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Abstract 
 

This thesis documents the use of an approach for automated task solution 
synthesis that algorithmically and automatically identifies periods during which a team of 
less-than-fully capable robots benefit from tightly-coupled, coordinated, cooperative 
behavior. 

I test two hypotheses: 1) That a team’s performance can be increased by 
cooperating during certain specific periods of a mission and 2) That these periods can be 
identified automatically and algorithmically.  I also demonstrate how identification of 
cooperative periods can be performed both off-line prior to the application and reactively 
during mission execution. 

I validate these premises in a real-world experiment using a human-piloted 
Unmanned Aerial Vehicle (UAV) and an autonomous mobile robot.  For this experiment 
I construct a UAV and use an off-the-shelf robot.  To identify the cooperative periods I 
use the ASyMTRe task solution synthesis system, and I use the Player robot server for 
control tasks such as navigation and path planning. 

My results show that teams employing cooperative behaviors during 
algorithmically identified cooperative periods exhibit better performance than non-
cooperative teams in a target localization task.  I also present results showing an 
increased time cost for cooperative behaviors and compare the increased time cost of two 
cooperative approaches that generate cooperative periods prior to and during mission 
execution. 
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1. Introduction 
In modern AI robotics, there is a strong interest in developing teams of robots 

capable of performing specific applications [18].  This is in part because the complexities 
of real-world applications often exceed the abilities of individual robots.   

There is also a well-reasoned desire to implement teams of heterogeneous robots 
[12][13][14][17][19].  Frequently, a team of robots with varying abilities can match or 
exceed the performance of a single, general-purpose robot, and can have many other 
benefits as well.  Teams can be heterogeneous and can have robots with specialized 
equipment for performing specific tasks, and robots can be of varying sizes, shapes, and 
abilities.  They can also have multiple robots with the same capabilities for redundancy.  
Cost can also be a consideration, as multiple less-capable robots can cost less than a 
single, more-capable robot.   

From the perspective of an application, many tasks can benefit from or even 
require multiple simultaneous actions performed by different team members.  
Coordination or cooperation between team members can yield an increase in performance 
efficiency for these applications [13][19].  

In many situations, there is the opportunity or desire for humans to interact with 
or control members of a team of robots. Human-controlled and autonomous robots have 
inherently different capabilities.  For example, human-controlled robots can be much 
more adaptively controlled, and autonomous robots are often more precise and perform 
better at repetitive tasks.  Human interaction can also allow for a degree of fault tolerance 
and detection greater than that of a completely autonomous system. 

While cooperation can have great benefits, it is not difficult to conceive of an 
application where each robot’s capabilities are not required to perform all of the aspects 
of a task at all times.  In such an application, a team of robots with different capabilities 
may cooperate to work together to increase overall performance, but while tightly-
coupled cooperation will benefit overall performance, such cooperation is not necessary 
at all times.  It is possible to identify those periods where tightly-coupled cooperative 
behavior would benefit the team’s performance and those periods where a non-
cooperative or independent behavior would best benefit overall team performance.  
Previous work has undertaken the task of manually identifying such periods of beneficial 
cooperation [8].   

Previous work has also been undertaken by Parker and Tang [20][21] to 
algorithmically and dynamically generate team configurations based on information types 
and motor and perception schemas available at the time using a system called ASyMTRe.  
ASyMTRe is a reasoning system that maps available information types to sensors and 
perceptual and motor control schemas to synthesize robot team configurations and 
behaviors for a task [20][21]. In this project I make use of the ASyMTRe system to 
algorithmically identify those periods during which tightly-coupled 
coordination/cooperation benefits a team of less-than-fully-capable robots. 

I then show, using a real-world team of autonomous and human-controlled robots, 
an increase in efficiency over independently-operating teams of robots when 
“synergistically” cooperative behaviors are employed.  Additionally, I show that by using 
ASyMTRe, I can both generate the periods for employing these cooperative behaviors 



 

prior to the beginning of the application and reactively, during the execution of the 
application. 

1.1 Contributions 
In previous related work [8], cooperative periods were identified manually in an 

offline process prior to an application, with validation of the approach done only in 
simulation. The contributions of my thesis are the identification of cooperative periods in 
an algorithmic method, rather than manually, both a priori offline and reactively online, 
and the validation of this concept of cooperative periods online, through real-world 
experimentation, rather than in simulation, using a human-controlled UAV and an 
autonomous ground robot. 
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2. Related Work 
Extensive work in human-robot interaction has been conducted, as referenced by 

Tang and Parker in [22].  As the authors discuss, there is a strong motivation for “peer” 
interaction between robots and humans rather than human supervision of robots.  
Motivations include the ability to perform more complex tasks, better fault tolerance, and 
better team autonomy [16].  Furthermore, when humans are included as team members, 
how to model human capabilities becomes an area of special consideration.  Some work 
takes a full-featured approach, for example, in [10], a cognitive architecture model of 
human capabilities is created.  For this thesis, no such complex modeling is necessary.  I 
take a more minimalistic approach and only define the information necessary and 
required abilities available for the generation of a task solution. 

My thesis makes use of previous related work called Automated Synthesis of 
Multi-robot Task solutions through software Reconfiguration, or ASyMTRe.  The 
following paragraphs paraphrase (with permission of the authors) related work [22] by 
Parker and Tang, the creators of ASyMTRe:  

The ASyMTRe approach was developed for addressing the formation of 
heterogeneous robot coalitions that solve a single multi-robot task. More generally, the 
approach deals with the issue of how to organize robots into subgroups to accomplish 
tasks collectively based upon their individual capabilities.  

The fundamental idea of ASyMTRe is to change the abstraction that is used to 
represent robot competences from the typical “task” abstraction to a biologically-inspired 
“schema” [7][15] abstraction and providing a mechanism for the automatic 
reconfiguration of these schemas to address the multi-robot task at hand. In the 
ASyMTRe view, robot capabilities are a set of environmental sensors that are available 
for the robot to use, combined with a set of perceptual schemas, motor schemas, and 
communication schemas that are pre-programmed into the robot at design time.  

The ASyMTRe approach extends the prior work on schema theory by 
autonomously connecting schemas at run time instead of using pre-defined connections. 
According to information invariants theory [9], the information needed to activate a 
certain schema or to accomplish a task remains the same regardless of the way that the 
robot may obtain or generate it. We can label inputs and outputs of all schemas with a set 
of information types, for example, laser range data, global position, etc. Two schemas can 
be connected if their input and output information labels match. Thus, schemas can be 
connected within or across robots based upon the flow of information required to 
accomplish a task. With the run time connection capabilities, task solutions can be 
configured in many ways to solve the same task or reconfigured to solve a new task. 
Additionally, more capable robots can share information to assist less-capable robots in 
accomplishing a task.  

Parker and Tang concluded that the ASyMTRe approach provides mechanisms 
for multiple robots to (1) synthesize task solutions using different combinations of robot 
sensors and effectors, (2) share information across distributed robots and form coalitions 
as needed to assist each other in accomplishing the task, and (3) reconfigure new task 
solutions to accommodate changes in team composition and task specification.  
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This thesis also builds on the previous concepts detailed in an unpublished 
internal paper from Lockheed Martin Advanced Technology Laboratories, “Distributed 
Control for Unmanned Vehicles,” by Choxi and Bolden [8].  In it, Choxi and Bolden 
investigate tightly-coupled coordination between a team of a UAV and a ground robot 
and identify the concept of “critical junctures” (CJs): the “points in a mission where 
(independent) behaviors will fail and tightly coupled coordination is required” and 
“points where tightly-coupled coordination is no longer required.” 
 My effort here is to expand this work in two main directions.  First is to validate 
the concept of using critical junctures to identify periods best suited for 
cooperation/coordination and independent behaviors.  Because the previous authors did 
their work in a simulated environment, I wish to perform this validation in a real-world 
experiment environment.  Second is to use the ASyMTRe task solution synthesis system 
for the three purposes mentioned previously from [22]: to synthesize task solutions that, 
where necessary, create a coalition robot team to assist each other and share information 
and to reconfigure the task solution, in my case in response to changes in available 
environmental information and perceptual schemas.  In that way, I use ASyMTRe to 
autonomously generate critical junctures by identifying the points at which the task 
solution must be reconfigured. 

