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Abstract 
 

In this work, spectroscopic emissions from laser ablated aluminum samples are 

used to characterize the time dependent decay of laser-induced plasma. The plasma is 

created by tightly focusing nanosecond pulsed laser radiation. Time resolved 

measurements of the plasma are made with a gated, intensified linear diode array coupled 

to an optical multichannel analyzer and/or an intensified charged coupled device. Time 

resolution is achieved by synchronizing the laser with the measurement rate of the array 

detector.  

Computed diatomic molecular aluminum monoxide emissions were used to infer 

the temperature of the plasma as a function of time. This was completed by comparing 

experimentally collected spectra to theoretical calculations with a Nelder-Mead 

algorithm. The theoretical spectra were calculated from accurate line strengths for 

selected aluminum monoxide bands. The temperature of the plasma was found to 

decrease from typically 5100 Kelvin to 3600 Kelvin from 10 to 90 microseconds after 

optical breakdown. The temperature appears to plateau to a temperature of 3800 Kelvin 

after 90 microseconds. Error analysis in the inferred temperature is accomplished with 

the fitting algorithm and the precision was found to be between 45 and 75 Kelvin. Gated 

camera measurements were performed to infer the temperature along the height of the 

plasma and found the temperature profile of the plasma to increase above the plasma 

edge. Superposition of hydrogen Balmer series beta emissions with aluminum monoxide 

spectra allow one to infer electron number densities from the plasma at time delays 

preceding 20 microseconds. 
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Chapter 1 

Introduction and General Information 

 Lasers are some of the most practical and useful inventions of the twentieth 

century as they have developed into useful experimental tools in applied research. One of 

the applications of laser radiation is in the field of spectroscopy, particularly with the use 

of pulsed laser radiation to induce optical breakdown in gas or near the surface of a target 

sample. This is known as laser-induced optical breakdown and each laser pulse produces 

a micro-sized, laboratory scale plasma. This is achieved by tightly focusing the laser 

radiation so that the breakdown threshold, the characteristic amount of irradiance 

required to induce breakdown for a given material, is reached at a given set of 

experimental conditions. The breakdown threshold of a material is measured in terms of 

the irradiance, which is the power per area delivered to a sample. Pulsed laser radiation is 

advantageous for this application, as compared to continuous wave laser radiation, and 

typically a nanosecond or femtosecond pulsed laser is used. The peak power delivered to 

the surface of the sample from a pulsed laser is greater than that of a continuous wave 

laser since the energy of the pulsed laser is delivered over a much shorter time duration. 

The typical focused spot size is on the order of 50-100 microns and as such, the energy 

per pulse of the laser determines the irradiance incident on a sample. With conditions 

similar to the ones described it is possible to achieve an irradiance between 1-10,000 

GW/cm
2
 at atmospheric pressure for a sample.(1) 
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 Once the plasma is created one may observe it through its unique spectroscopic 

emissions. This is known as laser-induced breakdown spectroscopy (LIBS) and the 

spectroscopic signal can be manipulated in many ways to characterize the laser-induced 

plasma.(2-4) LIBS has industrial applications in determining the composition of 

materials, (5-7) and this principle has been expanded to include applications in 

geophysics and planetary science, as the Mars rover Curiosity has been outfitted with a 

LIBS apparatus.(8) One of the advantages of LIBS in research applications is ability to be 

used in time resolved studies. This allows for characterization of the time evolution of  

laser-induced plasma through a number of parameters such as the temperature and 

electron number density. This has been extensively investigated for solids, liquids, and 

gases. In this study, the temporal evolution of laser-induced plasma on the surface of an 

aluminum target is studied through spectroscopic emission of atomic lines and diatomic 

molecular aluminum monoxide (AlO) spectra.  

Plasma Radiation Processes  

All plasmas emit or absorb radiation either in the form of discrete or continuous 

emissions. Examples of continuum emissions are thermal radiation and radiation from 

recombination. Plasmas are thermal radiators and as such emit continuum radiation 

according to Planck's law. Recombination occurs as free electrons recombine with ions in 

the plasma. An example of discrete emissions are the radiation of electrons undergoing 

transitions between the energy levels in atoms, ions, and molecules, which produce 

corresponding atomic and molecular spectra. In terms of the decay of plasma, 
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recombination dominates the plasma emission at early times up to 100 to 200 

nanoseconds following the formation the plasma.(9) After the plasma has cooled 

sufficiently ions and atoms will be able to form and will emit line radiation. This 

typically begins to occur after hundreds of nanoseconds following initiation of the laser-

induced plasma. Early in the plasma decay, atomic emission lines will be much broader 

due to several processes occurring within the plasma, such as influences from external 

magnetic and electric fields which cause Stark broadening and collisions.(10, p365) 

Molecules also form in plasma, however this occurs much later in the plasma decay since 

molecules are, in general, stable for significantly lower temperature than atoms and ions, 

and will typically begin to form after tens of microseconds following plasma formation. 

There are two forms of line radiation, spontaneous and induced. In general 

plasmas experience spontaneous emission unless there is an interaction with an external 

field, such as a laser. Spontaneous emissions occur as electrons naturally transition 

between an upper state and a lower state.(11, p87) The rate at which this occurs is related 

to a quantity known as the transition probability, also named the Einstein A coefficient, 

and is characteristic to a specific transition. As such, the emission of photons for an 

energy transition is related to the density of electrons undergoing a specific transition. 

This information may be obtained from the spectral radiance of an atomic line which is 

described by a quantity known as the emission coefficient or local emission coefficient. 

This quantity is defined as the radiant flux in the plasma from a given volume element 

emitting through specific solid angle.(11, p6) The local emission coefficient may be 
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obtained by de-convolving emission spectra.(12,13) The de-convolution is required since 

a spectral measurement is the convolution of the actual measurement and the instrument 

function, the broadening of a line due to the extent of the spectrometer slit, and will also 

give depth information on the plasma.  

 Molecular transitions in the visible and ultraviolet wavelength regions correspond, 

for the most part, with electronic transitions. Electronic transitions, or electronic spectra, 

occur for molecular spectra in which there are transitions for the electronic energy level 

as well as possible rotational and vibrational states.(14, p549) Rotational and vibrational 

states exist due to the added degrees of freedom of the multi-atomic system. The spectra 

of molecules are tightly packed with lines from both vibrational and rotational transitions. 

Due to the tight packing of these lines, molecular emissions take on the appearance of 

bands. Each band is characterized by a change in vibrational state and the accompanying 

rotational state changes. Figure 1 is a theoretical calculation of the spectra of the diatomic 

molecule aluminum monoxide for the ∆v=0 band, meaning no changes in vibrational 

state in the diatomic potential well, displaying both vibrational and rotational structure. 

