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ABSTRACT 
 

 

     This project began when Opti-Logic, a local manufacturer of laser rangefinders for military 

and sporting applications, expressed a desire to design an altimeter for General Aviation 

application to measure absolute altitude based on the laser range finder as a sensor.  The 

sensor they chose was the RS400, which was originally designed for security applications.  

The purpose of this thesis was to aid Opti-Logic by designing and flight-testing an intuitive 

display for the laser altimeter.  A Systems Engineering approach was used throughout the 

design process.  A basic assumption in the design of the system is that a suitable laser sensor 

was available and as such, the sensor was treated as a Non Developmental Item. 

     The development of an intuitive display was problematic in that the concept of intuition can 

have differing meanings from one individual to another.  As a result, the topic of perception 

and cognition with respect to aviation was explored fully to gain better insight into how a pilot 

processes altitude information.  Additionally, even though the sensor was fixed in the design 

process, basic laser theory is presented to give the reader an understanding of the problems 

associated with this type of system and to provide background in the analysis of the 

performance of the system overall. 

     A system engineering approach was adopted for the design of the display.  The 

development of the altimeter display from requirements analysis to prototype validation was 

accomplished.  These steps represent only the first iteration of the design process.   

     Qualitative evaluation of the symbology demonstrated that the display design reduces total 

pilot workload.  This was accomplished by reducing the cognition required to process the 

information a pilot needs to execute control of altitude.  Recommendations for future iterations 

include: 

 1.  Testing the display using the caution, alert, and fault indication symbology sets to 

determine the effectiveness of color-coding as an alert strategy. 
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 2.  Continue evolving the software to incorporate a more effective filtering technique to 

eliminate lag errors without increasing the noise of the system. 

 3.  Incorporate a method of recording altitude information for quantitative analysis to 

support qualitative evaluation. 

 4.  Increase the maximum value or the VSI from + 1000 fpm to + 2000 fpm. 
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I.  Introduction 
  

Background 

     The past decade has seen the proliferation of technology with regard to display and display 

presentation, which has kept pace with the advances in computer technology.   The major 

benefactors of this technology have been the military and commercial aviation for obvious 

reasons, namely the cost.  While the accident rate for the commercial airline, industry is far 

less than that of the GA community, the cost in terms of human lives and dollar amounts for a 

single commercial aviation accident far exceed that of GA.  Additionally, the airline industry 

and US Government can more readily absorb expensive production and developmental cost 

incurred in the design of state of the art avionics.  It is accepted that many GA pilots and 

aircraft owners are limited in funds they have available for aviation.  This is readily apparent in 

the FAAs reluctance to impose requirements, which are expensive and restrict those 

requirements to what is necessary for safe operations. (Ritchie, 1988) 

     The spiraling cost of GA has been attributed to several factors.  The decades of the 70�s 

and 80�s saw a large increase in GA aircraft sales.  With the increase in GA operations also 

came an increase in the GA accident rate.  This in turn drove up the cost of operating a private 

aircraft as families of accident victims sought grievance through litigation against the 

insurance companies and the aircraft manufacturers.  During the same period oil price 

escalated.  These factors combined, increasing the cost of the GA aircraft to the point where 

the average American could no longer afford to buy an airplane, much to the decrement of the 

GA industry.  In 1978, at the height of the GA boon, the manufactures delivered 14,398 

aircraft.  By 1994, that number had decreased to just 444. (NASA, 1998) 

     NASA, along with the FAA and industry, has begun a program to develop the next 

generation of GA aircraft, in an attempt to revitalize the GA market.  The program, Advance 

General Aviation Transport Experiment (AGATE), incorporated breakthrough technologies in 

structures, avionics and cockpit design, to develop a radically new aircraft. (NASA, 1998)  This 
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new aircraft will incorporate a sophisticated avionics package that will take advantage of 

advances in presentation and display technologies formerly unavailable to the GA pilot, to aid 

in situational awareness.  Such systems while notably beneficial, are likely to remain cost 

prohibitive to most potential aircraft owners and still do not address the problems inherent in 

the more than 187,000 aging GA aircraft flying today. 

     A need exists to explore low cost alternatives that will take advantage of the technologies 

and research of the past decade.  This project provides the research necessary to develop a 

low cost display to be integrated in an inexpensive laser altimeter system for use on GA 

aircraft.  The purpose of the altimeter will be to display the aircrafts absolute altitude and aid in 

situational awareness. 

Perception and Cognition 

     A pilot perceives his environment, orientation, and aircraft systems status using three of the 

five human senses: vision, hearing, kinesthetic (vestibular), and touch or proprioceptive.  

Using the information gained from the senses the aviator is able to make decisions and 

execute control inputs necessary for flight.  This process is termed cognition. (Roscoe, 1994)   

While the modern cockpit is replete with displays to provide information to the pilot, it is not the 

quantity but the format in which this information is presented that has been the greatest 

obstacle to information processing and requires the most revision. (Ritchie, 1988)  An 

understanding of the process of aviation cognition will help determine how human error in the 

cockpit occurs, thus leading to a more effective display format design.  

Human Perception 

     Perception is defined as the assignment of meaning to a physical stimulus.  The pilot�s 

primary sensing organ is the eye.  The lens focuses the light entering the eye onto the back of 

the eye, which is called the retina.  The act of focusing on an object is termed accommodation.  

The retina consists of nerve cells concentrated in the fovea and para-fovea.  The nerve cells 

of the fovea are made up of two types of cells, rods and cones, named for the shape of the 
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cells. The rods and cones are bundled together and connected to the optic nerve, which sends 

the signal to the optical lobe of the brain.  The cones are used for vision in good lighting 

conditions and are sensitive to color.  Cone cells are concentrated in the fovea centralis and 

become less dense the further from the center until rods gradually replace them.  Rods are 

located in the para-fovea and become active during periods of low light levels.  The optic 

nerve contains neither rods nor cones and is a source of a blind spot, which is overcome by 

the binocular nature of vision. (Hawkins, 1987) Figure 1 below illustrates the major 

components of the eye. 

     When the level of light entering the eye changes the process of adaptation occurs.  Firstly, 

an adjustment in the diameter of the pupil takes place in an attempt to control the amount of 

light entering the eye.  Secondly, as the light level within the eye changes the task of sensing 

is passed from the rods to the cones.  The rods contain a chemical called rhodopsin, which is 

bleached, under high levels of light.  As the intensity of light decreases, the level of rhodopsin 

increases in the nerve cells and they become more sensitive to the decreased levels of light.  

The cones located in the center of the fovea become ineffectual causing a �night blind spot� in 

the center of the visual field, which cannot be overcome by binocular vision.  Additionally, the 

rods are not sensitive to color so objects, which are colorful during the day gradually, become 

various shades of gray at dusk.  (Hawkins, 1987) 

 

Figure 1.  The Human Eye 
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    While the eyes provide the pilot with a visual representation of the environment, it is the 

vestibular system, which provides the pilot with the orientation and sense of motion with 

respect to the earth�s center.  The vestibular system consists of the semicircular canals and 

the otolith organs, which measures angular and linear accelerations.  Figure 2 shows the 

composition of the vestibular system. 

     The organ to sense angular accelerations consists of three canals situated at 

approximately right angle to each other and includes the anterior, the posterior, and the lateral 

canals.  As the head experiences an angular acceleration in the plane of the canal, as in a 

turn, the fluid within the canal begins to move.  The fluid bends the cupula, a structure located 

within the canal, which stimulates nerve cells at the base of the cupula.  The nerve impulses 

are sent to the brain, which interprets the signal as a movement of the head.  If the turn 

continues at a constant rate the fluid within the canal reaches, the same velocity as the canal 

itself and the hairs return to a resting position.  When the turn is completed, the fluid within the 

canal is slow to stop and the hair cells are bent in the reverse direction giving the sensation of 

turning in the opposite direction.  (Hawkins, 1987) 

 
Figure 2.  The Human Vestibular System 
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     The second apparatus of the vestibular system, the vestibule proper, contains the otolith 

organs and senses linear accelerations.  The vestibular sacs contain sensory hairs and otolith 

crystals suspended in a gelatinous fluid.  When the head is upright, the hair cells transmit a 

resting frequency to the brain.  As the head is tilted, the motion causes the otolith to bend the 

hair cells, which transmits a new frequency to the brain.  The brain determines the position of 

the hair cells by the change in frequency.  As the body accelerates, the otoliths resist the 

acceleration and move the hair cells to a new position.  The body cannot distinguish between 

the inertial forces resulting from acceleration and those of gravity, which may lead to a form of 

vestibular illusion that will be discussed later. (Hawkins, 1987) 

     The proprioceptive sense, sometimes referred colloquially as �seat-of-the-pants,� is a result 

of pressure changes on the organs, muscles, and skin of the human body.  As the pilot sits in 

the cockpit seat, the pressure of the seat on the skin due to the weight of the body causes 

sensations to be relayed to the brain.  As the aircraft is maneuvered, the body experiences an 

increase or decrease in the sense of pressure on the skin and a slight shift in the position of 

internal organs, which the pilot interprets as accelerations. 

Information Processing 

      Information processing is the method humans use to transform sensed stimuli into useful 

information and respond to that information.  There have been numerous studies on the 

subject of information processing and just as many theories.  Just as there are two types of 

nerve sensors in the eye, which contribute to vision, there are two functions or modes of 

processing visual images: object recognition and visual guidance.   The type of visual function 

depends largely on the area of the brain used.  The function of recognition requires attention 

from the observer while the function of guidance can be accomplished with little or no 

awareness by the observer. (Leibowitz, 1988)    

     The implications of the dual modality of the visual information processing became apparent 

shortly after the introduction of the Boeing 727 in 1968.  Conrad Kraft, a human factors 
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engineer with the Boeing Company noted similarities in the accidents of number of 727s.  A 

number of the aircraft landed short of the runway at night with unrestricted visibility.  Kraft 

noted that all the accidents shared a common characteristic; all of the approaches were made 

over dark areas of water or unilluminated terrain.  Based on the circumstances of the 

accidents, Kraft surmised that the lack of visual reference caused the pilots to estimate their 

altitudes to be higher than they actually were causing them to land short of the runway.  He 

tested his hypothesis by conducting several test in simulated conditions where he eliminated 

the altimeter from the cockpits, requiring the pilots to estimate their altitude visually during 

nighttime VMC approaches.  The results indicated that even the most experienced aviators 

approximated their altitude to be higher than they actually were.  Next, he asked the aviators 

to fly the approach in the 727 without reference to the altimeter.  The results of Kraft�s 

experiments are presented in Figure 3.   

     The approach to landing segment of flight is perhaps the busiest phase for a pilot.  A pilot 

entering the terminal area must monitor the radios as well as scan visually for other traffic in 

order to maintain the principle of see and avoid, communicate with ATC, change the radio 

 

 

 

 

Figure 3.  Kraft�s Altitude Estimation Experiment Results 
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frequencies upon request, as well as maneuver the aircraft, and monitor aircraft systems.   It�s 

not difficult to see how a pilot could ignore the barometric altimeter; especially in light of the 

fact that the pilot believed, he was able to determine the altitude by visual estimation alone.   

     No one knows exactly which parts of the brain are responsible for cognition or even how 

this process occurs so much of the research is based on models.  The human-computer 

analogy is the foundation for the study of aviation psychology, however other theories have 

provided insight the cognitive aspects of aviation.  No matter which model is used to describe 

the process, the language remains essentially the same.  Each model is based on the 

assumption that the mental process progresses in a series of stages from stimulus to 

response.  Figure 4 illustrates a typical four stage cognitive model.  Much of the current 

research is directed at identifying the characteristics of each of these stages. (Wickens, 1988) 

     The first stage is the sensory store.  In the sensory store, physical energy such as light is 

transformed into neural energy through the sensory organ (in this example the rods and 

cones) and is stored as patterns.  The storage of this pattern last less than one second and 

does not require attention resources.  (Wickens, 1988)    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  The Information Processing Model 
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     The second stage is pattern recognition.  This is also sometimes referred to as perception.  

This is perhaps the most important yet least understood of all the stages.  It is at this stage 

where the physical stimulation is recognized as meaningful elements. This process involves 

comparing the pattern mapped in the sensory store to patterns mapped in long-term memory 

(experiences).  A common example of this stage is the odor of cooking causing a childhood 

memory of a trip to grandmothers.  At this level the shape and size of known objects are 

inferred to provide an indication of an aircrafts altitude.  The process is complicated in that 

many sensory stimuli may lead to one memory.  Conversely, a single sensory stimulus may 

lead to many memories.  It is also the stage where confusion of stimuli occurs and the term 

sensory overload takes it�s meaning.  (Wickens, 1988) 

     In the third stage, decisions and responses are made and several choices are available; 

the recognized pattern can either be stored in memory for future use, combined with other 

information, or may cause a response.  If the pilot chooses to respond then the final stage, 

response execution, is initiated.  Once the decision is made to act, the response is translated 

into a series of motor commands to the muscles.  The resulting response then becomes yet 

another input, via a feedback loop, to the sensory store and the process repeats. (Wickens, 

1988) 

     As mentioned earlier perception is the process of comparing sensory input to memory to 

derive meaning from patterns.  Several key issues to the investigation of perception include 

detection and selection.  Classical detection involves four possible outcomes; a stimulus is 

present and it is sensed, the stimulus is present and it is missed, a stimulus, which is not 

present, is sensed, and a stimulus is correctly observed to not be present.  The determination 

of outcomes is a function of sensitivity and response bias.  The ability of a pilot to detect a 

signal is dependent on his ability to distinguish a signal (stimulus) from the background noise 

(all other stimuli).  This is the principle of sensitivity.  Response bias is the criterion a pilot uses 

to make those decisions.  Response bias is a function of expectancy or likelihood of one of the 

four outcomes previously mentioned occurring.  When a pilot is required to monitor a display 
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for long periods, vigilance decrement may occur.   Vigilance decrement is a decrease in 

probability of a pilot detecting a stimulus as a function of time increase and has been 

attributed to changes in sensitivity, fatigue, memory load, and changes in expectancy. 