This allows the identification of critical junctures to be autonomous, for example 
if done off-line prior to the mission.  It also allows for the performance of the task that 
Choxi and Bolden refer to as “distributed planning”, which enables what I refer to as 
reactive cooperation – the ability to identify critical junctures on-line during the course of 
a mission and adapt the plan accordingly. 
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3. Approach 
 The approach to this project is described in two main parts.  First, the conceptual 
approach to using ASyMTRe to generate critical junctures is explored; then, the 
experimental approach details how I set about testing the concepts. 

3.1 Conceptual Approach 
The conceptual approach is split into the topics of critical junctures and 

ASyMTRe and the concepts behind the behaviors I employ in my approach. 

3.1.1 Synthesizing Critical Junctures 
The complexities of real-world applications often exceed the abilities of an 

individual robot.  Frequently, a team of robots with varying abilities can match or exceed 
the performance of a single, all-purpose robot, and can have other advantages, such as 
cost, redundancy, multiple points of failure, speed, etc.  By creating a heterogeneous team 
of robots to perform a task, performance efficiency can sometimes be increased.  Also, in 
many applications not all of a robot’s capabilities are required to perform all of the 
aspects of a task at all times.  In such an application, a team of robots with different 
capabilities may cooperate to work together at some points where team performance 
would be benefitted and work separately where no cooperative benefit is realized. 
 These points, at which robot team members can work together to benefit team 
performance on a particular task have been called “critical junctures”, or “CJs” [8].  
Likewise, points at which cooperating team members can stop working together and not 
adversely impact performance have also been dubbed critical junctures; thus, critical 
junctures define the boundaries of the period during which multiple robots on a team can 
cooperate to increase efficiency in the performance of a task. 

Critical Junctures and ASyMTRe 
While previous work has been performed that validates the concept of CJs for a 

task and that cooperation during the critical period bounded by CJs increases team 
performance, such a cooperative period has been created by identifying the CJs manually 
and a priori, and validation was conducted in simulation [8]. 

The ASyMTRe system uses information types, including robot control/behavioral 
information, perceptual information, and environmental information, as well as 
perceptual and motor schemas, to dynamically configure robots and teams of robots for 
the performance of a task.   

The benefit of leveraging the power of ASyMTRe to identify critical junctures is 
twofold: first, it allows us to take the human out of the equation and generate CJs 
algorithmically, and second, it means the CJs can be generated both as part of an a priori 
planned path, as in previous work, and reactively, on-the-fly during the execution of an 
application. 

To use ASyMTRe in this manner to identify critical junctures, it is necessary to 
define the task, information types and schemas in such a way that there can be regions of 
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beneficial cooperation, but not all aspects of the task require cooperation.  It is also 
highly desirable for this definition to be realistic and generalizable. 

Environmentally Dependent Information 
In order to utilize ASyMTRe, the information types and schemas available must 

first be defined.  For my purposes, it was sufficient to adapt the information types and 
schemas defined in previous works [20] and augment those information types with a new 
“Environmentally Dependent Information” type, or EDI. The concept of an EDI is 
straightforward: specific schemas available to a robot are dependent on the immediate 
environment around the robot.  In my case, I defined a “landmark” EDI, near which the 
localization schema was available to one team member, an Unmanned Aerial Vehicle 
(UAV) robot, and away from which the localization schema was not available to the 
UAV (Figure 1).  Of the previously defined information types and schemas, the UAV 
retained those that imparted vision-based localization relative to another robot; e.g., given 
a communicated global position of another robot in view, a robot can determine its own 
global position by calculating its position relative to the other robot.  Thus, I specify 
regions of the environment where a UAV can localize on its own and others where a 
UAV can be assisted by a robot in localization. 

The new ASyMTRe configuration files for within range of an EDI are shown in 
Appendix A-1 and A-2.  With the configuration of ASyMTRe complete, I am able to use 
it to identify the CJs for a path both in a pre-planned manner and reactively, during 
experimentation.   

 
 

 
Figure 1: Environmentally Dependent Information Type, (EDI) “Landmark” Concept.  When the UAV is 
within a specified range of an EDI, localization schemas are available. 
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This CJ identification can be performed by discretizing the robot and UAV paths 
into two series of points and checking the task solution generated by ASyMTRe at each 
point.  A different set of configurations is used depending on whether the point is within 
or is not within range of an EDI.  When the generated task solution changes between an 
independent solution and a cooperative solution (i.e., assisted localization), that point is 
identified as a critical juncture. 

3.1.2 Behaviors 
To validate the automated selection of CJs, three scenarios are devised for real-

world experimentation.  In each, a ground robot and a UAV are used, just as in [8].  Each 
scenario represents a different approach to the problem of identifying Critical Juncture 
points.  The three scenarios are Independent, Cooperative Planned, and Cooperative 
Reactive, and are outlined in the following paragraphs: 

Independent 
 In the “Independent” behavior scenario, the UAV and robot each perform the task 
independently, without any cooperation.  This represents a “base case” for comparison 
where no CJs are identified, so no cooperation takes place. 

Cooperative Planned 
 In the Cooperative Planned scenario, the CJs for the robot and the UAV’s 
cooperation are planned in advance of the start of the scenario, as in [8].  Conceptually, 
the CJs define any period that team members could work together to accomplish any task.  
A few examples of such cooperation could be localization, box pushing, or assisted 
navigation.  The CJs for this scenario are still algorithmically generated using ASyMTRe; 
they are simply generated a priori and offline. 

Cooperative Reactive 
 In the Cooperative Reactive scenario, the CJs where the robot and the UAV 
cooperate are identified (algorithmically, using ASyMTRe) as needed during experiment 
runtime, in “reaction” to the information types and schemas available. 

3.2 Experimental Approach 
In order to test the conceptual approach in a real-world environment, an 

experimental approach is required.  The UAV is piloted by a human, and the ground 
robot is autonomous. 

3.2.1 Task 
The task I use to test the cooperative behaviors is a coverage problem, i.e., to visit 

all of the space looking for targets.  This task is performed by both the robot and the 
UAV.  Both robot and UAV are provided a map of the environment a priori.  Both also 
have a predefined path to follow through the environment. 

The robot, at predefined waypoints along the path, stops and conducts a 360° 
visual sweep of the area with the camera/blobfinder, looking for targets.  The UAV, 
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being less-precisely controllable than the robot, follows the predefined path and, as 
deemed necessary by the piloting team, rotates and changes altitude to visually scan the 
surrounding area for targets. 

Upon detecting a target, the robot or UAV then localizes the target to the best of 
its ability.  For the robot, this involves using the direction and size of the target “blob” 
combined with self-location and orientation (provided by the Player [2][11] localization 
interface) to determine a precise X,Y position of the target.  Because of the robot’s height 
and camera capabilities, all Z-axis values reported by the robot are considered at ground 
level, or “low.”  For the UAV, target localization involves a human operator using self-
localization, determined by position and orientation relative to Environmentally 
Dependent Information or the robot, combined with direction and size of target, to 
visually estimate and record the position of the target.  The human operator identifies the 
X, Y position as well as a Z value of “high” or “low” per target. 

Because of the way the targets are distributed and the information types defined 
for the environment, the UAV and robot are expected to have different levels of success 
localizing targets for different target locations.  For example, targets placed at a high 
elevation in the environment are unlikely to be detected by the robot, whereas targets in 
areas outside the range of EDIs are unlocalizable to the UAV without assistance. 

In this experiment, while there are targets that are detectable only by the UAV, 
there are no targets only detectable by the robot.  While in this special case a solution 
could be designed where the robot is dedicated to assisting the UAV, such a solution 
would work only for this case.  The solutions described here are generalizable and as 
such will work in the case where there are targets localizable only by the robot; therefore, 
I present and evaluate the solutions in that context. 

