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Abstract 

The purpose of this study was to establish an inverse algorithm to solve the 
analytic element groundwater modeling equations, developed by Anderson (2001 ), for 
state parameters based on head data from an appropriate field site. The analytical 
element model (AEM) equations developed by Anderson (2001) are a complex variable 
technique to describe flow regimes through a gap in a confining layer that otherwise 
separates two confined aquifers. Anderson's equations are based on the assumptions that 
hydraulic conductivity is constant in the respective confined aquifers. It also assumes a 
hydraulic conductivity of zero for the confining layers in the system. 

A Levenberg-Marquardt based inverse algorithm was developed and applied to 
synthetic data created by the forward application of Anderson's AEM equations based on 
state variables similar to those presented in the literature (Anderson 2001). The inverse 
algorithm was used to solve for the state parameters describing window length (L) and 
flux through the window (Q) given four head values observed in the forward solution. 
The inverse algorithm successfully predicted values for window length and flux through 
the window within 20% of the values used to create the synthetic head data. A study on 
the effect of an added observation point in the flow field was also performed. It was 
observed that an added observation point in the flow field resulted in better 
approximations of L and Q by the inverse algorithm. 

The algorithm was then applied to an actual field case, the Shelby Farms Site in 
Memphis, Tennessee, in an attempt to predict the window extent and flux through the 
window based on head observations from four wells installed within the window. Based 
on data from three separate occasions, the algorithm produced a value for window length 
ofL= 573.9 ft and flow through a unit slice of the window ofQ= -525.0 ft3/day, which 
compares well with the value of 35,627 ft3/day for the entire window profile from other 
recent studies at the Shelby Farms Site. 
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1 Introduction 

1.1 Groundwater Management 

Proper Management of a groundwater system requires an understanding of both 

the hydraulic characteristics of the system and how meaningful observations may be 

made to ascertain the state of the system. The use of groundwater modeling techniques is 

a common means to achieve this understanding. The application of forward modeling 

techniques is useful to better understand the reaction of these systems to given changes. 

Thus, aiding in the a overall understanding of the hydraulic characteristics associated 

with a particular site. An understanding of how meaningful observations may be made in 

order to ascertain the state of a given system can be achieved by the exploration and 

application of inverse modeling techniques. When coupled with a forward modeling 

technique the usefulness of observation data, such as head values, in defining the state of 

a system can be maximized. 

One particular type of system where the relationship between observations and 

system states is not fully understood is a focused recharge system. Areas of focused 

recharge include sites where two systems that would otherwise be separated are 

connected over a relatively small area, known as a window. Understanding the flow 

paths_ at these sites becomes important when one system is potentially compromising the 

water quality of the other. Recently the Committee on Hydrologic Science, of the 

National Research Council, addressed the basic scientific questions regarding diffuse 

versus focused recharge in hydrogeologic settings (NRC 2004). They concluded that 

methodologies for better predicting system flow paths based upon state observations are 

needed for a more thorough understanding of focused recharge system behaviors. 
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1.2 Inverse Modeling 
Sun (1995) observes that the study of forward modeling problems has advanced 

rapidly since the advent of computers. Complicated systems such as three-dimensional 
multicomponent transport in multiphase flow can be simulated with relative ease (Sun 
1995). However, the study of inverse modeling has not progressed as rapidly. Presently, 
the study of inverse problems in groundwater modeling is limited to the consideration of 
very simple models (Sun 1995). A comprehensive survey of inverse procedures is 
provided in the literature by Yeh ( 1986), who is considered one of the pioneering 
researchers in the area of inverse modeling theory. Yeh presents the theory that inverse 
modeling can be approached by formulating the model into a traditional optimization 
problem. The inverse problem is defined in terms of a goal to minimize an error function 
that represents the difference between a known state of the system compared to a 
simulated state. 

Often this state is defined in terms of system heads. Inverse modeling provides an 
opportunity to directly estimate system parameters that dictate head distributions and 
flow paths given head data collected in the field. In the case of a focused recharge site, a 
recently developed forward model, Anderson (2001 ), in conjunction with an inverse 
modeling technique could be used to estimate unknown system parameters such as flux 
through the window given local head measurements. 
1.3 Research Hypothesis and Objectives 

The goal of this research was to apply an inverse modeling technique for the 
purpose of better understanding flow paths in and near aquitard windows as focused 
recharge features. The research hypothesis was that the analytical element model 
2 



developed by Anderson (2001) could be solved inversely for the parameters window 

length and flux through the window based upon head observations in and near a window 
feature. Furthermore, that this inverse modeling algorithm can provide a uniform flow 
field estimation from actual field data. Testing of the research hypothesis required the 
completion of the following objectives: 

1. Development of synthetic datasets based on data provided in the literature by Anderson (200 � ); 
2. Development of an inverse algorithm using the Levenberg-Marquardt optimization technique coupled to Anderson's (2001) analytic element model; 
3. Experimentally test the capability of the inverse algorithm to identify a solution using the synthetic data as the observation source; and 
4. Use the inverse algorithm to develop a flow field realization based upon field data collected from the Shelby Farms window site in Memphis, Tennessee. 
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2 Background Information 

2.1 Analytic Modeling 

The use of analytically derived mathematical equations to approximate 

steady flow paths in porous media is a technique known as analytical modeling. To apply 

this technique, actual groundwater flow problems must be approximated into simpler 

ones that can be solved analytically yet, still provide insight into the essence of the real 

problem (Strack 1989). In cases where the problem cannot be handled adequately by 

simple means and recourse to a numerical solution is necessary, the determination and 

interpretation of relatively crude approximate solutions often provides insight that can be 

used in selecting and setting up the numerical model that will ultimately be used to solve 

the problem (Strack 1989). 

Analytical equations describing flow in porous media are based on Darcy's Law 

(Darcy 1856). When Darcy's Law is combined with the continuity equation, a governing 

relationship for steady flow of a homogeneous fluid in a porous medium results. Many 

analytic solutions describing flow have been developed based on this relationship (Strack 

1989, Polubarinova-Kochina 1962, Heitzman 1977, Sidiropoulos et al. 1983). The act of 

superimposing one analytic solution onto another in an effort to describe a more elaborate 

system is known as the analytic element method. Models resulting from this procedure 

are known as analytic element models (AEM). 

2.2 Conformal Mapping as an Analytical Technique 

Conformal mapping is a complex variable technique that has been used 

extensively in the field of groundwater mechanics (Strack 1989). This technique 

involves the use of a conformal transformation that maps complex variables from the 
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physical plane into an intermediate plane where the calculation of the equations 

governing flow in the system are performed. The same conformal transformation is then 

used to map the solution back into the physical plane were the resulting flow field can be 

observed. Conformal mapping equations are used in groundwater mechanics to simplify 

boundary value problems that would otherwise be solved with the application of the 

Laplace equation. 

In the field of water resources, conformal mapping has been used to describe flow 

in situations such as flow under dams, around bridge pilings, and between aquifers and 

streams. One of the benefits to using conformal mapping is that a two-dimensional 

closed form solution can be obtained with the input of relatively few parameters. 

Deterministic modeling packages such as MODFLOW can produce three-dimensional 

assessments of groundwater flow fields but require a large number of data points. Before 

computers were in common use, closed form solutions were the best way to obtain 

quantitative answers to groundwater flow problems. Many of these conformal mapping 

closed form solutions were published in the mid to late 1900s (Obdan ANM and Veling 

EJM, 1987, Kacimov AR, Obnosov 2000). Conformal mapping is still a very useful tool 

to obtain solutions to simplified versions of complex problems (Strack, 1989). 