(Wickens, 1988) 

     When the ability to process the quantity of information approaches saturation the pilot must 

chose what information to monitor.  This is the concept of selection.  Research on the subject 

suggests four conclusions.  First, selection depends to an extent on statistical knowledge of 

the frequency of events occurring on a particular display as well as the correlation between 

certain displays.  Displays, which have a perceived, higher frequency of change occurring, will 

be monitored more closely.  Secondly, human memory is imperfect.  If memory were perfect, 

the need to reference a display for changes would be less than shown in research.  Third, 

referencing specific displays improves when the events most likely to occur in the future are 

reviewed to provide a �planning horizon.�  Lastly, environments high in stress limit the cues 

that are perceived. (Wickens, 1988) 

     Spatial proximity determines whether visual stimuli are processed in parallel or individually, 

that is serially.  Research indicates the optimum angle for placement of information to be 

processed in parallel is 1o.  This led to the general design guidelines that stimuli which needs 

to be processed together should be placed close together while information which should be 

considered separately should be placed farther apart. (Broadbent, 1982) 

Visual Distance Estimation and Depth Perception      

     It is important to note that humans do not perceive the environment in a totally deterministic 

way.  A pilot�s perception is based on sensual stimuli and governed by expectations.  This can 

best be demonstrated by how a pilot estimates depth. (Green, 1996)   Both distance 

estimation and depth perception are vital in determining closure rates and altitude estimation 

in flight.  When the normal cues associated with depth perception are lost due to poor visibility 
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condition such as those encountered in marginal IMC or during the hours of darkness, the pilot 

must compensate for this degraded performance.   

     Binocular vision depends on the differing perspective each eye maintains on an object.  As 

the distance of the object increases the lines of perspective become parallel and the 

advantage is lost.  For this reason binocular cues are only effective at relatively close 

distances.  Additionally, binocular cues work on a subconscious level.  When the advantages 

of binocular vision are gone, the pilot must use the clues to distance and depth perception 

offered by monocular vision.   

     The first of the monocular cues is termed geometric perspective.  Objects such as runways 

tend to have a different shape when view from different distances and angles and is one of the 

first techniques a pilot learns when executing an approach to landing; the view of the runway 

during a correctly executed approach.  Geometric perspective depends greatly on the concept 

of linear perspective, when two parallel lines tend to converge the farther in the field of vision 

they fall.  Another concept pertinent to geometric perspective is apparent foreshortening.  As 

objects are viewed from large distances they appear to be elliptical and its not until the pilot is 

close enough to distinguish detail that the true shape of the object is revealed.  Additionally, 

the further an object is in distance the higher it will appear on the horizon.  This is known as 

the vertical position in the field.   

    Many approaches to landing are made using VASI or some other visual aid such as know 

ground features.  In approaches without the use of landing aids, the pilot must estimate his 

approach angle based on the image of the runway.  This is an example of apparent 

foreshortening and vertical position in the field, which will be discussed in a later paragraph. In 

order to maintain a 3o approach angle the pilot must place the intended impact point 3o below 

the horizon and keep it there.  The visual angle between the impact point and the horizon is 

constant and equal to the angle of approach.  In order to accomplish this the pilot uses the 

visual texture flow.  The image on the retina flows away from the intended point of touchdown.  

As long as the distance between the intended touchdown point (flow field) and the horizon 



 11

remains constant the pilot is on glide slope. During conditions of low visibility or during night 

flight the pilot may not be able to see the horizon or even see enough detail to estimate the 

flow field, therefore an alternate method of estimation is required.  Several techniques are 

available, but these techniques are only viable if the runway and surrounding terrain is level.  

Additionally, immediately before touchdown, if the pilot does not check his approach by flaring, 

the aircraft will touchdown short of the intended touchdown by a distance equal to the length 

from the pilots seat to the rear landing gear.  To gauge his height above threshold the pilot 

may use clues to apparent rate such as the speed with which the ground texture is passing.  

This technique is only valid below approximately 50 feet. 

     The second monocular cue is that of the image focused on the retina.  There are several 

factors, which aid in determining the distance of an object based on retinal image size.  The 

nearer an object is the larger the image projected onto the retina.  The brain learns to interpret 

the size of an object and correlate it to its distance.  Additionally, the brain also learns that as 

the size of the image increases, the object must be approaching.  Conversely, if it is getting 

smaller the object must be moving farther away.  A pilot may also use terrestrial associations 

to determine distance.  In using this cue, the pilot associates the known size of a familiar 

object such as an aircraft in a traffic pattern to one of unfamiliar size such as an airport to 

determine the distance.   

     The last, and perhaps most important, cue to depth perception is that of motion parallax.  

Motion parallax refers to the apparent movement of stationary objects from the pilot�s frame of 

reference.  Object farther in the field of view appear stationary while nearer objects appear to 

move in a direction opposite to the aircraft.  The closer to the aircraft the object is the faster 

the object appears to travel.  It is motion parallax that allows a pilot to determine their intended 

landing point and keep it fixed on the horizon. 
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Visual and Vestibular Illusions 

     Sensory illusions arise when there is a breakdown in the pilot�s ability to assign the correct 

meaning to sensory stimuli.  There are numerous types of illusions, which plague human 

perception.  In the interest of brevity, the discussion will be limited to those illusions, which 

have a direct or indirect influence on a pilot�s perception of altitude. 

     Visual illusions occur when a pilot misinterprets what is visually perceived and are 

generally based on erroneous experience or expectation.  Most visual illusions are easily 

corrected when the aviator crosschecks the orientation of the aircraft with the instruments.  

However, if the pilot is lax in visually referencing the aircraft instrument or if his attention is 

diverted during other tasks then the condition may go undetected with disastrous effects.  

During certain situation, pilots have confused naturally occurring linear formations for the 

horizon placing the aircraft in an attitude not conducive to straight and level flight.  This often 

leads to loss in altitude.  Examples include confusing a linear formation of ground lights for the 

lights of a distant city, or the confusion of a sloping cloudbank with the horizon.  Fascination 

some times referred to as target fixation occurs when the pilot allows himself to become 

engrossed in a task or procedure at the exclusion of aircraft control.  An example includes the 

aviator desperately searching for the proper tower frequency during final approach allowing 

the aircraft to build a descent rate, which puts him below optimum glide path. A total lack of 

visual references can lead to height perception illusion as discussed during Kraft�s experiment.  

Height perception illusion misleads the pilot into believing the aircraft is higher than it actually 

is. 

     While visual illusions may be overcome by the proper use of aircraft instrumentation, 

vestibular illusion are so insidious that even cross checking the aircraft instruments may not 

be enough to allow the pilot to regain control of the aircraft.   There are two types of vestibular 

illusions, somatogyral and somatogravic.   

     Somatogyral illusions are those, which affect the semicircular canals, the organ measuring 

angular acceleration.  The leans are the most common of the vestibular illusions; and occur 
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when the pilot fails to perceive an angular motion such as a slow turn.  After detecting and 

correcting the roll condition, the semicircular canals are stimulated and produce the sensation 

of flying in a perpetual turn.  To correct for this condition the pilot must fly the aircraft while 

leaning (hence the name), referring to the aircraft instruments, until the condition subsides.  

The graveyard spiral is an illusion, which occurs during an intentional or unintentional turn 

maneuver.  If a turn is held for several seconds the fluid semicircular canal reaches 

equilibrium.  As the pilot recovers from the turn, he is decelerated.  The fluid within the canal 

continues turning due to inertial forces and the pilot perceives that the aircraft has entered into 

a turn in the opposite direction.  This process may continue indefinitely as the pilot recovers 

from one turn to the next and may result in an uncontrollable spin.  The coriolis illusion causes 

overwhelming disorientation and is the most dangerous of all the vestibular illusions.  This 

illusion occurs during a climbing or descending turn when the pilot moves his head in a 

direction other than the turn.  All three semicircular canal become stimulated and the pilot 

perceives the aircraft to be rolling, pitching, and yawing all at the same time. 

     The somatogravic illusions arise from changes in the linear acceleration or gravity and 

affect the otolith organs.  There is three kinds of illusion associated with the otolith organ and 

include: oculogravic, elevator, and oculoagravic illusions.  As the aircraft is accelerated 

forward, inertia causes the otolith organs to sense a nose high attitude.  This illusion usually 

does not occur if adequate visual references are present, however if the pilot is flying at night 

or during low visibility conditions correcting for his perception without reference to the 

instruments a pilot would place the aircraft in a diving attitude.  The elevator illusion occurs 

during upward accelerations, as might be experienced with an updraft.  Because of the inertia, 

the body will try to maintain the visual fixation on the environment and cause the eyes to track 

downward.  As the eyes move downward, the pilot perceives the nose of the aircraft rising and 

correct by placing the aircraft in a descending attitude.  Oculoagravic illusion is the opposite of 

the elevator illusion in that the downward acceleration causes the pilot to perceive the aircrafts 

nose is falling and will place the aircraft in a climbing attitude. 
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     Proprioceptive illusions are closely associated in vestibular and visuals systems and rarely 

occur alone.  However, without the aid of visual references the pilot in a coordinated turn may 

perceive a climb or descent.  As a coordinated turn is executed, centrifugal forces combine 

with gravity to press the pilot into the seat, which may give the pilot the false perception that 

the aircraft is climbing.  Conversely, as a pilot recovers from the turn the forces combine to 

give the sensation of becoming lighter in the seat.  The pilot then falsely interprets this as a 

descent.  

Intuitiveness vs. Transference 

     Transference is a process in training were the skills, procedures, or experiences gained in 

one situation are applied to a different situation which maintains similarities to the situation in 

which the skill or experience where originally learned.  It is this principle that allows flight 

training in simulators to be so beneficial, allowing an aviator to experience and learn 

dangerous emergency procedures without exposure to the risk of having to execute them 

while flying an actual aircraft.  Transference also allows an experienced aviator to learn new 

skills more quickly than a student pilot by building on the base of previous learned knowledge.   

An example of this is an aviator who learns to operate an altimeter with a new style of display 

presentation.  As long as the display presentation is similar to the altimeters he is familiar with, 

e.g., as long as the display is circular and the pointers move clockwise to indicate an increase 

in altitude, then the time to learn the presentation is short.  A student pilot who must learn how 

to interpret the altimeter has no previous experience from which to draw. 

     Transference is for the most part beneficial except in those instances when it becomes an 

obstacle to learning a new task.  This is termed interference.  Many have often confused the 

concepts of transference and interference with the unrelated concept of intuition.  Webster�s 

Dictionary defines intuition as �1.a. The act or faculty of knowing without the use of rational 

processes: immediate cognition. b. Knowledge acquired by the use of this faculty.�  While 
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transference and interference by definition are cognitive processes, it is easy to see how the 

concepts might be confused.   

     For the most part, humans, by nature, are resistant to change.  A pilot who is familiar with 

the altimeter from the example above, and who has used that altimeter his entire flying career, 

has learned to process the information perceived from the display in the most efficient manner 

and is able to determine his altitude by merely glancing at the instrument face.  While this may 

seem intuitive to the pilot, the process of determining the position of the needles and 

performing the requisite math has become so familiar that the pilot is no longer aware of it.  As 

a result, the pilot has learned to process the information in such a manner that processing it 

any other way may seem counter-intuitive to him. 

     By contrast, the student pilot who is charged with learning to determine his altitude and 

combine it with other information to develop situational awareness has no other experiences, 

which may interfere with this process.  For him, the measurement of what constitutes 

intuitiveness is how quickly he is able to learn to obtain information from one presentation 

format when compared the amount of time to learn to use another.    

Current Altimeter Systems  

     When the Wright brothers conducted their historic first flight in December 1903, their 

aircraft instrumentation consisted of a piece of string to serve as a slip indicator. (Hawkins, 

1987)  The earliest aircraft were flown using the aviator�s visual, vestibular, and proprioceptive 

senses and little else.  The open cockpit designs left little area to mount instrumentation, even 

if it existed.  As the complexity of aircraft design increased so did the rate of accidents and the 

need to develop instrumentation, which would describe the pilot�s position relative to the earth 

as well as the operating state of his aircraft, arose.  No one knows the exact order of 

development of the modern aircraft instrumentation however it is almost certain that the first 

instrument introduced into the cockpit was the magnetic compass.  With the outbreak of World 
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War I instruments such as limited engine instruments, airspeed indicators, and the first 

barometric altimeter were introduced into military cockpits. (Pallett, 1981) 

     Current altimeter systems used on aircraft include: the barometric altimeter which 

measures pressure altitude relative to sea level standard pressure, and radar altimeters which 

measure absolute altitude above the ground.  Other more exotic altimeter such as LADAR 

altimeters do exist however since there is no vendor available to the GA pilot the discussion 

will exclude these altimeters. 

Barometric Altimeter 

     In order to fully understand how the barometric altimeter works it is first necessary to 

appreciate the structure of the atmosphere.  The envelope of air surrounding the earth is 

divided into several indistinct layers.  The layer closest to the earth is the troposphere, which 

extends from the surface to approximately 36,089 feet.  Above the troposphere are the 

stratosphere, ozonosphere, ionosphere, and exosphere.  The atmosphere is held in place by 

the gravitational attraction of the earth, which produces the effect of pressure. 

     Barometric altimeters measure the change in the standard atmospheric pressure as 

altitude increases or decreases, e.g., p = f(dh).  The hydrostatic equation measures the 

change in atmospheric pressure as shown in Figure 5. 