The spectra are calculated with a resolution of 0.09 nm and an emission temperature of 

4000 Kelvin with a normalized intensity emission of 1000 arbitrary units.  
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Figure 1. Theoretical calculation of AlO ∆v=0 spectrum. Highlighted are the 0-0, 1-1, 

and 2-2 vibrational peaks as well as the accompanying rotational structure. 
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Line Broadening 

This study will use the broadening of atomic emissions to characterize laser-

induced plasma. Prior to discussing how atomic and molecular emission lines are 

broadened in plasma, it is helpful to briefly discuss how the shape of the lines are 

represented. For the purposes of this study only the broadening of atomic emission lines 

are considered, however both atomic and molecular spectra are broadened. The line shape 

or line profile, L(λ), is the mathematical representation of an atomic or molecular 

emission and is a function of the wavelength or frequency. The line shape is defined by 

two important parameters, the center wavelength,   , and the full width at half maximum 

(FWHM),     , of the line. Two of the most common functions used to describe the 

shape of a line are the Gaussian and Lorentzian functions (11, p153)  
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which are normalized and given as a function of the wavelength position. 

A third line profile that is commonly considered is the Voigt profile which is a 

convolution of the Gaussian and Lorentzian functions. The result of using the Voigt 

profile is that Gaussian and Lorentzian line shape characteristics may be considered 

simultaneously when describing a line shape. The Voigt profile is given by                             
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where     
  is the Gaussian half width,   is the parameter that defines the weights of the 

Gaussian and Lorentzian contributions, and   represents the wavelength parameter. The 

wavelength parameter,  , is given by 

                                                          
    

    
                                                    (4) 

and the Voigt parameter,  , is given by 

                                                           
    

 

    
   ,                                                  (5) 

 where     
  is the Lorentzian half width.(6,p153-154) In the Voigt profile, Gaussian 

characteristics dominate the central region of the line shape while Lorentzian 

characteristics are dominant in the wings, or edges. Regardless of the type of profile used 

to describe an emission line, the physical interpretation of the line shape is the 

distribution of electrons undergoing the associated atomic transition of a particular 

emission line. 

Line broadening in plasma occurs due to a number of different effects such as 

Doppler and Stark effects. Doppler broadening is the result of shifts in the frequency of 

an emission line due to motion of the emission source within the plasma and Stark 

broadening occurs as the result of pressure broadening due to the presence of electrons 

and ions in plasma. In terms of decaying plasma, Stark broadening tends to be the most 
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dominant, especially early in the decay of the plasma due to the increased number of 

electrons and ions present. By studying Stark broadened lines, it is possible to infer two 

important parameters that define the decay of plasma, the electron number density, Ne 

and electron excitation temperature, Te.(15-17) 

Applications of Laser-Induced Plasma  

 The methods of laser-induced breakdown have spectroscopy evolved into an ideal 

on-site experimental tool due to its low costs, portability, relative experimental ease, and 

ability to be used with solid, liquid and gaseous samples. Many applications of LIBS take 

advantage of the unique spectroscopic signal from laser-induced plasma to identify the 

elemental composition of a sample of interest. This analysis is popular in geological (18) 

and forensic applications (19) where the parameter of interest is the integrated area of a 

collected broadband spectrum. Spectra, both atomic and molecular in nature, may be used 

to determine characteristic plasma parameters and conditions. One of the most heavily 

studied atomic spectra from a laser-induced breakdown event is that of hydrogen. 

Hydrogen atomic lines are broadened when observed from hot plasma due to the strength 

of the linear Stark effect in the hydrogen atom. This effect may be taken advantage of to 

determine the electron number density, Ne, of a plasma through relations between the Ne 

and broadened line width. Relationships between the Ne of Stark broadened line widths 

are primarily empirical in nature and are determined through direct experimentation of 

LIBS in hydrogen environments. Experiments with observations of hydrogen Balmer 
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series emissions have been performed from breakdown events initiated in both pure 

hydrogen gas and laboratory air environments.  

 In a recent study of line shape profiles and broadening mechanisms in atomic 

hydrogen spectra by N. Konjević et al. (20), empirical formulae were determined for the 

hydrogen Balmer series Hα, Hβ, and Hγ lines as a function of the Stark width from 

experimental hydrogen spectra. The best line profile functions for determining the Stark 

broadening parameter were found through deconvolution of the atomic spectra and it was 

determined that a Lorentzian line profile best minimizes the error in the Stark line width. 

Fitting to determined line widths found the following relationship for  Hβ Ne in units of 

m
-3

 as a function of the Stark width, ws,  

                                                
  

       
 

    
                                             (6) 

where ws is determined in units of nm. It should be noted that this empirical formulation 

is only valid for the region for Ne of 1.5 to 30 10
24

 m
-3

. 

 In a different study by Parigger et al. (15), Ne values were determined from 

measurements of Hα and Hβ from a pure hydrogen environment that was slightly above 

atmospheric pressure to determine the number density in the range of 10
22

 to 10
24

 m
-3

. 

Rather than use the conventional theory of Griem (21,22), the convergent theory of Oks 

(23,24), which has been tested against benchmark experiments and includes more 

physical phenomena than the theory of Griem, was used to determine Ne as high as 10
25

 

m
-3

 from Hβ emissions which were in agreement with inferred Ne from Hα measurements 
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at times less than 1 μs following optical breakdown. Further, in a recent study of Hα and 

Hβ emissions from a laser-induced plasma, a comparison was made between the theories 

of Oks and Konjević. It was determined that Oks convergent theory is preferred for 

plasmas that have lower number densities.(25) It should be noted that the best accuracy 

that is achievable for inferences of the Ne from Hβ emissions are within ten percent of the 

actual value as compared to almost twenty percent for Hα emissions.  

 Molecular spectra collected from a laser-induced breakdown event may also be 

used to characterize the conditions of plasma. Diatomic molecular spectra that have been 

used to characterize laser-induced plasma include AlO, CN, C2, and TiO (26-29) for 

various applications including support of combustion diagnostics and micromachining 

applications. Of particular interest to this study are the emissions of aluminum containing 

molecules from laser-induced plasma. In industrial applications laser ablation of 

aluminum has been used to determine the purity of aluminum alloys through temperature 

characterizations of the plasma with Boltzmann plotting methods. This method infers the 

temperature by fitting the intensity of several spectral lines, considered with atomic 

constants such as the transition probability and degeneracy factor, against the upper 

energy level.(30) The slope of the plot is then used to infer the temperature from the 

Boltzmann equation. The broadening of aluminum atomic lines has also been used to 

infer Ne values for the purposes of identifying the difference between molten and solid 

aluminum alloys.(31) Studies have also been coupled with time resolution to infer plasma 

characteristics as function of time. This was performed in a study in which an aluminum 



11 

 

rod in the presence of different bath gases was laser ablated.(32) Boltzmann plotting 

methods were used with the intensity ratios of aluminum atomic line emissions at 308, 

309, 394, and 396 nm to infer the plasma temperature as a function of time. Temperatures 

were found to be on the order of 4000 Kelvin for breakdown in air.  

