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Abstract

The sustainability of lean systems for long term is a major concern across various

organizations implementing lean manufacturing methods. This issue can be

attributed to inadequate infrastructure, inefficient process management, unsuitable

personnel management methods and strategic tools. There is a strong need for

addressing the risks for lean system sustainability. The resolution of the risks from

a ‘soft side’ (people) perspective has not been addressed. The primary focus of this

study is on the people-related risks.

The current study elicits a five-phase approach to enhance the implementation of the

lean system by accounting for these risks. The first phase classifies the requirements

of the lean system into six subsystems and proposes the precedence of lean activities

within each subsystem. The second phase identifies the risks for the sustainability

of the subsystems by categorizing these risks into Personnel, Material, Equipment

and Schedule. The third phase uses expert opinions based on a survey to quantify

risks. The fourth phase addresses the resolution of the people-related risks. The

mapping of these risks with the required skills in personnel is proposed. A Lean

Personnel Alignment Model (LPAM) is presented to align the identified skills with

lean requirements in order to sustain lean implementation.
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Chapter 1

Introduction

1.1 Overview

The intense competition among the global competitors to deliver high quality

products with comparable costs has prompted several manufacturing firms to adopt

a lean manufacturing approach. The idea of lean, as derived from the Toyota

Production System (TPS), supports ‘flow’ or ‘smoothness of work’, in a manner that

best meets customer demands, empowers employees and ensures the growth of the

organization while emphasizing optimal resource utilization. Although lean systems

are extensively implemented, companies continue to face difficulties in sustaining long-

term success. About 95% of the lean implementations failed in the manner in which

they were practiced in manufacturing organizations (Ransom, 2008). Glasgow et al.

(2010) reported that 62% of the lean initiatives in health care failed due to the lack of

stakeholder acceptance. A multitude of literature on lean implementation (Rubrich,

2004), (Schlichting, 2009) and consulting companies performing lean transformation,

such as the Society of Manufacturing Engineers (SME), have estimated the success

rate of real lean transformations across various manufacturing organizations to lie

below 10%. This leads to the question of why most companies fail to sustain their

lean improvements.
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It is hard to sustain lean efforts in the long term due to inadequate infrastructure,

inefficient process management, unsuitable personnel management methods and

strategic tools (Bateman and David, 2002). The substantial failure in sustaining

lean indicates the need for addressing the risks in lean systems sustainability. Any

deviation from the principles of the Toyota Production System, where an employee

fails to focus on improving the production process based on customer needs and

product quality, is defined as a risk for lean sustainability. People significantly affect

the utilization of manufacturing resources while performing lean activities, such as

the preventive maintenance on the equipment, planning schedule requirements and

routing materials on the production floor. An example of the role of people in lean

implementation sustainability can be found in the work of Scherrer-Rathje et al.

(2009). They explored an extensive lean implementation case study of a large,

global organization named Machinery, Inc. in 1997. This company implemented lean

systems to improve their manufacturing inefficiencies. Despite their initial successes

(six months) with lean practices being applied to the production of machines, their

lean project was ceased due to a lack of organizational support and subsequent senior

management reorganization. The senior management took a hands-off approach to

the lean implementation effort, which made it difficult for the employees to manage

the project by themselves and stay focused on the lean implementation efforts.

The employees were not motivated to start another lean project and reverted to

conventional manufacturing methods. As a result of this, the productivity of machines

and the resource availability was significantly affected. People are the key drivers

for identifying ways to improve the production process and hence lean is commonly

termed as the “people-centric” approach. The most commonly observed people-

related risks include resistance to change among long-time employees, lack of top

management support, alienation of line leaders, non-compliance with the standard

operating procedures, lack of technical skills or job-related capabilities in workers, lack

of responsibility among employees to complete their assigned tasks, elevated physical

or mental stress levels, absenteeism of personnel and tardiness. Neglecting these
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people-related risks jeopardizes the sustainability of an organization’s lean efforts and

makes it difficult to develop a culture that strives to achieve continuous improvement.

The different characteristics in people, such as people skills, human behavior and

engagement, are studied in order to achieve a sustained lean culture (Pearce and

Pons, 2012). The resolution of risks from a ‘soft-side’ (people) perspective can

thus be addressed by utilizing one of these characteristics. Skills are defined as the

ability to perform certain lean tasks well. The skills required in personnel can be

broadly categorized under two main types: technical skills and people skills. The soft

(people) skills are highly important within an employee-based environment as people

constantly interact with one another to build a sustainable work culture. In a lean

environment, the people skills typically involve real time performance management,

root cause problem solving and the ability to lead small teams in looking for ways

to improve operations through coaching and personnel development. The progress

of an organization towards success lies in its ability to harness the skills of all its

employees. Lean is a knowledge-intensive process and is dependent on the skills of

people (Drew et al., 2004). Skill identification helps to hire people with appropriate

skills as well as drive employee reward and compensation systems. Employees in

such compensation systems would earn higher pay as they learn more skills and help

with the assignment of workers to cells (Bidanda et al., 2005). The Toyota model of

‘recruitment and selection process’ identifies some of the key people skills/dimensions

such as Teamwork, Initiative, Communication, Problem solving and Practical learning

required in shop floor personnel. The association of some of these people skills with

specific lean tools in the Toyota Production System (TPS) can be studied in literature.

For example, (Bidanda et al., 2005) mentioned that the flexibility of the workers and

their ability to work in teams is essential for the implementation of the cell layout.

A sustained implementation of the TPS requires a complete understanding of the

association of soft skills with all lean tools.

However, there has been no specific mapping or alignment of people skills with a

majority of lean tools in the TPS. An organization’s approach to implementing lean

3



has to align with the skill sets of its employees. This ensures employee engagement

towards continuous improvement. This thesis provides an insight on the people-

related risks for lean sustainability by mapping these risks with the identified key

people skills required in personnel.

1.2 Problem Statement

The Toyota Production System (TPS) fails to account for people-related risks such as

lack of skills/capability, physical or mental stress and absenteeism while implementing

a variety of lean tools/practices. This results in the lack of a culture for sustaining

lean implementation.

A possible fix to address these people-related risks would be to look at the skills

in personnel and align them with the requirements of the lean system. Further, an

organization’s approach to implementing lean has to align with the capability and

skill sets of its employees. Any misalignment of these skills with the organization’s

lean approach creates a crucial cultural gap and leads to the failure of sustainable

lean systems.

This thesis presents the functional decomposition of the TPS into six subsystems

namely Operational Fundamentals, Enhancing Workplace Capability in Design,

Standard Operations, Consistency, Flow and Production Scheduling and Motion,

in order to assess thoroughly all the people-related risks for lean sustainability. The

effect of people risks on other critical manufacturing resources within the TPS such as

material, equipment and schedule, is also examined. The researcher proposes a Lean

Personnel Alignment Model (LPAM) to align the skills in personnel with lean system

requirements. The alignment of skills will help organizations in deploying personnel

with appropriate people skills for sustaining a designated lean activity.
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1.3 General Approach

This study was undertaken in four phases with the objective of aligning the skill sets

of personnel with the requirements of the lean system. These phases are outlined in

Figure 1.1.

Figure 1.1: Research Framework Implemented During the Study
Source: Self-Generated.

Phase 1: Classification of the requirements of the lean system

A functional classification of TPS based on continuous flow path for products

is developed. This provides an in-depth understanding of the requirements of a

lean system. The TPS is categorized into six functional subsystems: Operational

Fundamentals, Enhancing Workplace Capability in Design, Standard Operations,

Consistency, Flow and Production Scheduling and Motion.
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• Operational Fundamentals : These comprise of a key group of lean activ-

ities/tools such as Teamwork and Quality circles, Product Families, Value

Stream and Kaizen, that are necessary for operating all the other activities

in different subsystems.

• Enhancing Workplace Capability in Design : This subsystem deals with the

interaction between the workplace and the functions performed by a worker

using lean activities such as 5S, Cell Layout, and Multifunctional Workforce.

• Standard Operations : This subsystem deals with lean activities such as

Standard Operating Procedures, which promotes the implementation of a set

of clearly defined activities and standardized procedures for machines and their

operators.

• Consistency : This subsystem ensures quick response to identification and

correction of mistakes in a lean process using lean activities such as Total

Productive Maintenance, Autonomation, and Quality Assurance.

• Flow: In this subsystem, the researcher studies lean activities such as Setup

Reduction, Line Balancing, and One-piece Production, Reduction of Lot Size

and Reduction of Lead Time, that are implemented in order to achieve flexibility

to respond to customer demands.

• Production Scheduling and Motion : This subsystem consists of lean activities

such as Production Smoothing, Pull system/Kanban and Just-in-time Produc-

tion, to deal with the sequencing and transit of products within a production

area.

The categorization of TPS into subsystems provides information on the precedence

of lean activities within each subsystem.

Phase 2: Identification of the risks for lean system sustainability

Each of the subsystems of TPS, as determined in Phase 1, and their logical set of

activities, are analyzed based on the risks for the lean system sustainability as follows:
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• Operational Fundamentals : The major risk for the Operations Fundamental

subsystem is lack of technical skills/capability in personnel.

• Enhancing Workplace Capability in Design: The sustainability of this subsys-

tem is affected by a number of risks: high mix of products in material, poor

layout design for material, absenteeism in personnel and unplanned maintenance

in equipment.

• Standard Operations : The major risk for the sustainability of Standard

Operations subsystem is non-compliance with Standard Operating Procedures

(SOP) in personnel.

• Consistency : A number of risks, namely defective material, non-compliance

with SOP in personnel, inappropriate behavior in personnel, unplanned main-

tenance in equipment, planned maintenance in equipment and malfunctioning

equipment affects the sustainability of the consistency subsystem.

• Flow : This subsystem faces a number of risks such as, defective material, poor

layout design of material, large batches of material, planned maintenance in

equipment, physical or mental stress in personnel.

• Production Scheduling and Motion : The sustainability of this subsystem is

impacted by a number of risks: material misplacement, high mix of products in

material, improper procurement of material and complex routing of material.

These risks were identified during the literature review process, whereby the researcher

studied the existing body of knowledge on the subject to determine the most suitable

risk factors for this study. Due to the overlapping of the risks within each subsystem,

the risks for lean system sustainability were categorized into Personnel, Material,

Equipment and Schedule in this study.

Phase 3: Risk validation using a survey

The researcher developed a survey questionnaire and invited employees working as

7



operational and lean professionals in the manufacturing industry to respond. The

survey (attached in Appendix A) focused on rating the importance of each of the

identified risks in personnel, material, equipment and schedule. The risks were thus

validated.

