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Abstract 
 

iv 

 

The objective of this dissertation was to determine the mechanics of the cam-post mechanism for 

subjects implanted with a Rotating Platform (RP) PS TKA, Fixed Bearing (FB) PS TKA or FB Bi-

Cruciate Stabilized (BCS) TKA. Additionally, a secondary goal of this dissertation was to 

investigate the feasibility of vibroarthrography in correlating in-vivo vibrations with features 

exhibited in native, arthritic and implanted knees. In-vivo, 3D kinematics were determined for 

subjects implanted with nine knees with a RP-PS TKA, five knees with a FB-PS TKA, and 10 

knees with a FB-BCS TKA, while performing a deep knee bend.  Distance between the cam-post 

surfaces was monitored throughout flexion and the predicted contact map was calculated. A 

forward dynamic model was constructed for 3 test cases to determine the variation in the nature of 

contact forces at the cam-post interaction. Lastly, a different set of patients was monitored using 

vibroarthrography to determine differences in vibration between native, arthritic and implanted 

knees. Posterior cam-post engagement occurred at 34 for FB-BCS, 93o for FB-PS and at 97 for 

RP-PS TKA. In FB-BCS and FB-PS knees, the contact initially occurred on the medial aspect of 

the tibial post and then moved centrally and superiorly with increasing flexion. For RP-PS TKA, 

it was located centrally on the post at all times.  Force analysis determined that the forces at the 

cam-post interaction were 1.6*body-weight, 2.0*body-weight, and 1.3*body-weight for the RP-

PS, FB-BCS and FB-PS TKA. Sound analysis revealed that there were distinct differences between 

native and arthritic knees which could be differentiated using a pattern classifier with 97.5% 

accuracy. Additionally, vibrations from implanted knees were successfully correlated to 

occurrences such as lift-off and cam-post engagement. This study suggests that mobility of the 



  

v 

 

polyethylene plays a significant role in ensuring proper cam-post interaction in RP-PS TKA. The 

polyethylene insert rotates axially in accord with the rotating femur, maintaining central cam-post 

contact. This phenomenon was not observed in the FB-BCS and FB-PS TKAs.  
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Chapter 1: Introduction 
 

1 

 

Knee joint injuries are one of the most commonly reported musculoskeletal problems. These 

injuries can occur due to various reasons. In young adults, sports are a major cause of injuries. In 

older subjects arthritic degeneration (such as rheumatoid or osteoarthritis) of knees is a well-known 

phenomenon, and is known to result from a variety of traumatic causes. According to the Arthritis 

Foundation, arthritis-related problems are second only to heart disease as the leading cause of work 

disability. Mechanical loading, especially dynamic loading, is believed to play a major role in the 

degenerative process, where the cushioning layers are damaged and creates bone to bone contact. 

Osteoarthritis can be extremely disabling, leading to discomfort and often excruciating pain. 

Therefore artificial orthopedic implants are designed so as to replace these damaged articulating 

surfaces and provide pain relief and allow a subject with severe osteoarthritis to return to a normal 

daily life. This leads many patients to undergo a Total Knee Arthroplasty (TKA) surgery to 

eliminate the pain and deficiencies. 

 

At least 150 TKA designs exist in the market today, with advancements by physicians and 

engineers that simulate the geometry and behavior of a healthy knee joint (Carr 2009). The 

differences in these designs are based on factors such as condylar geometry, bearing mobility, 

ligament preservation vs. substitution, and fixation methods (Sharma 2007). In order to better 

understand the motivation of design engineers to introduce different designs in the market, it first 

becomes important to understand the working of the normal knee. 
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1.1 Kinematics of the Normal Knee in Flexion 

In vivo fluoroscopic studies have determined that kinematics of the normal knee are, at least, 

partially defined by the integrity of the supporting soft tissue envelope (capsule, ligaments, 

myotendinous units, etc.) and the condylar geometry of the articular surfaces. In the normal knee, 

there is a complicated pattern of motion that occurs between the femoral and tibial articular 

surfaces during flexion and extension. Due to the stabilizing nature of the relatively immobile 

medial meniscus and various complicated interactions between surrounding ligamentous 

structures, flexion of the intact knee produces a relatively predictable controlled posterior rollback 

of the lateral femoral condyle on the lateral tibial plateau.  

 

Previous studies on cadaveric knees have revealed that the lateral femoral condyle rolls back an 

average of 18mm from full extension to full flexion while the medial femoral condyle rolls back 

only 1.5mm (Freeman 2001) (Figure 1-1). In-vivo studies indicated a similar trend with the 

average lateral femoral condylar rollback for weight bearing flexion being 21mm and that for the 

medial femoral condyle being 1.9mm (Dennis 2005) (Figure 1-2).  

 

A majority of normal knees demonstrate a medial pivot axial rotational pattern in which the lateral 

femoral condyle rotates around a relatively stationary medial femoral condyle. Under weight-

bearing conditions, an average of 210 of axial femorotibial rotation occurs in the normal knee from 

full extension to flexion of 1200 (Freeman 2001). Therefore, with flexion of the normal knee, the 
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tibia typically internally rotates relative to the femur, and conversely, externally rotates with knee 

extension (i.e., screw home mechanism) 

 

 
Figure 1-1: Posterior Femoral rollback in the normal knee (cadaver) from full extension to 

full flexion (Freeman 2001). 

 

 

 

 
Figure 1-2: Posterior Femoral rollback in the normal knee from full extension to full flexion 

(Underweight bearing conditions) (Dennis 2005). 



 

4 

 

1.2 Total Knee Arthroplasty (TKA) 

In a total knee arthroplasty (TKA), the diseased cartilage surfaces of the thighbone (femur), the 

shinbone (tibia) and the kneecap (patella) are replaced by prostheses made of metal alloys, high-

grade plastics and polymeric materials. Most of the other structures of the knee, such as the 

connecting ligaments, remain intact.  

 

In the modern knee replacement or total knee arthroplasty (TKA), the articulating surfaces of the knee 

are replaced by four components (Figure 1-3): 

1. Femoral Component: To resurface the distal end of the femur. 

2. Tibial Component: Attached to the proximal end of the tibia. 

3. Polyethylene insert: Replicates the function of the meniscus and forms the articulation between 

the femoral and tibial components. 

4. Patellar Button: Attached to the articulating surface of the patella-femoral joint. 

  

The geometry of the femoral component varies between manufacturer’s designs and has evolved with 

increasing knowledge of the in vivo mechanics of TKA. Earlier components had a close to circular 

sagittal profile but lately the trend has been to more closely mimic the natural knee by reducing the 

radius of sagittal curvature of the articulating surface towards the posterior femur. Manufacturers also 

use different profiles for the medial and lateral condyles. All new designs have a rounded profile in the 

coronal plane on each condyle, although the radius of curvature varies between designs. 
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The tibial component is typically a flat tray made of the same material as the femoral component and 

attaches to the boney architecture of the tibia. This tray holds a piece of plastic called the polyethylene 

insert, manufactured from wear resistant, cross-linked ultra-high molecular weight polyethylene 

(UHMWPE). The polyethylene insert acts as the bearing between the femur and tibia. The backside of 

the patella is resurfaced with a piece of plastic, sometimes referred to as a “patella button”. This button 

lies in a groove on the anterior surface of the femoral component and mimics the interaction between 

the normal patella and the trochlear groove on the non-implanted femur. This groove guides the motion 

of the patella which transfers force from the quadriceps to the tibia and acts as the extensor mechanism 

of the knee. The shape of the femur, the geometry of the insert and button, and the changes made to 

the soft tissue structures during the surgical procedure affect the mechanics (kinetics and kinematics) 

of the knee after replacement. 

 

With the knowledge of the drawbacks of current designs and with the focus of attaining normal 

knee kinematics in TKAs, the design of knee implants have continuously evolved and there are 

various types of knee implants in the market. Modern TKA designs can be broadly classified into 

the following groups:  

Based on the type of fixation to the bone TKAs can be broadly classified into two groups:  

 Cemented Prosthesis  

 Uncemented Prosthesis  
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Figure 1-3: Basic components of a TKA. 

 

Both types are widely used. In many cases, a combination of the two types is used. The choice to 

use a cemented or uncemented prosthesis is usually made by the surgeon based on the age of the 

patient, their lifestyle, and the surgeon's experience. A cemented prosthesis is held in place using 

epoxy type cement that attaches the metal to the bone. An uncemented prosthesis has a fine mesh 

of holes on the surface that allows the bone to grow into the mesh and attaches the prosthesis to 

the bone.  

 

Based on the type of implant TKAs can be classified into two groups: 

 Posterior Cruciate Retaining (PCR) 

 Posterior Cruciate Sacrificing (PCS) 

 Posterior Cruciate Stabilizing (PS) 

 Bi-cruciate Stabilizing (BCS) 
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This distinction is basically based on the surgical procedure that is adopted during TKA for the 

cruciate ligaments (the main anterior-posterior stabilizers in the normal knee).  Though some 

TKAs are designed to retain the anterior cruciate ligament (ACL), in most designs, the ACL is 

resected.  With respect to the posterior cruciate ligament (PCL), TKAs can be PCL retaining 

(PCR), PCL sacrificing (PCS) or PCL substituting, also known as posterior stabilized (PS).  PS 

designs differ from the PCR designs by having an additional post-cam mechanism between the 

femoral component and the polyethylene insert in order to initiate posterior femoral rollback, the 

primary role of the PCL. The post is located on the polyethylene insert and the cam is provided on 

the femoral component in between the two condyles. PCR designs do not have this mechanism as 

the PCL in these designs is not resected.  The PCS designs resect the PCL and do not provide for 

any substitution. In some cases the cam-post interaction is modified in such a way that it can 

substitute the function of both the ACL as well as the PCL. In such a TKA the anterior aspects of 

the femoral cam and the tibial post geometries are designed to engage at full extension of the knee 

joint (hence preventing posterior slide which is the function of the ACL). Since these designs 

substitute both the ACL and PCL they are called Bi-cruciate stabilizing or BCS type TKAs. 

 

Based on the type of tibial component TKAs can be classified as: 

 Fixed Bearing (FP) 

 Mobile Bearing/Rotating Platform (RP) 
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In the fixed bearing design the plastic component on the tibial component is fixed to the tibial tray. 

This means that there is no relative motion between the plastic and the tibial component. In the 

mobile bearing design the plastic component has been designed, such that, it can be fitted inside 

the hollow stem of the tibial component. It is not fixed to the tibial component and hence is free to 

move (to a certain degree) on the tibial tray (Figure 1-4).   These designs can allow for free rotation, 

free translation or a combination of both free rotation and translation. 

 

 
Figure 1-4: (left) PS fixed bearing TKA. (right) Implanted TKA. 

 

 

1.3 Concerns rising from TKAs 

Determination of knee kinematics (normal and implanted) has been investigated using multiple 

techniques, both in-vitro as well as in-vivo. These include the invasive cortical pins, Roentgen 

Stereophotogrammetric Analysis (RSA), skin marker analysis and fluoroscopy based model 
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reconstruction techniques. Violation of the complex interactions between the natural stabilizing 

joint surface anatomy and surrounding ligamentous structures make it difficult to completely 

reproduce normal knee motions following TKA. Numerous kinematic variances from normal knee 

kinematic patterns have been demonstrated, including paradoxical anterior femoral translation 

during deep knee flexion (Dennis 2003), reverse axial rotational patterns (Dennis 2004), wear of 

the polytheylene contact surface, degeneration (and failure) of the tibial post in the PS type TKA, 

and femoral condylar lift-off (Scuderi 2003). 

 

Anterior femoral translation during deep knee flexion (femoral component sliding anteriorly 

during deep flexion rather than posterior femoral rollback) has numerous potential negative 

consequences. First, anterior femoral translation results in a more anterior axis of flexion, lessening 

maximum knee flexion (Hass 2002). Second, the quadriceps moment arm is decreased, resulting 

in reduced quadriceps efficiency. Third, anterior sliding of the femoral component on the tibial 

polyethylene surface risks accelerated polyethylene wear (Bartel 1986). 

 

Some TKAs induce a tendency to produce undesirable reverse axial rotation which risks 

patellofemoral instability due to lateralization of the tibial tubercle and an associated increase in 

the Q-angle during deep flexion, as well as lessening maximum knee flexion due to reduced 

posterior femoral rollback of the lateral femoral condyle (Dennis 2004).  
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Lift-off in TKA, whereas the a femoral condyle lifts off of the tibial insert, have been a focus of 

investigators since fluoroscopic analysis showed that it does occur (Steihl 1999). Femoral condylar 

lift-off creates excessive loads on the polyethylene bearing, risking premature polyethylene wear, 

and also causes increased load transmission to the underlying bone which increases the risk of 

prosthetic loosening (Scuderi 2003). These adverse effects are amplified in TKA designs which 

have flat-on-flat designs due to edge-loading of the prosthetic components. 

 

1.4 Knee Vibration Data- The future of diagnosis? 

Experimental studies in humans are difficult and often restrictive due to the exclusion of any 

measuring device that would require invasive techniques. Since cadaveric studies fail to simulate 

in-vivo conditions adequately (Komistek 2005), biomechanical researches have strived for new 

and unique methods for indirect measurements. These have been used to analyze the normal knee 

joint as well as to asses and justify design protocols of TKAs.  

 

One of the major problems in discerning the progression of knee joint conditions is the inability to 

detect the cause of such conditions until it is too late. Use of X-rays, CT and MRI scans are limited 

to providing information on defects that are gross in nature. Arthroscopic procedures have become 

popular to overcome this deficiency; however, this procedure is semi-invasive. Hence, some 

research has dealt with early diagnosis of knee joint conditions by non-invasive means. Analysis 

of vibration signals from the knee joint has been found to be successful in determining these 

conditions at an early stage. Further development of such techniques may one day provide the care 
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giver with options that are less-invasive compared to TKAs or at the very least prolong the time 

for the patient before they have to receive one. Hence, while discussing the mechanics of the knee 

joint a look at such innovative techniques becomes imperative.  



Chapter 2: Research Aims and Contribution 
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2.1 Research Aims 

While the TKA procedure is found to be very successful in treating severe osteoarthritis, failure, 

especially in the form of polyethylene wear limits its longevity (Howling, 2001; Currier, 2005).  

 

Wear is ideally a function of kinematics, kinetics and the material properties (Wimmer, 1997). 

Interestingly enough, all the various types of TKA available today use similar kind of materials 

but have wide differences in the design and the dimension of the components. This suggests that 

the correlation of kinetics, kinematics and wear hasn’t been developed (Sathasivam, 2001; Fregly, 

2005).  With the design goal of modern TKA designs being to acheive higher degree of flexion, 

which generates higher forces (Komistek, 2005), and also TKAs being implanted in younger and 

more active patients a perfecting understanding of the relation of kinematics, kinetics and wear 

has become increasingly important (Walker, 1999).  

 

Methods to study wear behavior in UHMWPE have been limited to the use of simulators or 

retrieval studies. The greatest drawback with using simulators is the fact that it works on in-vitro 

conditions. Comparison between wear generated by simulators and that obtained from retrieval 

studies, for the same bearing designs and for similar cycles, have indicated greater amount of wear 

in the retrieved inserts (Harman, 2001). On the other hand retrieval studies involve a backward 

approach and can only give us an idea about what ‘might have caused’ such wear rather can 

pinpointing as to ‘this is the cause’. Thus the correct approach would be to go in the forward 
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direction and predict wear from the in-vivo kinematics and kinetics. At present there has been just 

one study attempting to do this (Fregly, 2005). However, this study is limited due to the fact that 

it assumes a linear material model, does not incorporate friction and assumes an axial force 

distribution.  