 In addition to using atomic lines to infer plasma temperature, diatomic molecular 

emissions may also be considered for this application. Aluminum monoxide is an early, 

intermediate product in the oxidation of aluminum and its emissions were utilized to 

determine temperatures in the laser ablation of an aluminum sheet in a spatial and 

temporal study of aluminum micro-plasma.(33) Temperatures were reported to be 4250 

Kelvin for a time of 50 μs following breakdown. In another study to investigate the use of 

aluminum laser-induced plasma in micromachining applications, AlO spectra were used 

to probe the temperature of laser-induced plasma.(34,35) The inferred temperatures were 

found to be approximately 4000 Kelvin at a time of 50 μs following breakdown. The 

experiments in references (34) and (35) were performed in the presence of a hydrogen 

atmosphere and as such hydrogen atomic emissions were also observed. Coupled with 

observed aluminum atomic line emissions, Ne values of 10
23

 m
-3

 at a time of 1 μs 

following breakdown. Recent results of laser-ablation of an aluminum sample have 

shown temperatures to be 4880 ± 95 Kelvin at 45 μs and 4420 ± 80 Kelvin at 70 μs 

following breakdown near the surface of an aluminum sample.(36) The temperature 

results of the previously completed aluminum laser ablation studies discussed are 

summarized in Table 1 at the end of this chapter. In this study, the emission of laser-
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induced plasma near the surface of an aluminum alloy target is characterized from its 

spectroscopic emissions from time resolved LIBS measurements. The plasma is 

generated by tightly focusing 1064 nm Nd:YAG nanosecond pulsed laser radiation on the 

surface of an aluminum sample. Following breakdown, diatomic molecular AlO spectral 

measurements are made with a gated, intensified linear diode array to infer the temporal 

temperature decay of the plasma. Measurements with an intensified charged couple 

device are also used to infer the temperature behavior along the height of the vertical axis 

of the plasma. Further, measurements of atomic Hβ with AlO spectra collected with the 

linear diode array are used to infer the electron number density at early observed times 

following breakdown.  

 

Table 1. Summary of the temperature results from previously completed aluminum LIBS 

studies. 

Reference 

Number 

Temperature 

(Kelvin) 

Time Delay            

(μs) 

Temperature 

Inference Method 

32 4000 20 Al Boltzmann Plot 

33 4250 50 Al Boltzmann Plot 

34 and 35 4000 50 AlO Fitting 

36 4880 45 AlO Fitting 
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Chapter 2  

Experimental Methods 

 The goal of this study is to characterize the temporal decay of laser-induced 

plasma generated near the surface of an aluminum target. This was accomplished using 

time resolved LIBS. Laser light from a nanosecond pulsed Nd:YAG Q-switched (Quanta 

Ray) laser operating in its fundamental mode with 1064 nm radiation and a pulse width 

of 12 ns was used to ablate an aluminum target. The target was an aluminum plate made 

of aluminum alloy 6061.  The laser radiation was focused such that the laser was incident 

vertically downward on the target. This orientation was achieved with the use of three 

50/50 beam splitters. The laser light was focused to a spot size of approximately 50 

microns with 10.0 cm focal length lens. The orientation of the laser was chosen to create 

axially symmetric vertical plasma such that line of sight measurements could be made. 

The typical energy per pulse of the laser at the point of breakdown was 190 mJ with a 

corresponding irradiance of approximately 2 GW/cm
2
. 

 Following laser-induced breakdown on the aluminum target, line of sight spectral 

measurements were made from the plasma and plasma plume. Light from the plasma was 

focused onto the entrance slit of Jobin-Yvon HR640 scanning spectrometer with f/5.2 

optics, matched to the f-number of the spectrometer to optimize light throughput and 

grating performance. The spectrometer is a Czerny-Turner style spectrograph and was 

operated with an 1800 grooves/mm grating. The entrance slit of the spectrometer was 

reduced to the smallest possible extent to reduce the instrument function as much as 
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possible and was open to a size of approximately 100 microns. After the light is dispersed 

by the spectrometer, it is focused onto the chip of a detector. The detectors for this study 

were a gated, intensified linear diode array (EG and G PARC 1421 UV) coupled with an 

optical multichannel analyzer (OMA) (Princeton Instruments 1460) and an intensified 

charged coupled device (ICCD) (model Andor iStar DH 34T-250-03). The linear diode 

array is a horizontal array of 1024 pixels while the ICCD is a rectangular detector with 

1024 vertical pixels and 1024 horizontal pixels. The vertical pixels of the ICCD may be 

binned together to increase data processing speeds and maximize the measured spectral 

signal while still recording spatially resolved data along the height of the entrance slit 

and, hence, the height of the plasma. In order to reduce the effects of variations from 

laser shot to laser shot, each of the spectra collected in this study is the accumulation of 

100 breakdown events. 

 Each measurement was made at a specific time following the formation of the 

plasma. Additionally, the amount of time the detector was exposed to the dispersed light 

from the spectrometer was controlled. These two quantities are called the time delay and 

gate width, respectively. In practice, the goal of the time synchronization is to link the 

data acquisition with the timing of the laser pulse. For experiments involving the OMA, 

differences in the laser repetition rate and the data acquisition speed needed to be 

considered. The laser repetition rate is 10 Hz. while the OMA operates at 50 Hz. The 

exact timing of the delay and gate is achieved with the use of waveform and delay 

generators. The waveform generator (Wavetek FG36 function generator) and pulse 
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generator (Stanford Research Systems model DG535) are used synchronously to 

externally trigger the linear diode array and OMA. The waveform generator is operated at 

50 Hz. with a triangular pulse that is converted to a 10 Hz. signal with a custom built 

divide by five synch box which acts as a relay with the waveform generator to create an 

accurate zero point from which the time resolution is measured. The outputs of the synch 

box are connected both to the laser and a delay generator (Berkley Nucleonics Corp. 

6040 universal pulse generator) which controls when the trigger pulse is sent to the 

OMA/linear diode array. This communicates at what delay to make the measurement and 

how long the detector is exposed. The delay generator controls both the gate and delay. 

Figure 2 shows a layout of the timing apparatus used to achieve time resolution with the 

linear diode array experiments. A detailed description of the experiment is given in 

reference (37). 

