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Abstract

Those who suffer from Celiac Disease have an autoimmune response to the protein
complex gluten. The goal of this work is to better understand the biological
mechanisms in Celiac Disease through modeling with a system of ordinary differential
equations. We first develop a model for the way in which gluten induces a response in
zonulin in those with Celiac Disease and estimate parameters for such a model using
limited data. We then extend this model to include the interactions between zonulin
and the permeability of the intestine, and the effect of this interaction on the immune
response. Finally, we perform stability analysis on our model. In doing so, we see
that, in our model, a gluten-free diet is always effective in treating the disease. This
result may point to the need for additional mechanisms in our model in the future.

vi



Table of Contents

1 Introduction and Preliminary Work 1
1.1 Celiac Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Preliminary Model . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Parameter Estimation in the Preliminary Model . . . . . . . . 4
1.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Working Model 9
2.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Parameter Estimation and Simulations . . . . . . . . . . . . . . . . . 10
2.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography 22

Vita 24

vii



List of Tables

1.1 Parameter estimates with t0 6= 0; Ga0 = 0.1 mg/ml. . . . . . . . . . . 5
1.2 New parameter estimates; Ga0 included in parameter search. . . . . . 6

2.1 Parameters and their Units. . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Parameter Values for Figures 2.1 - 2.8. . . . . . . . . . . . . . . . . . 12

viii



List of Figures

1.1 Effect of gliadin (0.1 mg/ml) on zonulin release [2]. . . . . . . . . . . 4
1.2 Data [2] and Preliminary Model with the parameters in Table 1.1;

Ga0 = 0.1 mg/ml. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Data [2] and the Preliminary Model using parameter estimates in Table

1.2; Ga0 included in parameter search. . . . . . . . . . . . . . . . . . 6
1.4 3-D Mesh of Preliminary Model; dynamics at varying initial gliadin

concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Solution to Model with Parameter Values from our Preliminary Model
2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Solution to Model with Modified Parameter Values seen in Table 2.3;
specifically, the parameters da, dz, c, m, dT , d, L, a2, and s have been
modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Solution to Model for a patient without the genetic predisposition to
Celiac Disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Pulsed solution to Model for a patient with Celiac Disease. . . . . . . 16
2.5 Pulsed solution to Model for a patient without Celiac Disease. . . . . 17
2.6 Plot of Equations 2.6 and 2.7, showing the intersection point in the

first quadrant. This plot shows that there will be one biologically
feasible steady state. This plot specifically shows the intersection for
the parameter values in column two of Table 2.3. . . . . . . . . . . . 18

2.7 Steady State of Model using Parameter Values from column two of
Table 2.3; p0 < pcrit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Steady State of Model using Parameter Values from column two of
Table 2.3; p0 > pcrit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



Chapter 1

Introduction and Preliminary
Work

1.1 Celiac Disease

Celiac Disease (CD) is an autoimmune disease in which the patient lacks the ability
to tolerate gluten, a protein found in wheat, barley, and rye. Celiac Disease affects
approximately 1 in 133 people in the United States, though this ratio is believed to
be much higher [9]. Those with Celiac Disease suffer damage to the intestinal villi,
the long, finger-like structures which protrude from the intestinal wall. This, in turn,
changes the resistance of the small intestine. As the resistance of the small intestine
declines, gluten passes through the wall of the small intestine, thereby inducing an
immune response, which further contributes to the degeneration of the resistance of
the small intestine. Celiac Disease has been diagnosed in every country and ethnicity
and is unique in that it may be treated, in most cases, with a gluten free diet. In other
cases, a gluten free diet will not address the damage; this is referred to as Refractory
Celiac Disease (RCD) [11].

Like most autoimmune diseases, Celiac Disease has a genetic component; one must
possess the HLA-DQ2 and/or HLA-DQ8 gene(s) in order to develop Celiac Disease
[7, 12]. Accordingly, individuals with a relative suffering from Celiac Disease are
more likely to suffer from Celiac Disease themselves. However, having the necessary
gene(s), does not guarantee that one will suffer from Celiac Disease [8].