 

Previously, fluoroscopy has been successfully used in our lab to determine the in-vivo kinematics 

of TKA of the tibio-femoral and patella femoral joint interactions, allowing for the determination 

of antero-posterior translation, axial rotation, femoral condylar lift-off and weight-bearing range-

of-motion (Komistek, 2000, 2004; Dennis, 2003). The objective of this research is to devise a new 

computational methodology which would extend this capability to the calculation of kinematic 

properties of the cam-post interaction, in-vivo contact forces and torques, contact stresses at the 

cam-post interface and ultimately serve as reliable predictor for potential polyethylene wear. 

 

This dissertation describes the initial process that has been derived for the comprehensive analysis 

of the cam-post mechanism in ten fixed bearing bi-cruciate stabilized TKA, five fixed bearing 

posterior stabilized TKA and nine mobile bearing rotating platform PS TKA. The study entailed 

the determination of the contact kinematics of the cam-post mechanism and the resulting contact 

forces occurring during a deep knee bend (DKB) activity. The effect of posterior femoral rollback 

(PFR) on the moments generated on the cam-post and the effect of contact location as well as 

contact height on cam-post fracture was analyzed. 
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Additionally, it is hypothesized that the magnitude of the vibration of the tibiofemoral joint 

increases with articular cartilage degeneration (i.e. increasing roughness of the articulating 

surfaces).  Although this hypothesis is plausible from the mechanical point of view, it is not clear 

whether the vibration can be studied non-invasively. Therefore, this work also assessed the 

feasibility of using miniature accelerometers to study the vibration of the articulating surfaces 

(hence the name vibroarthrography) of the tibio-femoral joint (including the cam-post interaction).  

 

To this end, additional 76 normal, degenerative and implanted knees, were recruited to investigate 

the possibility of the correlation between in-vivo kinematics and vibroarthrography signals. The 

goal was to assess if it is possible to distinguish, just based on vibration data, the occurrence of 

uni-compartmental degeneration and the difference between normal and degenerative knee joint 

signals. Patients with normal and well functioning TKA were also analyzed under in vivo, 

conditions using video fluoroscopy and vibration sensors while performing various normal day 

activities. This made it possible to record and compare the vibration signals recorded for patients 

that have intact cartilage with those whose cartilage has been considerably worn (for native knees) 

as well as to confirm the correlation of the signals to different condition occurring in the TKA joint 

for patients with well functioning as well as failing TKAs. 
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2.2 Fundamental Contributions 

Most of the previous in-vivo kinematic studies pertaining to the knee joint have reported data only 

pertaining to the tibio-femoral or patella-femoral joint (Kellis 2005, Fellows 2005, Baker 2003, 

Sylvester 2009) However, the kinematic analysis of the cam-post interaction under in-vivo 

conditions has been largely omitted due to the complexity of analysis.  Therefore, determining the 

cam-post contact kinematics will contribute to better understanding of the in-vivo interaction 

conditions in a PS type TKA. The effect of the nature of contact, location of contact, contact areas 

and the resulting effects on the tibial post wear, which to the best of the author's knowledge, has 

never been done under in-vivo, dynamic, weight-beating conditions. Utilizing a 3D-to-2D 

registration technique and an in-house developed analysis software based in MATLAB, it is 

possible to undertake this analysis, which is the first of its kind.  

 

The present work also provides important contribution to better understand the forces in the cam-

post interaction. The proposed methodology utilizes the use of a 3D forward dynamics 

mathematical model of the lower limb, based on Kane’s dynamics. The mathematical model makes 

it possible to simultaneously solve for all the interaction forces in the PS TKA. Previous models 

have been utilized to determine the lateral and medial condyle contact force as well as the patello-

femoral contact force in a variety of TKA designs. However, in the PS type TKA the interaction 

of the cam with the post and the resulting forces generated have been neglected. This is the first 

attempt in providing all the contact forces simultaneously 
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Finally, vibroarthrography data was evaluated for its potential use of detecting the articular 

cartilage condition in native knees and the occurrence of cam-post interaction and condylar lift-

off in PS TKA. Although this methodology has been used by a few other researchers, the current 

work is the first to correlate the vibration signals with the 3D, in-vivo kinematics. This allows in 

the determination of not only the severity but also the location of the articular cartilage 

degeneration. This information will be very helpful for surgeons planning TKA procedure and 

may eliminate the need for imaging modalities involving harmful radiation.  

 



Chapter 3: Literature Review and Motivation 
   

17 

 

With new designs being created and modern TKA designs aiming at higher degree of flexion, 

which generates higher forces (Komistek 2005), and TKAs being implanted in younger and more 

active patients, analyses of their kinematics and contact mechanics quickly and efficiently become 

increasingly important (Walker 1999). The objective of this study was to provide an initial 

computational methodology to determine the mechanics of the cam-post interaction in PS type 

TKA. This involves three main areas of consideration: 

1. Kinematics 

a. Contact angle and location 

b. Nature of contact 

2. Kinetics 

3. Vibrtoarthrography 

 

There are numerous studies that deal with the determination of kinematics, kinetics and wear of 

the knee joint (native as well as TKA). However, data pertaining to similar studies that specifically 

deal with the cam-post interaction are limited at best, in some areas, such as wear, and nearly 

nonexistent in others, such as contact kinematics and forces. Therefore, when trying to establish a 

protocol for a computational methodology for the cam-post interaction, the first steps involve the 

understanding of the various different techniques used to assess the kinematics, kinetics and wear 

in the knee joint as a whole and then determine the most suitable combination of techniques which 

can be successfully applied to the cam-post interaction analysis. The most crucial aspect of 
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developing this methodology is to understand the scope of these technologies in bridging the 

knowledge gap between current data available on the mechanics of the cam-post interaction to that 

of the more in depth understanding already available for the knee joint as a whole. 

 

3.1 Techniques used to determine knee joint kinematics 

Many different methods have been used to determine TKA and native knee kinematics. 

Researchers have used in vitro cadaveric studies, non invasive skin markers (Kostuik 1975, Steihl 

1998, Antonsson, 1989) and external fixation devices (Scuderi 2003, Insall 2004, Wasielewski 

2005, Cappozzo 1993), invasive bone pins (LaFortune, 1992), in vivo roentgen 

stereophotogrammetric analyses (RSA) (Karrholm 1989; Nilsson, 1995), externally worn 

goniometric devices (Chao, 1980), single plane and biplanar fluoroscopic techniques (Banks, 

1996; Hoff, 1998). 

 

Use of tools such as use of cadavers is often ineffective since they fail to simulate in vivo 

conditions adequately. Skin markers are non-invasive and involve no radiation exposure, but have 

been shown to induce measurement errors of up to 18 degrees for internal/external rotation 

(Murphy, 1990; Sati, 1996; Holden 1997). Another study found that skin markers produced errors 

of 21% for flexion/extension, 63% for internal/external rotation, and 70% for abduction/adduction 

during gait. Modifications have been made to reduce the errors associated with it. Some of these 

methods include artifact assessment (Lucchetti, 1998), Point Cluster Technique (Andriacchi, 1998; 

Alexander, 2001) and optimization using minimization techniques (Spoor, 1988; Lu 1999).  
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Intra-cortical bone pins have been found to yield highly accurate measurements (with errors less 

than 0.4 mm), but the insertion process is invasive and stressful, limiting the application of this 

process to small sample sizes. External linkages attached to the limbs offer a non-invasive 

approach to bone pins, but assume that there is negligible mobility between the external apparatus 

and the underlying bone. RSA yields highly accurate results, but it is often non-weight bearing, 

and can only be performed when specially designed replacements were implanted at the time of 

TKA. Video fluoroscopy has proved to be a highly accurate and non-invasive procedure that 

exposes patients to minimal radiation. Mahfouz et al (Mahfouz 2003) employs a novel, semi-

automated algorithm to register three-dimensional (3-D) computer automated design (CAD) 

models to two dimensional (2-D) fluoroscopy images. This procedure yields in vivo 3-D 

kinematics, susceptible to errors of less than 0.5 mm for in-plane translations and less than 0.5º for 

in-plane rotations. It is believed that this technology offers the most practical and reliable method 

for determining knee kinematics.  

 

3.2 Knee Kinematics-Mobile or Fixed, PCR or PS? 

Numerous other kinematic evaluations have found a larger magnitude of femoral rollback in native 

knees when compared to TKAs, during deep flexion activities (Dennis 2005, D’Lima 2006).  The 

magnitudes of posterior femoral rollback during deep flexion in TKA designs are less than in the 

normal knee.  This contributes to the decreased knee flexion following TKA compared to the 

normal knee as well as abnormal kinematic patterns leading to joint pain and, in some cases, failure 

of the TKA.  In spite of these limitations, TKAs in general have provided good mid to long term 
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survivability. However, the question pertaining to which type of implant configuration provides 

the best post-surgery outcomes is still a cause for debate. One area of contention is bearing 

mobility. The mobile bearing implant was designed to reduce contact stress, thereby reducing 

wear, and recreate more “normal like” knee kinematics. In vitro studies have shown reduced wear 

with the use of a mobile bearing implant (Fisher 2004, 2006). However, kinematics, clinical 

outcomes and survivability between fixed and mobile bearing implants have produced similar 

results. A review study conducted by Post et al (Post 2009), could not find any basis to justify one 

design over the other. Clinical success and long-term survivorship were found to be mainly 

dependent on the accuracy with which the components are implanted. They concluded that the best 

design is the one with which the surgeon is most comfortable and most able to reproducibly implant 

(Post 2009). Studies that have compared the performance of the mobile and fixed configurations 

in the same patient have also concluded that the patient does not demonstrate any difference in 

terms of range of motion, knee scores and survivorship (Ranawat 2004, Kim 2007, Sharma 2007). 

Pagnano et al (Pagnano 2004) conducted a study on 240 rotating platform TKAs and found that it 

did not improve patellar tracking. A multicenter study conducted by Wasielewski et al 

(Wasielewski 2008) on 527 mobile bearing TKAs found that only 12% of the knees exhibited 

greater than 10 degrees of axial rotation during a Deep Knee Bend (DKB) activity. Also, nearly 

half the knees analyzed experienced less than 3 degrees of axial rotation. They also found that the 

rotational parameters were comparable with results reported for fixed bearing TKA by Dennis et 

al (Dennis 2004).  
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Another area of contention is whether the posterior cruciate ligament should be retained or 

substituted. During gait, fixed and mobile-bearing posterior stabilized TKA designs have 

experienced similar kinematic patterns as those designs that lacked a cam and post mechanism.  

This has been attributed to the fact that the cam and post mechanism of most posterior stabilized 

TKA designs do not engage during lesser flexion activities such as gait.  During a deep knee bend, 

however, posterior stabilized TKA designs typically experience greater posterior femoral rollback 

than designs without a cam and post mechanism.   

 

Numerous studies have shown that certain cruciate retaining (CR) total knee designs exhibited 

paradoxical femoral sliding, decreasing clinical weight-bearing flexion (Cates 2008). This 

paradoxical femoral rollback (PFR) has not been seen in posterior stabilized (PS) TKAs. However, 

a study comparing PS TKAs to CR TKAs with asymmetrical condyles found that, while the CR 

design did exhibit lesser medial PFR, both designs achieved similar amounts of lateral PFR. 

Proponents of the CR design have suggested that the PFR seen in PS TKAs is due to the “guided 

motion” provided by the cam-post engaging, which leads to higher rates of implant failure due to 

cam-post wear. In their chapter on failure of the cam-post mechanism, Bourne et al (Bourne 2005) 

found that all post-cam mechanisms are not the same and that substantial differences exist from 

one implant type to another. They also suggest that the cam-post mechanism does not always 

engage as designed. Though they did find evidence that cam-post mechanism may result in 

increased wear, this was limited to implants with varus/valgus constraints.  
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Few studies have been conducted that accurately report the function of the cam-post engagement 

mechanism in PS TKAs. Two-dimensional computerized models have been used to investigate the 

effect of position and height of the tibial post on the tibiofemoral translation of the knee (Piazza 

1998, Delp 1995). However, these studies have not incorporated the three-dimensional effect that 

includes knee axial rotation, which can significantly alter the data. Also, these studies were not 

conducted on live TKA subjects, but rather, used non physiological kinematics inputs to run their 

models. Banks et al, reported the minimum distance between the cam and post as a function of 

flexion in five knees with a primary posterior stabilized knee (Banks 1997). That study estimated 

cam–post engagement to occur at 40o of flexion during a step-up maneuver assuming the cam and 

post engaged when the minimum distance between them was less than 1 mm. Suggs et. al in their 

paper, investigated the flexion range at which cam-post engagement occurred, during a lunge 

activity for 24 TKA subjects in-vivo. They analyzed fluoroscopy images using an image 

registration technique at 15o
 degree intervals from full extension to maximum knee flexion. The 

exact contact angle was estimated between the flexion intervals where cam-post contact first 

occurred (Figure 3-1). They reported average contact angle of 91.1o with a range from 69o to 114o. 

Though this is the first study to investigate the cam-post interaction in-vivo, it does not incorporate 

the necessary level of accuracy that would be desirable for a thorough understanding of the 

interaction mechanism.  
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Figure 3-1. In-vivo cam-post contact as assessed by Suggs et al. 

 

In vivo cam-post contact area is another area in which data is not available. The only notable paper 

to effectively quantify cam-post contact area, utilized the use of knee simulators to investigate 

three different TKA designs at three static flexion angles (90, 120 and 150 degrees) Nakayama 

(Nakayama 2005). A relatively small force of 500N was assumed to be applied by the femoral cam 

on the tibial post. This paper reported that at the assessed angles the cam-post contact area varied 

for the three different designs investigated, varying from 40mm2  to 65mm2. The study also 

reported that contact area reduced with increasing flexion. One of the major drawbacks of this 

study was that they assumed the knee to be in neutral position during flexion, with no effect of 

femoral rollback of either the medial or lateral condyle and no axial rotation (Figure 3-2). Also, 

the forces applied on the cam-post interaction were merely assumed and were not derived using 

any computational or experimental modality. The paper itself mentions this as their major 

limitation and attributed it to the lack of research data on this topic.  
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Figure 3-2: Axial view (left) and Sagital view (right) for the implant set-up by Nakayama et 

al. 

 

 

3.3 Techniques used to determine joint forces 

 

The value of determining in vivo forces and torques could lead to three important factors: (1) 

prediction of how new designs will perform, (2) simulation of orthopedic surgery procedures and 

prediction/optimization of clinical outcome based on surgical parameters under consideration, and 

(3) investigation of loading mechanisms that contribute to degenerative joint disease, as well as 

movement modifications or clinical interventions to reduce these effects (Komistek 2005). The in-

vivo force studies related to the knee joint can be divided into two broad categories – telemetry 

and mathematical modeling. 

 

The use of telemetry has gained wide scale approval in the research community since it has the 

capability of reporting very accurate, real-time data. D’Lima et al. (D’Lima 2005) have reported 

the first in vivo measurement of tibiofemoral forces via an instrumented implant in a TKA patient 
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in 2006. This technique is capable of measuring resultant knee forces in six degrees of freedom 

(D’Lima 2007, Varadarajana 2008). This study consisted of three patients, each implanted with a 

custom made telemetric implant (Zimmer Warsaw, IN). Forces at the tibiofemoral interface were 

assessed for the lunge and chair rise activities. All three patients experienced higher forces during 

the lunge activity. Forces during the lunge activity ranged between 1.7 and 2.77 times body weight 

(BW), with the peak force occurring between 27% and 82% of the cycle. For chair rising–sitting, 

all patients showed two peaks in net force. One peak (average 1.83*BW) was found at early part 

of chair rising (between 11-20% of cycle), while another peak (average 1.61*BW) was found at 

late part of the cycle (78-83%).  Patient specific force distribution on the two condyles was nearly 

equal for the lunge activity, with both condyles experiencing nearly equal forces. For the chair 

rising activity, it was seen, that the lateral condyle experienced higher force ratios (between 61.7-

74.2% of total force) when compared to the medial condyle. Another study conducted by the same 

authors (D’Lima 2008) assessed tibiofemoral forces for the same patient group while performing 

daily activities like walking, bicycling and exercising on an elliptical trainer. They found that 

during level walking the knee experienced forces between 1.8-2.5 times BW. These forces were 

similar to those experienced by subjects comfortably walking on a treadmill. During the bicycling 

activity the forces peaked at 1.03 times BW. Patients experienced higher forces while exercising 

on the elliptical trainer with the mean peak tibial force being 2.24 times BW. 