2.3 Development of Anderson's Analytic Element Modeling Equations 

The analytical element model developed by Anderson (2001) is built on classical 

solutions based on the method of images for circular boundaries. The transformation is 

shown below. 
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z= complex value in the z plane L= one-dimensional window length l;= complex value in the l; plane 
This transformation maps concentric circles centered on the origin of the l; plane onto 
confocal ellipses with foci at x=±L/2 in the z plane, Figure 2.1 (Anderson, 2001). 
Flow field solutions are obtained by contouring the real and imaginary components of the 
complex potential in the z plane. The complex potential is defined as: 

<I>= kbcp 

k= hydraulic conductivity b= aquifer thickness normal to the z plane 
cp= hydraulic head 'I'= stream function 

The complex potential is defined in the l; plane, and for the given geometry is calculated 
with the application of the following boundary condition for uniform flow in the{; plane 
(Strack 1989): 

n= the complex potential Q x o= flow along the real axis l;= complex value in the l; plane L= one-dimensional window length <I>o= value of the potential along the imaginary axis of the z plane 
Combining this equation with the given transformation and rewriting the resulting 

equation in terms of n results in the following in which n is calculated in the z plane: 

6 



z-Plane 

(Window) 

I 
I 

:L 
4 I ... 

-----------4-----� 
4 I 

Adapted from Anderson (2001) 

2

1······· ... ,.. ·····1· ••• ··,... i, 

L 

Figure 2.1 Visual Representation of the z and � Planes. 
The z plane represents the physical plane of the problem and the � plane exists as an 
intermediate plane in which calculations are carried out. Answers calculated in the � plane 
are conformaly mapped on the z plane to obtain a flow field realization. The numbers and 
dashed lines indicate lines and points of symmetry. 
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Anderson's calculation of the complex potential is the superposition of the 
classical solutions of uniform flow past a circular inhomogeneity with flow along the x­
axis, flow at infinity in the upper aquifer with uniform no-flow at infinity in the lower 
aquifer, and flow to the upper aquifer with a drain at the origin of the l; plane. These 
classical solutions are presented below in order of mention (Anderson, 2001 ). 
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n<u)= complex potential in upper domain 
n<1>= complex potential in lower domain k'= (k(l)- k{u�/ (k(l)+ k(u)) k(u)= hydraulic conductivity in the upper domain k<1>= hydraulic conductivity in the lower domain 



The superposition of these solutions forms the following equation set: 

<1>0 (u)= constant evaluated from a reference point on the imaginary axis of the z 
plane with known head 

This equation set constitutes the analytic element model that Anderson (2001) 

developed to describe flow through a window between two aquifers of differing hydraulic 

conductivity. These equations are used in conjunction with the mapping transformation 

given at the start of the discussion to produce a map of the flow field in the z-plane. 

The complex potentials are solved for based on their location in the z-plane. 

Initial value of a point in the z-plane is equal to the complex coordinate of that point. 

After the application of Anderson's AEM the value of the same point in the z-plane is the 

complex value corresponding to the head at that point (the real value) and the stream tube 

value (the imaginary value). By contouring these grids of values the flow field can be 

observed. 

2.4 Gauss-Newton Optimization 

In order to develop an inverse algorithm with Anderson's AEM, an optimization 

technique was applied. The Gauss-Newton method is a traditional non-linear 

optimization technique. It is applied as an inverse technique by defining an objective 
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function of the sum of the squares of error in predicted heads verses the heads in the 
known flow field. The goal of the optimization is to minimize this objective function. 
E(k) = L w2 [u(k)-u0bJ2 

i=l 

E(k)= sum of the squares of error w= weighting value u(k)= forward model output Uobs= field data 
For clarity we will write w2 [u(k)-uobs ]2 simply as f (k). The theory behind the 

application is based upon defining a search area near the global optimal value. The 
technique will mathematically determine the local minima by the determination of a 
positive-definite Hessian matrix. The procedure begins with taking the second order 
partial derivative of E(k), the second order terms on the right-hand side of the resulting 
equation are assumed to be negligible (Sun 1995). 
Thus, 

The following matrix is defined, which consists of derivatives of functions ft (k), 
J; (k), . . .  fm (k) with respect to the variation of each parameter component k1, k2, . . .  kn. 

8ft 8/2 8ft 8k1 
8k2 8kn 

8/2 8/2 8/2 
A= 8k1 

8k2 8kn 

8fm 8fm 8/m 8k1 
8k2 8kn 
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The matrix is typically not square due to the fact that in an inverse modeling problem the 

number of observations f (k) outnumbers the number of parameters for identification 

yielding added degrees of freedom. With the use of matrix [A] and the application of the 

equations for first and second order partial derivatives given above, the gradient can be 

represented by 

VE=2ATI 

where; 

f = (I., /2 , • • •, IL 
) 

T • 

The Hessian matrix G can be approximately represented by 

G�2Ar A. 

Substituting the equation for the gradient and the approximation of the Hessian matrix 

into Newton algorithm the following equation is derived. 

kn+l = 
kn -(�A,,r1

�/,, 

The iteration sequence generated by this equation is the Gauss-Newton sequence (Sun 1995). 

Alen = -(A: An r1 A: In 

The Gauss-Newton direction is determined solely by the first order derivatives. It is 

pertinent to mention that when ft, /2 , • • •  , JL are nonlinear functions, the deviation of the 

Gauss-Newton direction depends on the error in the assumption that G � 2Ar A. For 

small residual problems the Gauss-Newton sequence converges rapidly. However, in 

groundwater modeling, parameter identification problems produce·residuals that are often 

very large. This condition leads to the following difficulties (Sun, 1995): 

1. The search sequence will not converge because for some n E(kn+i) > E(kn
). 
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2. The Gauss-Newton direction cannot be determined because the matrix Ar A is 
nearly singular. 

3. The value M
n 
is so large that kn+t is outside of the range of admissible values. 

2.5 Modified Gauss-Newton Optimization 

There are many ways to modify the Gauss-Newton algorithm to overcome the 

problems mentioned in section 2.4. One of these modifications involves the addition, to 

the values of A: An
, of a uniform factor, A. The equation for Mn 

then becomes: 

I= identity matrix 

A= 10/\x 

The factor of x by which ten is raised can vary widely. Its exact value is determined each 

time an iteration is run in order to satisfy E(kn+t) > E(kn
). This modification relieves 

problems 1 and 2 mentioned in section 2.4. This modified form of the Gauss-Newton 

optimization is known as the Levenberg-Marqardt optimization and is the optimization 

method of choice to attempt to inversely apply Anderson's AEM. 
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3 Methods 

3.1 Development of Synthetic Datasets Based on the Analytical Element Model 

Developed by Anderson (2001) 

In order to develop and evaluate the inverse algorithm, synthetic datasets were 

first created. With these synthetic datasets, head values were collected from the forward 

modeling of known values of window length and flux through the window. Thus, the 

inverse algorithm developed was evaluated by its ability to start at an initial guess for 

these parameters and arrive at a solution close to the known values. 