3.2.2 Targets 
For the search task, many criteria influenced the selection of the target item.  In 

order to be easily perceivable by the simple blobfinder proxy, the targets should be of one 
solid color that is detectable by the blobfinder and reasonably unique in the environment.  
The targets should present the same two-dimensional profile when viewed from any 
angle.  They must be large enough so that they can be distinguished from small 
abnormalities in the environment and so that relative distance from the target can be 
easily determined, while still being small and light enough to safely mount on walls and 
ceilings.  12” balloons were selected for their nearly-spherical shape, controllable size, 
light weight, and solid color.  They are also inexpensive and require no preparation other 
than inflation.  Their only negative quality is that deflated balloons need to be re-inflated 
or replaced in between experimentation days.  Careful testing revealed that green 
balloons are best in terms of being distinguishable from other objects in the environment 
and identifiable in varying light conditions.  A target in the environment is shown in 
Figure 2. 

For this project a program was written that takes for input the laser map of the 
environment, as well as desired target count and spacing.  From all eligible positions in 
the test area, a specified number of positions are randomly generated with at least the 
minimum distance specified in between each target.  No maximum spacing is specified.   
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Figure 2: A target (green balloon) in the test environment. 
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The height of the targets (either high or low) is also selected randomly from eligible 
positions.  If no arrangement that satisfies all constraints is found in a large number of 
iterations (around 10,000), the script restarts.  If no configuration is found in 30 seconds, 
the script ends with an error indicating that given the number of targets and the required 
minimum spacing, no configuration is possible.  If the script successfully chooses all of 
the targets, it outputs the position coordinates in number form as well as graphically by 
editing the input map, as in Figures 3 – 7. 

Target spacing values between 1m and 5m were tested before an inter-target 
spacing of 4m was selected.  4m was deemed reasonable as it has the advantage of being 
twice the (2m) error of the robot’s blobfinder-based target localization, which should help 
to avoid some correspondence problem issues, while still being close enough together to 
allow an interesting variance in the target distribution.  Given the size of the target-
eligible area, a target count of 12 was selected, as experimental testing showed that more 
than 14 targets could not fit in the eligible area at 4m minimum spacing, and 12 targets 
allowed for a large variety of target distribution configurations. 

Before each experiment, targets were deployed throughout the environment by 
volunteers.  Care was taken to ensure that, if possible, the person performing the UAV 
target identification/localization task did not participate in the target deployment and thus 
had no prior knowledge of the targets’ locations. 

3.2.3 Environment 
In preparation for experimentation, a laser map of the experiment area was 

autonomously constructed by a Pioneer robot using Player and Pmap [6] (Figure 8). 
For the experiment area, a portion of the northern end of the second floor of the 

Claxton Education building was chosen (Figures 9 and 10).  The experiment area has the 
benefits of portions with high ceilings, wide hallways, and tables, benches, chairs, etc. 
that provide a widely varied indoor environment.  The experiment area is approximately 
400-500 m2.  For the experiments, tables and benches in the environment are draped with 
fabric and tablecloths to give them a larger and clearer laser signature.  Tables in the 
vending machine / eating area are arranged to create an area (approx. 40 m2) inaccessible 
to the robot but accessible to the UAV.  Additionally, tables and benches are arranged in 
the lobby area to provide a more diverse environment while allowing room for robot 
navigation throughout.  

Correspondence Problem 
The search method employed by the robot involves stopping at intervals and 

scanning 360° for a target.  Additionally, all targets are identical in appearance; they are 
not distinguishable from each other in any way except location.  It is not difficult to 
conceive of a situation where the same target could be detected during the scan at each 
waypoint.  For example, if a target is between two waypoints, it could easily appear in the 
target scans at both waypoints.  Also, I experimentally calculated the error for target 
localization to be <= 2m.  Thus, very rarely does the robot provide an exactly correct 
localization of a target, and a single target can be localized multiple times.  This 
introduces a problem of identifying the correspondence between the actual target position  
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Figure 3: Map 1 – Target locations. Small green dots represent eligible positions, either high or low. Small 
blue dots represent eligible positions, high only. Red circles are high target locations. Purple circles are low 
target locations. 
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Figure 4: Map 2 – Target locations Small green dots represent eligible positions, either high or low. Small 
blue dots represent eligible positions, high only. Red circles are high target locations. Purple circles are low 
target locations. 
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Figure 5: Map 3 – Target locations. Small green dots represent eligible positions, either high or low. Small 
blue dots represent eligible positions, high only. Red circles are high target locations. Purple circles are low 
target locations. 
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Figure 6: Map 4 – Target locations. Small green dots represent eligible positions, either high or low. Small 
blue dots represent eligible positions, high only. Red circles are high target locations. Purple circles are low 
target locations. 
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Figure 7: Map 5 – Target locations. Small green dots represent eligible positions, either high or low. Small 
blue dots represent eligible positions, high only. Red circles are high target locations. Purple circles are low 
target locations. 
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Figure 8: Laser map of Claxton Education 2nd floor created autonomously by a Pioneer robot using Player 
and Pmap. 
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Figure 9: Building map of Claxton Education, 2nd Floor.  Test area used in my experiments is outlined by 
the green dashed box. 
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Figure 10: Autonomously generated laser map of area corresponding to Figure 9.  The test area is outlined 
by the green dashed box. 
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and the target localization point.  Because the correspondence problem is not a focus of 
this research, all localizations within the error margin (defined as 2m) of a target are 
treated as a correct localization, even if the target has been previously localized; all 
targets outside of 2m are considered incorrect. 

3.2.4 UAV Hardware 
This section covers the UAV hardware, its parts, construction and capabilities. 

UAV Construction 
Because of the delicate nature of lighter-than-air vehicles, including the need to 

miniaturize and conserve as much weight as possible while preserving stability and 
maneuverability, much experimentation went into the initial phase of the UAV 
construction. Originally, the hope was to purchase an off-the-shelf model blimp.  
However, the model blimps available for purchase are typically around 3’ long, are 
relatively unstable and extremely susceptible to drafts, and only have sufficient lift for 
their gondolas and nothing more.  Because the UAV must be reasonably stable in flight 
and because the desired payload included a camera and battery, a model blimp was 
deemed insufficient.  Therefore, a custom approach was chosen for this project. 

The initial design of the UAV was to have two fans, each individually controlled, 
on a rotating axle.  This design is similar to the large remote-controlled commercial 
blimps popular at sporting events.  The physical construction began with a 7’ metalized 
nylon blimp envelope purchased online and off-the-shelf parts purchased from a local 
hobby store.  The gondola frame was constructed out of balsa wood, cut to accommodate 
the hardware components.  A large HS-785HB HiTech winch servo was chosen for its 
high degree of rotation to control the axle via a pulley, which allowed the axle to rotate 
just over 360°.  Two EPS-300C GWS motor & gearbox assemblies (with propellers) 
were mounted on either end of the axle.  Control over the motors was achieved with two 
ICS-300E GWS electronic speed controllers (ESCs).  The ESCs available were one-way 
only, meaning the motors could only run in one direction.  Power was supplied by a 9.6V 
650mAh NiMH battery pack. 

The initial UAV design provided several insights into the requirements and 
desired qualities and the tradeoffs between weight, power, and control.  The initial design 
was too heavy; the lift provided barely supported the weight of the gondola, without a 
camera.  The thrust generated by the motors was much greater than required, causing 
frequent oversteering and overshooting the destination.  The over-powered motors, 
together with the need to rotate the axle to reverse thrust and adjust altitude, resulted in a 
general lack of control.  The metalized nylon envelope, while sufficient for the task, was 
discovered to be very fragile and prone to “sag” when less-than-full.  In addition, the 
balsa frame was very delicate and prone to crack around high-stress areas (e.g., the legs 
and the pulley). 

