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Abstract 
 

There is a growing interest in investigating the high order contingency events that may 

result in large blackouts, which have been a great concern for power grid secure operation. The 

actual number of high order contingency is too huge for operators and planner to apply a brute-

force enumerative analysis. This thesis presents a heuristic searching method based on particle 

swarm optimization (PSO) and tabu search to select severe high order contingencies. The 

original PSO algorithm gives an intelligent strategy to search the feasible solution space, but 

tends to find the best solution only. The proposed method combines the original PSO with tabu 

search such that a number of top candidates will be identified. This fits the need of high order 

contingency screening, which can be eventually the input to many other more complicate 

security analyses.   

Reordering of branches of test system based on severity of N-1 contingencies is applied 

as a pre-processing to increase the convergence properties and efficiency of the algorithm. With 

this reordering approach, many critical high order contingencies are located in a small area in the 

whole searching space. Therefore, the proposed algorithm tends to concentrate in searching this 

area such that the number of critical branch combinations searched will increase. Therefore, the 

speedup ratio is found to increase significantly.  

The proposed algorithm is tested for N-2 and N-3 contingencies using two test systems 

modified from the IEEE 118-bus and 30-bus systems. Variation of inertia weight, learning 

factors, and number of particles is tested and the range of values more suitable for this specific 

algorithm is suggested.  
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Although illustrated and tested with N-2 and N-3 contingency analysis, the proposed 

algorithm can be extended to even higher order contingencies but visualization will be difficult 

because of the increase in the problem dimensions corresponding to the order of contingencies.  
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Chapter 1 Introduction  
 

1.1. Background 

Power systems are among the most complex and largest technological systems 

ever developed. The present power systems in the United States and many other 

developed countries are running close to their operational limits. This raises many 

concerns within the power industry as well as general public, since power systems are 

important elements of the national and global infrastructures. Due to the continuously 

reducing operating margin, the US power system sometimes suffers from unplanned, 

large-scale disturbances, which have considerable affects on power grid and cause direct 

and indirect consequences on the economy and national security [1]. Occurrence of 

blackouts is very rare but they have a huge impact. The interconnected nature of the 

infrastructure makes the power system more integrated and complex to understand the 

entire system and the blackout.  

Power system blackout occurs due to successive failure of a set of individual 

components in a very short duration of time, where the first failure occurs unexpectedly. 

High ordered contingency or N-k contingency may be defined as multiple component 

failure that coincidently occurs near simultaneously. But in reality the true randomly 

multiple component failure is extremely rare. So, it does not reflect the fact that failures 
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are related, while the term “cascading failure” does reflect such consequence and 

dependence. However, since N-k contingency or high order contingency is an 

understandable term and also commonly used when analyzing cascading failures, both 

terms are considered exchangeable in this research [2][3]. Since a cascading failure may 

be due to hidden failures which are difficult to identify by their nature as well as the lack 

of data, a general searching algorithm of high order contingency can be employed to find 

the most severe high order contingency events.   

In recent years, this has been a particular concern for power transmission 

operators as evidenced by many researches in high order contingency analysis as well as 

the utility practices. For instance, many power transmission operators have expanded 

contingency criterion from N-1 to some N-2 contingencies and even N-3 contingencies.  

High order contingency events are difficult to analyze and model. If we take possible 

combinations of N-k contingency, then the total number of possible combination is 

N!/[k!×(N-k)!], which is as huge as 499,500 for a relatively small system with N=1000 

and k=2. And the number of cases are much worsened to 166,167,000 if k=3. Hence, 

brute-force enumeration is not an efficient approach especially for short term operations. 

Therefore, there is a need for efficient high order contingency screening approach, 

especially considering potential short-term operation.  
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1.2. Generic Scenario of Cascading Failures 

“Cascading failures are sequence of dependent failures of individual components 

that successively weakens the power system.” On analyzing the blackouts occurred by 

cascading trips of generators or transmission facilities in the year 2003, the August 14
th

 

blackout in USA and Canada, the August 28
th

 blackout in London, and the September 28
th

 

blackout in Italy, a generic scenario of the causes and the effects of blackouts is suggested 

in  [5]. 

The blackout generally occurs when the system experiences some form of 

instability. Because of an initial triggering event, load is shifted to its neighboring 

elements in the system and subsequent failures occur due to power flow surges, equipment 

overloads, and voltage problems. These elements with load exceeding its capacity in-turn 

transfer the load to all its neighboring elements and causes sudden spikes across all the 

nodes in the system. This may cause more overloads and may result in blackouts in the 

system in a very short duration of time.   

Power system protection devices such as relays play an important role in the 

development of blackouts. When a fault occurs, protection systems are used to disconnect 

the equipment from the rest of the system due to the action of breakers. This may trigger 

multiple outages and may cause voltage instabilities and overloading. Some load loss may 

occur during this process that in turn causes more power flow surges and overloads. Load 

loss due to islanding could help in balance generation and load and relieve system 
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problems in remaining part of interconnection as well as in some isolated islets within 

separated grid. Figure 1.1 shows the mechanism of cascading failures.  

Some of the remedial actions to solve contingencies are use of shunt capacitor 

switching which solves low voltage problems occurred at the buses due to lack of reactive 

power supplied.  Under-load tap changing transformers are used to change the supplied 

voltage to load or system. 

When the current flowing through a line is over the specified line limit, generator 

re-dispatch is done to send the power to the load through changing generation. Load 

shedding is generally done when all other methods to solve violations for contingencies 

fail. Also, line overload problems may be solved using Distributed Generators (DG) or 

local generators since power can be generated nearer to the load. 

Failures are most commonly seen in high voltage systems with a single point of 

failure (SPF) and occur in fully or slightly loaded system. A sudden spike may occur 

across all the nodes in the system leading to failure. 

The Figure 1.1 shows the graphical representation to demonstrate the process of 

cascading failures. When the line trips due to a fault, there is a possibility of cascading 

failure to happen or else the system can recover. If the system recovers, there might be a 

few lines which are out and with another initiating event, this process might continue until 

the failure leads to blackout. 
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Figure 1.1. Generic scenario of cascading failures [5] 
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1.3. Causes of Cascading Failures 

There are various causes for occurrence of cascading failures. A cascading failure 

is usually initiated by an outage of a single component. It is interesting to discuss why 

subsequent failures occur. From various previous works [2-6], we summarize the possible 

reasons into the following categories.  

Hidden failures are the equipment failure that is not known or visible to operators, 

but will cause follow-up outages after the initial triggering contingency event. Once the 

initial contingency occurs, the protective device may not function correctly and timely to 

mitigate the impact such that the disturbance propagates to another transmission facility.  

Backup protection includes Zone 2, Zone 3, and even Zone 4 relays that serve as 

backup options to clear a fault in case the primary relay cannot. Sometimes backup 

protection unnecessarily trips a line. It may trip even after the main protection correctly 

clears a fault [4]. Relay settings are usually re-adjusted periodically due to the change of 

system operation state. However, it is difficult to ensure that the relay settings are perfect 

under every scenario, especially considering the increasing stress of many power systems.  

When there is a switching operation needed in a substation due to maintenance or 

attempt to mitigate undesirable conditions, it leads to a change of the topology such that it 

is different from the original design. Then, when the system needs to respond to a fault, it 

may incorrectly remove multiple components. In this case, the possibility of N-k 
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contingency is close to an N-1 contingency, because they are no longer truly independent 

events [6].  If one relay fails, it has to send a tripping signal to adjacent circuit breakers to 

isolate the fault. Due to the lack of such communication between different components, 

there is a higher chance of occurrence of cascading failures. 

Some factors like tree contact, line contact, and also excessive line sagging due to 

expansion in summer can also cause failures. The reasons leading to cascading failure are 

summarized in the Table 1.1. 

The violations that cause cascading failures are at buses with low voltages or line 

overloads.  If the voltage of bus is less than the specified value, the low voltage violations 

take place. Reactive power causes voltage problems. In case of low voltage problems 

reactive power is supplied to the bus to increase the voltage profile at the bus and in case 

of high voltage reactive power is absorbed at the buses to maintain normal voltage [7].  

Line MVA limit violations occur when the load on the line increases beyond its 

limit. In general the lines are designed so that the line withstands 125% of the line MVA 

limit. This mainly happens due to the increase in amplitude of current flowing in the line. 

Remedial actions to identify such overloaded lines and rank them depending on how much 

the lines are loaded is discussed in this research. 
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Table 1.1  Causes of cascading failures [7] 

  Primary causes Causes of cascading 

  

 

Deterministic factor Probabilistic factors 

  Primary protective relay 

failure Under-frequency 

Failure of the tap-

changing mechanism 

  Line fault Overload Additional lighting 

  High winds causing line 

failure Over-current 

Failure of 

Communication channel 

Blackouts Line sagged into trees Low voltage Failure of Backup device 

  

Hidden failure 

 Operators unawareness of 

failures 

 Lightning  Failure of EMS system 

 Phase-to-ground fault   
  Tower causing multiple 

lines out 
  

  A sequence of line trappings   
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1.4. Effect of Loading 

The power system is said to be stable at a specific loading level called base case 

loading. Loading margin is calculated by measuring the amount of load increase that 

might cause voltage collapse. The voltage curve as a function of loading has a sharp 

change in direction called nose point at voltage collapse. The contingency condition is 

when there is transient and the system re-stabilizes after it. Under such conditions the 

loading margin decreases. The nominal voltage shown in the Figure 1.2 is loading on a 

specific bus as a function of total system loading. It is measured to be the distance of curve 

from base case operating point till the nose point. Loading margin can be assumed as a 

function of change in line admittance caused by removal of one line. The change in 

sensitivity is a useful measure to calculate the change in loading [8]. 

The probability of occurrence of blackout is roughly proportional to blackout size 

as illustrated in Figure 1.2 and hence the blackout distribution probability has an 

exponential tail. The point at which there is a sudden change in intensity of loading is 

called as a point of critical loading. Critical loading point is characterized by operation 

with lines close to their line limits. It is thus considered as reference for power system 

operating limit with respect to cascading failure. The plot showing how the mean blackout 

size changes with loading is as shown in Figure 1.3. It is observed that the blackout size 

increases sharply at critical loading point.  

 



10 

 

 

 

Figure 1.2  Nominal and contingency nose curves [8] 
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Figure 1.3  Kink in blackout size [9] 
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Figure 1.4  Probability of blackout size at critical loading [9] 
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   Figure 1.5  Log-log plots showing effect of loading [9][10] 
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The probability of occurrence of blackout is low at minimal loading and has a very 

less impact on components having large operating margins. As the loading increases, the 

probability of occurrence of blackout increases. Power tails are exhibited at critical 

loading [10]. 

 

 

1.5. Motivation 

Operation of power system in normal state is very important for maintaining its 

security. Developing a decision support system to make right decisions for taking 

corrective actions or remedial methods is necessary to reduce the probability of blackouts. 

It is essential to identify the lines with high rate of failure and contingencies which could 

cause severe damage. Some necessary corrective actions are to be taken to restore them in 

case of failure. Ranking of the cascading scenarios based on severity is useful in making 

an offline study for evaluating system impact on utilities or analysis of the probable 

extreme situations in a power system which requires immediate attention.  

Due to technological and economical restrictions, it is not possible to completely 

eliminate blackouts. However, strategies can be applied to identify the severe high order 

contingencies in real time for possible preventive actions. In this thesis an efficient 

algorithm is developed for screening the high order contingencies. It is used to rank the 

contingencies based on severity of overloading and this could be very useful to the 
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operators to take the preventive actions to decrease the overloading of lines and eventually 

prevent cascading failures.  

 

1.6. Thesis Contribution and Outline 

The purpose of this thesis is to screen all high order contingencies caused due to 

overloading of power lines. The particle swarm optimization (PSO) algorithm is chosen in 

this thesis to identify some critical N-2 and N-3 combinations within a reasonable 

searching effort. DC power flow is implemented for calculating redistribution of power 

flow under contingent conditions. It should be noted that many times when a group of 

severe contingency events are identified with preventive actions applied, this will ensure 

the security of many other contingency events that may or may not be in the list of severe 

contingencies. Certainly, it is ideal to evaluate the impact of all severe contingencies (or 

root-cause contingencies), but this may not be feasible for high order ones due to the 

complexity. Hence, identifying a reasonably large subset of severe high order 

contingencies can greatly help to enhance the system security, especially considering the 

trade-off between time and resolution. 

 

The contribution of this thesis can be summarized as: 

 An efficient searching algorithm based on PSO and tabu search is proposed to 

identify a set of most severe high order contingency events. 
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 A reordering approach as a preprocessing of the proposed searching algorithm 

is applied to sharply increase the solution quality and efficiency of the 

proposed algorithm. 

 A comparison study of the running time and accuracy when different 

parameters of the PSO-based algorithm are applied.  

 

The rest of this thesis is organized as follows: 

 Chapter 2 describes the literature review of the technologies utilized in this 

research. It gives an overview about particle swarm optimization (PSO) 

technique. Calculation of DC power flow is discussed. Brute force 

enumeration method is outlined. 

 Chapter 3 describes about the simulation model developed based on PSO and 

tabu search. It proposes changes made to the original algorithm and the test 

system to increase the efficiency. 

 Chapter 4 presents analysis of results obtained from various runs from the 

algorithm. 

 Chapter 5 gives conclusions and future work. 
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1.7. Chapter Summary 

In summary, this chapter provides an insight into the background and definition of 

cascading failure in Section 1.1. Section 1.2 describes the scenario of occurrence of 

cascading failures. Section 1.3 gives a brief description about all the causes that could lead 

to cascading failures. Section 1.4 explains about the effect of loading on power lines. 

Section 1.5 describes the motivation of this thesis work. And section 1.6 gives the thesis 

outline. 
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Chapter 2 Literature Review 
 

The chapter gives an overview of the terms used in this thesis. Section 2.1 

describes the analysis of risks caused by cascading failures.  Section 2.2 describes about 

the brute force enumeration technique. Section 2.3 describes the particle swarm 

optimization technique. Section 2.4 explains about the tabu search method. Section 2.5 

illustrates the DC power flow technique.  

 

2.1. Risk Analysis of Cascading Failures 

Voltage collapse or overloading may be resulted due to unexpected contingencies 

such as line outages. This may even result in severe blackouts. To prevent these 

contingencies it is essential to estimate the effect of contingencies on the stability margin 

[8]. Cascading failures cannot be totally eliminated but the counter measures are to 

reduce its severity and frequency. 

Analysis of cascading failures can be very similar to traditional contingency 

analysis, which is very useful to understand the condition of power systems in advance to 

take any preventive measures for security control. Contingency analysis can be divided 

into static and dynamic one. Static contingency analysis investigates the final steady-state 

of the power systems after the contingency. It ignores the transition from the normal 
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steady state to the post-contingency steady state. As a comparison, dynamic contingency 

analysis explores the dynamics of power systems moving from pre- to post-contingency 

states. Hence, static contingency analysis is not as accurate as the dynamic contingency 

analysis, but runs much faster since it does not consider the very complicate time-domain 

simulation that is typical for dynamic contingency analysis. 

Therefore, it is sensible to apply static contingency analysis first to rank or select 

a subset of all possible contingencies based on some severity indices; and then use 

dynamic contingency analysis to run detailed simulation to evaluate the impact of the 

contingency.  

Starting from these basic techniques of contingency analysis, cascading failures 

can be modeled, and simulated by a broader range of different techniques. Due to the 

complicated nature of cascading failures, many compromises are made for simulating 

their models. Usually, failures are assumed to be simultaneous and related. And only high 

risk and initial failures are considered to simplify the simulation process.  