3.1.1 Forward Modeling of the First Synthetic Test Case 

The parameters used in the literature by Anderson (2001) to illustrate the AEM 

were used to develop the first synthetic test case. Though Anderson (2001) makes no 

mention of units in his flow field figure, it was assumed that the figure is a unit block 

with data points calculated on a scale fine enough to give a clear resolution of the 

contoured values. For the calculation of the complex potential, a square unit grid with 

complex potentials calculated on 1/1000-unit increments was used. For clarity we will 

consider the grid to be 200 ft by 200 ft. Thus, values are calculated in 0.2 ft increments 

for a total of one million calculations of the complex potential in a single grid. 

Parameter values were chosen to be consistent with the ratios presented by 

Anderson (2001 ). 

Q I 
-- = -

Q��L 3 
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The window length was chosen to be .5 units, or 1 00 feet, and the flow through 
the window was chosen to be 1 00 ft3 /day to meet Anderson's ratio requirements. Thus 
the parameter values used in the first synthetic case were: 

L = 100ft 

ft3 Q = 100-
day 

Q (u) = -1 Jt
3 

xO day 

Q(/) = 3 ft 3 
xO .,1 uay 

k (u) = 3 _/!_  
day 

k (/) = 1 ft 
day 

¢, = 1ft 

b = 1ft 

An Excel spreadsheet was first used to calculate the one million complex 
potentials for the synthetic data point collection. However, this approach was abandoned 
due to problems associated with data management. A FORTRAN program, which 
proved much more efficient, was written to carry out the calculations (Appendix A). 

The FORTRAN program creates three output files based on the input file 
conformal . in , which contains values for the eight input parameters. The file 
con_head . out is an ASCII grid file containing one million head values calculated on 
the 0.2 ft interval. The file con_stream . out is an ASCII grid file containing one 
million stream tube values calculated on the 0.2 ft interval. The third output file is 
wel l  head . out . This file only reports four values. These values are the head values for 
14 



the four head observation points shown in Figure 3.1. These points represent synthetic 

well screens and were chosen with a vertical placement similar to observation wells that 

might be located within a window (i.e. such as the Shelby Farms window site in 

Memphis, Tennessee); see Figure 3.2. These values were recorded as the "field" head 

measurements to be used as the state variables in the inverse algorithm. The ASCII files 

representing stream and head values were both imported into ArcView GIS and 

contoured, see Figure 3.1 .  Head values reported by the output file we ll_heads . out 

were recorded as the "field" head values for synthetic dataset one 

3.1.2 Forward Modeling of the Second Synthetic Test Case 

A second synthetic dataset was chosen so that the values of parameters describing 

window length andflow through the window were different in value and magnitude from 

the first test case. This was done to assure that the successful application of the inverse 

algorithm was robust with respect to the parameters L and Q. Thus the values ofL and Q 

chosen for use in the second synthetic test case are shown below. 

L = 1 73ft 

Q(11) = -1 ft
3 

xO day 

Q(/) = 3 ft
3 

xO day 
ft

3 
Q = l l3 

day 

k (II) = 3 _!!_ 
day 

k (I) = l_f!_ 
day 

</> 
= 1ft 

b = 1ft 
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Figure 3.1 Synthetic Dataset One Based Upon Anderson (2001). 
This figure represents a vertical cross section through a window of unit width normal 
to the vertical plane. All head values are presented in feet. 
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Figure 3.2. Wells Present Within the Shelby Farms Site Window 
TOC: Top of Casing, The letters and numbers presented above the TOC value are the well names sighted in AwwaRF report 
by Gentry et al. 2004. 



The flow field produced by these input parameters is presented as Figure 3.3. 

Head values reported by the output file wel l_heads . out were recorded as the "field" 
head values for synthetic dataset two. 
3.2 Development of an Inverse Algorithm Using the Levenberg-Marquardt 

Optimization Technique Coupled to Anderson's (2001) Analytic Element Model 

The "field" head values represent the state of the flow field with respect to known 
values of the system parameters. In order to develop an inverse algorithm the values of 
the system parameters representing window length andflux though the window (L and Q) 
were considered to be unknown. An initial guess for what the values might have been 
was provided and the AEM was evaluated on the basis of this initial guess. Head values 
were recorded at the location of the hypothetical well screens to represent the state of the 
system at the initial guess. The Levenberg-Marquardt optimization was then applied to 
evaluate the effect of a small change in the parameters L and Q on the simulated heads. 
Based on this effect the optimization technique calculates the change in L and Q that will 
lower the square root of the sum of the squares of error between the "field" head values 
and the simulated head values. The AEM is then evaluated based upon the updated 
prediction. When the change in L and Q produces simulated head values that more 
closely approximate the "field" heads (resulting in a improved error function) the new 
values of L and Q are considered to be an improved estimate. This procedure was 
repeated until the minimum error function was achieved for each dataset. The minimum 
error function was achieved when the optimization technique did not produce an 
improved error function. This application of the Levenberg-Marquardt optimization to 
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Anderson's 2001 AEM constitutes the inverse algorithm developed for this study. A flow 

chart of the calculation procedures used in the inverse algorithm is presented as Figure 

3.4 

3.3 Experimentally Testing the Capability of the Inverse Algorithm to Identify a 

Solution 

The Levenberg-Marquardt algorithm was applied to both synthetic datasets. With 

only four head observations to assess error in the inverse process, the maximum number 

of parameters that could be solved for inversely is four. However, inverse solutions are 

often improved with an increase in the degrees of freedom. During the early stages of 

this research the algorithm was setup to solve for three parameters L, Q, Q(u>. This setup 

offered only one degree of freedom. It was noted that adding one more degree of 

freedom would increase the accuracy of the inverse solution dramatically. Thus the 

parameters L and Q were chosen to be the unknown parameters and the value of Q(U} was 

entered as a known parameter. 

3.3.1 Experiment One - Application of the Inverse Algorithm to Synthetic Dataset 

One 

The first test of the inverse algorithm was implemented with synthetic dataset 

one. The initial guesses of L= 193 ft and Q= 10 ft3 /day returned head values that had an 

error function value of E= 63 .5. The initial guess values were chosen to be on the outer 

edge of the 100% difference range to illustrate the robust nature of the inverse technique 

to the analytic element model equations developed by Anderson (2001 ). The flow field 

of the initial guess was observed to have head values in the same range of those in the 

known flow field, as would be expected, Figure 3.5. 
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Input all eight known state parameters into the AEM 
Collect head data from FORTRAN output file well_ head.out 

! 

Collect heads based on perturbed values from FORTRAN output file well_ head.out 
Set l=0 

Check for the Hessian Matrix for singularity 
Yes Input six known state parameters and input guesses for L and Q into the AEM 

! 7 
,, The optimization produces new guess for L and Q based on perturbations' affect on the error function .----------Collect head data from FORTRAN output file well_ head.out 

Calculate square root of the sum of the squares of the head discrepancies, E 
! F.<1 00 

••start of lteration••  Perturb guesses for L and Q 
.J by 5% and Q by I 0% 

t 

Make new guess for L and O 
E>IOO j 

Input new guesses and collect new head data in FORTRAN well head.out 
Calculate the sum of the squares of the head discrepancies, E 

Input six known state parameters and perturbed values for L and Q into AEM 
Accept new values of L and Q as improved guesses 

Figure 3.4 Flow Chart of the Inverse Algorithm 

No 

STOP: Accept L and Q from previous iteration 

-� � J Set )..=IO  I 

Yes 

Increase Perturbations of L and Q by 5% each and restart the iteration 
H 

Check the Hessian Matrix for singularity with the new value of A 
lfl=0: set )..=IO  If�IO :  multiply A*  I 0 

The subscript 1 following a condition statement such as "No" means that step 
is only taken once during an iteration. The subscript 2 indicates the step that is 
to be taken only after an iteration in which the step with the subscript 1 has 
been taken 
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The Levenberg-Marquardt inverse algorithm was applied with a 5% perturbation 

for the parameter representing L and a 10% perturbation for the parameter representing 

Q. After seventeen iterations the inverse algorithm would not produce a lower error 

function for any value of A. The perturbations of L and Q were increased to 10% and 

15%, respectively, in an effort to move in an observable search direction. This new 

perturbation produced an improved error function and iteration proceeded until the 

inverse algorithm could no longer produce an improved error function. This point was 

reached during iteration nineteen. Therefore, the values for L and Q were taken to be the 

solutions from iteration eighteen. 