 The final step in ensuring the accurate time resolution of the experiment is to 

determine the amount of time it takes for the plasma to form as a means of determining 

the zero point offset from which all measurements were made. This is determined 

experimentally by viewing spectra at varying, early delays. The plasma turn on is 

characterized by a distinctly noticeable rise in the intensity of the signal. For the linear 

diode array/OMA experiments the zero point was determined to be 560 ns. Timing with 

ICCD was achieved through a direct line from the Q-switch output of the laser to the 

external trigger input on the camera. The zero point for the ICCD was determined to be 

550 ns. 
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Figure 2. Block diagram of the apparatus used to achieve time resolution with the linear 

diode array experiments 
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After the spectra have been recorded, they must be calibrated for detector and 

background response. The dispersion of light emitted from the plasma is not expected to 

be linear. This is due to several factors including the age of the detector. This is 

accounted and corrected for by using standard calibrations lamps, such as a hydrogen gas 

lamp. The wavelength correction is determined by recording the known wavelength 

emissions of these standard lamps as a function of pixel position. A polynomial fit is then 

performed using least squares fitting to determine the wavelength as a function of pixel 

number. A cubic fitting function is sufficient to accurately correct the wavelength 

dispersion of a spectrometer-detector arrangement.  

The wavelength region for the AlO ∆v=0 (484-495nm) band is a particularly 

barren region with few spectral lines from calibration lamps. The wavelength calibration 

was performed with the use of the Hβ line from an Oriel hydrogen lamp. A number of 

points to calibrate with were collected by shifting the spectrometer wavelength position 

by one nanometer and measuring the pixel number of the new position. This was repeated 

several times to gather enough points to perform a proper calibration. The linear diode 

was calibrated in this way, however the wavelength calibration of the ICCD requires a 

further step due to variations in the recorded pixel position along the height of the 

detector. Instead of calibrating each vertical track of interest, only the 500
th

 track was 

calibrated with the hydrogen lamp. This calibration was applied to all the vertical tracks, 

and corrections to the rest of the tracks were made by interpolating wavelengths from 
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theoretically calculated AlO spectra, which was possible since the pixel variation along 

the height of the detector was small. 

Background sensitivity calibrations are performed to correct for the intensity 

response of the detector. As a detector is repetitively used its intensity response will 

diminish and will also naturally have regions that are more sensitive than others. The 

background sensitivity calibration is performed by measuring the spectra of a standard 

calibration lamp with a constant temperature output, such as a tungsten or halogen lamp, 

such that experimental spectra may be compared to a theoretical calculation of its thermal 

emission. The comparison is made by using a Nelder Mead fitting algorithm to fit the 

calibration spectrum to a theoretically calculated black-body curve with fit parameters of 

amplitude and offset. A fitted spectrum is then computed by determining the factor by 

which the experimental spectrum differs from the theoretical thermal spectrum and is 

applied to all experimental data. Each vertical track was calibrated from its own recorded 

intensity measurement from a standard calibration lamp. The calibration lamp used for 

the linear diode array experiments (Gamma Scientific RS-10A Spectral Radiance Head) 

had a temperature output of 2910 Kelvin and the standard calibration lamp used for the 

ICCD experiments (Ocean Optics DH-2000 Bal Halogen Source) had a standard output 

of 3000 Kelvin.  
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Chapter 3  

Results 

 The goal of this study is accurately characterize the decay of aluminum laser-

induced plasma. This was accomplished by studying atomic and molecular spectra 

emitted from the laser-induced plasma. Diatomic molecular AlO spectra are used at time 

delays later than 10 μs following formation of the laser-induced plasma to determine the 

temperature decay through comparisons to theoretically calculated AlO spectra. AlO 

measurements are also made along the plasma height with the use of the gated ICCD. At 

time delays earlier than 20 μs the electron number density is also inferred from 

measurements of the Hβ line emission at 486.15 nm which were superimposed with 

measurements of AlO.  

Diatomic AlO Results: Linear Diode Array 

 Diatomic molecular AlO data was collected with both the linear diode array and 

ICCD for the purpose of determining the temperature of the laser induced plasma as a 

function of time following the formation of the laser induced-plasma. The data set used to 

accomplish this goal covered a time delay range of 10 to 100 μs in 5 μs steps with gate 

widths of 5, 10, and 20 μs for delay ranges of 10-20, 20-100, and 70-100 μs, respectively. 

Different gate widths are used at different delays to acquire the best possible signal from 

the plasma. At early delays, the plasma emission is more intense and a smaller gate is 

needed as compared to later time delays when the plasma is less intense. The diatomic 

AlO spectra are analyzed by comparing the experimental spectra to theoretical 
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calculations of the diatomic spectra. The theoretical diatomic aluminum monoxide 

spectra used in this study were calculated from accurately compiled line strength 

tables.(38-42) A detailed description of how theoretical spectra for this study are 

calculated is provided in the appendix.  

 Comparisons between the experimental and theoretical spectra are made with the 

use of a Nelder-Mead minimization algorithm. The Nelder-Mead algorithm employs a 

downhill simplex fitting method to minimize user defined parameters of interest.(43,44) 

The downhill simplex method utilizes a geometric minimization technique in which a 

geometric construct known as a simplex is reduced in size by iteratively moving the 

positions of its vertices. The number of parameters determines the number of vertices for 

the created simplex and will be one more than the number of parameters. As an example, 

with a two parameter fit the simplex that is created is a triangle and in a three parameter 

fit a triangular tetrahedron is created. The initial simplex is created from user defined 

initial guesses for the parameters. An important aspect of using this algorithm is that 

rather than determining a global minimum for the input parameter, the algorithm returns 

the first local minimum it encounters. The determined local minimum may be closely 

considered a global minimum for a sufficiently small choice of the tolerance. In order to 

achieve decent results with this fitting method, the initial guesses used to seed the 

algorithm need to be within an error tolerance of the correct value; otherwise, the true 

minimum for one or all of the parameters may not be properly found.  
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 The Nelder-Mead algorithm is chosen for its ability to include multiple fit 

parameters simultaneously as well as for its ability to allow variable baseline offsets. For 

this study, constant, linear, and quadratic baseline offsets were considered during fitting. 

The main parameters to be minimized were the temperature and the spectral resolution. 

Initially, the only varied parameter was the temperature, together with the baseline offset. 

In general the baseline offsets were slightly quadratic, with the coefficients for the linear 

and quadratic terms being an order of magnitude or smaller than the constant term. The 

spectral resolution of a particular spectrometer-detector arrangement is a determined 

parameter and was only varied in this study as a method to quantify the error associated 

with a particular inferred temperature. The resolution of a particular spectrum is 

dependent on a number of parameters such as the groove density of the installed grating, 

the amount of dispersion in the wavelength region of interest, the minimized slit width of 

the spectrometer, and the physical size of the pixels in a given detector. For the 1800 

grooves/mm grating used with the linear diode array there was a dispersion of 

approximately 0.0175 nm per pixel which corresponds to a resolution of approximately 

0.1 nm.  