Those with Celiac Disease generally suffer the damaging effects of ingested gluten
in the small intestine [1, 3]. The wall of the small intestine is made up of tight
junctions, which separate the apical side of the intestine from the basolateral side. The
apical surface of the small intestine faces the lumen and is specialized for absorption;
the basolateral surface, on the other hand, controls the distribution of nutrients to the
blood stream [6]. As gluten enters the body, it is broken down into its components,
gliadins and glutenins, in the digestive tract. Glutenins are not a driving force in
this disease, but there are three types of gliadins to which those with Celiac Disease
react. Normally, these gliadins should be too large to fit through the wall of the small
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intestine. However, when a person who suffers from Celiac Disease consumes gluten,
they have an immune reaction which causes the T-cells to fight off the proteins. The
antibodies which are produced then attack the villi of the small intestine causing
the structures to lose their form and flatten. Because the permeability of the small
intestine is compromised due to damage to the villi, the gliadin proteins are able pass
through the wall of the small intestine. As the gliadins escape the small intestine,
antibodies react to them, thereby eliciting an even greater immune response. Due to
the loss of surface area, the villi are unable to absorb nutrients in a normal manner,
often leading to malabsorption. This may lead to ailments such as vitamin deficiencies
and osteoporosis [9, 5].

1.1.1 Symptoms

Due to the damage to the villi of the small intestine, those with Celiac Disease may
exhibit a wide range of symptoms. The most common symptoms are abdominal
pain, diarrhea, weight loss, anemia, and bone or joint pain. Some less common
symptoms are fatigue, depression, anxiety, seizures, and infertility. Undiagnosed,
these symptoms worsen over time, so early diagnosis is imperative. Unfortunately,
these symptoms are common to other ailments, thereby making diagnosis difficult. It
is worth noting that many of those who suffer from Celiac Disease have no symptoms
at all, which further complicates detection [9].

While those with Celiac Disease mostly suffer the symptoms due to the damage
to the small intestine, they can also respond to gluten in other ways. Gluten is
present in cosmetics and health items such as lotions, lip balms, lipsticks, medications,
toothpaste, and mouthwashes. In this way, gluten could be accidentally ingested or
enter the system through cuts on the skin. As a result, those with Celiac Disease may
also suffer from dermatitis herpetiformis, an itchy, blistering skin rash, arising from
these interactions with gluten [5].

1.1.2 Diagnosis

Several tests, from genetic testing to an endoscopy, can diagnose Celiac Disease.
Genetic testing can determine whether or not one has a predisposition to Celiac
Disease, while blood testing can determine if it is likely that one’s symptoms are a
result of Celiac Disease or another ailment. The “gold standard” in the diagnosis
of Celiac Disease is an endoscopy, which allows doctors to view portions of the
small intestine to inspect for damage to the structure of the villi. Unfortunately,
the prospect of an endoscopy keeps many from being diagnosed [9].

While diagnosis can be difficult and unpleasant, it is very important. Undiagnosed,
Celiac Disease can cause additional health complications including, but not limited
to, Type I Diabetes, autoimmune thyroid disease, autoimmune liver disease, and
rheumatoid arthritis. It is also likely to cause malnutrition and vitamin deficiencies,
leading to osteoporosis [9].
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1.1.3 Treatment

For most Celiac Disease sufferers, avoiding gluten will alleviate their symptoms
and allow the small intestine to repair itself. Many foods are naturally gluten-
free: fresh fruits and vegetables, rice, dairy products, and organic meats. However,
maintaining a gluten-free diet is demanding. While the FDA requires that wheat be
identified on packaging, many products, especially health and beauty products, do not
identify gluten as a constituent. In addition, gluten-free substitutes for items such
as bread and pasta are more expensive than their gluten-containing counterparts.
Furthermore, a person can continue to crave the protein for two to eight weeks after
beginning a gluten-free diet. As a result, many, especially newly diagnosed, Celiac
Disease sufferers deviate from the diet. Dietitians and support groups are available
to help those with Celiac Disease maintain a gluten-free diet [9, 10].