Phase 4: Alignment of skills in personnel using Lean Personnel Alignment

Model (LPAM)

This thesis specifically targeted the people-related risks as people significantly affect

the risks in material, equipment and schedule. The soft skills required to address

people-related risks are identified and mapped using Analytic Hierarchy Process

(AHP) technique. The misalignment of these skills with the requirements of the

lean system causes the system to fail. The researcher proposes a Lean Personnel

Alignment Model (LPAM) to align the identified soft skills with lean requirements

and thus addresses the risks for sustainability of lean systems.

1.4 Assumptions

The key assumptions of the study are deduced from the four phases of the general

approach. The assumptions are :

1. The risks for lean system sustainability are determined by the detailed

classification of the Toyota Production System (TPS) into subsystems.

2. The flow effectiveness of the lean system is affected by the risks for lean system

sustainability (H0).

3. The risks are validated using experts’ survey method and their responses

represent a random sample of the relevant population.

4. The mapping of the people - related risks with the soft skills ensures a sustained

lean implementation.
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1.5 Significance of the Study

The Lean Personnel Alignment Model (LPAM) integrates the requirements of a

lean system with the firm’s personnel requirements. The alignment of the skills

in personnel with the requirements of the lean system enables an organization to

structure its lean efforts with respect to the capability and skill sets of its employees. A

skill-based assessment can be designed to analyze the job-specific skills of employees.

This helps organizations select employees with the required skill sets to perform a

specific lean activity. By recruiting the right people for the job, an organization can

achieve employee engagement and empower its workforce to participate equally in the

firm’s continuous efforts towards improvement (Pearce and Pons, 2012). The study

of people skills helps to resolve the people-related risks and thus provides a means for

sustaining lean implementation.

1.6 Structure of the Thesis

This thesis arrangement is presented in the following manner: Chapter 2 provides

a comprehensive literature review of the initial understanding of the risks affecting

lean sustainability. It also studies the personnel skills associated with lean tools.

Chapter 3 presents a conceptual framework for integrating the requirements of the

lean system with people skills. Additionally, it provides a detailed risk analysis of

the lean system, discusses the research hypothesis and presents the Lean Personnel

Alignment Model (LPAM). Chapter 4 provides a detailed approach for validating

the identified risks and the necessary skill sets in personnel. It further validates the

mapping between the people-related risks and the skill sets in the LPAM model using

Analytic Hierarchy Process (AHP) technique. Chapter 5 summarizes the findings of

the study and evaluates the impact of the findings. The author also discusses the

scope and suggests how the study can form the basis for further research.
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Chapter 2

Literature Review

This chapter is divided into two components of the literature searches. The first

focuses on the risks for the sustainability of the lean system with respect to different

critical resources such as People, Material, Equipment, and Schedule and presents

the different approaches explored for studying and assessing the risks. The second

component of literature search discusses the alignment of people skills with lean tools

using the Toyota model of ‘recruitment and selection process’ as a reference.

2.1 Identification of Risks in Lean Sustainability

Lean implementations have been unsustainable in some organizations. Approximately

50% to 75% of the lean manufacturing implementations in the United States have

failed to sustain. The major hurdles to sustaining lean according to Lean Enterprise

Institute (2008) were identified as follows: (1) backsliding to older methods of

working after initial progress, (2) resistance of middle management to adapt to lean

changes, (3) inability to understand the importance and benefits of lean tools, (4)

lack of crisis to start lean implementation, and (5) resistance among shop floor

employees to incorporate innovative ideas. There is a need to study causative

factors, or ‘risks,’ in lean sustainability to improve the rate of sustainability in Lean

implementations (Bayo-Moriones et al., 2008). The first step in this process is the

10



systematic identification of risks. Risks in lean have been presented in the literature

using interchangeable terms such as difficulties, barriers or impact factors (Marodin

and Saurin, 2015). In the context of lean manufacturing, risks affecting lean can

be categorized into the four categories of manufacturing resources, (Smalley, 2006);

(Sawhney et al., 2010) namely: Personnel, Material, Equipment, and Schedule.

The literature surveyed for the purpose of identifying the risks for lean system

sustainability was based on key search terms such as People-related risks, Material-

related risks , Equipment-related risks and Schedule related risks respectively and

was mainly carried on the Google Scholar and Scopus databases. Table 2.1 lists

the literature surveyed in each category. The consideration of the risks under

these four categories provides a method for addressing lean sustainability issues

by integrating lean systems with the principle of reliability (Sawhney et al., 2010).

The identification, assessment and prioritization of the risks helps to minimize the

detriments of uncertain outcomes in lean implementation.

Material risks manifest at all locations in the production cycle, from the procurement

of raw material to the routing of the finished product. Monden and Talbot (1995)

identified that the procurement process exposes an organization to risk in terms of the

operational costs and production hold-ups. He also determined material misplacement

to be a potential material-related risk which translates into added expenditure and

lost time. The manufacturing defects prevalent in a material hazardously impact

its use and is a major material-related risk (Kilpatrick, 2003). The parameters,

such as batch size, product mix, layout design and routing, impact the material

flow. Producing material in large batches increases the downtime associated with the

machines (Kilpatrick, 2003). An increase in the product mix considerably decreases

the direct labor productivity and quality of the product manufactured (MacDuffie

et al., 1996). An improper layout design often results in a longer lead time due to

the change in the employee’s range of jobs (Monden, 2011). Complex routing affects

the movement of the material in the production area (Harris et al., 2004).

Equipment risks affect the overall effectiveness of the equipment, machinery or
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the installments at work. Nakajima (1988) determined the time and cost of

lost production associated with the equipment-related risks such as, equipment

on planned maintenance/changeover, unplanned maintenance (machine breakdown)

and malfunctioning equipment. Planned maintenance poses a risk in terms of the

expenditure involved with the frequent change of parts and labor costs. Unplanned

maintenance is highly inefficient, causing sudden breakdown of machinery and lost

revenue. Malfunctioning equipment undermines workers’ safety and causes severe

industrial hazards.

The risks in scheduling significantly impacts the duration of a planned lean project on

sequencing the schedule of the parts and capacity planning. Monden (2011) identified

non-adherence to schedule requirements and fluctuations in the customer demand

(extraordinary orders) to be the schedule-related risks affecting the smooth operation

of a system.

Personnel risks have been found to be the largest category of risk factors in

literature. This is because of the importance of people-related factors in lean

sustainability. People-related risks are prevalent from upper management to the

worker level. Motwani (2003) identified people-related risks such as the lack of

technical knowledge in supervisors and leaders and physical or mental stress in the

workers in an automotive company. Scherrer-Rathje et al. (2009) found similar risks

in personnel such as not encouraging operator’s autonomy and lack of organization

support in a longitudinal study of a food company. People-related risks commonly

observed at worker level are non-compliance with standard operating procedures,

physical or mental stress, absenteeism and inappropriate behavior. Non-compliance

with standard operating procedures (SOP’s) in personnel is a huge risk to an

organization because not all workers conform to the written SOP’s and because of

this process anarchy occurs (Ohno, 1988). Emiliani et al. (2005) observed elevated

physical and mental stress levels in shop floor personnel due to increased worker

turnover and time lost due to accidents. Employee absences cause disruptions to

the production process and cost organizations millions of dollars each year (Rabakavi
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et al., 2013). Inappropriate behavior in personnel, such as tardiness, fighting, foul

language, insubordination, and rudeness, affect the environment of mutual trust

between employees and management as well as among different work teams (Čiarnienė

and Vienažindienė, 2012). People-related risks significantly impact the smooth

functioning of other resources such as Material, Equipment, and Schedule. People are

the most valuable asset in any organization, but also regarded as the most vulnerable

asset (Taylor et al., 2013). People can undergo breakdown or damage just like

machinery and material. However, people are harder to repair and the consequences

can be far more serious. Therefore, people-related risks need to be addressed. The

study of people-related risks helps to identify the expected behaviors/ skill sets in

personnel when dealing with these risks.

2.2 Organizational Approaches to Studying Risks

Historical evidence and industry practices suggest risks to be perceived as something

intangible and not measurable (Hubbard, 2009). Severity and probability are critical

to risk analysis when the event is common and easier to estimate (Pearce and Pons,

2012). Methods to analyze risks can be widely categorized as expert intuition,

expert audit, simple stratification methods (basic scales e.g., for heat or risk maps),

weighted scores , traditional financial analysis , calculus of preferences (expert

judgment) and probabilistic models (e.g., Monte Carlo Analysis) (Hubbard, 2009).

A limited number of publications link “Lean” to “Risk” as in the context of risk

management. There has been a considerable effort to studying risks affecting lean

implementation using innovative frameworks and manufacturing techniques (e.g., core

competency based framework and emergent manufacturing methods.) Parry et al.

(2010) developed a methodology for lean implementation using the core competence

theory to reduce the risk of damaging a company’s key resources and abilities.

Ahmed et al. (2007) identified the key risks affecting the utilization of the emergent

manufacturing resources in order to meet the customer delivery dates. The risk
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Table 2.1: Risks Affecting Lean Implementation.

Risks Risk category Literature reference
Non-compliance with Standard
Operating Procedures(SOP)

Personnel (Ohno, 1988)

Lack of technical
skills/capability

Personnel

(Motwani, 2003), (Emiliani, 2005),
(Papadopoulou,2005),
(Achanga et al., 2006),
(Black, 2007), (Sim, 2009), (Pierce ,2009),
(Scherrer-Rathje et al., 2009),
(Farris et al., 2009), (Turesky, 2010),
(Boyle et al., 2011)

Physical/mental
stress

Personnel
(Papadopoulou, 2005), (Motwani, 2003),
(Emiliani, 2005), (Sim,2009),
(Pierce,2009), (Turesky, 2010)

Absenteeism Personnel (Rabakavi,2013), (Kara et al.,2002)
Inappropriate behavior Personnel (Duque, 2007)
Improper procurement of
material

Material (Monden, 1995)

Material
misplacement

Material (Monden, 1995)

Defective material Material (Kilpatrick, 2003)
High mix of
products

Material (MacDuffie, 1996),(Monden, 1995)

Large batches Material (Kilpatrick, 2003)
Poor layout design Material (Amri et al., 2016)
Complexity of
routing

Material (Harris, 2004)

Planned equipment
maintenance

Equipment (Nakajima, 1988)

Unplanned equipment
maintenance

Equipment (Nakajima, 1988)

Malfunctioning
equipment

Equipment (Nakajima, 1988)

Non-adherence to
schedule requirement

Schedule (Monden, 1995)

Extraordinary orders Schedule (Monden, 1995)
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assessment of a lean implementation was closely related to the use of risk and

reliability methods, acknowledgement of risks for sustaining lean systems and the use

of program management system (Pearce and Pons, 2012). These can be explained in

detail as follows:

1. Use of FMEA (failure modes and effects analysis), Sawhney et al. (2010)

developed a risk assessment value (RAV) for determining the risks affecting lean

systems using modified FMEA for four critical resources: Personnel, Material,

Equipment, and Schedule.