 

2.2. Contingency Ranking Schemes 

Simulations can be turned to reproduce the features of blackouts in order to 

simulate or predict the events before occurrence of blackouts. Identification of blackouts 

is difficult due to high probability of rare, unusual and huge number of failures. The 

phenomena of blackout occurrence are complicated making the analysis, obtaining data 



18 

 

and simulating it very difficult in a short duration. Cascading failures can be modeled and 

simulated by a broader range of different techniques. Due to the complicated nature of 

cascading failures, many compromises are made for simulating their models. Usually, 

failures are assumed to be simultaneous and related. And only high risk and initial 

failures are considered to simplify the simulation process. The discussion below classifies 

analytical approaches into several categories based on some important features of each 

approach. 

Reference [5] describes a reliability analysis tool called TRELSS (Transmission 

reliability evaluation for large-scale systems) for screening N-k contingencies and 

simulating cascading process. It is also used to evaluate system impacts and reliability 

based on their severity of system problems like overloads, voltage instability and network 

separations in [5].  

Reference [6] presents another simulation method for identifying cascading 

failures using graph search algorithm based on substation topology search. It points out 

that substation topology variation because of switching operation as a response to a single 

contingency may increase the probability of N-k contingency due to hidden failures. This 

method uses the probabilistic analysis of protection system failure or substation 

configuration obtained from topology processing data.  
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Reference [18] presents the ORNL-PSERC-Alaska (OPA) model to study the 

complex behaviors of dynamics of series of blackouts. In this model, a power grid, which 

is constantly upgrading as a complex system satisfies an increasing load demand. Linear 

programming generator dispatch is used to solve DC load flow model. Self-Organized 

Criticality is used to restore the system to stable state and increase efficiency.  

Reference [10] presents the CASCADE model, which is a probabilistic load-

dependent cascading failure model. It captures the salient features of large power system 

blackouts. It shows that there is a power-law region at a critical loading point associated 

with the saturating quasi-binomial distribution of the number of failed components. 

It is a natural approach to apply branching process to simulate the cascading 

failures [19-21]. Reference [19] describes the Galton Watson branching process, in which 

it is assumed that there is variable time between stages or fixed time between stages. At 

each stage the mean number of failures is increased by a factor of λ. A larger number of 

stages yield λ closer to 1 or criticality. At critical point, the blackout data increases 

exponentially. Markov Chain branching process is a similar branching method but the 

failures in each stage are assumed to be at a constant rate. Reference [20] proposes a 

Poisson Branching process to approximate the CASCADE model. Different from other 

usual approaches that minimize the risk of the first few cascading failures, this approach 

attempts to reduce the propagation of the failure. Reference [21] presents an estimator 
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based on branching processes to evaluate the propagation of cascading failures. This 

estimator is also tested on results from OPA model.  

Manchester model [22-24] uses AC load flow and state sampling Monte Carlo 

method for simulation.  Adjustments are made by automatic control centers and operators 

to reduce the risk of failures. This method is used to show the evidence of existence of 

criticality in cascading failure blackouts [22].  

Reference [25] proposes DC Fuse model to simulate the cascading events in 

power systems. This model investigates DC load flow to determine the power law 

behaviors in power system disturbances. A simple mesh network, which represents the 

network of power transmission systems, is used. In every branch, a fuse that depicts the 

relay system in actual power system is present. [25]. 

Reference [26] uses a method to implement a two-stage screening and analysis 

algorithm to identify multiple contingencies. Minimum change in network to move the 

power flow feasibility boundary is proposed in the screening process. It uses a spectral 

graph theory that is cast as an optimization problem. In the analysis stage, the lines that 

are identified in optimization program are used to identify the combination that may lead 

to cascading failures.  

A related previous work, Reference [27], presents a screening schemes using 

graph partitioning to find the undesirable partitions that cause severe power imbalance, 
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which is an indication of cascading failures. Some meta-heuristic optimization methods 

also known as intelligent searches [28-30] are developed to deal with most credible N-k 

contingencies near global minimum. Reference [28] presents a random search algorithm 

based on power system heuristics for a fast selection of significant blackout paths such 

that the most important vulnerable locations can be identified. Reference [29] developed 

an approach to overcome structural issues like hidden failures and failure sequence. The 

state space is searched for event trees that are more vulnerable and connected to healthy 

event trees. A genetic algorithm is used to identify the worms or sequences of state 

transition leading to a significant loss of load. Reference [30] presents a heuristic search 

using tabu search (TS) to select the most severe contingencies. It also compares TS 

approach with other intelligent approaches such as genetic algorithm (GA) or simulated 

annealing (SA) and claims that TS is a better approach for contingency selection.  

Reference [31] presents a cascading collapse model to identify topological and 

component differences that can be applied for allocation of maintenance resources. The 

ordinal comparison, which is based on alignment probability, provides the theoretic basis 

for this model. Also, the graphic search to find the propagation of the disturbance is 

another basis of this model.  

References [32-35] describes a methodology used in multi-level (high-order) 

contingency analysis and implemented in PSS
®

E. The methodology employs both 

deterministic and probabilistic reliability approaches and involves three major 
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components, automatic contingency ranking and multi-Level contingency analysis (up to 

N-3), tripping action simulations and corrective action optimization and probabilistic 

index computation. 

 

2.3. Brute Force Enumerative Method 

Brute force method is an enumerative technique used to find the optimum 

solution. Enumeration is defined as a sequence listing of all the solutions satisfying the 

optimum condition. Finding an optimum solution using brute force algorithm is the same 

as doing a linear search or checking element by element to find the required solution. 

This technique is one of the oldest approaches used for problem solving. It is generally 

used if the problem size is limited or in situations where speed is of less importance. This 

involves inspection of each data configurations in the search space. Though it gives the 

most accurate solution and conceptually simple to implement, it is time consuming. The 

main disadvantage of this algorithm is that it cannot be used for real time situations 

where the data is relatively large.  

 

2.4. Particle Swarm Optimization 

Dr. Kennedy and Dr. Eberhart originally developed particle swarm optimization 

(PSO) in 1995 [11]. It is a population based stochastic optimization technique modeled 
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based on swarm intelligence. The idea of this optimizer was inspired by social behavior 

of bird flocking. The birds travel through the whole feasible search space to find the best 

flowers based depending upon the objective. 

The swarm consists of few randomly selected particles. The coordinates of the 

particle are based on the velocity and position vector associated with it [14]. The position 

vector (Xi) of particle i in N-dimensional search space is defined as Xi = [xi1, xi2, …., xiN] 

and the velocity (Vi) vector of that particle is given as Vi = [vi1, vi2, …., viN]. The 

particles interact with other particles to optimize the search experience. The iterative 

process of finding the best solution is initiated. The most optimum solution is calculated 

based on the fitness function. In each time step, fitness value is calculated by each 

particle. In this iterative process, the particle remembers its best position encountered till 

then and this position is called the pbest or personal best position. All the particles interact 

and have the ability to see if other neighboring particles are able to succeed in finding the 

best solution. So the best position encountered by all the particles till then is called global 

best or gbest. Fitness evaluated is compared with the population’s overall previous best. If 

the current value is better than gbest, then gbest is reset to the current particle’s array value. 

Each particle is accelerated towards the combination of its pbest and the gbest locations in 

each iteration. The PSO technique is illustrated in Figure 2.1. 
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Figure 2.1  Illustration of PSO technique 
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The velocity and the position in every iteration get updated based on the lbest and 

gbest positions [14]. The expressions for updating particle position and velocity are 

Equations (2.1) and (2.2), respectively. 

                              (2.1) 

     (2.2)
 

 

where  

d = dimensions of search space; 

Xid+1 = new location of the particle i; 

Xid = previous location of the particle i; 

Vid+1 = new velocity of the particle i; 

Vid = previous velocity of the particle i; 

w = inertial weight; 

r1, r2 = two random numbers in [0, 1] uniformly distributed; 

c1 = cognition component; 

c2 = social component. 
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d is the number of variables, i represents the particle in the swarm, V is the 

velocity vector, X is the position vector, pbest is the local or personal best of each particle, 

gbest is global best or particle with best fitness in the neighborhood, r1 and r2 are random 

numbers usually generated between 0 and 1 and k represent the iterations number.  

The Equation (2.2) has three parts. The first part reflects the memory behavior of 

particle and is called as inertial velocity of particle. It keeps control between the extents 

to which the search area is explored by particles. c1 and c2 are the learning factors or 

positive acceleration constants. The second one is cognition part that represents the 

movement of particle where c1 is the cognitive acceleration factor. The third part is social 

behavior part that represents the particle’s behavior depending upon all other particles in 

the population and c2 is the social learning factor. Vmax can be defined appropriately to 

prevent premature convergence of particles or exploding.  

These parameters help in guiding the motion of particle by controlling how much 

the particle behavior and the social behavior of the neighborhood affect the particle.  The 

accuracy and the speed of convergence to the optimal solution generally depend on these 

input parameters used. Also the ability to find the best solution highly depends on the 

initial parameters chosen. The initial particle positions also play an important role in 

finding an efficient solution [12]. The particles are usually attracted both to its own best 

solution and also the best solution of all particles. As the optimum is neared, most of the 

particles tend to converge or come closer.  
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Stopping criteria are needed to terminate the execution of optimization algorithm. 

Typical convergence conditions include improvement-based criteria like reaching a 

certain fitness value, or improvement of best objective value or average objective value 

of population samples. There are also movement-based criteria like reaching a certain 

number of iterations, movement of particles with respect to a fixed position or with 

respect to objective function value. More stopping criteria include distribution-based 

criteria, which are based on the standard deviation of positions, the maximum distance 

from every particle, and the difference between the best and the worst objective functions 

below a threshold value. 

 

2.5. Tabu Search 

The tabu search is used to solve combinatorial optimization problems. It contains 

a tabu list which is used to record the data during the search. This increases the efficiency 

and ease of accessibility when necessary. This is an expandable list whose size keeps on 

increasing. It is used to guide any process that provides an evaluation function for 

measuring the objective. The main motivation of tabu search is to have a large number of 

iterations, and in every iteration there is a single random pair exchange in the sequence. 

The heuristic makes an exchange only when the exchange improves the objective 

function. Also it is checked to avoid any repetitions of same exchanges that have 

occurred in previous steps. The tabu list can be ordered either in ascending or descending 
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depending on the purpose. It can also be used to store the top values necessary for 

comparisons or evaluations. This technique has been proven to be very useful for 

escaping isolation phenomena as well as escaping local optima during the course of 

search for global optima. 

 

2.6. DC Power Flow Analysis 

There are various causes of failures and many ways in which they can be 

propagated. The failures could occur due to overloads, hidden failures, or oscillatory 

instability. In this research we are mainly focusing on the failures caused by line 

overloading. The load flow of the power grid is estimated based on the DC power flow 

approximations. The solution of power flow is used to model the steady state behavior of 

three-phase, balanced electric power network. The redistribution of power flow after a 

failure can be calculated. This gives an idea on how the system should be modified to 

keep secure operation under contingencies and to serve as much load as possible.  

This section deals with the basics of power flows and formulation of DC power 

flow needed for finding voltage phase angles. Real power flow is calculated based on the 

obtained values. The formulations and assumptions for finding power flow equation for 

an N-bus system are explained in this section.  

Relation between active power transported over a transmission line between 

nodes s and r and the complex voltages at both nodes is [13]: 
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                  (2.3) 

Where 

Vs = voltage at sending node 

Vr = voltage at receiving node 

sr = phase angle between the voltages 

Xline = line impedance. 

 

The DC power flow is based on a few sensible approximations to simplify the 

power flow calculation. It ignores the reactive power balance equations and assumes the 

voltage magnitude as one per unit for all the components. Line losses and tap dependence 

in transformer reactance is ignored. Voltage angle differences are small. So sin( sr) ≈ sr.  

Therefore, by ignoring Q – V relationship from normal power flow, we have line 

flow given by 

    (2.4) 

 

And the injection power at Bus s can be written as 

 (2.5) 
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Using the Equations (2.4) and Equations (2.5),  

 (2.6) 

 

Where  

P = vector of real bus injection;  

B   = bus susceptance matrix; and 

   = a vector of bus voltage angle. 

 

That makes 

                                  (2.7) 

Equation (2.7) is linear and will have a single solution. The B’ matrix is about half 

the size of the full AC power flow Jacobian matrix and independent of the system state. 

This makes DC power flow easy to solve without having any iterations.  These reasons 

make the DC power flow 7 to 10 times faster than the AC power flow while the error 

obtained using DC power flow is about 10~20% compared with AC power flow. The 

complexity of calculation increases with using AC power flow and has convergence 

problems in the cases when a line trips. Since finding the contingencies in the network 

has to be done within very less time, DC power flow is chosen in this thesis.  
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2.7. Chapter Summary 

In this chapter the background of various techniques used in this thesis is 

discussed. The methodology based on particle optimization technique as well as tabu 

search is analyzed. The DC power flow approximations and algorithms are presented.  

Based on this analysis, an algorithm for screening high order contingencies is introduced 

in next chapter. 
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Chapter 3 Methodology for Selecting 

High Order Contingencies 

 

This chapter describes the method incorporated in this thesis for selecting a group 

of critical, high-order contingencies. The simulation tool used in this work is MATLAB. 

The MATPOWER package in MATLAB is used to perform DC power flow analysis, 

which assists in identification of overloads in power line [16]. The main goal of 

MATPOWER is to provide a simulation tool within MATLAB that was easy to use and 

modify. Section 3.1 describes the objective of this research. Section 3.2 illustrates the 

formulation of algorithm to serve the required purpose. Section 3.3 describes about the 

fitness function required for the optimization problem. Section 3.4 gives an overview 

about the brute force enumeration method used for ranking the criticality of each N-1 

line. Section 3.5 illustrates about the tabu search algorithm which is used along with PSO 

technique. Section 3.6 shows how PSO algorithm is utilized for solving the proposed 

problem. Section 3.7 refers to the modifications done to the original PSO algorithm. And 

Section 3.8 describes about the stopping criteria used in PSO algorithm. 
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3.1. Thesis Objective 

Studies related to vulnerability of collapse are essential to maintain the power 

system in normal operating conditions. The system that is secure even if one component is 

removed is referred as stable under N-1 contingency. Such system can still operate in 

normal conditions even with the loss of one device. But in many cases the same system 

may not sustain the loss of any two or three devices. For stable operation of power system 

screening of N-2 and N-3 contingency is also essential. The given simulation model 

provides to be efficient tool for analysis of cascading failures and identifies most critical 

lines under N-k contingencies. N-2 and N-3 contingency events are addressed.  

The objective of this work is to make use of Particle Swarm Optimization (PSO) 

technique. It utilizes an intelligent strategy to search the feasible solution space and 

identify severe high order contingency in a power system. The original PSO algorithm 

tends to find the best solution only. This proposed method combines the unique features of 

PSO and tabu search, to select a set of severe high order contingencies such that a number 

of top candidates can be identified. This fits the need of high order contingency screening, 

which can be eventually the input to many other more complicated security analyses. The 

method developed in this thesis work utilizes line overloading based on DC power flow. 

The objective of this work is also to test and validate the developed program in 

MATLAB. The testing is done on the IEEE 118-bus system for ranking N-2 contingencies 

and on the IEEE 30-bus system for ranking N-3 contingencies. The distribution of load is 
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calculated using DC power flow under contingency condition. DC power flow is 

performed with the help of package MATPOWER in MATLAB. Several cases were 

tested varying the parameters of PSO and an observation regarding the range of input 

parameters for efficiently finding the most severe contingencies in the power system is 

discussed. To demonstrate its robustness, the algorithm is compared to the traditional 

brute-force enumerative approach.  