 

 

 

 

 

 

 

 

Figure 5. A Volume of Air in Static Equilibrium 
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(1) 

 

The difference in pressure (dp) is a function of the density (ρ) of the air and the difference in 

altitude (dh). (Halliday, 2001) 

     The density of the air (ρ) expressed in the hydrostatic equation is expressed by the 

equation of state and is given by the function: 

ρRT                    (2) 

where p is pressure, ρ is the density, and T is the temperature.  The specific gas constant is 

represented by R and is equivalent to 287 J/kg K in the metric system or 1716 ft-lbf/sl oR in the 

English system.  (Halliday, 2001) 

     By substituting equation (2) into (1), integrating and solving for h, pressure altitude, we get 

the following equation (good for altitudes below 36,089 ft) from which the common pressure 

altimeters are based:  

         (3) 

 

where po is the standard sea level pressure, To is the standard sea level temperature, g is the 

standard acceleration of gravity, R is the gas constant, and r is the standard atmospheric 

lapse rate. (ICAO, 1962) 

     Temperature also has an effect on the pressure of the atmosphere.  As air is heated, its 

density decreases and it begins to rise.  As the air rises, its pressure drops which decreases 

the temperature.  The rate at which the temperature of the atmosphere decreases is termed 

the lapse rate. The relationship between pressure, temperature and density is given by the 

equation of state (assuming a perfect gas) and is illustrated in Figure 6 below.  
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Variation of Pressure, Temperature, and Density in 
the Standard Atmosphere
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Figure 6. Variation of Pressure, Density, and Temperature in the Standard Atmosphere 
(ICAO, 1962) 

 
 
 

          Most aircraft employ a pitot-static system to measure the total pressure produced by 

the forward motion of the aircraft and the static pressure of the atmosphere as measured at 

the static port.  Three primary flight instruments use the pitot-static system including the 

airspeed indicator vertical speed indicator and the instrument we are concerned with, the 

altimeter.   

     The earliest recorded use of an altimeter was in the 18th century when balloonists used 

barometers to gauge their altitude.  Present-day altimeters although more complicated in 

design are in essence aneroid barometers utilizing an evacuated metal capsule as the 

pressure sensor.  The metal capsule or �aneroid wafer� is sealed which maintains a constant 

pressure.  As the instrument increases in altitude, the atmospheric pressure decreases and 

the capsule expands minutely.  Conversely as the instrument decreases in altitude, the 

capsule contracts.  The expansion and contraction of the capsule is transformed into rotary 
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motion, which, in turn drives an indicator needle. (Pallett, 1981) An exploded view of a typical 

sensitive altimeter is shown below.  

     The barometric altimeter is a required instrument in the majority of aviation operations to 

include GA, however the barometric altimeter is prone to a variety of errors both in its 

mechanical operation and in the interpretation of its display presentation.   Electromechanical 

errors can range from errors internal to the instrument, errors associated with flight into 

changing pressure gradients, and temperature errors.  Errors dealing with the placement of 

the static port on the aircraft will not be discussed as the pilot has no control over this 

phenomena and it is corrected for in the calibration of the instrument.  As noted earlier, the 

barometric altimeter measures the barometric pressure of the outside air and determines the 

changes in altitude based on changes in the pressure of the atmosphere.  As the pressure 

falls, the altimeter will indicate a climb even if the altitude of the aircraft has not changed.  

Conversely, if the atmospheric pressure where to rise the altimeter would indicate a descent.  

Since pressure and temperature are proportional in the equation of state (assuming constant 

density), as temperature decreases the pressure decreases and the altimeter will report a 

higher altitude than the aircraft is flying.  The pilot normally compensates for changes in 

atmospheric pressure and temperature by recalibrating the instrument using a Colesman 

window.  However, the pilot can only compensate for pressure changes if he is aware of these 

changes.  This requires the pilot to periodically request updated altimeter settings from an 

authorized source such as ATC or a pilot weather reporting station. 

     While most of the mechanical errors inherent in the altimeter can be compensated for and 

pose little danger to the pilot, if practical procedures are followed, the error produce by 

misreading the altimeter has caused many fatal accidents and been the focus of several major 

studies.  Because of those studies the altimeter display has undergone several evolutions, 

however the basic format of the barometric altimeter has changed very little over the years. 

The triple pointer altimeter is the oldest of the altimeter presentations and the subject of the 

famous 1947 study of misreading vulnerabilities by Fitts, Jones, and Grether.  Despite its 
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susceptibility to misreading the 1,000 feet and 10,000 feet pointers, the three-point altimeters 

continue to be used.  In 1980, NASA stated that despite the 1947 study, and others like it, it is 

unlikely that the triple pointer altimeter will be replaced in older operational aircraft.  (Hawkins, 

1987)  While the three point display format is still used in current designs, the problem 

inherent in its predecessor have been accounted for in the more distinctive shape of the 1,000 

feet and 10,000 feet pointers. (Pallett, 1981)  It is likely that a three-point altimeter will be the 

present and contributing factor in future mishaps.  Modern designs, especially those using 

LCD and CRT displays, utilize a combination of digital and analogue display formats, however 

they still resemble the electromechanical instruments.  

     Most aircraft employ a pitot-static system to measure the total pressure produced by the 

forward motion of the aircraft and the static pressure of the atmosphere as measured at the 

static port.  Three primary flight instruments use the pitot-static system including the airspeed 

indicator vertical speed indicator and the instrument we are concerned with, the altimeter.   

     The earliest recorded use of an altimeter was in the 18th century when balloonists used 

barometers to gauge their altitude.  Present-day altimeters although more complicated in 

design are in essence aneroid barometers utilizing an evacuated metal capsule as the 

pressure sensor.  The pressure inside the capsule is approximately zero.  A leaf spring, 

attached to the top of the capsule, tends to open outward and maintains a state of equilibrium 

at 14.7 lbf/in2.  As the instrument increases in altitude, the atmospheric pressure decreases 

and the capsule expands minutely.  Conversely as the instrument decreases in altitude, the 

capsule contracts.  The expansion and contraction of the capsule is transformed into rotary 

motion, which, in turn drives an indicator needle. (Pallett, 1981) 

     The barometric altimeter is a required instrument in the majority of aviation operations to 

include GA, however the barometric altimeter is prone to a variety of errors both in its 

mechanical operation and in the interpretation of its display presentation.   Electromechanical 

errors can range from errors internal to the instrument, errors associated with flight into 

changing pressure gradients, and temperature errors.   
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     As noted earlier, the barometric altimeter measures the barometric pressure of the outside 

air and determines the changes in altitude based on changes in the pressure of the 

atmosphere.  As the pressure falls, the altimeter will indicate a climb even if the altitude of the 

aircraft has not changed.  Conversely, if the atmospheric pressure where to rise the altimeter 

would indicate a descent.  Since pressure and temperature are proportional in the equation of 

state (assuming constant density), as temperature decreases the pressure decreases and the 

altimeter will report a higher altitude than the aircraft is flying.  The pilot normally compensates 

for changes in atmospheric pressure and temperature by recalibrating the instrument using a 

Colesman window.  However, the pilot can only compensate for pressure changes if he is 

aware of these changes.  This requires the pilot to periodically request updated altimeter 

settings from an authorized source such as ATC or a pilot weather reporting station. 

     While most of the mechanical errors inherent in the altimeter can be compensated for and 

pose little danger to the pilot, if practical procedures are followed, the error produced by 

misreading the altimeter has caused many fatal accidents and been the focus of several major 

studies.  Because of those studies the altimeter display has undergone several evolutions, 

however the basic format of the barometric altimeter has changed very little over the years. 

The triple pointer altimeter is the oldest of the altimeter presentations and the subject of the 

famous 1947 study of misreading vulnerabilities by Fitts, Jones, and Grether.  Despite its 

susceptibility to misreading the 1,000 feet and 10,000 feet pointers, the three-point altimeters 

continue to be used.  In 1980, NASA stated that despite the 1947 study, and others like it, it is 

unlikely that the triple pointer altimeter will be replaced in older operational aircraft.  (Hawkins, 

1987)  While the three point display format is still used in current designs, the problem 

inherent in its predecessor have been accounted for in the more distinctive shape of the 1,000 

feet and 10,000 feet pointers. (Pallett, 1981)  It is likely that a three-point altimeter will be the 

present and contributing factor in future mishaps.  Modern designs, especially those using  

LCD and CRT displays, utilize a combination of digital and analogue display formats, however 

they still resemble the electromechanical instruments. 
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Figure 7.  Basic Types of Barometric Altimeter Displays 
 
 

     Four major variations of the display face of the electromechanical altimeter have arisen.  

These include the three-point altimeter, counter pointer, drum pointer, and counter drum 

pointer. (Spady, 1980)  Figure 7 shows the configuration of the four common types of 

altimeters.  Barometric altimeters range in price from $100 to $500. 

Radar Altimeter 

     Radar altimeters employ Radio Detection and Ranging (RADAR) to determine range to the 

earth and display that range as absolute altitude Above Ground Level (AGL).  Range to a 

target is predicated on several factors, the least of which is the energy of the signal reflected 

by the target.  The following expression is used to determine the amount of energy reflected 

from the target as perceived by the antenna and hence the range.   

 
 
 
Where K is the factor of proportionality and is given by 1 / 4π2, Pavg is the average transmitted 

power, G is the antenna gain, σ is the radar cross section of the target, Ae is the effective 

area of the antenna, tot is the signals time on target, and R is the range to the target.   

PavgGσAetot Signal Energy = K
R4
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     Radar cross section, describes how much of target is seen by the radar, and is the product 

of the targets geometric cross section, targets reflectivity, and the directivity of the reflected 

signal.  Geometric cross section is the area of the target, which is seen by the radar.  Target 

reflectivity is the fraction of energy intercepted by the target, which is reradiated away.  The 

majority of the energy, which reaches the target, is reflected away as scatter.  Directivity is the 

ratio of the energy scattered back toward the radar to the amount of power that would have 

been back scattered if the radiation had been scattered isotropically, i.e., uniformly.  

     Currently there are two principle types of radar altimeters and are distinguishable by their 

technique employed in ranging the earth.  The two types of radar altimeters include those 

employing the technique of Continuous Wave � Frequency Modulation (CW-FM) and those 

using pulsed radar.  The large Radar Cross Section (RCS) of the earth and the relatively 

short-range permit the altimeter to use very low transmitting power and allows for low antenna 

gain.  Figure 8 shows the functional block diagram of a generic pulsed radar altimeter. 

     In a pulsed system, the signal is generated by the transmitter and is sent to a coaxial 

switching module.  The switching module applies a narrow pulse to the signal and radiates the 

signal via the antenna.  As the signal is received, a time compensator processes the signal.  

The time compensator controls the gain of the receiver and compensates for any leakage from 

the transmitting antenna or any of the other components, which may create an error in the 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8. Pulsed Radar Altimeter Block Diagram 
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 received signal.  (Hovanessian, 1984)   The time between the transmission of the signal and 

reception of the return pulse is measured and the altitude is calculated by the following 

equation: 

 

Where R is the altitude (range), τd is the time difference between the transmitted and received 

pulse, and c is the speed of light. 

    The technique of using FM � CW altitude ranging uses part of the transmitted signal to act 

as a reference signal (Figure 9).  The reference signal is mixed with the received energy and 

the resultant frequency is termed the beat frequency.  The frequency of the returning signal 

can then be compared to the beat frequency and an altitude calculated.  Two methods are 

employed to calculate altitude.  The first method is to fix the frequency excursion ∆f and allow 

the beat frequency to vary.  In this method the low frequency amplifier needs to be large 

enough to accommodate the wide range of frequencies over which the beat frequency may 

vary.  Since the bandwidth of the amplifier is broader than needed in order to pass the wide 

range of frequencies, the Signal to Noise Ratio (SNR) and sensitivity are reduced.  The 

second method employed is to fix the beat frequency and allow the ∆f to vary.  The advantage 

of this method is that the low frequency amplifier need only be as wide as the receiver signal 

frequency.  This reduces the SNR without degrading sensitivity.  The value of the frequency 

difference now becomes the measure to the altitude. (Hovanessian, 1984) 

 

 

 

 

  

 

Figure 9. CW-FM Altimeter Block Diagram 
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     Accuracy of the system is a function of the bandwidth of the transmitted signal and the 

SNR.  Additionally, accuracy may also be limited by the inaccuracy of the frequency 

measuring device, multi-path errors, and frequency errors caused by the turn-around of the 

frequency modulation.  Additionally, an error common to CW-FM altimeters is the fixed error or 

step error. The altitude of a CW�FM altimeter is found by the equation  

 

 

Where R is the range, c is the speed of light, ∆f is the frequency difference and N is the 

average number of cycles of the beat frequency.  Since the output of the frequency counter is 

an integer, the range will be a multiple of c/(4∆f) and will cause a quantization error equal to 

 

 

The step error is independent of the range and the carrier frequency and soley a function of 

the frequency difference.  Large frequency differences are required if the error is to remain 

small. (Hovanessian, 1984) 

     Several critical assumptions were made in the design of the two radar altimeters described 

above are the same.  The first critical assumption is that the antenna can be located at a 

sufficient distance apart to neglect the coupling or leakage between the two antennas.  Since 

the CW-FM altimeter uses a portion of the transmitted signal, this system is rather insensitve 

to this assumption. (Hovanessian, 1984)  Pulsed systems are relatively insensitive to coupling.  

Since the doppler shift is small (at normal angles), pulsed systems avoid the problem of 

interference by continuously shifting the transmitter�s frequency.  Additionally, the problem of 

coupling can be avoided by switching off the receiver while a signal is transmitted. 

     The second critical assumption is that the doppler frequency shift due to the relative motion 

between the aircraft and the ground is so small that it can be ignored.  The doppler shift of the 

radar frequency is a function of the radar�s vertical velocity.  The velocity of the radar is a 

function of the sine of the angle of incidence θ.  The magnitude of the sine of any angle 

cN
4∆fR =

246 
∆f (MHz)∆R (ft) =
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changes most rapidly as it passes through 0o so the largest change in amplitude of the 

doppler shifted frequency occurs about 0o angle of incidence.  The following is the equation for 

range corrected for the doppler shift and lookdown angle of the antenna: 

 

      

The angle of incidence of a radar altimeter antenna is nearly normal to the surface of the earth 

(θ = 0).  At just 22o angle of incident the magnitude of the doppler shift is approximately 40% 

of the maximum range value. (Stimson, 1998) Increasing the beamwidth of the transmitted 

signal will decrease the susceptability of the radar to roll and pitch errors, however the 

problem of multipath reflections increases.  (Kayton, 1969) 

     Because the RCS of the earth is so large and at relatively small distances the radar 

altimeter is able to employ a small, low powered, broad beamed, CW or pulsed radar, using 

FM ranging to provide precise reading of absolute altitude.  Radar altimeters designed for civil 

operations are CW while the military altimeters tend to be pulsed using a very low PRF and 

utilize pulse compression to spread the frequency of the radar over a wide band. (Stimson, 

1998) 

     The altitude returns of most radar make them natural instruments to measure absolute 

altitude and in fact, the military and civil aviation have been using them since the mid 1960s.  