 

One restriction with telemetry is the fact that implantation of such devices is not feasible across 

different TKA designs that are available today. Also, data reported so far is restricted to a few 
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patients and expanding that to a large patient population will take a long time. Another 

disadvantage of telemetry is the fact that it can only be used to observe forces in implanted knee 

joints. Hence, mathematical modeling techniques have been utilized as an alternative theoretical 

methodology to calculate knee joint forces. Mathematical modeling approaches can be categorized 

two ways; those that use optimization techniques to solve an indeterminate muscle force system 

(Taylor 2004) and those that utilize a reduction method that minimizes the number of muscle force 

unknowns, keeping the system solvable as the number of equations of motion are equal to the 

number of unknown quantities (Komistek 2005, Sharma 2007, 2007).  

 

A study conducted by Lundberg et al (Lundberg 2009), developed a parametric model to determine 

tibiofemoral contact forces for TKA patients during level walking. The peak force reported was 

3.3 times BW with a range of 0.5 times BW for normal forces and a range of 0.82 times BW for 

resultant forces. These results compared well with previously published literature pertaining to 

optimization techniques to determine knee joint forces. The medio-lateral force distribution was 

also found to correlate with other studies (Andriacchi 1997, Hsu 1990, Johnson 1980, Shelburne 

2006). However, these forces were higher when compared to those reported for a similar activity 

using telemetry.  

 

Another computational route to solve biomechanical problems has been the use of optimization 

techniques, where the number of unknowns is greater than the number of equations that can be 

generated for the solution (Komistek, 2005). Therefore, the process deals with the solution 
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generated by the minimization of a suitably chosen objective function (Seireg 1973, Brand 1982, 

Anderson 2001, Piazza 2001). However, there still lacks a consensus as to which objective function 

is physiologically most suitable (Komistek 2005). 

 

Komistek et al., used the reduction technique and utilized a fluoroscopy driven inverse model 

based on Kane’s method of dynamics. They reported that the maximum force acting between the 

femur and the tibia for a healthy female subject having a normal knee was 1.7–2.3 BW, depending 

mainly on walking speed. Using a similar approach Sharma et al (Sharma 2007) assessed 

tibiofemoral forces for subject with either a PS or a CR high flexion TKA while performing DKB. 

They found that forces for each type of implant increased with increasing flexion. Also, medial 

condyle force was always higher than the lateral condyle force. To check for the amount of error 

the model was also compared to data obtained from a fixed bearing telemetric implant. The results 

showed that, for the telemetric implant the maximum force on the medial side was 1.9BW 

experienced at 90 degrees of flexion and 2.2BW at 105 degrees for the lateral side. The model 

predicted 1.89BW (at 89 degrees) and 2.05 (at 101 degrees) for the medial and lateral condyles 

respectively. Another study (Sharma 2007) by the same group analyzed 5 patients with a fixed 

bearing TKA and 5 patients with a mobile bearing TKA during the DKB activity. They reported 

that tibiofemoral force for both the types of implants was similar in nature and magnitude. Also, 

as in the previous study, they found that the force distribution was unevenly distributed between 

the medial and lateral condyles, with the medial condyle always having higher forces than the 

lateral condyle. The average medial tibiofemoral force varied from 0.5BW at full extension to 
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2.72BW at full flexion for the mobile bearing subjects, while for the fixed bearing subject the 

medial force varied between 1.04BW at full extension to 2.73BW at full flexion. On the lateral 

condyle the medial force varied between 0.34BW to 0.91BW for mobile bearing subjects, and 

between 0.43BW to 0.92BW for the fixed bearing subjects. These results are in accordance to 

reported data from telemetric devices under similar conditions.   

 

Despite these comprehensive analysis conducted by various research groups there still exist 

variances in the force data generated by the studies (Table 3-1). This is because data collected by 

telemetry and the data input to the mathematical models for the same type of activity are collected 

at different speeds. The interactive forces increase as the speed of the activity is increased. 

However, it is now a well-accepted fact that the contact forces increase with the increase in the 

angle of flexion (Komistek, 2005).  
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Table 3-1: Knee Contact Forces from Previous Studies (Modified from Komistek, 2005). 
 

Authors Technique Activity Knee Force 

Taylor et. al. Telemetry Normal gait 2.2 – 2.8 BW 

  Treadmill gait 2.75 BW 

  Stair descent 3.1 BW 

  Stair ascent 3.8 BW 

  Jogging 3.6 BW 

Colwell et. al. Telemetry Walking 2.4 BW 

  Stair ascent 3.3 BW 

Seireg et. al. Optimization Walking 7.1 BW 

Paul Reduction Walking 2.7 – 4.3 BW 

  Stair descent 4.9 BW 

  Stair ascent 4.4 BW 

  Up ramp 3.7 BW 

  Down ramp 4.4 BW 

Wimmer et. al. Reduction Walking 3.3 BW 

Komistek et. al. Reduction Walking 2.1 – 3.4 BW 

  Deep knee bend 1.8 – 3.0 BW 

 

 

3.4 Contact pressure analysis 

To estimate contact pressures, in-vitro experimental methods are extensively used mainly due to 

their ability to generate data fast. Some experimental techniques used previously include 

stereophotogrammetric methods (Ateshian 1994), dye injection methods (Greenwald 1971, Black 

1981), silicone rubber methods (Kurosawa 1980), 3S technique (Yao 1991), Fuji pressure sensitive 
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film (Stewart 1995), resistive ink sensors (K-ScanTM) (Ochoa 1993), ultrasound (Zdero 2001), 

piezoelectric transducers (Mikosz 1988, Buechel 1991) and micro-indentation transducers (Ahmed 

1983). All of these experimental methods, however, are in vitro techniques that either assumes the 

contact forces and/or the orientation of the implanted components. Also, the differences between 

these various techniques and loading conditions make direct data comparisons difficult.  

Rigid body contact analyses using multibody simulation methods have been successfully used to 

predict knee motion and contact forces (Godest 2000, Piazza 2001, Komistek, 2005, Sharma 2007, 

2008) build on subject-specific models. Other studies have used a deformable polyethylene model 

based on the use of Hertzian contact analysis to calculate the stresses in polyethylene insert (Bartel, 

1985; Walker, 1988). However, the accuracy of this method is limited due to the simplifying 

assumptions on which the theory is based (Lewis, 1998). The most resorted to and an accurate 

method used today is finite element analysis (FEA) (Lewis 1998). FEA has been used to study 

knee joint contact mechanics under static loading conditions (Bartel 1986, 1995, D’Lima 2001, 

Machan 2004, Périé 1998, Otto 2001, Rawlinson 2002, Sathasivam 1998, 1999). Dynamic FEA 

has recently been applied to simulations of knee implant components under well-defined loading 

conditions (Giddings 2001, Godest 2002, Halloran 2005). Apart from a significant amount of 

preprocessing required, one major drawback of these analyses is their intensive use of CPU time. 

This makes them impractical for incorporation into larger multi-dynamic musculoskeletal models.  

Furthermore, detailed stress analyses carried out by FEA are unimportant in gross movement 

simulations. Though FEA provides the best capability to model the polyethylene accurately and 

calculate stresses in it, however, the greatest disadvantage of this method lies in the high amount 



 

31 

 

of effort, time and computational infrastructure required for the analysis. Thus most studies, using 

FEA have used simplifying assumptions to reduce the complexity of the method.  

 

One key point to note is that apart from the FEA analysis, all other analysis schemes have been 

utilized to calculate the tibio-femoral contact pressures/stresses. Also, as with most types of studies 

in this field, the stress and contact area data generated by the various methods have a lot of 

variability in them (Table 3-2). 

 

Table 3-2: Summary of some Previous Contact Area and Contact Stress Studies (Thompson, 

2001). 

Method Reference Load 
Average 

Contact Area 

Maximum 

Contact Stress 

Elasticity Bartel et. al. 1.5 KN N/A 18.0 MPa 

FEA Bartel et. al. 1.5 KN N/A 20.0 MPa 

Fuji film Collier et. al. 2.8 KN N/A 23.5 MPa 

Fuji film Collier et. al. 0.7 KN 0.3 cm2 N/A 

K-scan sensor Harris et. al. 3.6 KN 3.5 cm2 N/A 

Fuji film Harris et. al. 3.6 KN 2.3 cm2 N/A 
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In-vitro testing has been employed to determine cam-post forces. In vitro robotic tests using 

cadaveric knees measured cam–post contact forces during knee flexion under simulated muscle 

loads (Suggs 2008)). The in vitro data showed that a sharp increase in cam–post contact force was 

measured at around 90o, accompanied with an increase in posterior femoral translation. Knee 

simulators have also formed a useful tool in determining contact stresses at the cam-post 

interaction. In their paper on contact area and contact stress at the cam-post interaction, Nakayama, 

et al., utilized the use of knee simulators to investigate three different TKA designs at three static 

flexion angles (90, 120 and 150 degrees). They found that the peak contact stress varied between 

22.1 to 34.1 MPa. However, as mentioned above (see section 3.2), this study did not reproduce 

any of the physiological conditions that would be routinely encountered by a patient having a TKA.  

 

Hence, an in depth study of mechanics (kinematics, kinetics and stresses) of the cam-post 

interaction in fixed and mobile bearing TKA devices is necessary to provide a better understanding 

of such a long standing dispute.  

 

3.5 Vibroarthrography of the Knee 

3.5.1 Historical background 

Knee joint pain is one of the most frequently reported musculoskeletal complaints in all age groups. 

Most often the patient’s complains are nonspecific and the correct diagnosis may be difficult. The 

diagnosis is often limited to detailed interview with the patient, careful physical examination 

(palpitation) and x-ray imaging. X-ray screening may reveal bone degeneration, but does not carry 
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sufficient information of the soft tissues’ conditions. More advanced imaging tools such as MRI 

or CT are available, but expensive, time consuming and are suitable only for detection of advanced 

arthritis. The arthroscopy is often the only reliable option, however due to its semi-invasive nature, 

it cannot be considered as a practical diagnostic tool.  

 

Early physicians examining knees noticed that the joints often make certain noises while evaluated 

under functional tests, or even during everyday use. These noises may exist because, when the 

bones are in motion the interaction between articulating surfaces induces vibrations of the bones, 

that may reach audible level. In a healthy joint the articulating surfaces are smooth and the 

vibration is minimal, but as the cartilage degenerates, the articular surfaces become rougher and 

vibrations increase, and may become audible. Therefore the auscultation of the knee joint has been 

considered an interesting and promising alternative to the abovementioned techniques. 

 

The first attempts to use auscultatory tools to the diagnosis of the pathological changes were used 

in the 19th century. Heuter (Heuter 1885), in 1885 was the first to use myo-dermato-ostetoscope to 

localize the joint bodies. In 1902, Blodgett (Blodgett 1902) used a stethoscope to auscultate the 

knee joints and noted that the sound increased with the age of the subjects. He reported creaking, 

grating and cracking sounds present in chronic arthritic joints. In order to determine if the 

auscultation offers any practical value in distinguishing between different forms of joint affections, 

in 1929, Walters examined nearly 1600 knee joints (Walters 1929). He categorized the joints into 

5 groups: smooth, rough, grating I, grating II and grating III, and found, similar to Blodgett, that 
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joints became more rough with age. The joints appeared smooth in the first decade of life but the 

rough and grating noise increased with increasing age and 81.5% of subjects in their 80s were 

audible (Figure 3-3). 

 

Later, joint sounds were studied to investigate the patella chondromalacia, different types of 

arthritis and meniscus lesions (Steindler, 1937, Peylan 1953, Erb 1933). Fisher and Johnson (Fisher 

1961) found that the rheumatoid arthritis could be recognized in the early stage, before the changes 

could be observed in x-ray images. However, these evaluations of the knee joint sounds were 

subjective and lacked a more precise, repetitive methodology. 

  

  

Figure 3-3: Walters 1929 experimentation on 1600 knees. Source: Walters et al. 

 

 

Therefore the auscultation of the knee joint has been considered an interesting and promising 

alternative to the abovementioned techniques.  
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The first graphical presentation of the joint sounds was presented by Erb in 1933. The author 

investigated chondromalacia of the patella, arthritis and meniscus lesions, and reported low 

frequency of meniscus sounds. Later, Steindler practiced ausultation of joints, particularly knee 

and used cardiophone (Figure 3-4) because its soft-rubber attachment helped to eliminate the 

friction noises of the skin. 

 

[A cardiophone used to study of the auscultation of the knee joint.] 

  

 [Experimantal set-up used by Steinler in 1933.] 

  

Figure 3-4: Steinler experiment using cardiophone (top) to minimize the friction noises of 

the skin. Source: Steindler. 

 

 

Peylan, in 1953, investigated 214 patients with different types of arthritis by the means of a regular 

and an electronic stethoscope (Peylan 1957). Fisher and Johnson (Fisher 1961) found that 

rheumatoid arthritis could be recognized in the early stage, before the changes could be observed 
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in x-ray images. However, these evaluations of the knee joint sounds were subjective and lacked 

the more precise, repetitive methodology. The first objective methods, based on statistical 

parameters of the signals were proposed by Chu et al. in late 1970s (Chus 1976, 1978). The authors 

used a double-microphone differential-amplifier sound-retrieval setup to record the knee joint 

sounds. They found that the normal knees had very low acoustic power output (ranging from 0-

0.02 W/cycle), while the pathological knees revealed significantly higher power outputs (Figure 

3-5). They noted that on average the acoustic power varied logarithmically with the surface 

roughness. 

  

  

Figure 3-5: Chu’s experiments to classify the knee joint conditions based on the relative 

acoustic power. Source:Chu 1976. 

 

 

Further improvements were done by Mollan et al. who compared the joint vibration detected using 

microphones and accelerometers and concluded that the microphone was a poor transducer in 
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terms of frequency and dynamic sensitivities for use with human joint emission. Particularly 

limiting the use of microphones, were the skin friction noise and the ambient room noise. 

Therefore, they replaced the microphone with three tiny accelerometers taped around the knee 

(Molan 1982, 1983, Kernohan 1982, 1986, McCoy 1987). The authors also used a goniometer to 

simultaneously record joint angle so that any episode of emission might be referred to a flexion 

angle. They extensive works gave good understanding of the nature of the knee joint signals, they 

diagnostic potentials and possible practical problems with vibration arthrography.  

 

The decision made by Molland et al. to replace microphones with accelerometers was later proven 

to be right, by scientists studying sounds emitted by temporomandibular joint (TMJ) (Gay 1988, 

1987, Christensen 1992 (i), 1992 (ii), 1992 (iii), Ishigaki 1993). Christiansen et al. (Christensen 

1992 (i)) reported that the condenser microphone is highly sensitive to ’irrelevant’ sound fields 

leading to artifact information of any airborne wave. They recommended that in general 

microphones should not be used for recording TMJ sounds - only accelerometers could be 

advocated for recording of solid borne TMJ vibrations. In the next study, Christiansen further 

noted that errors were found in sound frequency measurements recorded with microphones, while 

comparable measurements made with skin-contact vibration transducers were accurate 

(Christensen 1992 (i)). Similar conclusions were described by Kernohan et al. in an article 

reviewing the development of various techniques to evaluate sounds from human joints (Kernohan 

1982).  
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Parallel to the technological developments of the recording devices, new mathematical methods 

were also proposed. Since the vibroarthrogaphic signals are inherently nonstationary, the Fast 

Fourier Transform (FFT) could not be accurately used to localize the frequency content in time 

and therefore to correlate the abnormal signals with the joint kinematics. The Windowed Fourier 

Transform (WFT, also called Short-Time Fourier Transform, STFT) offered some help in 

localizing the frequency content in the time domain, but the breakthrough came with the 

introduction of the wavelet transform. Using the continuous wavelet transform, signals can be 

locally characterized in both the time and frequency domains simultaneously and self-adaptively. 

