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ABSTRACT 

 

Given the increasing popularity of local foods and the desire to reduce shipping costs and 

carbon footprint, Tennessee-based dairy product producers are showing interest in 

sourcing fluid milk locally. Based on dairy farmer surveys, discussions with industry 

leaders, shipping distances, and transportation costs estimates, a mixed integer linear 

programming model is used to determine the optimal location of an in-state milk 

condensing plant. The objective is to minimize the total transportation costs of shipments 

of fluid milk from farms to the condensing plant plus the transportation cost of shipments 

of condensing plant products to further in-state processing. Twelve scenarios of the 

model were analyzed with Rutherford County consistently being found as the optimal, 

transportation cost-minimizing location.  
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CHAPTER ONE  

INTRODUCTION AND GENERAL INFORMATION 

 
 

Several value-added dairy production plants are located in Tennessee (Moss et al., 

2012). Several of these plants use differing combinations of nonfat dry milk (powdered 

skim milk) and cream as their main production inputs. Currently, this demand is not 

supplied by Tennessee dairy farmers, in part due to the lack of in-state condensing plants. 

From the viewpoint of the value-added producers, milk shipped from locations outside of 

Tennessee may have relatively high transportation costs as compared to a possible in-

state supply source. Further, many food processors are becoming more interested in 

shorter supply chains because of consumer interest in local foods and perceptions 

regarding carbon footprint (Hughes and Boys, 2015). With declining revenues and 

increasing production costs, Tennessee dairy farmers could have a need for markets 

generating higher returns or they may be forced to cease production. As shown in Figure 

1.1, shrinking profit margins continue to lead to a decline in the number of dairy 

operations in the state (Hughes et al., 2016).  

The research presented here is in response to a perceived need from the viewpoint 

of value added dairy producers and state dairy farmers. Assuming this perceived need is 

acted upon, a milk condensing plant would have to be built in Tennessee. To best serve 

all parties involved in the Tennessee dairy industry, a location has to be found for the 
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milk condensing plant.1 The goal here is to determine the transportation cost minimizing 

location of a Tennessee milk condensing plant, where milk is converted to useable 

outputs for the value-added producers (nonfat dry milk and cream). Achievement of this 

goal could potentially create a new market for Tennessee dairy producers. Analysis of 

this topic has multiple factors, including deciding on possible locations for the 

condensing plant, determining the supply of liquid milk in Tennessee, determining the 

demand for nonfat dry milk at a yogurt production plant, and determining the demand for 

cream at an ice cream production plant. Key parameters in the analysis include distance 

from sources of supply to the potential locations for the milk condensing plant, liquid 

milk transportation costs, cream transportation costs, powdered milk transportation costs, 

and conversions from liquid milk to powdered milk and cream.  

Decreasing the haul distance of fluid and processed milk can have a potential 

secondary benefit of a smaller carbon footprint. The possible reduction of input costs and 

possible higher profits for these firms could ultimately increase the demand for local 

Tennessee milk, giving Tennessee dairy farmers a new milk market. Value-added dairy 

producers can also market products as local, not only to Tennessee consumers, but also to 

consumers elsewhere (for example, consumers in other locations might like the idea of 

producers using inputs from local farmers). Finally, the condensing plant would generate 

jobs and income for local residents in the area.  

To achieve the objective, the distances from farms to the processing facility 

should be considered along with distances from the processing facility to the value-added 

                                            
1 This study assumes that one condensing plant as opposed to multiple plants would be profit maximizing. 

This point is further discussed in Chapter Five. 
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facilities. If the distance to the processing facility is too far from a farm, that farmer 

might not be interested in supplying milk. Transportation costs to ship fluid milk could 

become prohibitive if the facility is too distant. In addition, farmers would likely demand 

a price premium to send their milk to a new buyer, as there is no incentive to stop selling 

milk to an established buyer.  

 Different scenarios will be analyzed here. Analyzed scenarios include a base 

scenario (where milk supply can come from 43 Tennessee counties, 5 Alabama counties, 

and 16 Kentucky counties) and a scenario favoring Tennessee milk producers over those 

in surrounding states. In an additional scenario, a location favoring the ice cream 

production plant and cream transportation over the yogurt production plant and nonfat 

dry milk transportation is analyzed. A set of seven scenarios accounting for variations in 

shipping costs are analyzed. Finally, a road closure scenario is also analyzed. 

Initially presented in Chapter Two is a discussion of the relevant literature with an 

emphasis on mixed integer programming models (the tool employed in the analysis). This 

initial discussion is followed by a discussion of the conceptual model and its 

implementation in Chapter Three. The discussion of the model is followed by a 

discussion of the results in Chapter Four. Finally, conclusions and recommendations are 

discussed in Chapter Five. 
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CHAPTER TWO  

LITERATURE REVIEW 

        
  

A diverse selection of previous studies are relevant to this research. A few studies 

use a mixed-integer linear programming to find an optimal location for a processor and a 

number of them focus on dairy processing. In this chapter, studies that use relevant 

location programming will be analyzed as well as technical information relating to milk 

condensing.  

 

Location Theory Literature 

 

 Edwards (2007) outlines basic theories regarding location and regional economies 

including Von Thunen’s concentric rings theory, central place theory, agglomeration 

theory, and industrial location theory. The following discussion briefly covers these 

concepts.  