Figure 10 below shows a radar altimeter display used in many General and Civil Aviation 

aircraft.  What keeps this technology out of most GA cockpits is the cost.  The average price 

for a radar altimeter system designed for civil aviation is between $3,000 and $6,000.   

 

 

Figure 10.   Typical Radar Altimeter Display 
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II.  Review of Theory 

 

Laser Propagation 

     The information contained in this chapter to include the diagrams, came from one source, 

Lasers and Their Applications written by Dr. Rami Arieli.  Dr. Arieli is currently a Professor of 

Physics at the Weizmann Institute of Science in Israel.   

     Laser, or Light Amplification by Stimulated Emission of Radiation, involves exciting a 

chemical, called the amplifying medium or gain medium by adding energy to the chemical 

system.  The amplifying medium can be a solid, a liquid, or a gas. Whatever its physical forms, 

the amplifying medium must contain a high proportion of atoms, molecules or ions that can 

readily store and release energy. As the atoms within the system absorb the energy, the 

electrons are raised to a higher energy level.  As the electron drops to a lower energy level, 

the excess energy is shed in the form of photons.  Since specific lasing materials absorb 

energy at a specific frequency, the coherent light is emitted at specific wavelengths.  The color 

of light is determined by its frequency or wavelength. The wavelength of the emitted light is 

precisely related to the amount of energy released and is given by the equation:  

E = h X ν 

The energy, E, of a photon is determined by its frequency, ν, and Planck's constant, h.  The 

wavelength, λ, of light is related to from the following equation: 

 λ  =  

where c is the speed of light and approximates 300 X 106 m/s.  The term coherent refers to 

the fact that the emitted light waves are in phase with one another and are so nearly parallel 

that they can travel for long distances without spreading. By contrast, light from an 

incandescent bulb emits light incoherently and diffuses in all directions.  Coherence means 

that laser light can be focused with great precision. 

ν 
c 
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     The process of energizing the amplifying medium is termed pumping.  There are several 

methods of pumping the medium.  In the case of a solid, an intense burst of light is sufficient 

to excite the atoms within the medium at a specific frequency.  This is called optical pumping.  

The optical pump may take the form of a Xenon-filled flashtube or may be another laser.  

Lasers, which are pumped in this fashion, are usually pulsed in nature.   

     Gaseous mediums require a container in order to enclose the gas.  With this amplifying 

medium, an electric charge passed through the container, pumping the medium.  The 

effectiveness of the laser pump is dependant on the medium being pumped.  Often the ends 

of the container are inclined at an angle, which allow polarized light to pass freely.  This 

angled window is called a Brewster window.  Gaseous lasers, which are pumped in this 

fashion, produce a beam, which is polarized.  Electrically pumped lasers can be either pulsed 

or continuous. 

     An amplifier is often used to increase the intensity of the laser.  An amplifier usually 

consists of a mirror at one end, and a partial mirror at the other.  As the coherent light contacts 

the partial mirror, part to the energy, from 20% to 98%, depending on the laser, is reflected 

back for further amplification and is referred to as positive feedback.  A laser, which utilizes 

positive feedback, is known as an oscillator.   The portion of the reflected light further excites 

the medium and as the light is reflected several times through the medium the intensity of the 

beam quickly builds.  This process also ensures that the light becomes coherent.  Only light 

that is in phase, i.e., traveling parallel to the axis of the cavity is reflected for multiple passes.  

Incoherent light is reflected at odd angles, eventually escape the cavity.  This process also 

serves to improve the spectral purity of the laser.  As the medium is excited, it produces a 

photon in a small band of frequencies.  Only a specific frequency will undergo repeated 

passes in the cavity.  Light which may still be amplified but of frequencies outside the specified 

frequency are quickly attenuated. This process of spectral purification is called the cavity 

mode and the light will only resonate at a given frequency.  The product is beam of light, which 

is coherent, parallel and in phase.  
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Factors Affecting Laser Performance 
 

Surface Reflectivity 

     A material can either reflect, absorb, transmit, or a combination thereof, the laser energy.  

The sum of energy transmitted, absorbed, and reflected will equal the amount of energy 

incident upon the surface.  The term �specular� is used to describe a surface whose 

imperfections and surface variations are much smaller than the wavelength of incident 

radiation.  When the surface imperfections are larger than the wavelength the surface is said 

to be diffuse. 

     A diffuse surface is a surface that will reflect the incident laser beam in all directions. The 

beam path is not maintained when the laser beam strikes a diffuse reflector. Whether a 

surface is a diffuse reflector or a specular reflector will depend upon the wavelength of the 

incident laser beam.  The effect of various curvatures of diffuse reflectors makes little 

difference on the reflected beam.  Figure 11 illustrates the geometry of the reflected energy as 

the beam is reflected or refracted.  In reflection, the angle of incidence is equal to the angle of 

reflection.  The angle of refraction, θ�, is dependent on the index of refraction n� of the material 

the light passes through.  

 

 
 

Figure 11.  Reflection and Refraction 
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Beam Divergence 

     Although the beam of a laser is nearly parallel, there is still a small amount of divergence or 

increase of the diameter of the beam width with distance.  The beam divergence of radiation 

emitted from a laser is described in Figure 12.  A good approximation for the laser beam 

divergence is:  

 

where θ is the beam divergence (in radians), d2 � d1 is the difference in the diameters of the 

beam at points 1 and 2, and L2 � L1 is the difference in the distances along the laser axis at 

points 1 and 2.  Depending on the optical cavity type there is a point where the beam diameter 

is minimum.  This point is termed the beam waist. 

     The equation for calculating the beam divergence is always correct at large distances from 

the laser.  Thus, it is the �Far field� equation, and is not necessarily correct near the laser.  The 

far field is defined as 100 times the beam diameter squared divided by the wavelength of the 

laser.  Conversely, the near field is defined as any distance less than the far field boundary. 

Pulse Repetition Frequency 

     A laser pulse can be described by plotting the laser power as a function of time.    Most 

laser pulses have a short rise time, and a longer decay. As shown in Figure 13 below, the 

shape and area of the pulse can be approximated by using a triangle.  There are several 

characteristics common to all pulses, which are helpful in describing the amount of energy 

 

 
 

Figure 12.  Geometry of Divergence 

d2 � d1

L2 � L1
θ = 
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Figure 13.  Single Pulse Geometry 
 

carried by the pulse.  The maximum emitted power is P max and corresponds to the apex of the 

triangle.  The pulse duration (∆ t1/2) is its width at half maximum (0.5 P max). The pulse width is 

the time interval in which the pulse power is higher than half the maximum power:  The area 

under the curve describe the amount of energy carried by the pulse and is half the length of 

the base (∆ t1/2) times the height (P max), and is given by the following equation: 

Ep = (∆ t1/2) X P max 

     For typical pulsed lasers the energy of a single pulse is not particularly high, however, the 

peak power is extremely high, usually X106 W.  Since the pulse duration is short, all the 

energy is concentrated during this short period.  

     So far we have discussed a single pulse.  Pulsed lasers such as those used in a laser 

range finder send out multiple pulses and are periodic in nature; hence, it is possible to 

determine the period and frequency of the pulses.  The period of any repetitive phenomena is 

the time interval between two equivalent points on adjacent pulses and is assigned the 

nomenclature of T.  The frequency of the pulses us the number of pulses occurring in a 

second and given by f.   The pulse frequency, f, and the frequency of the laser energy, ν, are 

mutually exclusive. 

     The relationship between the period and the pulse frequency is given by the equation: 

T = 1/f 
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The duty cycle is the relative amount of time the laser is on, or pulsing.  We can determine the 

duty cycle by dividing the pulse duration (∆t1/2) by the period (T). 

     Since the output power of a pulsed laser is not continuous, a more useful description of the 

power output of a pulsed laser is required for some calculations.  This is often accomplished 

by determination of the laser�s average power.  Average power (P avg) describes the amount of 

energy transmitted by the laser in a second and is equivalent to the amount of power required 

for a continuous laser to transmit the same amount of energy per second as a pulsed laser.  

Average power is calculated by energy of a single pulse by the frequency of the pulses (f).  

The following equation describes this relationship: 

P avg = Ep X f 

Figure 14 illustrates the relationship between the maximum power and average power of a 

laser pulse. 

Optical Signal to Noise Ratio 

     Sometimes noise can interfere with the transmission and reception of a signal.  Common 

examples of the phenomena that cause noise include:  the reflections of phased light from the 

active medium walls, the diffraction of the laser as it passes through an aperture, and the 

diffraction of the beam by small imperfections in the lasing medium such as dust particles and 

scratches. 

 

 
 

Figure 14.  Periodic Nature of Pulsed Lasers 
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     It is possible to visually observe the noise present in a laser.  When the laser beam 

illuminates a far screen, the picture shows light and dark areas. These are caused by 

interference phenomena between different parts of the beam, which arrive at the screen 

through slightly different paths.  Since the path difference between the main beam and the 

�noise� is small, only at the far field it is possible to see the interference pattern. Instead of 

being far away from the laser, it is possible to use a lens to create the far field of the beam at 

the focal point of the lens and thus measure the amount of noise present.  The ratio between 

the strength of the signal and the strength of the noise is referred to as the SNR.   

Calculating Range 

     Much like radar technology, one of the first applications for the military was as an 

instrument to determine range.  Since the beam of a laser consists of light, its speed of 

propagation is a known constant.  By measuring the time it takes the laser to strike a target 

and return it is an easy calculation to determine the distance to the target. 

     As the pulse of laser light is sent, an electronic trigger signal is send to a time counter.  

When the detector receives the reflected signal from the target, it stops the time counter.  

A computer calculates the distance to the target by multiplying half the time of the counter by 

the speed of light (c) (Since the laser beam travel the distance to the target and back).  

The laser beam is scattered by the target into all directions (diffuse reflectance). Thus, very 

little intensity from the reflected signal reaches the detector.  In a simple detecting system, the 

reflected signal from the target is collected by the detector, amplified electronically, and the 

electronic signal is transferred to the computer for processing.  
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III.  The Systems Engineering Design Process 

 
     The process utilized throughout the design of the display and display format was the 

systems engineering design process or SEP.  The entire process is iterative and recursive in 

nature and consists of four major tasks.  The tasks, which comprise the SEP, are shown in 

Figure 15 below. 

     The process input consists of specific requirements as designed by the consumer and can 

include: definition of the mission, the expected operating environment, and any constraints 

such as monetary or regulatory constraints.  Additionally, since the process is recursive the 

system output from a previous iteration of the SEP may become the process input for the 

following iteration. 

     The first major task in the SEP is the requirements analysis, which defines what the system 

must do and how well the system must do it.  The requirements analysis establishes 

quantifiable critical performance parameters from the process inputs.  The product of this task 

is the design concept. 

     The second task is the functional analysis, which defines the functional architecture of the 

system.  This task translates the general system requirements as defined in the requirements 

 

 

 

 

 

 

 

 

 

 
Figure 15. The Systems Engineering Process 

Requirements Loop 

Design Loop 

System Evaluation 

Process Output

Process Input 
System Analysis  

and ControlRequirements
Analysis 

Functional 
Analysis 

Synthesis 



 35

analysis and translates them into specific systems requirements.  Additionally, the functional 

analysis defines the hardware and software requirements of the design.  The product of this 

task is the preliminary design, which provides a general description of the overall system.  The 

requirements loop is closed when the functions of the system satisfy the requirements defined 

in the previous task. 

     The next step is the design synthesis.  The design synthesis defines the physical 

architecture of the system by describing the subsystems required to perform the functions as 

described in the functional analysis.  Alternatives for hardware and software requirements are 

analyzed and the preferred solution is selected.  The output of this task is the detail design or 

description of the set of subcomponents, which comprise the system.  The design loop is 

closed when the design solution meets the functional requirements. 

     The system analysis and control is a management function, which is applied to each of the 

tasks previously described.  Subtasks which comprise the systems analysis and control 

function include: interface management which ensures proper form, fit, and function of the 

design elements, tracking of cost and scheduling, conflict resolution, and verifying the 

requirements have been met at the completion of each task in the SEP. 

     Prior to the completion of an iteration of the SEP and process output, the design solution 

must be verified or evaluated to ensure that the design meets the requirements as defined in 

the requirements analysis.  If a conflict arises at this level or during the requirements loop or 

design loop then 2 options exist, either change the solution or modify the requirements.  The 

SEP is applied throughout the lifecycle of the design. 
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IV.  Operational Requirements Analysis 

 

A Limited Market Survey 

     In designing the laser altimeter display, it was first necessary to establish the need.  A 

limited market survey helped to determine the need and to define the design objectives of the 

display.  By defining the critical design aircraft and for whom the display was being designed, 

a logical starting point was established.  Since Opti-Logic expressed the desire to explore the 

GA market, the user was essentially defined.  However, the definition of General Aviation is 

somewhat enigmatic, and can vary depending on whose definition is used. The FAA defines 

GA as �That portion of civil aviation which encompasses all facets of aviation except air 

carriers.�  (FAA, 1996)   Since it was impractical to design a display suitable for all civil 

aviation, it became evident that, for this project, the definition of GA needed further refinement. 

The Aircraft   

     To this end, the NASA published a report outlining the typical GA aircraft.  The data for the 

report came from the FAAs 1996 General Aviation and Air Taxi Activity (GAATA) survey.  For 

the purposes of the study, NASA defined GA as any fixed wing aircraft operating under FAR 

Part 91, 125, 135 (non-scheduled), or 137.  This definition excluded experimental aircraft, 

gliders or any aircraft that is a known commuter or commercial air carrier aircraft. (NASA, 

1999)  Table 1 below shows the portion of the GA market excluded by the NASA definition 

(not highlighted) is relatively small at only 14.3%.   