2. Use of Monte Carlo analysis in ship yard process (Kolić et al., 2011).

3. Matching of lean systems strategy to risk identification, Justin (2006) made use

of systems engineering approach to optimize the risks in a complex system.

4. Use of the Program Management system/ process, Wilson (2004) studied the

risks affecting lean implementation using project management methods.

A comparison was drawn between risks and lean process cycles (Alimohamadi and

Seddigh, 2009) and the applications in lean were used to determine and resolve

the risks in construction projects (Qiu, 2011). Supply chain focused modeling and

simulations were used for the mitigation of risks (Shukla et al., 2010), (Hallam,

2010). There were also recent studies in supply chain risks comparing large and

small enterprises (Thun et al., 2011). However, all these works discussed minimizing

the detriments of a single, specific aspect of a lean system (e.g., specific processes

or supply chain). The studies did not perform any structured risk analysis of a

lean implementation apart from a bounded optimization. Pearce and Pons (2012)

proposed the integration of risk management with lean practices using the application

of AS/NZS ISO 31000 and a representative case study from the manufacturing sector.

Further, a lack of understanding of the relationships between the risks in lean

implementation created an important gap in the literature. The development of a

classification scheme helped to identify the relationships between risks, as it grouped
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similar risks into the same category (Aloini et al., 2012). Marodin and Saurin

(2015) proposed a model for compiling 14 risks affecting lean implementation based

on the literature review of 14 studies and then categorized the risks into three

dimensions namely: (1) Process management, (2) Managerial support and (3) Shop

floor involvement.

There have been independent studies assessing the risks affecting lean implementation

in terms of different categories (Motwani, 2003), (Marodin and Saurin, 2015).

However, the study and categorization of risk factors into Personnel, Material,

Equipment and Schedule within a single study is non-existent. This thesis presents

the classification of the Toyota Production System (TPS) in order to determine all

the risks for lean sustainability in detail and then categorizes the identified risks ,

thus providing a method to design and improve the reliability of the lean system.

2.3 Data-Driven Assessment of Risks

Risk factors affecting lean implementation have primarily been investigated with

empirical evidence of the impact of one risk or several risks emerging from the in-

depth case study. A few studies mentioned risks that appeared in one case study

each, as not encouraging operator’s autonomy (Scherrer-Rathje et al., 2009) and lack

of commitment of senior management (Crute et al., 2003). Single company case

studies have provided less evidence about the generalization of risks within a large

number of companies. Surveying 202 plants, Boyer (1996) suggested that management

support affects lean implementation process. In contrast, Angelis et al. (2011), who

surveyed 1400 operators in 21 plant sites suggested that workforce support impacts

lean implementation. Although empirical evidence supported both these studies,

they focused only on one risk and further exploration was required to gain empirical

evidence about the relationship between the risks in implementing lean. The survey-

based research was employed to gather empirical evidence about the relationship

between the risks (Malhotra and Grover, 1998). Survey of subject matter experts,
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from different industries, helped to enrich the perspective on the risks. The non-

random choice of companies for surveys and the search for companies that were

already known to the researchers is a commonly used strategy in the studies on

lean implementation (Marodin and Saurin, 2015), (Boyle et al., 2011), (Eroglu and

Hofer, 2011), (Taj and Morosan, 2011). Shah and Ward (2007) used a sample

with participants drawn from courses and training events when they conducted a

survey on lean implementation since it was necessary that the respondents had

experience in the subject. Survey research contributes to the advancement of

scientific knowledge in different ways (Babbie, 1990), (Kerlinger, 1986). Accordingly,

researchers often distinguish between exploratory, confirmatory and descriptive survey

research (Pinsonneault and Kramer, 1993), (Malhotra and Grover, 1998), (Filippini,

1997). Exploratory survey research is used during the early stages of the research

to gain preliminary insight on a topic and forms the foundation for an extensive

in-depth survey (Forza, 2002). Confirmatory survey research is employed when

the knowledge of a phenomenon has been articulated with the help of well-defined

concepts, models and proposition (Forza, 2002). Descriptive survey research is

utilized for understanding the importance of a certain phenomenon and studying the

distribution of the phenomenon in terms of a population. The descriptive survey

method provides useful hints for theory building and refinement (Malhotra and

Grover, 1998), (Wacker, 1998). The thesis focuses on descriptive survey research

method to contribute to the general body of knowledge in the area of risks affecting

lean implementation. The most commonly used inferential statistics in survey data

analyses are t-tests (compares group averages), hypothesis testing, analysis of variance

(ANOVA), correlation and regression. Advanced techniques, such as exploratory

factor analysis, cluster analysis and multidimensional modeling procedures (Gavin,

2008) , (Hinkin, 1998) are mostly used for categorizing the survey results into groups.
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2.4 Alignment of Lean Risks with People Skills

There have been numerous practical methodologies to address the risks affecting lean

systems (Pearce and Pons, 2013). One such widely used methodology is modified

Failure Mode Effect Analysis (FMEA). Risk Prioritization of Lean System (RPLS)

tool used for FMEA prioritizes the risks affecting the manufacturing resources, such as

people, material, equipment and schedule, to achieve a sustained lean implementation.

The FMEA approach performs a gap analysis by evaluating the actual operational

conditions of lean system based on the required conditions (Sawhney et al., 2010).

However, the resolution of people-related risks affecting lean implementation has not

yet been addressed solely from the ‘people’ perspective. The people-related factors,

such as behavior, skills and engagement, could be utilized to tackle people-related

risks (Pearce and Pons, 2012).

People skills form the key driver for the lean system’s operation (Drew et al., 2004).

Further, there is an association of the skills required in personnel with different lean

tools. Workers’ flexibility, combined with the ability to work in teams, is essential for

cellular manufacturing (Bidanda et al., 2005). A versatile and well-trained worker is

necessary for achieving Shojinka (multifunctional workforce) (Monden, 2011). The

emergence of Total Productive Maintenance (TPM) has mandated that operators,

maintenance workers, and engineers collaborate and work with one another (Witt,

2006). Effectively implementing Single Minute Exchange of Dies (SMED) requires

shop floor workers to have fundamental skills such as teamwork, flexibility, and

attention to details (McIntosh et al., 2000). The literature surveyed for the purpose

of identifying the association of soft skills with some of the lean tools was based

on key search terms such as, lean skills model, and people skills in cell layout. It

was mainly carried on the Google Scholar and Scopus databases. Table 2.2 lists the

skill sets associated with some of the lean tools and their corresponding references in

literature.

There has been no specific mapping or alignment of the necessary people skills with
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Table 2.2: Important Skill Sets Required to Implement Lean Tools/Techniques.

Lean tools/techniques Skill sets Literature reference

Teamwork &
Quality circles

Ability to learn,
Observation,
Problem-solving

(Liker ,2008)

Cell layout
Commitment to excellence,
Self-management,
Teamwork

(Al-Mubarak et al.,2003),
(Hyer,2004),
(Meredith,2004)

Multifunctional
workforce

Multi-tasking,
Flexibility,
Ability to learn

(Monden,1995)

Single minute
exchange of dies

Teamwork,
Flexibility,
Initiative,
Attention to details

(McIntosh,1996),
(Dillon,1985),
(Monden,1995)

Line balancing
Multi-tasking,
Leadership

(Monden ,1995)

Quality control

Leadership,
Initiative,
Communication,
Problem-solving

(Monden ,1995),
(Deming,1982),
(Liker,2008)

Autonomation
Attention to detail,
Communication

(Monden,1995),
(Liker,2008)

Total productive
maintenance

Teamwork,
Collaboration,
Communication,
Co-operation,
Flexibility

(Cooke,2000),
(Witt,2006),
(Besterfield et al. ,1999),
(Sahin ,2000)

Scheduling

Problem -solving,
Teamwork,
Multi-tasking,
Communication

(McKay et al.,1992),
(Berglund ,2007),
(Monden,1995)

Plan for every
part

Problem-solving,
Teamwork,
Multi-tasking

(Bjrk,2004),
(Monden,1995),
(Liker ,2008)

Kanban
Problem- solving,
Teamwork,
Multi-tasking

(Storhagen,1995),
(Nadal,2006)
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the majority of the lean tools in the TPS. Therefore, there is a need to determine the

necessary people skills and align these skills with lean tools.

There has been a considerable effort to identify the necessary team skills and

individual skills required in shop floor personnel. Meredith Belbin (2011) examined

the interpersonal skills of shop floor personnel working in a team and identified nine

key team roles which are essential for achieving team building among personnel.

The team role model helped to identify the potential strengths and weaknesses of

individuals within a team. Liker and Hoseus (2008)’ s Toyota model of ‘recruitment

and selection process’ identified nine dimensions/skills required in shop floor workers.

The Toyota model was utilized to select shop floor workers based on their individual

ability to perform certain lean tools well. These dimensions/skills were as follows:

Team Orientation, Initiative, Oral Communication, Problem Identification, Problem

Solution, Practical Learning, Work Tempo, Adaptability and Mechanical Ability.

• Team Orientation: measured group cohesiveness and team members’ co-

operation in facilitating a group process.

• Initiative: measured an individual’s ownership quality for assessing the task at

hand.

• Oral Communication: measured the effective expression of ideas and informa-

tion in individual or group situations.

• Problem Identification: identified problems and studied cause-effect pattern to

secure relevant data.

• Problem Solution: measured the ability to solve problems based on logical

assumptions.

• Practical Learning: measured the ability to assimilate job-related information

quickly.
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• Work Tempo: measured the ability to perform a designated activity with a

specific tempo.

• Adaptability: measured the ability to work effectively in varied environments

involving various tasks, responsibilities or people situations.

• Mechanical Ability: measured the ability to perform mechanical tasks.

This thesis uses the Toyota model of ‘recruitment and selection process’ as a reference

to identify key skills in individuals.

The mapping of people-related risks with their corresponding skills ensures the

sustained resolution of people risks. Analytic Hierarchy Process (AHP) technique

could be used for mapping the people-related risks to the skills. AHP is a widely

used decision making technique to find out the best alternative among a list of

criteria in order to attain a goal (Saaty, 1995). In comparison to other decision

making techniques, AHP uses human judgments through expert-surveys to compare

alternatives of the designated criteria or sub-criteria. It allows decision makers

to choose the best among a multitude of alternatives and provides a quantitative

justification for their choice (Ravikumar et al., 2015). Kiatcharoenpol et al. (2015)

used Analytical Hierarchy Process (AHP) to prioritize the relative importance of the

12 critical factors for successful lean implementation in small scale industries. The

priority of critical factors was interpreted using the AHP technique for the following

reasons:

• AHP is an apt tool for determining priority with respect to different dimensions.