The pattern recognition techniques have also undergone significant development and nowadays 

advanced signal classifiers are built as neural networks. The wavelet theory and pattern 

classification techniques have found countless applications and are among the fastest developing 

methods at present. The use of the new sensors and analytical tools accelerated the development 

of the vibroarthrography and resulted in a number of clinical trials, publications and patents (Gay 

1989, Radke 1995, 1996, Rangayan 2003, Russell 1989) and has a great potential of becoming a 

reliable diagnostic tool for early diagnosis of patellofemoral disorders. 

 

3.5.2 Current research 

Currently, in our laboratory, the vibration signals are derived, most frequently, by means of highly 

sensitive, miniature accelerometers attached externally to the skin by an adhesive or elastic 

wrapping tape. The vibrations are recorded while the subject is asked to perform various activities, 

such as flexion-extension of the knee, gait, squat etc. During these activities, the entire knee joint 
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is moving.  Thus, the sensors record the changes in acceleration resulting from both, the motion 

and the vibration. Generally, the bones move less rapidly than they vibrate, therefore it is possible 

to decompose a raw vibroarthrogram into the motion and vibration components by using a low-

pass filter. Next, the signal-to-noise ratio of the vibration signals is often increased by using 

adaptive TF decomposition methods (Krishnan 2000)  

 

Then statistical parameters of these signals are extracted and processed by pattern recognition 

algorithms. Usually a database containing a larger number of training datasets is build so that the 

pattern of a new signal can be compared to datasets of known conditions and classified as 

indicating a pathology or a lack of it, similarly to the existing techniques employed in ECG or 

EEG.  

 

Krishnan et al. (Krishnan 2000 (ii)) used an adaptive time-frequency distribution to calculate 

entropy, energy spread, frequency and frequency spread of the VAG signals and was able to 

discrimante the normal vs. abnormal conditions with up to 77.5% accuracy. Umapathy and 

Krishnan (Umapathy 2006) used wavelet packet decompositions and modified local discriminant 

bases algorithm and obtained accuracy as high as 80% on a set consisting of 51 normal and 38 

abnormal samples. More, recently Rangayyan and Wu (Wu 2008) used simpler statistical 

parameters, such as form factors, skewness, kurtosis and entropy and were able to obtain 

comparable accuracies to the aforementioned, more sophisticated methods. Application of simpler 
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statistical features, however, required application of a more sophisticated algorithm based on radial 

basis functions network.  

 

Jiang et al. (Jiang 2000) applied vibration arthropometry to study patients with total knee 

replacement. They found that VAG signals in rapid knee motion can be used to detect early stage 

of polyethylene wear of the patellar component. They were also able to detect prosthetic metal 

wear in the late stage, when the knee was being swing slowly, at 2
o
/s speed. 

 

Analysis of vibration signals from the knee joint has been found to be successful in determining 

knee joint conditions at an early stage.  Also, data can be captured at much higher frequencies, 

ensuring that important findings can be derived, whereas other data capturing modalities that 

utilize lower capture frequencies may miss these findings. Further development of such techniques 

may one day provide the care giver with options that are less-invasive compared to TKAs or at the 

very least prolong the time for the patient before they have to receive one. Extending the capability 

of vibration analysis to be able to directly correlate with in vivo kinematics is the next step in the 

evolution of vibroarthrography. It will provide for comparison of specific vibration patterns with 

knee joint motion as well as knee joint condition, and will make it possible to determine a more 

direct cause-and-effect relationship between the two. Hence, while discussing the mechanics of 

the knee joint a look at such innovative techniques becomes imperative.  



Chapter 5: Materials and Methods 
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4.1 Patient Selection 

The patients selected for this study were part of two different kinematic studies conducted at the 

center for Musculoskeletal Research. Eight subjects (9 TKA) implanted with a PFC Sigma RP-PS 

TKA (DePuy Inc), five subjects (5 TKA) implanted with a NexGen FB-PS TKA (Zimmer Inc) 

and nine subjects (10 TKA) implanted with the Journey BCS TKA were selected (Smith & 

Nephew Inc). Each set of TKAs was implanted by the same surgeon. The implanted knee (left or 

right), age of the patients and post-op time was kept as close to equal as possible (Table 4-1). This 

was done in order to create a more controlled data set during analysis. Each subject was asked to 

perform a series of successive weight-bearing deep knee bends cycles on the implanted knee.  

Patients were examined while performing these activities using a C-Arm type fluoroscopic unit.  

The fluoroscopic images were stored on videotape for subsequent re-digitization and analysis 

using a frame grabber. 
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Table 4-1: Demographic information for all patients.  

GROUP 
# OF 

SUBJECTS 
# OF TKA 

AGE 

(YEARS) 
SIDE 

 

POST-OP 

TIME 

(YEARS) 

 

RP-PS 

TKA 
8 9 

68 

(50-77, 

SD=6.9) 

4 Left, 5 

Right 
4.9 (4.7-5.1) 

FB-PS 

TKA 
5 5 

66 

(55-78, 

SD=6.1) 

5 Right 3.7 (3.2-4.1) 

FB-BCS 

TKA 
9 10 

67.1 

(40 to 82, 

SD=8.9) 

5 Left, 5 

Right 
4.1 (3.9-5.5) 

 

 

For the vibroarthrography part of the study, a different set of 76 native knee (both arthritic and 

normal) patients and 8 failed TKA patients were enrolled for the study. This cohort included five 

category of patients: 

1. Normal well functioning knees 

2. Older well functioning knees 

3. Arthritic knees 

4. Well functioning TKAs 

5. Failed TKAs 

 During examinations, each patient was asked to perform a number of different activities. These 

included: Deep knee bend, gait, leg swing (2 second cycle and 4 second cycle), chair rise and stair 
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assent and descent. The vibration data was correlated with either fluoroscopy driven 3D kinematics 

or detailed cartilage condition information provided by the surgeon (for arthritic knees). 

 

4.2 Fluoroscopy 

To collect the fluoroscopy data, each patient was asked to stand within the scope of a C-arm 

fluoroscopy unit. The fluoroscopic machine was operated by a certified radiation technician. The 

use of fluoroscopy allows for the formation of a basic projection image, captured by passing 

pulsated radiation through the subject’s joint and onto an image intensifier (usually a ten to twelve 

inch diameter circle). A high frequency pulsed fluoroscopy unit (OEC 9800, General Electronic 

Medical Systems, Salt Lake City, Utah, USA), consisting of a C-arm with high resolution 

intensifier and a high power rotating anode X-ray tube was used in this study.  

 

The patient was asked to place their implanted knee close to the image intensifier and the non-

affected knee placed outside the intensifier range. The subject then performed a deep knee bend 

from full extension to maximum knee flexion, moving at a slow pace.  The patient was asked to 

keep the foot of the affected knee firmly planted on the ground at all times (Figure 4-1). The 

fluoroscopic video was captured at 30 frames per-second with a resolution of 720x680 pixels.  
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Figure 4-1: Fluoroscoping the Deep Knee Bend Activity (Mahfouz, 2003). 

 

 

 

The captured videos (720*480) were broken down into still images of size 640 x 480 and were 

saved in tiff format in order to gain the best quality. For each patient, images from zero to 

maximum flexion at increments of 10° of flexion were used for the analysis.  

 

4.2.1 Image distortion removal 

The individual fluoroscopic images are distorted due to the effects of pincushion and spiral 

distortion. Pincushion distortion is caused due to mapping of electrons from the input screen of the 

image intensifier, which is curved, to the flat output screen. This phenomenon is dependent on the 

distance between the X-ray source and the image intensifier and causes larger magnification at the 

periphery of the final image than at the center of the image.  
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Spiral distortion, also known as S-distortion, is due to the effect of the magnetic field 

encompassing the image intensifier. The component of the magnetic field parallel to the image 

intensifier affects the radial electron velocity thereby causing a rotation of the image. The 

transverse component of the magnetic field affects the longitudinal electron velocity causing a 

translation of the final image. This generates the resultant image with a characteristic S-shape. 

 

The distortion, within each fluoroscopic image, was corrected using the image of a board 

containing beads, at known positions, which acted as control points (Figure 4-2). By comparing 

the known positions of the control points with it corresponding location in the distorted image, 

transformation coefficients for each pixel of the image is determined (Mahfouz, 2003). By 

applying the obtained transformation coefficients on the distorted image, the true image is 

recovered.  

 

 
Figure 4-2: Image of distorted bead board (left) and correct image (right). 
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4.2.2 3D-to-2D registration algorithm 

This is a semi-automated process that uses direct image to image similarity measure and works on 

the principle of recreation of the 3D scene in which the patient was fluoroscoped. This requires 

the calibration of the camera for the fluoroscopic unit. The CAD models are loaded in the software 

with their geometrical center coinciding with the global origin of the system. The geometrical 

center of the CAD models are found by drawing a 3D bounding box and then joining the diagonals. 

The common intersection of the diagonals is the geometrical center. For the automated process to 

start, the user must orient the models (translate and rotate) to the pose they feel is the best estimate. 

Starting from this initial pose, the models are automatically oriented to their final position by the 

use of an automated optimization algorithm known as Simulated Annealing (SA). In its search for 

the global minimum, the SA algorithm searches the 6-dimensional space (3 rotational and 3 

translational) and needs a metric for scoring how the pose of the model compares with that of the 

fluoroscopic image. This is done using the fluoroscopic image (input image) and a 2D projection 

image of the model (predicted image) which is generated in white against a black background. 

Using morphological operations, edge images are created for both the input and the predicted 

images. Also the input image is inverted to be similar in color with the predicted image (Figure 4-

3). 

 

 The match between the input image and the predicted image is calculated by two metrics. The 

first metric compares the pixels of the predicted image and the inverted input image. The second 

metric evaluates the overlap of the contours in the edge images generated for both the input and 
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the predicted image. The final matching score is obtained by multiplying the two images together, 

summing the result and then normalizing it with the sum of the predicted image. This method has 

been found to be robust and converges to the global minimum and is insensitive to image noise 

and occlusions.  

 

 
Figure 4-3: Original Image (left); Inverted Image (center); Region Image (Right top) and 

Edge Image (right bottom) (Mahfouz, 2003). 

 

 

4.2.3 Error Analysis 

An error analysis has been conducted using a fresh cadaver, to verify the accuracy of the 3D-to-

2D registration process.  The tested included placing discrete points on the femoral and tibial 

components.  Using an Optotrack system (Northern Digital Inc., Waterloo, Canada), these points 

were digitized and the femur was defined relative to the tibia, in the tibial reference frame.  Each 
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orientation of the femur, relative to the tibia was fluoroscoped.  Using the 3D model-fitting 

software package, the relative orientation of the femur with respect to the tibia was predicted and 

compared to the known orientation determined using the Optotrack system.  The results from this 

error analysis and accuracy tests revealed average errors in X, Y, and Z translations that were -

0.023, -0.086, and 1.054 mm respectively (standard deviations were 0.473, 0.449, and 3.031 mm, 

respectively).  Likewise, the average errors in x, y, and z rotations were -0.068, 0.001, 0.253 

degrees (standard deviations were 0.942, 0.771, and 0.841 degrees, respectively). These numbers 

represent the errors in the model-fitting process plus the errors associated with the independent 

measurement system as well (i.e. the upper bound).  Since the knee joint is imaged in the sagittal 

(XY) plane, then the relative translational motion of the implants in the Z direction is minimal and 

is not of interest for this study. 

 

4.2.4 Determining 3D orientations 

Utilizing the above mentioned three-dimensional (3D) model fitting approach, the relative poses 

of the femoral and tibial knee implant components is determined in 3D using a single-perspective 

fluoroscopy image in the sagittal plane and manipulating CAD models in three-dimensional space.   

 

In the case of the Sigma RP-PS TKA, the 3D orientation of the radiolucent polyethylene (PE) 

bearing is by embedding four metallic beads in the PE insert during the manufacturing process.  

Subsequent CAD models of the PE component having the strategically positioned beads are also 

created.  Since three non-collinear points are needed to define a rigid body’s spatial orientation, 
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the four beads are inserted out-of-plane and as far away from one another as possible without 

compromising the integrity of the insert.  This increases the probability that at least three of the 

beads are visualized during fluoroscopy and enabled for determination of the PE CAD model’s 

position using the same 3D model fitting technique previously mentioned.  

 

 A three-dimensional scene of the fluoroscopic unit is created using a client based server 

application on the Windows (Redmond, WA) platform using the Open Inventor Toolkit 

(Mountainview, CA) library.  The scene consists of a light source (x-ray), an image plane on which 

to project the fluoroscopic image (image intensifier), an area to manipulate a 3D model (subject 

area), and a camera to view the entire scene. 

 

Individual fluoroscopic frames at specified degrees of flexion for the deep knee bend activity.  The 

images are projected onto the image plane with the corresponding implant models added to the 

scene.  Initially, the 3D orientations of the femoral and tibial components are positioned by the 

operator manipulating the 3D CAD models into a position closely corresponding with their 

respective silhouettes in the digitized fluoroscopic image (Figure 4-4).  Then the automated 

computer algorithm uses intensity-based matching to determine the best orientation of the models.  

In order to determine the 3D orientation of the polyethylene component, the PE insert is made 

transparent, which results in only the embedded beads within the CAD model being visible.  The 

bead portion of the PE insert is then matched to the fluoroscopic silhouettes of the imbedded beads 

(Figure 4-5).  Once complete, the full orientation of the PE insert can be seen.   
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In the case of the fixed bearing Journey BCS TKA the polyethylene insert is rigidly fixed to the 

metallic tibial tray and there is no relative motion between the tibial component and the 

polyethylene insert. In order to achieve the correct 3D orientation, the polyethylene CAD model 

is fixed to the tibial CAD model before the overlay process. 

 

 

Figure 4-4: User interface of model fitting software. 
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The correct fit for each of the models is achieved when the silhouettes of the femoral and tibial 

components and the beads embedded (only for Sigma RP-PS) in the polyethylene bearing best 

matched their corresponding components in the fluoroscopic image (Figure 4-6 and 4-7).  

 

 
Figure 4-5: Fluoroscopy image with femoral and tibia CAD model of Sigma PS RP TKA and 

four visible bead silhouettes that allow for proper positioning of PE bearing when silhouettes 

match. 
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Figure 4-6: Fluoroscopy image from Journey BCS patient at 90° with registered 3D CAD 

models of femoral and tibial components (left) and the same fluoroscopy image with tibial 

and polyethylene insert model combination in same orientation as the registered tibial 

component (right). 

 

 

 

Figure 4-7: Series of digitized fluoroscopy images (top row) and corresponding fluoroscopy 

with CAD model overlay (bottom row) from a random subject with a Sigma RP-PS TKA. 
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4.2.5 Generating required kinematics 

 

4.2.5.1 Tibio-femoral kinematics 

Once the 3D-to-2D registration technique was completed, the 3D implant orientations were 

imported into an in house developed software package called Kinetic Analysis of Rigid 

Body Systems (KARBS). This package developed in MATLAB (Mathworks, NC©) 

enables for further determination of kinematic parameters of interest at the tibio-femoral 

and cam-post interface of the TKA implant components. Using this package, the 

anterior/posterior (A/P) contact positions for both the medial and lateral condyles, axial 

rotation of the femoral component relative to the tibial component, axial rotation of the 

tibial component relative to the polyethylene bearing component and weight-bearing 

range-of-motion (ROM) is evaluated. 