 It was deemed that the best way to determine the resolution error was to 

overestimate the resolution by using a value of 0.09 nm and to underestimate it by using a 

value of approximately 0.125 nm. The value of 0.125 nm was determined by allowing the 

fitting program to find the minimized value of the resolution which varied from spectra to 

spectra. Fitting results for two data runs at time delays of 25 and 80 μs with gate widths 
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of 10 and 20 μs, respectively, are depicted in Figure 3 along with calculated residuals. 

The indicated temperatures in the figure are the corresponding temperature inferences for 

each experimental spectrum. The calculated residual shows that there are minor 

inaccuracies in the wavelength calibration from the appearance of rotational spectra in the 

calculated residual. Though the errors are within an acceptable margin, the differences 

support the use of varying the resolution as a method for error determination, as this 

inaccuracy will affect the determined resolution. This is also supported by considering 

the error from the extent of the slit. Though the two plots in Figure 3 appear to be 

qualitatively similar, the measurement made at 25 μs shows a larger continuum 

background in the residual and also has superposition atomic spectra (indicated on the 

figure) which qualitatively indicates a hotter plasma at the earlier time delay. Figure 4 

shows the differences in the fitted experimental spectra with calculated residuals for the 

different resolutions used for diatomic molecular fitting for the same time delay of 60 μs. 

The temperature inference for each spectra is indicated on the plots. Rotational aspects 

are again present in the residuals of these plots. Close inspection of the residuals indicates 

that the 0.1 nm resolution fit tends to be the best resolution used as it minimizes the 

appearance of rotational characteristics in the residual as compared to the other 

resolutions.   



23 

 

 

Figure 3. The experimental and fitted intensity graphs reveal the differences in fitted 

spectra at different time delays of 25 μs (top) and 80 μs (bottom) following laser-induced 

breakdown. 
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Figure 4. Experimental and fitted intensity showing the differences in fitted spectra for 

different spectral resolution parameters of 0.09 nm (top left), 0.1 nm (top right), and 

0.125 nm (bottom center). 
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 The error from varying the resolution of a particular fit amounted to be in the 

range of 40-70 Kelvin. This is not the only variable parameter capable of introducing 

errors. Variations in the baseline offset were also considered as a potential source of 

error. This was done by varying the coefficients of the linear and quadratic terms in the 

baseline offset up and down by an order of magnitude. This error typically amounted to a 

variation of 1-5 Kelvin from the initially inferred temperature values. Taken all together, 

the errors in the inferred temperature for a given spectral measurement amounted to be in 

the range of 45-75 Kelvin, with temperatures inferred at later times having values at the 

lower bound of the range. This is due, in part, to the decreased influence of the 

continuum radiation at later time delays. The inferred temperature results from each fit 

are collected in Table 1 along with the average temperature and the associated error in the 

temperature inference. There is one outlier in the inferred temperatures at a time delay of 

10 μs. The large error associated with this measurement is due to the presence of Hβ 

superposition emissions and arises from the varied resolution temperature inference. Hβ 

superposition spectra are also observed for time delays of 15 and 20 μs; however, the 

errors in the temperature inferences do not reflect this due to the disappearance of the line 

with increasing time following breakdown. A plot of the temperature temporal 

dependence is recorded in Figure 5 and shows a temporal decay of the temperature. 

Included with Figure 5 is an exponential decay trend line illustrating the nature of the 

temperature decay through time and was obtained by fitting an exponential decay curve 

to all the linear diode array temperature results. 
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Table 2. Temperature inferences for each resolution considered with the linear diode 

array and the average reported temperature for each investigated time delay. 

Delay 

Time 

(μs) 

Gate 

Width 

(μs) 

Temperature             

0.09 nm 

Resolution  

(Kelvin) 

Temperature     

0.1 nm 

Resolution 

(Kelvin) 

Temperature 

Varied 

Resolution 

(Kelvin) 

Average 

Temperature  

(Kelvin) 

10 5 5364 5314 4840 5173 ± 290 

15 5 5113 5078 4983 5058 ± 73 

20 5 4933 4899 4816 4883 ± 66 

20 10 4625 4590 4510 4575 ± 65 

25 10 4839 4805 4735 4793 ± 58 

30 10 4765 4731 4657 4718 ± 61 

35 10 4424 4392 4329 4382 ± 54 

40 10 4477 4445 4375 4433 ± 57 

45 10 4483 4452 4383 4439 ± 56 

50 10 4212 4182 4128 4174 ± 48 

55 10 4187 4154 4075 4138 ± 63 

60 10 4016 3985 3931 3978 ± 48 

65 10 4268 4236 4159 4221 ± 61 

70 10 4099 4067 3976 4047 ± 69 

75 10 4223 4191 4112 4175 ± 63 

80 10 4044 4014 3922 3993 ± 69 

85 10 4082 4050 3963 4031 ± 67 

90 10 3629 3598 3538 3588 ± 51 

95 10 3828 3797 3742 3789 ± 49 

100 10 3899 3869 3817 3862 ± 46 

70 20 3651 3619 3540 3604 ± 63 

75 20 3816 3781 3685 3760 ± 72 

80 20 3699 3668 3591 3653 ± 62 

85 20 3811 3780 3711 3767 ± 56 

90 20 3990 3960 3910 3953 ± 46 

95 20 3901 3873 3836 3870 ± 40 

100 20 3879 3849 3803 3844 ± 43 
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Figure 5. Inferred temperatures and associated errors as a function of time delay. The 

purple trend line shows the temporal decay of the temperature.  
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 The temperature inference results at early time delays are found to be higher than 

those inferred at later delay times. This trend is observed in the data collected with 5 and 

10 μs gate widths. The temperature decays from a value of 5173 ± 290 Kelvin at 10 μs to 

a value of 3588 ± 51 Kelvin at 90 μs following breakdown. After this time there is an 

apparent rise in the temperature to 3862 ± 46 Kelvin at 100 μs following breakdown. This 

is mirrored with the data collected with a 20 μs gate width as the temperature increases 

from 3604 ± 63 Kelvin at 70 μs to 3844 ± 43 Kelvin at 100 μs. Though this temperature 

rise is clearly apparent in the 20 μs gate width data, it is weakly present in the 10 μs gate 

width data and could not be present due to shot to shot variations in laser-induced 

breakdown spectra from the temperature inferred such as the temperature inference at 90 

μs. An argument could be made that the temperature inference at 100 μs is greater than 

the temperature inferred at 95 μs. Though this is true, the relative closeness of the two 

temperatures indicate more properly a plateau in the temperature rather than a rise in the 

temperature. This temperature rising effect is clearly present in the 20 μs gate width data 

even when shot to shot variations are considered, such as at 75 and 90 μs time delays. 