3.3.2 Experiment Two - Application of the Inverse Algorithm to Synthetic Dataset 

Two 

Next, the inverse algorithm was applied to the second set of synthetic data. The 

initial guess values were L = 100 ft, Q = 200 ft3/day. This initial guess produced an error 

function value of E = 78.82. The resultant flow field of the initial guess is represented as 

Figure 3.6. Once again, values for L were perturbed by 10% and values for Q were 

perturbed by 5% during each iteration. In contrast to the first dataset, during the inverse 

calculations for the second dataset the perturbation values did not need to be adjusted. 

After the tenth iteration the error function could not be lowered for the any value of A. 

The values of L and Q returned by the ninth iteration were accepted as the solution to the 

inverse problem. 
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3.3.3 Experiment Three - Test the Stability of the Inverse Algorithm 

A sensitivity analysis was performed in order to establish whether or not random 

errors in the measurement of heads would greatly affect the ability of the inverse 

algorithm to predict reasonable values for L and Q. For example, small changes in the 

observation data could lead to large changes in predictions of L and Q. This would be an 

indication of an unstable inverse model. This analysis was performed on synthetic 

dataset one. The head values were perturbed randomly by ±5% in three separate trials 

(Pl - P2). Table 3.1 shows the perturbed head values used in the sensitivity analysis. 

3.3.4 Experiment Four - Test the Effect of Added Observation Data on the Inverse 

Solution 

Adding head observations to define the state of the system will increase the 

degrees of freedom in the inverse solution. A single fixed data point was added to the 

synthetic datasets to illustrate the effect on the inverse solution. While it was anticipated 

that the added data points would improve the accuracy of the inverse solution, the best 

location for a new fixed data point was not known. The inverse algorithm was evaluated 

three separate times with the added data point in three separate locations. The three 

locations are illustrated in Figure 3. 7. Position one is located at the boundary between 

the two aquifers and on the edge of the window. Position two is located in the vertical 

center of the upper aquifer and above the window edge. Position three is located at right 

hand boundary of the upper aquifer. 

3.4 Application of the Inverse Algorithm to the Field Test Case 

The field test case chosen for inverse application of Anderson's 2001 AEM was 

the Shelby Farms site in Memphis, Tennessee. The site is known to contain an aquitard 
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Table 3.1 
Head Values {ft} Used in the Sensitivi� Anall:sis 

Synthetic Head 

Well p 1 P 2  P 3  True Value 

1 1 29.68 1 30.0 1 1 24. 1 2  1 25 .67 

2 55 .69 54.40 54.99 53 .72 

3 -4.34 -4. 1 6  -4.08 -4.25 

4 -6.50 -6.56 -6.38 -6.65 

Wells are counted left to right in Figure 3 .6., the left most 
well being Well I and the right most well being Well 4. The 
notation P 1 indicates perturbation trial one. 
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window and was selected to test the robust nature of the algorithm with actual filed data 
(Gentry et al. 2004) 
3.4.1 Background on the Shelby Farms Site 

The Shelby Farms site is located in the north-central part of the Mississippi embayment. 
It is underlain by several thousand feet of unconsolidated Cretaceous, Tertiary, and Quaternary 
age sediments (Bradley 1991). On site, the alluvial deposits from the Wolf River floodplain are 
made up of 10 to 15 feet of silty clay and clay. The following 20 to 40 feet of alluvium are 
composed of sand and gravel with minor clay and silt. The alluvial deposit is separated from the 
Memphis Sand by a confining layer including strata equivalent to the Jackson Formation and the 
Cockfield and Cook Mountain Formations of the upper Claiborne Group (Bradley 1991 ). Due to 
similarity in lithology, these formations have not been subdivided and the confining layer is 
known as the Jackson-upper Claiborne confining layer (Graham and Parks 1986). The Jackson­
upper Claiborne confining layer is predominantly clay, silt and silty or fine-grained sand. In the 
vicinity of the Shelby County landfill, individual beds within the Jackson-upper Claiborne 
confining layer are not areally extensive. The lenticular clay and silt deposits often pinch out 
rapidly or grade laterally into silty-sand or sand layers (Bradley 1991) 

The Memphis Sand of the Claiborne Group lies beneath the Jackson-upper 
Claiborne confining layer. The upper part of the Memphis Sand consists primarily of 
sand with some interbedded silt and clay deposits. The saturated portion of the Memphis 
Sand is what is commonly referred to as the Memphis aquifer 

The occurrence of windows in the upper Claiborne aquitard is suspected to occur through 
erosional processes (Larsen et al. 2003; Gentry et al. 2004 ). Two conceptual models have been 
evaluated for windows in the upper Claiborne confining layer: 
28 



1. post-Claiborne paleovalley incision, and 

2. erosion and sedimentation during the Claiborne sequence formation (Larsen et 

al. 2003; Gentry et al. 2004). 

The window at the Shelby Farms site is suspected to have been formed from erosion and 

sedimentation from a deltaic area in the Mississippi Embayment during high sea levels 

(Gentry et al. 2004). 

3.4.2 Application of the AEM and Inverse Algorithm to the Shelby Farms Site 

In order to apply the analytic element model developed by Anderson (2001 ), the 

confining layer at the Shelby Farms Site had to be idealized. Where the confining layer 

exists, the thickness was considered negligible to that of the system as a whole. Thus, in 

the model, it exists as a one-dimensional line in the two-dimensional flow field 

containing the observation wells. The one-dimensional length of the window within the 

two-dimensional flow field was idealized as centered about the middle of the well 

distribution. The overlying aquifer was assumed to have a uniform thickness of 55 ft. 

The thickness considered of the Memphis Sands was 105 ft. An output model 

discritization was established to calculate the complex potential values every foot. 

Values of the complex potential were calculated on a grid of 160 ft by 1000 ft. 