  

4.2.5.2 Cam-post analysis 

Since the cam-post interaction is of particular focus to this study, the analysis to determine 

the flexion angle of cam-post contact and the contact area is carried out with higher 

precision than tibio-femoral calculations. This involves the following steps: 

1. The mesh size of the femoral cam and the tibial post are imported into a CAD 

software and the mesh size pertaining to those areas are refined to contain ≈10000 

tetrahedral elements (Figure 4-8). 
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2. The refined models are then re-introduced into KARBS and the contact between 

the cam and the post is determined. This is done by designating the femoral cam 

and the tibial post parts of the models as separate surfaces. 

3. Next the contact algorithm of the KARBS package is executed to determine the 

distance between the corresponding polyethylene and femoral condyle.  

4. This analysis is conducted for every degree of flexion from full extension to 

maximum knee flexion. A distance of less than 1mm is considered to signify 

contact between the femoral condyle and the polyethylene insert. The center of this 

area is assigned as the contact location (on both the surfaces) and the flexion angle 

at which contact is first determined is assigned as the cam-post contact angle 

(Figures 4-9 and 4-10). 

5. All elements on the tibial post that have a distance of less than 1mm with any 

element in the femoral cam are assigned a red color and increasing distances 

between the two surfaces are designated other color codes. This provides an 

estimated contact area between the two surfaces. 

6. Once this analysis is completed, six parameters are determined:  

a. Cam-post contact angle. 

b. Cam-post contact area (only the elements less than 1mm distance area 

considered). 

c. Distance between the femoral cam and the tibial post throughout the DKB 

activity (Figure 4-11). 
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d. Height of the contact point on the tibial post with respect to the medial tibio-

femoral contact point. 

e. Height of the contact point on the tibial post with respect to the lateral tibio-

femoral contact point (Figure 4-12). 

 
Figure 4-8: Refined meshing of the cam-post interaction. 
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Figure 4-9: Cam-post contact determination in the Sigma PS-RP TKA. 

 

 
Figure 4-10: Cam-post contact determination in the Journey BCS TKA. 
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Figure 4-11: Cam-post contact distance determination in the Sigma PS-RP TKA. 

 

 

 
Figure 4-12: Cam-post height of contact determination in the Sigma PS-RP TKA. 
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4.3 Mathematical Modeling 

In order to predict the in-vivo forces during the deep knee bend activity, a forward dynamics model 

was created. This model is based on the principle of rigid body dynamics and utilizes the reduction 

technique, where, the system is always kept determinate by keeping the number of unknowns equal 

to the number of equations. The underlying assumption in this technique is that certain muscles, 

which do not influence the system significantly, are neglected. Moreover, the modeled muscles 

are grouped together and it is assumed that the force within the grouped muscles represents a good 

estimate of the force acting within each separate muscle. The model was developed using 

AutolevTM (Online Dynamics Inc, Sunnyvale, CA), a symbolic manipulator based on Kane’s 

dynamics (Kane, 1985; Komistek, 1998). This method is extremely efficient and well suited for 

multibody systems having large degrees of freedom. This method allows for the solution of a 

maximum of six kinetic terms associated with each rigid body. 

 

4.3.1 Model Description 

The forward solution model (FSM) acts as an in vivo simulator of an implanted human knee joint 

performing a deep knee bend.  This simulator functions by using either five or six rigid bodies 

depending on whether a fixed bearing (FB) or mobile bearing (MB) implant is being analyzed.  

For FB simulations, the foot, tibia, femur, patella, and pelvis/trunk are the bodies modeled.  In the 

case of RP simulations, the polyethylene is also defined as a separate body.  Furthermore, various 

soft tissues surrounding the knee as well as quadriceps and hamstrings muscles are included. 
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The FSM, written in the AUTOLEV language allows ridged body systems to be defined by 

inputting all known positions, forces, and torques.  Then, the equations of motion were solved for 

using Kane’s dynamics.  A C++ file was automatically generated based on these equations of 

motion which calculated the motions and forces from the system at iterative time steps using a 

Runge-Kutta method.  This system is capable of either a forces in/motions out, motions in/forces 

out, or any combination thereof.  In the FSM, some motions are specified (tibia and pelvis rotations 

and translations) while other motions are solved for (femur and patella translations and rotations).  

Furthermore, tibiofemoral, patellofemoral, hip forces, and quadriceps forces are were calculated. 

The intersection of the foot and tibia was defined by sequential rotations about the subtalar axis 

and the ankle axis.  The intersection of the femur and pelvis was defined as a ball of socket joint 

which keeps the center of the femoral head aligned with the center of the pelvis.  The joints at the 

knee featured a much more complex definition which employs the actual geometry of the implants. 

The contact detection at the knee surfaces worked by defining a polynomial surface to the region 

of interest on one body and a point cloud to the region of interest on the other body.  For example, 

at the patellofemoral joint, the trochlear groove was defined with a polynomial surface (Figure 4-

13).  A point cloud was defined on the patella (Figure 4-14).  
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Figure 4-13: Definition of the trochlear groove surface of a Sigma PS-RP TKA. 

 

 

 
Figure 4-14: Definition of the patella button surface of a Sigma PS-RP TKA. 
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Then during the simulation, the model checked the height of each point in the trochlear reference 

frame versus the height of the polynomial at the corresponding location.  If the point height was 

less than the polynomial height, contact was detected and a force proportional to the penetration 

depth was applied at the point along the normal vector of the polynomial.  The same method was 

applied using a point cloud on the femur and a polynomial on the polyethylene (Figure 4-15 & 4-

16).  Finally, the post was defined using a polynomial and 12 contact points defined on the post 

(Figures 4-17 & 4-18).  The number of contact points on the post was kept small to allow easier 

determination of which specific area of the cam the force was occurring on (Figure 4-19). 

 

 
Figure 4-15: Definition of the tibio-femoral contact surface on the femur for a Sigma PS-RP 

TKA. 
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Figure 4-16: Definition of the tibio-femoral contact surface on the tibia for a Sigma PS-RP 

TKA. 

 

 

 
Figure 4-17: Definition of the cam-post contact surface on the tibia for a Sigma PS-RP TKA. 
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Figure 4-18: Definition of the cam-post contact surface on the femur for a Sigma PS-RP 

TKA. 

 

 

 
Figure 4-19: Determination of cam-post contact for the forward dynamic mathematical 

model. 
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In addition to the joint bearing surface forces, the model also incorporated the force of the medial 

collateral ligament, lateral collateral ligament, medial patellofemoral ligament, and the lateral 

patellofemoral ligament.  The anterior and posterior cruciate ligaments can be included, but were 

not in these simulations as both of those ligaments were resected during the surgeries.  

Furthermore, the patella was connected to the tibia via four bundles of the patellar ligament.  These 

soft tissues were modeled as nonlinear springs.  The medial collateral ligament was modeled as 

three different bundles to incorporate both the deep and superficial bundles allowing the proper 

forces throughout flexion.   

 

In additions to the ligaments, the four quadriceps muscles as well as the hamstring muscle were 

modeled.  The hamstring muscle was input as a known function (typically a constant).  However, 

the quadriceps force was computed using a proportional, integral, derivative (PID) controller 

(Figure 4-20).  The controller attempts to match the flexion rate to a desired flexion rate, which is 

input (Figure 4-21).  This controller functions by adjusting the quadriceps force based primarily 

on the velocity error of the flexion vs the desired flexion.  If the knee is flexing faster than desired, 

the model increases the quadriceps forces to slow it down.  To provide more stability, the derivative 

of velocity is also controlled (acceleration).  Because the rate of flexion is a constant for most of 

the activity, the model also adjusts the muscle forces to keep accelerations low.  The model also 

adjusts the muscle force based on the integration of the error between the desired flexion and the 

actual flexion to avoid a steady state error in the velocity. 



 

65 

 

 
Figure 4-20: The PID controller used in the forward dynamic model to control quadriceps 

muscle forces (Mueller et al). 

 

 

 

 
Figure 4-21: Example of the resulting output from the PID controller in matching flexion 

angle to desired rate in order to regulate quadriceps force. 
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After the overall quadriceps force is computed using the PID controller, a further PD controller is 

used to compute the distribution of this force throughout the four quadriceps muscles.  Depending 

on the application, this controller either minimizes rotation or medial-lateral translation of the 

patella.  When the patella internally rotates or translates laterally, it shifts more of the muscle for 

to the Vastus Lateralis which serves to pull the patella back to the center of the trochlear groove.  

If the patella translates medially or internally rotates, the muscles force is shifted to the Vastus 

Medius to pull the patella back to a neutral location. 

 

Ground reaction force, obtained from a force plate, was also used as an input to the model. Though 

this resulted in a variation in the magnitudes of the round reaction force for each patient, however, 

the variable nature of each curve with respect to flexion angle was similar.  

 

The dimensions of the bones, location of prominences and their inertial parameters are obtained 

from previously published anthropometric data (Zatsiorski, 1983; White, 1989; deLeva, 1996). 

The attachments of the muscles are considered as points and are also obtained from previous 

studies (Yamaguchi, 2001). Since these studies use different axes systems, therefore, the data is 

transformed to the axis system in this study before being used.  The patella is assumed to be a disc 

whose dimensions are measured directly from the fluoroscopic images at full extension. Finally, 

the relevant femoral, polyethylene and tibial component dimensions of the TKA were directly 

measured form the CAD models of the components.  
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Using this methodology, it was possible to calculate the possible cam-post force during a DKB 

activity for all the three different TKA designs analyzed in this study. 

 

4.4 Vibroarthrography of the Knee Joint 

4.4.1 Data capture 

The vibration data was collected for total 96 normal, degenerative and implanted knees. The goal 

of is to assess if it is possible to distinguish, just based on vibration data, the occurrence of uni-

compartmental degeneration and the difference between normal and degenerative knee joint 

signals. Patients with normal and well functioning TKA were analyzed under in vivo, conditions 

using video fluoroscopy and vibration sensors while performing various normal day activities. For 

subjects who did not undergo fluoroscopic surveillance (degenerative and failed TKA), a detailed 

questionnaire was requested from the intra-surgery (primary or revision as the case might be) 

which schematically distinguished the area and level of damage to the tibio-femoral interface 

(Figure 4-22). During the TKA procedure, after opening the joint capsule, the surgeon examined 

the condition of the articular cartilage and filled out an intrasurgical evaluation sheet. This 

assessment provided an insight into the exact condition of the cartilage and the amount of damage 

at every compartment of the knee joint, as well as any other factors possibly altering the vibration 

pattern, such as any ligament deficiency or meniscal injuries. Having this information provided 

for the means to successfully correlate the condition of the joint with the vibration pattern for 

patients who did not undergo fluoroscopic studies. 
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Figure 4-22: Intra-surgery evaluation sheet for example patient distinguishing the area and 

level of damage to the tibio-femoral interface. 

 

 

 

The data collection setup consists of 3 miniature, 3-axial accelerometers (Model 356A12, 100 

mV/g, 50 g, 0.5 to 5k Hz, PCB Piezotronics Inc., Depew, NY) attached to the surface of the skin 

at the lateral and medial femoral epicondyle and the tibial tuberocity respectively by means of 

elastic wrap and hypoallergenic adhesive tape (Figure 4-23). 

 

A signal conditioner (Model 583A, PCB Piezotronics Inc., Depew, NY) is used to increase the 

magnitude of the vibration signal by the factor of ten and to low-pass filter the data at cut-off 

frequency of 4700Hz prior to analog-to-digital conversion (Model DI-720, DATAQ Instruments 

Inc., Akron, OH). Video cameras record the feed from the fluoroscopy device as well as the live 

scene in the examination room. Both, the vibration signals and the video inputs are then 

synchronized using a light trigger before being stored on a laptop computer (Figure 4-24). 
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Figure 4-23: Location of attached of the tri-axial accelerometers at the knee joint. 

 

 

 

 
Figure 4-24: Data collection setup to collect vibroarthrography data. 
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4.4.2 Data analysis 

The accelerometers record the change in acceleration resulting from both the movement of the 

joint as well as from the vibration of the bones. Therefore the raw accelerometer signals are 

decomposed into the motion and vibration components. This is achieved by high-pass filtering the 

acceleration signal using Butterworth Infinite Impulse Response (IIR) filter attenuating the signal 

by 80dB at the cut-off frequency of 20Hz. This eliminates the low frequency, motion components 

of the signals and yields a vibroarthrogram suitable for further analysis (Figure 4-25). 

 

 
Figure 4-25: Removal of motion component (noise) from the accelerometer signal to obtain 

the vibroarthrogram. 
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The filtered vibroarthrogram can be also converted into audible form and correlated with the 

fluoroscopy or regular video footage (Figure 4-26).  

 

 
Figure 4-26: Correlated kinematics and vibroarthrography signals. 

 

 

Several statistical parameters of the original and rectified vibroarthrograms are calculated to 

examine features that could be used to form the feature vector of the signals. They included, mean, 

standard deviation, skewness, kurtosis, 90th, 95, 97th and 99th quantiles.  

 

 After selecting the candidate features of the signals, a pattern classifier was designed. The 

objective of the classifier was to classify the given pattern of the VAG signal to one of the two 
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groups: healthy or arthritic. The minimum-error-rate classification (Duda 2001) was chosen for 

the first attempt to design the classifier. This classification can be achieved by the use of the 

discriminant functions:  

 g
i
(x)=lnp(x|w

i
)+lnP(w

i
) (20) 

and assuming that the densities p(x|w
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At the current stage of analysis there is no premise to classify the patient as either arthritic or 
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One feature, the mean of the signal was used to design the dichotomizer. Successful determination 

was possible between normal knees with and without articular cartilage damage up to an accuracy 

level of 86%. This is very similar to published literature by Rangayan et al. Also, it was seen that 

in cases where the surgeon had reported unicompartmental damage to the tibiofemoral interface, 

the signals obtained from the two accelerometers was very different from one another (Figure 4-

27). Next, the second feature, standard deviation, was included in the discriminant function, and 

the success rate increased to 87%. Adding the third feature, 99
th

 quartile, did not improve the 

classification and the success rate actually dropped back to 70%. 
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Figure 4-27: Filtered vibration signals from the medial (top) and lateral (bottom) femoral 

accelerometers, depicting the difference in vibration data.



Chapter 5: Results 
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5.1 Kinematics 

5.1.1 Anteroposterior Translation 

On average, from full extension to maximum knee flexion, subjects having the Sigma PS RP TKA 

experienced posterior femoral rollback (PFR) of the lateral condyle and anterior movement of the 

medial condyle relative to the tibia.  At full extension, the average lateral and medial condyle 

contact position was -5.7 mm (-8.7 mm to -2.2 mm, SD=2.0) and -5.3 mm (-7.2 mm to -3.0 mm, 

SD =1.4), respectively.  At 90 degrees, the average contact position of the lateral condyle moved 

posterior to -8.4 mm (-11.8 mm to -6.0 mm, SD =1.9), while the medial condyle moved in the 

anterior direction resulting in an average contact position of -3.4 mm (-7.8 mm to -1.0 mm, SD 

=2.1).  Therefore, from full extension to 90 degrees, the average amount of PFR of the lateral 

condyle was -2.7 mm (-7.7 mm to 1.3 mm, SD =2.5), and the average amount of anterior slide of 

the medial condyle was 1.9 mm (-0.6 mm to 4.6 mm, SD =1.9). At maximum knee flexion, the 

lateral condyle continued to move  posterior and with an average contact position of -10.0 mm (-

17.2 mm to -6.0 mm, SD =3.9), with the medial condyle moving slightly posterior as well with an 

average overall anterior contact position of -4.4 mm (-9.2 mm to -1.0 mm, SD =2.4).  Analysis of 

the data from full extension to maximum flexion, revealed the average amount of posterior femoral 

rollback of the lateral condyle and anterior slide of the medial condyle was -4.3 mm (-11.6 mm to 

1.3 mm, SD =4.2) and 0.9 mm (-4.8 mm to 5.3 mm, SD =3.1), respectively (Figure 5-1 and Figure 

5-2).  All but one of the subjects (88.9%) experienced PFR of the lateral condyle, and 2 of 9 

subjects (22.2%) experienced PFR of the medial condyle.  Four of 9 subjects (44.4%) experienced 
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a change in magnitude of 2 mm or less on the lateral side from full extension to full flexion.  Four 

of 9 subjects (44.4%) also experienced a change in magnitude of 2 mm or less on the medial side 

from full extension to full flexion. 