• It does not require statistics or probability theory and provides a perception of

reality.

• It is a long-standing methodology to evaluate important factors in other

research.

21



The researcher in this study employs Analytic Hierarchy Process (AHP) technique

for mapping people-related risks with skills. The skills are evaluated as alternatives

over the different people-related risk criteria to determine the most important skill

for a particular people-related risk.

A thorough literature review on the risks for lean system sustainability and the

alignment of lean risks with people skills thus indicate the absence of a model that

classifies the Toyota Production System(TPS) and connects it to people skills. This

thesis presents a Lean Personnel Alignment model (LPAM) which aligns the skills in

personnel with lean system requirements.
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Chapter 3

Methodology

This chapter presents a detailed approach to the classification of the Toyota

Production System (TPS) into subsystems in order to understand its functional

requirements. The risks associated with each of the subsystems is studied and

further categorized into people, material, equipment and schedule. The author also

discusses the development of a survey instrument to validate the risks and presents

a Lean Personnel Alignment Model (LPAM) to align the skills in people with the

requirements of the lean system.

3.1 Classification of the Lean System

The Toyota Production Systems (TPS), often referred to as a socio-technical system,

comprises of some lean management philosophies and practices. The classification of

the TPS into a set of subsystems provides a road map for understanding its functional

requirements. Each of these subsystems consists of a group of lean tools which

represents a specific objective of the TPS. The priority for the implementation of

these subsystems is proposed. The logic for connecting a group of lean tools in a

specific subsystem is presented to be sequential in a manner with the precedence

requirements. The subsystems obtained upon the classification of the TPS are

Operational Fundamentals, Enhancing Workplace Capability in Design, Standard
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Operations, Consistency, Flow and Production Scheduling and Motion respectively.

The entire TPS system, with the highlighted subsystems, is presented in Figure 3.1

below.

Figure 3.1: Classification of the TPS.

The six subsystems are explained in detail as follows:

1. Operational Fundamentals: is composed of a key group of lean activities,

such as Teamwork & Quality Circles, Product Families, Value Stream and

Kaizen, which are necessary for operating all other activities in different

24



subsystems. This subsystem addresses the business needs of an organization

and stresses the importance of people working within a team. It represents

a set of activities that help in understanding a lean process, stabilizing the

variations within the process and working in a team to shape a continuous

improvement culture. Operations Fundamentals subsystem provides input to

subsystem 2, 3, 4, 5 and 6. Achieving Kaizen or Continuous Improvement

is the ultimate objective of this subsystem. Kaizen provides a baseline for

identifying where value can be created and sustained. Kaizen is dependent

on Value Stream and Teamwork as well as Quality Circles, as they help

in identifying the opportunities for eliminating wastes and non-value added

activities. Value Stream is dependent on Product Families passing through a

production process. Product variants form the units of analysis for Value Stream

from the downstream step just before the customer. Operational Fundamentals

subsystem is outlined in Figure 3.2. The critical resource for all the lean

activities in this subsystem is people.

Figure 3.2: Operational Fundamentals Subsystem.

2. Enhancing Workplace Capability in Design: is composed of a group of

lean activities, such as 5S, Visual Management, Cell Layout and Multifunctional

Worker which promote the interaction between the workplace and functions

performed by a worker. This subsystem focuses on improving the productivity

and efficiency of the available resources in the organization by the systematic

elimination of wastes. It represents a set of activities that help to eliminate
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workplace inefficiencies, high stock levels, and inappropriate process flows

by establishing a balanced workload for each production area. Enhancing

Workplace Capability in Design subsystem provides input to subsystem 3, 4, 5

and 6. Achieving a well-designed work layout or Cell Layout equipped with a

Multifunctional Worker is the ultimate objective of this subsystem. Cell Layout

having a Multifunctional Worker, ensures higher productivity and quality of

product flow. A Cell Layout is dependent on Visual Management and 5S

techniques as they help in eliminating waste and optimizing material, people

and information flow. Visual Management is dependent upon 5S for overcoming

work flow challenges such as safety, quality, waste and employee morale. A

visual workplace serves as a key force for displaying the necessary information

at all points of action. Enhancing Workplace Capability in a Design subsystem

is outlined in Figure 3.3. The critical resources for all the lean activities in this

subsystem are People and Equipment.

Figure 3.3: Enhancing Workplace Capability in Design Subsystem.

3. Standard Operations: is composed of a lean activity, namely Standard

Operating Procedures, which promote the implementation of a set of clearly

defined activities and standardized procedures for machines and their operators.

This subsystem focuses on maintaining a routine of Standard Operations in the

organization in order to shape a continuous improvement culture. The SOP’s
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help to achieve efficiency, quality output and uniformity of performance upon

compliance with the industry regulations. The Standard Operations subsystem

provides input to subsystem 4, 5 and 6. Achieving SOP is the ultimate objective

of this subsystem. The Standard Operations subsystem is outlined in Figure

3.4. The critical resource for the lean activity in this subsystem is people.

Figure 3.4: Standard Operations Subsystem.

4. Consistency: is composed of a group of lean activities, such as Total

Productive Maintenance (TPM), Autonomation and Quality Assurance, which

ensures a quick response to the identification and correction of mistakes in

any process. This subsystem focuses on ensuring the improved quality of a

manufacturing product or a performed service in an organization by adhering

to a set of defined quality criteria or the customer’s requirements. It represents a

set of activities that help in achieving effective utilization of resources, improved

customer satisfaction, quality and lower costs of failure. The Consistency

subsystem provides input to subsystem 5 and 6. Achieving Quality Assurance

is the ultimate objective of this subsystem. Quality Assurance ensures the

desired level of quality in manufactured products. Quality Assurance is

dependent upon Autonomation and Total Productive Maintenance as they help

in maintaining and improving the performance of production systems through

the machines, processes, and employees. Autonomation is dependent upon Total

Productive Maintenance for maximizing the operational time of the equipment

and empowering personnel with the ability to detect defects through the line.

The Consistency subsystem is outlined in Figure 3.5. The critical resources for

all the lean activities in this subsystem are People and Equipment.
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Figure 3.5: Consistency Subsystem.

5. Flow: is composed of a group of lean activities, such as Setup Reduction,

Line Balancing, One-piece production, Reduction of Lot Size and Reduction of

Lead Time, which are necessary for achieving flexibility in order to respond to

customer demands. This subsystem focuses on ensuring an improved Work-In-

Process (WIP) flow through production with minimal (or no) buffers between

the manufacturing process steps. It represents a set of activities that facilitate a

faster turnover of orders and on-time delivery of products. The Flow subsystem

provides input to subsystem 6. Achieving Reduction of Lead Time is the

ultimate objective of this subsystem. Reduction of Lead Time ensures the

delivery of better quality products on a timely schedule. It is dependent on

Reduction of Lot Size and One-Piece Production as they help in reducing

inventory and variability of product flow. Reduction of Lot Size is dependent

upon Setup Reduction (Shingo’s Single Minute Exchange of Dies) to reduce or

eliminate the changeover time. One-Piece Production is dependent upon Line

Balancing to level the workload across all processes in a Cell Layout and to

remove bottlenecks and excess capacity. The Flow subsystem is outlined in

Figure 3.6. The critical resources for all the lean activities in this subsystem

are People and Material.
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Figure 3.6: Flow Subsystem.

6. Production Scheduling and Motion: is composed of a group of lean

activities, such as Production Smoothing, Pull System/Kanban and Just-in-

Time Production(JIT), which is necessary for dealing with the sequencing

of orders and controls that facilitate the transit of materials between the

production areas. This subsystem focuses on ensuring a uniform distribution of

the production volume and mix evenly over time. It represents a set of activities

that help in achieving a smooth flow of product and reduced inventory costs.

Achieving Just-In-Time Production is the ultimate objective of this subsystem.

Just-In-Time Production ensures that the parts are produced based on the

customer demand. JIT is dependent upon the Pull System/Kanban as it helps

to determine the status of the production system and inventory by accounting

for the daily demand changes. The Pull System/Kanban is dependent on

Production Smoothing for maintaining the quantity of production variance in a

production line. The Production Scheduling and Motion subsystem is outlined

in Figure 3.7. The critical resources for all the lean activities in this subsystem

are People and Material.
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Figure 3.7: Production Scheduling and Motion Subsystem.

3.2 Risk Analysis of the Lean System

The classification of the TPS into subsystems in the previous section helps to

understand the lean system’s implementation and operation better. Although lean

efforts are geared towards enhancing the smooth flow of raw materials through

production processes, sustaining the lean system long-term is a major concern (Bhasin

and Burcher, 2006). The ability to sustain lean improvements in a system can be

enhanced by improving the reliability of the system’s components (Sawhney et al.,

2010). The present study used the concept of reliability by studying the risks

impacting the flow effectiveness of the lean system and categorizing these risks into

four components of reliability: people, material, equipment, and schedule. The risks

were identified rationally using a literature search. The risk analysis was performed

with respect to all the lean subsystems. However, due to the overlapping risks

in different subsystems, the identified risks are specifically grouped into Personnel,

Material, Equipment and Schedule.

Flow Effectiveness with respect to Personnel: The workforce is comprised of

personnel and their skills are required to implement lean (Sawhney et al., 2010).

The flow of a production material on a manufacturing line is impacted by the

following people related risks (as shown in Figure 3.8): Non-compliance with standard
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operating procedures, Lack of technical skills/capabilities, Physical or mental stress,

Absenteeism and Inappropriate behavior.

Figure 3.8: Risk Analysis of Personnel.

• Non-compliance with Standard Operating Procedures: The Toyota

Production System relies on creating standard worksheets listing the standard

methods for each procedure in the plant. Non-compliance with standard

operating procedures (SOP’s) creates a huge margin for error because all workers

do not conform to the written SOP’s. Thus, process anarchy results.

• Lack of Technical Skills/ Capabilities: Lean process-oriented initiatives

should be implemented by the front-line workers (Liker, 2004). However, the

problem is with the lack of workers’ technical skills or capabilities to perform

these process-improvement initiatives at the project level. To identify Muda

(i.e., non- value-adding activities), the front-line workers need certain basic

technical skills and capabilities to design and operate a lean system.
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• Physical or Mental Stress: Toyota’s one-minded approach to several lean

practices has created obstacles to workforce efficiency and capacity utilization

(Lurie, 1987). Lean production results in elevated stress levels in employees,

increased worker turnover and time lost due to accidents. Furthermore, it has a

negative impact on the operators’ health and performance (Papadopoulou and

Özbayrak, 2005).