Taking all of the lessons learned from the initial UAV construction, a new design 
was undertaken, focusing on minimizing the weight and sacrificing unneeded power.  A 
new envelope made of polyurethane plastic was selected for its superior durability and 
semi-elastic nature, which reduces the “sag” problem when not fully inflated.  Because 
the polyurethane is slightly lighter than the metalized nylon, a smaller 6’ envelope was 
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also chosen.  The tradeoff for this lighter, more durable envelope is that polyurethane is 
less of a helium barrier than the metalized nylon, which causes the blimp to deflate faster 
as helium slowly diffuses through the bag (but not fast enough to impact an experiment).  
The 6’ envelope holds approximately 18 cu ft of gas and weighs 6 oz.  So, at Knoxville’s 
elevation, 936ft, the 6’ polyurethane envelope filled with helium provides approximately 
12 oz (net) lift. 

A new, stronger and smaller gondola frame was constructed out of custom-
machined aluminum plates with balsa wood supports.  A “blimp kit” was found and 
purchased from a vendor that contained a specialized, lightweight dual 2-way 
proportional ESC and three micro motors.  The dual two-way ESC allows two-directional 
(forward and backward) control of two channels.  The new design mounts two of the 
micro motors on the axle, as before, but both are connected to one ESC channel and 
operate in unison.  Horizontal rotation of the UAV is achieved, not through individual 
control over the left and right motors, but rather through the use of a third tail-mounted 
motor, which is connected to the second ESC channel.  Altitude can be changed by 
rotating the axle and using the left and right motors.  A micro servo rotates the axle and is 
geared up to produce over 180° of rotation.  Because of the two-way ESC, 360° rotation 
was not necessary, so a much lighter “micro” servo was able to be used. 

A standard, two stick, hobby-type 4-channel transmitter / receiver (Figure 11) was 
purchased and used for remote control.  The transmitter and receiver operate one AM 
27MHz Channel 6. After experimentation to determine the ideal controller configuration, 
forward/backward on the left stick was set to control the left/right thrust fans, 
forward/backward on the right stick rotates the axle, and left/right on the right stick yields 
left/right rotation via the tail fan. The tail motor was put on receiver channel 1, the micro 
servo on channel 2, and the thrust motors on channel 3.  Channel 4 was unused. 

Power for the UAV is provided by a custom-built 4.8V 160mAh NiMH battery 
that weighs only 17g and provides enough power to operate the UAV for about 20 
minutes per charge.  Such a small battery combined with a fast charger allows for the 
battery to be recharged in less than one hour between experiments.  Three NiMH 
batteries were purchased to allow for several experiment runs to be conducted in 
sequence.  Power for the camera is provided by a standard 9V battery. 

The video camera chosen for this project is an Eyecam 2.4GHz Color Micro 
Wireless Video Camera.  The camera contains an onboard transmitter and weighs less 
than 20g total.  Care was taken to select a camera that transmitted on a channel (channel 9 
- 2452 MHz) not used by the campus wifi network (see Figure 12).  The camera system 
came with a camera mount and a receiver/composite video output device.  Video output 
is displayed on an HP projector with composite input. 
 The newly designed UAV assembly is shown in Figures 13 and 14.  The final 
weight for the complete assembly (including everything except the envelope) was 11.1 
oz.  Since the total lift was approximately 12oz, a small amount of ballast had to be added 
before flight to neutralize the buoyancy.  Figure 15 shows the assembled complete UAV. 

UAV Parts List 
The following is a list of the parts used to construct the UAV. 
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Figure 11:  The basic 4-channel 27MHz transmitter used to control the UAV. 
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Figure 12: Access points (Channels), Claxton Education Building, 2nd Floor. 
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Figure 13: UAV motor assemblies and gondola. 

 
 

 
Figure 14: UAV gondola components. 
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Figure 15: The Unmanned Aerial Vehicle, completely assembled, floats tethered in the lab. 

 
 
• HS-81 HiTech Micro Servo 
• Gear set, Stevens International No. MR7 
• 4 channel receiver & transmitter, Futaba Attack Digital Proportional R/C System, 

AM27 MHz channel 6 
• Balsa wood, 3/8” square 
• Carbon fiber rod, 3/16” 
• Aluminum tube, 1/4” 
• Speed Controller - dual computerized proportional control [3] 
• Fins and Fin Mounts 
• Velcro 
• 3x 2.5” Propellers 
• 3x N20 Motors & Holders 
• Eyecam 2.4GHz Color Micro Wireless Video Camera System -  channel 9 (2452 

MHz), 92° f.o.v., f=3.6mm [5] 
• 6’ polyurethane blimp bag 18cuft/6oz [1] 
• Custom-ordered 4 x 160mah AAA cell 4.8v NiMH battery 0.6oz [4] 
• 9V battery for camera 

UAV capabilities 
Control: 
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 The UAV is teleoperated by a human pilot via wireless RF remote control.  The 
range of the control is sufficient to reach all areas of the test environment from a central 
location. 
Motion:  

The two main motor/propeller assemblies are attached to a shaft parallel to the 
ground and perpendicular to the flight of the UAV.  These motors provide thrust for the 
UAV’s movement and are reversible (forward/backward).  Because the shaft is rotatable 
a full 360°, thrust can be supplied in any combination of forward, backward, up, and 
down.   
 A third motor/propeller assembly located on the tail of the UAV provides rotation 
and is operated independently of the two thrust motors.  This motor is also reversible, and 
can therefore rotate the UAV clockwise or counter-clockwise.  
 These three motors provide all of the movement capabilities of the UAV.  It is 
worthwhile to note that these capabilities, while sufficient, are limited.  Side-to-side 
movement is not possible, for example; instead, the UAV can rotate and move 
forward/backward. 

The somewhat limited movement capabilities combine with several other factors 
to make piloting the UAV a challenging endeavor.  Lightweight and streamlined, the 
UAV experiences no practical friction when moving unimpeded; once moving in a 
direction, it tends to stay moving in that direction until the motion is cancelled via the 
thrust motors or until it impacts a wall or obstacle.  To illustrate the difficulty this 
presents to the inexperienced pilot, examine the simple task of turning a corner.  
Approaching a corner, the UAV is moving forward.  At the right moment, the thrust fans 
must provide the correct amount of thrust to cancel all forward momentum.  The tail 
motor must then be run briefly to provide enough force to rotate the UAV 90°.  Then the 
tail motor must be run again to provide enough force to stop the UAV from rotating once 
it is facing the correct direction.  Then, finally, forward force can be applied by the 
thrusting motors to begin moving in the new direction.  All of this must be accomplished 
while simultaneously making minor adjustments to maintain the correct altitude.  Since 
the UAV is especially susceptible to drafts and pressure changes in the environment, 
constant minor corrections must be made in all directions.  Sideways drifting is especially 
problematic, since, as noted above, side-to-side movement is not possible. 
Piloting: 

Aspects of the environment also add significant difficulty to the task of piloting 
the UAV.  Vents in the ceiling and walls can significantly alter the flight path, and 
intakes in the ceiling represent an inescapable vortex if the UAV gets too close to them.  
Temperature changes in the building after the sun sets also affect the buoyancy of the 
UAV.   
Vision: 

A color micro camera provides the UAV pilot with a limited, forward-facing view 
of the environment for both navigation and target identification/localization tasks (Figure 
16).  The field of view for the micro camera is 92°.  Because the UAV can change 
altitude, both high and low targets can be identified. 
Communication: 
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Figure 16: A screenshot from the UAV camera view of a target. 

 26



 

The piloting team uses a laptop connected to a private ad-hoc network via 802.11 
wireless to communicate with the robot on behalf of the UAV.  A diagram of the 
communication and control signals exchanged is shown in Figure 17. 

3.2.5 Robot Hardware 
This section covers the robot hardware, its configuration and capabilities. 

Robot Configuration 
The robot used for this experiment is a Pioneer 3 DX model (Figure 18) owned by 

the Distributed Intelligence Laboratory, part of the Department of Electrical Engineering 
and Computer Science at the University of Tennessee in Knoxville.  The robot, named 
“Arno”, features an onboard Pentium III computer running the Gentoo Linux operating 
system, a SICK laser range finder, Canon VC-C4 camera, and 802.11 wireless.  The PTZ 
camera was zoomed out to the full ~50° field of view, panned to face exactly forward, 
and tilted down ~15° from the horizontal for the duration of the experiment.   