 

 

Figure 5-1: Average A/P position plot showing the femoral contact positions of the medial 

and lateral condyle for Sigma PS RP TKA. 
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Figure 5-2: Lateral view of femoral contact positions relative to the tibia showing posterior 

femoral rollback for a random patient with a Sigma PS RP TKA  

 

 

 

All (100%) Journey Bi-Cruciate TKA in this study experienced posterior femoral rollback (PFR) 

of their medial and lateral condyles from full extension to maximum knee flexion.    At full 

extension, the average medial and lateral condyle contact position was 5.2 mm (-4.6 mm to 14.6 

mm, SD=3.5 mm) and 7.2 mm (-4.1 mm to 18.5 mm, SD=6.3 mm), respectively.  At maximum 

knee flexion, the average medial condyle contact position moved posterior to -8.8 mm (-14.4 mm 

to -1.4 mm, SD=2.8 mm), and the lateral contact position also moved in the posterior direction to 

-15.9 mm (-27.2 mm to -6.9 mm, SD=3.8 mm). Therefore, from full extension to maximum knee 

flexion, the average amount of posterior femoral rollback for the medial condyle was -14.0 mm (-

25.2 mm to -7.0 mm, SD=3.9 mm) and the average amount of posterior femoral rollback for the 

lateral condyle was -23.0 mm (-36.7 mm to -5.8 mm, SD=7.2 mm), (Figure 5-3 and 5-4). 
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Figure 5-3: Lateral view of femoral positions relative to the tibia showing posterior femoral 

rollback for patient with a Journey Bi-Cruciate TKA. 

 

 

 

 

Figure 5-4 Average Anterior/Posterior Position plot for patients with a Journey Bi-Cruciate 

TKA. 
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medial and lateral condyle contact position was -5.4 mm (-10.4 mm to 1.2 mm, SD=2.6 mm) and 

-4.5 mm (-10.5 mm to 0.8 mm, SD=2.6 mm), respectively.  At maximum knee flexion, the average 

medial condyle contact position moved posterior to -7.3 mm (-14.9 mm to -1.2 mm, SD=4.7 mm), 

and the lateral contact position also moved in the posterior direction to -8.5 mm (-15.3 mm to -1.3 

mm, SD=4.9 mm). Therefore, from full extension to maximum knee flexion, the average amount 

of posterior femoral rollback for the medial condyle was -1.9 mm (-6.5 mm to -1.0 mm, SD=4.9 

mm) and the average amount of posterior femoral rollback for the lateral condyle was -4.1 mm (-

13.8 mm to –0.9 mm, SD=4.8 mm). 

 

5.1.2 Axial Rotation for the Sigma RP-PS TKA 

5.1.2.1 Tibio-Femoral Rotation 

Axial rotations were derived for the femoral component relative to the tibial base plate.  On 

average, subjects having the Sigma PS RP TKA experienced normal axial rotation (Figure 

5-5).  The average axial rotation at full extension, 90 degrees, and maximum flexion was 

0.9° (-4.1° to 7.4°, SD=3.6), 6.5° (-0.5° to 12.2°, SD =4.7), and 6.7° (-1.3° to 12.8°, SD 

=5.1), respectively.  From full extension to 90 degrees, the average amount of normal axial 

rotation was 5.6° (1.4° to 15.6°, SD =4.9) while from full extension to maximum knee 

flexion the average amount of normal axial rotation experienced by subjects was 5.8° (1.4° 

to 16.6°, SD =5.1).  Analysis from one DKB increment to the next revealed that all nine 

subjects experienced instances of reverse axial rotation at some point through flexion a 

total of 34 times.  However, the majority of these occurrences of opposite rotation, 22 of 
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34 (64.7%), had magnitudes less than 1°.  In addition, all subjects were noted as having an 

overall normal axial rotation pattern moving from both full extension to 90 degrees and 

from full extension to maximum knee flexion.  

 

 

Figure 5-5: Top view of femoral positions relative to the tibia of a right Sigma PS RP TKA 

from full extension to full flexion (left to right) showing positive axial rotation. 

 

 

5.1.2.2 Tibio-Polyethylene Rotation 

Axial rotations were calculated for the polyethylene bearing relative to the tibial base plate.  

Subjects having the Sigma PS RP TKA experienced, on average, normal axial rotation of 

the polyethylene relative to the tibia (Figure 5-6).  The average axial rotation at full 

extension, 90 degrees, and maximum flexion was 1.6° (-2.3° to 7.4°, SD =3.4), 6.1° (-1.0° 

to 11.6°, SD =5.0), and 5.9° (3.9° to 12.0°, SD =3.5), respectively.  From full extension to 

90 degrees, the average amount of normal axial rotation was 4.5° (-0.3° to 12.1°, SD =4.4), 

and from full extension to maximum knee flexion, subjects experienced 4.3° (-0.3° to 

12.5°, SD =4.2) of normal axial rotation.  Overall, 4 of the 9 (44.4%) subjects experienced 

greater than 3° of axial rotation of the polyethylene bearing relative to the tibia during 
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DKB.  Additionally, four of the nine (44.4 %) subjects experienced between 1° and 3° of 

axial rotation, while one subject experienced less than 1° of rotation.  Further analysis 

revealed that although subjects only experienced, on average, 4.3° of bearing rotation from 

full extension to maximum knee flexion, greater axial rotation values were achieved at 

various increments of DKB.  Therefore, the minimum and maximum amount of axial 

rotation of the polyethylene bearing relative to the tibia for each TKA was determined 

regardless of knee flexion angle and allowed for the calculation of the maximum overall 

bearing range of motion.  On average, subjects experienced 7.1° (2.1° to 14.0°, SD =3.8) 

of maximum normal polyethylene bearing rotation occurring between any increment of 

knee flexion. 

 

 

Figure 5-6: Top view of polyethylene positions relative to the tibia of a right Sigma PS RP 

TKA from full extension to full flexion (left to right) showing positive axial rotation. 

 

 

 

5.1.2.3 Femoro-Polyethylene Rotation 

The difference in the amount of axial rotation between the femoral component and the 

polyethylene bearing was found for all flexion angles (Figure 5-7).  Subjects having the 

Sigma PS RP TKA experienced, on average, -0.7° (-2.6° to 0.9°, SD =1.3), 0.4° (-0.8° to 
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1.5°, SD =0.8), and 0.8° (-0.2° to 2.5°, SD =0.9) of rotation between the femur and the 

polyethylene at full extension, 90 degrees, and maximum flexion, respectively.  From full 

extension to 90 degrees, the average axial rotation difference was 1.1° (-0.5° to 3.6°, SD 

=1.4), and from full extension to maximum knee flexion, the average amount of axial 

rotation between the femur and polyethylene was 1.5° (-0.5° to 4.1°, SD =1.5).  In addition, 

subjects were observed to experience greater than average axial rotation between the 

polyethylene bearing and the femoral component when the maximum overall bearing 

rotation was evaluated.  Values were calculated based on the minimum and maximum axial 

rotation differences between the polyethylene and femoral component.  On average, 

subjects experienced an axial rotation difference of 3.7° (1.8° to 4.8°, SD =1.1) between 

the polyethylene bearing and the femoral component when the DKB was evaluated 

regardless of flexion angle. 

 

 

Figure 5-7: Top view of femoral positions relative to the polyethylene of a right Sigma PS RP 

TKA from full extension to full flexion (left to right) showing a minimal axial rotation 

difference. 

 

 
 

The amount of axial rotation between the polyethylene and the femur was also evaluated 

based on absolute magnitude of rotation.  This method ensured that the small negative and 
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positive rotations between the PE bearing and the femoral component would not equate to 

a value near zero.  Therefore, these calculations revealed that subjects having the Sigma 

PS RP TKA experienced, on average, 1.2° (0.3° to 2.6°, σ=1.2), 0.8° (0.1° to 1.5°, SD =0.5) 

and 0.9° (0.1° to 2.5°, SD =0.9) of absolute rotational magnitude between the femoral 

component and the polyethylene at full extension, 90 degrees, and maximum flexion, 

respectively.  From full extension to 90 degrees, the average change in magnitude of 

absolute axial rotation was 0.4° (-2.5° to 0.7°, SD =1.0), and from full extension to 

maximum knee flexion, the average change in magnitude of absolute axial rotation between 

the femur and polyethylene was -0.3° (-2.5° to 2.3°, SD =1.3).  Subjects were also observed 

to experience a greater than average change in the magnitude of absolute axial rotation 

between the polyethylene bearing and the femoral component when the overall maximum 

absolute change in rotational magnitude of the PE bearing was evaluated.  On average, 

subjects experienced 2.3° (0.9° to 4.5°, SD =1.0) of absolute change in the magnitude of 

axial rotation between the polyethylene bearing and the femoral component when DKB 

was evaluated regardless of flexion angle and calculated with respect to absolute change in 

the magnitude of axial rotation values. 

 

5.1.3 Axial Rotation for the Journey BCS and Zimmer FB PS TKA 

 

On average, the Journey Bi-Cruciate TKA analyzed in this study experienced normal axial rotation 

from full extension to maximum flexion (Figure 5-8).  The average amount of axial rotation from 

full extension to maximum flexion was 10.8° (-4.2° to 24.7°, SD=6.2°).   
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Figure 5-8: Top view of femoral positions relative to the tibia for Journey Bi-Cruciate TKA 

from full extension to full flexion (left to right) showing positive axial rotation. 

 

 

On average, the Zimmer FB PS TKA analyzed in this study experienced normal axial rotation from 

full extension to maximum flexion.  The average amount of axial rotation from full extension to 

maximum flexion was 5.0° (2.0° to 16.5°, SD=5.4°).   

 

 

5.2 Analysis of the Cam-post Interaction 

5.2.1 Angle of Contact 

For the subjects in the BCS group, 7/10 knees analyzed had the femoral component engaged with 

the anterior aspect of the tibial post at full extension (Figure 5-9). However, the contact between 

them was lost in very early flexion (average: 4.9; range: 0.0 to 9.9). When the posterior cam-

post mechanism was analyzed for the three groups, it was seen that the engagement occurred at 

34 for the BCS (range: 17o to 68o) (Figure 5-10), 93o for the FB-PS (range: 88o to 100o) (Figure 

5-11) and at 97 (range: 90o to 104o) for RP-PS TKA (Figure 5-12). Cam-post contact occurred at 

a significantly lower flexion angle for the BCS group when compared to the FB-PS group 

(p<0.0001) as well as the RP-PS group (p<0.001). There was not statistical difference between 
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patients in the FB-PS and RP-PS groups (p>0.05). There were two knees in the BCS group and 

one knee in the RP-PS group that did not exhibit cam-post engagement through their range of 

motion. 

 

Figure 5-9: Example of anterior cam-post contact for a patient in the BCS group 
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Figure 5-10: Example of posterior cam-post contact for a patient in the BCS group 

 

 

 

Figure 5-11: Example of cam-post contact for a patient in the Zimmer PS FB TKA group 

 

 

 

 

Figure 5-12: Example of cam-post contact for a patient in the Sigma RP-PS TKA group 
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5.2.2 Effect of Dwell Point 

The effect of the initial dwell point of the femur on the polyethylene insert played a major role in 

determining when cam-post contact occurred. The average distance between the cam and the 

posterior aspect of the post at full extension was 9.3mm (range: 5.5mm to 11mm) for the BCS 

group (Figure 5-13), 19.1mm (range: 13mm to 23mm) for the FB-PS group (Figure 5-14) and 17.3 

(range: 14mm to 21mm) for the RP-PS group (Figure 5-14). The subjects in the BCS group 

experienced a significantly lower cam-post distance than their FB-PS (p<0.0001) and RP-PS 

(p=0.003) counterparts. There was no significant difference between the FB-PS and RP-PS TKA 

groups. 

 

Figure 5-13: Example of cam-post distance for a patient in the Journey BCS TKA group 
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Figure 5-14: Example of cam-post distance for a patient in the Zimmer PS FB TKA group 

 

 

 

Figure 5-15: Example of cam-post distance for a patient in the Sigma RP-PS TKA group 
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5.2.3 Nature of Contact 

The anterior contact in the BCS group was always located centrally on the anterior aspect of the 

tibial post. As far as the posterior contact was concerned, in the BCS and FB-PS knees, the contact 

initially occurred on the medial aspect of the tibial post and then gradually moved centrally and 

superiorly with increasing flexion (Figures 5-16 and 5-17), while for the RP-PS TKA it was located 

centrally on the post at all times (Figure 15-18).  The amount of medialization of the contact in the 

BCS and FB-PS groups was found to correlate with the amount of tibio-femoral axial rotation 

experienced by the subject, with subjects experiencing higher axial rotation, having a higher 

tendency to demonstrate medial contact at the tibial post interface. 

 

 

Figure 5-16: Occurrence of cam-post contact with of the femur on the medial aspect of the 

tibial post in the Journey BCS TKA due to the prevalence of high amounts of tibio-femoral 

axial rotation. 
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Figure 5-17: Central cam-post contact exhibited by a patient implanted with the Zimmer FB 

PS TKA. 
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Figure 5-18: Central cam-post contact exhibited by a patient implanted with the Sigma RP-

PS TKA. 

 

5.2.4 Height of Contact 

The height at which the contact occurred on the posterior aspect of the post was variable among 

the three groups. The BCS group experienced a significantly higher height on the tibial post from 

either the medial tibio-femoral contact point or the lateral tibio-femoral contact point (Figure 5-

19) (average: 12.5mm, range: 7.0mm to 18.5mm) than their FB-PS (average: 7.2mm, range: 

6.1mm to 10.0mm) (p=0.02) (Figure 5-20) and RP-PS (average: 6.2, range: 3.0mm to 11mm) 

(p=0.0092) (Figure 5-21) counterparts. There was no statistical difference on the cam-post contact 

height between the FB-PS and RP-PS groups. 
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Figure 5-19: Contact height for patients in the Journey BCS TKA group were found to be 

the highest among the three groups analyzed. 

 

 

 

Figure 5-20: Contact height for patients in the Zimmer FB PS TKA group were found to be 

similar to those in the Sigma RP PS TKA group. 
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Figure 5-21: Example of the contact height for patients in the Sigma RP PS TKA group. 

 

5.3 Kinetics 

5.3.1 Cam-Post Forces 

The forces in the cam-post mechanism were different for all the implant simulations owing to the 

fact that patients in the BCS TKA group experienced an early cam-post contact when compared to 

the other two groups. The simulation for the BCS TKA approximated cam-post contact to occur 

at 55 degrees of flexion. The resultant force increased after contact through the rest of the flexion 

cycle to 2.0BW. The simulation for the FB-PS TKA approximated cam-post contact to occur at 87 

degrees of flexion. From initial contact the force steadily increased to 1.29BW at 120 degrees of 

flexion. A similar nature and magnitude of total cam-post force was observed for the simulation 

involving the RP-PS TKA. The simulation approximated contact to occur at 88 degrees after which 

it steadily increased to 1.6BW at 120 degrees of flexion (Figure 5-22). Throughout the range of 

motion when the cam and post were in contact, the simulation for the BCS TKA experienced a 

significantly higher force when compared to the FB-PS and RP-PS TKA. 
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Figure 5-22: Cam-post contact forces produced by the simulations for the BCS, FB-PS and 

RP-PS TKAs. 