Because the locked parameters in the field test case are estimates, two parameter 

estimation sets were made. The first set (parameter set one) uses estimates of hydraulic 

conductivity based on local well pumping and estimates of aquifer flows based on USGS 

maps of the local potentiometric surfaces. The second set (parameter set two) uses 

regional values for the respective conductivities and assumes flow values in the upper 

and lower aquifer are negligible with respect to the flows associated with the window 
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feature. The inverse algorithm was applied to both parameter sets. A detailed discussion 
of these parameter sets is given in the following sections. 
3.4.2.a Shelby Farms Parameter Set One 

Locked parameter values in the initial forward modeling of the Shelby Farms site 
are presented below. 

k (u) = 1 00 ft 
day 

k (/) = 9.8 ft 
day 

Q(u) = 13.92 ft3 

day 

Q(/) = 1.3 ft3 

day 

<l>��� = 21923.933 ft3 

day 

b = 1ft 

The value entered for the parameter k(u) was selected based upon recent studies at the site 
that determined the hydraulic conductivity in the upper aquifer was 100 ft/day (Gentry et 
al. 2004). The value entered for parameter k(I) is the vertically weighted average of 
hydraulic conductivities reported by Gentry et al. (2004) for wells UC-2 and UC-1, 
Figure 3.2. The parameter Q(u) and Q(I) were calculated with the following equation 
relating volumetric flow to hydraulic conductivity, aquifer thickness, and hydraulic head 
in a confined system. 
Q = kH

dh 

ds 
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k= hydraulic conductivity 
H= aquifer thickness, 
dh = change in head per linear distance in the direction of flow 
ds 



Both the upper and lower aquifers were assumed to have the behavior of confined 

aquifers. The values of dh/ds in the upper and lower aquifer were approximated from 

historical water table data for the Shelby Farms Site (Parks and Mericki 1992). 

The value of <l>�:� is a calculated parameter using the following relationship 

(Strack 1989): 

<l>��� = k(u)b<p 

�o)= hydraulic conductivity at the origin 

b= aquifer width normal to the z plane 

cp= hydraulic head along the imaginary axis (field observation) 

The variable <l>�:� serves as a scaling variable for the system and was estimated at a 

location between UC-1 and MS-12. 

The six known parameter values were entered into the forward model with an 

initial guess of L= 500 ft and Q= -500 ft3/day. This initial guess produced an error 

function of E=8.5. The flow field of the initial guess is presented as Figure 3.8. 

3.4.2.b Shelby Farms Parameter Set Two 

In parameter set two the specific parameters that were reconsidered were the 

hydraulic conductivities and the values for flow in the upper and lower aquifers. The 

value entered for hydraulic conductivity in the upper aquifer was considered a realistic 

value for the region. However, the value of hydraulic conductivity entered for the lower 

aquifer was considered to be inconsistent with regional values and more likely represents 

a very localized value. A new value of 40 ft/day was entered as the hydraulic 

conductivity in the lower aquifer. This value was considered to be more representative 
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on a regional scale. The values for flow in the upper aquifer and flow in the lower 

aquifer were entered as 0 with the assumption that flows in the vicinity are dictated more 

by the presence of the window than by regional flow magnitudes. 

These new assumptions, shown below, provided a much more realistic prediction 

of heads on the boundaries of the model. 

g<I) = 0.0 ft
3 

day 

<I>��� = 21923 .933 ft
3 

day 

b = 1ft 

The values of the new initial guess of L=500 ft and Q=-500 ft' /day were used 

once again. These initial guesses produced a very low error function of E= 3.9. The flow 

field produced by the AEM for parameter set two is presented in Figure 3.9. 
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4 Results 

4.1 Results from the Synthetic Data Experiments 

4.1.1 Results from the Application of the Inverse Algorithm to Synthetic Dataset 

One (Exp One) 

The inverse algorithm produced the values L = 118.8 ft, and Q= 112.2 ft3/day. 

The calculation of the forward model with these input parameters produced a final error 

function of E= 3.6. The values ofL and Q, as well as the resulting heads calculated at the 

synthetic well screens, for each iteration are presented in Table 4.1. As stated previously, 

the true values of L and Q were known to be L = 100 ft, Q = 100 ft3 /day. A graph of the 

values of L and Q from Table 4.1 verses the number of iterations is presented as Figure 

4.1. A graph of the error column from Table 4.1 verses the number of iterations is 

presented as Figure 4.2. The flow field mapping of the inverse solution is presented as 

Figure 4.3. 

4.1.2 Results from the Application of the Inverse Algorithm to Synthetic Dataset 

Two (Exp Two) 

The values produced by the inverse algorithm for synthetic dataset 2 were L= 

192.3 ft and Q= 127.7 ft3/day. The error function value associated with this solution is 

E= 2.0. A summary of values calculated for each iteration of the inverse procedure is 

presented as Table 4.2. The true values for L and Q were known to be L= 173 ft and Q= 

113 ft3/day. Figure 4.4 illustrates the convergence ofL and Q from the initial guess to 

final values calculated by the inverse algorithm. A graph illustrating the decline in error 

during the iterative process is presented as Figure 4.5. The flow field mapping 
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Table 4.1 

Summe!l of Values in Each Iteration of the Inverse Al&orithm - Dataset One 

Iteration L �ft) Q (ft-"3/day) h l (ft) h2 (ft) h3 (ft) h4 (ft� lambda E 

0 193 10  71 .85 1 9.9 -4.57 -5.62 * 63 .57 

19 1 .9 1 1 . 1  72.35 20. 1 5  -4.56 -5.62 l .00E-+-01 63.02 

2 190.6 12.4 72.9 20.42 -4.56 -5.62 l .00E-+-01 62.4 

3 1 89.l 1 3 .9 73.54 20.75 -4.55 -5.62 l .00E-+-01 61 .69 

4 187.5 1 5.5 74.28 2 1 . 12 -4.54 -5.62 l .00E-+-01 60.87 

5 1 85 .6 1 7.4 76.06 22.03 -4.52 -5.63 l .00E-+-01 58.88 

6 183 .3 1 9.7 76. 1 5  22.07 -4.52 -5.63 l .00E-+-01 58.78 

7 180.8 22.2 77.33 22.68 -4.5 1 -5.63 l .00E-+-01 57.46 

8 177.8 25 .2 78.75 23.42 -4.49 -5.64 l .00E-+-01 55 .87 

9. 177.8 29.2 79.89 24.09 -4.47 -5.82 0.00E-+-00 54.54 

10 173 .4 33.6 82.05 25.22 -4.44 -5 .83 l .00E-+-01 52. 1 1 

1 1  167.8 39.2 84.89 26.74 -4.41 -5 .86 1 .00E-+-01 48.9 1 

12 160.3 46.7 88.88 28.9 -4.36 -5 .9 1 .00E-+-01 44.39 

13 152.3 54.7 93.36 3 1 .4 -4.3 -5.95 0.00E-+-00 39.27 

14 152.3 58.7 94.65 32. 17 -4.27 -6. 16 0.00E-+-00 37.78 

15 126.8 84.2 1 1 1 .21  41 .97 -4.03 -6.58 l .00E-+-01 1 8.64 

16  126.8 92.2 1 1 1 .99 42.44 -3 .99 -6.9 0.00E-+-00 17.73 

17 126.8 96.2 1 1 5.68 44.7 -3 .9 1 -7.33 0.00E-+-00 13 .48 

1 8  1 18.8 112.2 124.95 50.52 -3.72 -8. 15  0.00E-+-00 3.64 

19 129.7 10 1 .3 1 16.86 45.4 -3 .86 -7.76 l .00E+l4 12. 1 8  

The values ofL and Q identified by the inverse algorithm are in bold at iteration eighteen. 
The true values are L= IO0 ft and Q= 100 fl:3/day. Wells are counted left to right in 
Figure 3.6. 
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Table 4.2 