The 802.11 wireless was configured to join the DILab’s private ad-hoc network to 
communicate with the UAV’s computer. 
 The housing of the SICK laser range finder was partially covered with white 
paper as the shade of blue paint on the housing would sometimes have an RGB value 
within specified tolerances of the targets’ color and would be detected in reflections off 
of glass surfaces in the environment. 

Robot capabilities/control 
The robot runs the Player robot server [2][11] (ver. 1.6.5) which provides proxy 

interfaces for most aspects of the robot’s hardware.  Software was developed for this 
project that uses the Player server and gives the robot the ability to autonomously 
perform all of the behaviors and abilities required for this experiment.  Those behaviors 
and abilities include movement, self-localization, navigation, communication, and target 
detection and localization. 

Movement is controlled via the Player positionproxy interface.  This interface 
allows the behavior program to issue direct, simple, movement commands as well as 
access basic position and orientation information. 
 Localization is accomplished by Player using odometric data combined with the 
SICK laser rangefinder and previously-generated map using a particle filter Monte Carlo 
localization approach.  Localization information is used by the wavefront “pathplanner” 
proxy, which provides navigation information and control. 
 Communication is accomplished with simple network sockets.  

Target detection and target localization are performed using data returned by the 
Player blobfinder proxy.  The blobfinder proxy is provided RGB values of colors to look 
for when the Player server is started, in the form of a configuration file.  During runtime, 
the blobfinder proxy object can be accessed to provide position and dimensions of all 
objects in the camera’s field of view that match those initial RGB values.  As stated 
earlier, testing revealed that “green” (RGB [0, 255, 0], with thresholds of 20:200, 50:220, 
40:115) is the most easily identifiable but unique color for use as targets in the  
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Figure 17: A basic illustration of the interacting elements involved in communication and control. 
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Figure 18: Arno, a Pioneer 3 DX robot. 
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environment.  Relative dimensions of a tracked “blob” (Figure 19) are used to identify it 
as a target (the targets, balloons, are nearly spherical, so they should always have roughly 
the same, nearly equal, relative dimensions).  Once a tracked blob has been identified as a 
possible target by its dimensions, blob size (“area”) is also used to rule out blobs too 
small or large to be a target.  In Figure 19, note the two small highlighted green 
rectangles in the top center of the photograph – the blobfinder reports all “blobs” within 
the specified color criteria, so it is necessary to discard blobs that are outside of an 
expected size range.  Experimental testing revealed the accurate detection range to be 
0.5-3.5m, and I implement threshold checks to limit detection to this range.  If the size of 
the blob is within acceptable tolerances, blob size is then used to determine the 
approximate distance from the robot to the target, which, combined with relative position 
and current robot orientation, provides the position of the target.   
 Because the robot’s camera is fixed in a slightly downward-facing position (about 
15°), the robot is not capable of seeing “high” targets.   
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Figure 19: A target viewed from the robot’s Canon VC-C4 camera taken via the Player “playercam” 
interface.  Note that the green rectangular overlay over the balloon highlights the “blob” that the blobfinder 
reports. 
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4. Experiments 
This section describes the exact experiments that were conducted, including setup, 

EDI definition, paths, experimenter roles, and robot behaviors. 

4.1 Experiment Scenario 
 For the exact experiment scenario, the robot accomplishes the coverage/search 
task by moving through a pre-planned set of waypoints, beginning at the “entrance” to 
experiment environment near the fire doors south of the 2nd floor common area, and 
ending at the “exit” at the main doors in the 2nd floor lobby.  At each waypoint, the robot 
rotates 360°, stopping every 36° to scan for a target, for a total of 10 scans.  Even though 
the robot’s camera has a 50° field of view, additional scans were found in experimental 
testing to add only approximately 3 seconds per scan, and this slight (7° per side) overlap 
greatly increases the detection rate. 
 Likewise, the UAV performs the task by navigating along a pre-planned path.  
The UAV is teleoperated by a human pilot in the “command center” situated in 
conference room 202, a location adjacent to but separate from the test environment 
(Figures 9 and 10).  The pilot uses the onboard camera’s feed to navigate.  A human 
“copilot” assists the pilot in 1) target detection and localization via the camera feed and 
2) communication with the robot on behalf of the UAV via software running on a 
computer in the command center. 
 The UAV piloting team has the ability to communicate three types of messages to 
the robot: 1) stop and await a command, 2) move to a specified set of coordinates and 
await a command, 3) proceed with normal functions (“go”). 

For the experiment, the “landmark” EDI types (Figure 1) identified were corners 
in the environment where two walls of substantial length (~2m or more) meet.  These 
landmarks were chosen because they were found through testing to be easily identifiable, 
and because they are common but not overabundant in the environment.  Figure 20 
depicts the landmark-type EDIs and EDI ranges in the test environment.  So, when the 
UAV is within 3m of these EDIs, the UAV can localize on its own. 

4.2 Experiment Assistants 
 Three or four volunteers assisted with the experiments each day.  All were 
graduate EECS students, with the exception of one business Ph.D.  Roles performed 
during each experiment included UAV pilot, UAV communications/target detection, and 
an impartial “safety” person who ensured the safe operation of the UAV and robot in the 
environment.  An additional volunteer conducted video recordings of some runs. 

4.3 Experiment – Behaviors Tested 
Three test scenarios are defined to compare the different behavioral approaches – 

independent, cooperative-reactive, and cooperative-planned. 
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Figure 20: “Landmark” Environmentally Dependent Information (EDI) types in the test environment 
(small blue circles) and their ranges (larger light blue concentric circles).  These landmark EDIs enable the 
human driving the UAV to localize. 
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4.3.1 Independent 
In the independent test scenario, the UAV and the robot search the same target 

configuration “map” for targets, attempt to localize them, and operate independently of 
each other.  This behavior scenario represents the simplest configuration for the team. 

Note the differing capabilities of the robot and the UAV in this scenario: the 
robot, with its short height and fixed camera, cannot localize “high” targets.  
Comparatively, the UAV cannot localize any targets outside of the range of an EDI.   

4.3.2 Cooperative Planned 
 In the Cooperative Planned scenario, the paths of the robot and UAV coincide at 
segments where cooperation is required.  In the execution of the Cooperative Planned 
behavior, the robot proceeds through its pre-planned path.   

Critical Juncture points in both the robot and UAV path are preplanned using 
ASyMTRe.  As explained previously, Critical Junctures bound the regions of the UAV 
and robot paths where the robot and UAV should actively cooperate to increase 
performance. Figure 21 shows example paths of the UAV and robot (in dashed red and 
solid green) and the cooperative regions (boxed in black) overlaid on the EDI map from 
Figure 20.  Thus, when navigating through such a cooperative region of their paths, the 
robot stops at each waypoint and communicates its position to the UAV, as well as its 
state as being ready to proceed to the next point at the UAV’s request.  The UAV then 
takes the opportunity to use the robot’s communicated position to perform a relative 
localization of any nearby targets.  After searching that area for targets, the UAV sends 
the command to proceed to the robot.  When navigating outside of a cooperative region, 
the robot and UAV proceed searching along their paths independently.  If either the robot 
or the UAV reach a CJ that denotes the beginning of a cooperative region before the 
other, they wait for the other team member.  Also note that neither will stop and wait if a 
waypoint is not within a cooperative region. 

This cooperative behavior allows the UAV to localize all targets in the 
environment.  However, since the robot’s scanning is fairly time-intensive, the UAV is 
usually waiting for the robot, which means that the UAV’s runtime should be very close 
to the robot’s runtime.  