Preliminary modeling on Celiac Disease was completed in an undergraduate thesis
at Hobart and William Smith Colleges under the supervision of Dr. Jonathan
Forde [4]. Working with collaborators, Suzanne Lenhart and Jonathan Forde, we
formulate a more detailed model with immunology and intestinal features. The goal
of this work is to better understand the biological mechanisms in Celiac Disease
through modeling with a system of ordinary differential equations. Ideally, under the
appropriate conditions, the model would capture the dynamics of one who does not
suffer from Celiac Disease, one who suffers from Celiac Disease, and one who suffers
from Refractory Celiac Disease.

In the remainder of this chapter, we consider a preliminary model which addresses
the way in which gluten induces zonulin production in the small intestine of a patient
suffering from Celiac Disease. In the next chapter, we present an extended model
which includes the immune response and the permeability of the small intestine.

1.2 Preliminary Work

1.2.1 Preliminary Model

To investigate the relationships between the components involved, we first built a
preliminary model to explore how gluten stimulated zonulin release. Because gliadins
are the constituent of gluten to which Celiac Disease sufferers react, we used gliadins
in our model to represent gluten. We formulated a simple model of two differential
equations, where Ga represented the concentration of gliadins on the apical side of
the small intestine and z represented the concentration of zonulin in the intestine.
In this model, we assumed that gliadins, Ga, entered the apical side of the small
intestine with initial value Ga0 and then decayed at at rate of da. Since gluten in
the small intestine causes higher levels of zonulin [2], a protein known to regulate
the permeability of the intestine, we considered the gliadins on the apical side of
the small intestine to be the source of the protein zonulin, z. We assumed gliadins
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induced zonulin at rate c and that zonulin decayed at a rate of dz. Our preliminary
model was as follows:

dGa

dt
= −daGa (1.1)

dz
dt

= −dzz + cGa. (1.2)

1.2.2 Parameter Estimation in the Preliminary Model

Our simple model allowed us to obtain an explicit solution for the way in which
gliadins induced zonulin production in the intestine:

Ga(t) = Ga0e
−dat (1.3)

z(t) = cGa0

dz−da

(
e−dat − e−dzt

)
+ z0e

−dzt. (1.4)

The explicit solution had three parameters: the decay rates for the gliadins and
zonulin, da and dz respectively; and the rate at which gliadins induced a response in
the zonulin, c. The initial conditions used to determine this solution were the initial
gliadins, Ga0, and initial zonulin, z0.

In 2003, Clemente et al. published a study in which they determined the effect
of gliadins on zonulin release [2]. The team exposed rat intestinal epithelial cells to
0.1 mg/ml of gliadins, in vitro, and observed the zonulin concentrations at 15, 30,
45, and 60 minutes. The results of their experiment can be seen in Figure 1.1; we
used this data to determine the parameters and initial conditions in our preliminary
model.
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Figure 1.1: Effect of gliadin (0.1 mg/ml) on zonulin release [2].
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We used the fminsearchbnd function in MATLAB to estimate the aforementioned
parameters by minimizing the difference between the model solution and the five data
points from [2], shown in Figure 1.1. In accordance with the experiments carried out
by Clemente et al. [2], we first assumed that Ga0 = 0.1 mg/ml and z0 = 0 pg/ml,
then estimated the remaining three parameters. Unfortunately, the model with these
parameter estimates did not capture the dynamics of the data in an appropriate
manner. For example, we noticed that the dynamics of our model would likely not
capture the concavity of the graph in Figure 1.1 near the first few data points. In
response, we considered starting the response of the zonulin at a later time; i.e. we
considered a new variable for the initial time of the zonulin response (t0). In order
for this model to be biologically feasible, we required z(t) = 0 on [0, t0) and then had
z(t) pick up Equation 1.2 for t ∈ [t0, 60]. Again, we used fminsearchbnd, in the same
manner as before, to obtain the new parameter estimates found in Table 1.1.