The concentric rings theory determines where industries should locate in relation 

to the central marketplace, and assumes production costs are equal everywhere and the 

market is a central location. The theory is based on transportation costs and gives value to 

pieces of land by proving their worth for an industry (Edwards, 2007). 

The central place theory finds the optimal types of retailers and locations of 

retailers based on where shoppers are located. The theory assumes shoppers travel to 

retail locations from all residential locations and frequent those retail locations closest to 

their residential location. Retailers have demand cones that represent the consumers they 
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serve and the maximum distance these consumers are from the retailer. Different 

commodities have different levels of effective (threshold) demand, meaning different 

levels of populations (consumers) are needed to support the provision of different types 

of goods and services. Accordingly there is a hierarchy among places based on central 

location, with higher-ordered cities providing goods and services not found in smaller 

places, such as towns (Edwards, 2007). 

Agglomeration theory describes the effect of clusters of firms. When firms locate 

near each other, a specialized labor force is created and new firms can tap into this labor 

force. Also, firms can cluster near sources of inputs, reducing the transportation costs of 

inputs. Groups of interconnected firms can also benefit from knowledge transfers and by 

influencing the provision of publicly provided goods, both based on regional networks. 

For retail oriented sectors, firms located near other firms may give consumers reason to 

shop in an area. These clustered firms can benefit from spillover of consumers (Edwards, 

2007).  

Industrial location theory seeks a location that minimizes production and 

transportation costs. Transportation costs can be reduced by locating a facility near the 

output market and sourcing inputs from a distance. Also, transportation costs can be 

reduced by locating a facility close to the inputs and shipping the outputs from a distance. 

A common tradeoff of industrial location is land costs versus labor availability. When 

locating a facility in a rural area, land costs are reduced but finding skilled labor can be 

challenging. When locating a facility in an urban area, skilled labor may be readily 
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available but land costs are greater. Facilities with automated processes can reduce land 

costs by locating in a rural area as there is less demand for skilled labor (Edwards, 2007). 

Shaffer et al. (2004) describes a location decision as an “economic transaction 

with a spatial dimension.” Location theory “explains how spatially separated economic 

units interact among themselves and their input and output markets” and “provides 

insight into how location decisions are made” (pages 38-42). One aspect of location 

theory discussed by Shaffer et al. is the least cost approach. The least cost approach finds 

an optimal location then adds additional costs to decide whether or not the optimal 

location is affected (Shaffer et al., 2004). This thesis implements the first step of the least 

cost approach of location theory by finding an optimal location without implementing 

additional costs.  

 The least cost (or cost minimization) approach has six assumptions.  

1.  The firm is in a perfectly competitive environment and cannot gain 

monopolistic power by locating in a specific location.  

2.  The demand for the firm’s output is perfectly elastic and not affected by 

its location.  

3.  The firm’s buyers are separate locations with given sizes.  

4.  The geographic locations of the firm’s inputs are given and the supply is 

perfectly elastic.  

5.  There is an unlimited supply of labor at any of the firm’s potential 

locations.  
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6.  There are no institutional factors (taxes, politics, insurance, culture, etc.) at 

any of the firm’s potential locations (Shaffer et al., 2004). These assumptions are 

implicitly implemented in the empirical model discussed in Chapter Three.  

In the work described here, optimal location is based on the transportation cost of an 

input versus the output. 

 

Milk Processing Literature 

 

An important aspect of this research is the conversion of fluid milk to other 

products when processed in a milk condensing plant. In the situation of the proposed 

Tennessee condensing plant, after being pasteurized, fluid milk will go through a 

skimming process and a condensing process, resulting in nonfat dry milk and cream. 

Fluid milk is transformed into skim milk and cream using a cream separator (Lampert, 

1975). The resulting skim milk has a water content of 91%. This water will be removed 

in the condensing and drying process, leaving the remaining 9% of solids. The resulting 

nonfat dry milk is either packaged in plastic bags or bins for transportation and protection 

from moisture (Pearce, 2017).  

The information applies to this thesis as this is the process that will occur in the 

proposed milk condensing plant. The information is used in Chapter Three to create 

conversion constraints that represent the processing fluid milk will endure.  

Casey (2013) examines the economic impact of a new powdered milk plant on the 

Nevada dairy industry. As compared to fluid milk, powdered milk has a longer shelf life 
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(up to three years), maintains nutritional value longer, and is easier to package and 

transport. New Zealand is the largest producer of powdered milk in the world while Asia 

(especially China) is a growing center of demand. Casey (2013) notes the location of the 

dry milk plant in Churchill County, Nevada was strategic due its proximity to Interstate 

80 and the Port of Oakland, reducing transportation costs of powdered milk to its primary 

market (Asia). Also Churchill County is an area concentrated with high-yield dairies with 

the potential for expansion. In the early years of the plant, milk would be shipped from 

California until local farms expanded to sufficiently fulfill the supply needs of the plant. 

Given the consistent demand, it is assumed the milk plant will have stable production, 

with revenues exclusively affected by world prices. 

 

Optimal Location Literature 

  

Literature examining the location and cost minimization of processing plants is 

relevant (Hilger et al., 1977; Faminow and Sarhan, 1983; Tembo et al., 1999; Wu et al., 

2010; Garcia-Flores et al., 2015). Applicable models evaluate the costs of converting 

inputs to outputs including relevant transportation costs, with the most relevant 

examining the transportation of fluid and processed milk (Kloth and Blakley, 1971; Beck 

and Goodin, 1980; Dalton et al., 2002; Wouda et al., 2002). 