 

3.2. Problem Formulation 

The PSO technique is applied to assist with searching the space of possible high 

order contingency events. It uses an objective function to weigh the optimum location as 

the particle searches in the test system. Certainly, there may be various ways to define the 

fitness function. In this research, the fitness function is defined based on overloading of 

the power lines. The dimensions of search space depend on the type of contingency event. 

If we are running PSO to rank N-2 failures, we use two dimensional search space where x 

and y axes represent the branches which are out. And if we are running PSO to rank N-3 

failures, three dimensional search space is utilized where x, y, and z-axes represent the 

three branches which are out. 

PSO is used to identify the critical branch combinations which could cause system 

overload, eventually leading to failure, when these branches are out. The original PSO is 

used to find only best optimal location. Hence only pbest and gbest are saved temporarily 
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during the search. This does not meet the need of contingency selection in which a subset 

of all the N-2 or N-3 contingency events is desired. Therefore this technique has been 

modified and combined with tabu search so that a list of all the top candidates that require 

primary attention is maintained. The number of “top candidates” can be 100 or 1000 

depending on the actual system, among all visited contingency events.  

 

Therefore, the principle of the proposed idea can be summarized as follows: 

 The PSO algorithm is used to guide all particles to traverse through possible 

good candidate locations (here, “good” really means a severe N-2 contingency 

with a high impact on line flows and system security). 

 The tabu search is applied to keep track of all “good” candidates. 

 When PSO stops, it means that particles have visited a sufficient number of 

“good” candidate locations.  

 

The algorithm is implemented using MATLAB R2009a. Choice of MATLAB is 

due to its simplicity in running power flow problems. The MATLAB program that was 

developed specifically works with this test system. However, with some modification to 

the algorithm the program can be used to analyze any other system with similar topology 

or with any other dimension. It could be modified to suit the screening of N-k 

contingencies for k >= 1.   
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3.3. Fitness Function 

Objective function for the present problem is to find the most severe 

contingencies that cause highest stress on the system. Here the system stress is expressed 

as the fitness value which determines the particle having best value in the swarm and also 

the best position of each particle over time. The fitness function based on overloading is 

defined as the root mean square ratio of line flow of overloaded lines to its line limits. 

This is given by  

For N-k Contingency,    

 for N-k Contingency,  (3.1)  

 

where {OL}= the set of overloaded lines after removing branches x and y in case of N-2 

contingencies or branches x, y, and z in case of N-3 contingencies. Pi
max

 is the maximum 

line flow limit, and Pi is the value of line flow under the N-k contingency. 

Equation (3.1) is calculated based on high order contingency power flow. 

Therefore it is essentially an indication of how severe the contingency could be. It should 

be noted that here no possible control action is considered; although in reality some 

certain control actions may be applied. Hence, the post-contingency power flow can be 

viewed as a conservative evaluation of the fitness function (i.e., the impact) of the high 
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order contingency. However, as long as the impact from every possible severe 

contingency is evaluated from the same conservative viewpoint, the fitness function 

defined in Equation (3.1) should be a fair representation of severity. PSO requires only 

fitness function to measure the solution quality instead of complex mathematical 

equations. This simplifies the computation complexity.  

 

3.4. Brute Force Enumeration for Ranking Failures 

Brute force enumerative approach is also applied to find the most critical lines in 

the test system in comparison to PSO for benchmarking purpose. In this method, all the 

combinations of N-k contingencies in the power system are verified for overloads using 

DC power flow and fitness function evaluations. All the fitness functions are recorded 

before picking out the top critical branch combinations in the power system. This method 

is used to analyze the movement of particles in PSO and compare the results obtained 

from PSO.  

 

3.5. Tabu Search with PSO 

The main idea behind a Tabu search heuristic is to have an array or list of already 

visited positions in the k-dimensional search space. As we iterate and move around the 

search space, the tabu acts as a memory and remembers all the locations encountered or 
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traversed so far. So in each iteration, the new position is verified if it is present in the list. 

If the position is already visited, the particle tries to moves to its immediate neighboring 

position that is not visited. This increases the scope of search and also improves the 

efficiency of finding all the positions with high fitness value. This technique has proved 

to be very useful during the course of the search to escape the local maxima and to cover 

many locations before converging. 

Tabu list gives more idea about all the branches with high impact on line flow and 

the operator can take necessary actions to correct the loading on the critical branches while 

keeping in mind all the other critical lines and he could take measures not to affect them or 

increase their severity.  After every iteration of PSO, the list is updated as long as there are 

some new locations visited by particles that are better than any existing items in the tabu 

list. Hence, when the algorithm converges, we have a list of top candidate contingency 

events. Various other modifications are made to the original PSO technique to increase its 

efficiency and keep a balance between the speeds of convergence.  

 

3.6. Adapting PSO to Proposed Problem 

The generic PSO technique is applied to assist with searching the space of 

possible high order contingency events. PSO is mainly applied to unconstrained 

problems. It is one of the evolutionary computational techniques. The basic idea is 
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described below with an example of N-2 contingencies that are easier to visualize and 

explain in a three-dimensional diagram. The searching space consists of x and y as 

independent variables, and z as the fitness function. Here, x and y stand for the branch IDs 

that are subject to contingency. For instance, if we have (x, y, ff) = (5, 201, 24.23), then it 

means that after Branch 5 and Branch 9 are removed from the system, the fitness function 

(i.e., the impact) is 24.23. 

Initially, swarm consists of few particles and particles are randomly generated in 

the search space. The search space is bounded. The boundaries of search space depend on 

the number of branches in the test system. The evaluation factor for each particle is 

calculated using the objective function. The branches corresponding to each particle 

position are removed for calculation of fitness function. The fitness value of the objective 

function is calculated using Equation (3.1). The line flow of each overloaded line is 

obtained from DC power flow implementation carried out when the branches are 

removed. The optimization maximizes the objective function. MATPOWER is utilized for 

running the power flow. 

The learning factors, inertial weight and initial velocity are initialized. The initial 

velocity is assumed to be zero in this implementation. In every iteration, each particle 

flies in the search space according to the velocity vector calculated based on momentum, 

the influence of best solution, and the best solution of its neighbors. It tries to find 

optimal or near optimal solution.  The new velocity and position of the particle is chosen 

according to Equations (2.1) and (2.2). While the swarm is being updated, the boundary 
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of search space is kept into consideration. If the new particle position violates the 

boundary in any dimension, the position is reset at its proper limits. The tabu list is 

updated with all the particles positions visited till then.  

The new fitness of each particle is again calculated. The particles have memory 

and each particle keeps track of the previous “personal” best position, pbest and 

corresponding fitness. Another value gbest is the best value encountered by all the 

particles till then. Fitness evaluated is compared with the population’s overall previous 

best. If the current value is better than gbest, then it is reset to the current particle’s array 

value. All the particles are accelerated towards the combination of its pbest and the gbest 

locations in each iteration. The branches that are removed are reset back into service after 

every iteration. The time counter is updated in every step. If one of the stopping criteria is 

achieved, the iterative process comes to a stop else the whole process is repeated again. 

Particles move to a new position. The new location corresponds to a set of different 

branches that will be removed. The motion of particles can be easily demonstrated in the 

Figure 3.1, where Xid
k
 represents the present position of particle in d dimensional plane 

and Xid
k+1

 represents the position after velocity is updated. The new position depends on 

the velocity factor due to gbest and also pbest. 

Based on Equations (2.1) and (2.2), it is easy to conclude that the convergence 

speed of the proposed algorithm depends on the choice of c1 and c2, the cognition and 

social coefficients, respectively. 
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Figure 3.1. Illustration of particle motion in two-dimensional plane [14] 

 

If c1 is more dominant, the impact from the global best will have less impact on 

the future location of particles. Hence, the algorithm will traverse more spaces and take 

longer time to converge. In contrast, if c2 is more dominant, then the particles are quickly 

attracted to the global best [14]. Hence, convergence may be faster; however, this means 

that the searching algorithm may miss some potential good candidates. The parameters r1 

and r2 are randomly generated numbers between 0 and 1 to simulate the randomness of 

the movement of particles. 

There are a few points regarding implementation that are worthwhile to mention: 

 Since (x,y) represents the N-2 contingency losing Branch x and Branch y 

simultaneously, the order of x and y does not affect the fitness function 
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defined in Equation (3.1). Hence, the location (x, y) implies no difference than 

(y, x). Therefore, we can only utilize half of the entire searching space for 

brute force algorithm by automatically converting (y, x) to (x, y) if y>x. This 

means only the lower triangle shown is needed to reduce the computing time.  

 If we have x=y for a particle after a new iteration calculated using Equation 

(2.1) and (2.2), we simply keep the previous location as the new one since 

only N-2 contingency is considered.  

 If we have x or y out of bound, then we can set it to the nearest boundary 

point. 

 

As previously stated, when there is an initial outage of a line, the distribution of 

load flow is changed. A line is prone to fail if the load of the line exceeds its capacity. 

This may lead to more line outages because of tripping. Major blackouts are generally 

caused by such step-to-step process. So in this research, when the branches corresponding 

to particle position are removed, power flow analysis is done to determine the new 

distribution of load. This is repeated for every particle or for every combination of 

branches that are removed. According to the new power flow distribution, fitness value is 

calculated for each particle. This fitness value is used to evaluate the optimal location or 

the most critical N-k contingencies in the power system.  
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The overall flow chart of the proposed algorithm is illustrated in Figure 3.2. As 

previously mentioned, although the above discussion is based on N-2 contingencies, it 

can be easily applied to higher order contingencies.  

 

3.7. Modified PSO Algorithm 

A few changes are made to original PSO algorithm to decrease the computational 

time and at the same time give more efficient results. The original test system is modified 

by adding new branches to prevent islanding under contingencies which otherwise result 

in unusually high fitness values that may cause bias to particles while implementing 

particle swarm optimization. This process also helps to utilize a system with evenly 

distributed loading.  

The order of branches of the modified test system is changed. Enumeration results 

with one branch removed (i.e., N-1 contingency) is performed and the fitness value is 

calculated for each case. These fitness values are reordered in increasing order and 

similarly the corresponding branches are also reordered. When this reordered system is 

used in testing PSO algorithm, the particles have more probability to traverse many 

critical branch combinations in one run and also hence this helps in reaching the most 

optimal solution faster.  
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The particles move in the search space such that they will not revisit the old 

position. Repetitions in the tabu list while running PSO are eliminated. In every iteration 

of PSO, the particle updates its position according to Equation (2.1). After the new 

position is obtained, it verifies the tabu list if the particle is already visited. The new 

position is modified if already visited. All the neighboring positions are checked for any 

unvisited positions by comparing the tabu list. The new position if visited is updated to 

the unvisited position. This helps increase the search area. The PSO searches more 

locations before it converges to optimal position.   

The tabu list containing all the N-k contingencies traversed in the path by 

particles from PSO is compared to the list of most critical branch combinations obtained 

from the enumeration method. The percentage of matches of the candidates in tabu list is 

compared to that of original top list obtained from the enumeration method. The 

percentage of matches in tabu list obtained from PSO also found in the top list of 

contingencies is recorded. 

Total number of N-k branch combinations visited by particles is obtained from 

PSO. The percentage of these particles when compared to total branch combinations is 

evaluated. Speedup ratio is calculated. It is the ratio between the percentage match of 

particles from tabu list with top list from enumeration to the percentage of total branch 

combinations traversed by PSO. 
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Figure 3.2  Flow chart of the proposed method. 

 

 



46 

 

The speedup ratio determines how much the particle searches before finding the 

list of critical branch combinations. For instance, assume we identify the true top 100 N-2 

contingency events from enumeration of all 10,000 possible N-2 events. If the PSO 

algorithm can identify 60 of these top 100 N-2 contingency events by searching only 500 

of total 10000 N-2 events. Then, the percentage of matched top events is 60/100=60%, 

and the percentage of the total searched events is 500/10,000=5%. This means that the 

algorithm searches 5% of the overall searching space and identifies 60% of the top 

events. Hence, the speedup ratio is equal to 60%/5%=12. 

 

3.8. Stopping Criteria for PSO 

In general the particles converge as the solution is approaching the optimal 

solution. The distance between the global best of all the particles and the local best of 

individual particles is decreased as PSO progresses. As all the particles converge, it is an 

indication that the global best of the particle is closer to optimal solution. The distance 

from every population member to the best individual is observed. Most of the particles 

generally converge when optimum solution is found leaving some of them still searching 

but they do not contribute for finding optimum best. So instead of choosing the whole 

population to converge, it is considered that most of the particles come closer. So only 

the best p% particles distance to global best is calculated. A quick sort algorithm is 

implemented for picking the best p% particles of total population. The percentage p 
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should not be set too low for reliable detection of convergence. The iterative process of 

optimization then comes to a stop if most of the particles come closer than a tolerance 

value [15]. This is one of the stopping criteria chosen. 

 In some cases the solution is converged very fast without traveling much of the 

search space. Such premature convergence should be reduced by varying the input 

parameters in PSO. In other cases the particles may be trapped in local minima and the 

solution might not converge at all. Such cases that could not be converged need another 

stopping criterion. So maximum number of iterations the PSO can run is also considered. 

 

3.9. Chapter Summary 

An overall approach to identify and select a set of high order contingencies is 

provided. This approach involves an algorithm which uses particle swarm optimization 

technique with a tabu list to store top visited candidate contingencies to find a set of the 

critical k branch combinations as the event in an N-k contingency. Stopping criteria of 

the proposed algorithm are discussed. 
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Chapter 4 Results and Discussions 
 

The test systems used to validate the potential of the proposed algorithm are 

modified versions of the IEEE 30-bus system for N-3 contingencies and the IEEE 118-

bus test system for N-2 contingencies. It is implemented in MATLAB and the method 

combines the unique features of particle swarm optimization along with tabu search to 

select severe high order contingencies. The original PSO algorithm gives an intelligent 

strategy to search the feasible solution space, but tends to find the best solution only. The 

proposed method combines the original PSO with tabu search such that a number of top 

candidates will be identified. This fits the need of high order contingency screening, 

which can be eventually the input to many other more complicate security analyses. 

Section 4.1 describes the results of the brute force enumeration method implemented on 

IEEE 118-bus system to rank N-2 contingencies. Modifications are done to original test 

system. Enumeration method is performed on this modified test system to study the 

variation of fitness function over the whole system. Enumeration of N-1 contingencies is 

performed to rank the critical lines. The results are used to reorder the branches in 

ascending order of criticality as the pre-processing input to the proposed algorithm. 

Section 4.2 describes the N-2 contingency screening of the reordered system. It also 

discusses the variation of output with learning factors, inertial weight, initial particle 

positions, and stopping criteria on the output of PSO algorithm. Section 4.3 discusses the 
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ranking of N-3 contingencies using both enumeration method and PSO algorithm along 

with tabu search.  

 

4.1. Ranking N-2 Contingencies in IEEE 118-bus Test 

System 

4.1.1.  Modification of Original IEEE 118-bus Test System 

Brute force enumeration is a traditional method for finding the contingencies. 

This method has been implemented on the IEEE 118-bus system to compare the 

efficiency with the present algorithm. The IEEE 118-bus test system is shown in Figure 

4.1. In the original system data, there is no effective line flow limits. Hence, some 

modifications are necessary. Here, the base case power flow is performed. And the line 

limits is approximated to be 150% times of base case line flow. 

