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Abstract 
 

William Thurston first proposed that real circles could be used to approximate the 

underlying infinitesimal circles of conformal maps in 1985. Inspired pioneers developed 

Circle Packing into a very rich and deep field that can be used as a method for 

constructing discrete conformal maps of surfaces on different types of geometries. 

Offering the advantages of a computational method that lends itself to experimentation 

and the easy creation of visual models, Circle Packing has proven itself as valuable new 

tool in approaching both old and new problems. 

In particular, Circle Packing has been used to make discrete analogues of 

continuous functions; however existing methods are inadequate for certain classical 

functions. As a solution to this problem, Kenneth Stephenson has suggested using a 

branched circle packing where the extra angle sum is distributed amongst more than one 

circle. The purpose of this paper is to investigate the behavior of such circle packings on 

the plane. The result is the revelation of a subject worthy of interest beyond its potential 

aide to other problems.  

Normally, maps are made in Circle Packing are created by laying out circles 

adjacently to each other like a group of coins laid out on a table. Taking a group of circles 

similar to this, we can cut a "slit" from the exterior to a point in the center called the 

branch point. We can then wrap the cut edges around like a spiraling staircase by a 

multiple of 2π, creating a branched map. Branched maps are mostly similar to non-

branched packings with the exception that they are necessarily globally non-univalent. 

Adding fractured multiples of 2π to more than a single point does not necessarily result in 

a map that makes any sense. Regardless of how complicated or simple our original map 

may be, most of these questions can be answered by surprisingly simple geometry. 

Furthermore, despite the difficulty that these unfamiliar terms may cause the non-

mathematician, the visual nature of circle packing provides models and pictures that 

bring the concepts to life, making these ideas accessible to most anyone with a high 

school level understanding of geometry.      
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Chapter 1  
A Quick Introduction to Circle Packing 
 

Questions involving mutually tangent circles date back to the origins of 

mathematics and are among some of the most elegant of the classical theorems. 

Originally, a circle packing might have been described as an arrangement of circles such 

that each pair of neighboring circles has disjoint interiors and some or all of the circles 

are (externally) tangent. Such configurations of circles were largely first bridged to 

analytical functions when William Thurston proposed during a 1985 conference that real 

circles could be used to approximate the underlying infinitesimal circles in conformal 

maps and that these approximations would converge to a classical conformal map.[1] 

Here we will focus primarily on the Euclidean plane, however circle packings on 

the hyperbolic plane and the spherical plane are also of great interest to the field. 

Examples of circle packings on these three geometries can be seen in Figure 1-1. The 

application of circle packings in the context of discrete conformal maps is the primary 

source of motivation for study of the field. Although the use of Circle Packing in this 

realm requires the introduction of more developed definitions and sometimes terse 

bookkeeping, the grace and beauty of its classical ancestry is preserved in the underlying 

geometry. I believe that the investigation of our subject is a prime example of this.   

 

 

Figure 1-1: Examples of circle packings from left to right on the hyperbolic, Euclidean, and spherical 
planes. 

Source: Monica K. Hurdal, 2004, “Modeling the Brain”, [online], http://www.math.fsu.edu/~mhurdal/ (Accessed 7 July 2004). 
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Definition 1: A face is a triangle formed by the centers of three mutually tangent circles. 

Face 0 , ,i j kf v v v=  is the triangle formed from the vertices , ,  and i j kv v v of their 

respective circles , ,and i j kc c c . 

Definition 2: A Complex is the tangency pattern for a circle packing. These are encoded 

as abstract simplicial 2-complexes K; we assume K is (i.e., triangulates) an oriented topo-

logical surface.  

Definition 3: A Circle Packing , P, for a complex, K, is a configuration of circles such 

that for each vertex v K∈  there is a corresponding circle vc , for each edge ,v u K∈ , 

the circles vc and uc are externally tangent, and for each positively oriented face 

, ,v u w K∈ the mutually tangent triple of circles , ,v u wc c c  is positively oriented. 

Definition 4: A packing is univalent if its circles have mutually disjoint interiors. It is 

locally univalent if every circle is mutually disjoint with its externally tangent neighbors. 

 

The complex is just a pattern of tangencies, and this pattern together with the radii 

of the circles determines the geometry of the packing. A very basic example illustrating 

this relationship is shown in Figure 1-2. The simplicity of Figure 1-2 belies a central 

theme of Circle Packing, the special interdependent relationship between a circle packing 

and its radii. Note that as in Figure 1-3, any three circles can always form a face. 

However, the situation can be made quite different by adding a single strategically placed 

circle. Given the complex and the four circles in Figure 1-4, it is clear that no packing 

exists without manipulating the radii. Fortunately, this can always be done.  

 

Theorem 1: The Monodromy Theorem. Given a complex with associated radii, a 

necessary and sufficient conditions for existence of a circle packing is that the packing 

condition be satisfied at every interior vertex (see Theorem 2, pg.8) When this occurs the 

circle packing is unique up isometries on the plane.                                                                                    
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Figure 1-2: A complex with an associated group of radii and the circle packing that they form. 

 

 

Figure 1-3: Three circles and an associated complex that form a circle packing
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Figure 1-4: The shaded circle has been added to the circle packing from Figure 1-3. The solid lines 
are use to show circles that are tangent and dashed lines are used to show were tangency 
has been broken. The complexes of each configuration and radii are identical except for 
the radius of the shaded circle at the very top 

 

or 

A circle packing made 
possible by decreasing 
the radius of the 
shaded circle. 

None of these are 
circle packings. 
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So for any given complex there exists a collection of radii such that a unique 

circle packing can be formed. The Monodromy theorem has been extended to show that 

for any finite complex, a unique circle packing will be determined once the radii of the 

circles on the boundary have been selected.[2] Furthermore we can always compute the 

radii of the circles for the unique circle packing using the circle packing algorithm 

developed by Charles Collins and Kenneth Stephenson who have also written an 

excellent program for making the computations and producing the resulting images.[3] 

Figure 1-5 shows a group of “unpacked circles,” and the neighboring picture 

shows the packing after the algorithm has been applied. Once the radii of the interior 

circles have been determined the resulting packing is unique up to isometries by the 

Monodromy theorem. As one can see, the relationship between the radii of the circles and 

their complex in a packing is very rigorous. As illustrated by Figure 1-4, if you make 

even a small change this relationship will cease to be amenable.  

The “non-packings” in Figure 1-4 are three different ways to layout a complex 

with associated radii that cannot form a circle packing. Such configurations provide a 

pattern but lack the consistent structure of a circle packing. In our investigation of 

fractured branched packings distinguishing between complexes and radii that form a 

packing and ones that do not will be of importance. So we introduce the following 

definition. 

 

Definition 5: A motif is a collection of radii with a complex.  