Hilger et al. (1977) use a mixed integer programming model to find optimal 

locations for grain subterminals in Northwest Indiana. Due to the size of the problem, the 

authors used Benders Decomposition, which adds researcher judgment factors to the 
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solution process. The model minimizes annual cost of grain transportation from local 

elevators and sub-terminals to the destinations. The authors found supplying the newly 

constructed sub-terminals chosen by the model would require expanding the capacity of 

local elevators. 

Faminow and Sarhan (1983) use transshipment nodes to represent beef origins, 

slaughter locations, processing locations, and final demand locations. These nodes were 

part of a mixed integer linear programming model that made decisions on the optimal 

locations for new slaughter and processing locations. The authors found in most cases, 

the slaughter and processing locations were located adjacent to each other to reduce beef 

carcass shipping distance. 

Tembo et al. (1999) use a mixed integer model to analyze the potential for 

expanding the flour milling industry in Oklahoma. The authors minimized all relevant 

costs—including fixed costs, transportation costs, and processing costs—to decide how 

many new mills to open and where to locate these mills by finding the optimal size and 

location of potential new mills. They determined the Oklahoma flour-milling industry 

could expand by 23 percent. 

Wu, Sperow, and Wang (2010) use a mixed integer model to maximize net 

present value (NPV) of a woody biomass-based ethanol facility. In this case, NPV is an 

annualized function of revenue, feedstock cost, operating and maintenance cost, income 

taxes, principal and interest payments, and initial equity. The study looks at a confined 

area (Central Appalachia) that contains a supply and a demand. The supply locations 

were represented by the most geographically central town in each county. The authors 
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found the factor that most affects the location decision was distance and the cost of 

delivering the inputs to the plant. 

Griffith et al. (2014) implement a mixed integer programming model to maximize 

the NPV of a biorefinery in Oklahoma. NPV here consists of costs associated with on-

farm production, transportation, and the biorefinery. Included on-farm production costs 

are fertilizer costs and harvesting costs. Included biorefinery costs are return from 

products, establishment costs, land rents, operating costs, storage costs, and investment 

costs. The supply for the model includes all 77 counties in Oklahoma. The optimal 

biorefinery location is selected from 11 potential counties in Oklahoma. The authors 

found the optimal location for the biorefinery is Blaine County. The optimal solution held 

under a scenario where fuel prices were doubled and a scenario where land prices were 

doubled. 

 Garcia-Flores et al. (2015) use a mixed integer programming model to find the 

optimal amount of equipment, plant locations, and transportation routes for a whey 

processing facility. The authors found the optimal plant was located closest to the largest 

whey production region, showing the location of the supply was the strongest factor in 

the decision. The authors found the solution is not significantly changed when there are 

changes in the cost of transportation. Garcia-Flores et al. (2015) also analyze and make 

constraints for dairy processing plants. These constraints include whey production, flow 

conservation, facility type, maximum plant capacity, budget, and finished production. 

The whey production and flow constraints ensure all whey produced will enter the supply 

chain and all processed whey must be concentrated. The facility type constraint ensures 
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only one facility of any type can be located at a site. A maximum plant capacity 

constraint regarding the amount of whey processed is also imposed. The budget 

constraint ensures the budget includes estate, equipment, construction, and utilities 

expenses. The finished production constraint states the total product produced is equal to 

the conversion ratio (converting input to output) times the total input used.  

Kloth and Blakley (1971) use a cost minimization model to find the least-cost 

locations for dairy plants in the United States. The authors factor in assembly, processing, 

and distribution of fluid milk. They also include a nonlinear function to represent the total 

processing cost curve. For input and output shipping costs, the authors use a function for 

a pay load, where the cost per hundredweight is equal to a constant plus a cost per mile 

times the mileage. Kloth and Blakley aggregate the milk supply to a central location in a 

supply area and omit the cost of transporting milk from individual farms to that central 

location. 

Beck and Goodin (1980) use a cost minimization model to find the optimal 

number of and locations for manufacturing milk plants in Kentucky. The authors 

gathered data for the location of processing centers, transportation costs, processing cost 

functions, supplies of milk, and plant capacities. They organized the supply of milk by 

county and assumed the supply of milk was shipped from the county to the processing 

plants. Like Kloth and Blakley, Beck and Goodin use a shipping pay load function, where 

the cost per hundredweight is equal to a constant plus a cost per mile times the mileage. 

The authors found that as there were fewer processing plants, the plant size was larger; 

processing costs decreased while transportation costs increased. When there were more 
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processing plants, each plant size was smaller; processing costs increased while 

transportation costs decreased. The changes in processing costs were always a higher 

magnitude than the changes in transportation costs.  

Wouda et al. (2002) use a mixed integer programming model to minimize the 

production and transportation costs of Nutricia’s (a Hungarian dairy company) milk 

supply network by finding the optimal number and location of plants, and each plant’s 

optimal product mix. The authors ran six alternative scenarios and three sensitivity 

analyses. A main finding is when one location (instead of multiple locations) is a model 

requirement, the plant is located between the largest milk supplier and the largest market. 