 

Though the magnitudes of the forces between the FB-PS and RP-PS TKA were similar in 

magnitude, the nature of the contact played an important role in determining where the contact 

occurred. For the BCS TKS simulation at initial contact the force was located in a central position, 

but rapidly decreased and in deeper flexion the force was located on the outer surface of the tibial 

post. Initial cam-post contact was achieved at 52 degrees, but by 60 degrees the percentage of force 

on the central part of the post reduced to 39%. This futhre reduced to 20% at 95 degrees of flexion, 

before slightly increasing in deeper flexion to 41%. 
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The FB-PS TKA exhibited a different pattern of force distribution. At initial contact close to 0% 

of the force was located on the central post. This increased from initial contact into deeper flexion 

with 18% of the cam-post force located on the central post at 120 degrees. On the contrary, RP-PS 

TKA forces were initially located on the central post at first contact and continued to stay on the 

central post through the range of motion. Hence the percentage of force exerted on the central 

portion of the post was very high in the simulation for the RP-PS TKA, starting at 100% at initial 

contact before slightly reducing to 81% at 120 degrees of flexion (Figure 5-23). 

 

Figure 5-23: Cam-post force distribution produced by the simulations for the BCS, FB-PS 

and RP-PS TKAs. 
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5.3.2 Tibio-Femoral Forces 

The tibio-femoral contact forces for the BCS TKA simulation increased with increasing knee 

flexion. The simulation with a BCS TKA experienced, on average, a force at full extension of 

0.5BW to a force of 3.7BW at maximum knee flexion. The maximum contact force was observed 

at 115 degrees of flexion (4.0 times BW). The simulation for the FB-PS TKA revealed a slightly 

different pattern, with the contact forces increasing from full extension to 93 degrees of flexion 

before reducing in deeper flexion. At full extension, the simulation for the FB-PS TKA showed a 

total contact force of 0.5BW which increased in nature to 3.6BW at 93 degrees of flexion before 

reducing in deeper flexion to 2.95BW. The RP-PS TKA exhibited a similar nature with the 

simulation starting with 0.5BW at full extension and reaching a maximum value of 3.5BW at 87 

degrees before reducing in deeper flexion to 3.2BW at 120 degrees of flexion (Figure 5-24). Until 

80-85 degrees of flexion the three simulation exhibited similar forces, after which the BCS TKA 

forces increased in nature and magnitude, while those for the FB-PS and RP-PS TKA reduced in 

deeper flexion. 
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Figure 5-24: Tibio-femoral forces produced by the simulations for the BCS, FB-PS and RP-

PS TKAs. 

 

5.3.3 Quadriceps Forces 

The force in the quadriceps muscle varied from 0BW at full extension to 4.0BW at full knee flexion 

for the simulation of the BCS TKA subject. The nature of this variance in force was different than 

that seen for the tibio-femoral force for this implant. The force was increasing in nature from full 

extension to 85 degrees of flexion (5.8BW), after which it reduced in deeper flexion. 
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The simulation for the FB-PS TKA revealed a similar pattern, with the quadcriceps forces 

increasing from full extension to 79 degrees of flexion before reducing in deeper flexion. At full 

extension, the simulation for the FB-PS TKA showed a total quadriceps force of 0.1BW which 

increased in nature to 4.6BW at 79 degrees of flexion before reducing in deeper flexion to 3.05BW. 

The RP-PS TKA also exhibited a similar nature with the simulation starting with 0.1BW at full 

extension and reaching a maximum value of 4.5BW at 70 degrees before reducing in deeper flexion 

to 3.0BW at 120 degrees of flexion (Figure 5-25). Except for early flexion (0-40 degrees) when 

the three simulation exhibited similar magnitudes of force, the simulation for the BCS TKA always 

exhibited a higher force when compared to the FB-PS and RP-PS TKA.  
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Figure 5-25: Quadriceps forces produced by the simulations for the BCS, FB-PS and RP-PS 

TKAs. 

 

5.3.4 Patello-Femoral Forces 

The patella-femoral contact force varied from 0BW at full extension to 1.9BW at full knee flexion 

for the simulation of the BCS TKA subject. The nature of this variance in force was different than 

that seen for the tibio-femoral force for this implant. The force was increasing in nature from full 

extension to 72 degrees of flexion (5.2BW), after which it reduced in deeper flexion. 

The simulation for the FB-PS TKA revealed a similar pattern, with the patella forces increasing 

from full extension to 80 degrees of flexion before reducing in deeper flexion. At full extension, 

the simulation for the FB-PS TKA showed a total contact force of 0.1BW which increased in 

nature to 4.5BW at 80 degrees of flexion before reducing in deeper flexion to 1.9BW. The RP-PS 
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TKA also exhibited a similar nature with the simulation starting with 0.1BW at full extension and 

reaching a maximum value of 4.3BW at 70 degrees before reducing in deeper flexion to 1.7BW at 

120 degrees of flexion (Figure 5-26). Except for early flexion (0-40 degrees) when the three 

simulation exhibited similar magnitudes of force, the simulation for the BCS TKA always 

exhibited a higher force when compared to the FB-PS and RP-PS TKA.  

 

 

Figure 5-26: Patello-femoral forces produced by the simulations for the BCS, FB-PS and RP-

PS TKAs. 
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5.4 Vibroarthrography 

5.4.1 Building of the sound Analyzer 

The first key to analyzing vibration data in conjunction with the motion of the knee in to effectively 

synchronize the two data streams to seamlessly visualize the vibration emitted by the knee joint at 

specific degrees of flexion. In order to achieve this task we created a graphical user interface that 

can import, analyze and synthesize the video fluoroscopy/live video, 3D in vivo kinematics and 

sound data simultaneously in one interface.  

The sound analyzer uses existing platform of the Kinematic Analysis of Rigid Body Systems 

(KARBS) software currently in use at the center for musculoskeletal research. The KARS 

software, written in Matlab, is capable of importing raw fluoroscopy images and conducting a 3D-

to-2D registration of the CAD components to the fluoroscopy images to determine 3D kinematics 

throughout the range of motion. This if possible for both, TKA images as well as native knee 

images. The sound analyzer uses these two functional capabilities of the KARBS system and adds 

the capability to import and analyze vibration data which is synched to the in-vivo motion. 

The sound analyzer has 4 main components. The first component is the time synched 

fluoroscopy/live video collected from the patient. The second component is the 3D kinematics of 

the knee joint determined from 3D-to-2D registration. The third component is the ability to import 

and analyze vibration data that is time synched to the video feed and finally the forth component 

can export the analyzed data as one seamless output (Figure 5-27). 
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Figure 5-27: The basic GUI interface for the sound analyzer. 

 

The operator can import the fluoroscopy video in the top left corner. The corresponding 3D 

kinematics are imported simultaneously, in the top right. The panel on the right enables the 

operator to control the visualization of time synched vibration signals for the particular patient 

(Figure 5-28). The raw vibration signals are populated on the bottom left of the GUI. The right 

hand panel also includes various filters that can be utilized to analyze the vibration data. Each 

iteration of the vibration analysis populates on the bottom right with the ability to save a particular 

analysis for further comparison. 
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Figure 5-28: The analysis panel that enables the analysis of the vibration data. 

 

Using this GUI it becomes possible to analyze vibration and in-vivo data simultaneously in a time 

synched environment (Figure 5-29). This analysis is possible through the whole range of knee 

flexion (Figure 5-30). In the case of native knees it is possible to demarcate the areas of knee 

degeneration (if existing) and the analysis can provide a visual feedback on the contacting surfaces 

that are responsible for producing particular vibration patterns Figure 5-31). 
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Figure 5-29: Example of analysis of the vibration data along with in-vivo fluoroscopy. 

 

 

 

Figure 5-30: Example of analysis of the vibration data along with in-vivo fluoroscopy for 

deep knee bend. 
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Figure 5-31: Example of analysis of the vibration data along with in-vivo fluoroscopy for the 

native knee. 

 

Once the analysis is complete, the sound analyzer enable the export of a single file that contains 

the time synched in-vivo fluoroscopy and the resulting vibration associated with the tested motion 

patter (Figure 5-32). This can then be utilized to analyze differences between various knee joint 

conditions. 
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Figure 5-32: Example of output of the analysis for the native knee. 

 

5.4.2 Qualitative Analysis 

 

Using the sound analyzer GUI described in the previous section, data was analyzed for patients 

who exhibited various knee condition in an attempt to validate the ability of the system to 

synchronize and analyze in-vivo and vibration data. This analysis was also able to differentiate the 

various conditions based on the vibration data. The condition that were analyzed included: 

1) Native knees for young subjects with no degeneration vs Native knee for older patients vs 

patients with osteoarthritic degeneration. This analysis clearly showed the differences in 

the vibration content between the three conditions. Subjects with a native knee with no 
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degeneration exhibited with little to no vibration content throughout the range of motion 

during a DKB activity (Figure 5-33). Compared to this analysis, patients who had no 

reported degeneration, but were older in age also exhibited little vibration content, albeit 

more than the younger subjects (Figure 5-34). Lastly patients who were diagnosed with 

end stage OA and who were candidate for TKA surgery exhibited an increased vibration 

content when compared to subjects with no degeneration (Figure 5-35). 

 
 

Figure 5-33: Vibration analysis for a young patient exhibiting little vibration content due to 

smooth articulating surfaces. 
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Figure 5-34: Vibration analysis for an old patient exhibiting little vibration content due to 

smooth articulating surfaces. 

 

 
 

Figure 5-35: Vibration analysis for a patient with end stage OA exhibiting increased 

vibration content through range of motion. 
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2) Analysis of patients with failed TKAs and well-functioning TKAs revealed a similar trend. 

Patients with a failed TKA and who were candidates for replacement TKA surgery 

exhibited a significantly large vibration content than patients with well-functioning TKA 

(Figures 5-36 and 5-37). 

 

 
 

Figure 5-36: Vibration analysis for patient with well-functioning TKA exhibiting little 

vibration content due to smooth articulating surfaces. 
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Figure 5-37: Vibration analysis for a patient with a failed TKA exhibiting increased vibration 

content through range of motion. 

 

3) Analysis to determine the location of OA wear in patients with uni-comparmental 

degeneration revealed that having OA in a single compartment can be effectively identified 

using vibration sensors. The compartment with higher amount of wear exhibited 

significantly higher vibration content that compartment with little wear (Figure 5-38). This 

experiment demonstrated the ability of the vibration sensors to capture data closest to the 

point of application, thus making it possible to isolate the location of degeneration. 
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Figure 5-38: Vibration analysis for a patient with uni-compartmental OA. The results clearly 

indicate that vibration analysis can determine the location of degeneration. 

 

4) Analysis of patients that exhibit lift-off during range of motion. This analysis was 

conducted during a leg swing activity for a patient with joint laxity. The hypothesis was 

that the laxity of the joint will result in lift-off on the femoral condyle during a high velocity 

activity. The analysis of the 3D kinematics in conjunction with the vibration data revealed 

that it was possible to correlate specific spikes in the vibration signal that correspond to 

lift-off of the femoral condyle as determined my the 3D-to-2D kinematic evaluation. The 

vibration content in the signal was seen to be very little, except when the femoral cam 

contacted the tibial post and when the distance between the femoral and tibial surface 

contacted after a period of “no contact” or lift-off. The spike related to the cam-post 
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interaction was larger and in the flexion phase of the leg swing, while the spike 

corresponding to the lift-off was smaller and on the extension phase of the leg swing 

activity (Figure 5-39). 

 

 
 

Figure 5-39: Analysis and correlation of vibration data with lift-off during a leg swing 

activity. 

 

5) Analysis of a patient receiving visco-supplementation. This analysis clearly showed the 

differences in the vibration content between the two conditions. The patient was tested 

prior to receiving a visco-supplementation injection and exhibited high amounts of 

vibration content similar to a patient with OA. After visco-supplementation was completed 

the patient was retested and exhibited significantly lower vibration. This test demonstrated 
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the ability of the visco-supplementation to lubricate the joint, there-by reducing the 

vibrations in the knee joint space (Figures 5-40 and 5-41). 

 

 
Figure 5-40: Analysis of a patient prior to visco-supplementation exhibiting high vibration 

content. 
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Figure 5-41: Analysis of a patient after to visco-supplementation exhibiting lower vibration 

content. 

 

6) Analysis of cam-post engagement. This analysis was conducted on patients with well-

functioning knees in order to test the feasibility of the detecting the nature of contact. The 

test revealed that vibration data can effectively pick up cam-post interaction. Additionally, 

it seems to demonstrate that contact occurring with a smooth transition on the central aspect 

of the cam produces less impact, while contact occurring on the outer edges of the post 

with an abrupt contact produces a larger impact spike (Figures 5-42 and 5-43).  
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Figure 5-42: Analysis of cam-post contact for a RP-PS TKA exhibiting lower vibration 

content associated with a smooth transition during initial contact. 

 

 

 

Figure 5-43: Analysis of cam-post contact for a FB-PS TKA exhibiting an impact spike 

associated with an irregular transition during initial contact. 
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5.4.3 Pattern Recognition 

 

 

VAG signals were collected for 23 healthy and 53 arthritic subjects. After selecting the candidate 

features of the signals, a pattern classifier was designed. The objective of the classifier was to 

classify the given pattern of the patellofemoral VAG signal to one of the two groups: healhty or 

arthritic. The minimum-error-rate classification was chosen for the first attempt to design the 

classifier. This classification can be achieved by the use of the discriminant functions:  

 g
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Since at the current stage of analysis there is no premise to classify the patient as either arthritic 

or healthy, the prior probabilities for both categories were assumed to be equal  

(P(ω
1
)=P(ω

2
)= 

1

2
).   

The analysis showed that the signal range, 25 and 75
th

 quantiles do not provide any significant 

discrimination improvement compared to the other parameters, and were excluded. Instead, the 

integral of the signal’s envelope was calculated for evaluation. Also, the VAG signal’s envelope 

seemed to be higher for those subjects who performed the activity faster, therefore the product of 

the integral of the envelope and activity duration was selected as the last (11
th

) signal feature.  
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The DKB activity were selected for investigation using all the 76 datasets. However, it was noticed 

that the vibration patterns may differ between the trials even for the same subject. Therefore, it 

was decided to analyze all the trials of DKB performed by each subject rather than a single one. 

Once the statistical parameters (i.e. mean, SD, skewness, kurtosis, quantiles, etc.) were calculated 

for VAG signals from each trial, the mean, the absolute minimum, and the absolute maximum 

from all trials were calculated. That provided the total of 33 signal features selected for the 

assessment of their classification effectiveness. 

The results obtained for the 23 healthy and 53 arthritic subjects, confirmed that the mean of 

rectified signal is higher for the arthritic than for the healthy subjects. However, surprisingly the 

variance was lower for the damaged than for the intact knees. The skewness and kurtosis were also 

lower for the affected knees, but in general all the other parameters were higher for this group. 

 

In order to better study the discrimination effectiveness of these statistical parameters, the two-

sample t-test without assuming variances are equal was used. The null hypothesis (H
0
) was that 

the data in both groups are independent random samples from normal distributions with equal 

means, against the alternative that the means are not equal. The H=1 indicated the rejection of the 

null hypothesis at the 5% significance level. The signal features, which means are not equal 

(p<0.05) could be considered good candidates for the pattern classification. 