 

Stated differently, a motif is a complex with associated radii that does not necessarily 

form a circle packing. So a circle packing is a motif but the converse is not necessarily 

true. The three different layouts in Figure 1-4 are all representations of the same motif. It 

is an important characteristic of motifs that their layouts will be unique up to isometries if 

and only if they form a circle packing. 
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Figure 1-5: The circle packing algorithm in action. This packing is called the Owl Packing and has 
made appearances in many Circle Packing articles.
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Chapter 2  
Branched Circle Packings 

 

Definition 6: A circle vc and the circles tangent to it are called a flower. The ordered 

chain, 
1
,...,

kv vc c , of tangent circles, called the petals, are closed when v is an interior 

vertex of the complex formed by all the circles in the flower. 

Definition 7: The angle sum ( )vθ for vertex v is the sum of the angles at vc in the 

triangles formed by the triples 
1

, ,
i iv v vc c c

+
 in its flower. 

 

In the plane, angle sums can be easily computed using the law of cosines, 

1 1

1 1

2 2 2
1

, ,

( ) ( ) ( )
( ) cos

2( )( )
i i i i

i i i i

v v v v v v

v v v v v v v

r r r r r r
v

r r r r
θ + +

+ +

−
⎛ ⎞+ + + − +

= = ⎜ ⎟⎜ ⎟+ +⎝ ⎠
∑  where vr α

is the radius of the 

circle vc
α

. Typically a circle in a circle packing will have an angle sum of 2π . That is, an 

interior circle’s neighbors will wrap around it one complete time.  

 

Definition 8: A branch circle in a packing is an interior circle whose angle sum is not 2π. 

A packing is branched if it has one or more branch circles. The difference of 2π and the 

angle sum, ( ) 2vb vθ π= − , is called the branching at vC , and manipulating the map so 

that a circle becomes a branch circle is called branching.   

 

Branching a circle packing is not unlike cutting a slit from the boundary to the 

vertex of the branch circle then wrapping the circle packing around this vertex like a 

spiraling staircase. For the most part, a circle packing is manipulated by changing its 

radii. The “wrapping” around a branch circle is caused by changing its radii. If we have 

some flower, we can increase its angle sum by simply decreasing the radius of the center 
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circle, vc . Conversely, the angle sum can be decreased by increasing the radius of the 

central circle. Refer to Figure 2-1 for an example of a non-branched and branched flower. 

 

Theorem 2: The Packing Condition. The flower of an interior vertex v can be realized 

as a circle packing if and only if ( ) 2v nθ π= for some integer 1n ≥ . 

 

A flower with a prescribed complex and radii can only form a packing if it is 

closed. Therefore a branch circle and its flower form a packing if and only if it meets the 

packing condition, and a complex with a collection of radii will be a circle packing if and 

only if the angle sums at all interior circles meet the packing condition. Branching a 

flower with a non-integer multiple of 2π will result in a motif that is not a packing (see 

Figure 2-2). We will focus on groups of circles with complexes and radii that 

immediately fail the packing condition.  
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Figure 2-1: On the left is a picture of a flower with a center circle that has an angle sum of 2π. The 

picture on the right is a branched flower with a center circle (a branch circle) that has an 
angle sum of 4π. In order to accommodate the extra angle, the center circle has been 
decreased. 

 

 

Figure 2-2: The shaded circle has been branched with an angle sum of 2.1π
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Chapter 3  
Fractured Branched Motifs 
 

Definition 9: A fractured branched motif is a motif where n interior circles have an angle 

sum such that 
1

( ) 2 2
n

ivθ π π− =∑  for 1n > . The fractured branched motif is non-trivial if 

( ) 2ivθ π>  for each branch circle. 

 

We are interested in fractured branched maps manipulated from existing non-

branched circle packings. Non-branched circle packings will be branched at more than 

one circle by decreasing their radii and thus changing their angle sums. Except in the 

trivial case, fractured branched packings always have at least one circle with an angle 

sum that does not equal an integer multiple of 2π. Hence by the packing condition, this 

circle’s individual flower will always fail to be a circle packing and so the entire motif 

will not be a circle packing. Recall from Chapter 1 that motifs which are not circle 

packings do not have unique layouts. Referring to Figure 1-4 as an example, motifs that 

are not circle packings lack one of the fundamental qualities that allow Circle Packing to 

be of service to the study of analytical functions.  

However, a fractured branched motif is structured similarly to a circle packing 

and may retain in part many of the characteristics and behaviors of circle packings. As it 

turns out, fractured branched motifs can have the rigorous structure of a circle packing by 

confining where it fails to be circle packing to a localized area of its comlex. These 

motifs will be like a jigsaw puzzle that properly fits together everywhere except for a few 

interior pieces. Since we want to minimize the circles that do not “properly fit together” 

we will fracture the extra angle sum among mutually tangent interior circles. 
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Definition 10: A coherent packing is a motif that has a complex and associated radii that 

meets the conditions for being a circle packing outside a finite interior subset of its 

complex. Otherwise the motif is an incoherent packing. 

 

Given a branched or non-branched motif how do we determine if is coherent or 

incoherent? This requires some machinery. Recall from Chapter 1 that the layout of a 

circle packing is independent of the order in which the circles are laid out. By the 

Monodromy theorem, if we were to take a walk around our packing, beginning with three 

circles and laying out the rest of the circles in our path according to their complex and 

radii we would end up in the same place regardless of the path we took.  

To determine if a branched motif is a coherent or an incoherent packing we need 

only take a path that loops around the branched circles. Such a path will travel through 

flowers that meet the packing condition and avoid the area where it fails. If the loop ends 

were it began than the motif is a coherent packing. Otherwise we have placed the same 

circle in two different locations using the same packing criteria and thus the packing is 

incoherent. With this idea in mind we will proceed formally.  

Once a face, say 1f , is placed you can place a neighboring face, say 2f , by simply 

laying down the single circle that is in 2f but not in 1f . The faces of the complex rather 

than its circles can be used as the organizing structure of the motif. This is how we will 

construct our path around the motif.  

 

Definition 11: A chain is a finite sequence of faces 0 1{ , ,... }nf f fΓ =  such that each face 

shares an edge with the preceding face. If all the faces of a chain share a common vertex , 

v, than the chain is called local at the vertex v. 0f  is called the base face of the chain. 

Definition 12: A closed chain is a sequence of faces such that the last face and the first 

face in the sequence share an edge. The class of closed chains Γ , is the set of all closed 

chains that begin at 0f . 0 0{ }fΓ = is called the null chain.  
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Definition 13: A new closed chain 'Γ is obtained from Γ by local modification if a local 

subchain of Γ at a vertex, v, is replaced by another local subchain at v having the same 

first and last faces. 

Definition 14: Two closed chains 1 2and Γ Γ are homotopic if one can be obtained from 

the other from a finite succession of local modifications. See Figure 3-1. 