Table 1.1: Parameter estimates with t0 6= 0; Ga0 = 0.1 mg/ml.

Parameter Initial Guess Estimate
da 0.0363 0.0324
dz 0.3 0.7315
c 0.9065 0.8638
t0 10 14.6028

As you can see in Figure 1.2, the model with the new parameter estimates captured
the shape of the data fairly well. However, the dynamics of our model exhibited a
peak both sooner and higher than the experimental data.
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Figure 1.2: Data [2] and Preliminary Model with the parameters in Table 1.1;
Ga0 = 0.1 mg/ml.
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In an attempt to obtain a better model, we allowed Ga0 to be included in the
parameter search. The newest parameter estimates are found in Table 1.2; Figure 1.3
shows the model, as compared to the data.

Table 1.2: New parameter estimates; Ga0 included in parameter search.

Parameter Model Estimate
da 0.0624
dz 0.0732
c 0.9810
t0 12.5068
Ga0 453.6417
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Figure 1.3: Data [2] and the Preliminary Model using parameter estimates in Table
1.2; Ga0 included in parameter search.

Note that the model with these new parameters better approximated the shape
of the data as the peak was more appropriately targeted.

Finally, we observed the dynamics of our model under varying initial con-
centrations of gliadins. The results are shown in Figure 1.4. Notice that the
qualitative behavior of the zonulin release was consistent, exhibiting a peak at
approximately thirty minutes after being exposed to the gliadins, despite the initial
gluten concentration.
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Figure 1.4: 3-D Mesh of Preliminary Model; dynamics at varying initial gliadin
concentrations.

1.2.3 Discussion

This work assumed that the initial value of zonulin was zero, indicating that its
natural concentration was too small to be detected under normal circumstances. As
such, we forced the zonulin level to remain at zero until the initial time when the
gliadins induced a response in zonulin, t0.

We considered two searches for the parameter values in our model, one in which
we excluded the initial gliadin concentration, Ga0, and one in which we included it.
While the search including the initial gliadin concentration better captured the shape
of the data, the estimated initial gliadin concentration was far too high to be a viable
initial value. We expected that the initial concentration would be, at least, on the
same order of magnitude as the initial concentration used in Clemente et al. [2].
Therefore, we chose not to use these parameter values in our model going forward,
instead opting to use the parameter estimations from the search excluding the initial
gliadin concentration, in order to remain consistent with [2].

Our preliminary work indicated that the estimates for the parameters da, dz, and
c appropriately represented the effect which gliadins had on zonulin production in the
small intestine of a patient suffering from Celiac Disease. However, we assumed that
c, the rate at which gliadins induced a response in zonulin, was linear. Given that
the preliminary model did not approximate the data as well as we would have liked,
it may be reasonable to consider a nonlinear term in the future.
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Finally, our model considered how gliadins on the apical side of the small intestine
and zonulin interacted in a person suffering from Celiac Disease. However, a more
realistic model for Celiac Disease also requires components for the immune reaction,
the resistance of the small intestine, and the gliadins on the basolateral side of the
small intestine.
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Chapter 2

Working Model

2.1 Model Formulation

We now extend the model to include components for the permeability of the small
intestine (p), the gluten which passes through the tight junctions to reach the
basolateral side of the small intestine (Gb), and the immune response, represented
by the T-cell concentration (T ).

The working model is as follows:

dGa

dt
=

{
−daGa, if 0 ≤ p ≤ pcrit

−daGa − L(p−pcrit)
k

a2k+(p−pcrit)
kGa, if p ≥ pcrit

(2.1)

dz

dt
=− dzz + cGa (2.2)

dp

dt
=

(
az

b + z
+

a3T

b2 + T

)
1

1 + p
−mp (2.3)

dT

dt
=s

(
1 +

c2p

1 + p

)
+

c3Gb

d + Gb

T − dTT (2.4)

dGb

dt
=

{
−dbGb, if 0 ≤ p ≤ pcrit

−dbGb + L(p−pcrit)
k

a2k+(p−pcrit)
kGa, if p ≥ pcrit.