Summery of Values in Each Iteration of the Inverse Algorithm - Dataset Two 

Iteration L (ft} Q (ft"3/dai) hl (ft) h2 (ft) h3 (ft) h4 (ft) lambda E 

0 100.0 200.0 17 1 .97 80.96 -2.49 -14.76 * 78.82 

1 107.1  192.9 163 .92 75.30 -2.69 - 13 .9 1  1 .E+o l 68.96 

2 1 1 5 . l  1 84.9 1 55 .60 69.63 -2.89 - 13 . 1 3  1 .E+o l 58.87 

3 124. l 175.9 146.9 1 63 .89 -3.08 -12 .40 1 .E+o l 48.43 

4 134.4 165.6 137.8 1 58.08 -3.26 -1 1 .73 1 .E+o l 37.62 

5 142.4 165.6 133 .98 55.67 -3.3 1 -1 1 .75 0.E+00 33. 1 1  

6 155.8 1 52.2 123 .65 49.48 -3.50 - 1 1 . 12 1 .E+0 l 21 .05 

7 173 .3 1 34.7 1 1 1 . 19 42.34 -3 .7 1 -10.40 1 .E+0 l 6.69 

8 192.3 1 1 5.7 100.48 36.51  -3 .87 -9.97 1 .E+1 5  5 .60 

9 192.3 127.7 103 .79 38.42 -3 .79 -1 0.47 0.E+o0 2.04 

10  192.3 1 2 1 .5 100.24 36.53 -3.84 -1 0.3 1 1 .E+14 5 .85 

The values ofL and Q identified by the inverse algorithm are in bold at iteration nine. The true values 
are L= l73 ft and Q= 1 1 3 ft3/day. Wells are counted left to right in Figure 3.6. 
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produced by the input of parameters calculated by the inverse procedure is presented as 

Figure 4.6. 

4.1.3 Stability Test Results With Dataset One (Exp Three) 

The inverse algorithm was run on the three perturbed "field' head datasets, P l -P3. 

The results of the inverse algorithm for the three perturbed "field" head datasets are 

presented in Table 4.3. 

4.1.4 Results of Added Head Observations (Exp Four) 

The inverse algorithm was run for each trial of an added synthetic well 

observation (Tl - T2). Table 4.4 is a summery of values of L and Q identified for each 

trial. Table 4.5 shows the percent difference between the calculated values and the 

known values of L and Q for each trial. Locations of the synthetic well screen in each 

trial can be observed in Figure 3. 7. 

4.2 Results from the Application of the AEM and Inverse Algorithm to the Field 

Test Case 

The inverse algorithm was run on both parameter set one and two. The parameter 

set that provided the most realistic flow field realization was chosen as the parameter set 

that best represents the site characteristics. Additional head data taken on two separate 

occasions was then applied to the chosen parameter set and the inverse algorithm. 

4.2.1 Results from the Inverse Algorithm Application to Shelby Farms -Parameter 

Set One 

With the initial guesses of L=500 ft and Q= -500 ft3/day, the inverse algorithm 

was run for seventeen iterations. The error function associated with the initial guess was 
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Table 4.3 

Results From the Sensitivity Analysis 

L (ft) 

Q (ft
3/sec) 

P l  P 2  P 3  
103 .7 1 1 1 .6 
99.0 105 .4 

109.9 
95.0 
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Table 4.4 
Summery of Inverse Solutions With an Added Obsenration 

Trial 1 Trial 2 Trial 3 Known 
L (ft) 1 1 2.0 1 0 1 .8 1 1 1 .9 1 00.0 

Q (ft"3/day) 93 .0 96.2 1 00. 1 1 00.0 
E 9.7 3 .0 6.3 n/a 



L 

Q 

Table 4.5 
Percent Deviation from the Known Values 

With an Added Observation Point 
Trial 1 Trial 2 Trial 3 
12.0% 
7.0% 

1.8% 
3.8% 

1 1 .9% 
0. 1 o/o 
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E=7 . l .  The values calculated by the algorithm were L= 839.3 ft and Q= -9 83.3 ft3/day. 

The error function calculated for these numbers was E= 6.9. The flow field calculated by 

the application of parameter set one to the inverse algorithm is presented as Figure 4. 7. 

4.2.2 Results from the Inverse Algorithm Application to Shelby Farms - Parameter 
Set Two 

The same initial guess of L=500 ft and Q= -500ft3 /day was entered in concert 

with Parameter Set Two. The initial error function was E= 4.0. The inverse algorithm 

was only run for two iterations before an improved error function could not be obtained. 

The values of L=530.9 ft and Q= -594.9 ft3 /day were calculated with an error function of 

E=3.8. The flow field calculated by the application of parameter set two to the inverse 

algorithm is presented as Figure 4. 8. 

4.2.3 Additional Results from the Inverse Algorithm Application to Shelby Farms -
Parameter Set Two 

Three sets of head measurements exist for the Shelby Farms Site, Table 4.6. 

Because the flow field calculated by the inverse algorithm using parameters set two 

contains realistic values for heads near the model boundaries, the additional head 

measurements were applied to the inverse algorithm using parameter set two. Both of the 

additional datasets required two iterations with the inverse algorithm before an improved 

error function was achieved. The calculated values for L and Q, based on the three 

separate sets of wellhead data, are presented in Table 4. 7. 
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Table 4.6 

Summa!I of Shelbi Farms Head Measurements {ft} 

Wells 7/12/2004 1 1/14/2002 5/1 7/2002 

UC-2 108 .68 107.82 108.39 

UC-1 79.91 78.06 78.07 

MS-12 4 1 .67 3 8.72 38 .55 

UC-3 12.6 1 3 .02 12.55 
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Table 4.7 
Results of the Inverse Application of Anderson's 

AEM to the Shelbl Farms Site 
7/12/2004 1 1 /14/2002 5/1 7/2002 Average 

L (ft) 530.90 497.80 548 .00 525.57 
Q (ftA3/day) -594.90 -56 1 .80 -564.00 -573.57 
E final 3 .80 2.90 2.47 3 .06 
E initial 3 .96 7.09 2.5 4.52 

52 



S Discussion of Results 

S.1 Discussion of Synthetic Dataset Results 

S.1.1 Discussion of Synthetic Dataset One Results 

The results of experiment one illustrate the inverse algorithm's ability to identify 
values for L and Q (Table 4.1) that are within 20% of the true values ofL and Q that 
produced the "field" head data. This indicates that while there is some inherent error 
involved in the application of this technique, the algorithm will converge to a solution 
that is a meaningful improvement over the initial guess. Figure 4.2 shows the steady 
decline in the error function to the lowest achievable error at iteration eighteen. Typical 
behavior for gradient based techniques is observed at data point nineteen, where the 
solution will begin to diverge since an improved estimate of L and Q could not be made 
for any value of A.. The flow-chart in Figure 3.4 provides an understanding of the 
iterative process by which the algorithm is considered to have arrived at the most 
improved solution. From the initial guess, the search algorithm progresses iteratively to a 
sequent improved solution, and Figure 4.8 shows graphically how the values of L and Q 
changed during their convergence. The rate of convergence to an optimum solution is 
seen to be similar for both parameters L and Q. The convergence to an optimum 
solution might be considered slow with this algorithm but it is steady and stable when 
applied to data that is free of noise. 
S.1.2 Discussion of Synthetic Dataset Two Results 

The results from experiment two reinforce the results of the first experiment and 
indicate the robust nature of the inverse algorithm. The results of experiment two also 
illustrate the inverse algorithm's ability to identify values for L and Q (Table 4.2) that are 
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within 20% of actual values of L and Q associated with the "field" heads. Once again, in 

light of the inherent error, the algorithm converged on a meaningful improvement over 

the initial guess in a sequential fashion, until the algorithm could no longer identify a 

better search path. The steady decline in the error function to the lowest achievable error 

at iteration nine is observable in Figure 4.6. A similar convergence pattern is identified 

with experiment two and the convergence of the algorithm from the initial guess values 

of L and Q to values that are with in 20% of the known values is seen in Figure 4. 7. This 

illustrates the ability of the algorithm to converge slowly but steadily to identify a unique 

solution irrespective of the relative values of L and Q and their magnitude. 