When there is product specialization, production costs decrease. When fewer milk 

processing locations are opened, they have larger capacities. With larger capacities, milk 

reception costs decrease, yet milk transportation costs increase by a larger degree. The 

optimum locations are subject to change with small adjustments in transportation costs. 

Wouda et al. (2002) also account for milk byproducts (whey, buttermilk, permeate, and 

cream) in their optimization model. Whey, buttermilk, and permeate constraints are 

calculated by taking the required amount of the byproduct and subtracting the amount of 

the byproduct that was produced. The resulting number then must equal the amount of 

the byproduct produced per pallet of milk times the number of pallets of milk produced. 

The cream constraint is calculated by taking the required amount of cream and 

subtracting the surplus of cream. The resulting number then must equal the amount of 

cream produced per pallet times the number of pallets produced minus the cream 
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percentage of raw milk times the amount of milk. Specifics regarding the results were not 

reported due to proprietary information. 

The major factor influencing the results of the aforementioned location studies is 

transportation costs. When input transportation costs are higher than output transportation 

costs, the optimal location moves to minimize the distance from the suppliers of the 

input. When output transportation costs are higher than input transportation costs, the 

optimal location moves to minimize the distance to the buyers of the output. This 

knowledge is implemented in Chapter Three when determining potential locations for a 

milk condensing plant in Tennessee.  

While the previously mentioned studies explore many different areas of dairy 

processing and optimal location programming, none directly apply to the dairy industry 

in the State of Tennessee. Considering the lack of literature concerning a milk condensing 

plant in Tennessee, this study uses insights from the previously discussed literature to 

find an optimal location for a milk condensing plant in Tennessee. 
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CHAPTER THREE  

MATERIALS AND METHODS 

 

This study is concerned with finding the optimal location for a milk condensing 

plant. This chapter contains fourteen sections discussed as follows: an analysis of the 

technical process of converting fluid milk to nonfat, the conceptual model, potential 

locations, demand of nonfat dry milk and cream, supply of whole fluid milk, shipping 

costs, shipping distances, the objective model, constraints, and five sections regarding 

different scenarios. 

 

Milk Conversion Process 

  

The condensing plant uses fluid milk as an input. Fluid milk is supplied by 

Tennessee dairies and dairies from the surrounding region of Southern Kentucky and 

Northern Alabama. Fluid milk goes through a pasteurization process, a cream separation 

process, and an evaporation and drying process (Pearce, 2017). The outputs from the 

entire process are nonfat dry milk (also known as powdered skim milk) and cream. It is 

assumed a processing plant producing yogurt will be the buyer of the nonfat dry milk. 

This producer is located in Murfreesboro, Tennessee. It is assumed a processing plant 

producing ice cream will be the buyer of the cream. This producer is located in 

Covington, Tennessee.  
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Conceptual Model 

 

It is assumed the goal of the producer is to maximize profits (Nicholson, 2005). 

Cost minimization is necessary, but not the only condition required for profit 

maximization. This study isolates one part of cost minimization, specifically 

transportation costs. Here, cost minimization is a function of unit costs and distances of 

shipping inputs (fluid milk) to and outputs (nonfat dry milk and cream) from a milk 

condensing plant. The function is shown below: 

 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡𝑠 = 𝐶𝑜𝑠𝑡𝑠(𝐶𝑓𝑚, 𝐾𝑓𝑚, 𝐶𝑚𝑔, 𝐾𝑚𝑔, 𝐶𝑚𝑢, 𝐾𝑚𝑢, 𝑑) 

 

where the cost per pound per mile in dollars to transport fluid milk from each supplying 

county f to each potential condensing plant m is represented by Cfm. The number of miles 

from each supplying county f to each potential condensing plant m is represented by Kfm. 

The cost per pound per mile in dollars to transport nonfat dry milk from each potential 

condensing plant to the yogurt processing plant g is represented by Cmg. The number of 

miles from each potential condensing plant to the yogurt processing plant g is represented 

by Kmg. The cost per pound in dollars to transport cream from each potential condensing 

plant to the ice cream processing plant u is represented by Cmu. The number of miles from 

each potential condensing plant to the ice cream processing plant u is represented by Kmu. 

And d is a distance variable in miles. 
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Empirical Model 

 

A mixed integer programming model is used to determine an optimal location for 

the middleman (milk condensing plant, in this case) in the transshipment problem 

(Ragsdale, 2012). This model allows for a binary decision variable to be included when 

deciding which possible location for the condensing plant minimizes shipping costs. 

Alongside the binary decision variable, continuous decision variables determine the 

optimal amount of milk that will be shipped from each dairy producing county to the 

condensing plant, while the amount of nonfat dry milk and cream sent to each of the 

value-added producers has been determined by an estimate of the demand held by each 

producer (yogurt and ice cream). 