(2.5)

Here, the differential equation for the gluten on the apical side of the small intestine
(Ga) now includes a term to indicate the transfer of gluten on the apical side of the
small intestine to the basolateral side of the small intestine. A hill function has been
chosen to represent this transfer because there is a limit to the rate at which gluten
may pass through to the basolateral side. Note that, biologically, this transfer cannot
take place until the permeability of the small intestine has increased enough to permit
the protein to pass through the walls of the small intestine. Accordingly, our model
does not allow this transfer until permeability reaches a predefined critical value, pcrit.
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A differential equation for the permeability of the small intestine (p) has also been
included in the extended model. The permeability of the small intestine increases
with the increased production of zonulin and the increase in the T-cell concentration.
However, these production rates are limited using saturation terms. In addition,
the effect that each of these components has on permeability should decrease as
permeability increases; the factor 1

1+p
represents this effect. Finally, the permeability

relaxes to its normal level at rate m.
As permeability increases past its critical value, gluten on the apical side of the

small intestine (Ga) is able to pass through the wall of the small intestine, thereby
transferring to the basolateral side of the small intestine, Gb. Thus, the transfer term
from the differential equation for the gluten on the apical side of the small intestine,
Ga, is the source term for the differential equation for the gluten on the basolateral
side, Gb. Additionally, Gb decays at rate db.

Finally, the T-cell concentration (T ), in addition to its natural source s, increases
as a function of both permeability (p) and the amount of gluten present on the
basolateral side of the small intestine (Gb). Again, the increase with respect to each
of these components is limited using the Michaelis-Menten type terms. Naturally,
T-cells die at a rate dT .

2.2 Parameter Estimation and Simulations

Just as for the preliminary model, we first assume that the initial amount of gluten on
the apical side of the small intestine, Ga, is 0.1 mg/ml. The extended model includes
eighteen unique parameters, three of which (da, dz, and c) were in the preliminary
model. The list of parameters and their units is listed in Table 2.1.
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Table 2.1: Parameters and their Units.

Parameter Description Units

da decay rate of Ga
1

time

dz decay rate of z 1
time

c rate at which Ga induces zonulin production
(

1
time

) (
pg
ml

)
a maximum rate at which z affects p 1

time

b half-saturation constant pg
ml

m (dp) relaxation rate of p 1
time

c2 scalar dimensionless
dT natural death rate of T-cells 1

time

c3 maximum rate at which Gb affects T-cell production 1
time

d half-saturation constant mg/ml
db decay rate of Gb

1
time

L maximum transfer rate of Ga to Gb
1

time

k parameter to control slope of dGb/dt near a2 dimensionless
a2 half-saturation constant dimensionless
pcrit critical p value at which Ga passes through intestine dimensionless
a3 maximum rate at which Gb affects T-cell production 1

time

b2 half-saturation constant cells
mm3

s production rate of T-cells
(

1
time

) (
cells
mm3

)
Using the results from the preliminary model, the extended model already has

estimates for three of its parameters: da = 0.0324, dz = 0.7315, and c = 0.8638.
We then use the literature to approximate the additional parameter values [3, 12].
A list of the parameter values can be found in Table 2.3; we use the ode45 function
in MATLAB to obtain all of our numerical solutions using the parameter values
presented in this table. The numerical solution to the model using the parameters
from the preliminary model and the initial conditions found in Table 2.2 is shown in
Figure 2.1.

Table 2.2: Initial Conditions

Variable Description Initial Condition Units
Ga apical gluten 0.1 mg/ml
z zonulin 0 pg/ml
p gut permeability 0.01 dimensionless
T T-cell concentration 0.2 cells/mm3

Gb basolateral gluten 0.01 mg/ml
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Table 2.3: Parameter Values for Figures 2.1 - 2.8.