 

Because a complex is always connected, a chain from one face to any other face 

in the motif will always exist, and every chain 0 1{ , ,... }f f fΓ =  will give a unique 

location for the face, f, in a motif. So then the following theorem follows directly from 

the Monodromy theorem. 

 

Theorem 3: A motif is a packing if and only if the location of a face is independent of 

the chain used to place it.  

Theorem 4: In a circle packing any closed chain is homotopic to the null chain.[4]  

 

 

Figure 3-1: Two chains that are null homotopic. 
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So the location of a face placed by its null chain will only be different from any 

other chain if the motif is not a circle packing. To check a motif for coherence we need 

only check that this holds everywhere outside a local area where the packing condition 

does not hold. 

 

Definition 15: A holonomy is a closed chain that forms a single loop around the branch 

circles and has no face that is composed entirely of vertices of branch circles. 

 

Note that any two holonomies from the same class of closed chains will be 

homotopic. Every face in a holonomy has at least one vertex that does not belong to a 

branch circle so then a local subchain that meets the packing condition will be available 

to make a local modification and we can proceed in making a series of compositions just 

as if it was a circle packing.  

 

Theorem 5: Developments along homotopic closed chains will place their final face at 

identical locations if every face of both chains is part of a local chain that meets the 

packing condition.[5]  

 

Any two holonomies are homotopic, and in fractured branched packings the only 

flowers that fail to meet the packing condition are those belonging to the branch circles. 

Hence all homotopic holonomies will place their final face in the same location. So we 

can check for coherence by comparing the trivial chain of a face to any holonomy from 

the same class and get the same result.  

Choosing a face as a base and constructing a holonomy will result in two 

triangles. If the Euclidean distance between the vertices of these triangles is zero than the 

criteria of Theorem 3 is met and the motif is coherent. When the distance is greater than 

zero the motif is incoherent. This distance is the difference between the locations of the 

same face laid out with the same method used consecutively, and it can serve as a 

measure of the level of incoherency. 
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Theorem 6: A holonomy on a fractured branched packing is a parabolic transformation 

of its starting face. 

Proof. Denote the Euler characteristic of a complex by ( )Kχ . Note that when a complex 

triangulates the disc as ours does, ( ) 1Kχ = . Let E denote the number of edges in K, F the 

number of faces in K, and V the number of vertices in K. If E∂ is the number of edges on 

the boundary then 3
2E F E∂= + . Which gives, 3 1

2 21 ( )V F E F∂= − + +  

1 1
2 21 V F E∂⇒ = − − 1

int 21 ( )V V F E∂ ∂⇒ = + − − , where V∂ is the number of vertices on the 

boundary and intV is the number of vertices remaining in the interior. The number of 

vertices on the boundary will equal the number of edges on the boundary, so then 
1 1

int 2 21 V F V∂= − + int2 2 V F Vπ π π π ∂⇒ = ⋅ − + int2 2F V Vπ π π π∂⇒ = ⋅ + − . int2 Vπ ⋅ is the 

total of all interior angle sums. By branching we add a total of 2π  to this value. Any 

rotation in the placement of the starting face of a holonomy, 0f , be will determined by 

the total turning angle of the complex. The total turning interior angle of the non-

branched packing is 2Vπ π∂ − . The number of faces does not change, so then branching 

changes the total turning interior angle by 2π− and the total exterior turning angle will be 

2π . Thus a holonomy results in no turning (modulo 2π ), no scaling, because the radii do 

not change, and hence it must be a translation, i.e. the holonomy is parabolic 

 

Because the transformation is parabolic, there will be no ambiguity when 

measuring the distance between where the holonomy lays its first and last face. If we 

begin with a circle packing as in Figure 3-2, adjust the angle sums of three interior circles 

by distributing a total of an extra 2π  among them, and then apply the circle packing 

algorithm then we will have a fractured branched motif as in Figure 3-3. Now using this  
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Figure 3-2: The twelve labeled circles form a circle packing. The shaded faces form the closed chain, 

0 1 2 3 4 5 6 7 8 10 11{ , , , , , , , , , , }f f f f f f f f f f fΓ = . 

0f  

2f  1f  

5f  

6f  

4f  

9f  3f  

10f  

11f  

8f  

7f  



 16

 

 

Figure 3-3: A fractured branched motif that was created by adding 3
2π  to circle 1, 1

4π  to circle 2, 
and 1

4π  circle 3. 
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fractured branched motif, a holonomy that encircles the branch circles can be used to test 

for coherency. If the motif is incoherent then the first face of the holonomy will be 

a parabolic shift as in Figure 3-4. Repeatedly laying down the faces of the holonomy will 

result in repetitive parabolic shifts. In Figure 3-5 the same holonomy has been followed 

through five times.   
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Figure 3-4: Laying down the faces in the closed chain illustrated in Figure 3-2, a holonomy is 
constructed. The shaded face, 0f , is the first face of the chain and placed in two different 
locations. Clearly, this motif is incoherent. 
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Figure 3-5: The holonomy from Figure 3-2 has been laid out repeatedly. 



 20

Chapter 4  
Experiments with Fractured Branched Motifs 
 

One of the great advantages of Circle Packing is its computability. Together with 

the existence of programs to do the computation, Circle Packing lends itself to high level 

experimentation. Experiments using fractured branch motifs with two, three, and four 

branch circles are presented. Experiments were conducted with a variety of “typical” and 

“atypical” packings, however they all had very similar results so we will repeatedly use 

the same packing. Here we start with the non-branched basic packing shown in Figure 

4-1. The holonomy used to measure incoherency is also shown.   

 

Experiments with Two Branch Points 
The sum of the branching added is always 2π. In Figure 4-2 the x-axis scales 0-1 

for the portion of this 2π that has been placed on circle 1. The remaining extra angle sum 

is necessarily placed on circle 2. The y-axis measures the parabolic distance that the 

holonomy has moved the base triangle. 

 

 

Figure 4-1: The circle packing used in the 2 and 3 branch circle experiments. The holonomy that is 
used is shaded. 



 21

 

 

Figure 4-2: 3000 random distributions of the branching distributed between two circles. 

 
As this graph suggests, there is in fact no non-trivial fractured branching 

distribution with two branch circles that will result in a coherent packing. This will be 

shown in the (next) section. 

As should be expected, a small change from a trivial branching where we know 

the motif is a packing causes only a small amount of misplacement. The shape of these 

circles could change if the radii of the border circles were to change. Particularly it seems 

to be the ratio of the border circles’ radii that is the determining force. Figure 4-3 is the 

same experiment that was conducted with Figure 4-2. The complex of this packing is 

identical to the one above; only the radii of circles 2 and 7 have been made very large. 

The distribution that yields the maximum parabolic shift for the base face has moved 

noticeably towards the left.  