A mixed integer programming model is implemented to solve for the location of 

the milk condensing plant that minimizes transportation costs of fluid milk as the primary 

input and nonfat dry milk and cream as the primary outputs. As previously indicated, 

milk will be supplied from a potential set of counties in Tennessee, Alabama, and 

Kentucky. Also previously discussed, the outputs of the condensing plant will be shipped 

to a yogurt processing plant in Murfreesboro, TN and an ice cream processing plant in 

Covington, TN. For the program to decide between the potential condensing plants, 

binary decision variables are used to represent each of the 18 potential Tennessee 

condensing plant location sites in the model. These binary variables activate for the 

condensing plant that minimizes shipping costs. The model is a transshipment problem 

with nodes for the supply, the condensing plants, and the value-added processing plants. 
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The supply nodes representing counties supplying milk to the condensing plant have a 

negative net flow (as milk will be leaving those nodes), the condensing plants have a zero 

net flow (as each unit of milk coming into the node will be leaving the node as either 

nonfat dry milk or cream), and the value-added processing nodes representing the yogurt 

and ice cream plants have a positive net flow (as nonfat dry milk or cream will be only 

entering those nodes). The objective function sums the total costs from shipping from 

suppliers to the chosen condensing plant and the total costs from shipping from the 

chosen condensing plant to the value-added processing plants: 

 

(1) 𝑀𝑖𝑛 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 =  ∑ ∑ 𝐶𝑓𝑚𝐾𝑓𝑚𝑧𝑚𝑥𝑓𝑚
18
𝑚=1

64
𝑓=1 +

∑ 𝐶𝑚𝑔𝐾𝑚𝑔𝑧𝑚𝑦𝑚𝑔
18
𝑚=1 + ∑ 𝐶𝑚𝑢𝐾𝑚𝑢𝑧𝑚𝑤𝑚𝑢

18
𝑚=1  

 
 
where the subscript f represents each of the 64 counties that supply fluid milk and the 

subscript m represents each of the potential 18 condensing plants which will receive and 

process the fluid milk. (The number of counties supplying fluid milk to the condensing 

plant is subject to change based on the scenario being modeled.) The yogurt processing 

plant is represented by the subscript g and the subscript u represents the ice cream 

processing plant. The cost per pound per mile in dollars to transport fluid milk from each 

supplying county f to each potential condensing plant m is represented by Cfm. The 

number of miles from each supplying county f to each potential condensing plant m is 

represented by Kfm. The cost per pound per mile in dollars to transport nonfat dry milk 

from each potential condensing plant to the yogurt processing plant g is represented by 



 

18 
 

Cmg. The number of miles from each potential condensing plant to the yogurt processing 

plant g is represented by Kmg. The cost per pound in dollars to transport cream from each 

potential condensing plant to the ice cream processing plant u is represented by Cmu. The 

number of miles from each potential condensing plant to the ice cream processing plant u 

is represented by Kmu. The binary variables representing each potential condensing plant 

are represented by zm. By definition, the binary variable zm can either have a value of 0 or 

1. The continuous variable representing the amount of fluid milk in pounds sent from 

each supplying county to each potential condensing plant is represented by xfm. By 

definition, the continuous variable xfm can have any positive value. The continuous 

variable representing the amount of nonfat dry milk in pounds sent from each potential 

condensing plant to the yogurt processing plant is represented by ymg. By definition, the 

continuous variable ymg can have any positive value. The continuous variable 

representing the amount of cream in pounds sent from each potential condensing plant to 

the ice cream processing plant is represented by wmu. By definition, the continuous 

variable wmu can have any positive value.  

 

Constraints 

 

 The objective function is subjected to the following set of constraints as 

represented in Equation 2 through Equation 7. The continuous variable measuring the 

amount of fluid milk sent from a county to the 18 potential condensing plant locations 
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cannot exceed each county’s supply of fluid milk. The equation representing this set of 

relationships is shown as follows:  

 

(2) ∑ 𝑥𝑓𝑚 ≤ 𝑆𝑓
18
𝑚=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 

 
where Sf represents the supply of fluid milk in pounds from each supplying county f. This 

constraint holds for all 64 counties and each of the 18 potential condensing plant 

locations. 

 The continuous variable measuring the amount of nonfat dry milk sent from the 

potential condensing plants to the yogurt processing plant must exceed or meet the yogurt 

producers demand for nonfat dry milk. The equation representing this relationship is 

shown as follows: 

 

(3) ∑ 𝑦𝑚𝑔
18
𝑚=1 ≥ 𝐷𝑔  

 
where Dg represents the yogurt producer’s demand for nonfat dry milk in pounds and ymg 

is as previously defined. 

 After milk enters the condensing plant, it is processed into skim milk and further 

processed into powdered form (nonfat dry milk). Based on prior discussion, the skim 

milk process is modeled by multiplying the total amount of milk sent from the supplying 

counties (represented by xfm) to the chosen condensing plant (represented by zm) by the 

conversion coefficient of 0.824, represented by α (i.e., the coefficient that converts whole 

milk to skim milk). The drying process resulting in nonfat dry milk is modeled by 

multiplying the resulting amount of skim milk from the previous conversion by the 
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conversion coefficient 0.09, represented by β (i.e., the coefficient that converts skim milk 

to nonfat dry milk). Or as shown in Equation 4:  

 

(4) ∑ 𝑦𝑚𝑔
18
𝑚=1 = [𝛼 ∗ (∑ ∑ 𝑥𝑓𝑚𝑧𝑚

18
𝑚=1

64
𝑓=1 )] ∗ 𝛽. 

 

 When whole milk is converted to skim milk, the byproduct of cream remains. 

This cream is sent from the condensing plant to the ice cream producer. Mathematically, 

this conversion is represented by multiplying the total amount of milk sent from the 

supplying counties to the chosen condensing plant by one minus the skim milk 

conversion coefficient of 0.824 (represented by α). Or as shown in Equation 5 below 

(with wmu previously defined):  

 

(5) ∑ 𝑤𝑚𝑢
18
𝑚=1 = (1 − 𝛼) ∗ (∑ ∑ 𝑥𝑓𝑚𝑧𝑚

18
𝑚=1

64
𝑓=1 ). 