Parameter Value Value Value
(Fig. 2.1) (Fig. 2.2, 2.4, 2.6, 2.7, 2.8) (Fig. 2.3, 2.5)

da 0.0324 0.0363 0.0363
dz 0.7315 0.3 0.3
c 0.8638 0.9065 0.9065
a 0.1 0.1 0.1
b 3 3 3

m (dp) 0.015 0.008 0.008
c2 4 4 0
dT .4 5 .4
c3 2 2 0
d 1 10 1
db 0.001 0.001 0.001
L 1 10 1
k 2 2 2
a2 0.5 5 0.5
pcrit 0.1 0.1 0.15
a3 0.01 0.01 0.01
b2 2 2 2
s 0.1 0.5 0.1
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Figure 2.1: Solution to Model with Parameter Values from our Preliminary Model
2.3.

This model seems appropriate in its dynamics regarding the interaction between
apical gluten and zonulin: the apical gluten decays while the zonulin release sees a
sharp increase in response to the initial gluten and then decays over the remaining
four hours. In addition, the permeability appears to increase as expected; however,
it does not relax back to normal in an appropriate manner. Since the permeability
never reaches the critical level (set to be 0.01), gluten does not pass through the wall
of the small intestine and an immune response is not elicited. Therefore, we expect
that the permeability will decay much faster over the 250 minutes than we see when
we use these particular parameter values.

In order to address the decay of the permeability, we modify some of the
parameters and run the simulation again. In Table 2.3 we see the new values of
da, dz, c, m, dT , d, L, a2, and s; the simulation results are shown in Figure 2.2. Here,
we see the sharper decay of the permeability that we were expecting.
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Figure 2.2: Solution to Model with Modified Parameter Values seen in Table 2.3;
specifically, the parameters da, dz, c, m, dT , d, L, a2, and s have been modified.

Next, we begin to examine our model under the assumption that one is not
suffering from Celiac Disease. We do this in order to ensure that our model will not
exhibit the same dynamics in one without the genetic predisposition to Celiac Disease
as it does in one with the predisposition. In this case, it should be that neither the
permeability level nor any gluten that passes through the wall of the small intestine
should have an effect on one’s T-cell response. Therefore, the parameters c2 and c3
must both be zero, as seen in Table 2.3. Figure 2.3 allows us to visualize the results.
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Figure 2.3: Solution to Model for a patient without the genetic predisposition to
Celiac Disease.

Here, we see that the T-cell concentration remains constant, despite the intake of
gluten. This is the expected behavior in one without the genetic predisposition to
Celiac Disease.

Since individuals may consume gluten several times a day, we should consider
the effect of this behavior in our model. In order to do so, gluten is periodically
introduced into our model using a pulse source. This pulse introduces more gluten
(Ga) to the system at a predetermined time (e.g., every 250 minutes). We first run
the original simulation for 250 minutes; at 250 minutes, we add 0.1 mg/ml of gluten
to the value of the gluten at the end of the first run and then use the values of the
other four variables at the ending time as the new initial conditions for the next run.
We continue in this fashion for as many runs as we see fit (e.g. three runs). This is
representative of a person consuming gluten three times a day, approximately four
hours apart. Using the parameter values from Table 2.3, we pulse twice to get the
results shown in Figure 2.4.
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Figure 2.4: Pulsed solution to Model for a patient with Celiac Disease.

Again, the apical gluten decays as expected and, consistent with [2], the zonulin
peaks approximately thirty minutes into each run before it decays. Also, the
permeability reaches its critical value in each run, thereby allowing the apical gluten
to pass to the basolateral side of the intestine (i.e. basolateral gluten increases).
Initially, the T-cell concentration increases in response to the gluten passing to the
basolateral side, then decays, as expected.

We may perform the same analysis on our model depicting those without Celiac
Disease to demonstrate that there is not an immune response to the gluten over time.
Figure 2.5 exhibits this behavior. Here, we see that apical gluten continues to decay
and that the zonulin level still peaks approximately thirty minutes into each run,
as expected. In addition, the permeability peaks, reaching its critical value, before
decaying. Again, this forces the basolateral gluten to increase. However, the T-cell
concentration remains level indicating that there is not an immune response to the
gluten in the system, which is expected for those without the predisposition to Celiac
Disease.
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Figure 2.5: Pulsed solution to Model for a patient without Celiac Disease.