The fitness function of all the branch combinations possible is obtained when any 

two branches are removed from the system. This process takes a lot of time for 

implementation but gives the most accurate results. This method is not practical due to 

the resources implemented, but can be used for benchmarking purpose.  

In the original 118-bus system it is observed in few cases of N-2 contingency, 

there exists a small island because the connection of a generator or load is through a 

single line. 
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Figure 4.1  IEEE 118-bus test system 
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Theoretically, it is needed to have some load shedding. Since the objective of the 

high order contingency is to evaluate the line loading under contingency and it is hard to 

incorporate un-served load with line loading as the objective. A few extra lines, each in 

parallel to a single line connecting a generator or load, are added to avoid island under N-

2 contingencies such that the algorithm can perform DC power flow and compare the 

fitness function in a comparable basis. 

 

4.1.2.Enumeration on Modified IEEE 118-bus Test System 

 The test system with new branches added to IEEE 118-bus test system has 126 

bus and 208 branches. This system is referred to as modified 118-bus test system. So the 

total number of N-2 branch combinations to be searched for enumeration method is 

208×207/2=21,528.  Figure 4.2 shows the brute force enumeration of modified 118-bus 

test system.  

 

4.1.3.Implementation of PSO on Modified 118-bus Test 

System  

The procedure described in Section 3.6 is implemented in MATLAB. Here, the 

particles are randomly generated in bounded test system where the two outage branches 

correspond to the x and y axis. 
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Figure 4.2  Plot of enumeration method on modified 118-bus system 
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The particles move around the search space trying to find a better global best 

value as the PSO progresses till the optimum is found.  The plot for varying global best 

with iterations for PSO simulation on modified 118-bus system is shown in Figure 4.3. 

A series of experiments has been performed with different variation of PSO 

parameters. In each experiment, the swarm consists consisting of 15 particles are 

randomly distributed in the search space. The boundaries of the particles are fixed to be 

(1, 208) in both x and y-axis where 208 are total number of branches in the new test 

system. In evolutionary programming, the global and local exploration capabilities are 

controlled by variances of the fitness function calculated based on loading. The input 

parameters are varied for the same initial particle position. Many runs are made and the 

variation of the capability to find the global best position is observed. When at least 10 

particles out of the total 15 converge, the algorithm comes to a stop. The tolerance for 

stopping criteria is set to be 10, i.e., the distance between at least 10 particles out of 15 is 

10 or lower when the PSO stops. If the particles do not converge, another stopping 

criterion should be considered. PSO is terminated when a maximum iterations of 150 is 

reached.  

If the PSO algorithm fails to find global best position with the maximum number 

of iterations, it is ruled that the particles failed to find the global optimum in this run or 

the particles are taking longer to find the optimum. 
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Figure 4.3  Variation of Global best with iterations in a PSO run 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

G
lo

b
al

 B
e

st
 F

it
n

e
ss

 F
u

n
ct

io
n

Number of Iterations

Global Best Vs Number of Iterations



55 

 

In some cases, even if the particles do not converge, the tabu list could be useful 

to find some critical N-2 contingencies leading to a reasonable speedup factor. A series of 

random numbers are generated in a pre-processing for r1 and r2 and used for all the runs 

so that all of them could be compared in the same basis. 

The convergence of particles can be illustrated for a test case. The stages of 

output showing converging particles of PSO when c1 = 2, c2 = 1.9 and w = 0.8 is shown 

in Figure 4.4. The particles are randomly generated in the initial stage and are found to be 

coming closer as the particles find the global best location. When at least 70% of total 

particles i.e., at least 10 particles of the total 15 come closer by a tolerance of 10, the 

algorithm is assumed to be converged. 

Results from ten PSO runs are randomly selected from a total of 100 simulations 

done using variable input parameters c1, c2 and w. All other variables like initial particle 

positions and random variables are kept constant. This is noted in Table 4.1. In this table, 

each row corresponds to a case with different PSO parameters. 10 simulation runs are 

selected to offset the possible odds due to the needed random numbers, r1 and r2 in 

Equation (2.2). The average of these 10 runs is reported in Table 4.2.  

From the results it could be observed that in almost all the cases, PSO is not 

converging even after the maximum number of iterations is reached. The time taken for 

one run and number of N-2 branch combinations traversed is large. But still the 

percentage of N-2 contingencies that are matched with the original top contingency 

events is very less. 
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Figure 4.4  Visualization of particle motion in PSO for finding N-2 contingencies 
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Table 4.1  PSO results of ten random runs on modified 118-bus test system 

 

 

 

 

c1  c2  w  N-2 branch 

combinations 

searched  

Percentage (%) 

of branch 

combinations 

searched  

Percentage (%) 

of matches with 

original top 250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

1.9  2  0.8  1399  6.50  21.2  3.26  150  93.42  

1  2  1  2241  10.41  20  1.92  150  87.29  

1.9  1.8  1.1  1962  9.11  8.4  0.92  150  90.73  

2  1.9  0.8  1388  6.45  16.8  2.61  150  88.70  

2  1.9  0.9  1798  8.35  15.6  1.87  150  88.08  

6  3  1  1809  8.40  8.4  1.00  150  90.13  

1.8  1.8  0.8  1542  7.16  19.2  2.68  150  94.41  

1.8  1.8  1.1  2124  9.87  11.6  1.18  150  99.95  

1.9  1.9  0.8  1577  7.33  16  2.18  149  89.749  

1.9  1.9  0.9  1888  8.77  19.2  2.19  150  97.05  
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It should be noted that here the “top” contingency events or “top” combinations 

are defined as the top 250 combinations obtained from enumeration method. Certainly, 

other number can be used instead of 250 based on the operators’ experience and 

judgment. It depends on the size of the system. The speedup ratio is the ratio of the 

percentage of matched N-2 combinations with top 250 from enumeration method to the 

percentage of N-2 branch combinations searched. The speed up ratio is found to be in-

between 1 to 3 for most of the cases which means that it is only 1 to 3 times more 

efficient than random search, which should have a speedup ratio of 1. The average 

number of branch combinations searched, speedup ratio, and time recorded based on 100 

recorded runs from different PSO runs is tabulated in Table 4.2. 

 

 

Table 4.2  Average of 10 random PSO runs on modified 118-bus system for N-2 

contingencies  

N-2 branch 

combinations 

searched  

Percentage (%) 

of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

1399  6.50  21.2  3.26  150  93.42  
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4.2. Selecting N-2 Contingencies in Reordered and 

Modified 118-bus Test System 

4.2.1. Selecting N-1 Contingencies using Brute Force Enumeration 

Enumeration for N-1 contingencies is implemented to rank all the lines in the 

modified test system based on criticality. This is very essential to make an analysis of 

other higher order contingencies in less duration. Since it is N-1 contingency, an 

enumeration is affordably evidenced by many real-time practical EMS systems. Figure 

4.5 shows the plot of enumeration method and how the fitness value changes when there 

is one branch failure. 

 

Figure 4.5  Enumeration results of N-1 contingencies of the modified 118-bus system 
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Next, the modified test system is further changed to increase the global search 

capability of PSO. The branches are then reordered either in ascending or descending 

order of criticality of branches. Criticality is measured depending on the fitness functions 

obtained from the enumeration method. Figure 4.6 shows the reordering of the branches 

in enumeration method. The x-axis of the plot corresponds to the new reordered branch 

numbers. The fitness function now varies in ascending order.  

This new ordering of branches is implemented accordingly in the modified 118-

bus test system. This greatly increases the efficiency of the algorithm as shown later. 

 

 

Figure 4.6  Reordered enumeration results of N-1 contingencies of the modified 118-bus 

system 
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Changing the order of branches in this way increases the percentage of critical 

branch combinations searched before converging and has a very high probability of 

finding many critical N-2 contingency events with high fitness values. The same 

algorithm for PSO is again implemented on this reordered system and the variation of 

results from the PSO on unordered system is observed. Before implementing PSO, 

enumeration method is conducted to observe the variation of fitness function over the 

whole searching space under N-2 contingencies. 

 

4.2.2. Enumeration On Modified 118-bus System for N-2 

Contingencies 

Enumeration method for N-2 contingencies is implemented on the modified 118-

bus system again with the branches reordered based on N-1 criticality. The total time 

taken to run the enumeration method for screening N-2 contingency events in modified 

118-bus system is around 9 hours. This makes implementation of enumeration method 

impractical for screening contingencies. The enumeration plot is shown in Figure 4.7. All 

the N-2 contingencies consisting of the outage of two N-1 critical lines are observed to 

have a relatively high value of fitness function, which means relatively severe N-2 

contingencies. Also, the plot is very evenly distributed in ascending order of N-1 critical 

lines. Since it is a smooth plot the particles are more attracted towards the corner with 
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high fitness values sooner. This reduces the total duration for each run of PSO and gives 

more efficient results. 

Implementing PSO on the present system can have more scope to move through 

more critical branches in its path before convergence. Also the tabu could have more 

number of critical branches in less time. Since time is also a constraint, reordering 

branches is implemented to get a tabu of most critical N-2 branch combinations.  

 

 

Figure 4.7  Plot of enumeration method for modified and reordered 118-bus system 
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4.2.3. N-2 Contingency Selection Using PSO for Reordered 118-bus 

Test System 

Ten different experiments are conducted using the proposed PSO-based algorithm 

and the reordered 118-bus test system. The same values of c1, c2, and w used for making 

experimental results with the unordered system are considered for simulation done on 

reordered system also. The difference in the convergence properties found when 

compared to the unordered system is that the global search capability of particles is 

reduced. The particles are pulled towards the one corner with higher fitness values. All 

the particles then start moving around in that area. This results in the particles moving 

around the areas where there are more critical combinations. This gives more probability 

to find all the critical contingencies. The percentage of particles matched in tabu list with 

that of top 250 from enumeration method is increased within shorter duration of time. 

The simulations are run to prove the benefits of reordering. 

The initial particles position and the stopping criteria are also the same as the 

previous experiment. This process of the proposed algorithm is iterated until sufficient 

solution quality or the maximum number of iterations is reached. The results obtained 

from random ten PSO runs with different input parameters are tabulated in Table 4.3. 

Observing the results in Table 4.3 obtained from the proposed algorithm after reordering 

and comparing them to the results from Table 4.1, it is noted that the convergence 
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properties are more visible after reordering. Particles are converging much faster and the 

speedup ratio is also greatly increased. This means that larger chance of finding more 

number of critical N-2 branch combinations within lesser time and lesser number of 

iterations.  

The average number of N-2 combinations, percentage match, speedup, iterations, and 

time are as shown in Table 4.4. Comparing it with average results obtained from PSO of 

unordered system, the total number of searched N-2 branch combinations is much less 

but the percentage match of branch combinations in tabu list with that of the original top 

250 from enumeration method is much more, i.e. 62.16. 

The speedup ratio has also significantly increased even though the total number of 

iterations is much less comparatively. The total time is also less. The time should be 

preferable low because it is always desired for short-term system operators to have a 

quick scan of potential risky contingencies and take preventive actions as soon as 

possible. The results show that the proposed algorithm with reordering can meet the 

motivation of this research work very well such as not only to find the most critical 

branches but to identify a set of severe N-k contingencies. Reordering gives significant 

improvement in PSO output over the unordered system 
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Table 4.3  PSO results for N-2 contingencies of ten random runs using the modified 118-

bus system 

c1 c2 w N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs Time  

(sec) 

1.9 2 0.8 443 2.06 66.8 32.46 71 36.22 

1 2 1 424 1.97 66 33.51 89 45.97 

1.9 1.8 1.1 402 1.87 71.2 38.13 123 51.65 

2 1.9 0.8 475 2.21 59.2 26.83 59 29.09 

2 1.9 0.9 454 2.11 66.8 31.68 68 29.79 

6 3 1 192 0.89 46 51.58 24 10.11 

1.8 1.8 0.8 569 2.64 58.8 22.25 81 34.66 

1.8 1.8 1.1 415 1.93 70.4 36.52 150 67.88 

1.9 1.9 0.8 559 2.60 52.8 20.33 90 50.11 

1.9 1.9 0.9 395 1.83 63.6 34.66 79 46.34 
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. 

Table 4.4  Comparison of average output of 10 PSO runs for N-2 contingencies 

 N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

Unordered 

System  
1399  6.50  21.2  3.26  150  93.42  

Reordered 

System  
433  2.01  62.16  32.79  83.4  40.18  

 

 

 

Figure 4.8 shows the plot between accuracy and efficiency with the number of 

iterations based on 100 experimental runs with varying input parameters. As the number 

of iterations increases beyond a limit, efficiency of algorithm decreases as computational 

time increases. Total number of iterations is generally chosen as a tradeoff between 

accuracy and efficiency. 

 The result variation of the PSO runs with different input parameters is discussed 

in the following sections. The experiments are conducted by varying only one parameter 

after another. 
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Figure 4.8  Plot between accuracy and efficiency vs number of iterations  
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All other parameters values are kept constant. The value of basic PSO run used 

for experimenting is c1 = 2, c2 = 1.9 and w = 0.8. The maximum number of iterations 

are 150 and 10 is tolerance between particles during convergence. 10 particles are 

assumed to come closer out of total of 15 particles for stopping PSO run.  

 

4.2.3.1. Varying Learning Factors 

Based on a number of random runs varying the values of c1 and c2, the typical 

range of c1 and c2 that could give more efficient results for ranking N-2 contingencies is 

observed. The simulations run with c1 and c2 varying from 1.8 to 2 gives more accurate 

results. These observations are in particular with the initial conditions having 15 initial 

random particles, tolerance for ten particles to come together is 10 and maximum number 

of iterations is 150. All the runs are performed on the same initial particle positions to 

avoid the result variation due to initial positions. The observed results are tabulated in 

Table 4.5. It is observed that the speedup ratio is higher in the cases where c1 is greater 

than c2 and also where c1 = c2. Also, a series of random numbers r1 and r2 between 0 and 

1 are generated as pre-processing and fixed for later use such that all runs are based on 

the same series of random numbers.  

From the results observed in Table 4.5, it can be easily identified that c1 and c2 are 

around 1.8 to 2 for most of the cases that give good results. The values of c1 and c2 
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chosen around 2 give results with high speed-up ratio. In this experiment of runs, some 

other cases where c1 is greater than c2 are found to give good results as well. These 

results include the values of c1 in the range of 4 to 6 and c2 to be 2 to 4.  

 

4.2.3.2. Varying Inertia Weight 

 The inertial weight is an important factor in determining how the particles travel 

in the search space. It keeps a balance between exploration and exploitation in the search 

space. Inertial weight acts as a memory of the particle. It remembers the velocity of 

particle in the present iteration and controls its velocity in the next iteration. 