This also suggests that the temperature eventually plateaus for time delays later than 95 

μs which is congruent with the results from the 10 μs gate data.  A possible cause for this 

behavior is due to combustion of aluminum particles present in the plasma plume. 

Diatomic AlO Results: ICCD 

 Diatomic molecular AlO spectra were collected with the gated ICCD for the 

purpose of investigating the temperature dependence along the height of the laser-
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induced plasma. In this investigation only one time delay was considered, 60 μs with a 6 

μs gate width. Spectra were collected along the height of the plasma using all 1024 

vertical pixels on the ICCD detector. To investigate the behavior of the temperature 

dependence along the height of the plasma, spectra from tracks 100-700 in 100 track 

intervals were calibrated and analyzed. Errors in the inferred temperature were again 

found by varying the offset and resolution. Figure 6 is an image of the AlO spectra as 

seen by the detector of the ICCD and Figure 7 a plot of the inferred temperatures as a 

function of vertical track position. The temperature inferences from each resolution, the 

average temperature and its associated error are collected in Table 2. Due to the decrease 

in resolution from using non-optimal plasma conditions and ICCD settings, there are 

significantly larger errors in the inferred temperatures. This also resulted in a 

significantly poorer resolution of approximately 0.3 nm. 

 The errors in the temperature were estimated in a similar fashion as the linear 

diode array experiments. Values of 0.4 and 0.2 nm were used to over- and under- 

estimate the spectral resolution. These errors amounted to be in the range of 230 to 275 

Kelvin. The results of the temperature analysis also returned unexpectedly high 

temperatures that did not agree with the previously determined temperatures from the 

linear diode array experiment or from temperatures found in the literature. This is again 

likely due to the quality of the signal collected with the ICCD which could be caused by  
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Figure 6. Raw AlO spectra recorded with the ICCD indicating an increase in the amount 

of AlO above the edge of the plasma. Pseudo-coloring is applied as indicated by the bar 

at the top of the figure. On the bottom is a plot of the intensity across the width of the 

detector for a single vertical track. The plot to the left of the image shows the intensity 

gradient along the height of the detector at a specific pixel position. 
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Figure 7. Inferred temperatures and associated errors along the height of the ICCD, 

indicating an increase in the temperature above the plasma edge. 

 

Table 3. Temperature inferences for each resolution considered and the average 

temperature for each considered vertical track along the height of the plasma. 

Vertical 

Track 

Position 

Temperature 

0.2 nm 

Resolution 

(Kelvin) 

Temperature 

Varied 

Resolution 

(Kelvin) 

Temperature   

0.4 nm 

Resolution 

(Kelvin) 

Average 

Temperature 

(Kelvin) 

100 5818 5422 5303 5514 ± 275 

200 5849 5535 5309 5564 ± 276 

300 5977 5703 5521 5734 ± 235 

400 6023 5751 5562 5779 ± 236 

500 5754 5242 5191 5396 ± 315 

600 5728 5516 5312 5519 ± 213 

700 6059 5791 5610 5820 ± 230 
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using too many vertical tracks. Despite this concern, this analysis did return information 

in regards to the temperature behavior of the plasma along its vertical axis.  These results 

indicate that there is a rise in the temperature until a peak is reached between tracks 300 

and 400. The temperature then falls off until a minimum is reached at track 500. This 

represents the plasma itself which is expected to be hotter at its center as compared to its 

edges. The temperature increases again after falling off at the edge of the plasma. The 

increased temperature as determined from the AlO molecule's spectral signal is likely due 

to the presence of aluminum particles that may be undergoing combustion in a plume that 

is above the plasma. This is also supported by the increased intensity of the AlO signal as 

seen in the ICCD image in Figure 6.  

Atomic Spectra Results: Hβ Superposition Spectra 

 Measurements of diatomic molecular AlO at time delays earlier than 20 μs show 

superposition emission spectra of AlO with Hβ and carbon atomic emissions. Figure 8 

depicts this for a time delay of 10 μs where the atomic emissions are marked and clearly 

visible in the calculated residual. Stark broadening of the emissions of the Hβ line at 

486.15 nm may be used to infer the electron number density of the plasma with the use of 

the theories of Konjević and Oks.(15,18,19) Also visible are a carbon emission line at 

493.2 nm and another atomic emission line at 496.7 nm that could possibly be carbon or 

titanium, which is present in the aluminum alloy that was used.  
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Figure 8. Collected superposition spectra from the laser ablated aluminum sample at a 

time delay of 10 μs. This illustrates Hβ emissions near 486 nm and a carbon emission line 

near 493 nm. Also seen is an unknown atomic emission line near 496 nm. 
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 In order to infer the electron number density, the width of the line due to Stark 

broadening must be known. The line widths are determined by fitting a Lorentzian line 

profile to the Hβ emission. It is assumed that the broadening of this line is primarily due 

to Stark effects in the hydrogen atom. The errors in the associated line width will 

primarily be due to the influence of the slit width and the accuracy of the Lorentzian 

fitting. Ne values were inferred using both the empirical formula of Konjević and the 

convergent theory of Oks. In order to infer the electron density with the theory of Oks, Ne 

vs. Hβ line width experimental results published by Parigger et al. (10) were fit with an 

exponential function. Figure 9 combines the results of this analysis, and the figure also 

includes the fitted exponential function of the Ne value as a function of the determined 

line width of the Hβ emission line where w in the function indicates the line width in 

angstroms. Fitting of this kind was also completed in a study Hα and Hβ emissions in air 

laser-induced plasmas.(20) The results of the line width fitting and accompanying Ne 

inferences are collected in Table 3 and show both inferred Ne values for Oks' and 

Konjević's theories as well as the accompanying error. Figure 10 shows an example Hβ 

spectra that was fit from the residual of the spectra shown in Figure 8 and Figure 11 is a 

plot of the Ne values inferred from both theories as a function of the fitted line width. The 

Hβ emission spectra in Figure 9 have double peak structures present which is also 

indicated. This double peak is not due to affects of the superposition with AlO spectra but 

also results from Stark effects. Though not considered in this work, the indicated peak  
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Figure 9. Plot of fitting results of pure hydrogen experiments used to determine Ne values 

along with the determined exponential function. 

 

 

Table 4. Line width results from Lorentzian fitting and accompanying inferred Ne values 

using the theory of Oks and the empirical formula from Konjević. 