Generally, changes in the length of time between meals results in similar dynamics.
However, longer periods of time between meals allows the permeability to decay back
to more normal levels, which affects both the amount of gluten which is able to
pass through the intestine to the basolateral side, as well as the T-cell response.
Accordingly, allowing shorter periods of time between meals prevents permeability
from relaxing back to normal; thus driving permeability up with each pulse. This, in
turn, increases the amount of gluten which may pass through to the basolateral side,
thereby increasing the T-cell response.

2.3 Stability Analysis

To determine the stability of our model, we consider the steady states of the system
when no gluten is introduced into the system. In order to do so, we set each of the five
differential equations equal to zero and solve for the state variables. When we do this,
it is easy to see that Ga, z, and Gb must be zero. This leaves only p and T to solve
for. Note that these variables are interdependent, which makes the system difficult
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to solve explicitly. However, we can solve the system for our set of parameters. First,
we set each of the two differential equations equal to zero and solve each for T , as is
shown in Equations 2.6 and 2.7 below. Tp is the equation resulting from setting the
differential equation for p equal to zero and solving for T ; TT is the equation which
results from setting the differential equation for T equal to zero and solving for T :

Tp = 0.1

(
1 +

4p

1 + p

)
(2.6)

TT =
1.6p(1 + p)

1− 0.8p(1 + p)
. (2.7)

To find the intersection points, we graph the solutions of these two equations.
Upon doing so, we can show that there will be one viable steady state, provided that
our parameters are all greater than zero. For our parameters, the steady state occurs
when p = 0.069 and T = 0.126; this result is shown in Figure 2.6.
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Figure 2.6: Plot of Equations 2.6 and 2.7, showing the intersection point in the first
quadrant. This plot shows that there will be one biologically feasible steady state.
This plot specifically shows the intersection for the parameter values in column two
of Table 2.3.
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We can also see this in the following figures, where we graph the solution to our
system in the absence of gluten, using the parameter values in Table 2.3. Figure 2.7
shows the steady states when we begin with a permeability level below the critical
value, pcrit; Figure 2.8 portrays the steady state when we begin with a permeability
level above the critical value. Observe that the graphs for both the permeability and
the T-cell concentration tend toward the steady state mentioned above.
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Figure 2.7: Steady State of Model using Parameter Values from column two of
Table 2.3; p0 < pcrit.
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Figure 2.8: Steady State of Model using Parameter Values from column two of
Table 2.3; p0 > pcrit.

The stability analysis of our model indicates that we will have the same steady
state whether or not permeability reaches a critical level; in both cases, the
permeability will relax to normal in the absence of gluten. Thus, in our model, a
gluten-free diet is always effective. Therefore, our model is limited in that it cannot
demonstrate a situation in which a patient reaches Refractory Celiac Disease.

2.4 Conclusion

In this work, we present a system of five differential equations to model several
components of Celiac Disease. In summary, a patient with a genetic predisposition to
Celiac Disease may consume gluten, which increases the production of zonulin in one’s
small intestine. This decreases the permeability of their small intestine, which allows
large gliadin proteins to escape the small intestine, thereby triggering an immune
response brought on by the increased production in T-cells due to the stimulus.
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After developing the system of differential equations, we estimate the parameter
values using both the fminsearchbnd function in MATLAB and the literature. With
parameter estimates, we are able to run simulations to determine the long-term
behavior of the model under specific conditions, namely, those which are favorable to
the development of Celiac Disease and those which are not.

Finally, we perform stability analysis on our model in order to determine the
steady state and long-term behavior of the model in the absence of gluten. Through
this analysis, we learned that our model is limited in that it cannot reach a state in
which a patient would develop Refractory Celiac Disease. This is a deficiency that
we are interested in addressing in the near future by including additional features or
mechanisms in our model.
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