 
 A binary variable, zm, is used to represent which potential condensing plant is 

chosen to be the optimal location. The value of zm can either be 0 or 1. Since only one 

potential condensing plant can exist in this model, the sum of all 18 binary variables (zm) 

must equal one. Or as shown in Equation 6 below: 

 

(6) ∑ 𝑧𝑚
18
𝑚=1 = 1. 

 
 A linking constraint must be implemented to connect the binary variables (zm) and 

the continuous variables (xfm). The other continuous variables (ymg; wmu) are not included 

in the linking constraint as they are already connected to the continuous variable xfm in 
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the conversion constraints (Equation 4 and Equation 5). The Big M method is used to 

create a link between the continuous and binary decision variables, where M is a constant 

equal to the upper bound on xfm (Ragsdale, 2012). The total pounds of milk sent from the 

supplying counties is less than or equal to the total supply of fluid milk (M) multiplied by 

the binary decision variable zm. When a potential condensing plant is not chosen, the 

binary and continuous decision variables are equal to zero; the constraint is satisfied. 

When a potential condensing plant is chosen, the binary variable is equal to one and the 

continuous variables are a value that will never exceed M; the constraint is satisfied. The 

equation is shown below: 

 

(7) ∑ 𝑥𝑓𝑚
64
𝑓=1 ≤ 𝑀𝑧𝑚 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 

 

where M is the representation of Big M and is equal to ∑ 𝑆𝑓
64
𝑓=1 .  

 

Potential Locations 

 

Selections for possible condensing plant locations are limited to appropriate 

industrial parks in the state of Tennessee (Menard, 2016). The locations must be a 

reasonable distance away from an interstate, have access to utilities, and have sufficient 

land for building a condensing plant. According to a study by Dalton et al. (2002), a 

minimum of 8 acres is required. 

Possible locations have been found using nonlinear location programming 

models. All of the supply and demand nodes were weighted by their supply and demand 
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to find possible central locations for the condensing plant. GPS coordinates—which 

locate points on a map with pinpoint accuracy—of the nodes were used to determine the 

straight-line distances between all supply and demand nodes, and the model found a 

location that minimizes the total distance. Central points, found by the simple nonlinear 

model, are used as possible condensing plant locations. 

Further condensing plant locations have been found based on knowledge of the 

state dairy and milk processing industry. There are potential plants located near the value-

added producers, some near the heart of fluid milk supply in Tennessee, and some are 

located between the heart of supply and the value-added producers. A map of the 18 

potential locations evaluated is shown in Figure 3.1. 

 

Demand 

 

The condensing plant transforms fluid milk to nonfat dry milk and cream. The 

cream is separated from the fluid milk, resulting in cream and skim milk. Fluid milk 

consists of 27.6% cream and 72.4% skim milk. These percentages were found by 

applying the ratio of water to solids in cream to the percentage of solids in whole milk 

(Webb and Whittier, 1970). The resulting percentage of water transferred from the whole 

milk to the cream was calculated to be 15% and was added to the percentage of solids in 

cream (12.6%), yielding the percentage of cream in milk. The skim milk is then dried. 

The drying process results in a nonfat milk powder that is 9% of the weight of the skim 

milk (Pearce, 2017). 
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The demand for nonfat dry milk is set at 44,100,000 pounds, which is equivalent 

to 490,000,000 pounds of fluid skim milk. The demand for cream is the total amount of 

resulting cream from the separation process.  

Estimates for milk demand held by the condensing plant were based on published 

values for 2016 Yoplait yogurt sales by demand along with their number of Yoplait 

yogurt plants (four) (Statista, 2017). Additionally, the estimates are based on the demand 

held by condensing plants for milk on a percentage per dollar of shipment basis as found 

in the national IMPLAN model data for 2013 (IMPLAN sector 87, Dry, condensed, and 

evaporated dairy product manufacturing) (Minnesota IMPLAN Group Inc., 2000). 

Finally, included is the price per pound of milk based on an annual average by the 

Appalachian Marketing region (Griffith, 2016). These calculations lead to an annual 

demand of 492.8 million pounds, which were rounded to 490 million pounds for purposes 

of this analysis. Estimates for cream supplied for the plant were calculated as a derivative 

based on the number of pounds flowing into the yogurt plant. Given the size of the 

operation–reportedly one of the largest ice cream plants in the world (WREG, 2013)–it 

was assessed the ice cream plant would be able to absorb all of the cream produced by 

the condensing plant for any of the examined scenarios. 

 

Supply 

 

The work presented here in part rests on prior analysis, where seventy-six 

Tennessee dairy farmers completed a survey concerning the potential for new dairy 
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markets (Hughes et al., 2016). Farmers were asked the county in which their operation is 

located and their per year milk production in pounds. Farmers were also asked at what 

price premium would they be willing to sell to a new processor, and the distance, whether 

directly or indirectly, they would be willing to haul their milk.  