Delay Time   

(μs) 

Inferred Line 

Width (nm) 

Konjević Empirical 

Ne (10
22

 m
-3

) 

Oks Convergent Ne  

(10
22

 m
-3

) 

10 2.53 ± 0.21 4.32 ± 0.54 4.59 ± 0.45 

15 2.26 ± 0.24 3.69 ± 0.60 3.91 ± 0.39 

20 1.94 ± 0.36 2.91 ± 0.82 3.15 ± 0.31 
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Figure 10. Fitted Hβ spectra from the measured AlO residual at a 10 μs time delay 

indicating the inferred line width and electron number density. The sudden dip in the 

residual near 486 nm is due to the subtraction of the intensity fit from the experimental 

spectra and occurs near the 1-1 vibrational peak. 
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Figure 11. Plot of inferred Ne results vs. line width using both the theories of Oks and 

Konjević. 
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separation of approximately 0.5 nm may be used as another method of inferring the 

electron number density of the laser-induced plasma.(15) Also included with Figure 10 is 

the fitted exponential function used to infer Ne from Oks' theory. Using both theories, the 

Ne is inferred to be on the order of 4.5 10
22

 m
-3

 at 10 μs and decreases to approximately 

3 10
22

 m
-3

 at 20 μs following breakdown as the width of the Hβ line decreases from 

approximately 2.5 nm to 1.9 nm. Atomic lines are expected to narrow as the plasma 

decays through time. This leads to the expected result of a decaying Ne as a function of 

increasing time delay following laser induced breakdown. In comparison to other known 

values of Ne in aluminum laser-induced plasmas of 10
23

 m
-3

 at time delays of 1 μs 

following breakdown, the inferred values in this study at later time delays are appropriate 

estimates for the plasmas generated. 
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Chapter 4  

Discussion 

Both the temperature and the electron density are expected to decay as a function 

of increasing time delay following initiation of the laser-induced plasma. Both of these 

trends have been observed in the inferred temperatures and Ne in this study. In regards to 

the temperatures inferred with measurements made with the linear diode array, the results 

appear to be in good agreement with values available in the literature of 4250 and 4000 

Kelvin at a time delay of 50 μs following breakdown.(28-30) The temperature inferred 

from this study at that time delay was 4174 ± 48 Kelvin. In this scope, the temperatures 

that are inferred at earlier and later time delays than 50 μs should provide an accurate 

characterization of the temporal behavior of the temperature of the laser-induced plasma. 

The inferred electron densities in this study of 3 to 4.5 10
22

 m
-3

 at 10 to 20 μs delays are 

also in decent agreement with previously determined values of 10
23

 m
-3

 for a one μs delay 

(30) when considering that the electron density is expected to decay through time. The 

decay is also expected to be more rapid early in the decay in the plasma and slow as the 

time delay is increased from hundreds of nanoseconds to tens of microseconds. Given the 

errors in the reported Ne values, the inferred Ne provide a good characterization of the 

number of free electrons in the laser-induced plasma.   

The errors in the inferred temperatures were found by considering variations 

introduced by the fitting method. In a previous study of an aluminum laser-induced 

plasma (31) in which the same apparatus was used and the errors were determined using 
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similar methods as this study, the errors were almost twice as large as those in this study. 

One would expect to have the margin of error be in the  ± 100 Kelvin range to account 

for both the systematic error introduced from the fitting algorithm and errors from shot to 

shot variations since it is unlikely multiple spectra produced from a single laser-induced 

breakdown event will be exactly the same every time a measurement is made. The larger 

errors of approximately 100 Kelvin could possibly include shot to shot variations in the 

spectra and hence the inferred temperatures. As the temperature results are, the results 

from the linear diode array experiments do not consider shot to shot variations. 

Considering this error will likely increase most of the determined errors by as much as 40 

to 50 Kelvin. Further, only a few of the possible sources of error with the fitting 

algorithm have been included in the error determination. The effects of the temperature 

used to seed the algorithm, the tolerance, and fit range should all be included in further 

studies. In all, a complete characterization of the errors in the inferred temperatures 

should consider all the effects from the fitting algorithm and shot to shot variations and 

the reported results from this study should be considered in this context. 

The temperature inferences both from the linear diode array and ICCD 

experiments appear to suggest that combustion is occurring at late time delays in the 

evolution of the laser-induced plasma in this study. Combustion can occur as nano- and 

micro-sized particles are produced when the target material is laser ablated. The direction 

in which these particles travel is dependent on the geometry of a particular experimental 

arrangement. In the current study, in which the laser radiation is incident vertically 
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downward on the aluminum target, a large number of these particles would be expected 

to be above the laser-induced plasma. Given that the combustion temperature of 

aluminum is approximately 2750 Kelvin, it is reasonable to expect that at later time 

delays, after the plasma has decayed enough, that combustion of aluminum particles 

available in and around the plasma will begin to dominate the observed radiation 

emissions.  

At early time delays plasma radiation processes are expected to be dominant due 

to continuum radiation process. The temperature rising trend observed with the linear 

diode array support the presence of combustion in the laser-induced plasma as the 

temperature of the plasma is expected to increase as combustion begins to occur. Further, 

it is expected that combustion would not be observable until much later, possibly after 80 

μs as observed in this study. Though the temperatures inferred from the ICCD appear to 

be much larger than the accepted values, the temperature trend along the height of the 

detector is valid, which shows that there is an increase in the temperature above the edge 

of the plasma. Though these results are encouraging for the presence of combustion, 

more positive results would be required to make a declaration that combustion is present 

in the aluminum laser-induced plasma and more measurements should be made to check 

for the repeatability of the results presented in this work.  
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Chapter 5  

Conclusions 

The goal of this study was to determine the temporal decay of the plasma 

produced near the surface of an aluminum target following laser ablation with 

nanosecond laser radiation pulses. This was achieved with time resolved LIBS. Spectral 

measurements from the laser-induced plasma were made with an intensified linear diode 

array and an ICCD which was used to collect spatially as well as temporally resolved 

spectra along the height of the laser-induced plasma. The collected spectra were properly 

calibrated and the AlO emissions were analyzed through comparisons to theoretically 

calculated spectra with the use of a Nelder-Mead algorithm. Temperatures inferred from 

linear diode array measurements show that the temperature of the plasma decreases over 

time from a value of 5173 ± 290 Kelvin at 10 μs to a value of 3588 ± 51 Kelvin at 90 μs. 

At time delays later than this, data collected with the 10 μs gate suggests the temperature 

of the plasma plateaus to a value of 3862 ± 46 Kelvin. This is mirrored in the data 

collected with a 20 μs gate in which the temperature increases from 3604 ± 63 Kelvin at 

70 μs to 3844 ± 43 Kelvin at 100 μs. All of the inferred temperatures from the linear 

diode array measurements seem to be in good agreement with available temperature 

results in the literature. 