• Absenteeism: Workers’ adequate attendance level allows an organization

to meet its objectives. Employee absences are both costly and disruptive.

Productivity losses, due to employee absenteeism, cost millions of dollars to

an organization each year (Hausknecht et al., 2008).

• Inappropriate behavior: It is important for an organization implementing a

lean culture to ensure that its personnel behave in accordance to the guiding

principles and maintain a climate of mutual trust amongst each other (Fer-

nando and Cadavid, 2007). Inappropriate behavior among personnel includes

tardiness, non-compliance with the top management and insubordination. An

organization can effectively curtail the risk of inappropriate behavior in its

personnel by providing an open-minded approach and supportive behavior.

Flow Effectiveness with respect to Material: Material comprises of raw

materials, works-in-process (WIP), and finished goods (Sawhney et al., 2010). The

flow of a production material on a manufacturing line is impacted by the following

material-related risks (as shown in Figure 3.9): Improper procurement of material,

Material misplacement, Defective material, High mix of products, Large batches, Poor

layout design, and Complex routing.
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Figure 3.9: Risk Analysis of Material.

• Improper Procurement of Material : Bad procurement and inventory

control lead to operational costs in areas of holding cost, obsolescence, dead

stocks, and production hold-ups due to stock-outs and dormant stock (Monden,

2011). Unreliable vendors that miss delivery dates or deliver the wrong items,

can slow down or halt a manufacturing process (Jeyaraman and Kee Teo, 2010).

Therefore, the procurement process involves multiple risk factors.

• Material Misplacement : Misplaced inventory translates to added expendi-

tures. Inventory management systems are not perfect as there is always some

operator error wherein the material is thrown away or broken (shrink), misused

or misplaced.
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• Defective Material : A manufacturing defect exists if the product departs

from its intended design, although significant care was exercised in making the

product (Kilpatrick, 2003). A product that escapes the manufacturer’s quality

controls in a flawed condition leads to its failure during use, and could possibly

cause injury to the user.

• High Mix of Products: Complexity of parts and options decreases the direct

labor productivity and quality as production workers face a complex variety of

parts and less likely combinations of parts to install (MacDuffie et al., 1996).

Balancing the assembly line for consistent cycle times at each workstation also

becomes more difficult due to multiple models and various option combinations.

• Large Batches: Producing material in large batches is inefficient because of the

associated downtime. The downtime between batch runs substantially increases

with an increased number of machines and complexity of production process

(Kilpatrick, 2003). The idle time of machines is longer as operators reconfigure

them for each new batch produced.

• Poor Layout Design: Failure to account for ergonomic interventions in

layout design can cause work-related stress injuries and decrease productivity.

Improper layout design can often result in longer lead time due to the change

of each employee’s range of jobs (Monden, 2011).

• Complex Routing: Routing prescribes the plant’s work flow and includes the

following: layout, temporary locations for raw materials and components, and

materials handling systems. Complex routing leads to using improper material-

handling systems for purchased parts to support the cells (Harris et al., 2004).

Flow Effectiveness with respect to Equipment: Equipment comprises of

primary and auxiliary machines used in lean systems (Sawhney et al., 2010). A

production material’s flow on a manufacturing line is impacted by the following
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equipment related risks (as shown in Figure 3.10): Planned maintenance, Unplanned

maintenance, and Malfunctioning equipment.

Figure 3.10: Risk Analysis of Equipment.

• Planned Maintenance: Planned maintenance is proactive maintenance work

scheduled to occur on a regular basis. It is less reliable than condition- based

maintenance. Furthermore, it is more expensive due to the frequency in which

parts change and labor costs (Singh et al., 2013).

• Unplanned Maintenance: Unplanned maintenance is performed without

planning, and it is related to breakdown, repair, or corrective work. Un-

fortunately, it is unavoidable. This type of maintenance is highly inefficient,

causing sudden breakdown of machinery and lost revenue (Nakajima, 1988). It

has the disadvantage of unplanned stoppages, excessive damage, spare parts

problems, high repair costs, excessive waiting and maintenance time, and

excessive troubleshooting problems (Jain et al., 2012).

• Malfunctioning Equipment: Equipment malfunction is one of the major risk

factors impacting equipment performance. Defective machines lacking adequate

safety features or warnings often undermine workers’ safety and are tremendous

industrial hazards (Nakajima, 1988).
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Flow Effectiveness with respect to Schedule: Scheduling involves the ability to

forecast, plan, and schedule a production system (Sawhney et al., 2010). The following

schedule-related risks impact the flow of production material on a manufacturing line

(as shown in Figure 3.11 ): Non-adherence to schedule requirements, Extraordinary

orders, and High mix of products.

Figure 3.11: Risk Analysis of Schedule.

• Non-adherence to Schedule Requirements: In manufacturing, scheduling

is an approach to understanding how much work can be produced in a certain

period taking into consideration limitations on resources, such as people,

material, equipment, and schedule. Non-adherence to the schedule requirements

hinder the progress of a lean process throughout the plant. Improper sequencing

of the parts is a consequence of non-adherence to scheduling (Monden, 2011).

• Extraordinary Orders: Lean processes should be adaptive and adjustable to

absorb changing demand. Companies aim to reduce work in progress (WIP),

optimize value streams, and gain profit. Inaccurate demand forecasting severely

impacts an organization’s profitability and survival.

• High Mix of Products: The complexity of parts and options affects adoption

to the production schedule (Monden, 2011). Inappropriate product mix may
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lead to underutilization of capacity, overproduction, or failure in timely delivery

(Gauri, 2009).

3.3 Survey Development

A survey questionnaire was chosen to validate the risks affecting the sustainability of

the lean system. Hypothesis testing procedure was adopted to test the significance

of the relationship between risk variables and flow effectiveness of the lean system.

The null hypothesis indicates a significant relationship between the risk variables and

flow effectiveness of the lean system. The alternative hypothesis indicates that there

is no significant relationship between the risk variables and flow effectiveness of the

lean system.

H0- null hypothesis ; H1 - alternative hypothesis ; α = 0.01

H0: Risk factor affects flow effectiveness ; H1: Risk factor doesn’t affect flow

effectiveness. Table 3.1, below, presents the hypothesis tested in this study.

The hypothesis testing would be carried out at a level of significance, = 0.01 using

One-Sample T-test and the Wilcoxon test. This is discussed in detail in the Validation

chapter. Purposive sampling technique was utilized to achieve a moderate level of

external validity and generalize the results obtained from the survey (Rosenthal and

Rosnow, 1991). The survey questionnaire was grouped into two sections. Section

1 was designed to categorize respondents based on their relevant experience in lean

projects, educational qualification and the primary area of employment. Section 2

was divided into four main categories of questions for Personnel, Material, Equipment

and Schedule respectively.

There were a total of 18 questions in section 2; each question captured information

on the 18 risk variables developed from the risk analysis. The survey questionnaire

had a total of 22 questions out of which four questions were about the demographics

of the respondents and was a part of Section 1. The relationship between each of the

18 variables and the flow effectiveness of the lean system was studied (as shown in
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Table 3.1: Null Hypotheses for Testing the Interaction between the Risks and Flow
Effectiveness.

Risks Affects flow effectiveness
Non-compliance with SOP in personnel H01

Lack of technical skills/capability in
personnel

H02

Physical/mental stress in personnel H03

Absenteeism in personnel H04

Inappropriate behavior in personnel H05

Improper procurement of material H06

Material misplacement H07

Defective material H08

High mix of products H09

Large batches of material H10

Poor layout design for material H11

Complex routing of material H12

Planned maintenance of equipment H13

Unplanned maintenance of equipment H14

Malfunctioning equipment H15

Non-adherence to schedule
requirements

H16

Extraordinary orders in schedule H17

High mix of products in schedule H18
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Table 3.1). The survey questionnaire made use of the five-point Likert scale ranging

from 1 being “Strongly Disagree” to 5 being “Strongly Agree”. (Likert, 1932). A

pre-test study was carried out, and the identified risk variables were reviewed for

their appropriateness by 15 lean practitioners. The risk variables were then modified

based on the practitioners’ feedback. The final survey instrument (Appendix A)

was adopted based on the reviewer’s consensus. The detailed survey design and the

analysis of the risk variables are explained in the Validation chapter.

3.4 Lean Personnel Alignment Model(LPAM)

The LPAM model developed in this study aims to align the skills in personnel with

the requirements of the lean system. The framework for the LPAM model is outlined

in Figure 3.12. This model addresses the following objectives:

Figure 3.12: Framework for Lean Personnel Alignment Model.

1. Identification of the risks affecting the lean subsystems: Qualitative

risk analysis tests are carried out on each lean subsystem to identify the risks.
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Several techniques can be employed when performing qualitative risk analysis,

such as Brainstorming, Interviewing, Delphi method, SWOT (Strengths,

Weaknesses, Opportunities and Threats) analysis, Risk rating scales and use

of historical data (Kindlinger, 2012). The impact of the risks typically affect

the elements of the lean system, such as schedule, resources, cost, quality, and

performance. The risks were identified rationally using a literature search.

2. Quantification of the risk factors: The identified risk factors are validated

using expert-surveys. A specialized group of experts in the operation manage-

ment and manufacturing fields are approached.

Expert evaluations allow for the inclusion of all the risks affecting the lean

system. Inferential statistics are employed to validate the risk factors.

Exploratory factor analysis (EFA) techniques can also be employed to categorize

risks (Marodin and Saurin, 2015). Validation of the risk factors for system

failure enables the risk factors to be quantified and monitored.

3. Mapping the risks with the skills in personnel: The skills associated

with the operation of the lean tools are gleaned from a thorough literature

survey. The Toyota model of ‘recruitment and selection process’ could be used

as a reference for integrating skills in personnel with lean design (Liker and

Hoseus, 2008). The mapping of the people-related risks with the skills helps

to deal with these risks and sustain lean implementation. Analytic Hierarchy

Process (AHP) technique is utilized to map a set of skills with the identified

people-related risks. The skills are evaluated as alternatives over the different

people-related risk criteria to determine the important skill and the relative

importance of all the skills under consideration. AHP technique uses expert

judgment to provide a priority ranking of all the alternatives in terms of their

overall preference.