 

This approach identified 6 signal features, for which means were significantly different for both 

groups: 
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- minimum of the signal means from all trials, 

- minimum of the signal median from all trials, 

- mean of the signal 90
th

 quantiles from all trials, 

- minimum of the signal 90
th

 quantiles from all trials, 

- minimum of the signal 95
th

 quantiles from all trials, 

- minimum of the integrals of signal envelope from all trials. 

 If the hypothesis, that the signals are different between the two knee conditions, is true, it should 

be valid for all activities, and including more activities could potentially enhance the classification 

rate. Therefore, it was decided to expand the analysis on all the activities collected for each subject; 

Deep Knee Bend, Chair Rise, Stair Climb, Stair Descent, Gait and Flexion-Extension. Then the 

feature means, absolute minimum and maximum were calculated for all trials of all activities 

(Figure 5-44). 
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Figure 5-44: Distribution of selected 33 signal features for all 23 healthy (H), and 53 

arthritic (A) subjects determined for all trials of the deep knee bend activity. 

 

 

Taking into account all activities, has more strongly confirmed the initial hypothesis that the signal 

mean and variance are higher for arthritic than healthy knees. As a matter of fact, all signal features 

except kurtosis were higher for the affected knee joints. Also it was found that including all 
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activities has yielded significantly better separation of the data than analyzing the DKB only. The 

means of 15 out of 33 signal features were significantly different for the two groups. Many of the 

parameters indicated extremely significant differences between the groups  

In order to find the set of features providing the best classification, all 528 possible combinations 

of 2, 5456 combinations of 3 and 40920 possible combinations of 4 signal features taken from all 

33 parameters have been evaluated. The highest success rate obtained using two signal features 

was 93.67%. 

 

Using a set of three features increased the classification rate up to 96.2% using a combinations of 

features nr 4, 14, 28 (Figures 5-45, 5-46, 5-47).  

Adding the 4
th

 parameter to pattern classification increased the success rate up to 97.4%, as 

summarized in following table: 

  

The best classification utilizing a set of three features was achieved using the following set: 

- feature 14: minimum of the signals’ median from all trials, 

- feature 29: mean of the signal’s mean from all trials, 

- feature 28: mean of the signal envelope integral times activity duration from all trials. 
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Figure 5-45: Classification using 3 features 4, 14 and 28 resulting in a 96.2% classification 

strength.  

 

  

 
Figure 5-46: Classification using 3 features 14, 15 and 16 resulting in a 96.2% classification 

strength.  
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Figure 5-47: Classification using 3 features 4, 14 and 31 resulting in a 94.9% classification 

strength. 
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122 

 

 

Multiple studies have demonstrated the kinematic performance of CR and PS type TKA designs. 

Also, other studies have investigated the kinematic efficacy of a mobile polyethylene when 

compared to a fixed bearing device. However, limited data exists investigating the various aspects 

pertaining to the cam-post interaction, and the role bearing mobility plays in terms of cam-post 

mechanics. The present study investigates the cam-post mechanism in three different types of PS 

TKA and demonstrates the differences in terms of contact angle, nature of contact and height of 

cam-post contact between the devices.  

Numerous kinematic evaluations have found larger magnitudes of PFR in native knees when 

compared to TKAs.  In order to replicate normal knee kinematics in TKAs, and to felicitate higher 

range-of-motion post-surgery, implant manufacturers have used various philosophies. One of the 

commonly used configurations of TKA in the market today utilizes a cam-post mechanism to 

engage in mid-flexion and felicitate PRF to achieve higher flexion. Early cam-post engagement is 

not ideal, as it would mean that engagement would occur during every cycle of common day 

activities (eg walking) not requiring high flexion and increase the possibility of early tibial post 

wear.  

Studies conducted to evaluate the cam-post interaction in FB-PS TKA designs during common 

daily activities have exhibited cam-post engagement angles ranging from 40o during a step-up 

maneuver, to 91o during lunge activities. A study conducted by Catani et al, on five BCS TKA 

revealed anterior cam post engagement to occur only in early flexion, while posterior cam-post 
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engagement to occur at ≈63o, ≈58o, and ≈50o during the chair-rise, step-up and step-down activities 

respectively. The current study suggests similar results for the two PS type designs, with cam-post 

engagement occurring at 93o and 97o for the FB-PS and RP-PS groups respectively. However, the 

BCS group experienced an average of 34o during the DKB activity which is contrary to that 

reported by Catani et al.  

Polyethylene design also plays an important role in determining the cam-post engagement. Designs 

which incorporate an anteriorized dwell point at full extension reduce the initial cam-post distance, 

thereby increasing the possibility of early cam-post engagement. This seems to explain the early 

engagement angle experienced by the subjects in the BCS group. Among all the three groups 

analyzed, the BCS group experienced the most anterior tibio-femoral contact points at full 

extension (Table 6-1). The FB-PS and RP-PS groups experienced a contact point which was 

posterior to the midline of the tibial component. This ensured a larger distance between the femoral 

cam and tibial post, thereby ensuring a late cam-post interaction. One subject in the RP-PS group 

did not experience cam-post engagement. However, this patient exhibited a lower maximum knee 

flexion (86o) than the average cam-post contact angle (97o) for this group. 

On the posterior cam-post interaction site, for the BCS and FB-PS groups, the initial contact with 

the tibial post was achieved on the medial aspect, before the contact area tended to move centrally 

and superiorly with increasing flexion. Interestingly, in the RP-PS group, the contact between the 

cam and post was located centrally on the post at all times when engaged. This is probably due to 

the mobility of the polyethylene, characteristic for the analyzed TKA design. The polyethylene 
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insert rotated axially in accord with the rotating femur (Figure 6-1). Therefore the posterior surface 

of the mobile bearing post was able to remain parallel to the surface of the femoral cam. This 

phenomenon was not observed in the FB TKAs and may increase the chances of edge loading on 

the polyethylene, resulting in wear patterns on the post. 

Another consideration in designing the cam-post interaction is the ability of the cam-post contact 

point to remain low on the tibial spine with increasing flexion. This provides greater stability by 

increasing the jump height and also reduces stress in the tibial post by introducing the cam-post 

force at a location of maximum material. The cam-post contact height for the BCS TKA was 

significantly higher than the other two groups. For the FB-PS and RP-PS groups the contact 

occurred mid-spine and remained in the lower part of the tibial post. This finding suggests that 

cam-post design for FB-PS and RP-PS TKAs could result in lower cam-post stresses, thus reducing 

the chances for failure of the tibial post.  

 

Table 6-1: Tibio-femoral contact location at full extension for subjects in the three groups. 

Group 

Full Extension (mm) 

Lateral A/P Contact Medial A/P Contact 

Average Range Std Average Range Std 

RP-PS Group -5.7 -8.7 to -2.2 2.0 -5.3 -7.2 to -3.0 1.4 

FB-PS Group -2.1 -5.4 to 0.8 2.1 -3.9 -8.7 to -0.2 2.3 

BCS Group 4.6 -3.0 to 18.4 8.0 6.6 3.9 to 9.4 1.6 
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Figure 6-1: Similar rotation of the femur and poly ensured full contact of the cam-post 

mechanism. 

 

The use of a forward dynamic model to simulate the function of a TKA has previously been 

successfully demonstrated by Mueller et al. building on the results from that study, the current 

model incorporates the cam-post interaction as an added output from the same model. Results 

indicate that cam-post forces vary between designs. Previous research (Suggs et al and Nakayama 

et al) by suggested that the cam-post force is in the range of 500-800N. However, these studies 

were conducted on a knee simulator and the results need not be transferable to in-vivo conditions. 

Greenwald et al. used mathematical modeling to determine knee forces in the native knee and 

suggested that the AP force on the tibio-femoral interface are between 1-1.2 times body weight. A 

recently study by Piangiani et al conducted a robust cadaveric experiment on cam-post forces 

during various activities on TKAs and found the cam-post force to be around 1000N (1.2 time 

body weight based on this study) during a squat activity.  
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Results from this study indicate similar results for the FB-PS and RP-PS TKA, with the maximum 

cam-post force being 1.3 and 1.6 times BW. The cam-post forces in the BCS TKA were found to 

be higher and can be attributed to the fact that the contact in these knees occurs at an early 

engagement angle when compared to the other knees. 

Interestingly, the location of the cam-post force followed a similar pattern to the in-vivo 

kinematics. The simulation for the RP-PS TKA exhibited the force being located on the central 

part of the post at all times. For the BCS and FB-PS TKA the force was mainly located on the edge 

of the post. These results seem to indicate that due to the rotating poly in the RP-PS TKA which 

ensures central contact, the force distribution is likely to be within the “meat” of the post. Also, 

rotation of the femur over the tibia does not influence the location of the force. These two findings 

could play a crucial role in increasing the longevity of the post in RP-PS TKA. On the other hand, 

both FB TKA exhibited forces on the edges of the post. This could be due to the fact that the femur 

in these knees do not rotate in conjunction with the polyethylene, thus leading to situations where 

the cam encounters the edge of the post during interaction. This could potentially lead to edge 

loading conditions undesirable from a wear stand point. 

The vibration signals have been collected to evaluate their potential application to diagnose the 

articular cartilage condition. According to the hypothesis vibrations should increase as the cartilage 

degenerates. To prove this concept, the signals were collected from a group of subjects with 

osteoarthritis and a control group of healthy individuals. This initial analysis confirmed the 

hypothesis, because in general the vibrations had higher variation in the arthritic group. Recently 
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Rangayyan et al. also reported that larger variability was observed in abnormal knee joints. The 

differences were also heard when the signals are converted to audible forms. These distinct sound 

differences were utilized to test six conditions: 

 
1. Native knees for young subjects with no degeneration vs Native knee for older patients vs 

patients with osteoarthritic degeneration 

2. Analysis of patients with failed TKAs and well-functioning TKAs 

3. Analysis to determine the location of OA wear in patients with uni-comparmental 

degeneration 

4. Analysis of patients that exhibit lift-off during range of motion 

5. Analysis of a patient receiving visco-supplementation 

6. Analysis of cam-post engagement 

 
 
These analysis were successful in finding distinct differences that can be used in future to 

distinguish between patients with these condition by only the use of vibroarthrography. These also 

build on the early observations made by Blodgett and Walters who could hear more grating and 

cracking knee joint sounds being emitted by older subjects, who’s articular cartilage most probably 

deteriorated with age. 

 

Analysis of all the 76 samples confirmed that the variance is indeed significantly higher in the 

arthritic group, but other signal features yielded even better discrimination. A number of signal 

parameter combinations were evaluated and eventually sets of features yielding accuracy up to 
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96.2% were identified. Such high success rate is very promising and confirms that the vibration 

data could be potentially used for diagnostic purposes. 

 
Krishnan and Rangayyan also studied knee vibroarthrographic signals for screening purposes. 

They used one accelerometer attached at the middle of the patella and collected signals for 19 

healthy and 18 pathologic knee joints during extension exercise. They decomposed the signals 

using wavelet packets and matching pursuit methods and computed the signal features based on 

energy and frequency parameters. The analysis allowed them to classify the signals with 83.8% 

accuracy. 

 
Recently Rangayyan and Wu presented more extensive work evaluating vibroarthrography (VAG) 

samples collected for 51 healthy and 38 abnormal knee joints. The abnormal conditions included 

various pathologies; patella chondromalacia of different grades, meniscal tears, tibial 

chondromalacia and ACL injuries. They normalized the VAG signals so that the amplitude ranged 

between 0 and 1, and then calculated a number of statistical parameters; mean, SD, skewness, 

kurtosis, entropy, as well as the "`form factor"' representing the variability of the signal. In the 

current study, the skewness and kurtosis were found to be the parameters providing the lowest 

discrimination. Using the Fisher's linear discriminant analysis, they were able to classify normal 

vs abnormal cases with 75.6% accuracy. They achieved better classification of 85.9% when the 

conditions were narrowed down to discriminate only between normal and the 20 patella 

chondromalacia cases. 
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Kim et al. studied knee joint sounds by means of an electro-stetoscope. They gathered data for 20 

non-symptomatic subjects and 11 patients with diagnosed degenerative arthritis performing exion-

extension activity. The authors obtained features from the time-frequency distribution of VAG 

signals using segmentation by dynamic time warping. Next, they used back-propagation neural 

network for classification and reported 91.4% accuracy.  

 

Gajre et al. proposed using electrical impedance signals for non-invasive diagnosis of osteoarthritic 

knees. They collected the data around the knee by tetra-polar impedance plethysmography for 8 

normal and 10 osteoarthritic subjects. They used variance and root mean square values as temporal 

features and energy band of 0- 5KHz as frequency domain feature. A trained artificial multilayer 

feed forward neural network provided accuracy of 85.19% based on the knee-swing data. 

 

Though methods using transducers other than accelerometers have been proposed and reported 

encouraging results. The results in the current work have been obtained using accelerometers and 

have yielded higher success rate than any other study reported in the literature to date. Current 

study also evaluated more arthritic subjects than the previous studies. 

 

This is the first study to compare the cam-post interaction mechanics in three different types of PS 

type TKAs. It suggests that the mobility of polyethylene insert as well as the polyethylene design 

with respect to dwell point play an important role in determining the amount and nature of cam-

post interaction as well as distribution of the cam-post force. Additionally, this study investigated 



 

130 

 

the use of vibroarthrography as a tool to determine various conditions in the knee joint and 

demonstrated the ability to determine differences in the joint purely based on the vibration content 

in the knee. 



Chapter 7: Limitations and Future Work     
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This dissertation investigates the cam-post mechanism in three different types of PS TKA and 

demonstrates the differences in mechanics of the cam-post contact between the devices. Though 

this study is the first to compare cam-post interaction between fixed and mobile bearing TKAs, it 

does have some limitations. 

Firstly, with regards to kinematics, the sample size of the study is small. This was due to the 

limitation in procuring subjects with beaded polyethylene RP inserts for recruitment to the study. 

However, the findings of this study clearly demonstrate the differences in the three groups of TKAs 

and are a good first indicator of trends between the groups. The subjects chosen were operated by 

different surgeons, and does not account for surgeon variability. However, each surgeon chosen 

was highly experienced in the implantation procedure for their chosen device, and each subject 

was deemed clinically successful with a HSS score>90, which would reduce the amount of 

variability that may arise between patients in each group.  The cam-post engagement mechanism 

was estimated by utilizing a 3D-to-2D registration technique and 3D CAD models provided by the 

device manufacturers. The implant components (especially the polyethylene insert) do not take 

into account wear, subjects may have experienced post-surgery. However, this limitation would 

be inherent in any in-vivo analysis conducted on successful and well-functioning TKAs that are 

not scheduled for revision surgery (hence limiting the ability to retrieve the polyethylene 

component). This trade off, however, provides a detailed investigation of the cam-post mechanism 

in subjects with PS TKA assuming they still have intact polyethylene components.  Future studies 
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should look at the cam-post interaction in a larger patient population, ideally implanted by the 

same surgeon. 

Secondly, the investigation of forces was conducted using a single sample for each of the groups 

and not on all patients. This is however, a limitation of the forward dynamic model, which does 

not provide for exact replication of the in-vivo kinematics of each subject. Nonetheless, the three 

simulations provide valuable insight into the variation in cam-post forces between the three TKAs 

analyzed. Future studies should investigate the use of an inverse dynamic model that will enable 

the determination of cam-post forces for varying kinematic patterns seen for the same implant 

type, as well as, between different implant designs. 

Lastly, the vibroarthrography study was conducted on a set of native and arthritic knees. Though 

this did provide a good starting point for the validation of such methods, future studies should look 

into determination of various soft tissue injuries with the use of vibroarthrography. This will 

provide the valuable information that can be used to develop a tool to determine soft tissue injuries 

without the use of radiation methods. 
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