   According to the GAATA survey, almost 85% of GA aircraft are single piston engine fixed 

wing aircraft with four seats and fixed tricycle landing gear. Additionally, the NASA report 

further defined the top six aircraft models based on popularity in sales using the above criteria.  

These aircraft models comprise 45.5% of the GA aircraft population and are presented in 

Table 2 below. (NASA, 1999) 
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Table 1. Composition of GA Market by Aircraft Type 

Aircraft Type Total Corporate Business Personal Instruction Air Taxi Other 
Fixed-Wing 
  Piston 
  Turboprop 
  Turbojet 
Rotorcraft 
Other Aircraft 
  Gliders 
  Lighter-than-Air 
Experimental 

160,577 
150,980 

5,309 
4,287 
6,391 
4,144 
1,882 
2,261 

16,198 

8,227 
2,549 
2,327 
3,350 

868 
13 
0 

13 
176 

26,963 
26,043 

708 
211 
463 

21 
8 

13 
788 

93,174 
92,715 

364 
94 

482 
3,247 
1,469 
1,777 

12,715 

13,248 
13,149 

73 
25 

487 
225 
176 

79 
270 

3,194 
2,057 

743 
393 
500 

0 
0 
0 

143 

15,699 
14,394 

1,090 
211 

3,175 
601 
226 
373 

2,036 
All Aircraft 187,312 9,286 28,236 109,619 14,261 3,838 37,805 

 

Table 2. Top Six General Aviation Aircraft Models 

Rank Type of Aircraft Nickname # of Seats # of Aircraft % Total GA 

1 Cessna 172 Skyhawk 4 19,754 13.30% 

2 Piper PA28 Archer, Cadet, Cherokee, Arrow, 
Warrior, Dakota 4 17,947 11.18% 

3 Cessna 150 Aerobat, Commuter 2 12,885 8.02% 
4 Cessna 182 Skylane 6 11,573 7.21% 
5 Beech 35 Bonanza 4-6 5,450 3.39% 

6 Mooney M20 
Ranger, Master, Chaparral, 

Executive, Statesman, Ovation, 
201, Encore, Bravo, Eagle 

4 5,423 3.38% 

     

The Pilot 

     Just as the definition of the typical GA aircraft is useful in establishing the operational 

requirements of the display hardware; it was also necessary to identify characteristics, level of 

training, and income of the GA pilot to aid in the development of the display.  This is extremely 

difficult in that variety is the word that best describes the GA pilot. It is important to recognize 

this variety when designing new technologies which target GA. (Hunter, 1995) While diversity 

seems to be the operative word, there are some characteristics common to all GA pilots, 

which provided a basis to begin formulating the requirements analysis.   

     In 1995, the FAA conducted a large-scale survey to gain a better understanding of the pilot 

population in the US.  Almost 7,000 responses were received to 20,000 questionnaires mailed 

to pilots nationwide.  Of the 7,000 responses, 2,548 were received from individuals who held a 

private pilots rating as there highest rating.  Reduction of these responses yielded the 

following characteristics: 
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     Demographically, the typical GA pilot is educated with 61% holding a four-year or 

equivalent degree and nearly 14% having completed the requirements for a PhD.  Although 

this statistic is not surprising in that higher education often leads to increased disposable 

income, care must be taken not to draw the wrong conclusion with regard to problem solving 

skills.  Research suggests that expertise gained in one domain does not necessarily transfer 

to another.  In fact, the opposite may be true in that success in one may lead to 

overconfidence in the other.  (Hunter, 1995) 

     Data from the survey, presented in Figure 16, clearly indicates the relative inexperience of 

the GA pilot processing a private pilots certificate with 58.7% attaining less than or equal to 

500 hours experience. (Hunter, 1997)  While several recent studies have shown little 

correlation between experience and expertise, it is an aviator�s experience, whether real or 

vicarious, that provides the knowledge base a pilot draws on in any situation.   

     A recent FAA report, to determine the GA pilot�s decision-making skills, concluded that 

"although GA pilots may demonstrate on paper that they have the knowledge and perspective 

for deciding upon and taking the safest course of action, there is no assurance that in real-

time situations, under the pressures and motivations of the moment, that they will in fact apply 

this knowledge appropriately." (Driskill, 1998)  Indeed, accident statistics suggest that they 

often do not make the correct decisions in these critical situations. 
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Figure 16.  Total Flight Time Among Private Pilots 
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     More important than total time, however is an aviator�s recent experience.  As shown in 

Table 3, nearly half of those who responded to the survey reported flying 30 hours a year, 

executing an average total of 16 approaches and landings.  Additionally, the GA pilot 

conducted only 5 hours of night flying during the same annual period.  This is not enough 

reoccurring experience to maintain a level of proficiency commensurate with the degree of 

difficulty in operating an aircraft safely.  Lack of practice in flying and aviation decision-making 

can be detrimental to human performance. (Hunter, 1995)   

     While the above research determined the critical design aircraft and established the 

characteristics of the GA pilot, the question remained where to fix the cost of the system.   A 

limited market survey was conducted during the 2001 Staggerwing Convention held at 

Tullahoma Airport, Tullahoma, Tennessee.  The primary purpose of the survey was to 

determine the market price the average GA pilot was willing to spend for a device to display 

absolute altitude during an approach.  Thirty responses were received to the forty survey 

questionnaires distributed.  The average total flight time of the respondents was 4433.33 flight 

hours with over 63% holding a pilots certificate higher than private pilot.  Half of the pilots 

responding to the survey had at least one �close call� with terrain or incident in which they had 

misjudged their altitude.  When asked how much they were willing to spend on a laser 

altimeter, displaying absolute altitude, 14 respondents or 46.6% indicated they were willing to 

spend $1500 or less as shown in Table 4.    

Table 3.  Average Flight Experience Among Private Pilots 

Mode of Flight Mean Median Stand Dev 
Day Time � Last 6 Months 24 11 152 
Day Time � Last 12 Months 46 27 95 
Day Time - Career 777 396 1664 
Night Time � Last 6 Months 3 0 13 
Night Time � Last 12 Months 5 0 18 
Night Time - Career 108 22 644 
Landings � Last 6 Months 61 40 109 
Landings � Last 12 Months 29 16 43 
Total Time � Last 6 Months 22 12 34 
Total Time � Last 12 Months 50 30 68 
Total Time - Career 819 445 1293 

Note. Data from the 1995 FAA National Airman Research Questionnaire. 
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Table 4.  Willingness to Pay Specific Price for Laser Altimeter 
 

 Price of Altimeter f %  
 $500 2 6.7  
 $1000 6 20.0  
 $1500 6 20.0  
 $2000 6 20.0  
 $2500 or More 2 6.7  
 No Response 8 26.6  
 Total 30 100.0  
 
 
 

Note. Data from market survey conducted during the 2001 Staggerwing 
Convention, Tullahoma, TN. 

 

 

     The above survey is certainly not representative of the GA pilot population for two reasons.  

First, the sample size of survey was small with only 30 questionnaires received.  Secondly, the 

cost of a Staggerwing aircraft far exceeds the cost of a typical GA aircraft, which could lead to 

the assumption that the owners of Staggerwing aircraft have more disposable income to 

allocate in outfitting their aircraft.  A literary search of several popular aircraft accessory 

catalogs yielded a more reasonable figure in fixing the cost of the system.  The average price 

advertised for add-on electronic equipment such as GPS and other radio navigation 

instruments was $1000.00 

The Mission Defined 

     The next step was to determine the missions for which the system was to be used.  

Examination of the GA performance record should establish at what point in flight the system 

would provide the most benefit to the aviator. (O�Hare, 1999)  Statistical analysis of accident 

data of the GA population for the years of 1995-1997, Figure 17 shows a disproportionate 

35.9% of accidents occurred during approach and landing phase of operation, which 

represents only 2% of the average flight time. (NTSB, 2000)  Due to the statistical data as well 

as the limited range of the laser sensor it was determined the best application for the altimeter 

would be to aid the aviator in the terminal approach and landing phases of flight operations.  

This would provide the pilot with the ability to use the instrument to transition from the enroute 

portion of his flight using the barometric altimeter, to the approach phase using the laser. 
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General Requirements 

     Once it was determined for whom the system was being designed and for what purpose, 

the next step was to outline the operational requirements of the display.  The fundamental 

requirements can be summed up as follows: 

1.  The system cost should be as low as possible. 

2.  The system should have as little impact on the aircraft as possible.  

   3.  The display should be readable in all lighting conditions to include direct sunlight. 

   4.  The system should display the altitude information as accurately as possible. 

5.  The system should be reliable and maintainable. 

     The display can further be broken down into the several subsystems, each with its own 

requirements.  The display subsystems include the display-pilot interface or symbology 

presentation, and the aircraft-display interface or hardware to include the display mount. 

*
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Symbology Requirements 

    In order to decrease pilot workload and enhance safety the display symbology must be as 

intuitive to the operator as possible.  The altimeter display needed to present qualitative and 

quantitative information to the pilot to ensure that the pilot received not only precision in 

reading altitude but also trend information in order to maintain situational awareness during 

the landing phase of flight.  Additionally, the altimeter had to be able to present the information 

to the pilot in real time.  Lastly, in order to be effective the symbology needed to incorporate 

an alert feature to warn the pilot of hazardous situations involving high rates of descent with 

insufficient altitude to correct.  

     General information requirements according to the Human Factors Design Guide Include: 

1.  The information displayed to a pilot shall be sufficient to allow him or her to 

     maintain altitude to within desired limits.   

2.  Information shall be presented in feet without requiring the pilot to transpose or  

     calculate his or her current absolute altitude.  (Wagner, 1996) 

Display Hardware Requirements. 

     To keep the cost as low as possible it was necessary to utilize COTS display systems to 

avoid expensive developmental cost associated with the design of a unique system display.  

In addition to meeting the general systems requirement listed above, specific performance and 

physical parameters exist.  Since cockpit space is limited, the size of the display must be kept 

to a minimum while achieving satisfactory readability of the symbology.  In addition, the weight 

of the hardware must also be minimal.   

     Visibility requirements are outlined in the FAAs Human Factors Design Guide and are as 

follows:  

1.  Displays shall be legible under all anticipated viewing conditions.   

2.  Information shall be updated at a rate that ensures the pilot has sufficient time to  

     react to an undesirable condition. 
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3.  Failure of a display or its circuit shall be immediately apparent to the pilot.  

    (Wagner, 1996) 

Display Mounting 
 

     Just as the display hardware is integral in the legibility of the symbology so is the location 

and system of mounting the display.  The location of the display shall not require the pilot to 

assume an uncomfortable or awkward position in order to read the display.  If possible the 

face of the display should be oriented perpendicular to the pilot�s line of sight (LOS), however 

the maximum displacement will not exceed 45° from the pilot�s LOS.  Figure 18 graphically 

illustrates these requirements. 

     Additionally, the display symbology must be visible during the vibrations experienced 

during the normal flight envelope.  The preferred viewing distance of the display as measured 

from the aircrafts DEP should be at least 20 inches with the absolute minimum viewing 

distance of 13 inches. (Wagner, 1996) 

 

 

. 

Figure 18.  Line of Sight Requirements 
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V.  Display Functional Analysis 

 

     The second step in the systems engineering design process is the system functional 

analysis.  Functional analysis consists of identifying specific functions the system must 

perform in order to achieve the design objectives.  The purpose of the functional analysis is to 

identify: system and subsystem functions and the method and resources to accomplish those 

functions. (Blanchard, 1990)   

     The functional flow block diagram is a method of portraying system design requirements 

pictorially, illustrating parallel relationships, the hierarchy of system functions, and functional 

interfaces.  Functional flow block diagrams are usually prepared down to the level adequate to 

describe the needs of the system. (Blanchard, 1990)  Figure 19 is the top level and level 1 of 

the functional flow block diagram for the laser altimeter system. 

     The top level describes the overall flow from the initial laser return to the pilot�s display.  As 

previously mentioned, the sensor is a NDI and is considered fixed for the design process. 

     Once the processor senses the signal, the signal must be altered into information, which 

the pilot can use.  Level 1 shows the breakdown of the function of processing the signal, block 

3.0, from the reception of the signal to the generation of the symbology for presentation on the 

display.  By analyzing the information presented on current barometric altimeters it was 

possible to determine the minimum required information needed to make the display effective 

in maintaining situational awareness.  

     From experience, a pilot requires both position and rate information to maintain altitude 

awareness during flight.  The source of this information on current cockpit instrument panels is 

the barometric altimeter and the vertical speed indicator.  Depending on the type of altimeter 

display, the pilot determines his exact altitude by either reading a digital drum display or by 

cognitively adding the position of the needles.  Additionally, the pilot also derives trend 

information by the rate at which the pointers on the altimeters face move.  The faster the  
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Figure 19.  Top Level and Level 1 of the Functional Flow Diagram 
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needles move the faster the ascent or descent.  Crosschecking the rate information with the 

VSI provides a quantitative value to the rate information.    

     The relative workload in determining this information depends largely on the design of the 

display, i.e., the way the information is presented.  Altimeter designs such as the three-point 

altimeter shown in figure 5 require a higher workload to calculate the altitude.  The pilot must 

determine which needle represents what increment of altitude (100, 1000, or 10,000 feet), 

assign a value to each needle then add the values.  Even the simplest design, such as the 

drum and pointer requires some level of arithmetic to calculate the altitude.  Qualitative rate 

information gained by the movement of the needles can be processed in parallel with the 

position information with little effort.  However due to the circular design of the instrument this 

information is not presented as intuitively as possible. 