4.3.3 Cooperative Reactive 
 To execute the Cooperative Reactive behavior, the robot and UAV proceed 
exactly as they would in the independent scenario, with one major exception.  As the 
UAV identifies and attempts to localize targets, if ASyMTRe reveals that the UAV lacks 
the information necessary to operate the target localization schema (i.e., the UAV is 
outside of the range of an EDI), ASyMTRe generates an alternative task solution where 
the robot assists the UAV in localization.  Then, the UAV operators communicate a 
message to the robot to proceed to a position near the UAV and the detected target.  Upon 
receipt of this position command, the robot decrements its current waypoint value 
(conceptually pushing its current goal onto its path “stack”) and proceeds to the position 
requested by the UAV.  Once there, the robot communicates its presence and exact  
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Figure 21: Cooperative regions. Dashed red line indicates the approximate UAV path, green line indicates 
the approximate robot path, black boxes encompass approximate cooperative regions, blue dots represent 
EDIs, and large blue transparent circles represent EDI ranges.  Two approximate critical juncture locations 
are indicated by yellow arrows. 
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position to the UAV.  Then, the UAV is able to visually localize the target relative to the 
robot.  At this point, the UAV communicates a message to resume previous behavior to 
the robot, and the robot loads its last position as a goal position and returns to the 
independent search behavior. 
 The premise behind this cooperative reactive behavior is to be more robust than 
the planned cooperative in terms of not requiring preplanning and foreknowledge, and to 
streamline the cooperation behavior to only CJs where targets are detected. 

4.4 Experiments Conducted 
Five maps containing twelve targets each were created (Figures 3-7).  Target 

positions were generated randomly and subjected to the following constraints: eligible 
positions were 0.5 m apart (i.e., the granularity of the position placement was 0.5 m); 
targets must have a minimum of 4 m between them; targets could be high (above 1 m) or 
low (on the floor) in the environment, with the exception of some spaces where only 
“high” was available (e.g., tabletops); all open space in the test area was eligible with the 
exception of some areas in the middle of hallways that were excluded beforehand for 
safety (i.e., so the robot wouldn’t run over the target).   
 Experiments were conducted from 9 June 2008 to 17 June 2008.  Because the 
Claxton Education building is often inhabited, even in summer, all experimentation was 
done at night and on weekends to avoid interference as much as possible and to minimize 
the impact on educational activities in the building.  Occasional false starts due to human 
experimenter error or outside interference occurred and were discarded.  No other data 
was discarded.  Twice the experiment in progress had to be paused to allow a class to exit 
the building.  Both times the paused experiments were resumed successfully and the 
experiment run-time was adjusted in post-data collection to remove the period of the 
pause. 

Maps 1 through 5 were tested in order.  With 5 maps and 3 scenarios, a total of 15 
runs (robot and UAV operating simultaneously) were conducted.  Each run lasted 
approximately 1 to 1.25 hours, including setup time.  As the environment took time and 
assistance to configure, as many runs as possible were conducted consecutively each 
session. 

Freshly charged batteries were used for the robot and UAV for each experiment.  
Batteries available largely dictated the length of each day’s experimentation session 
which was 4-5 hours, on average. 

Images of a Cooperative Planned experiment in progress are shown in Figures 22 
through 26.  Pseudocode for the robot behaviors is available in Appendix A-3. 
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Figure 22: The UAV and the robot begin a run. 
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Figure 23:  The UAV and the robot navigate the environment. 
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Figure 24: The UAV waits on the robot for localization assistance. 
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Figure 25: The robot assists the UAV in localizing a target. 
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Figure 26: Localization is complete; the UAV and robot continue. 
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5. Evaluation 
To evaluate the performance of the behavioral approaches, I define four metrics:  

Target Localization Accuracy, Task Completion Time, Aggregate Run Time, and False 
Positive Rate.  Target Localization Accuracy is defined as the ratio of number of targets 
localized to number of actual targets.  Task Completion Time is defined as the maximum 
of the robot and UAV run times for a single run.  Aggregate Run Time is defined as the 
sum of the run time of the robot and UAV for a single run.  False Positive Rate is defined 
as the ratio of the total number of localizations reported to the number of incorrect 
localizations. 

5.1 Target Localization 
First, Target Localization Accuracy for each behavior is analyzed.  Figure 27 is an 

example of the target localization results.  Table 1 shows the ratio of targets localized to 
actual targets in the environment, where 1.0 represents all targets found.  In order to have 
a score of 100% localization possible, note that targets in the center of the Commons area 
(lower right of test area in Figures 9 and 10, lower left area in Figures 20 and 21) that are 
outside the range of the EDIs in that region were counted as inside the range of an EDI 
(i.e., localizable).  Maps 2, 3, and 4 each had one such target (Figures 4 – 6). 

The most apparent observation from Table 1 and Figures 28 and 29 is that the 
Cooperative behaviors displayed the nearly same ability to localize targets, while the 
Independent was less capable.  To determine the significance of this difference between 
the Cooperative behaviors and the Independent behaviors, I applied a Student’s T-test to 
the target localization behaviors’ average results from Table 1, comparing the 
Independent approach against each of the Cooperative approaches, and the Cooperative 
approaches against each other.  The test confirms that the differences between the 
Independent / Cooperative Reactive and Independent / Cooperative Planned behavioral 
approaches are statistically significant, with a confidence level of 95% and 97.5%, 
respectively.  There was no significant difference between Cooperative approaches. 
 Both of the Cooperative approaches performed better as a system: they localized a 
significantly greater percentage of targets than the Independent approach.  The reason for 
this becomes clear when one considers that in any application there could be certain 
subsets of the overall task that can only be accomplished via cooperation.  In this 
application, if there are any targets in the randomly generated map that can only be  
 
 
Table 1: Target Localization Accuracy: Ratio of Targets Localized to Actual Targets. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Mean Std. 
Dev. 

Independent 1.0 0.83 0.92 0.92 0.75 0.88 0.10 
Cooperative-
Reactive 

1.0 1.0 1.0 0.92 1.0 0.98 0.04 

Cooperative-
Planned 

1.0 1.0 1.0 1.0 1.0 1.0 0.00 
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Figure 27:  Localization results example for the robot on Map 4 using the Cooperative Planned behavior.  
In this example, the robot localized 7 out of 9 low targets.  In the map, the following are represented:  
Red dots – low targets. 
Purple dogs – high targets 
Red dots with green concentric dots inside – targets considered localized 
Blue squares – localizations considered correct 
Purple squares – localizations considered incorrect 
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Figure 28: Target Localization Accuracy 
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Figure 29: Mean Target Localization Accuracy, with standard deviations shown. 
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Table 2: Task Completion Time: Max of robot and UAV time per run, in minutes. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Mean Std. 
Dev. 

Independent 38.00 38.68 38.38 38.42 37.15 38.13 0.60 
Cooperative-
Reactive 

43.43 43.93 43.00 46.15 48.90 45.08 2.46 

Cooperative-
Planned 

40.17 40.82 39.69 39.22 41.03 40.18 0.75 

   
 
localizable by the team in cooperation, then the Independent approach is unable to 
localize them. Thus, in this experiment, localization of these targets is representative of 
the larger issue of tasks that can only be accomplished through cooperation.  So, in the 
general case, the performance of the Independent approach is bounded by the number of 
tasks that can be accomplished independently.  In this case this is total number of targets 
minus those targets that are located high and outside the range of an EDI, which renders 
those targets viewable by only the UAV but not localizable. 

5.2 Task Completion and Aggregate System Run Times 
 The next performance measures examined are Task Completion Time and 
Aggregate System Run Time.  Task Completion Time values, the maximum time of the 
robot and UAV run times per run, are shown in Table 2 and Figures 30 and 31. 