The variation of the PSO search capability with several representative w values is 

recorded in Table 4.6 where the input parameters are c1 = 1.9 and c2 = 1.9. As it is 

observed from the table, as w increases from 0.6 to 1.8, PSO converges very fast in only 

4 Iterations. The larger w results in faster convergence. The global search capability 

increases and performs search over wide area. It has more exploration capabilities over 

the whole search area. As w decreases, the local search capabilities are increased and 

convergence speed is decreased. When w is around 0.6, the PSO algorithm takes a very 

long time for convergence. It does not converge for even 150 iterations. So the value of w 

to be chosen for better performance is decided by selection a run which implements for a 

reasonable number of iterations before finding optimum solution. 
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Table 4.5  Observations made by varying learning factors 

c1 c2 N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage (%) 

of matches with 

original top 250 

combinations  

Speedup 

ratio  

Runs Time  

(sec) 

1.9 2 442 2.05 70.4 34.29 150 76.39 

1.8 2 520 2.42 73.2 30.30 150 76.07 

1 2 424 1.97 66 33.51 89 45.97 

2 3 308 1.43 56 39.14 150 73.25 

2 1.8 476 2.21 71.2 32.20 150 72.34 

4 1 669 3.11 80 25.74 150 74.69 

4 3 276 1.28 53.6 41.81 49 20.45 

5 4 467 2.17 74 34.11 150 62.80 

1.9 1.9 130 0.60 29.2 48.36 13 7.60 

2 2 84 0.39 18.4 47.16 7 3.80 
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Table 4.6  Observations made by varying inertia weight 

 

 

 

 

 

w  N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

0.6 782 3.63 64.8 17.83 150 97.37 

0.8 559 2.60 52.8 20.33 90 50.11 

0.9 395 1.83 63.6 34.66 79 46.34 

1 130 0.60 29.2 48.36 13 7.60 

1.2 67 0.31 11.2 35.98 6 2.72 

1.4 62 0.28 11.2 38.88 6 2.72 

1.6 50 0.23 8.4 36.16 4 1.77 

1.8 48 0.22 7.2 32.29 4 1.80 



72 

 

The PSO simulation must have a good local search capability near the corner of 

search space having high fitness values and at the same time the run should not take 

much time. With the results from the runs corresponding to around 30 recorded values of 

w, it is observed that the PSO gives a greater search capability with reasonable number of 

iterations for w ranging from 0.8 till 1. 

 

4.2.3.3. Varying Stopping Criteria 

Runs are conducted by varying the tolerance and the number of particles that 

converge by coming close. The results are tabulated and observations are made on how 

the particles converge. All the runs are made for c1 = 2, c2 = 1.9, and w = 0.8, same initial 

particle generation and random numbers. 

 

a. Varying Tolerance Between Particles 

The tolerance is modified in each run and the results are recorded in Table 4.7. It 

is observed that as tolerance increases the convergence becomes faster and so is the 

percentage match with the top 250 results of enumeration method.  Speedup ratio is 

observed to be decreasing as tolerance increases. This is because with a very small value 

of tolerance, the particles move around through different locations in search space for 

more duration and in some instances the particles could get struck up local maxima and 

they could even end up not converging.  If the tolerance is increased, there is more 
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probability that the PSO run stops even if the particles do not converge. So the tolerance 

must be chosen not too high or too low such that the particles get more scope to search 

within less time.   

b. Varying the Number of Particles Converged 

During PSO implementation, the randomly generated particles slowly come closer 

as they find the optimum solution. But in some cases few particles do not converge and 

are struck up moving around its local best. The total number of particles considered in 

this run is 15. Results are recorded varying the number of particles that come closer for 

convergence. 

 

 

Table 4.7  Observations made by varying tolerance between particles 

 

Tolerance  N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage (%) 

of matches with 

original top 250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

5  682  3.16  61.6  19.44  150  67.74 

10  475  2.21  59.2  26.83  59  29.09  

15  218  1.01  46.4  45.82  18  7.52  

20  93  0.43  19.6  45.37  7  2.74  
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If the particles coming closer are chosen to be very small, there are more chances 

of premature convergence and the particles have less scope to move around the search 

space before convergence. The time for the execution is very short with a reduced 

accuracy. As the number of particles coming closer is increased, the running time 

increases and the particles get a chance to move around in a broader region before finding 

optimal location. It could be observed from Table 4.8 that consideration of 13 particles 

coming closer out of total 15 particles may not lead to convergence as in most of the 

cases. Few particles do not converge as they are stuck in local maxima. So the selected 

number of particles must be a tradeoff between both these categories. In the present 

simulation 10 particles are chosen as a tradeoff between running time and accuracy. 

 

c.   Another Stopping Criteria – Local Bests Of Particles 

Converge 

Observations of the results obtained from PSO are made by varying the stopping 

criterion. Instead of the general criterion proposed with the algorithm where most of the 

particles come closer for convergence, a new stopping criterion involving all the local 

bests of particles come closer is chosen. 
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Table 4.8  Observations made by varying number of particles converging 

 

Particles 

converged  

N-2 

branch 

combina

-tions 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speed-

up 

ratio  

Runs  Time  

(sec)  

Tolerance  

13  682  3.16  61.6  19.44  150  91.00 10  

12  627  2.91  60.8  20.88  112  66.65 10  

10  475  2.21  59.2  26.83  59  39.71 10  

9  470  2.183  59.2  27.12  58  34.38 10  

7  153  0.710  36.4  51.22  12  6.86 10  

6  79  0.366  14.4  39.24  6  3.42 10  
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Table 4.9 records the average results obtained from 100 random PSO runs 

considering that local bests of particles come closer for convergence. It is compared to 

the average of 100 PSO runs with same input parameters where the particles come closer 

for convergence. It is observed that considering distance between local bests of particles 

as stopping criteria gives slightly higher speedup ratio but the convergence occurs fast. 

The percentage of combinations searched and percentage of match found compared to top 

250 critical branch combinations from enumeration N-2 method is also less. Since we 

need to search larger area before convergence, the particles coming closer is considered 

as better stopping criteria for this purpose.  

 

4.2.3.4. Varying Initial Particle Positions 

The impact of the initial particle positions are studied here. All the higher fitness 

function values are towards one corner in the searching space. If the random particles are 

more towards the corner with higher fitness values result in premature convergence. 

Particles towards the corner of search space with lower fitness values may not converge 

to the optimum position but may be trapped in the particles local best positions. So the 

best particles positions would be randomly distributed over all the search space. Some 

observations made with different particle initial positions but with same initial conditions 

are displayed in the Table 4.10. 
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Table 4.9  Comparison of average output of 100 PSO runs on modified 118-bus system 

for N-2 contingencies with different stopping criteria 

Stopping 

Criteria 

N-2 branch 

combinations 

searched  

Percentage 

(%) of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

Local bests of 

particles come 

closer 

167.07  0.78  27.00  36.48  23.76  13.20  

Particles come 

Closer 
272.36  1.27  36.65  31.80  59.50  28.76  

 

 

4.2.3.5. Varying Number of Particles 

Selection of particles provides tradeoff between time and global search 

capability. More number of particles would give more accurate tabu list with 

many critical branches. But considering the time taken for all the particles to 

move in the search space and to converge, the particles used for searching 

are sufficient to provide a good list of critical branches within reasonable 

amount of time. The number of particles also depends on the size of the 

search space. Larger the area more particles are necessary to travel towards 

most of the critical contingencies. 
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Table 4.10  Observations made by varying initial particle position 

 

 N-2 branch 

combinations 

searched  

Percentage 

(%) of 

branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Time  

(sec)  

Randomly 

distributed 

particles 

395 1.83 58.4 31.83 72 30.25 

Some 

towards low 

ff corner and 

others 

towards high 

ff corner 

849 3.94 50.4 12.78 150 66.75 

More 

towards high 

ff corner 

110 0.51  23.6 46.19 9 6.55  

Towards 

high ff 

corner 

186 0.86  31.6 36.57 18 19.38  

More 

towards low 

ff corner 

437 2.02 0.40 0.19 57 36.36 

Towards low 

ff corner 
96 0.44 2 4.48 7 4.85 
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As observed from Table 4.11, selecting 15 particles is sufficient to provide a 

reasonable speedup ratio of 26.83 within 39.71 seconds search time. So the number of 

particles chosen in this simulation is 15. Table 4.11 shows the variations of the 

simulations with initial number of particles and their positions. In a similar manner some 

offline studies can be performed on any system before implementing PSO algorithm. 

This may give a good idea on the total number of particles sufficient to give good results 

within reasonable amount of time. This can be used for real time applications in the same 

system.  

Table 4.11  Observations made by varying number of particles 

 

N-2 branch 

combinations 

searched  

Percentage (%) 

of branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speedup 

ratio  

Runs  Number 

of Initial 

Particles  

Time  

(sec)  

1585  7.36  78.4  10.65  150  25  134.56  

889  4.12  73.6  17.82  150  20  113.73  

475  2.21  59.2  26.83  59  15  39.71  

114  0.53  23.6  44.57  23  10  10.55  

32  0.15  6  40.37  9  5  2.88  

9  0.04  0.8  19.14  3  3  0.90  
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4.3. Ranking Critical N-3 Contingencies 

The same process of screening high order contingencies implemented for N-2 

contingencies can also be implemented to third order contingencies. The test system used 

for testing N-3 contingencies is IEEE 30-bus test system. Figure 4.9 shows the original 

test system. Enumeration method is implemented for N-3 contingencies and the IEEE 30-

bus test system is modified in a similar manner by adding new branches and buses to 

prevent islanding. The modified IEEE 30-bus test system has 75 buses and 136 branches.  

The total number of N-3 branch combinations in the whole test system are 

(136×135×134)/(3×2×1) = 410,040. Enumeration method is performed to rank N-3 

contingency events and the running time is approximately more than 24 hours. This is 

impractical to use in real time situations. This result from enumeration method is used to 

measure the accuracy of PSO algorithm. The ranking of criticality of branches is obtained 

from enumeration N-1 method on the modified 30-bus system. All the branches in the 

test system are reordered and this increases efficiency of PSO algorithm. 

Particle searches through a three dimensional search space where x, y, and z 

coordinates represent the branches that are removed from the service. Some stages of 

output in one of the PSO case with c1 = 1.8, c2 = 1.9, and w = 0.9 is visualized in Figure 

4.10. The particles are randomly initialized in initial stage and they are found to be 

converging as they reach global best location.  
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Figure 4.9  IEEE 30 – Bus Test System 
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Initial Stage Intermediate Stage

Final Stage

 

 

Figure 4.10  Visualization of stages of PSO for screening N-3 contingencies 
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The statistical results reveal about the input parameters that give efficient list of 

critical branch combinations. Similar to the previous N-2 contingency test, c1 and c2 in 

the range of 1.8 to 2 appear to have good convergence rate and probability of finding 

better solution. The variation of input parameters is similarly done for observing the 

change in output of PSO for screening N-3 contingencies. The speedup ratio for finding 

N-2 contingencies is better than the ones obtained by N-3 contingencies. This could be 

due to the increased searching space. The algorithm has more computational time and 

more CPU time compared to the results from Table 4.3 which are implemented for 

screening N-2 contingencies over a smaller searching space. Depending on the system 

size the initial random positions are chosen. In this experiment, an initial population size 

of 20 particles is chosen. Based on 100 experimental runs with 150 maximum iterations 

in each run, the efficient tolerance value while converging is selected to be 15 and the 

number of particles coming closer when optimum is found is set as 14. The value of 

inertial weight around 0.9 and 1 has more search capability. The results are observed for 

various input parameters and some of the cases with best realization are recorded in Table 

4.12.  

The results in the Table 4.12 and Table 4.13 reflect a low percentage of match 

with top 250 contingency events, although the speed up ratio is still very good. However, 

more researches are necessary to improve the percentage match because the ultimate goal 

is to identify reasonably more contingencies. 
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Table 4.12  PSO results obtained for ten random runs for N-3 contingencies 

c1 c2 w N-2 

branch 

combina

-tions 

searched  

Percentage 

(%) of 

branch 

combinations 

searched  

Percentage 

(%) of 

matches with 

original top 

250 

combinations  

Speed

-up 

ratio  

Iterations Time  

(sec) 

1.8 1.9 0.9 922 0.22 3.94 17.52 69 51.16 

1.8 1.9 1 1261 0.3 7.42 24.12 132 96 

1.9 2 1 1135 0.27 6.59 23.8 150 129.43 

1 2 1 976 0.23 5.66 23.77 150 125.51 

2 1.9 1 956 0.23 4.68 20.08 150 113.59 

1.1 1 1 1299 0.31 7.04 22.22 150 131.19 

4 1 1 1196 0.29 6.41 21.97 150 131.48 

1.8 1.8 0.9 512 0.12 1.42 11.37 66 59.43 

1.9 1.9 0.9 896 0.21 4.57 20.91 150 116.63 

1.9 1.9 1 1307 0.31 7.27 22.8 150 130.12 

 

The average of 100 PSO runs with varying input parameters is showed in Table 4.13.  
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Table 4.13  Average PSO parameters based on 100 runs on modified and reordered 30-

bus system for N-3 contingencies 

 N-2 branch 

combinations 

searched  

Percentage 

(%) of 

branch 

combinations 

searched  

Percentage (%) 

of matches with 

original top 250 

combinations  

Speedup 

ratio  

Runs Time  

(sec) 

Reordered 

System 

1046 0.249 5.5 20.856 131.7 10582 

 

 

Likely, this means more fine-tuning in the future work for the PSO parameters 

such that a slower search will be achieved to explore more contingency events. 

 

4.4. Chapter Summary 

In this chapter the results obtained proved the efficiency of algorithm to screen 

high order contingencies. The efficiency of the algorithm has been explained with the 

help of observations made. In the next chapter conclusion is drawn from the thesis and 

illustrated along with the scope of possible future improvements. 
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Chapter 5 Conclusions and Future Work 
 

5.1. Conclusion 

The original PSO algorithm gives an intelligent strategy to search the feasible 

solution space to find the most critical high order contingency. PSO combined with tabu 

search proposed in this thesis is very useful to record a list of critical high order 

contingencies when the particles traverse in a space, where the (x, y) coordinates 

represent outage of Line x and Line y. The tabu list along with PSO is very effective in 

keeping a record of many critical contingency events. This makes the proposed algorithm 

different from conventional PSO algorithm which seeks the best solution only, while the 

proposed algorithm seeks a set of top solutions, i.e., critical contingency events. 

 Reordering branches of test system based on severity of N-1 contingencies is 

observed to be very useful to increase the convergence properties and efficiency of the 

algorithm. Global search capability of the algorithm is reduced and local search 

capability is increased. Reordering of the test systems collects many critical 

contingencies in a small area in the whole test system. PSO concentrates in searching this 

location more which increases the number of critical branch combinations searched. 

Therefore, the speedup ratio is found to increase significantly.  
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The proposed PSO-based algorithm displays good performance in terms of 

solution quality, computational costs, and convergence stability.  PSO has proved to be 

very efficient and takes less time and less CPU usage compared to using brute force 

enumeration method. The impact on results obtained from PSO with variations in 

different input parameters is studied.  Variation of inertia weight, learning factors, and 

number of particles is tested and the range of values more suitable for this specific 

algorithm is suggested. PSO is found to be advantageous due to its simplicity of 

implementation and capability of parallel search. 

The proposed algorithm is tested for N-2 and N-3 contingencies using two test 

systems modified from the IEEE 118-bus and 30-bus systems. It can be extended to other 

higher order contingencies also but visualization could be difficult because of the 

increases of the problem dimensions corresponding to the order of contingencies.  

In summary, the contribution of this thesis can be given as:  

 An efficient searching algorithm based on PSO and tabu search is proposed to 

identify a set of most severe high order contingency events. 

 A reordering approach as a preprocessing of the proposed searching algorithm 

is applied to sharply increase the solution quality and efficiency of the 

proposed algorithm. 

 A comparison study of the running time and accuracy when different 

parameters of the PSO-based algorithm are applied.  



88 

 

 

5.2. Future work 

Future work includes the consideration of possible corrective actions under high 

order contingency events such as re-dispatching generations, calling reserves, load 

shedding, etc. Also, a full AC-based model may be applied such that voltage magnitudes 

need to be considered and the corrective action may include increasing generation 

excitation, switching on reactive compensators, and adjusting load tap changers. This 

shall give more accurate results. Also, more PSO parameter tuning may be studied for N-

3 and higher order contingency events to improve the percentage match because the 

ultimate goal is to identify more critical contingencies.  