     A study conducted at NASA�s Langley Research Center on how long a pilot looks at the 

altimeter during flight concluded that there is a characteristic difference in the dwells (the time 

the pilot spent looking at the altimeter face) between the right side and left side of the 

altimeter.  The pilots in the study spent approximately 48% of the time reading the left side of 

the altimeter even when the needles were on the right side.   The study concluded that the 

pilot is able to read the position and rate of the needle on the right of the display parafoveally 

while fixated on the left side of the display. (Spady, 1980)  The study failed to discuss one 

factor of the circular design of an altimeter display.  The movement of the needle on the left 

side of the display has a direct correlation to the movement of the aircraft, e.g., when the 

aircraft is climbing, the needle is moving up while it is on the left side of the display.  When the 

needle is on the right side of the display, the relationship is reversed.  As the aircraft continues 

its climb, the needle is descending on the face of the display.  This can be very counter-

intuitive to the pilot and explains the greater amount of time looking at the altimeters left side 

as shown in the study.  The pilot is able to gain more intuitive rate information from the linear 

movement of the needles head or tail when it on the left side and hence has a direct 

correlation to the aircrafts movement, thereby reducing his workload.  
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     If the pilot wishes to know the exact rate, the workload increases even further.  The pilot 

upon referencing the VSI, must process this new information in serial with position information 

due to the relative distance from the altimeter.     

     Since it was determined that position and rate are the critical information requirements to 

determine altitude, the data processor must calculate this information from the range data 

supplied by the sensor.  Once the signal is processed for rate and position, the information is 

then compared and displayed via symbols integrated into a single display set and presented 

with or without alerts.   

     A decision was required to formulate the parameters for the display of fault messages, 

cautions, and alerts.  Level 2 of the functional flow block diagram shows the functional 

decomposition of block 3.3, Compare Symbology, to determine what parameters constituted 

cautionary display symbology and what parameters would require an alerting display 

symbology.  As shown in Figure 20, a rate of greater than 1000 fpm rate of descent when 

combined with an altitude of 400 feet would cause the processor to display a cautionary 

symbol set while a rate greater than 1000 fpm at less than 200 feet would drive an alerting 

symbology set.  The display of the caution would provide the pilot with 24 seconds to correct 

his rate of descent and hence altitude before contacting the ground while an alert would 

provide 12 seconds.   

     The altitude of 400 feet and 200 feet are significant in that they correspond to the MDA and 

DH altitudes of a typical instrument approach, however, these events, in and of themselves, 

do not warrant a caution or alert. (Kershner, 1998)  Similarly, a 1000 fpm rate of descent alone 

is not cause for a caution or alert.  These parameters were chosen to provide the pilot with 

ample time to recover from a potentially hazardous situations involving altitude with a higher 

than normal sink rate. 

     The decomposition of block 3.4 of the functional flow block diagram illustrates the 

generation of the specific display symbology sets for a given parameter.  The first step in this 

sequence is to evaluate the systems operating state.  To do this the processor determines 



 48

Level 2 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20.  Level 2 Functional Flow Diagram 

 
 
whether a viable signal is received from the sensor.  If no signal is sensed the processor 

displays a fault symbology set to notify the pilot of the unreliability of the altimeter.  If the 

processor is receiving a signal, then the next step is to determine if the signal falls within the 

safety parameters as defined by block 3.3, Compare Signal, to block 3.4.3, Determine Safe 

Condition, discussed in the previous paragraph.  If the parameters fall outside of that 

determined for safe flight then the processor would display a caution or alert based on the 

relationship between the aircrafts altitude and rate of decent.  If the parameters are within that 

required for safe flight then a normal symbology set would be displayed. 
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VI.  Design Synthesis  

Analysis of Alternatives 

     The next step in the design process was to select the physical components that would 

comprise the system.  The top level of the functional flow block diagram outlines three 

systems components, the sensor, the data processor, and the display.   Only the data 

processor and the display were considered using a weighted matrix.  The matrix assigned a 

score of zero to performance parameters considered average.  Components with better than 

average characteristics were awarded a value of + 1, while those with a performances less 

than average received a score of � 1.  Once the performance characteristics were analyzed, 

the scores were tallied and the component with the higher score was selected. 

Data Processor Hardware 

     The data processor receives the digital signal from the sensor and processes the signal for 

display.  In addition to displaying the positional information from the sensor, the data 

processor must calculate rate information as well as determine the conditions requiring a 

display of a caution or warning.  The systems considered are a custom built system, or an 

existing Windows© or Macintosh© based computer system.  The advantage of a custom built 

system is that the system can be as small as needed.  The disadvantage is the cost of 

development in terms of time and money.  The advantage of a computer based system is that 

no developmental cost are involved.  In addition, a Windows© or Macintosh© based system 

would be capable of running existing software to process the data.  Disadvantages include the 

size of the computer.  A laptop system would be the logical choice due to the size 

requirements.  A weighted matrix, Table 5, was used to evaluate the merits of each system.  

     The weighted matrix evaluated each system based on the following characteristics: cost, 

size, and flexibility.  Since there were only two choices to consider the scoring of the matrix  
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Table 5.  Analysis of Alternative Data Processors 

System Cost Size Flexibility Total 
Custom - 2 + 1 0 - 1  
Laptop + 1 0 + 1 + 2 

 

 

deviated from that specified in the previous section. The parameters of each characteristic are 

as follows. 

     Cost was determined to be the primary consideration.  In addition to the cost of purchasing 

the hardware, the cost of the development was also analyzed.  A cost of $500 was considered 

average with a price below that awarded a score of + 1.  Each $250 above the average was 

awarded a � 1.    

     The size of the data processor considered not only the physical dimensions but also the 

memory capacity of the processor itself.  The smaller of the two choices considered was 

awarded a + 1 while the larger was given a score of 0. 

     Flexibility was rated by whether an existing program could be utilized or whether one 

needed to be developed.  If the system required development, it was awarded a 0.  If a 

program was designed to run on the operating system existed it was given a score of + 1. 

Display Hardware 

     As shown in Figure 21, there are currently two broad categories of displays for use in 

avionics and include emissive and transmissive displays.  Emissive displays include CRTs 

and FEDs, and operate on the principle of the electron gun projecting photons onto a luminous 

screen.  Transmissive displays, by contrast, pass light through openings in a liquid crystal 

substrate.  Transmissive displays can be further classified by the use of a switching element 

within the liquid crystal.  Switching elements are used to control the amount of light transmitted 

through the pixel elements.  Displays lacking any switching mechanism are said to be passive 

while those with an active switching element are termed active.  The most common type of 

switch is the thin film transistor or TFT.   
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Figure 21.  Comparison of Display Types by Category 

 

     Five display technologies were considered for the laser altimeter display.  CRTs, which are 

the oldest display technology, are similar to TV and desktop computer monitors.  The 

advantages of using a CRT are the cost and readability of the display.  It�s for these reasons 

that CRT technology has been the industry standard for avionics companies over the past two 

decades.  The only disadvantage to CRT display is their bulk; they generally require large 

amounts of space.  FEDs are flat panel displays utilizing the same principle as the CRT.  

However, where the CRT uses a single electron gun to paint the phosphorescent screen by 

bending the stream of electrons, the FED utilizes millions of miniature electron emitting tips 

called nanocones.  Each nanocone paints a single pixel.  The FED has all the advantages of 

the CRT in readability yet it is less intrusive to the instrument panel.  The biggest 

disadvantage is the cost of the display.  The FED on average cost three times that of the CRT.  

HGED, like the FED, utilizes microtip technology to project the electrons onto the 

phosphorescent screen, however due to the manufacturing techniques are comparable in 

price to the CRT.  The disadvantage is a slight reduction in resolution and the availability of 

the technology. 
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     The LCD is the most common representative of non-emissive displays.  The Active Matrix 

LCD, descendant of the LCD, contains TFTs as switches in the pixels of a display.  The use of 

TFTs has greatly improved the image quality of the display while significantly increasing the 

viewing angle and visibility of the screen in direct sunlight.  Additionally, AMLCD have become 

so thin they are quickly becoming the display of choice for many avionics companies.  The 

disadvantage of the AMLCD has been the cost of the display, however, manufacturing 

techniques are constantly improving and consequently the price of the displays have fallen 

significantly in the last few years.  The last display technology considered was the gas plasma 

display or PDP.  The PDP operates by sending an electrical charge through the pixel 

containing three gasses.  By varying the voltage to each of these gases the brightness and 

color of the image is controlled.  The image generated is comparable to FEDs and AMLCD.  

The disadvantage is the cost, nearly 5 times that of the CRT, and more importantly the size of 

the screen.  The process of generating the image in the gas plasma displays make them 

extremely difficult to manufacture in sizes smaller than 36 inches. 

     Display technologies eliminated outright included LED, passive LCD, and dot matrix 

displays.  Although these displays represent the least expensive alternative of the 

technologies presented, they were not considered due their poor resolution or readability in 

direct sunlight or at extreme viewing angles.  Additionally, with the exception of the passive 

LCD, these technologies are not readily available in screen sizes suitable for this project and 

would require custom ordering. 

     Table 6 outlines the performance characteristics of each display technology evaluated 

while the weighted matrix for the display hardware is present in Table 7.  The performance 

characteristics and criteria used to rate each are as follows. 

     The primary consideration of this project was to keep the system affordable.  As a result, a 

decision was made to utilize a COTS displays.  Evaluation of the cost of the displays was 

based on an average cost per square inch of display screen.  Displays with a price of $1 - $10  
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Table 6.  Characteristics of Alternative Display Hardware 

Type of 
Display Cost Resolution Brightness Viewing 

Angle Intrusive 

CRT $5 .35 mm 300 160o N/A 
FED $15 .21 mm 170 170o 10 mm 

AMLCD $15 .35 mm 180 155o 10 mm 
Gas Plasma $25 .35 mm 200 160o 100 mm 

VFD $3 .35 mm 100 170o 90 mm 
 

Table 7.  Analysis of Alternative Display Hardware 

Type of 
Display Cost Resolution Brightness Viewing 

Angle Intrusive Total 

CRT + 1 + 1 + 1 0 Too 
Intrusive N/A 

FED 0 0 0 + 1  + 1 + 2 
AMLCD 0 + 1 0 0 + 1 + 2 

Gas 
Plasma - 1 + 1 0 0 Too 

Intrusive N/A 

VFD + 1 + 1 - 1 + 1 - 1  + 1 
 

per square inch received a score of + 1.  Those displays priced from $11 to $20 received a 

score of 0 while those with a cost of $21 to $30 received a score of �1. 

     The resolution of a display evaluates image output capacity.  Resolution is usually 

measured in dots per inch (dpi). A higher resolution means a greater the amount of detail that 

can be shown.  Display type resolution was evaluated against the following rating scale.  

Resolution from 0.40 down to 0.31 dpi received a score of + 1.  Displays with a rating of 0 had 

a resolution between 0.30 dpi to 0.21 dpi.  Resolution of 0.20 and lower received a score of � 

1.  

     Each of the displays was evaluated for brightness.  Brightness and resolution are the 

leading factors in determining the readability of a display.  The scale used to evaluate 

brightness is as follows.  Brightness levels of 300 to 201 nits received a score of + 1 while 

levels, which fell between 200 � 101 nits, received a score of 0.  Any component, which failed 

to achieve 101 nits, received a score of � 1. 
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     Viewing angle was evaluated using the total viewing angle from left to right; a scale of + 1 

was awarded to displays with a viewing angle greater than 165o.  A viewing angle of 155o to 

165o received a 0. Any system with a viewing angle less than 155o received a score of �1. 

     Intrusiveness was rated by its impact on the cockpits instrument panel.  Width of the 

display unit was chosen as the characteristic, which would best describe the need for an STC.  

Those units with a width less than 15 mm where given a score of + 1.  Units with a width of 16 

mm to 30 mm were given a score of 0.  Those displays exceeding 31 mm received a score of 

� 1.   

     Both the field emitting display and the active matrix liquid crystal display scored the best 

with + 2 points each.  The display hardware selected to test the presentation was an Optrex 

Corporation 6.4 inch TFT AMLCD flat panel display, part number T-51382D064J-FW-P-AA 

and is shown in Figure 22.  In addition to the selection criteria established in functional 

analysis, analysis of alternatives, the panel was selected due to its size, weight, and 

connectivity to a personal laptop computer.  The displays resolution is 640X480 pixels with 32-

bit color depth (262,144 colors).  The maximum display brightness was 300 nits.  The size 

shape and weight allowed the display to be mounted on the console of the test aircraft in a 

number of ways.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 22.  Display for Test Aircraft 
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Designing the Symbology 

     The elements of the display were selected based on the information requirements needed 

to control the aircraft�s altitude during a descent from enroute altitude on an approach to 

landing.  To the extent as was possible, the display was designed to incorporate standard 

symbology.  This ensured the training to use the system was kept to a minimum by alleviating 

the need to learn a new symbol set.  An example is the use of the aircraft reference symbol in 

the VSI portion of the display.  This symbol is described in the MIL-STD-1787B and is 

incorporated on many instruments used in both civilian and military aircraft.  Figure 23 shows 

the conceptual design of the display symbology presentation. 

     The size of the display was set at 3 1/8 inches diagonally.  Although there is no 

requirement regulating the size of the display, this size was selected to approximate the 

industry standard for aviation electromechanical instrumentation.  This would allow the pilot to 

utilize existing cockpit instrument panel cutouts and increase the number of locations for 

mounting.  The display size provided sufficient area to incorporate the fonts and symbols 

without cluttering the display. 

 

 

      

 

 

 

 

 

 

Figure 23.  Laser Altimeter Display Symbology Design (Concept) � Actual Size 
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     The symbology is divided into three sections, the analog altitude trend bar, the digital 

altitude presentation, and the vertical speed indicator.  The design philosophy of the 

symbology presentation was to incorporate both position and rate or trend information into a 

single display. 

      A horizontal line extending from the 0 foot mark on the altitude trend bar to the right side of 

the display was incorporated into the symbology.  The area below this line (with the exception 

of the digital altitude presentation readout) is displayed in the color green.  This color was 

selected to simulate the earth and provide an intuitive graphical representation of the ground 

to the pilot.  The color brown was considered in representing the ground however the color 

green provided greater contrast between the symbol and the dark background of the display. 