I performed a Student’s T-test on the average in each pairing of rows in Table 2.  
Each pairing (Independent vs. Cooperative-Reactive, Independent vs. Cooperative-
Planned, and Cooperative-Reactive vs. Cooperative-Planned) confirms a statistically 
significant difference in the Task Completion Time for each of the behaviors’ approaches 
with a confidence of 99.5%.   
 The Task Completion Time of the robot and UAV in each run is equal to the run 
time of the robot, as the UAV is much faster than the robot because of its means of 
propulsion and the fact that it was human-operated.  This is a measure worth noting 
because it represents the total time required by the team to accomplish the overall task.  
From these results one can see that there was not a huge difference in time between each 
approach.  The Independent approach is of course fastest, as the robot has only to 
navigate and search along its path without any other interaction or interruption.  
Interestingly, the Cooperative-Planned approach is only slightly (~5% on average) longer 
– this can be attributed to the fact that, because the UAV was significantly faster than the 
robot, the UAV is always at each CJ at the same time as the robot.  So, the UAV only has 
to take a few seconds to localize any nearby targets before issuing a “resume” command 
to the robot, thus impacting the robot run time a small, but statistically significant, 
amount.  And of course the Cooperative Reactive approach takes the longest (about 18% 
longer than Independent), as during each run there are at least a few targets that the UAV 
requires assistance localizing, which sometimes requires a long round-trip for the robot 
from its search path to wherever the UAV requests assistance.  It is worth noting that the  
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Figure 30: Task Completion Time 
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Figure 31: Mean Task Completion Time, with standard deviations shown. 
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Table 3: Aggregate System Run Time: Sum of robot and UAV time per run, in minutes. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Mean Std. 
Dev. 

Independent 46.00 46.18 47.38 48.42 44.15 46.43 1.61 
Cooperative-
Reactive 

56.80 57.93 58.00 60.70 64.40 59.57 3.06 

Cooperative-
Planned 

80.34 81.64 79.34 78.44 82.06 80.36 1.52 

 
 

longer Task Completion Time of the Cooperative Reactive approach is directly related to 
the maximum speed of the standard Pioneer robot; with a much faster robot, the Task 
Completion Time of Cooperative Reactive should approach that of Cooperative Planned. 
 Aggregate System Run Time is the robot run time added to the UAV run time for 
each run.  The Aggregate System Run Time results are shown in Table 3 and Figures 32 
and 33.  This value is interesting because it can be used as a very rough approximation of 
energy consumption of each team, as one can observe that at any given moment in 
experimentation, both team members are expending energy.  The robot is nearly 
constantly in motion, and while one might think that the UAV would be idle while 
waiting for the robot in the Cooperative scenarios, the reality of blimp navigation is that 
in any real-world environment, there is a constant need to expend a non-negligible 
amount of energy simply to remain in a stationary position, as drafts and temperature 
changes are constantly affecting the UAV’s position. 
 A Student’s T-test of the data in Table 3 reveals that each pairing of average 
results is statistically different, with a confidence level above 99.95%. 
 Of course, the Independent value represents the sum of the times that it takes each 
team member to navigate and search its respective path.  The UAV, as noted, is much 
faster than the robot at doing so.  The Cooperative-Planned approach is a remarkably 
higher value than the other approaches (nearly 75% more than the Independent).  This is 
because the Cooperative Planned approach involves the UAV and robot navigating their 
paths in synchronization, arriving at each CJ at the same time, since the CJs are generated 
a priori without knowledge of the targets’ actual locations.  Because of this, the much 
faster UAV must wait on the robot at each point, and therefore the UAV’s run time is 
much longer in the Cooperative-Planned scenario.  The Cooperative-Reactive approach is 
around 28% longer on average than the Independent, but much less than the Cooperative-
Planned.  This is a because the CJs are generated reactively as the UAV encounters a 
target outside of the EDI range, so while the UAV does have to wait for the robot to 
arrive and assist at some points, it does not have as many points at which to wait. 

5.3 False Positive Rate 
Because I allowed the robot to report redundant target localizations, a target could 

be localized more than once, as described earlier.  The ratio of the number of the number 
of “incorrect” localizations (that is, those not within the error threshold (2m) of a target)  
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Figure 32: Aggregate System Run Time 

 
 
 

Mean Aggregate Run Time

0

10

20

30

40

50

60

70

80

90

Ti
m

e

Independent Cooperative-Reactive Cooperative-Planned
 

Figure 33: Mean Aggregate System Run Time, with standard deviations shown. 
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Table 4: False Positive Rate – 1 - Ratio of incorrect localizations to reported localizations. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Mean Std. 
Dev. 

Independent 0.28 0.37 0.28 0.20 0.33 0.29 0.07 
Cooperative-
Reactive 

0.28 0.50 0.36 0.47 0.25 0.37 0.11 

Cooperative-
Planned 

0.08 0.09 0.27 0.44 0.25 0.20 0.15 

 
 
to reported localizations yields the ratios in Table 4, which I define as the False Positive 
Rate.  Figures 34 and 35 depict the False Positive Rate and Mean False Positive Rate 
graphically. 

A Student’s T-test applied to the average of each row in the three pairings of data 
sets yielded no significant differences, except for the comparison between Cooperative-
Reactive and Cooperative-Planned.  These two data sets were found to be different to 
nearly a statistically significant amount, with a confidence above 90% and just less than 
95%.  It is my prediction that upon expansion of these data sets after further 
experimentation these data sets will diverge to a statistically significant amount and thus 
show that they are, in fact, different, and therefore that the Reactive approach yields more 
“false positives” than the Planned.   

This performance difference could be reasonably attributed to slightly increased 
error temporarily introduced by the need for the robot to divert from the current path to 
assist the UAV and then return to its last position.  First, it is necessary to note that the 
meaning of “false positives” here incorporates all target localizations that do not 
correspond to actual target positions: both total misses (e.g., a square patch of grass 
outside the lobby doors, or a green hue cast by an unusual lighting situation) and 
localization errors of actual targets in excess of the error threshold (e.g., due to 
orientation or distance errors).  Examining the false positives, visually represented by the 
purple squares connected to purple circles (robot positions) in Figures 36-38, one can see 
that false positives are most often due to orientation errors and not distance errors or total 
misses.  Note that at the maximum detection distance (3.5m), an orientation error (which 
yields an incorrect bearing-to-target measurement) of only about 32° can result in a 2m 
localization error.  Coupled with the inherent error in the real-world system (slight 
odometry error, slight variance in size of target, environment lighting, background colors 
affecting target coloring, and so forth) a slight odometry error can yield occasional 
detections of actual targets that are simply outside of the tolerance range.   
So, by sending the robot on long diversions from the path followed exactly by the 
Independent and Cooperative-Planned approaches, an additional, small but significant 
error must be being temporarily introduced into the Cooperative-Reactive system (Figure 
38).  This error would be best described as an error due to the “unsettled” state of the 
robot, as the orientation error appears to “settle out” eventually and return to normal; the  
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Figure 34: False Positive Rate 
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Figure 35: Mean False Positive Rate, with standard deviations shown. 
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Figure 36: The path of the robot showing target localizations along path for Map 3, Independent.  The 
following list explains the symbols used and what they represent: 
Green points + green lines represent the path of robot.   
Red circle represents an actual target position, low.   
Orange circle represents an actual target position, high.   
Orange or red circle with green dot in center represents a detected target.   
Blue circle represents the position of robot at a successful target localization.   
Purple circle represents the position of robot at an incorrect target localization.   
Purple square represents the reported position of a target at incorrect localization. 
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Figure 37: The path of the robot showing target localizations along path for Map 3, Cooperative Planned. 
The following list explains the symbols used and what they represent: 
Green points + green lines represent the path of robot.   
Red circle represents an actual target position, low.   
Orange circle represents an actual target position, high.   
Orange or red circle with green dot in center represents a detected target.   
Blue circle represents the position of robot at a successful target localization.   
Purple circle represents the position of robot at an incorrect target localization.   
Purple square represents the reported position of a target at incorrect localization. 
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Figure 38: The path of the robot showing target localizations along path for Map 3, Cooperative Reactive. 
The following list explains the symbols used and what they represent: 
Green points + green lines represent the path of robot.   
Red circle represents an actual target position, low.   
Orange circle represents an actual target position, high.   
Orange or red circle with green dot in center represents a detected target.   
Blue circle represents the position of robot at a successful target localization.   
Purple circle represents the position of robot at an incorrect target localization.   
Purple square represents the reported position of a target at incorrect localization. 
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error is not accumulating.  I do not believe this increase in the rate of false positives is in 
any way insurmountable; however, it is worth noting and future work should address this 
issue where necessary.  