 

5.3. Chapter Summary 

This chapter presents the overview and the contribution of the thesis. Possible future 

work to broaden the scope of usage of the proposed algorithm is discussed.  
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Appendix A 

Test System Case File Corresponding to Modified 30-Bus Test System 

%% system MVA base 

baseMVA = 100; 

 

 

%% bus data 

% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone

 Vmax Vmin 

bus = [ 

    1   3   0        0   0   0   1   1   0   135 1   1.05      0.95; 

    2   2   21.7    12.7    0   0   1   1   0   135 1   1.1 0.95; 

    3   1   2.4 1.2 0   0   1   1   0   135 1   1.05         0.95; 

    4   1   7.6 1.6 0   0   1   1   0   135 1   1.05         0.95; 

    5   1   0   0   0   0.19    1   1   0   135 1   1.05     0.95; 

    6   1   0   0   0   0   1   1   0   135 1   1.05            0.95; 

    7   1   22.8    10.9    0   0   1   1   0  135 1 1.05   0.95; 

    8   1   30  30  0   0   1   1   0   135 1   1.05          0.95; 

    9   1   0   0   0   0   1   1   0   135 1   1.05            0.95; 

    10  1   5.8 2   0   0   3   1   0   135 1   1.05          0.95; 

    11  1   0   0   0   0   1   1   0   135 1   1.05            0.95; 

    12  1   11.2    7.5 0   0   2   1   0   135 1   1.05    0.95; 

    13  2   0   0   0   0   2   1   0   135 1   1.1              0.95; 

    14  1   6.2 1.6 0   0   2   1   0   135 1   1.05         0.95; 

    15  1   8.2 2.5 0   0   2   1   0   135 1   1.05         0.95; 

    16  1   3.5 1.8 0   0   2   1   0   135 1   1.05         0.95; 

    17  1   9   5.8 0   0   2   1   0   135 1   1.05          0.95; 

    18  1   3.2 0.9 0   0   2   1   0   135 1   1.05         0.95; 

    19  1   9.5 3.4 0   0   2   1   0   135 1   1.05         0.95; 

    20  1   2.2     0.7 0   0   2   1   0   135 1   1.05     0.95; 

    21  1   17.5    11.2 0   0   3   1   0   135 1   1.05  0.95; 

    22  2   0       0    0   0   3   1   0   135 1   1.1        0.95; 

    23  2   3.2     1.6  0   0   2   1   0   135 1   1.1      0.95; 

    24  1   8.7     6.7  0   0.04  3  1   0 135 1   1.05   0.95; 

    25  1   0       0    0   0   3   1   0   135 1   1.05      0.95; 

    26  1   3.5     2.3 0   0   3   1   0   135 1   1.05     0.95; 

    27  2   0       0   0   0   3   1   0   135 1   1.1          0.95; 

    28  1   0       0   0   0   1   1   0   135 1   1.05        0.95; 

    29  1   2.4     0.9 0   0   3   1   0   135 1   1.05     0.95; 

    30  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    31  1   2.4     0.9 0   0   3   1   0   135 1   1.05     0.95; 

    32  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95; 

    33  1   2.4     0.9 0   0   3   1   0   135 1   1.05     0.95; 

    34  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    35  1   2.4     0.9 0   0   3   1   0   135 1   1.05     0.95; 

    36  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    37  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    38  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    39  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    40  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    41  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    42  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    43  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    44  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    45  1   2.4     0.9 0   0   3   1   0   135 1   1.05    0.95; 
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    46  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95; 

    47  1   2.4     0.9 0   0   3   1   0   135 1   1.05    0.95; 

    48  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    49  1   2.4     0.9 0   0   3   1   0   135 1   1.05     0.95; 

    50  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    51  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    52  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    53  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    54  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    55  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    56  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;    

    57  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    58  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;    

    59  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    60  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    61  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    62  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    63  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    64  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    65  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    66  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;    

    67  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    68  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    69  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    70  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    71  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    72  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    73  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    74  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;   

    75  1   10.6    1.9 0   0   3   1   0   135 1   1.05    0.95;  

    ]; 

 

 

 

%% generator data 

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin 

gen = [ 

 1 23.54 0 150 -20 1 100 1 80 0; 

 2 60.97 0 60 -20 1 100 1 80 0; 

 22 21.59 0 62.5 -15 1 100 1 50 0; 

 27 26.91 0 48.7 -15 1 100 1 55 0; 

 23 19.2 0 40 -10 1 100 1 30 0; 

 13 37 0 44.7 -15 1 100 1 40 0; 

]; 

 

 

branch = [ 

2 4 0.06 0.17 0.02   65 65 65  0  0 1; 

6 7 0.03 0.08 0      130 130 130 0 0 1; 

9 11 0 0.21 0       65 65 65 0   0 1; 

14 15 0.22 0.2 0       16 16 16 0   0 1; 

15 18 0.11 0.22 0       16 16 16 0   0 1; 

10 22 0.07 0.15 0       32 32 32 0   0 1; 

23 24 0.13 0.27 0       16 16 16 0   0 1; 

29 30 0.24 0.45 0       16 16 16 0   0 1; 

8 28 0.06 0.2 0.02  32 32 32 0 0 1; 
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31 20 0.02 0.06 0.01  32 32 32 0 0 1; 

15 32 0.32 0.6 0       16 16 16 0 0 1; 

1 33 0.06 0.2 0.02  32 32 32 0 0 1; 

33 2 0.02 0.06 0.01  32 32 32 0 0 1; 

3 34 0.32 0.6 0       16 16 16 0 0 1; 

11 36 0.32 0.6 0       16 16 16 0 0 1; 

37 15 0.02 0.06 0.01  32 32 32 0 0 1; 

18 39 0.06 0.2 0.02  32 32 32 0 0 1; 

5 6 0.06 0.2 0.02  32 32 32 0 0 1; 

7 8 0.02 0.06 0.01  32 32 32 0 0 1; 

42 17 0.02 0.06 0.01  32 32 32 0 0 1; 

44 11 0.02 0.06 0.01  32 32 32 0 0 1; 

12 14 0.12 0.26 0       32 32 32 0 0 1; 

22 24 0.12 0.18 0       16 16 16 0 0 1; 

43 11 0.02 0.06 0.01  32 32 32 0 0 1; 

22 41 0.06 0.2 0.02   

32 

32 32 0 0 1; 

21 40 0.06 0.2 0.02   

32 

32 32 0 0 1; 

10 42 0.06 0.2 0.02  32 32 32 0 0 1; 

34 4 0.24 0.45 0       16 16 16 0 0 1; 

28 44 0.06 0.2 0.02  32 32 32 0 0 1; 

16 17 0.08 0.19 0       16 16 16 0 0 1; 

18 19 0.06 0.13 0       16 16 16 0 0 1; 

10 31 0.06 0.2 0.02  32 32 32 0 0 1; 

6 10 0 0.56 0       32 32 32 0 0 1; 

24 25 0.19 0.33 0       16 16 16 0 0 1; 

32 18 0.24 0.45 0       16 16 16 0 0 1; 

2 5 0.05 0.2 0.02  

130 

130 130 0 0 1; 

19 20 0.03 0.07 0       32 32 32 0 0 1; 

41 17 0.02 0.06 0.01  32 32 32 0 0 1; 

1 3 0.05 0.19 0.02  

130 

130 130 0 0 1; 

12 16 0.09 0.2 0       32 32 32 0 0 1; 

18 38 0.06 0.2 0.02  32 32 32 0 0 1; 

35 11 0.02 0.06 0.01  32 32 32 0 0 1; 

2 6 0.06 0.18 0.02  65 65 65 0 0 1; 

5 7 0.05 0.12 0.01  70 70 70 0 0 1; 

28 27 0 0.4 0       65 65 65 0 0 1; 
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10 20 0.09 0.21 0       32 32 32 0 0 1; 

3 4 0.01 0.04 0       

130 

130 130 0 0 1; 

6 9 0 0.21 0       65 65 65 0 0 1; 

39 17 0.02 0.06 0.01  32 32 32 0 0 1; 

6 35 0.06 0.2 0.02  32 32 32 0 0 1; 

36 28 0.24 0.45 0       16 16 16 0 0 1; 

6 43 0.06 0.2 0.02  32 32 32 0 0 1; 

6 8 0.01 0.04 0       32 32 32 0 0 1;    

23 24 0.13 0.27 0       16 16 16 0 0 1; 

12 13 0 0.14 0       65 65 65 0 0 1; 

21 22 0.01 0.02 0       32 32 32 0 0 1; 

9 10 0 0.11 0       65 65 65 0 0 1; 

4 6 0.01 0.04 0       90 90 90 0 0 1; 

1 2 0.02 0.06 0.03  

130 

130 130 0 0 1; 

15 23 0.1 0.2 0       16 16 16 0 0 1; 

25 27 0.11 0.21 0       16 16 16 0 0 1; 

27 29 0.22 0.42 0       16 16 16 0 0 1; 

12 37 0.06 0.2 0.02  32 32 32 0 0 1; 

40 29 0.02 0.06 0.01  32 32 32 0 0 1; 

10 21 0.03 0.07 0       32 32 32 0 0 1; 

4 12 0 0.26 0       65 65 65 0 0 1; 

27 30 0.32 0.6 0       16 16 16 0 0 1; 

6 28 0.02 0.06 0.01  32 32 32 0 0 1; 

10 17 0.03 0.08 0       32 32 32 0 0 1; 

38 12 0.02 0.06 0.01  32 32 32 0 0 1; 

12 15 0.07 0.13 0       32 32 32 0 0 1;    

1 45 0.13 0.27 0       16 16 16 0 0 1; 

45 3 0 0.14 0       65 65 65 0 0 1; 

1 46 0.01 0.02 0       32 32 32 0 0 1; 

46 2 0 0.11 0       65 65 65 0 0 1; 

1 47 0.01 0.04 0       90 90 90 0 0 1; 

47 33 0.02 0.06 0.03  

130 

130 130 0 0 1; 

33 48 0.1 0.2 0       16 16 16 0 0 1; 

48 2 0.11 0.21 0       16 16 16 0 0 1; 

2 49 0.22 0.42 0       16 16 16 0 0 1; 

49 3 0.06 0.2 0.02  32 32 32 0 0 1; 

3 50 0.02 0.06 0.01  32 32 32 0 0 1; 
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50 4 0.03 0.07 0       32 32 32 0 0 1; 

10 51 0 0.26 0       65 65 65 0 0 1; 

51 22 0.32 0.6 0       16 16 16 0 0 1; 

10 52 0.02 0.06 0.01  32 32 32 0 0 1; 

52 21 0.03 0.08 0       32 32 32 0 0 1; 

21 53 0.02 0.06 0.01  32 32 32 0 0 1; 

53 22 0.07 0.13 0       32 32 32 0 0 1;    

27 54 0 0.26 0       65 65 65 0 0 1; 

54 29 0.32 0.6 0       16 16 16 0 0 1; 

29 55 0.02 0.06 0.01  32 32 32 0 0 1; 

55 30 0.03 0.08 0       32 32 32 0 0 1; 

30 56 0.02 0.06 0.01  32 32 32 0 0 1; 

56 27 0.07 0.13 0       32 32 32 0 0 1;    

56 57 0.07 0.13 0       32 32 32 0 0 1;    

57 27 0.07 0.13 0       32 32 32 0 0 1;    

27 58 0.07 0.13 0       32 32 32 0 0 1;     

58 28 0.07 0.13 0       32 32 32 0 0 1;    

2 33 0.07 0.13 0       32 32 32 0 0 1;  

4 59 0 0.26 0       65 65 65 0 0 1; 

59 12 0.32 0.6 0       16 16 16 0 0 1; 

4 60 0.02 0.06 0.01  32 32 32 0 0 1; 

60 6 0.03 0.08 0       32 32 32 0 0 1; 

2 61 0.02 0.06 0.01  32 32 32 0 0 1; 

61 6 0.07 0.13 0       32 32 32 0 0 1;    

2 62 0 0.26 0       65 65 65 0 0 1; 

62 5 0.32 0.6 0       16 16 16 0 0 1; 

21 63 0.02 0.06 0.01  32 32 32 0 0 1; 

63 40 0.03 0.08 0       32 32 32 0 0 1; 

40 64 0.02 0.06 0.01  32 32 32 0 0 1; 

64 29 0.07 0.13 0       32 32 32 0 0 1;    

29 65 0.07 0.13 0       32 32 32 0 0 1;    

65 30 0.07 0.13 0       32 32 32 0 0 1;    

30 66 0.07 0.13 0       32 32 32 0 0 1;     

66 27 0.07 0.13 0       32 32 32 0 0 1;    

27 67 0.07 0.13 0       32 32 32 0 0 1;   

67 28 0.03 0.07 0       32 32 32 0 0 1;   

2 68 0.07 0.13 0       32 32 32 0 0 1;   
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68 4 0.03 0.07 0       32 32 32 0 0 1;  

1 69 0 0.26 0       65 65 65 0 0 1; 

69 2 0.32 0.6 0       16 16 16 0 0 1; 

1 33 0 0.26 0       65 65 65 0 0 1; 

33 2 0.32 0.6 0       16 16 16 0 0 1; 

6 70 0 0.26 0       65 65 65 0 0 1; 

70 28 0.32 0.6 0       16 16 16 0 0 1; 

8 71 0.02 0.06 0.01  32 32 32 0 0 1; 

71 28 0.07 0.13 0       32 32 32 0 0 1;    

28 72 0 0.26 0       65 65 65 0 0 1; 

72                  44 0.32 0 .6  0       16     16        16 0 0 1; 

44 73 0.02 0.06 0.01  32 32 32 0 0 1; 

73 11 0.03 0.08 0       32 32 32 0 0 1; 

6 74 0.02 0.06 0.01   

32 

32 32 0 0 1; 

74 8 0.03 0.08 0       32 32 32 0 0 1; 

7 75 0.02 0.06 0.01  32 32 32 0 0 1; 

75 8 0.03 0.08 0       32 32 32 0 0 1; 

]; 

 

 

%%-----  OPF Data  -----%% 

%% area data 

areas = [ 

 1 8; 

 2 23; 

 3 26; 

]; 

 

%% generator cost data 

% 1         startup     shutdown n x1 y1 ... xn yn 

% 2         startup     shutdown n c(n-1) ... c0 

gencost = [ 

 2 0 0 3 0.02 2 0; 

 2 0 0 3 0.0175 1.75 0; 

 2 0 0 3 0.0625 1 0; 

 2 0 0 3 0.00834 3.25 0; 

 2 0 0 3 0.025 3 0; 

 2 0 0 3 0.025 3 0; 

]; 
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APPENDIX B 
 

Test System Case File Corresponding to Modified 118-Bus Test System 
 

%% system MVA base 

baseMVA = 100; 

 

 

%% bus data 

% bus_i type Pd    Qd Gs    Bs      area Vm Va baseKV zone      Vmax      Vmin 

bus = [ 

  

1 2 51 27 0 0 1 0.955 10.67 138 1 1.06 0.94; 

2 1 20 9 0 0 1 0.971 11.22 138 1 1.06 0.94; 

3 1 39 10 0 0 1 0.968 11.56 138 1 1.06 0.94; 

4 2 39 12 0 0 1 0.998 15.28 138 1 1.06 0.94; 

5 1 0 0 0 -40 1 1.002 15.73 138 1 1.06 0.94; 