The detailed analyses of the LPAM model are presented in the next chapter.
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Chapter 4

Validation

This chapter provides a detailed interpretation and analysis of the survey data. It is

divided into three sections namely survey details, validation of risks and mapping of

risks with skills. The first section discusses the preliminary analysis carried on the

survey items which includes sample size selection, data coding and collection methods,

data screening procedures, reliability analysis of responses, demographic study of the

survey respondents and descriptive statistics of the data set. The second presents

the quantification of the risks using inferential statistics while the third validates the

risks to skills mapping in the Lean Personnel Alignment Model (LPAM) using the

Analytic hierarchy process (AHP) technique.

4.1 Sample Selection

One of the goals of this study is to validate the hypothesis stating that the flow

effectiveness of the lean system is impacted by the risks for lean sustainability using

a survey questionnaire. The survey respondents consisted of lean experts at different

levels of management and were not limited to those who implemented the lean process

successfully. These respondents were sought because of their extensive experience

in working on the lean projects. The mailing list for industrial practitioners was

obtained by researching the industry and academic sectors in depth. The industrial

41



sector consisted of some of the local manufacturing companies in Knoxville and lean

consultants all over the world. Lean forums and consortia as well as university

research groups worldwide comprised the academic sector. The mailing list included

the email addresses and job titles of 103 industrial employees. The respondents were

identified as consultants, managers and employees.

4.2 Sample Size Justification

The questionnaire was designed to filter out responses of participants who did not have

project experience in lean. A total of 74 responses were obtained from the targeted

population of 103 respondents. These responses were from people who had project

experience in lean manufacturing for at least a year. Furthermore, data screening

procedures rendered 35 responses to be valid for the study. This means that only

one-third of the total responses were utilized for this study. The percentage of the

total valid responses is shown in Figure 4.1.

Figure 4.1: Summary of the Responses.

Power analysis tests are generally used to determine the required sample size for

conducting a survey (Kish, 1965). This study used power analysis as a confirmatory

measure for justifying the existing sample size. The required sample size is calculated
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using the following formula:

n = (zα/2σ/E)2

where n: required sample size

zα/2: z- score for 99% C.I= 2.58

σ: average standard deviation on the responses = 1.06

E: margin of error = 0.5

n = [2.58 ∗ 1.06/0.5]2 = 30

The required sample size obtained from power analysis was 30 and the study used

a sample size of 35 responses. The existing sample size is greater than the required

sample size in this case, which makes it easier for gaining reliable insights about the

total population size.

4.3 Item Coding and Data Collection

The survey data was administered with the help of the University of Tennessee, Office

of Information and Technology (OIT), via Qualtrics survey software package. The

survey responses were stored in the Qualtrics server. As a result, the downloaded data

required formatting, such as removing the unused columns and recoded values. The

data-coding steps listed below were followed to make the data ready for screening:

1. Saved files with a format mmddyyyy.sav: This was a simple, yet effective

way to track changes in the dataset and served as a useful backup.

2. Deleted the excess columns : The unwanted columns (V1, V2, V3, V4, V5,

V6, V7, V8, V9, V10, V11, V12, V13, V14, location latitude, location longitude

and location accuracy) were generated as a result of the syntax used by the UT

OIT Qualtrics server. Deleting these excess columns for analysis was important.

3. Used the required information: For capturing responses on the conceptual

questions, the descriptive and demographic questions were eliminated.
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4. Used a unique test variable : Each question was identified with a unique

test variable. For example, Q1 1 in the extracted dataset was renamed as Test

Variable 1 1.

The purpose of the survey questionnaire was to obtain information (and incorporate

it into the research evidence) on the risk factors affecting lean implementation

by categorizing them into the four components of reliability: personnel, material,

equipment, and schedule. The questionnaire was categorized into four sections, one

for each of the reliability components. It had a total of 18 topic questions and four

demographic questions, which took approximately 15-20 minutes to complete. The

data-collection process was conducted from December 2015 to March 2016.

4.4 Data Screening

The data-screening procedures ensured that the data was clean, reliable, and valid to

conduct further statistical analyses. This section of the chapter addresses some of the

issues related to blanks or unengaged responses, missing responses, and data outliers.

The survey questionnaire was sent to some of the lean manufacturing companies in

Knoxville; 35 valid responses were obtained from the survey. The unengaged or blank

responses were eliminated because they would have affected the results. The following

discusses the various issues and the data-screening procedures used:

• Blank responses : Detecting blank responses requires case-screening proce-

dures in which the threshold of missing values for a particular question is less

than 5% or 10% (Hair, 2010), (Lowry and Gaskin, 2014). The following steps

were executed to identify the blank responses in the data:

1. The data was entered in an Excel sheet with the variable names.

2. Blank responses were checked for using the command = COUNTBLANK

(B2:B36) for each question.(See Table 4.1.).
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Table 4.1: Variables with Blank Responses.

Variable Blank Responses
Q1 1 Non-compliance with SOP in personnel 2
Q2 1 Improper procurement of material 2

The questionnaire had an approximate of 11% of blank responses.

• Unengaged responses : Detection of unengaged responses on a survey

required a thorough examination of the standard deviation of the responses

obtained from the questionnaire. The standard deviation of the responses from

all the individuals in this study were found to be equal to or greater than 0.5.

It can thus be inferred that the respondents were highly engaged while taking

the survey and this is shown in Figure 4.2

Figure 4.2: Standard Deviation of Respondents.

The standard deviation of each of the 35 responses was checked using the

command in Excel=STDDEV.P(B2: GT2). The decision was made not to

flag any of these data points and to regard them as valid responses.

• Missing data : Some of the responses in the questionnaire had missing values

for a few questions. Missing data generally appears when a respondent either

purposefully or inadvertently failed to answer one or more questions.
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Rates of less than 1% of missing data are considered trivial; 1-5% manageable;

5-15% require sophisticated methods to handle; and more than 15% severely

impacts any kind of interpretation (Acuna et al., 2003). Missing data is always

a major problem because most analytic software procedures require observations

on all individual variables and will use list-wise deletion (i.e., deleting all the

variables when any single variable listed in the procedure is missing) by default.

Missing data on different items accounts for the loss of a fifth or more of the total

sample; significantly reducing statistical power (Dennis et al., 1997). Missing

data can be replaced using mean (if normal), median (if skewed), or mode (if

categorical) if only a few percent (<5%) of the data is missing. When the goal

is to compare several groups, doing this replacement within each group is often

desirable.

To avoid bias issues and to ensure enough data points were included in this

study, the questions having missing values greater than 10% were imputed using

the median replacement method. Further, to impute these values in SPSS, the

Transform, Replace Missing Values command was used. As a Likert scale was

used in this study, utilizing the median replacement method was more relevant.

(See Table 4.2.)

Table 4.2: Subset of the Imputed Missing Values Table.

Result variable
Number of
Replaced
Missing values

Creating function

1 1 Non-compliance with SOP
in personnel

2 MEDIAN(1,1,ALL)

2 1 Improper procurement
of material

2 MEDIAN(2 1,ALL)
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• Outliers : The outlier analysis for the survey items in this study did not exhibit

any deviating behavior because of the selection of extreme points (1 or 5) on

the Likert scale (Lowry and Gaskin, 2014).

4.5 Reliability Analysis

The 18 risk variables used in the survey questionnaire were grouped into four

categories/factors: personnel, material, equipment and schedule. In order to study

the inter-correlations between the risk variables, Cronbach’s alpha test was employed.

Cronbach’s alpha increases with the increase in the inter-correlations among the

survey items. It indirectly signifies the extent to which a set of items measure a

single unidimensional latent construct (Cronbach, 1951). However, alpha can acquire

higher values even when the set of items measure several unrelated latent constructs

(Cortina, 1993), (Green et al., 1977). Therefore, alpha is mostly used when the items

measure different substantive areas within a single construct (Louangrath, 2013),

(Zinbarg et al., 2005). A large number of items in the test artificially inflates the

value of alpha, and a sample with a narrow range can deflate it (Gliem and Gliem,

2003). The rule for measuring the data’s internal consistency using Cronbach’s alpha

is shown in Table 4.3.

Table 4.3: Internal Consistency Table.

Cronbach’s alpha Internal consistency
α ≥ 0.9 Excellent
0.9 ≥ α≥ 0.8 Good
0.8 ≥ α ≥ 0.7 Acceptable
0.7 ≥ α ≥0.6 Questionable
0.6 ≥ α ≥ 0.5 Poor
0.5≥ α Unacceptable
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The reliability analysis test was performed on the sample of 35 responses using the

reliability analysis package in SPSS software. The obtained value of Cronbach’s alpha

was 0.733 as shown in Figure 4.3. The Cronbach’s alpha value of 0.733 indicated that

the survey questionnaire was reliable in its design and the survey variables were

consistent.

Figure 4.3: Reliability Analysis Results from SPSS Software.

4.6 Study of the Demographics

In terms of demographics, the respondents were categorized based on their years of

work experience, educational qualification, and area of employment. Measuring the

frequency of occurrence and distribution of data categories were effective methods

of converting survey inputs into meaningful results. This study used bar charts and

pie charts to represent the measurement of dispersion. Descriptive statistics results

showed that 19% of the respondents had more than 20 years of relevant experience in

manufacturing or production systems; 9% had between 15 and 20 years of experience;

25% had between 10 and 15 years of experience; 16% had between 5 and 10 years of
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experience; 22% had between 1 year and 3 years of experience while 9% had less than

1 year as shown in Table 4.4 and Figure 4.4.

Table 4.4: Respondents’ Years of Experience.

Item 1: How many years of work,experience do you have?
Years of experience Valid Percent (%)
Less than 1 year 9
1-3 years 22
5-10 years 16
10-15 years 25
15-20 years 9
20 or more years 19

Figure 4.4: Bar Plot of Respondents’ Years of Experience.
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A period of 10 to 15 years of experience, in lean, formed the bulk of the responses

at 25%. The distribution by highest level of education was 50% master’s degree,

31% bachelor’s degree, 16% doctorate degree, and 3% professional degree as shown

in Table 4.5 and Figure 4.5.

Table 4.5: Respondents’ Highest Level of Education.

Item 2: What is the highest level, of education you have completed?
Highest level of education Valid Percent (%)
Masters degree 50
Bachelors degree 31
Doctorate degree 16
Professional degree 3

Figure 4.5: Pie Chart of Respondents’ Level of Education.
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The distribution by primary area of employment was 60% in manufacturing and other,

22% in education, 6% in information services, 6% in health care, 3% in transport

and warehousing, and 3% in manufacturing-computers as shown in Table 4.6 and

Figure 4.6. The major area of employment was manufacturing and other, and the

respondents were mostly Master’s degree holders. The demographics study of the

survey population indicated that the respondents were highly qualified professionals

with significant years of project experience in lean systems.

Table 4.6: Respondents’ Primary Area of Employment.

