havana isolated from Dairy Farm 
Lane 2: Salmonella ser. Havana isolated from Tennessee River 

Figure 1 0. Salmonella ser. Havana isolated from the Tennessee River. 
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Salmonella Serotype 
(Number Isolated) 

Newport (4) 

■ Senftenberg (3) 

Waycross (3) 

Berkeley (3) 

1■ Havana (2) 

■ Typhlmu um (25) 

Distance from Dairy Farm (km) : Site 1 (E 4.2 km) ; Site 2 (E 3.6 km); Site 3 (NE 2.7 km) ; 
Site 4 (SW 4.5 km) 

The Tennessee River flows from East to West. 

Figure 1 1 .  Serotype distribution of Salmonella isolated from dairy cows, 
farm environ111ents and the Tennessee River. 
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Table 9. Serotypes of Salmonella isolated from Washington State 
U . ·1 mvers1 ty. 

Salmonella serotype (number) Species/sample type 

Arizonae (2) 
Adelaide 1 )  
Albany {1 ) 

Anatum 5) 
Bareillv I 
Bellvue I 

1 )  
1 )  

Blikwa (2) 
California {1 ) 
Cerro (6 
Chandans (1 ) 
Drypool 1 )  
Eal ino (1 
Enteritidis (1 ) 
Give (2) 
Godesbero (1 ) 
Haardt (1 ) 
Hadar (4 

Havana (2) 

lnfantis (2) 
lsang (1 
Janowani (1 ) 
Kentucky (2} 
Lanka (1 } 
Li l le (1 ) 
Mbandaka (3} 
Meleagridis (4} 
Miami {1 ) 

Montevideo {3) 

Newport {4) 
Oranienburg (2) 
Paratyphi (1 ) 
Salmonella Serotype (number) 
Pomona (3) 
Reading ( 1 )  
Rubislaw (1 ) 
Siantpaul (1) 
Schwarzengrund/Bredenev {1) 
Seminole (1) 

Tennessee (2) 
Ti lene (1 ) 

Tvphimurium (20) 
Weltevreden (2) 

Reptile feces 
Ovine intestine 
Mink necroscopy 
Mink necroscopy 
Bovine feces 
Emu feces 
Reptile oral 
Cheetah feces 
Bovine feces 
Ocelot culture 
Bovine feces 
Bovine feces 
Avian cloaca 
Bovine intestine 
Iguana feces 
Bovine necroscopy 
Bovine feces 
Reptile feces 
Bovine feces 
Bovine feces 
Bovine feces 
Avian necroscopy 
Canine bronci 
Avian 
Reptile feces 
Bovine feces 
Bovine feces 
Bovine feces 
Equine feces 
Bovine serum 
Bovine feces 
Feline feces 
Bovine feces 
Reptile feces 
Bovine feces 
Bovine necroscopy 
Bovine feces 
Avian feces 
Species/Sample Type 
Rodent colon 

Bovine necroscopy 
Bovine feces 
Moose necroscopy 
Bovine feces 
Bovine feces 
Canine feces 
Cheetah necroscopy 
Bovine feces 
Feed (bovine) 
Mink necroscopy 
Reptile feces 
Bovine necroscopy 
Bovine feces 
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Figure 12 .  Salmonella ser. Typhimurium isolated from Washington State 
Un iversity bovine feces samples. 
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Riboprints of Washington Univers ity Salmonella isolates were compared 

to Salmonella isolates from surveys of The University of Tennessee research 

dairy farm and the Tennessee River (Figu re 1 3) .  Salmonella ser. Havana was 

the only common serotype to all sample types (WSU, dairy farm , TN River) .  The 

comparison of isolates recovered from Washington State and Tennessee 

revealed sign ificant geograph ic correlations or simi larities among Salmonella 

isolates common to dairy cattle and dai ry farm environments.  

DISCUSSION 

By l i nking riboprinting methodology with G IS  technology in  food safety 

research and on farming operations, identification of significant sources of 

contamination is rapid ; thereby, enabl ing more efficient controls to be 

implemented. The Riboprinter identified Salmonella isolates by band matching of 

riboprint patterns. Based on the resu lts of Riboprinting analysis of Salmonella 

isolates from Tennessee and Washington State, it was found that the Riboprinter 

was an efficient method in  its abi l ity to identify Salmonella serovars from a variety 

of sou rces . Of the 1 90 Salmonella iso lates ri bopr i nted , 1 58 (83%) were identif ied 

by the system at or below the serotype level . Only 32 ( 1 6%) of the Salmonella 

isolates were not characterized via riboprinting. These Salmonella isolates were 

classified as "other" Salmonella and were placed in 1 of 5 simi larity groups for 

Salmonella i n  the system's database. According to Oscar ( 1 998), the Riboprinter 

occasionally cannot match a riboprint pattern of an isolate to other patterns in  the 

database. In this case, the Riboprinter makes no positive identif ication,  but 

places the pattern in one or more s imilarity groups of isolates showing that 
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Lanes 1 and 2: Salmonella ser. Havana isolated from dairy farm 
Lanes 3 and 4: Salmonella ser. Havana isolated from Tennessee River 
Lanes 5 and 6: Salmonella ser. Havana isolated from Washington State 

Figure 1 3. Salmonella ser. Havana isolated from Tennessee and Washington 
State. 
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particular pattern. Expansion of the Riboprinter database will improve the 

Riboprinter's identification capabilities. The automated riboprinting system did, 

however, have some limitations. Although the Riboprinter successfully identified 

most Salmonella isolates at or below the serotype level, the repeatability of 

riboprint patterns between runs was poor. Based on results of this study, it is 

recommended for future studies that riboprinting of these Salmonella isolates be 

compared to results using several different molecular methods of characterizing 

foodborne isolates. 
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SUMMARY 

I n  part 1 of the study, a comprehensive epidemiological survey was 

conducted to determine the prevalence of Salmonella, Campylobacter jejuni, and 

Escherichia coli O1 57 :H? in dairy animals and dai ry farm envi ronments . The 

experimental design included 321 dairy cows (lactating and non-lactating) and 

calves from The University of Tennessee, Knoxvi lle Experiment Station research 

dairy farm . Samples were collected monthly for 1 2  months from dairy cows, 

calves, feed and the farm envi ronment, which included pastu res,  barns,  bedding, 

soil ,  bulk tank m ilk, mi lking equipment, air, insects , and wild birds. A Geographic 

Information System (GIS) was used to examine relationships that exist between 

animals and their environments. 