6 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

7 1 19 2 0 0 1 0.989 12.56 138 1 1.06 0.94; 

8 2 28 0 0 0 1 1.015 20.77 345 1 1.06 0.94; 

9 1 0 0 0 0 1 1.043 28.02 345 1 1.06 0.94; 

10 2 0 0 0 0 1 1.05 35.61 345 1 1.06 0.94; 

11 1 70 23 0 0 1 0.985 12.72 138 1 1.06 0.94; 

12 2 47 10 0 0 1 0.99 12.2 138 1 1.06 0.94; 

13 1 34 16 0 0 1 0.968 11.35 138 1 1.06 0.94; 

14 1 14 1 0 0 1 0.984 11.5 138 1 1.06 0.94; 

15 2 90 30 0 0 1 0.97 11.23 138 1 1.06 0.94; 

16 1 25 10 0 0 1 0.984 11.91 138 1 1.06 0.94; 

17 1 11 3 0 0 1 0.995 13.74 138 1 1.06 0.94; 

18 2 60 34 0 0 1 0.973 11.53 138 1 1.06 0.94; 

19 2 45 25 0 0 1 0.963 11.05 138 1 1.06 0.94; 

20 1 18 3 0 0 1 0.958 11.93 138 1 1.06 0.94; 

21 1 14 8 0 0 1 0.959 13.52 138 1 1.06 0.94; 

22 1 10 5 0 0 1 0.97 16.08 138 1 1.06 0.94; 

23 1 7 3 0 0 1 1 21 138 1 1.06 0.94; 

24 2 13 0 0 0 1 0.992 20.89 138 1 1.06 0.94; 

25 2 0 0 0 0 1 1.05 27.93 138 1 1.06 0.94; 

26 2 0 0 0 0 1 1.015 29.71 345 1 1.06 0.94; 

27 2 71 13 0 0 1 0.968 15.35 138 1 1.06 0.94; 
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28 1 17 7 0 0 1 0.962 13.62 138 1 1.06 0.94; 

29 1 24 4 0 0 1 0.963 12.63 138 1 1.06 0.94; 

30 1 0 0 0 0 1 0.968 18.79 345 1 1.06 0.94; 

31 2 43 27 0 0 1 0.967 12.75 138 1 1.06 0.94; 

32 2 59 23 0 0 1 0.964 14.8 138 1 1.06 0.94; 

33 1 23 9 0 0 1 0.972 10.63 138 1 1.06 0.94; 

34 2 59 26 0 14 1 0.986 11.3 138 1 1.06 0.94; 

35 1 33 9 0 0 1 0.981 10.87 138 1 1.06 0.94; 

36 2 31 17 0 0 1 0.98 10.87 138 1 1.06 0.94; 

37 1 0 0 0 -25 1 0.992 11.77 138 1 1.06 0.94; 

38 1 0 0 0 0 1 0.962 16.91 345 1 1.06 0.94; 

39 1 27 11 0 0 1 0.97 8.41 138 1 1.06 0.94; 

40 2 66 23 0 0 1 0.97 7.35 138 1 1.06 0.94; 

41 1 37 10 0 0 1 0.967 6.92 138 1 1.06 0.94; 

42 2 96 23 0 0 1 0.985 8.53 138 1 1.06 0.94; 

43 1 18 7 0 0 1 0.978 11.28 138 1 1.06 0.94; 

44 1 16 8 0 10 1 0.985 13.82 138 1 1.06 0.94; 

45 1 53 22 0 10 1 0.987 15.67 138 1 1.06 0.94; 

46 2 28 10 0 10 1 1.005 18.49 138 1 1.06 0.94; 

47 1 34 0 0 0 1 1.017 20.73 138 1 1.06 0.94; 

48 1 20 11 0 15 1 1.021 19.93 138 1 1.06 0.94; 

49 2 87 30 0 0 1 1.025 20.94 138 1 1.06 0.94; 

50 1 17 4 0 0 1 1.001 18.9 138 1 1.06 0.94; 

51 1 17 8 0 0 1 0.967 16.28 138 1 1.06 0.94; 

52 1 18 5 0 0 1 0.957 15.32 138 1 1.06 0.94; 

53 1 23 11 0 0 1 0.946 14.35 138 1 1.06 0.94; 

54 2 113 32 0 0 1 0.955 15.26 138 1 1.06 0.94; 

55 2 63 22 0 0 1 0.952 14.97 138 1 1.06 0.94; 

56 2 84 18 0 0 1 0.954 15.16 138 1 1.06 0.94; 

57 1 12 3 0 0 1 0.971 16.36 138 1 1.06 0.94; 

58 1 12 3 0 0 1 0.959 15.51 138 1 1.06 0.94; 

59 2 277 113 0 0 1 0.985 19.37 138 1 1.06 0.94; 

60 1 78 3 0 0 1 0.993 23.15 138 1 1.06 0.94; 

61 2 0 0 0 0 1 0.995 24.04 138 1 1.06 0.94; 

62 2 77 14 0 0 1 0.998 23.43 138 1 1.06 0.94; 

63 1 0 0 0 0 1 0.969 22.75 345 1 1.06 0.94; 

64 1 0 0 0 0 1 0.984 24.52 345 1 1.06 0.94; 
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65 2 0 0 0 0 1 1.005 27.65 345 1 1.06 0.94; 

66 2 39 18 0 0 1 1.05 27.48 138 1 1.06 0.94; 

67 1 28 7 0 0 1 1.02 24.84 138 1 1.06 0.94; 

68 1 0 0 0 0 1 1.003 27.55 345 1 1.06 0.94; 

69 3 0 0 0 0 1 1.035 30 138 1 1.06 0.94; 

70 2 66 20 0 0 1 0.984 22.58 138 1 1.06 0.94; 

71 1 0 0 0 0 1 0.987 22.15 138 1 1.06 0.94; 

72 2 12 0 0 0 1 0.98 20.98 138 1 1.06 0.94; 

73 2 6 0 0 0 1 0.991 21.94 138 1 1.06 0.94; 

74 2 68 27 0 12 1 0.958 21.64 138 1 1.06 0.94; 

75 1 47 11 0 0 1 0.967 22.91 138 1 1.06 0.94; 

76 2 68 36 0 0 1 0.943 21.77 138 1 1.06 0.94; 

77 2 61 28 0 0 1 1.006 26.72 138 1 1.06 0.94; 

78 1 71 26 0 0 1 1.003 26.42 138 1 1.06 0.94; 

79 1 39 32 0 20 1 1.009 26.72 138 1 1.06 0.94; 

80 2 130 26 0 0 1 1.04 28.96 138 1 1.06 0.94; 

81 1 0 0 0 0 1 0.997 28.1 345 1 1.06 0.94; 

82 1 54 27 0 20 1 0.989 27.24 138 1 1.06 0.94; 

83 1 20 10 0 10 1 0.985 28.42 138 1 1.06 0.94; 

84 1 11 7 0 0 1 0.98 30.95 138 1 1.06 0.94; 

85 2 24 15 0 0 1 0.985 32.51 138 1 1.06 0.94; 

86 1 21 10 0 0 1 0.987 31.14 138 1 1.06 0.94; 

87 2 0 0 0 0 1 1.015 31.4 161 1 1.06 0.94; 

88 1 48 10 0 0 1 0.987 35.64 138 1 1.06 0.94; 

89 2 0 0 0 0 1 1.005 39.69 138 1 1.06 0.94; 

90 2 163 42 0 0 1 0.985 33.29 138 1 1.06 0.94; 

91 2 10 0 0 0 1 0.98 33.31 138 1 1.06 0.94; 

92 2 65 10 0 0 1 0.993 33.8 138 1 1.06 0.94; 

93 1 12 7 0 0 1 0.987 30.79 138 1 1.06 0.94; 

94 1 30 16 0 0 1 0.991 28.64 138 1 1.06 0.94; 

95 1 42 31 0 0 1 0.981 27.67 138 1 1.06 0.94; 

96 1 38 15 0 0 1 0.993 27.51 138 1 1.06 0.94; 

97 1 15 9 0 0 1 1.011 27.88 138 1 1.06 0.94; 

98 1 34 8 0 0 1 1.024 27.4 138 1 1.06 0.94; 

99 2 42 0 0 0 1 1.01 27.04 138 1 1.06 0.94; 

100 2 37 18 0 0 1 1.017 28.03 138 1 1.06 0.94; 

101 1 22 15 0 0 1 0.993 29.61 138 1 1.06 0.94; 
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102 1 5 3 0 0 1 0.991 32.3 138 1 1.06 0.94; 

103 2 23 16 0 0 1 1.001 24.44 138 1 1.06 0.94; 

104 2 38 25 0 0 1 0.971 21.69 138 1 1.06 0.94; 

105 2 31 26 0 20 1 0.965 20.57 138 1 1.06 0.94; 

106 1 43 16 0 0 1 0.962 20.32 138 1 1.06 0.94; 

107 2 50 12 0 6 1 0.952 17.53 138 1 1.06 0.94; 

108 1 2 1 0 0 1 0.967 19.38 138 1 1.06 0.94; 

109 1 8 3 0 0 1 0.967 18.93 138 1 1.06 0.94; 

110 2 39 30 0 6 1 0.973 18.09 138 1 1.06 0.94; 

111 2 0 0 0 0 1 0.98 19.74 138 1 1.06 0.94; 

112 2 68 13 0 0 1 0.975 14.99 138 1 1.06 0.94; 

113 2 6 0 0 0 1 0.993 13.74 138 1 1.06 0.94; 

114 1 8 3 0 0 1 0.96 14.46 138 1 1.06 0.94; 

115 1 22 7 0 0 1 0.96 14.46 138 1 1.06 0.94; 

116 2 184 0 0 0 1 1.005 27.12 138 1 1.06 0.94; 

117 1 20 8 0 0 1 0.974 10.67 138 1 1.06 0.94; 

118 1 33 15 0 0 1 0.949 21.92 138 1 1.06 0.94;  

119 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

120 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

121 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

122 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

123 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

124 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

125 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

126 2 52 22 0 0 1 0.99 13 138 1 1.06 0.94; 

]; 

 

%% generator data 

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin 

gen = [ 

 1 0 0 15 -5 0.955 100 1 100 0; 

 4 0 0 300 -300 0.998 100 1 100 0; 

 6 0 0 50 -13 0.99 100 1 100 0; 

 8 0 0 300 -300 1.015 100 1 100 0; 

 10 450 0 200 -147 1.05 100 1 550 0; 

 12 85 0 120 -35 0.99 100 1 185 0; 

 15 0 0 30 -10 0.97 100 1 100 0; 

 18 0 0 50 -16 0.973 100 1 100 0; 

 19 0 0 24 -8 0.962 100 1 100 0; 

 24 0 0 300 -300 0.992 100 1 100 0; 

 25 220 0 140 -47 1.05 100 1 320 0; 

 26 314 0 1000 -1000 1.015 100 1 414 0; 

 27 0 0 300 -300 0.968 100 1 100 0; 

 31 7 0 300 -300 0.967 100 1 107 0; 

 32 0 0 42 -14 0.963 100 1 100 0; 
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 34 0 0 24 -8 0.984 100 1 100 0; 

 36 0 0 24 -8 0.98 100 1 100 0; 

 40 0 0 300 -300 0.97 100 1 100 0; 

 42 0 0 300 -300 0.985 100 1 100 0; 

 46 19 0 100 -100 1.005 100 1 119 0; 

 49 204 0 210 -85 1.025 100 1 304 0; 

 54 48 0 300 -300 0.955 100 1 148 0; 

 55 0 0 23 -8 0.952 100 1 100 0; 

 56 0 0 15 -8 0.954 100 1 100 0; 

 59 155 0 180 -60 0.985 100 1 255 0; 

 61 160 0 300 -100 0.995 100 1 260 0; 

 62 0 0 20 -20 0.998 100 1 100 0; 

 65 391 0 200 -67 1.005 100 1 491 0; 

 66 392 0 200 -67 1.05 100 1 492 0; 

 69 516.4 0 300 -300 1.035 100 1 805.2 0; 

 70 0 0 32 -10 0.984 100 1 100 0; 

 72 0 0 100 -100 0.98 100 1 100 0; 

 73 0 0 100 -100 0.991 100 1 100 0; 

 74 0 0 9 -6 0.958 100 1 100 0; 

 76 0 0 23 -8 0.943 100 1 100 0; 

 77 0 0 70 -20 1.006 100 1 100 0; 

 80 477 0 280 -165 1.04 100 1 577 0; 

 85 0 0 23 -8 0.985 100 1 100 0; 

 87 4 0 1000 -100 1.015 100 1 104 0; 

 89 607 0 300 -210 1.005 100 1 707 0; 

 90 0 0 300 -300 0.985 100 1 100 0; 

 91 0 0 100 -100 0.98 100 1 100 0; 

 92 0 0 9 -3 0.99 100 1 100 0; 

 99 0 0 100 -100 1.01 100 1 100 0; 

 100 252 0 155 -50 1.017 100 1 352 0; 

 103 40 0 40 -15 1.01 100 1 140 0; 

 104 0 0 23 -8 0.971 100 1 100 0; 

 105 0 0 23 -8 0.965 100 1 100 0; 

 107 0 0 200 -200 0.952 100 1 100 0; 

 110 0 0 23 -8 0.973 100 1 100 0; 

 111 36 0 1000 -100 0.98 100 1 136 0; 

 112 0 0 1000 -100 0.975 100 1 100 0; 

 113 0 0 200 -100 0.993 100 1 100 0; 

 116 0 0 1000 -1000 1.005 100 1 100 0; 

]; 

 

 

% branch data 

%  fbus tbus r x b rateA rateB rateC ratio angle status 

branch = [ 

 1 2 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

 1 3 0.0129 0.0424 0.01082 9900 0 0 0 0 1; 

 4 5 0.00176 0.00798 0.0021 9900 0 0 0 0 1; 

 3 5 0.0241 0.108 0.0284 9900 0 0 0 0 1; 

 5 6 0.0119 0.054 0.01426 9900 0 0 0 0 1; 

 6 7 0.00459 0.0208 0.0055 9900 0 0 0 0 1; 

 8 9 0.00244 0.0305 1.162 9900 0 0 0 0 1; 

 8 5 0     0.0267 0 9900 0 0 0.985 0                 1; 

 9 10 0.00258 0.0322 1.23 9900 0 0 0 0 1; 

 4 11 0.0209 0.0688 0.01748 9900 0 0 0 0 1; 

 5 11 0.0203 0.0682 0.01738 9900 0 0 0 0 1; 

 11 12 0.00595 0.0196 0.00502 9900 0 0 0 0 1; 

 2 12 0.0187 0.0616 0.01572 9900 0 0 0 0 1; 

 3 12 0.0484 0.16 0.0406 9900 0 0 0 0 1; 

 7 12 0.00862 0.034 0.00874 9900 0 0 0 0 1; 

 11 13 0.02225 0.0731 0.01876 9900 0 0 0 0 1; 
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 12 14 0.0215 0.0707 0.01816 9900 0 0 0 0 1; 

 13 15 0.0744 0.2444 0.06268 9900 0 0 0 0 1; 

 14 15 0.0595 0.195 0.0502 9900 0 0 0 0 1; 

 12 16 0.0212 0.0834 0.0214 9900 0 0 0 0 1; 

 15 17 0.0132 0.0437 0.0444 9900 0 0 0 0 1; 

 16 17 0.0454 0.1801 0.0466 9900 0 0 0 0 1; 

 17 18 0.0123 0.0505 0.01298 9900 0 0 0 0 1; 