Item 3: Which of the following categories best describes your primary
area of employment?
Primary area of employment Valid Percent (%)
Manufacturing and Other 60
Education 22
Information-services 6
Healthcare 6
Transport &Warehousing 3
Manufacturing-Computers 3

4.7 Descriptive Statistics

This section illustrates the overall behavior and the basic features of the data set.

This study included the measures of mean, standard deviation, median, measures of

question spread, skewness, and kurtosis.

Measures of the Question Spread: The standard deviation, mean and median

were calculated for every variable in the questionnaire to analyze its spread. A lesser

standard deviation and a higher mean/median indicated a good response on the

question and that the variable in question was more significant. A standard deviation

of less than 1 and a mean/median value greater than 3 was the criteria for selecting

the significant variables. Figures 4.7, 4.8 and 4.9 indicate the measures of the question
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Figure 4.6: Pie Chart of Respondents’ Primary Area of Employment.

spread. About one-third of the survey variables were significant as they had a lesser

standard deviation and a higher mean/median.

Figure 4.7: Descriptive Statistics Table for the Variables from 1 1 to 4 3.
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Figure 4.8: Plot of Median versus Standard Deviation for each Question.

Figure 4.9: Plot of Mean versus Standard Deviation for each Question.

Skewness and Kurtosis: The peakedness or flatness of the distribution of the data

was determined by studying its skewness and kurtosis measures. The normality of the

survey data was assessed in terms of shape, skewness, and kurtosis. Most values of

skewness and kurtosis generally fall within the recommended range of ±1. Skewness

and kurtosis were used to flag the survey variables having a skewness/kurtosis value

greater than ±2. Figure 4.10 shows the skewness and kurtosis for the variables from
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1 1 to 4 3. The skewness and kurtosis plot for the survey variables indicated that the

distribution of variables was symmetric with the absence of outliers.

Figure 4.10: Skewness and Kurtosis Plot for the Variables from 1 1 to 4 3.
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4.8 Validation of the Risks

Each question in the survey questionnaire was identified as a unique test variable.

A total of 18 risk variables were tested for their relationship with flow effectiveness

using a one-sample T-test (parametric test) at a level of significance α = 0.01. The

test median score for comparison (using a Likert scale rating) was 3. A one-sample

Wilcoxon test (non-parametric test) at a level of significance α = 0.01 was also

conducted, while assuming that the distribution of the risk variables was not exactly

normal. Both the T-test and Wilcoxon test indicated a similar result. This result

helped in generalizing the significance of the relationship between the risk variables

and flow effectiveness. The insignificant risk variables had a p value greater than

0.01. The results of the T-test and Wilcoxon test, along with their corresponding

hypotheses’ outcomes, are shown in Table 4.7. The T-test and the Wilcoxon test at

α = 0.01 level of significance indicated that the risk variables (e.g., product variety

in material, planned maintenance in equipment, and product variety in schedule) are

insignificant (i.e., they do not have a significant relationship with flow effectiveness).

Figure 4.7 for standard deviation and mean/median also indicates that these variables

have a higher standard deviation and a lesser median/mean, meaning that questions

Q2 4, Q3 1, and Q4 3 are not good for capturing these variables.

Multiple testing correction: The present study had 18 hypothesis tests performed

simultaneously at a level of significance α = 0.01 on a single data set. The chance

of obtaining false-positive results (type I errors) increases as multiple pair-wise tests

are performed on a single set of data. The Bonferroni correction procedure is used to

adjust the p-values, increasing the probability of identifying at least one significant

result as many hypotheses are tested (Rice et al., 2008).

If a significance threshold of α is used and n separate tests are performed, then the

Bonferroni adjustment considers a score to be significant only if the corresponding P-

value is less than or equal to α /n (Noble, 2009). In this study, we use the correction

factor α/n = 0.01/18.
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Table 4.7: Hypotheses Test Summary at α = 0.01.

Risk
factors

Component
T-test at
α = 0.01

One sample
Wilcoxon
signed
rank test

H0
Hypothesis
outcome

Non-compliance
with SOP

Personnel 0.002 0.000 H01

Non-compliance with SOP
has a significant
relationship with
flow effectiveness.

Lack of
technical
skills/capability

Personnel 0.000 0.000 H02

Lack of technical
skills/capability in
personnel has a
significant relationship
with flow effectiveness.

Physical or
mental stress

Personnel 0.000 0.000 H03

Physical/mental
stress in personnel has
a significant
relationship with
flow effectiveness.

Absenteeism Personnel 0.002 0.003 H04

Absenteeism in personnel
has a significant
relationship with
flow effectiveness.

Inappropriate
behavior

Personnel 0.004 0.005 H05

Inappropriate behavior in
personnel has a
significant relationship
with flow effectiveness.

Improper
procurement

Material 0.000 0.000 H06

Improper procurement of
material has a
significant relationship
with flow effectiveness.

Material
misplacement

Material 0.000 0.000 H07

Material misplacement
has a significant
relationship with
flow effectiveness.

Defective
material

Material 0.000 0.000 H08

Defective material
has a significant
relationship with
flow effectiveness.

High mix
of products

Material 0.763 0.709 H09

High mix of
products doesn’t have
a significant relationship
with flow effectiveness.
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Table 4.7: “Hypotheses Test Summary at α = 0.01 Continued”.

Risk
factors

Component
T-test at
α = 0.01

One sample
Wilcoxon
signed
rank test

H0
Hypothesis
outcome

Large
batches

Material 0.000 0.000 H010

Large batches have
a significant
relationship with
flow effectiveness.

Poor layout
design

Material 0.000 0.000 H011

Poor layout design
has a significant
relationship with
flow effectiveness.

Complex
routing

Material 0.000 0.000 H012

Complex routing
has a significant
relationship with
flow effectiveness.

Planned
maintenance

Equipment 0.143 0.166 H013

Planned
maintenance in
equipment doesn’t
have a significant
relationship with
flow effectiveness.

Unplanned
maintenance

Equipment 0.000 0.000 H014

Unplanned
maintenance
in equipment has a
significant relationship
with flow effectiveness.

Malfunctioning
equipment

Equipment 0.000 0.000 H015

Malfunctioning equipment
has a significant
relationship with
flow effectiveness.

Non-adherence
to schedule
requirements

Schedule 0.000 0.000 H016

Non-adherence to
schedule requirements
has a significant
relationship with
flow effectiveness.

Extraordinary
orders

Schedule 0.000 0.000 H017

Extraordinary orders has
a significant relationship
with flow effectiveness.

High mix of
products

Schedule 0.350 0.322 H018

High mix of products
in schedule doesn’t have
a significant relationship
with flow effectiveness.
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Therefore, a variable is significant only if its corresponding P-value is less than 0.0005.

Table 4.8 shows the hypothesis test results at α = 0.0005. The T-test and the

Wilcoxon test at α = 0.0005 level of significance indicated that the risk variables

(e.g., absenteeism in personnel, inappropriate behavior in personnel , product variety

in material, planned maintenance in equipment and product variety in schedule) are

insignificant (i.e., they do not have a significant relationship with flow effectiveness).

The structural networks were then developed for the risks in each of the primary

resources (i.e., personnel, material, equipment, and schedule) in this study. Based on

the survey data collected, weighted average scores were assigned to each connection

in the network diagram. The strength of the connection was determined, and a strong

connection was assigned with an average score rating greater than 3 on the Likert

scale. In a similar way, a weak connection was assigned with an average score rating

less than 3. These connections in the validated network diagram could also be verified

using the one-sample t-test at a 99% confidence interval. Strong connections in the

network diagram were represented using a thick line and weak connections using a

thin line. Figures 4.11 ,4.12 , 4.13 and 4.14, below, present the validated structural

networks for the risks in personnel, material, equipment, and schedule components

respectively. The study identified the key risks for lean system sustainability in terms

of personnel, material, equipment and schedule components. Furthermore, the focus

of the study was on the resolution of the validated people-related risks as the people-

related risks impacted the risks in other components such as material, equipment and

schedule. The necessary skill sets required in personnel to resolve the people- related

risks is discussed in the next section.
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Table 4.8: Hypotheses Test Summary at α= 0.0005.

Risk
factors

Component
T-test at
α= 0.01

One sample
Wilcoxon
signed
rank test

H0
Hypothesis
outcome

Non-compliance
with SOP

Personnel 0.002 0.000 H01

Non-compliance with SOP
has a significant
relationship with
flow effectiveness.

Lack of
technical
skills/capability

Personnel 0.000 0.000 H02

Lack of technical
skills/capability in
personnel has a
significant relationship
with flow effectiveness.

Physical or
mental stress

Personnel 0.000 0.000 H03

Physical/mental
stress in personnel has
a significant
relationship with
flow effectiveness.

Absenteeism Personnel 0.002 0.003 H04

Absenteeism in personnel
doesn’t have a
significant relationship
with flow effectiveness.

Inappropriate
behavior

Personnel 0.004 0.005 H05

Inappropriate behavior in
personnel doesn’t have a
significant relationship
with flow effectiveness.

Improper
procurement

Material 0.000 0.000 H06

Improper procurement of
material has a
significant relationship
with flow effectiveness.

Material
misplacement

Material 0.000 0.000 H07

Material misplacement
has a significant
relationship with
flow effectiveness.

Defective
material

Material 0.000 0.000 H08

Defective material
has a significant
relationship with
flow effectiveness.

59



Table 4.8: “Hypotheses Test Summary at α= 0.0005 Continued”.

Risk
factors

Component
T-test at
α= 0.01

One sample
Wilcoxon
signed
rank test

H0
Hypothesis
outcome

High mix
of products

Material 0.763 0.709 H09

High mix of
products doesn’t have
a significant relationship
with flow effectiveness.

Large
batches

Material 0.000 0.000 H010

Large batches have
a significant
relationship with
flow effectiveness.

Poor layout
design

Material 0.000 0.000 H011

Poor layout design has
a significant
relationship with
flow effectiveness.

Complex
routing

Material 0.000 0.000 H012

Complex routing
has a significant
relationship with
flow effectiveness.

Planned
maintenance

Equipment 0.143 0.166 H013

Planned maintenance in
equipment doesn’t
have a significant
relationship with
flow effectiveness.

Unplanned
maintenance

Equipment 0.000 0.000 H014

Unplanned maintenance
in equipment has a
significant relationship
with flow effectiveness.

Malfunctioning
equipment

Equipment 0.000 0.000 H015

Malfunctioning equipment
has a significant
relationship with
flow effectiveness.

Non-adherence
to schedule
requirements

Schedule 0.000 0.000 H016

Non-adherence to
schedule requirements
has a significant
relationship with
flow effectiveness.