     The analog altitude trend bar scale extends from 0 to 1000 feet and allows the pilot to 

transition from the enroute portion of flight or traffic pattern using the barometric altimeter to 

utilization of the laser altimeter display prior to establishment on the descent.  The scale is 

split and exponential with delineations at 50, 100, 200, 400, and 1000 feet.  The scale was 

designed to be exponential to allow for greater accuracy in resolution below 400 feet absolute 

altitude.  It is more important for the pilot to gauge his altitude closer to the terrain where 

errors in estimation are more hazardous than it is at altitude.  Graduations were placed at 200 

and 400 feet to notify the pilot to the altitudes corresponding to the standard precision 

approach decision height and non-precision approach minimum descent altitudes, 

respectively. (Kershner, 1998)  A tapered trend slide was chosen to present an intuitive 

representation of proximity to the earth at lower altitudes.  Additionally, the tapered slide would 

better illustrate the exponential nature of the scale to the pilot.  Altitudes above 1000 feet will 

be displayed by illuminating a semicircular bulb at the top of the trend bar.  A sliding chevron 

to the left of the trend bar aids in determining altitude by drawing the pilot�s eye to the top of 

the trend slide.  An update rate of 30 Hz was selected.  This rate corresponds a human�s 

ability to perceive change in information. (McCormick, 1982)  Since determining precise 
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information was not required from the trend bar, this allowed the information to be updated as 

rapidly as possible without decrementing the pilot�s ability to perceive the information.  

     The trend bar was chosen based on USAF School of Aerospace Medicine research in 

display presentation of altitude versus basic performance.   The Air Force study employed a 

subject base of 25 USAF aviators with an average time of 2,800 flying hours.  The pilots were 

asked to fly a simulator utilizing a series of five display format presentations.  The 

presentations included: a rotating pointer with dots, a rotating pointer without dots, a vertical 

tape, boxed digits, and boxed digits with a trend bar.  As altitude and airspeed were 

intentionally varied, the pilots were asked to maintain level flight and their performance was 

evaluated.  While the study concluded that the best performance in altitude control resulted 

from the trend bar and the rotating pointers, rotating pointers were probably more effective. 

Because of their position and movement, they were more easily detected in the parafoveal 

and peripheral vision.  Additionally, the study disregarded the aviators experience with rotating 

pointer altitude displays as a possible cause for their relative success.  The raw data form the 

Air Force study is presented in Table 8 and illustrates that the least deviation in altitude 

occurred with the column E. trend bars. (Ercoline, 1990)  

     The alphanumeric symbols to the left of the trend bar correspond to the absolute altitude in 

feet AGL.  Selection of the characters was based on several qualities including stroke width, 

width to height ratio, font, and size.  These qualities were considered in light of the fact that 

the characters would be based on stroke written fonts constructed by illuminated pixels.   

 

Table 8.  Pilot�s Deviation in Altitude Using Different Symbology Sets 

 ANOVA p<0.0001 
 A. Pointers 

w/Dots 
B. Rotating 

Pointers 
C. Vertical 

Tapes 
D. Boxed  

Digits 
E. Trend 

Bars 
Altitude (ft) 124.98 130.78 192.91 207.24 117.92 

Standard Error 8.89 12.99 14.28 18.26 19.03 
Duncan�s Multiple Range Test:  A, B, E less C, D 

 

 



 58

Based on numerous studies, several guidelines have be set forth.  The optimal stroke width 

for a white character on a black background is between 1:8 and 1:10.  In other words, the 

stroke of the character must be a 1/8 to 1/10 the characters height.  The relationship between 

a characters width to its height should be a minimum of 3:5. (McCormick, 1982) Selection of 

the font is perhaps the most problematic in that with the increase in display resolution of newer 

computers the number of available fonts has also increased substantially.  Military Standard 

MS 33558 specifies a character set with a stroke width of 1:8 and a width to height ratio of 

70%.  Although commercial fonts do not represent these characters, there are several Gothic 

styles, which approximate the standard to include: Futura, Sans Serif, Tempo, and Vogue.   

     The size of the character is a function of its viewing distance and can be determined using 

the following formula: 

H (height of the character, in) = 0.0022D + K1 + K2 

 

Where D is the viewing distance measured in inches, K1 is the correction factor for illumination 

and viewing distance and, K2 is the correction for importance.  The size of the characters, 

based on various viewing distances, is shown in Table 9. (McCormick, 1982) 

     The font chosen for the display was Lucida Sans Unicode due to its resemblance to the 

character set specified in the military standard MS 33558 (ASG).  Font size for the trend bar 

scale was set at 14 points, which yields a character height of 0.15 inches as measured at the 

screen. The character height for this font at 14 points is below the guidelines set forth in the 

table below, however because of the limited space of the display and the fact that the primary 

function of the font is to provide reference marking (not to provide accurate altitude 

information) a smaller sized font was chosen.  The digital altitude display is intended to relay 

accurate altitude information and is of greater importance than the reference markings of the 

trend bar so a larger font size was needed.  The font size selected for the digital altitude 

display was 28 points, which yields a character height of 0.32 inches measured at the screen.   
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Table 9.  Size of Characters Based on Viewing Distance and Illumination (inches) 

Non-Important Markings, K2 = 0 Important Markings, K2 = .075 Viewing 
Distance 

in 
Value of 
0.0022D K1 = .06 K1 = .16 K2 = .26 K1 = .06 K1 = .16 K2 = .26 

14 0.0308 0.09 0.19 0.29 0.17 0.27 0.37 
28 0.0616 0.12 0.22 0.32 0.20 0.30 0.40 

35.5 0.0781 0.14 0.24 0.34 0.22 0.32 0.42 
42 0.0926 0.15 0.25 0.35 0.23 0.33 0.43 
56 0.1232 0.18 0.28 0.38 0.25 0.35 0.45 

Applicability of K1 Values: 
K1 = 0.06 (above 1.0 fc, favorable reading conditions) 
K1 = 0.16 (above 1.0 fc, unfavorable reading conditions) 
K1 = 0.16 (below 1.0 fc, favorable reading conditions) 
K1 = 0.26 (below 1.0 fc, unfavorable reading conditions) 
 

 

     In addition to the analog presentation, a digital display was added to the lower left quadrant 

of the display below the altitude trend scale.  This location was chosen to capitalize on the 

principle of visual proximity and allow the pilot to process the analog trend information in 

parallel with the digital altitude display.  The digital readout displays the aircrafts altitude from 

0 to 1000 feet in 1-foot increments.  Altitudes above 1000 feet will be displayed until the 

sensor has reached its maximum range.  Above this range, a fault display symbology set will 

be displayed.  The rate the value of the digital display is updated by the sensor was selected 

to be 1 Hz.  This rate was selected on the principle that the maximum rate at which the pilot 

can accurately distinguish digital characters is 2 Hz. (McCormick, 1982) 

     Since the analog altitude scale is not linear, the rate information presented to the pilot is 

not easily derived visually.   For example, at a 500 foot per minute rate of descent it takes 1 

minute and 12 seconds to travel from the top graduation mark (at 1000 ft.) to the mark below 

(which represents 400 ft.).  This equates to 600 feet of altitude.  At the same rate of descent it 

takes 24 seconds to travel the same physical distance on the display, from the second mark 

(at 400 ft) to third graduation mark (at 200 ft.), yet the aircraft has only descended 200 feet.  

To ensure the pilot is presented with a linear rate cue, a VSI was incorporated to the right of 

the altitude trend bar.  This positioning is consisted with the standard �T� convention used in 

most cockpits. 
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     The VSI consists of an aircraft reference symbol overlaying a sliding arrow which indicates 

a climb or decent.  An arrow was chosen to portray the up or down movement of the aircraft 

more intuitively.  The aircraft reference symbol was needed to provide the pilot with visual 

reference of the aircraft and to further define the meaning of the arrows direction.  A graduated 

scale of 500 and 1000 feet per minute was placed above and below the aircraft reference 

symbol to better quantify the rate of climb/descent.  A decision was made not to incorporate 

markings on the VSI scale.  This was done to keep the display symbology from becoming too 

cluttered with information.  The scale represents the most commonly used rates of decent 

during an approach. (Kershner, 1998) 

     The display of warning and alerts was accomplished by the use of color-coding as shown 

in Figures 30 � 32 of Appendix B.  As described in the functional analysis, a rate of greater 

than 1000 fpm rate of descent when combined with an altitude of 400 feet would cause the 

processor to display a cautionary symbol set while a rate greater than 1000 fpm at less than 

200 feet would drive an alerting symbology set.  The cautionary display symbology set is 

similar to the normal display set except that the sliding trend bar and VSI pointer change from 

white to the color yellow.  Yellow was selected based on convention.  Yellow is generally 

accepted as the color for caution. (Wagner, 1996) 

     As the display transitions from a cautionary display set to an alert, the sliding trend bar and 

VSI pointer change from yellow to the color red.  Red was also selected base on convention.  

Additionally since the alert represents a condition more serious than a caution, the VSI is 

commanded to flash at 2 Hz. (McCormick, 1982) This is done to attract the pilot�s attention to 

the display.   

     In addition to the caution and alert symbology sets, the display incorporates a system fail 

symbol set, which alerts the pilot to the unreliable nature of the laser altimeter, should the data 

processor loose the signal from the sensor.  In the event of a loss of signal, regardless of 

cause, a series of four XXXX will be displayed in place of the digital readout.  Additionally the 

trend bar and VSI indicators will disappear and be replaced by the phrase �Altitude is 
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Unreliable� in white 20 point Swiss746 font. Below this is the phrase �Do Not Use Altimeter� in 

yellow 26 point Swiss746 font. 

     Because of the their unique abilities, helicopters are routinely employed in missions, which 

require the aircraft to operate at very low altitudes often in remote unimproved areas with no 

ground based approach aids.  Additionally, many of the mission�s helicopters fly; require the 

pilot to hover at very precise altitudes.  Where the fixed wing pilot may think in terms of tens of 

feet while on an approach, the rotary wing pilot may think in terms of individual feet while 

performing hovering operations or terrain flight.   

Cockpit Evaluations 

     Since it was necessary to determine an appropriate location for mounting the display as 

well as the optimal size of the symbology elements, cockpit evaluations were conducted on 

four of the top GA aircraft as defined by the GAATA survey.  The purpose of the evaluations 

were to measure the distance from the aircrafts design eye position to open areas on the 

instrument console, which were determined to be suitable to mount a display.  Once the 

results of the evaluations were gathered, the data was reduced per MIL-STD-1787B Military 

Interface Standard, Aircraft Display Symbology.  Since there is no criterion established which 

dictates the size of civilian display element the MIL-STD was used.  The actual symbol size on 

a direct view display can be calculated using the following formula: 

L = 2D tan (a/2) 

where L = size of the symbol at the display, D = design eye distance from the display, and a is 

the symbol subtense (in milliradians).  Results of the evaluations are presented in Table 10: 

 

Table 10.  Distances from DEP to Possible Mount Location 

Aircraft Type Pilot�s Yoke Position 1 Position 2 
Cessna 172 27.00 35.50 N/A 
Cessna 150 20.25 30.00 24.50 
Mooney M20 21.25 32.50 N/A 
Piper PA32 18.00 34.50 28.75 
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     The design eye distance selected for the display was the largest distance measured during 

the cockpit evaluations, e.g., 35.50 inches (as measured in the Piper PA-32 Saratoga).  This 

provided a basis to convert the symbology subtense as defined by the MIL-STD given in 

milliradians to an actual size in inches.  Only three of the symbology sets were defined in the 

MIL-STD-1787B.  These included the aircraft reference symbol, vertical deviation indicator 

(used for the VSI), and the aircraft directional reference symbol and are given in inches in 

Figure 24.   

Software Development 
 
     The software chosen to drive the display symbology was National Instruments LabVIEW 

6.0 �.  LabVIEW was chosen for its cost, availability, and its ability to communicate with 

hardware utilizing several different interfaces to include RS232.  LabVIEW is graphical and 

uses GUI icons as an interface. The file created is called a virtual instrument or VI.  Since 

there are no VI sets for aviation applications and specifically altimetry, one was created to 

interface with the laser altimeter.   

     Each VI consists of two main parts, the front panel and the block diagram.  The front panel 

contains the user interface of the VI.  The block diagram contains the graphical code for the  

 

 

 

 

 

 

 

 

 

Figure 24.  Symbol Subtense Conversion to Inches 
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VI.  The front panel and block diagrams for the altimeter as tested are displayed in Figures 33 

and 34 of Appendix C. 

     Early testing to the laser range finder revealed that the laser�s processor was too noisy to 

ensure a continuous signal.  As a result, the design of the display continued concurrently with 

the design of the laser.  As the first iteration of the design process for the display concluded 

there was still no workable laser to provide a signal, so an alternate sensor had to be located.  

A decision was made to use the atmospheric pressure sensor from an instrumented aircraft to 

supply an altitude signal for the display.  The signal would produce an altitude in MSL.  By 

subtracting the field elevation from the processed signal, it was possible to simulate a sensor, 

which could measure absolute altitude.   

     The rate information was calculated by differentiating the altitude signal with respect to 

time.  Rate is a measure of a change in position over a corresponding change in time: 

Ravg = ∆x / ∆t 

This is referred to as the average rate of an object.  As the change in time becomes 

increasingly smaller so that ∆t approaches 0, it is possible to determine instantaneous rate: 

Rinstant = lim ∆x / ∆t 

 

One of the disadvantages of using this technique to determine rate is that any noise in the 

system is also differentiated and amplified. 

     For this reason a filter was incorporated into the software to filter unwanted signals above a 

specified frequency.  The filter chosen for the display was a second order butterworth lowpass 

filter.  In addition to using a filter, an iterative loop was applied to both the digital readout 

display and to the VSI.  The purpose of looping the calculations was to further smooth the 

signal by averaging and to provide the ability to adjust the output frequency of the signal to the 

designed update rates of 1 Hz for the digital display (quantitative information) and 30 Hz for 

the graphical display elements (qualitative information).  Figure 25 illustrates the logic the data 

processor utilized in determining rate and trend information.   