As we will see later, the placement of the circles tangent to a border circle occurs 

directly as a result of the branch circle’s radii. In non-fractured branched motifs this 

immediately translates into a change of angle sums. Fractured branched motifs have their 

angle sum changed by their own radius and radii change occurring as a result of 

branching at other circles. This relationship is demonstrated in part by the behavior of 

these parabolas. A further study of how radii distribution effects their shape may lead to a 

better solution for finding a coherent fracturing than the one presented in Chapter 6. 
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Figure 4-3: On left is a graph of 3000 experiments of the branching distributed between two circles. 
On the right is a picture of the packing used. 

 

Experiments with Three Branch Circles 
This next experiment is shown in Figure 4-4. It is the most interesting in this 

chapter, and since we are focusing on motifs with three branch circles it is also the most 

relevant. The distribution is always a partition of 2π so this can be drawn in 3 . The x-

axis is the percentage of branching at circle 1, the y-axis is the percentage at circle 2, and 

the z-axis is the resulting translation distance of the holonomy. 

These incoherent maps certainly do behave nicely! Just as in the case of two 

branch circles the error grows as the distribution moves away from the trivial solutions. 

These graphs suggest two glaringly obvious properties. First, there appears to a single 

interior point with a height of zero, meaning that a non-trivial coherent distribution exists. 

Second, that this distribution is unique. The smooth continuous shape also suggests that 

an iterative process would converge to that unique solution. We will show that all of 

these conjectures are true for a special case.  
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Figure 4-4: 10,000 experiments of the branching distributed between three circles. From top to 
bottom is a top, angled, and side view. 
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Experiments with Four Branch Circles 
 The experiments with three branch circles may bring interest in the geometric 

structure of these types of fractured motifs, but the uniqueness characteristic means that 

they will probably not be applicable in approximating analytical functions because they 

would lack the necessary flexibility. Apparently, it will be necessary to attempt using 

four branch circles. This paper will focus on the case with three branch circles, but a few 

experiments could give direction for a study of the case with four branch circles and also 

possibly give some insight into the behavior of the case with three branch circles. 

 Again most experiments behaved the same regardless of the type of circle packing 

used so a basic circle packing was used in the results shown. Since branch circles must be 

in the interior the circle packing shown in Figure 4-5 was used. The idea behind using 

these branched motifs to approximate discrete maps was to obtain a degree of flexibility. 

The motif must also be coherent if it is going to be of any use. A coherent motif with 

three branch circles has no flexibility.  Now look at Figure 4-6. 

 Figure 4-6 displays the same experiment done in the previous two sections except 

that one variable is not shown. Following Figure 4-5, branching was randomly placed on 

circles 1, 4, 5, and 6 with the percentages of the extra 2π on the circles 5 and 6 shown. 

Clearly, the distribution that yields a coherent solution is not unique! The same 

experiment was repeated in Figure 4-7, Figure 4-8, and Figure 4-9 with the branching at 

circle 1 set to .2(2 )π , .5(2 )π , and .9(2 )π  respectively. It appears that the four branch 

circle case has infinitely many solutions and that knowing one of these solutions might 

reveal all the solutions on at least one parameter.  
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Figure 4-5: The circle packing used in the experiments with four branch circles. 
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Figure 4-6: A side and angled view of 100,000 experiments on the circle packing in Figure 4-5 with 

four branch circles.  
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Figure 4-7: The branching at circle 1 has been set to .2(2 )π . A top, angled, and side view of 100,000 

experiments on the circle packing in Figure 4-5 with four branch circles is shown.  
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Figure 4-8: The branching at circle 1 has been set to .5(2 )π . A top, angled, and side view of 30,000 

experiments on the circle packing in Figure 4-5 with four branch circles is shown.  
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Figure 4-9: The branching at circle 1 has been set to .9(2 )π . A top, angled, and side view of 30,000 

experiments on the circle packing in Figure 4-5 with four branch circles is shown.  
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Chapter 5  
Fractured Branched Motifs with Three Branch Circles 
 

Most of the results in this section follow from relatively simple Euclidean 

geometry. This might seem odd since Circle Packing is usually in the service of analysis. 

This is, however, appropriate considering its origins since the underlying relation in a 

packing between its tangencies and radii is purely geometric. Many trivial geometric 

results involving triangles have quite complicated analytical solutions that lose not only 

the beauty but the essence of the problem. The computation of angle sum by cosines is 

not difficult but it is complicated, and solving for a particular value can be both 

complicated and difficult. Compound this several times with multiple tangencies and 

changing radii and the problem can become daunting.  

Branched maps are derived from packings by simply increasing angle sums; 

usually all we need to do is focus on the direction of these changes and ignore the rest. So 

the equations involving differentials one might expect to find here are completely absent, 

and though this might be a little surprising it is fortunate for the writer. The methods will 

not only be more approachable and revealing but also more graceful. With the hope of 

later generalizing our results, we will investigate the branching of a special type of 

packing called the simple packing.  

 

Definition 16: A simple packing is a circle packing with exactly three interior circles 

 

Figure 3-2 and Figure 4-1 are both examples of simple packings. Before we begin an 

investigation on fractured branched maps with three branch circles we first need to show 

that the case with two branch circles is impossible. 

 

Theorem 7: No fractured map with exactly two branch circles is coherent. 

Proof. Recall that if a motif is coherent then every face not composed entirely of branch 

centers will be placed in the same location by a holonomy as it will for the trivial closed 
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chain. So if we follow the “rotations” occurring as a result of branching, the branch 

vertices must also be placed in the same location since they are part of one of these faces. 

Figure 5-1 illustrates how this rotation occurs. Assume that a packing has been fractured 

at two branch circles. Suppose the first branch circle, 1B , has branching, 1b a=  

where 0 2a π< < , and the second branch circle, 2B , has branching, 2b c= where 

2a c π+ = . Place 1B and 2B on the x-axis with 1B at the origin.  The total angle sum at 1B  

is not an integer multiple of 2π so if we lay out the faces 2B will be repositioned 

somewhere not on the axis. Now the branching at 2B  can reposition 1B  but cannot 

possibly reposition itself as in Figure 5-2.  

The “rotations” happen because the angle sum of the branch circle is the shared 

vertex of all the faces in its flower, and the angle sum is greater than 2π but less than 4π. 

Using a similar approach we now show the following important theorem about fractured 

branched motifs with three branch circles. 

 

 

Figure 5-1: Branching the flower at its center causes the rotation of the shaded circle. 

Non-branched Flower 
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Flower with angle sum greater than 2π



 32

 

Figure 5-2: Branching a motif at two circles.  

 

Definition 17: A branch triangle is the triangle formed by three branch circles.  

 

When a motif is incoherent there will be different ways to lay out the circles. To 

avoid any ambiguity the branch triangle will always refer to the triangle that is found by 

laying down the branch circles first. 