5.2 Discussion of Stability Test Results 

The ±5% perturbation of the head data in experiment three had a negligible affect 

on the ability of the inverse algorithm to produce a solution. The results summarized in 

Table 4.3 show that even with the perturbation of the "field" heads, the algorithm still 

converged to values of L and Q that were within 20% of the true values. This illustrates 

that the inverse algorithm is stable with respect to the heads as state observations. If 

random perturbation caused large discrepancies in the values calculated for L and Q the 

inverse algorithm would have been considered unstable and therefore not practical for use 

in a field case where noise in the data is a possibility. 

5.3 Discussion of the Effect of Added Head Observations 

The added observation points in trials one through three (T 1 -T3) provided some 

interesting insight as to where the best place to add an observation point in this system 

would be. Each added observation provided improved estimates ofL and Q. However, 

trial two seemed to provide the most improved estimate of L and Q, Table 4.5. Though 

54 



trial one provided an improved estimate, the observation in trial one is located in an area 
of the window where the head gradient is relatively high. This is potentially the reason 
that the added observation at this point did not give the largest improvement in a final 
estimate of both L and Q. The observation point used in trial three is located the furthest 
from the window. The larger overall error can most likely attributed to this fact. 

It was observed during experiment four that an additional observation point 
outside the center of the window will improve the estimate of L and Q calculated by the 
inverse algorithm. The error function for each trial was higher than in the original dataset 
1 with 4 observations. This can be attributed to the fact that when an observation point is 
added the value of E calculated in each iteration considers the total error in five wells 
instead of four. Thus, when an observation well is added an increase in E is to be 
expected, as is an improved estimate of L and Q. 
5.4 Discussion of the Field Application 

The application of the AEM and inverse algorithm to the field site illustrated the 
importance of understanding the characteristics of the site. The flow field resulting from 
the forward modeling of parameter set one and the initial guess values for L and Q was 
observed to contain unrealistic head contours at the boundaries. Observation of Figure 

4. 6 indicated that there was a disconnect between parameter set one and what local 
values were likely to be. The large value entered for flow in the upper aquifer forced the 
heads in the upper aquifer to range from 150 ft to 280 ft. It was known that the heads in 
the area were closer to 215 ft to 220 ft. 

The error function associated with the inverse solution to Parameter Set 1 is 
misleading. The error function itself is relatively low, however the values of the 
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individual heads have an opposite vertical gradient than those at the site. This can be 

attributed to the proximity of the well screens in Figure 4.6 to the 210 ft contour. This is 

indicative of the non-uniqueness associated with the technique and some additional 

knowledge of system behavior must be used to constrain the inverse model. 

For this reason, as well as the head values in the resulting flow field, it was 

determined that the values in parameter set one were not an accurate representation of the 

site. The flow field resulting from the initial guess for L and Q and parameter set two 

contains head values that are much closer to what would be expected at the site, Figure 

4. 7. 

The flow field produced by the average values of L and Q identified by the 

inverse algorithm, Table 4. 7, is very similar to the flow field created by running the AEM 

with the initial guess values, Figure 5.1 .  This is due to the fact that the initial guess 

values for L and Q already produced a very low error function and a reasonable flow 

field. 

It is noted in the comparison between Figures 4. 6 and 4. 7 that the parameters 

describing flow and hydraulic conductivity in the lower and upper aquifers have a 

significant effect on the flow fields predicted by the inverse application of Anderson's 

AEM. With an understanding of what values are to be expected in the flow field it can be 

assessed whether or not reasonable values have been chosen for the site. 

The values for window length and flow through the window are only 

representative of what is occurring at the location of the vertical plane in the window that 

contains the observation wells. Both parameters are only valid for a unit width into the z­

plane. In this study all results in this study are considered over a unit width. 
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6 Conclusions 

The analytical element model developed by Anderson (2001) can be solved 

inversely for the parameters window length andflux through the window. It has been 

illustrated that when the exact values of locked parameters are known and initial 

estiments of L and Q are within 100% of the true values the algorithm will converge onto 

an estiment of L and Q that is within 20% of the true values based on four head 

observations. Adding a fifth head observation to the algorithm will improve the accuracy 

of the estiments of L and Q. 

In the case of the Shelby Farms field experiment the algorithm demonstrated a 

problem, as with most inverse techniques, with nonuniqueness. Some apriori knowledge 

must be used to constrain the search beyond just localized head data. When parameter 

selections include values that differ on a regional and local scale a trial and error 

approach can be used in the selection of the most appropriate parameter set. A parameter 

should be chosen that results in a solution that best estimates the boundry conditions that 

exist at a site (such as flow gradient). 

When the algorithm was applied to the Shelby Farms Site, a value for flux 
through the window was estimated to be -525 ft3/day . This value represents an estimate 

of the flow occuring through a unit width of the window where the length is estimated to 

be 574 ft. Given that the window is generally considered to have an oblong shape 

( Graham and Parks, 1986) and that the vertical plane that was modeled is on the major 

axis of the window, these values are comparable to those calculated by the modeling 

preformed by Gentry et al. (2004) which determined an overall window flux of 

approximately 35,626 ft3/day. 
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Appendix 
FORTRAN Source Codes 



C 

C 

C c Conformal Mapping Analytical Tool 
C 

C 

C 

C 

C 

C 

Shelby Farms Site 
July 14, 2004 

Patrick Lasater McMahon 
C c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C c * * * Explicitly reference variable types * * * 
C 

C 

C 

C Real*4 l,qxu, qxl, q, k, ku, kl, b, phiu, psi(160,1000),x,y, & stream(l 60, 1000) complex z(160,1000), zeta(l60,1000), 0(160,1000) integer* 4 ij 
c * * * Open output and input files * * * 
C 

C 

C 

C 

open( unit=20,file ='conformal.in' ,status='old') open( unit=40,file='con _ head.out' ,status='new') open( unit=50,file='con _ stream.out' ,status='new') open( unit=4 l ,file='well_ heads.out' ,status='new') 
c * * *  Read Input data * * *  
C read(20, *) l,qxu, qxl, q, ku, kl, phiu,b 
C 

C c * * * Establish z matrix * * * 
C 

C 

C pi=3.14159265359 
C x=-501 y=-56 
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do 20 i=l ,  1000 do 10 j=l , 55 zG,i) = cmplx (x+i,-(y+j)) 10 continue 20 continue x=-501 y=-56 do 25 i=l ,  1000 do 23 j = 56, 160 zG,i) = cmplx (x+i,-(y+j )) 23 continue 25 continue 

c * * * Perform calculations * * * 
C 

k=(kl-ku)/{kl+ku) 
C 

C do 40 i = 1,1000 do 30 j = 1,160 if( aimag( zG ,i) ). ge. 0. 0 )then zetaG,i)=-(2./l)*(zG,i)-sqrt(zG,i)-l/2.)*sqrt(zG,i)+l/2.)) else zetaG,i)=-(2./l)*(zG,i)+sqrt(zG,i)-l/2.)*sqrt(zG,i)+l/2.)) endif 30 continue 40 continue 
C do 60 i = 1, 1000 do 50 j = 1, 55 oG ,i) = qxl * (1/4 )* ( 1-k)* zetaG ,i)+qxu * (1/4 )* ( ( 1 /zetaG ,i) )-k* zet &aG,i))+(q/pi)*clog(zetaG,i))+phiu psiG,i) = real(oG,i)/(ku*b)) streamG,i) = aimag(oG,i)) 50 continue 60 continue 
C 