The supply of milk was determined from the results of the survey (Hughes et al., 

2016) and data from the most recent U.S. Census of Agriculture (2012) for county milk 

supply in Tennessee, Kentucky counties adjacent to or one county removed from the 

Tennessee border, and Alabama counties adjacent to the Tennessee border or two 

counties removed from the border. Milk supply estimates were calculated based on 

desired price premiums reported in Hughes et al. (2016) by surveyed farmers. Each 

county’s supply had to be determined from county milk sales numbers. The total county 

sales was divided by that county’s average milk marketing order price from 2012 (to stay 

consistent with the 2012 Ag Census data), changing the supply unit to pounds. Then price 

premiums from the survey were introduced. For example, at a 10.0 - 12.5% price 

premium, 68.4% of surveyed dairy farmers indicated a willingness to supply a new milk 

processing facility. Thus, 68.4% of each county’s total supply of milk would be 

determined to be the fluid milk supply in that county. County milk supply estimates from 

Alabama and Kentucky were found using the same method and also based on the price 

premiums indicated by Tennessee dairy farmers.  

When modeling Tennessee supplies including the surrounding region previously 

mentioned, the supply estimates given a 10.0 - 12.5% price premium fulfill the demand 
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of the value-added producers. For scenarios where Tennessee and the surrounding region 

are supplying fluid milk, this price premium will be used (Figure 3.2).  

Since this model is location based, aggregate supplies are assumed to be located 

in the county seat of each county. The county seats are ideal locations for supply nodes as 

they are in a central location and are near highways. Aggregate supplies for the counties 

and accompanying county seats in Tennessee are provided in Table 3.1.  

 

Shipping Costs 

 

Since this model relies on the minimization of shipping costs, first a unit cost was 

found for shipping fluid milk from farms to the condensing plant and powdered milk 

from the condensing plant to the yogurt plant. Fluid dairy products require specialized 

trailers with the ability to keep the fluid dairy cold (Lampert, 1975). Over the road fluid 

milk transportation cost is assumed to be $3 per mile per a loaded 50,000 pound capacity 

tanker (Griffith, 2016; Lampert, 1975). That can be rewritten as a cost of $0.00006 per 

mile per pound of fluid milk or as a cost of $0.006 per mile per hundredweight of fluid 

milk. Hauling costs for a loaded 50,000 pound truck carrying powdered milk is assumed 

to be $1.65 (DAT Solutions, 2016). That can be rewritten as a cost of $0.000033 per mile 

per pound of nonfat dry milk or as a cost of $0.0033 per mile per hundredweight of 

nonfat dry milk. Due to cream being a fluid product, the per mile per pound cost of 

transporting cream to the ice cream plant is assumed to be the same rate as was calculated 

for fluid milk.  
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Shipping Distances 

 

Distances in miles have been found from each county seat listed in Table 3.2 to 

each potential condensing plant. Google Maps was used to find the distances for all 

possible shipments and Google’s recommended route was chosen because it is usually the 

shortest and uses interstates, which are best for trucks. The means, standard deviations, 

and coefficients of variation related to the distances from each county seat to each 

potential condensing plant are shown in Table 3.3.  

The DeKalb County location has the lowest mean (118.78 miles) and standard 

deviation (59.84 miles) of the 18 potential plant locations in Table 3.3. The Dyer County 

location has the highest mean (258.08 miles) and standard deviation (103.43 miles). The 

Rutherford County location has the highest coefficient of variation (0.56), showing that it 

has the most variability relative to its mean among the 18 potential plant locations. Three 

locations, Haywood County, Crockett County, and Dyer County, have the lowest 

coefficients of variation (0.40), showing they have the least variability relative to their 

means. The Meigs County location has a mean (143.23 miles) closer to the average 

among all 18 potential plant locations. The Meigs County standard deviation is 73.11 

miles, and the coefficient of variation is 0.51.  

The same Google Maps based approach was employed to find distances from the 

potential condensing plants to the value-added processing plants (Table 3.4). The means, 

standard deviations, and coefficients of variation related to the distances from each 
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potential condensing plant location to each value-added processing plant are shown in 

Table 3.5.  

Given their adjacency to the ice cream and yogurt processing plants, respectively, 

the Haywood (103.2 miles) and Rutherford (104.5 miles) County locations have the 

lowest means of the 18 potential plant locations in Table 3.5. The two Blount County 

locations have the highest means (275 miles each). The Humphreys County location has 

the lowest standard deviation (18.05 miles) of the 18 potential plant locations. The Rhea 

County location has the highest standard deviation (109.5 miles). The Humphreys County 

location also has the highest coefficient of variation (0.96), showing it had the least 

variability relative to its mean among the 18 potential plant locations. The Rutherford 

County location had the lowest coefficient of variation (0.16), showing it had the most 

variability relative to its mean. The DeKalb County location has a mean (144.3 miles) 

closer to the average among all 18 potential plant locations. The DeKalb County standard 

deviation is 98.7 miles, and the coefficient of variation is 0.68. 

 

Base Scenario 

 

 The base scenario considers counties in Tennessee and the surrounding region as 

potential suppliers of fluid milk to the condensing plant. Supply estimates are based on a 

price premium of 10.0-12.5%. Fluid milk enters the condensing plant and is converted to 

nonfat dry milk and cream. Nonfat dry milk is sent to the yogurt processing plant and 

cream is sent to the ice cream processing plant. Fluid milk and cream are assumed to 
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have a shipping cost of $3 per mile per 50,000 pounds. Nonfat dry milk is assumed to 

have a shipping cost of $1.65 per mile per 50,000 pounds. 