 

Definition 18: If C is a branch circle then its branch angle is the angle of a branch 

triangle with C at the vertex. The branch angle at branch circle iC  will be denoted iα . 

Definition 19: A tri-branched motif is a fractured branched motif with exactly three 

branch circles. 

 

From this point forward it will be assumed that all tri-branched motifs are nontrivial. That 

is, each of the branch circles have a branching greater than 0. 

 

Theorem 8:  The Tri-branching Property. A tri-branched motif is coherent if and only 

if the branching at each circle is equal to twice its branch angle. That is, 2i ib α= for each 

i=1, 2, or 3. 

Proof. Suppose a triangle, T, was rotated around each of its vertices by positive angles 

that summed toπ  such that the final rotation returned the triangle to its original position.  

So we have three rotations and three vertices. See Figure 5-3 for an example. Each  
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Figure 5-3: Rotations of the triangle. 

 
rotation places T in a new position. Since the locations of the last triangle and the original 

triangle are identical we have three copies of T. These three triangles each share a vertex 

with the two other triangles and so they form a new triangle, T’, with edges from the 

original triangle. A rotation occurred at each vertex so the three edges of T’ each has an 

edge from T. Two triangles with the same sides are identical, so T and T’ are identical. It 

follows that the rotation at a vertex is just the angle at that vertex twice, once for the 

triangle and once again for the identical triangle. Recall from the proof of Theorem 7 that 

non-integer multiples of branching cause a rotation as illustrated in Figure 5-1; so this 

applies directly to branched maps with exactly three branch circles. The converse follows 

directly. 

 

Existence of a Coherent Tri-Branched Motif 

Theorem 9: A coherent branching distribution for a tri-branched pacing exists. 

Proof: The total branching on all three circles is always 2π as is twice the total of all 

branch angles. In both the former and latter, one value can be determined from the values 

of the other two. Below are two simplexes. The simplex in Figure 5-4 represents the 

branch distribution where the x-axis is the distribution of branching at one branch circle 

and the y-axis is the distribution at one of the other branch circles. The x-axis and y-axis 

in the adjacent simplex represent the doubled branch angle for the same circles. 

Branching a packing and then applying the packing algorithm will yield an associated 

branch triangle. That is, the circle packing algorithm computes radii for the associated  

1 2

3

2

3 

1
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Figure 5-4: Map from the simplex of branch distribution onto the simplex of branch angles. 

 

complex and hence the branch angles. The angles are a continuous function of the 

prescribed branching, so we can describe a continuous function from one simplex onto 

the other. Identifying the two simplexes, the function is a map from a compact surface 

into itself. So then by Brouwer’s fixed point theorem there will be at least one fixed 

point. Hence by the angle condition at least one distribution will produce a coherent 

packing. Note that Theorem 9 applies to any circle packing, not just simple packings. 

 

Uniqueness 
As the experimental data in Chapter 4 suggests, the coherent distribution in a 

simple packing is unique. When a circle packing is branched its complex is unchanged. 

The only way left to change the angle sums is by manipulating the radii. In a simple 

packing there are only three interior circles so all the non-branched neighbors of the 

branch circle are border circles whose radii will remain fixed. The simple packing is thus 

branched by changing only the radii of the branch circles. As an immediate result of the 

law of cosines, any change in branch distribution results in at least one branch radius 

changing, and any change in a branch circle’s radius will affect the branching of both its 

neighboring branch circles. 

 

Definition 20: A non-branched circle that is tangent to more than one branch circle is a 

connecting circle. 

  

1b  

2b  

12α  

22α  
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When there are three branch circles, a connecting circle is tangent to two branch 

circles, and any two connecting circles are tangent to a single branch circle. In general, 

ownership will be used to imply univalent tangency. For example, saying that 

“connecting circle A is branching circle’s B’s connecting circle” or “connecting circle A 

belongs to branching circle B” means that the complex assigns A and B to be tangent. 

Connecting circles will be identified with the notation,
i j

vC , where i and j are the 

connecting circle’s branch circles and v is the vertex of the connecting circle. An example 

is shown in Figure 5-5. Ownership is determined by the complex and is unchanged by 

branching.  

 

Definition 21: The partial angle sum of a branch circle is the sum of angles in the branch 

circle’s flower that is formed by non-branch circles. This is a local non-closed chain from 

one of the branch circle’s connecting circles to its other connecting circle. See Figure 5-6 

for an example. 

Definition 22: The connection angle is the difference between the partial angle sum and 

2π. That is, 2 partial angle sum  connection angleπ − = . With coherent and incoherent 

packings it may be possible for the partial angle sum to exceed 2π so the connection 

angle will sometimes be negative where the sign just represents the angles’ orientation as 

usual. The connection angle will be represented with the notation i j

v
∀ where i and j are 

the connection circles and v is the branch circle. It will usually be more convenient to 

refer to the connection angle of a branch circle instead of its partial angle sum.  

Definition 23: A branch-connection angle is formed by one of a branch circle’s branched 

neighbors and their shared connection circle with the branch circle as the vertex. These 

are the angles for branch circle 1B  with branched neighbors 2 3and B B . Each branch circle 

has two connection circles and two branched neighbors so every branch circle will have 

exactly two branch-connection angles. 
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Figure 5-5: The connection circles are shaded. 

 

 

 

Figure 5-6: The partial angle sum of an interior circle is shaded.

1 2
1C

 

1 3
3C

 1B  

2B  3B  

2 3
2C
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In a non-fractured branched motif, the radius of a branch circle uniquely 

determines the angle between its connection circles. In a fractured branched motif the 

radius of a branch circle does not uniquely determine its angle sum since neighboring 

branch circles may have their radii increased or decreased. A branch circle’s connection 

angle is completely independent of the other branch circle radii since they are not 

included in the partial angle sum.  

The partial angle sum is like a belt wrapped around the branch circle. The length 

of the belt is unchanged so the size of the waist determines where the ends of the belt will 

be. The connection angle will change positively if the branch circle increases and 

negatively if the branch circle decreases. An example of the latter is shown in Figure 5-7.  

 

Theorem 10: In a simple tri-branched packing, there is only one distribution that yields a 

coherent packing.  

Proof: Suppose that the coherent branched packing of a simple packing is not unique. We 

can assume a coherent packing exists and view a second coherent packing as having been 

changed from the first through manipulation of branch radii. When the radii ratio of two 

tangent circles changes the position of any third mutually tangent circle also changes. The 

 

Figure 5-7: The connection angle changes negatively when the branch circle decreases. 
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vertex of a third tangent circle will lie on a hyberbola that has foci at the vertices of the 

two base circles, and a curvature defined by the difference in radii between the two base 

circles. This curve is a straight line if the difference between the two base circles is zero, 

and becomes more curved if the difference grows, bending away from the larger circle as 

in Figure 5-8.  