Temperatures were also inferred along the height of the plasma from 

measurements made with the ICCD. These temperature inferences indicate that the 

plasma is hottest at its center, and the temperature falls of towards the edges. The 
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temperature increases above the plasma in what can be called the plasma plume. The 

increase in temperature at later time delays, the observation of Hβ and carbon 

superposition spectra, and the increase in temperature above the plasma, all support 

combustion in the aluminum laser-induced plasma. In the immediate future these results 

should be corroborated and thoroughly checked for their repeatability. 

Observations of atomic Hβ spectra superimposed on diatomic AlO spectra at time 

delays earlier than 20 μs following the formation of the plasma were made. Line widths 

of the Hβ spectra were inferred by fitting Lorentzian line profiles to the processed Hβ 

spectra. The determined line widths were used with the empirical formula of Konjević 

and the convergent theory of Oks to infer the electron number density of the laser-

induced plasma at times preceding 20 μs following initiation of the plasma. Using both 

theories the inferred density is found to be on the order of 4.5 10
22

 m
-3

 and decreases to 

a value of approximately 3 10
22

 m
-3

 over a period of 10 μs which is in agreement with 

published values available in the literature in regards to aluminum laser-induced plasma. 

Recommendations for Future Work 

The work completed in this study represents the ground work in defining the 

parameters that characterize aluminum laser-induced plasma. Though this work has 

successfully determined the temperature of the plasma as a function of time delay, more 

measurements with the ICCD will only help to support the results of this work. More 

ICCD measurements with more ideal camera settings and plasma conditions will also be 

advantageous in better determining the temperature behavior along the height of the 
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plasma. In the immediate future, this should be addressed. This study also considered 

errors introduced from the fitting algorithm. Though these were accounted for in an 

appropriate manner, future works will seek to better quantify this effect by considering 

the effect of other variable parameters such as the initial guess of the temperature and the 

value of the tolerance level. A thorough investigation of early time delays on the order of 

hundreds of nanoseconds to a few microseconds following plasma formation should also 

accompany any further studies at later time delays to infer the temperature and electron 

number density and give a complete profile of the aluminum laser-induced plasma 

through time.  

Also of interest are studies of the depth of the plasma which are obtainable 

through de-convolution of the ICCD measured spectra with the use of Abel and Radon 

transform techniques. The Abel and Radon transforms are computational methods in 

which spectroscopic data are de-convolved to determine the true intensity of a spectral 

signal. This requires an absolute calibration of the spectrometer-detector arrangement. 

The goal of the Abel transform is use the recorded intensity at some position,     , to 

determine the local emission coefficient as a function of position, which may be used to 

determine a number of plasma parameters including electron number densities and 

concentrations of specific elements, such as aluminum, within the plasma. Applications 

of Abel transforms are limited as the transform requires the assumption of an axially 

cylindrical, symmetric plasma and requires that the plasma be optically thin. This 

represents idealized laser-induced plasma. For situations where the plasma may be 
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optically dense and not symmetric, as is the case when laser ablating a solid target due to 

imperfections on the surface of the sample, one may use the Radon transform, which is a 

generalization of the Abel transform. The Radon transform assumes no symmetry and 

that the intensity,       , varies as a function of radial and angular position. When the 

intensity is the same for a position and a position offset by some angle,       =     ,    

the Radon transform reduces to the Abel transform. 

Further, work in the field of aluminum combustion could consider applications of 

aluminum plasma characterizations as a diagnostic tool given the encouraging results that 

combustion is present in the laser-induced plasma. Of specific interest to research in this 

field is determining the interaction of aluminum particles with the surrounding flame. 

One of the key parameters of interest in studying this interaction is the temperature of the 

aluminum particle and the surrounding flame. This has been previously studied in 

aluminized flames (45,46) and aluminized solid propellant flames.(47-51) Studies of 

aluminum laser ablation are advantageous for combustion applications due to the cost and 

safety concerns associated with combustion experiments that do not exist with laser-

induced plasma studies. As well, studies of laser ablation of an aluminum target in 

different atmospheres are of interest for studies of aluminum combustion diagnostics. In 

particular, nitrogen, nitrogen-oxygen mixtures, and hydrogen atmospheres should be 

considered. 
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Appendix A: Calculation of Diatomic Spectra 

Temperatures inferences in this study are made through comparisons of 

experimental and theoretical spectra. A complete and thorough explanation of how 

theoretical AlO spectra in this study are calculated is given in references (34) and (35). 

The theoretical spectra are calculated from tables of accurately calculated line strengths. 

The line strength,    , of a transition from upper state,  , to lower state,  , is the sum of 

all degenerate diatomic states that produce the same spectral line and is related to the line 

intensity by 

                                                         
        

       
                             (A.1) 

where           is the number of excited molecules, which is temperature dependent, 

and    is the transition wave-number in vacuum. The diatomic state is defined by the 

quantum numbers  ,  ,  , and   for upper and lower states, where   and   represent 

their typical angular momentum quantum states,   represents the vibrational state, and   

is an index used to represent all other relevant quantum numbers.  The formal definition 

of the line strength is given as  

             
                             

    

   
       

 

  
    

  

                       (A.2) 

where the primed values represent the upper transition state and the unprimed values 

represent the lower transition state. The operator   
    

   
, is a spherical tensor operator 

that represents the qauntum mechanical electric dipole moment operator.  
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 Diatomic spectra are calculated by determining the positions of all possible 

transitions, invoking selection rules to determine allowed and forbidden transitions, the 

Hönl-London factors,        ,  are calculated, potential energy curves for allowed upper 

and lower transitions are determined, the Schrödinger equation is solved numerically to 

determine the Franck-Condon factors,        , and the Hönl-London, Franck-Condon, 

and electronic transition strength are combined to form the total line strength. Rather than 

invoking the tedious process of using numerous selection rules for calculating diatomic 

spectra, only one selection rule is used in this study. An allowed tansition is one for 

which the line strength is nonvanishing and a forbidden transition is one for which the 

line strength vanishes. Numerically, the diatomic line strength is factored as described 

above and is calculated from 

                               
                           

                                  (A.3) 

where              
        is the electronic transition strength. The Franck-Condon 

factors are found by numerically solving the Schrödinger equation and the Hönl-London 

factors are found from the diagnolized Hamiltonian for rotational and fine structure. 

Though both the Franck-Condon and Hönl-London factors may become appreciably 

small, it is the Hönl-London factor that determines if the line strength is analytically zero 

and thus determines allowed and forbidden transitions. Temperatures are inferred by 

considering the intensity that incident on a single detector pixel. At high number densities 

and high temperatures, with the time delays and gate widths employed in a typical LIBS 

experiment, thermal equilibrium of rotational and vibrational emissions are assumed.   
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