64 

do 80 i = 1,1000 do 70 j=56,160 oG ,i)=qxl *(1/4) *( (zetaG ,i)+(k/zetaG ,i))) )+qxu *(1/ 4 )* &( ( 1 +k)*( 1 /zetaG ,i)) )+( q/pi)* clog(zetaG ,i) )+phiu *(kl/ku) psiG,i) = real(oG,i)/(kl*b)) streamG ,i) = aimag( oG ,i)) 



70 continue 80 continue c * * * Write well output file * * *  
write( 41,300) psi(l  49,4 70),psi(l  l 6,490),psi(76,51 0),psi( 49,530) 

C c * * *  Write ASCII Grid Import File * * *  
C write( 40,200) write(S0,200) do 100 j=l ,  160 do 90 i = 1, 1000 write (40, 300) psiG ,i) write (50, 300) streamG,i) 90 continue 100 continue 
C 

C . 200 format('ncols 1000',/,'nrows 160',/,'xllcomer -500',/, &'yllcomer -105',/,'cellsize l ') 
C 300 format(fl5.5,' ',$) 
C 

C end 

65 



C 

C 

C 

c Conformal Mapping Analytical Tool 
C 

C 

C 

C 

C 

June 7, 2004 

Patrick McMahon and Randy Gentry 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 

c * * *  Explicitly reference variable types 
C 

C 

C 

C 

C 

Real* 4 l,qxu, qxl, q, k, ku, kl, b, phiu, psi( 1000, 1000),x,y, 
& stream(l 000, 1000) 

complex z(l000,1000), zeta(l000,1000), 0(1000,1000) 
integer* 4 ij 

c Real*4 1,qxu, qxl, q, k, ku, kl, b, phiu, psi(l000,1000),x,y, 
c & stream(l000,1000) 
c complex z(l O0l ,1001), zeta(l O0l ,1001), ou(lO0 l ,  501), 01(1001 ,500) 
c integer* 4 ij 
C 

C 

c * * * Open output and input files * * * 
C 

C 

C 

C 

open( unit=20,file ='conformal.in' ,status='old') 
open(unit=40,file='con _head .out' ,status='new') 
open(unit=50,file='con _ stream.out' ,status='new') 
open (unit=60, file='grid.out',status='new') 

c * * *  Read Input data * * * *  
C 

read(20, *) l,qxu, qxl, q, ku, kl, phiu,b 
C 

C 

c * * * Establish z matrix * * * 
C 

C 

C 
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C 

C 

C 

pi=J . 14 1 59265359 

x=-0.5 
y=-0.500 

do 20 i=l ,  1000 
do 10  j=l ,  499 
z(j,i) = cmplx (x+i/1000.,y+j/l 000.) 

10  continue 
20 continue 

x=-0.5 
y=0.001 
do 25 i=l ,  1000 
do 23 j = 500, 1 000 
z(j ,i) = cmplx (x+i/1000.,y+(j-500)/1000.) 

23 continue 
25 continue 

write ( 60, 200) 
do 28 j = 1 ,  1 000 
do 27 i = 1, 1 000 
write(60, 300) real(z(j ,i)) 

27 continue 
28 continue 

C 

C 

C do 20 i=O, 1000 
C do 10 j=O, 1 000 
c z(j+ l ,i+ 1 )  = cmplx (y+j/1000.,x+i/1 000.) 
c 10  continue 
c 20 continue 
C 

c * * *  Perform calculations * * *  

C 

C 

C 

k=(kl-ku)/(kl+ku) 

C do 40 i = 1 , 1 001 
C do 30 j = 1 ,  1 001  
c zeta(j,i)=(-2./l)*(z(j,i)-csqrt((z(j ,i)-(1/2.))*(z(j 
C &,i)+(l/2.)))) 
C 

do 40 i = 1 , 1 000 
do 30 j = 1 ,  1000 
if(aimag(z(j ,i)).ge.0.0)then 
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zetaG ,i)=-(2./1)* (zG ,i)-sqrt(zG ,i)-1/2. )* sqrt(zG ,i)+l/2.)) else zetaG,i)=-(2./l)* (zG,i)+sqrt(zG,i)-1/2.)*sqrt(zG,i)+l/2.)) endif 30 continue 40 continue 
C 

C 

C 

C do 60 i = 500, 1001 
C do 50 j = 1, 1001 c ouG,i-499.) = (qxl*( l -k)-qxu*k)*(zetaG,i)*l/4.)+(qxu*l/(4. * c &zetaG,i)))+(q/pi)*clog(zetaG,i))+phiu c psiG,i) = real(ouG,i-499.))/ku*b c streamG,i) = aimag(ouG,i-499.)) 
C do 60 i = 1, 1000 do 50 j = 500, 1000 oG ,i) = qxl • (1/ 4 )* ( 1-k )* zetaG ,i)+qxu • (1/ 4 )* ( ( 1/zetaG ,i) )-k* zet &aG,i))+(q/pi)*clog(zetaG,i))+phiu c oG,i) = (qxl*(l -k)-qxu*k)*(zetaG,i)*l/4.)+(qxu*l/(4. * c &zetaG,i)))+(q/pi)*clog(zetaG,i))+phiu psiG,i) = real( oG,i)/(ku*b )) streamG ,i) = aimag( oG ,i)) 50 continue 60 continue 
C 

C 

C 

C do 80 i = 1,500 
C do 70 j=l ,1001 c olG ,i)=(qxl*(l/4.)*zetaG,i))+(qxl*k+qxu*(l  +k))*(l/(4. *zeta( c & j,i)))+((q/pi)*clog(zetaG,i)))+((kl/ku)*phiu) c psiG,i) = real(olG,i))/kl*b c streamG,i) = aimag(olG ,i)) 
C do 80 i = 1,1000 do 70 j= 1,499 oG ,i)=qxl * (1/ 4 )* ( (zetaG ,i)+(k/zetaG ,i))) )+qxu * (1/ 4 )* &((1 +k)*(l /zetaG,i)))+(q/pi)*clog(zetaG,i))+phiu*(kl/ku) c oG ,i)=( qxl * (1/4. )* zetaG ,i) )+( qxl *k+qxu *(1 +k) )*(1/( 4. • zeta( c & j ,i)) )+( ( q/pi)*clog(zetaG ,i)) )+( (kl/ku )*phiu) psiG,i) = real(oG,i)/(kl*b)) streamG,i) = aimag(oG,i)) 70 continue 
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80 continue 
C 

C c * * *  Write ASCII Grid Import File * * *  
C write( 40,200) write(50,200) do 100 j= 1 , 1000 do 90 i = 1 ,  1000 write ( 40, 300) psi(j,i) write (50, 300) stream(j,i) 90 continue 100 continue 
C 

C 200 format('ncols 1000',/,'nrows 1000',/,'xllcomer -0.5',/, &'yllcomer -0.5',/,'cellsize 0.001 ') 
C 300 format(fl 5.5,' ',$) 
C 

C end 
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