 

Lemma 1: If two circles are tangent in a circle packing then they will be tangent in a 

coherent packing if they are branched. 

Proof. Two circles must be tangent to find the location of a third tangent circle, and in a 

coherent packing two tangent branch circles will share at least one face with a non-

branched circle. So if they are not tangent then the motif cannot be coherent. 

 

If we change a branch circle’s radius we set two forces in opposition. The 

connection angle will be determined completely by the radii, but changing the radius also 

changes the tangency relations.  

 

Lemma 2: If the total amount of branching is 2π then changing the branching in a simple 

motif will always result in at least one branch circle radius changing positively and 

another changing negatively.  

 

 

Figure 5-8: A bend in the tangency-hyperbola as a result of a change in the ratio of the radii of the 
tangent circles. 
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Proof. If all the branch circle radii are increased than all their partial angle sums will 

decrease. There are then three faces in each flower that are left unaccounted for, the 

branch triangle and the two faces that each share an edge with the branch triangle (the 

branch-connection angle). These faces are each composed of two branch circles and one 

connection circle. Let the branch circles be iB . The connection circles’ radii will not 

change so the angle i j

i j
v

B B

C
∨ will increase since both iB  and jB increase. The sum of the 

remaining angles in each of these triangles will then decrease. The branch angle will not 

affect the sum of the branch circle’s angle sum since each branch circle has a vertex in 

the triangle. So the total angle sum decreases, which is a contradiction. It can be similarly 

shown that all the branch radii cannot decrease and that only one branch radius cannot 

change. 

 

Now we proceed in the proof of Theorem 10. By Lemma 2, changing the 

branching in a coherent tri-branched packing will result in one branch radii that has been 

increased and another that has been decreased. The remaining branch circle will be 

increased, decreased, or unchanged.  

Consider the case when one branch circle is unchanged. Let the decreasing branch 

circle be called 1B , the increasing branch circle 2B , and the unchanged circle 3B . The 

ratios of the radii of 1B  to 2B and the radii of 1B to 3B both changes such that the tangency-

hyperbolas created by 1B  with 2B and 1B  with 3B  will both bend towards 1B  since by 

Lemma 1 all these circles will be tangent. This will increase the connection angle.  

This is a contradiction since decreasing the radius of a branch circle will increase 

its partial angel sum and thus decrease its connection angle. Figure 5-9 and Figure 5-10 

illustrate this when the partial angle sum is less than 2π, and Figure 5-11 and Figure 5-12 

illustrate this when the partial angle sum is greater than 2π. The remaining two cases 

work out similarly. 
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Figure 5-9: The tangency-hyperbolas change as a result of the change in ratio of the radii when the 
partial angle sum is less than 2π . 

 
 

Figure 5-10: Change in the connection angle when the partial angle sum is less than 2π . 
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Figure 5-11: The tangency-hyperbolas change as a result of the change in ratio of the radii when the 
partial angle sum is greater than 2π . 

 

 

Figure 5-12: The change in the connection angle is positive when the partial angle sum is greater 
than 2π . 
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It is possible to make these hyperbolas with a Euclidean construction. Essentially 

the same argument can be made using the faces.  Refer to Figure 5-13 for an illustration 

of the angles described here. The branching at a branch circle is just the sum, 
1 2 1 3

2 3 2 3

1 1 1

1 2 1 3 1 2 1 3
2 3 2 3

1
1 1 1

1

1

(   ) 2B B B C B C

B B B

B B B C B C C C

BB B B

b partial angle sum

b

π= + + + −

⇒ = + + − ∀

∨ ∨ ∨

∨ ∨ ∨
 

If the motif is coherent then by the tri-branching property we have the equality 
1 2 1 3 1 2 1 3

2 3 2 3 2 3

1
1 1 1 1

2 B B B B B C B C C C

BB B B B
⋅ = + + − ∀∨ ∨ ∨ ∨  

Which gives the following equation for the connection angle in a coherent motif, 
1 2 1 31 2 1 3

2 3 2 3

1
1 1 1

B B B C B CC C

B B B B
∀ = − + +∨ ∨ ∨ .  

As before, assume that one branch circle decreases and that the remaining two do 

not decrease. If 1B  decreases then 
1 2 1 3

2 3 2 3

1 1 1

, , and B B B C B C

B B B
∨ ∨ ∨  each increase since the 

connection circle does not change and the other two branch circles either increase or do 

not change.  Because 1B  decreases the connection angle must decrease. For this to happen 

the change in 1B ’s branch angle, 2 3

1

B B

B
∨ , must exceed the combined change in 

1 2 1 3
2 3

1 1

and B C B C

B B
∨ ∨ .  

This cannot occur without relaxing the univalent tangency requirement since any 

change in 2 3

1

B B

B
∨ will cause the exact same change in

1 2 1 3
2 3

1 1

and B C B C

B B
∨ ∨ . From Figure 

5-13, 2 3

1

B B

B
a b= +∨ . A decrease of 1B  and a non-negative change of 2B and 3B  will 

guarantee that both angles a and b will increase. Similarly both
1 2

2

1

B C

B
b−∨  and

1 3
3

1

B C

B
c−∨  

will also increase because neither connection circle changes. So again a change in a  
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Figure 5-13: The relationship between the branch angles and connection angles is very rigid in a 
coherent packing. 

 
 
branch circle’s radii requires that the connection circles move in one direction according 

to tangencies and the opposite direction according to its partial angle sum.  

From Lemma 1one might infer that making the distinction between a coherent 

packing and a circle packing is unnecessary. The difference is rather subtle. In a coherent 

packing, branching has to occur such that each circle retains its tangency and each branch 

circle has the correct extra angle sum. A circle packing has the added property that 

orientation is preserved. 

Imagine that the branching happens in a continuous process beginning with a 

packing and slowly transforming into a coherent branched packing. As a circle is 

branched its tangent branch circles begin to pass through each other. Their radii are also 

in the process of changing since they are also being branched, but there are only two 

possible places for them to be tangent. The first one is their initial point of tangency 

which is gone as soon as branching begins. The second is the point of tangency just after 

they completely pass through each other. At this second point the motif is not a packing 

because orientation has not been preserved at the branch circles.  

If we place the circles at this point, the orientation of the two branch circles has 

been “flipped.” This is precisely where Theorem 8, the tri-branching property, enters. The 

“flip” allows the extra angle sum to be added while preserving tangency, and is the 

reason the extra angle sum must be exactly twice the branch angle. 

1B

2B  
3B  

1 3
C1 2

C  

a b

1B

3B  2B  

1 3
C

1 2
C  
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Chapter 6  
An Algorithm 
 

A tri-branching coherent motif exists and is unique. Now how do we find this 

solution? The tri-branching property tells us exactly what the branching needs to be in 

relation to the branch radii, however these radii change whenever the angle sums are 

changed! The branch angle is very fluid, morphing with every little change of the 

branching. Since the partial angle sums of a branch circle in the triangle change 

independently of the changes in the other branch circles, a small change in the branch 

triangle could result in a large change in angle sums. If an incoherent packing is repacked 

according to its branch angles the branch angles change because the branching changes 

the radii, however the resulting motif will be “less” incoherent then its predecessor.  