 18 19 0.01119 0.0493 0.01142 9900 0 0 0 0 1; 

 19 20 0.0252 0.117 0.0298 9900 0 0 0 0 1; 

 15 19 0.012 0.0394 0.0101 9900 0 0 0 0 1; 

 20 21 0.0183 0.0849 0.0216 9900 0 0 0 0 1; 

 21 22 0.0209 0.097 0.0246 9900 0 0 0 0 1; 

 22 23 0.0342 0.159 0.0404 9900 0 0 0 0 1; 

 23 24 0.0135 0.0492 0.0498 9900 0 0 0 0 1; 

 23 25 0.0156 0.08 0.0864 9900 0 0 0 0 1; 

 26 25 0 0.0382 0 9900 0 0 0.96 0                 1; 

 25 27 0.0318 0.163 0.1764 9900 0 0 0 0 1; 

 27 28 0.01913 0.0855 0.0216 9900 0 0 0 0 1; 

 28 29 0.0237 0.0943 0.0238 9900 0 0 0 0 1; 

 30 17 0     0.0388 0    9900 0 0 0.96  0 1; 

 8 30 0.00431 0.0504 0.514 9900 0 0 0 0 1; 

 26 30 0.00799 0.086 0.908 9900 0 0 0 0 1; 

 17 31 0.0474 0.1563 0.0399 9900 0 0 0 0 1; 

 29 31 0.0108 0.0331 0.0083 9900 0 0 0 0 1; 

 23 32 0.0317 0.1153 0.1173 9900 0 0 0 0 1; 

 31 32 0.0298 0.0985 0.0251 9900 0 0 0 0 1; 

 27 32 0.0229 0.0755 0.01926 9900 0 0 0 0 1; 

 15 33 0.038 0.1244 0.03194 9900 0 0 0 0 1; 

 19 34 0.0752 0.247 0.0632 9900 0 0 0 0 1; 

 35 36 0.00224 0.0102 0.00268 9900 0 0 0 0 1; 

 35 37 0.011 0.0497 0.01318 9900 0 0 0 0 1; 

 33 37 0.0415 0.142 0.0366 9900 0 0 0 0 1; 

 34 36 0.00871 0.0268 0.00568 9900 0 0 0 0 1; 

 34 37 0.00256 0.0094 0.00984 9900 0 0 0 0 1; 

 38 37 0     0.0375 0 9900 0 0              0.935 0               1; 

 37 39 0.0321 0.106 0.027 9900 0 0 0 0 1; 

 37 40 0.0593 0.168 0.042 9900 0 0 0 0 1; 

 30 38 0.00464 0.054 0.422 9900 0 0 0 0 1; 

 39 40 0.0184 0.0605 0.01552 9900 0 0 0 0 1; 

 40 41 0.0145 0.0487 0.01222 9900 0 0 0 0 1; 

 40 42 0.0555 0.183 0.0466 9900 0 0 0 0 1; 

 41 42 0.041 0.135 0.0344 9900 0 0 0 0 1; 

 43 44 0.0608 0.2454 0.06068 9900 0 0 0 0 1; 

 34 43 0.0413 0.1681 0.04226 9900 0 0 0 0 1; 

 44 45 0.0224 0.0901 0.0224 9900 0 0 0 0 1; 

 45 46 0.04 0.1356 0.0332 9900 0 0 0 0 1; 

 46 47 0.038 0.127 0.0316 9900 0 0 0 0 1; 

 46 48 0.0601 0.189 0.0472 9900 0 0 0 0 1; 

 47 49 0.0191 0.0625 0.01604 9900 0 0 0 0 1; 

 42 49 0.0715 0.323 0.086 9900 0 0 0 0 1; 

 42 49 0.0715 0.323 0.086 9900 0 0 0 0 1; 

 45 49 0.0684 0.186 0.0444 9900 0 0 0 0 1; 

 48 49 0.0179 0.0505 0.01258 9900 0 0 0 0 1; 

 49 50 0.0267 0.0752 0.01874 9900 0 0 0 0 1; 

 49 51 0.0486 0.137 0.0342 9900 0 0 0 0 1; 

 51 52 0.0203 0.0588 0.01396 9900 0 0 0 0 1; 

 52 53 0.0405 0.1635 0.04058 9900 0 0 0 0 1; 

 53 54 0.0263 0.122 0.031 9900 0 0 0 0 1; 

 49 54 0.073 0.289 0.0738 9900 0 0 0 0 1; 

 49 54 0.0869 0.291 0.073 9900 0 0 0 0 1; 

 54 55 0.0169 0.0707 0.0202 9900 0 0 0 0 1; 
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 54 56 0.00275 0.00955 0.00732 9900 0 0 0 0 1; 

 55 56 0.00488 0.0151 0.00374 9900 0 0 0 0 1; 

 56 57 0.0343 0.0966 0.0242 9900 0 0 0 0 1; 

 50 57 0.0474 0.134 0.0332 9900 0 0 0 0 1; 

 56 58 0.0343 0.0966 0.0242 9900 0 0 0 0 1; 

 51 58 0.0255 0.0719 0.01788 9900 0 0 0 0 1; 

 54 59 0.0503 0.2293 0.0598 9900 0 0 0 0 1; 

 56 59 0.0825 0.251 0.0569 9900 0 0 0 0 1; 

 56 59 0.0803 0.239 0.0536 9900 0 0 0 0 1; 

 55 59 0.04739 0.2158 0.05646 9900 0 0 0 0 1; 

 59 60 0.0317 0.145 0.0376 9900 0 0 0 0 1; 

 59 61 0.0328 0.15 0.0388 9900 0 0 0 0 1; 

 60 61 0.00264 0.0135 0.01456 9900 0 0 0 0 1; 

 60 62 0.0123 0.0561 0.01468 9900 0 0 0 0 1; 

 61 62 0.00824 0.0376 0.0098 9900 0 0 0 0 1; 

 63 59 0     0.0386 0     9900 0 0                0.96           0 1; 

 63 64 0.00172 0.02 0.216 9900 0 0 0 0 1; 

 64 61 0     0.0268 0     9900 0 0                0.985 0 1; 

 38 65 0.00901 0.0986 1.046 9900 0 0 0 0 1; 

 64 65 0.00269 0.0302 0.38 9900 0 0 0 0 1; 

 49 66 0.018 0.0919 0.0248 9900 0 0 0 0 1; 

 49 66 0.018 0.0919 0.0248 9900 0 0 0 0 1; 

 62 66 0.0482 0.218 0.0578 9900 0 0 0 0 1; 

 62 67 0.0258 0.117 0.031 9900 0 0 0 0 1; 

 65 66 0 0.037 0 9900 0 0 0.935 0 1; 

 66 67 0.0224 0.1015 0.02682 9900 0 0 0 0 1; 

 65 68 0.00138 0.016 0.638 9900 0 0 0 0 1; 

 47 69 0.0844 0.2778 0.07092 9900 0 0 0 0 1; 

 49 69 0.0985 0.324 0.0828 9900 0 0 0 0 1; 

 68 69 0 0.037 0 9900 0 0 0.935 0 1; 

 69 70 0.03 0.127 0.122 9900 0 0 0 0 1; 

 24 70 0.00221 0.4115 0.10198 9900 0 0 0 0 1; 

 70 71 0.00882 0.0355 0.00878 9900 0 0 0 0 1; 

 24 72 0.0488 0.196 0.0488 9900 0 0 0 0 1; 

 71 72 0.0446 0.18 0.04444 9900 0 0 0 0 1; 

 71 73 0.00866 0.0454 0.01178 9900 0 0 0 0 1; 

 70 74 0.0401 0.1323 0.03368 9900 0 0 0 0 1; 

 70 75 0.0428 0.141 0.036 9900 0 0 0 0 1; 

 69 75 0.0405 0.122 0.124 9900 0 0 0 0 1; 

 74 75 0.0123 0.0406 0.01034 9900 0 0 0 0 1; 

 76 77 0.0444 0.148 0.0368 9900 0 0 0 0 1; 

 69 77 0.0309 0.101 0.1038 9900 0 0 0 0 1; 

 75 77 0.0601 0.1999 0.04978 9900 0 0 0 0 1; 

 77 78 0.00376 0.0124 0.01264 9900 0 0 0 0 1; 

 78 79 0.00546 0.0244 0.00648 9900 0 0 0 0 1; 

 77 80 0.017 0.0485 0.0472 9900 0 0 0 0 1; 

 77 80 0.0294 0.105 0.0228 9900 0 0 0 0 1; 

 79 80 0.0156 0.0704 0.0187 9900 0 0 0 0 1; 

 68 81 0.00175 0.0202 0.808 9900 0 0 0 0 1; 

 81 80 0 0.037 0 9900 0 0 0.935 0 1; 

 77 82 0.0298 0.0853 0.08174 9900 0 0 0 0 1; 

 82 83 0.0112 0.03665 0.03796 9900 0 0 0 0 1; 

 83 84 0.0625 0.132 0.0258 9900 0 0 0 0 1; 

 83 85 0.043 0.148 0.0348 9900 0 0 0 0 1; 

 84 85 0.0302 0.0641 0.01234 9900 0 0 0 0 1; 

 85 86 0.035 0.123 0.0276 9900 0 0 0 0 1; 

 86 87 0.02828 0.2074 0.0445 9900 0 0 0 0 1; 

 85 88 0.02 0.102 0.0276 9900 0 0 0 0 1; 

 85 89 0.0239 0.173 0.047 9900 0 0 0 0 1; 

 88 89 0.0139 0.0712 0.01934 9900 0 0 0 0 1; 

 89 90 0.0518 0.188 0.0528 9900 0 0 0 0 1; 
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 89 90 0.0238 0.0997 0.106 9900 0 0 0 0 1; 

 90 91 0.0254 0.0836 0.0214 9900 0 0 0 0 1; 

 89 92 0.0099 0.0505 0.0548 9900 0 0 0 0 1; 

 89 92 0.0393 0.1581 0.0414 9900 0 0 0 0 1; 

 91 92 0.0387 0.1272 0.03268 9900 0 0 0 0 1; 

 92 93 0.0258 0.0848 0.0218 9900 0 0 0 0 1; 

 92 94 0.0481 0.158 0.0406 9900 0 0 0 0 1; 

 93 94 0.0223 0.0732 0.01876 9900 0 0 0 0 1; 

 94 95 0.0132 0.0434 0.0111 9900 0 0 0 0 1; 

 80 96 0.0356 0.182 0.0494 9900 0 0 0 0 1; 

 82 96 0.0162 0.053 0.0544 9900 0 0 0 0 1; 

 94 96 0.0269 0.0869 0.023 9900 0 0 0 0 1; 

 80 97 0.0183 0.0934 0.0254 9900 0 0 0 0 1; 

 80 98 0.0238 0.108 0.0286 9900 0 0 0 0 1; 

 80 99 0.0454 0.206 0.0546 9900 0 0 0 0 1; 

 92 100 0.0648 0.295 0.0472 9900 0 0 0 0 1; 

 94 100 0.0178 0.058 0.0604 9900 0 0 0 0 1; 

 95 96 0.0171 0.0547 0.01474 9900 0 0 0 0 1; 

 96 97 0.0173 0.0885 0.024 9900 0 0 0 0 1; 

 98 100 0.0397 0.179 0.0476 9900 0 0 0 0 1; 

 99 100 0.018 0.0813 0.0216 9900 0 0 0 0 1; 

 100 101 0.0277 0.1262 0.0328 9900 0 0 0 0 1; 

 92 102 0.0123 0.0559 0.01464 9900 0 0 0 0 1; 

 101 102 0.0246 0.112 0.0294 9900 0 0 0 0 1; 

 100 103 0.016 0.0525 0.0536 9900 0 0 0 0 1; 

 100 104 0.0451 0.204 0.0541 9900 0 0 0 0 1; 

 103 104 0.0466 0.1584 0.0407 9900 0 0 0 0 1; 

 103 105 0.0535 0.1625 0.0408 9900 0 0 0 0 1; 

 100 106 0.0605 0.229 0.062 9900 0 0 0 0 1; 

 104 105 0.00994 0.0378 0.00986 9900 0 0 0 0 1; 

 105 106 0.014 0.0547 0.01434 9900 0 0 0 0 1; 

 105 107 0.053 0.183 0.0472 9900 0 0 0 0 1; 

 105 108 0.0261 0.0703 0.01844 9900 0 0 0 0 1; 

 106 107 0.053 0.183 0.0472 9900 0 0 0 0 1; 

 108 109 0.0105 0.0288 0.0076 9900 0 0 0 0 1; 

 103 110 0.03906 0.1813 0.0461 9900 0 0 0 0 1; 

 109 110 0.0278 0.0762 0.0202 9900 0 0 0 0 1; 

 110 111 0.022 0.0755 0.02 9900 0 0 0 0 1; 

 110 112 0.0247 0.064 0.062 9900 0 0 0 0 1; 

 17 113 0.00913 0.0301 0.00768 9900 0 0 0 0 1; 

 32 113 0.0615 0.203 0.0518 9900 0 0 0 0 1; 

 32 114 0.0135 0.0612 0.01628 9900 0 0 0 0 1; 

 27 115 0.0164 0.0741 0.01972 9900 0 0 0 0 1; 

 114 115 0.0023 0.0104 0.00276 9900 0 0 0 0 1; 

 68 116 0.00034 0.00405 0.164 9900 0 0 0 0 1; 

 12 117 0.0329 0.14 0.0358 9900 0 0 0 0 1; 

 75 118 0.0145 0.0481 0.01198 9900 0 0 0 0 1; 

 76 118 0.0164 0.0544 0.01356 9900 0 0 0 0 1; 

     69 119 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     119 75 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     34 120 0.0303 0.0999 0.0254 9900 0 0 0 0 1;   

120 37 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     44 121 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     121 45 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     25 120 0.0303 0.0999 0.0254 9900 0 0 0 0 1;   

     120 27 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     23 121 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

    121 32 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     34 38 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     37 38 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     8 122 0.0303 0.0999 0.0254 9900 0 0 0 0 1;   
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     122 5 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     30 123 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     123 17 0.0303 0.0999 0.0254 9900 0 0 0 0 1;     

     74 124 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     124 75 0.0303 0.0999 0.0254 9900 0 0 0 0 1;         

    85 125 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     125 89 0.0303 0.0999 0.0254 9900 0 0 0 0 1;     

     88 126 0.0303 0.0999 0.0254 9900 0 0 0 0 1; 

     98 99 0.0303 0.0999 0.0254 9900 0 0 0 0 1;     

 

    ]; 

 

 

 

%% area data 

areas = [ 

 1 1; 

]; 

 

 

%% generator cost data 

% 1            startup     shutdown n x1 y1    ... xn yn 

% 2            startup     shutdown n c(n-1) ... c0 

gencost = [ 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.022222  20 0; 

 2 0 0 3 0.117647 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.045454  20 0; 

 2 0 0 3 0.031847  20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 1.42857 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.526316 20 0; 

 2 0 0 3 0.049019  20 0; 

 2 0 0 3 0.208333 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.064516  20 0; 

 2 0 0 3 0.0625 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.025575  20 0; 

 2 0 0 3 0.025510  20 0; 

 2 0 0 3 0.019364  20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.020964  20 0; 
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 2 0 0 3 0.01 40 0; 

 2 0 0 3 2.5 20 0; 

 2 0 0 3 0.016474  20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.039682  20 0; 

 2 0 0 3 0.25 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.277778 20 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

 2 0 0 3 0.01 40 0; 

]; 
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