∆t      0
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Figure 25.  Data Processor Logic 

 

    The design of the symbology used during the evaluation was slightly different from the 

conceptual symbology design.  This was due to limitations associated with the software 

chosen to construct the symbology, LabVIEW 6.0 �.  In the conceptual design, a tapered 

slide was chosen to represent the exponential nature of the altitude trend bar, however, 

LabVIEW had no method to construct a tapered slide so a linear slide was chosen instead.  

Additionally, the chevron selected to draw the eye to the top of the trend bar could not be 

constructed so a triangle was used.  The position of the triangle was fixed to the left side of the 

trend bar and could not be moved to the right as was designed.  Lastly, there was no method 

of drawing an arrow on the VSI slide so a traditional bar slide was chosen.  In all other 

respects, the display used during the evaluation remained consistent with the design.  The 

construction of the actual display symbology for the laser altimeter will most likely be 

accomplished using a programming language so there will likely be no such limitations 

associated with COTS programs such as LabVIEW.  Figure 26 shows the arrangement of the 

symbology as it was tested. 
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Figure 26.  Laser Altimeter Display Symbology Design (As Evaluated) � Actual Size 
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VII.  Prototype Validation � Test Plan and Evaluation 

Purpose  

     The purpose of the evaluation was to validate the design of the display symbology to 

ensure that the operational requirements were met.  This step completes the first iteratation of 

the systems engineering design process.   

Description of Test Aircraft 

     The test aircraft was an OH-58A+ Kiowa, tail number N88UT (Figure 27).  The OH-58A+ is 

a US Army, four place, light observation helicopter, operated by the University of Tennessee 

Space Institute as a flying laboratory for courses and for research.  The maximum gross 

weight of the aircraft is 3,200 pounds through a CG range from station 107.0 to station 111.4.  

N88UT was chosen for its ability to provide a pressure sensor for the display.  Additionally, as 

a public category aircraft, no STC was required for modification of the instrument panel. 

 

 

Figure 27. OH-58A+ (N88UT) on UTSI Ramp 
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     The OH-58A+ maximum airspeed is 120 knots, or 100 knots with any door removed.  While 

this airspeed is below that of a typical GA aircraft, it was still sufficient to demonstrate the 

ability of the display to function during normal airspeeds and vibrational loads.  Standard 

cockpit instrumentation used during the evaluation included: an engine oil driven torque-meter 

gauge (%Q), an engine (N2) and rotor (NR) dual-tachometer gauge (%RPM), airspeed 

indicator, vertical speed indicator, and standard sensitive altimeter.  A more complete 

description of the aircraft system and its standard instrumentation can be found in the 

Operator�s Manual, US Army TM 55-1520-228-10. 

     The aircraft was instrumented with the IO Tech DAQBook 120 ©, which was capable of 

providing altitude information via a pressure transducer connected to the boom pitot-static 

source.  Additional instrumentation included a laptop computer to generate the display 

symbology and to collect data in voltage from 0 � 5 VDC.   Qualitative comments were 

recorded manually on kneeboard cards and via a cockpit voice recorder.  

     The aircraft�s ADF was removed and a mounting plate was installed in its place.  The 

display was mounted to the mounting plate with a swivel head to orient the displays face 

normal to the pilot.  This was to reduce the distractions associated with parallax, glare, and 

reduced brightness with off axis viewing.  The location was selected because of the size of the 

display.  The location selected allowed the display to be visible without obscuring any primary 

flight instrument.  Additionally, by mounting the display on the instrument console vs. the top 

or side of the instrument panel the vibrations imparted to the display would also be minimized.  

The location chosen was outside the pilot�s primary Field of View (FOV), however, since the 

instrument was designed as a secondary instrument the location approximated the locations 

surveyed during the cockpit evaluations.  A voltage regulator designed to reduce the aircraft 

power from 24 volts AC to 12 volts DC to provide power to the cockpit display was installed.  

Figure 28 shows the installation of the display hardware on the OH-58A+ instrument panel. 

 



 68

 

 
 

Figure 28. Display Mounted in N88UT 
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Scope of Test 

Test and Test Conditions  

     The evaluation was conducted at Tullahoma Regional Airport, Tullahoma, Tennessee 

under daylight visual meteorological conditions.  The evaluation consisted of one ground test 

lasting .6 hours, and 2 flight tests lasting a total of 1.6 flight hours. Test conditions are 

presented in Table 11, Test and Test Conditions Matrix.  Testing was conducted within the 

limits of the operator�s manual.   

Method of Test 

     The method of test used consisted of a qualitative evaluation of the workload associated 

with altitude maintenance tasks.  The flight profiles flown during the evaluation were selected 

based on their applicability to the design objectives and included those tasks, which a GA pilot 

could reasonably be expected to utilize during the operation of the laser altimeter.  The tasks 

evaluated in the OH-58A+ included: IGE and OGE hovering flight, Instrument Takeoff, level 

flight, and constant rate of descent approaches to a landing.   

 

Table 11.  Test and Test Conditions Matrix 

Test Method Altitude  
(ft MSL) 

Airspeed 
(KCAS) 

Aircraft  
GW (lbs) 

Aircraft  
CG (in) 

OAT 
(oF) Remarks 

Ground Test 02 Test of data filtering 
Hovering Flight 

IGE 52 5 ft hover maintenance  

Hovering Flight 
OGE  

Climb to 50 ft � est. 50 ft 
Hover � descent to 5 ft  

HQR � OGE 
Hover 

502 

0 

Adequate perform - + 20 ft 
Desired perform - + 10 ft 

Instrument 
Takeoff 

1082 - 
1482 60 Climb to 1000 ft  

Level Flight Maintain 1000 ft  

HQR � Level 
Flight 

80 Adequate perform - + 100 
ft 
Desired perform - + 50 ft 

Constant Rate of 
Descent  60 Maintain standard 500 fpm 

descent 
Approach to 

Landing 

 
1482- 
1082 

60 - 0 

3002 110.14 76 

Stop descent at 400 ft and 
at 200 ft 

1 Configuration � Forward doors installed, rear doors installed, high skid gear installed, and bleed air on. 
2 Altitude in feet AGL 
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     The tasks were first flown without the use of the display to provide a baseline measurement 

to compare the increase or decrease in pilot workload.   

     Two pilots evaluated the display.  Both pilots were experienced test pilots but with varied 

backgrounds.  When evaluating flight displays, two aspects must be considered: readability of 

the display and the ability of the pilot to use the information gained to control the aircraft. Each 

pilot assessed the display using a modified Cooper-Harper Pilot Rating scale as shown in 

Figure 29 of Appendix A.    

Results and Discussion 

Ground Test 

     During the ground test, several parameters of the display hardware were analyzed.  The 

purpose of the flicker test was to evaluate the display�s temporal stability characteristics.  The 

display was evaluated under varying lighting conditions from direct sunlight to full darkness.  

The colors chosen for the evaluation were red, green, and blue.  There was no perceived 

variation in the continuity of the display recorded in either direct viewing or in off center 

viewing.  The temporal stability characteristics of the display were satisfactory.  

   The purpose of evaluating the display size was to determine if the size of the display was 

appropriate for the display symbology to ensure the display elements were not cluttered.  The 

size of the overall display measured 3 5/16 inches square.  The font for the digital altitude 

display measured 3/8 inches high.  The alphanumeric characters used for the altitude trend 

bar were 3/16 of an inch in height.  The delineation marks of the altitude trend measured 7/16 

of an inch wide, while the marks for the VSI measured 5/8 inches.  The width of the aircraft 

reference symbol was 1 1/2 inches wide.  The overall appearance of the display was 

uncluttered.  The size of the display was satisfactory. 

     The purpose of evaluating the glare was to determine the effects of the ambient reflected 

light on the readability of the display.  The display was evaluated under varying lighting 

conditions to include direct sunlight and full darkness.  The effects of the reflected light under 
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direct sunlight were not apparent until the observer was approximately 45o from the display�s 

normal axis.  The diffuse glare from the reflected light from within the cockpit under full 

darkness was not a factor.  The evaluation of the glare was satisfactory. 

     A manual vacuum pump was connected to the pressure transducer, which allowed the 

atmospheric pressure as measured at the transducer to be varied from current atmospheric 

conditions to a vacuum.  This allowed manual control of the pressure to simulate a climb and 

descent. The purpose of this evaluation was to ensure proper interaction between the altitude 

trend bar, digital display, and the VSI, to qualitatively evaluate the accuracy of the display 

elements, and to ensure proper function of the signal smoothing software.  The pressure was 

decreased and increased steadily in an attempt to maintain a 250, 500, and 750 fpm rate of 

ascent and descent.  The interaction between the display elements were as expected and the 

rate of climb and descent could be maintained without apparent noise in the signal from the 

transducer.  The evaluation of the interaction of the display elements was satisfactory and the 

decision to proceed with the flight evaluation was made. 

Ease of Use and Readability 

     The following comments were taken from pilot evaluations of the display.  The symbology 

was of large enough to allow the display to be read easily.  The use of the colors on the 

display provided sufficient contrast.   

     The movement of the altitude trend bar and the VSI appeared smooth and continuous and 

did not distract or mislead the pilot.  The vertical speed indicator correlated with the altitude 

display.  One pilot commented on the use of the display during the OGE hovering task, �The 

display gives finer detail [cues to change in altitude] than visual references outside the 

cockpit.�  Overall, the display helped the pilot by reducing total workload.  Qualitative 

assessments were performed on two mission tasks: level flight at low altitude and IGE/OGE 

hovering tasks.  Table 12 presents the results of the pilot evaluations. 
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Table 12. Results of Qualitative Evaluation 
Pilot 1  Pilot 2 Task HQR Variation  HQR Variation 

OGE/IGE Hover 1 + 3 ft  2 + 1 ft 
Level Flight at Low Altitude 1 + 6 ft  3 + 7 ft 

 

     Comments on improving the display were received.  During several maneuvers the VSI 

reached its maximum indicated value of + 1000 fpm.  The test pilot wondered if it were not 

important to know that the rate of descent was 1500 fpm instead of some value above 1000 

fpm.     

Display Accuracy 

     The system showed inaccuracies in the display of both the absolute altitude and vertical 

speed. The errors were caused by two sources: common instrument errors of the pitot-static 

system and errors associate with processing the transducer signal for presentation.  The pitot-

static system errors were expected.  As power was applied to initiate a climb the pressure field 

around the aircraft increased causing the display to indicate a decrease in the altitude.  As the 

power was reduced, the opposite effect occurred.  The lag in the system caused by this error 

was measured at 7 seconds.  Using a laser range finder as a sensor would eliminate this error 

from the system. 

     Additionally, the display demonstrated a lag when correlated to the aircrafts pitot-static 

system instruments.  Since the pitot-static system, pressure source was common to both 

instruments it was concluded that the error was caused by the software used to smooth the 

signal for presentation.  The software used two methods to smooth the signal and reduce the 

noise of the system: a second order butterworth low pass filter and an iterative loop to further 

smooth the signal.  By changing the filtering rate it was possible to reduce the lag between the 

two instruments, however the noise of the signal increased. 
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IX.  Conclusions 

 
     With the evaluation of the system, the first iteration of the SEP is complete.  The qualitative 

evaluation of the symbology showed that the display reduces total pilot workload by 

presenting altitude information more intuitively than the current altimeter displays.  This was 

accomplished by reducing the cognition required to determine position and rate information.  

However, several issues remain unresolved.   

      1.  The use of color-coding as an effective alert to the pilot.  Software limitations and 

time constraints did not allow proper testing of the caution, alert, and fault indication 

symbology sets. 

 2.  The use of auditory warning signal as a more effective alert to the pilot of low 

altitude with a higher than normal sink rate. 

 3.  The display showed a larger lag error than expected due to the method used to 

smooth the signal.  Use of alternate filtering techniques may eliminate this error while still 

provide a smooth continuous display of rate information. 

 4.  While qualitative data suggests the display is more intuitive, these assessments 

are based on subjective pilot opinion.  Programming error did not allow these improvements to 

be quantified by recording pilot performance in executing the mission tasks. 

 5.  During several mission maneuvers, it was impossible to determine an accurate 

quantitative value for the rate of climb or descents.  This was due in part to the maximum 

value assigned to the VSI.  
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X.  Recommendations 
 

     The following recommendations constitute the suggested changes to the design prior to the 

next iteration of the SEP. Although the display as tested achieved the design objectives of 

designing an intuitive display to provide absolute altitude in feet (AGL), one important 

requirement was not achieved, the accuracy of the display.  These recommendations provide 

several improvements to the existing design, which can be implemented with no additional 

cost.   

 1.  Test the symbology using a sensor, which could supply accurate distance to the 

earth such as radar or laser rangefinder.  This would eliminate the errors inherent in using a 

pitot-static source. 

 2.  By creating a Sub-VI for each of the symbology sets: normal, caution, alert, and 

fault indication, and writing a routine to compare the rate and altitude signals it is possible for 

LabVIEW to select a symbology Sub-VI based on predetermined parameters.  This would 

allow testing of the caution and alert symbology sets. 

 3.  Continue the evolution of the software to incorporate more effective filtering 

techniques.  This would eliminate the lag errors present in the first iteration evaluation. 

 4.  Incorporate a more effective method of recording the altitude information to allow 

for quantitative analysis.  It should be possible to show the increase or reduction of pilot 

workload by comparison of aircraft altitude without use of the display to aircraft altitude using 

the display. 

 5.  Increase the maximum value of the VSI from + 1000 fpm to + 2000 fpm.  

Additionally, the width of the VSI and the width of the altitude trend bar are identical and could 

be cause for confusion by some pilots.  Coding the rate indicator using size could eliminate 

any confusion. 
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Appendix A. Cooper-Harper Pilot Rating Scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 29. Display Rating Decision Tree: Ease of Reading Altitude 
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Appendix B. Cautionary and Warning Symbology Sets 
 

 

Figure 30. Display Cautionary Symbology 
 

 

 

 

Figure 31. Display Alerting Symbology 
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Figure 32. Display Fault Indication Symbology 
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