First we need a different method of measuring incoherency from the one used in 

Chapter 4. The problem with that method is that the motif initially becomes “worse” as 

the distribution moves away from the trivial solutions, and determining where it begins to 

improve creates a problem. Since the motif is coherent when the tri-branching property is 

met, we can instead use the sum of the differences of branch angles and branching as a 

way of measuring error. Call the error E where 1 1 2 2 3 32 2 2E b b bα α α= − + − + − . By 

evaluating branch angles and repacking according to the branch angle we are able to 

chase down the solution as close as we like. The process is pleasingly simple. 

 

The Tri-branching Algorithm 

1. Branch a packing at three circles such that 2i j kb b b π+ + = . 

2. If 0E = then the packing is coherent. If 0E ≠ then set 

,2 , 2  and 2i i j j k kb b bα α α= = = and repack.  

3. Repeat step 2 until 0E = . 

 

Theorem 11: In The Tri-branching Algorithm the error, E, converges to 0. 



 45

Before proving the algorithm, let us first look at some experiments. Using E as the z-

axis with an experiment similar to those described in Chapter 4, and using the same circle 

packing as the one used in Figure 4-1 gives the graphs in Figure 6-1.  

Here, any distribution moving the simplex away from a trivial solution results in less 

error, and any movement from an incorrect distribution towards the solution also results 

in less error. It can be difficult to visualize an incoherent packing since there is by 

definition no consistent way to draw them. The program “Circlepacking” will draw an 

incoherent packing by relaxing external tangency. 

This can create difficulty when trying to measure the error of a motif since this loses 

the relation between the complex and radii. We will describe a simple incoherent packing 

by first laying down the branch face and then laying down the flowers of each branch 

circle such that all their petals are tangent to the center of their flowers. If the motif is 

incoherent then the connection circles will not all be laid down on the same location, 

resulting in as many as six locations for three circles or, equivalently, two locations for 

each connection circle.  

To simplify things, only the branching circles and connection circles are shown. 

Each branch circle’s flower can be rotated (without changing any angles) such that each 

branch circle places at least one connection circle in the correct position, tangent to both 

its branch circles. Figure 6-2 shows how this can be done.  

First we need to show that the second step of the algorithm moves the connection 

circles in the correct direction. Assume we describe a motif as defined above. By the tri-

branching property, 
1 2 1 3 1 2 1 3

2 3 2 3 2 3

1
1 1 1 1

2 B B B B B C B C C C

BB B B B
⋅ = + + − ∀∨ ∨ ∨ ∨ if and only if the flower at 1B  is coherent. 

Which gives the following equation for the connection angle in a coherent motif, 
1 2 1 31 2 1 3

2 3 2 3

1
1 1 1

B B B C B CC C

B B B B
∀ = − + +∨ ∨ ∨

.
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Figure 6-1: A side, top, and angled perspective of 10,000 experiments of the branching distributed 
between three circles using E to measure incoherency. 
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Figure 6-2: A description of an incoherent packing. 

 

As in Chapter 5, 
1 2 1 3

2 3 2 3

1 1 1

1 2 1 3 1 2 1 3
2 3 2 3

1
1 1 1

1

1

(   ) 2B B B C B C

B B B

B B B C B C C C

BB B B

b partial angle sum

b

π= + + + −

⇒ = + + − ∀

∨ ∨ ∨

∨ ∨ ∨
 

Suppose that as in Figure 6-3 the connection angle is to large. Following Figure 6-3, it is 

clear that any such motif is incoherent and that
1 2 1 3 1 2 1 3

2 3 2 3

1 1 1 1

C C B B B C B C

B B B B
∀ > − ∨ + ∨ + ∨ . Which 

implies that 
1 2 1 3 1 2 1 3

2 3 2 3 2 3

1
1 1 1 1

12 B B B B B C B C C C

BB B B B
b⋅ > = + + − ∀∨ ∨ ∨ ∨ , meaning that by the tri-

branching property the branching at this circle needs to be increased.  

Similarly for any branch circle changing the branching according to the branch 

angle will move each of the connection circles in the right direction. The question is 

whether it will move it too much, creating more error than we were trying to correct, or if 

E will eventually converge to 0. 
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Figure 6-3: Angles in a coherent motif.
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The graph in Figure 6-4 is the algorithm applied to the circle packing in Figure 

4-1. Branching according to the branch angles changes the branch angles, but these 

angles move less and less the more times the algorithm is repeated. All experiments 

performed using the algorithm behaved similarly. This graph suggests that the algorithm 

not only converges but that in fact changing the branching by only a fraction in the 

correct direction will improve the error.  

 

Now we will show that E converges to 0. The motif can be organized by laying 

down the branch circles first, then the connection circles, and then laying down the faces 

for border circles using their branch circle and one of its connection circles for 

orientation. 

The result shown in Figure 6-5 is similar to the description illustrated by Figure 

6-2, but the error has been moved to the non-connection border circles. Assume we have 

tri-branched a packing, branching the circles 1 2 3, ,  and B B B , and that 0E ≠ . The tri-

branching property fails at one or more of these circles. So then 2i i ib α θ− =  for 0iθ ≥  

and 1,2,  or 3i = . Setting each ' 2i ib α=  may give new branch angles which we will 

denote, '
iα . Increasing or decreasing the angle sum of one of the branch circles can be 

done by changing the radius of the branch circle itself or by changing the radii of its 

branched neighbors.  

The former causes an angle change for all of the faces in the branch circle’s 

flower while the latter causes the branch triangle and both its branch-connection angles to 

change. As the motif has been laid out, any change in the branch angle will cause the 

same combined amount of change in the branch-connection angles. Since the branching 

at each branch circle was changed by iθ , the branch angle at each of these circles cannot 

change more than 2
iθ , giving the equation, ' where 0 1

2
i

i i i id dθα α= + ≤ ≤ . 
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Figure 6-4: The algorithm applied to the motif 100 times. 

 

 

 

Figure 6-5: Another description of an incoherent packing, which has the location of where tangency 
fails moved to the non-connection circles. 
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The new branching was set to twice the original branch angle. So after applying 

the algorithm, the difference between a branch circle’s branching and its branch angle is, 

' ' '2 2 2 2 2( )
2

i
i i i i i i i i ib d dθα α α α α θ− = − = − + = − . A change in branching can only occur if 

one or more of the branch radii change. This implies that the partial angle sum of one or 

more of the branch radii will account for part of that branch circle’s angle sum change.  