A strong seasonal influence occurred with the isolation of Salmonella and 

C. jejuni at the farm . The prevalence of Salmonella iso lated from dai ry animals, 

feed , and dairy farm environments was 32%. Salmonella isolation was highest in 

the summer (48%) in both cows and calves. Salmonella iso lation during wi nter, 

spri ng,  and su mmer months was between 24% and 26%. Feed (59%) , bedding 

materials (47%) , water (40%), bird droppings (34%) and i nsects (39%) were 

identified as significant sources of Salmonella. The prevalence of C. jejuni 

isolated at the farm was 21 %. Isolation of C. jejuni was significantly higher 

during winter (28%) and fal l (29%). B ird droppings (33%) were strongly 

correlated (P � 0 .05) with contamination of feed (40%) and water (60%) sou rces. 

The prevalence of E. coli O1 57 :H? at the farm was only 2 %. Isolation was very 

infrequent th roughout the entire study period. No statistical differences (P 2: 
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0.05) were observed among sample type. Data generated from the cu rrent 

research were used to devise strategies to reduce pathogen contamination at the 

farm through envi ronmental management and risk 

In part 2 of the study, a microbiological su rvey of the Tennessee River, 

adjacent to The University of Tennessee research dai ry farm , was conducted to 

determine the prevalence of Salmonella, C. jejuni, and E. coli O1 57 :H7. Fecal 

colllorms were also examined as possible indicators of the presence or absence 

of pathogens in the river. G IS was used to examine possible relationsh ips 

between contamination with Salmonella, C. jejuni, and E. coli O1 57:H? at the 

dai ry farm and subsequent contamination of the Tennessee River. 

Neither C. jejuni nor E. coli O1 57:H? were recovered from the Tennessee 

River water samples, however, Salmonella (33%) was iso lated from all sampling 

sites along the river. The concentration of fecal colllorms in rive r water samples 

ranged from 37 to > 2400 Most Probable Number per 1 00 ml water. No 

correlation (P > 0.05) was found between the indices of fecal contamination and 

Salmonella recovered from the Tennessee Rive r. 

G IS analysis revealed a decrease in isolation of Salmonella from sites 

di rectly across ( 1 1 %) and di rectly downstream ( 1 1 %) from the dairy farm (56%) . 

However, Salmonella was isolated at a prevalence of 44% from sites upstream 

from the farm. Based on the lack of bacterial species iso lated from the river as 

opposed to those recovered from the dai ry farm , and the variable pattern of 

pathogen isolation from the river, it can be concluded that The Un iversity of 
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Tennessee research dai ry farm did not contri�ute sign ificantly to contamination of 

the Tennessee River. 

Final ly, in part 3 of the study, G IS and molecu lar characterization 

procedures were used to determine d iversity and associations among Salmonella 

isolates from different species, locations, and agricu ltu ral runoff. Previously 

characterized Salmonella isolates were obtained fol lowing microbio logical 

surveys of the Un iversity of Tennessee research dairy farm and the Tennessee 

River adjacent to the farm , and compared to isolates from various animal and 

environmental sources received from Washington State Un iversity. Salmonella 

isolates were further characterized using both the Analytical Profi le I ndex (AP I )  

20 E for Enterobacteriaceae and po lyvalent somatic O Salmonella antiserum. 

Automated Riboprinting with the PVUI I restriction enzyme was used to subtype 

the isolates. 

Salmonella isolates (N = 1 90) were Riboprinted using the Automated 

Riboprinter® Characterization System. The most frequently isolated Salmonella 

serotypes were Salmonella ser. Senftenberg (26) , Typhimurium (25), Havana (8) , 

and Newport (8) .  Comparison of Salmonella isolates recovered from Tennessee 

and Washington Stat� revealed sign ificant geograph ic correlations and 

simi larities among isolates common to dairy cattle and farm envi ronments. 

CONCLUSIONS 

I n  conclusion ,  the fu l l  potential of GIS as a surveil lance tool is not yet 

real ized. However, advances in G IS may prove valuable to food safety research 

in the future . Use of G IS al lows for improved monitoring and instantaneous 
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visualization of data . Using G IS  reduces time requi red to ana1yze numerical 

data. G IS is useful for identifying critical control poi nts and aids the decision

making process regarding control of foodborne pathogens in the envi ronment. 

The dairy farm envi ronment represents an array of reservoirs of foodborne 

pathogens. The development of efficient, on-farm management strategies to 

contro l  transmission of foodborne pathogens requ i res knowledge of the 

prevalence and distribution of these pathogens on animals and in the 

envi ronment. The resu lts of this study indicated that the risk of foodborne 

disease may be reduced by targeti ng controls in animal production envi ronments. 

I t  can be concluded from this research that epidemiological knowledge of factors 

affecting shedding of pathogens by food animals may reduce transmission of 

pathogens at the farm and throughout the food chain .  
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