5.4  Summary 
To compare the approaches in terms of these findings, the Cooperative Reactive 

and Planned approaches both perform the task of target localization equally well in terms 
of Target Localization Accuracy, and better than the Independent approach.  In essence, 
if there is any benefit at all to be had from cooperation, the cooperative behaviors will 
realize this benefit whereas the Independent will not.  In terms of Task Completion Time, 
the Cooperative Planned performs slightly better than the Cooperative Reactive, with the 
caveat that the magnitude of the performance increase is directly related to the speed of 
the robot.  However, if one takes into account the energy expended by the robots by 
considering the Aggregate Run Time, the Cooperative Reactive is superior to the 
Cooperative Planned. 

When choosing an approach, it may also be necessary to consider the values 
placed on human time and robot time.  For example, in some situations human time may 
be highly valued, so an approach that minimizes the human-controlled UAV run time 
may be favored. 

Taking all of those considerations in mind, I would suggest this solution:  In any 
scenario that involves a task that would benefit from cooperation part of the time and 
human and robot time are valued equally, if there is a demand for the most rapid 
completion of the task possible, a Cooperative Planned approach should be employed.  
On the other hand, if energy consumption or aggregate run time of the robots is a 
concern, or in a situation where a planned approach is not possible, a Cooperative 
Reactive approach might be best.  In a scenario where human time is valued much higher 
than robot time, even though a Cooperative Planned approach is best in terms of overall 
Task Completion Time, a Cooperative Reactive approach might be preferred because it 
reduces Aggregate Run Time by reducing the human-controlled UAV run time. 

I also observe that for some mission configurations, especially those with a high 
number of critical junctures, the increased cost of a reactive cooperation should be taken 
into account, especially the higher potential for false positives and the typical distance 
between robots that must be constantly traversed, and a Planned Cooperative approach 
should be considered instead. 
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6. Conclusion 
In this work I have leveraged the power of ASyMTRe to identify critical points at 

which tightly-coupled cooperation/coordination benefits a heterogeneous team of less-
than-fully-capable robots.  Where previous related work [8] had identified these critical 
points manually, I have identified them algorithmically, both a priori and reactively 
during task execution.  Where the previous related work’s approach to synergistic 
cooperative behaviors had been validated in simulation, I have validated the benefit of 
cooperation at these critical junctures in real-world experimentation. 

While both a priori Planned cooperation and Reactive cooperation have been 
shown to perform identically well in terms of the target localization task, I have 
examined differences that distinguish Planned vs. Reactive, including Task Completion 
Time, where Planned slightly outperforms Reactive, Aggregate System Run Time, by 
which Reactive performs better than Planned, and False Positive Rate, by which it 
appears Planned performed better than Reactive.   

Because of these findings, it appears that a Cooperative Reactive-type approach 
would be best for situations where knowledge for a planned approach is not possible or 
energy use or aggregate run time (e.g., wear and tear on the robots) is a significant factor, 
unless a large number of critical junctures are present or expected, which could increase 
the rate of false positives.  Also, the speed of the robot should be taken into account when 
deciding whether to use a Cooperative-Reactive approach over a Cooperative Planned; a 
faster robot may make the Cooperative Reactive approach more cost-effective in terms of 
Task Completion Time.  A Cooperative Planned-type approach would be best for 
situations where a large number of CJs are expected and a higher false positive rate is 
unacceptable, or where a small increase in time performance is preferred. 
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Appendix A-1: ASyMTRe info.cfg file.  This file defines the perceptual schemas (ps), 
communications schemas (cs), and information types (f) available, and their interactions.  
This information is used by the ASyMTRe reasoning system to map environmental 
sensors with perceptual, motor, and communication schemas. 
 
# ps1: calculates self global position 
# ps2: calculates self goal position (hard-coded) 
# ps3: calculates global position of another agent 
# ps4: calculates self global position according to detected relative 
#      position of another agent and global position of the other agent 
# ps5: calculates the relative position of another agent 
# ps6: calculates relative position of EDI 
# ps7: calculates global position of EDI using relative position, self 
#      global position 
# ps8: calculates self global position using relative position of EDI,  
#      global position of EDI 
# ps9: "looks up" global position of EDI 
 
# cs: transfer information between schemas 
 
# f1: self global position 
# f2: other global position 
# f3: other's relative position 
# f4: EDI global position 
# f5: EDI relative position 
 
goal {goto} 
 
provide { 
  ps1 > f1 
  ps3 > f2 
  ps4 > f1 
  ps5 > f3 
  ps6 > f5 
  ps7 > f4 
  ps9 > f4 
  ps8 > f1 
} 
 
need { 
  goto < f1 
  ps4 < f2 & f3  
  ps3 < f1 & f3 
  ps8 < f4 & f5 
  ps7 < f5 & f1 
} 
 
communicate { 
  f1 < cs > f2 
  f2 < cs > f1 
}
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Appendix A-2: ASyMTRe commonsense.cfg file.  This file contains the costs associated 
with the use of each schema.  Using this information combined with the flow of 
information defined in info.cfg (Appendix A-1), a task solution is generated.  The 
composite is the last configuration solution generated and is saved at the end of this file. 
 
# ps1: calculates self global position 
# ps2: calculates self goal position (hard-coded) 
# ps3: calculates global position of another agent 
# ps4: calculates self global position according to detected relative 
#      position of another agent and global position of the other agent 
# ps5: calculates the relative position of another agent 
# ps6: calculates relative position of EDI 
# ps7: calculates global position of EDI using relative position, self  
$      global position 
# ps8: calculates self global position using relative position of EDI,  
#      global position of EDI 
# ps9: "looks up" global position of EDI 
 
# cs: transfer information between schemas 
 
# f1: self global position 
# f2: other global position 
# f3: other's relative position 
# f4: EDI global position 
# f5: EDI relative position 
 
atomic { 
  ps1 & gps = 95 
  ps1 & laser = 95 
  ps3 & dummy = 100 
  ps4 & dummy = 100  
  ps5 & laser = 95 
  ps5 & camera = 90 
  cs & comm = 100 
  ps6 & camera = 90 
  ps6 & laser = 95 
  ps7 & dummy = 100 
  ps8 & dummy = 100 
  ps9 & dummy = 100 
} 
 
# Cost description 
cost { 
  gps = 1, 
  comm = 20, 
  camera = 2, 
  laser = 3, 
  dummy = 1, 
} 
 
composite { 
1,  
goto = 8,  
cs & [cs & f1] | 
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ps1 | 
cs & [cs & f2] & ps4 & ps5 | 
cs & [cs & f1] & ps3 & ps4 & ps5 | 
ps1 & ps3 & ps4 & ps5 | 
cs & [cs & f1] & ps6 & ps7 & ps8 | 
ps1 & ps6 & ps7 & ps8 | 
ps6 & ps8 & ps9 
} 
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Appendix A-3: Pseudocode for robot Cooperative Reactive and Independent behavior.  
Cooperative Planned is the same, except at certain waypoints, the (UAV_message is 
“help”) condition returns true by default. 
 
 
Given a set of waypoints 
 
for (each waypoint) { 
 moveto_waypoint() 
 while not at waypoint { 
  helped = check_if_help_needed() 
  if (helped) load last waypoint 
 } 
 if (!helped) target_scan() 
} 
 
function check_if_help_needed() { 
  UAV_needs_help = false 
  robot_helped_UAV = false 
  do  { 
 UAV_message = check_message() 
 if (UAV_message is "help") { 
  UAV_needs_help = true 
  moveto_waypoint() 
  robot_helped_UAV = true 
  } 
 else if (UAV_message is "resume") 
  UAV_needs_help = false; 
 } while UAV_needs_help 
  return robot_helped_UAV 
} 
 
function target_scan(){ 
number_of_scans = 10 
for (number_of_scans) { 
 turn 360 / number_of_scans degrees clockwise 
 target_detect() 
 } 
return to original orientation 
} 
 
function target_detect() { 
for (each blob detected) { 
 check if target area is within threshold 
  if not within threshold, next blob 
 check if target relative dimensions are within tolerances 
  if not within tolerances, next blob 
 center target in frame (to get it fully in-frame) 
 calculate target position using area of blob and orientation of 
robot 
 return to previous orientation 
 } 
} 
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