Hence, there will be at least one new branch angle such 

that '  where 0 1
2

i
i i i id dθα α= + ≤ < . So the new error is 

' ' ' ' ' '
1 1 2 2 3 3' 2 2 2E b b bα α α= − + − + − , and then 'E E< . Because E is decreasing, it either 

goes to zero or goes to a positive limit. 

The algorithm is decreasing; which implies that if E converges to a positive limit 

either one or two of the angle differences, 2i i ibθ α= − , will be zero. By Lemma 2 at least 

two of the branch radii will change whenever the branching distribution is changed. Thus 

we must have at least two that converge to 0. The sum of the branching is always 2π so 

then 1 2 3 0θ θ θ+ + = . It follows that if two of the angle differences are zero than the third 

will also be zero. Hence the algorithm will always find the correct branching.
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Chapter 7  
Geometry on a Coherent Packing 

 
A coherent packing is a very aesthetic piece of geometry. The tri-branched 

coherent packing shown in Figure 7-1 is particularly pleasing. A proper exploration of all 

the possible relations hidden under its deceptively simple appearance would require a 

different work devoted entirely to this purpose. Here a couple of quick examples will be 

presented. 

 

Example 1. For our first example we will refer to the coherent tri-branched packing in 

Figure 7-2. In a coherent tri-branched packing each connection circle is the vertex of an 

angle formed by its branch neighbors. If these three angles are combined with the three 

branch-connection angles then their sum is 2π, and they form a hexagon as in Figure 7-3. 

Proof. Suppose we have a tri-branched coherent packing with branch 

circles 1 2 3, ,  and B B B . Recall that if a tri-branched motif is coherent then the connection 

angle is equal to, 
1 2 1 31 2 1 3

2 3 2 3

1
1 1 1

B B B C B CC C

B B B B
∀ = − + +∨ ∨ ∨  

So then the angle of the face compose by 1 2C , 1 2and B B with 1 2C as the vertex is, 
1 2 1 2

1 2 2 1

1 2
1 2

B B B C B C

B BC

π= − −∨ ∨ ∨  

Combining the angles yields, 
1 2 1 3 2 3 1 2 1 3 2 3

1 2 1 3 2 3

1 2 1 3 2 31 2 3

B B B B B BC C C C C C

B B B
C C C

∀ + ∀ + ∀ + + +∨ ∨ ∨  

1 2 1 3 1 2 2 3 1 3 2 3
2 3 2 3 1 3 1 3 1 2 1 2

1 1 1 2 2 2 3 3 3

1 2 1 2 2 3 2 3 1 3 1 3
2 1 3 2 3 1

1 2 2 3 1 3

B B B C B C B B B C B C B B B C B C

B B B B B B B B B

B C B C B C B C B C B C

B B B B B B
π π π

− + + − + + − + +

+ − − + − − + − −

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∨ ∨ ∨ ∨ ∨ ∨
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Figure 7-1: A coherent tri-branched packing. 
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Figure 7-2: A coherent tri-branched packing rendered from the circle packing in Figure 4-1. 
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Figure 7-3: The hexagon constructed from the angles in Figure 7-2. 
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Grouping terms together, 
1 2 1 2 1 3 1 3 1 2 1 2

2 3 1 3 1 2 2 2 3 3 1 1

1 2 3 1 1 1 1 2 2

2 3 2 3 1 3 1 3 2 3 2 3
3 3 1 1 2 2

2 2 3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) 3 3 2

B B B B B B B C B C B C B C B C B C

B B B B B B B B B

B C B C B C B C B C B C

B B B B B B
π π π π

− − − + − + − + −

+ − + − + − + = − + =

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∨ ∨ ∨ ∨ ∨ ∨
 

The sides of the triangles will match together as in the picture since their sides are 

of equal length. If the circles in the motif are all laid out so that they are tangent then the 

equation for the connection equation will hold and the converse is also true.  

 

Example 2. Figure 7-4 is another similar result that can be constructed with a coherent 

tri-branched packing. The same triangles used in Figure 7-3 are used here, only they have 

been placed repeatedly and in a slightly different order. The proof is similar to the one 

used in Example 2 and is omitted here. 

 

In the hexagon pictured in Figure 7-3, the sides opposite the connection angles 

can be extended until they intersect. The triangle formed by connecting these 

intersections is similar to the triangle formed by connecting the vertices of the connection 

circles (the connection triangle) the hexagon was derived from. This is best demonstrated 

with Figure 7-5. 

This is a picture of the same coherent packing used to build the hexagon in Figure 

7-3. Just the complex of the branch circles and connection circles is shown with the 

connection triangle highlighted. A series of parabolic shifts of each of the triangles using 

the angles 1 2 1 3 2 3

1 2 1 3 2 3

, ,  andB B B B B B

C C C
∨ ∨ ∨ gives the hexagon.  

The complex shown will have matching vertices for circles that are drawn tangent 

(all circles not just the branch and connection circles) if and only the packing is coherent. 

So this statement could be used as a slicker proof of Example 1. It would not be 

surprising to discover that a condition for coherency is dependent on the connection 

triangle. Experiments have suggested that the connection triangle prior to  

 



 57

 

 

Figure 7-4: A geometric shape render from the coherent packing in Figure 7-2.
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Figure 7-5: The shifts that can used to construct the hexagon in Figure 7-3
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branching is more influential on a coherent packing’s structure than the radii of the 

border circles.  

Although an exact equation for computing circle packings does not exist, one 

might for branched packings. It may even be possible to make Euclidean constructions of 

tri-branched packings in special situations or even in the general case. Regardless of the 

circumstances, it is certain that there is much left to explore.
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Chapter 8  
Closing Thoughts 

 
Things have wrapped up rather nicely, but there is still much work that needs to 

be done. Experiments strongly suggest that all of the results shown here could in fact be 

generalized to non-simple circle packings. Furthermore, experiments have suggested that 

all of these results would hold without assuming mutual tangency for the branch circles. 

If true, it would be an interesting result since this property was key to proving 

uniqueness.  

This would be of value since the question of using tri-branched packings in 

application to discrete functions would be closed. On this subject (it was after all the 

original motivation for these problems) the use of a fourth branch circle seems as though 

it would provide the needed flexibility. Using three branch circles has the strength of a 

triangle, but using four is like a bookcase without any shelves that flops over.  

This investigation was restricted to the plane. A study of fractured branched 

packings on hyperbolic or even spherical geometry could be very interesting. Most 

interesting to the author, however, is the possibility of a whole new breed of geometry 

problems. Stare for a few minutes at a coherent tri-branched packing and a myriad of 

relations seem ready to leap out. The optimism expressed here for the future of fractured 

branched packings may be nothing more than wishful thinking kindled by the recent 

entertainment of these problems, but the author feels confident that there is much more to 

be found beyond the horizon. 
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