Extraordinary
orders

Schedule 0.000 0.000 H017

Extraordinary orders has
a significant relationship
with flow effectiveness.

High mix of
products

Schedule 0.350 0.322 H018

High mix of products in
schedule doesn’t have
a significant relationship
with flow effectiveness.
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Figure 4.11: Validated Structural Network for the Risks in Personnel.
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Figure 4.12: Validated Structural Network for the Risks in Material.
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Figure 4.13: Validated Structural Network for the Risks in Equipment.

Figure 4.14: Validated Structural Network for the Risks in Schedule.

4.9 Mapping of Risks with Skills

A literature survey was performed to determine the skills required for shop floor

personnel. The survey was carried out on various databases, such as Scopus, Google

Scholar, and ISI Web of Knowledge. A total of 25 articles were used for the

assessment, which focused on capturing skills associated with the most commonly
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used lean tools/techniques (e.g., cell layout, single-minute exchange of dies(SMED),

total productive maintenance, scheduling). These skills were matched with the nine

dimensions in Toyota’s model of ‘recruitment and selection process’. The aim of the

survey was to determine, the most commonly used skills in shop floor personnel. The

frequency of each skill was measured. The most repeated skills were Teamwork (16),

Initiative (14), Communication (14), Attention to detail (11) and Flexibility (10),

as shown in Figure 4.15. However, the frequency rate was categorized as high value

instead of very high. The highest value was only 16 out of 25 studies, which included

the mentioned skill sets as part of the study. Skills with a frequency of less than four

were omitted from the study. The study reported the most common and most useful

skills.

Figure 4.15: Literature Survey Model.
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The necessary skills, namely Teamwork, Initiative, Communication, Attention to

Details and Flexibility, were then mapped with the previously identified and validated

people-related risks namely Non-compliance with Standard Operating Procedures,

Lack of technical skills/capability, Physical or mental stress, Absenteeism and

Inappropriate behavior using the Analytic Hierarchy Process (AHP) technique.

AHP is an effective method for eliciting expert knowledge for analyzing complex

decision problems under multiple criteria (Saaty, 1995). The goal of this study is to

determine the skills required in personnel for resolution of people-related risks in a

lean system (See Figure 4.16). The skills are evaluated as alternatives over different

people-related risk criterion to determine important skills and the relative importance

of all skills under consideration.

This study was carried out by surveying a specialized group of lean practitioners

Figure 4.16: Mapping of Risks to Skills Decision.

in one of the manufacturing plants in Knoxville. The sample size used to carry out

this study was eight responses. The appropriate sample size needed to run AHP in a

survey based study can range from 5-9000 based on the target population interested

in the criteria and the margin of error desired for carrying out the study (Barlett

et al., 2001). The rating category used for this study was from 1-9, where 1 indicated

the least level of importance and 9 indicated the highest level of importance based
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on the scale of relative importance (Saaty, 1995).(See Table 4.11.)

Table 4.11: Scale of Relative Importance (Source: Saaty,1980)

Intensity of Importance Definition
1 Equal importance

3
Weak importance of one over
another

5
Essential or strong
importance

7 Demonstrated importance
9 Absolute importance

2,4,6,8
Intermediate values between
the two adjacent judgments

Reciprocals of one above
non-zero

If activity i has one of the above
non-zero numbers assigned to it when
compared to activity, then j has reciprocal
value when compared to i

The priority ranking for skill alternatives were computed and pairwise comparison

matrices were generated using the Super Decisions AHP software. There were five

pairwise comparison matrices in all, each one for the five alternatives with respect

to all the five people-related risk criteria. The results of the pairwise comparison

matrices are shown in the Table 4.12 to 4.16 below.

Table 4.12: Results of Pairwise Comparison Matrix for the Skill Alternatives
with respect to the People-Related Risk Criteria; Non-Compliance with Standard
Operating Procedures.

Alternatives Normalized Idealized
Attention to details 0.1202 0.4149
Communication 0.2896 1
Flexibility 0.2541 0.8774
Initiative 0.2157 0.7449
Teamwork 0.1202 0.4149
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Table 4.13: Results of Pairwise Comparison Matrix for the Skill Alternatives with
respect to the People-Related Risk Criteria; Lack of Technical Skills/Capability.

Alternatives Normalized Idealized
Attention to details 0.1867 0.5656
Communication 0.1867 0.5656
Flexibility 0.3301 1
Initiative 0.1867 0.5656
Teamwork 0.1096 0.3322

Table 4.14: Results of Pairwise Comparison Matrix for the Skill Alternatives with
respect to the People-Related Risk Criteria; Physical or Mental Stress.

Alternatives Normalized Idealized
Attention to details 0.1867 0.5656
Communication 0.1867 0.5656
Flexibility 0.3301 1
Initiative 0.1867 0.5656
Teamwork 0.1096 0.3322

Table 4.15: Results of Pairwise Comparison Matrix for the Skill Alternatives with
respect to the People-Related Risk Criteria; Absenteeism.

Alternatives Normalized Idealized
Attention to details 0.2857 1
Communication 0.1428 0.5
Flexibility 0.1428 0.5
Initiative 0.2857 1
Teamwork 0.1428 0.5

Table 4.16: Results of Pairwise Comparison Matrix for the Skill Alternatives with
respect to the People-Related Risk Criteria; Inappropriate Behavior.

Alternatives Normalized Idealized
Attention to details 0.2715 1
Communication 0.1361 0.5011
Flexibility 0.1361 0.5011
Initiative 0.2387 0.8792
Teamwork 0.2174 0.8009
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The pairwise comparison matrix for the risk criterion Non-compliance with

Standard Operating Procedures indicates that Communication is the most important

soft skill required in personnel for resolving the risk of Non-compliance with Standard

Operating Procedures. On similar lines, the most important skill for a particular risk

criterion is summarized in the Table 4.17 below.

Table 4.17: Comparing the Rating Result.

Risk Criterion Skill Alternatives Idealized
Non-compliance with
SOP

Communication 0.2896

Lack of technical
skills/capability

Flexibility 0.3301

Physical or mental
stress

Flexibility 0.3301

Absenteeism
Attention to details,
Flexibility

0.2857

Inappropriate
behavior

Attention to details 0.2715

The overall synthesized priorities for all the skill alternatives are obtained as shown

in Figure 4.17.

Figure 4.17: Output Graph for the Synthesized Priorities.

The most important skill is Flexibility. The skills in order of importance are as

follows:

1. Flexibility

2. Initiative
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3. Attention to Details

4. Communication

5. Teamwork

The alignment of all people-related risks, with their respective skills, ensures the

successful resolution of these risks. This alignment helps an organization sustain its

lean implementation efforts. As a result, the personnel working in the organization

are empowered and engaged to participate in achieving continuous improvement.
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Chapter 5

Conclusion & Future Work

This chapter summarizes the thesis, laying out the key contributions of the work and

proposing the areas for future improvements.

5.1 Summary of Research

The main purpose of the thesis is to develop a conceptual model for enhancing the

operation of a lean system by studying the risks for lean system sustainability and the

necessary skills required in shop floor personnel to deal with these risks. The technical

requirements of the lean system are analyzed using the functional classification

of the Toyota Production System (TPS) into six subsystems; namely Operations

Fundamentals, Enhancing Workplace Capability in Design, Standard Operations,

Consistency, Flow and Production Scheduling and Motion. The precedence-based

structures are developed for each subsystem. These structures propose the order

of implementation of the lean activities/tools within each subsystem and help in

understanding the step-wise evolution of the lean system.

The risks affecting the operation of the lean subsystems are identified and categorized

into four critical components of reliability: Personnel, Material, Equipment and

Schedule. The risk analysis in terms of Personnel, Material, Equipment and Schedule

helps practitioners design and improve the reliability of the lean systems. This
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study examined the interaction between the lean principle of continuous flow and

the risks affecting the flow by constructing and using a survey questionnaire. The

eighteen risk factors obtained from risk analysis were validated by surveying lean

experts from manufacturing industries. Thirteen risk factors were found to have

a significant relationship with flow effectiveness in the lean system. This study

focused on the key personnel-related risks: Non-compliance with Standard Operating

Procedures, Lack of technical skills/capability, Physical or mental stress, Absenteeism

and Inappropriate behavior.

The skills required to mitigate these risks were identified using a literature survey.

The Toyota model of ‘recruitment and selection process’ was used as a reference

for integrating the skills in personnel into the lean design. A Lean Personnel

Alignment Model (LPAM) model was developed to align the skills in personnel with

the requirements of the lean system. The necessary skills in shop floor personnel

are Flexibility, Initiative, Attention to details, Communication and Teamwork. The

alignment of these people skills, with the requirements of the lean system, ensures

the sustained implementation of the lean system.

5.2 Key Contributions

The research leads to many contributions in the area of lean sustainability and

personnel engagement. These contributions will result in the design of improved

lean systems with higher productivity, improved quality , lesser costs and also lead

to employee satisfaction and retention. Additionally, the researcher presents a Lean

Personnel Alignment Model (LPAM) which aligns the personnel requirements with

the lean system requirements. The key contributions are explained as follows:

1. Presented the classification of the Toyota Production System (TPS) into six

subsystems which helps to understand the functional requirements of the lean

system, order of implementation of lean activities/tools within each subsystem

and also to identify all the risks for lean subsystem sustainability.
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2. Determined the key risks for lean system sustainability and categorized them

into Personnel, Material, Equipment and Schedule components respectively.

This helps researchers design reliable lean systems.

3. Identified the important soft skills required in shop floor personnel to overcome

the people-related risks in a manufacturing setup. This aids in the resolution

of people-related risks with improved employee engagement.

4. Developed a Lean Personnel Alignment Model (LPAM) which aligns the soft

skills in personnel with the requirements of the lean system. Companies can

design skill-based assessments based on the LPAM to recruit employees with

appropriate skills.

5.3 Further Research

The developed LPAM model can be further extended to incorporate the interactions

between the risks affecting the lean subsystems. The risks impacting the Personnel,

Material, Equipment and Schedule components can be studied in depth to analyze

the impact of the personnel-related risks on the Material, Equipment and Schedule

components respectively. The mapping of the personnel- related risks, with specific

skill sets, can be validated practically by carrying out a case-study on a large sample

in an organization. A well-designed skill-based assessment for shop floor workers

would capture the skills required by them on a daily basis, indicate them about their

strengths and also suggest areas of improvement.

These assessments would allow organizations to fine tune their training initiatives,

increase productivity and narrow their performance gap by identifying the core skills

required by workers to fulfill their work responsibilities. The skill-based assessments

would have to be designed in a way to test both the technical and the soft skills in

personnel but primarily focus on the job-specific skills.
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