 

Tennessee First Scenario 

 

 The Tennessee first scenario first considers counties in Tennessee as potential 

suppliers of fluid milk to the condensing plant, then after Tennessee supply is exhausted, 

counties in the surrounding region are considered. Supply estimates are based on a price 

premium of 10.0-12.5%. Fluid milk enters the condensing plant and is converted to 

nonfat dry milk and cream. Nonfat dry milk is sent to the yogurt processing plant and 

cream is sent to the ice cream processing plant. Fluid milk and cream are assumed to 

have a shipping cost of $3 per mile per 50,000 pounds. Nonfat dry milk is assumed to 

have a shipping cost of $1.65 per mile per 50,000 pounds. 

 

Close to Covington Scenario 

 

 The close to Covington scenario is a modification of the base scenario. In this 

scenario, the milk condensing plant location is constrained to be at most 50 miles from 

the ice cream plant in Covington. A hard constraint is added to the base model that forces 

the optimal condensing plant location to be less than or equal to 50 miles from the ice 

cream plant. The supply estimates and shipping costs are the same as those from the base 

scenario.  
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Scenarios with Changing Transportation Unit Costs 

 

 Seven scenarios were analyzed from the base scenario with the only change being 

transportation costs. These scenarios replicate a sensitivity analysis and show how the 

optimal solution withstands changes in transportation unit costs. The first and second 

scenarios analyze when the cost of shipping fluid milk and cream increases by 50% 

($4.50 per mile per 50,000 pounds) and decreases by 50% ($1.50 per mile per 50,000 

pounds). The third and fourth scenarios analyze when the cost of shipping nonfat dry 

milk increases by 50% ($2.48 per mile per 50,000 pounds) and decreases by 50% ($0.83 

per mile per 50,000 pounds). The fifth scenario analyzes when the cost of shipping fluid 

milk and cream increases by 50% ($4.50 per mile per 50,000 pounds) and the cost of 

shipping nonfat dry milk decreases by 50% ($0.83 per mile per 50,000 pounds). The sixth 

scenario analyzes when the cost of shipping fluid milk and cream decreases by 50% 

($1.50 per mile per 50,000 pounds) and the cost of shipping nonfat dry milk increases by 

50% ($2.48 per mile per 50,000 pounds).  

The seventh scenario analyzes when all costs of shipping are increased by 140%.  

From 2000 to 2017, at its highest point, the price of gasoline was 1.4 times its price in 

2000 (Figure 3.3).  Accounting for a similar situation, this scenario measures what the 

total transportation costs might be if gasoline again increases by 140%. 
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East Tennessee Traffic Scenario 

 

 Another way of replicating a sensitivity analysis is by evaluating the model with 

respect to changes in the transportation network. In this scenario, the base scenario is 

modified to represent potential road closures and hence changes in traffic patterns in the 

east region of Tennessee. (The fluid milk supplying counties located in this east region of 

Tennessee are Blount, Bradley, Carter, Cocke, Grainger, Greene, Hamblen, Jefferson, 

Johnson, Loudon, McMinn, Meigs, Monroe, Polk, Roane, and Sullivan Counties.) The 

potential milk supply for each of these counties is found in Figure 3.2. Distances from 

these East Tennessee counties are doubled in this scenario as a proxy for potential 

transportation network issues. 
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

 
 
 Results for the twelve scenarios described in Chapter Three are presented and 

discussed in this chapter. The Base Scenario section discusses results when all 64 

potential supplying counties (43 in Tennessee, 5 in Alabama, and 16 in Kentucky) can 

supply fluid milk to the condensing plant. The Tennessee First Scenario section discusses 

results when Tennessee’s potential fluid milk supply must be exhausted before fluid milk 

can be sourced from counties in Alabama or Kentucky. The Close to Covington scenario 

section discusses results when the potential condensing plant locations are limited to 

those within 50 miles of the ice cream producer in Covington, TN. The Scenarios with 

Changing Transportation Unit Costs section discusses results when the per pound per 

mile unit costs of shipping fluid milk, cream, and nonfat dry milk are increased and 

decreased in different combinations by 50%. Additionally, there is one scenario where all 

unit costs are increased by 140%. There are seven scenarios measuring changes in unit 

costs in that section. Finally, the East Tennessee Traffic Scenario discusses results when 

counties in the eastern region of Tennessee experience road closures and traffic issues 

forcing the distance traveled from supplying counties to potential condensing plants to be 

doubled.  
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Base Scenario 

 

 The base scenario allows all 64 potential fluid milk supplying counties (Figure 

3.2) in Tennessee, Alabama, and Kentucky to supply milk to the condensing plant. After 

running the model representing the potential supply from counties in Tennessee and 

surrounding counties in Alabama and Kentucky, Rutherford County was found to be the 

cost minimizing location for the milk condensing plant, with total shipping costs of 

$6,181,829. The Rutherford County location is located 4 miles from the yogurt producer 

in Murfreesboro, and 205 miles from the ice cream producer in Covington. The cost to 

ship all 676,795,580 pounds of fluid milk from supplying counties to the Rutherford 

County condensing plant location is $3,878,422, 62.7% of the total cost. The cost to ship 

all 44,100,000 pounds of nonfat dry milk from the condensing plant to the yogurt 

processing plant is $5,821, 0.1% of the total cost. The cost to ship all 186,795,580 pounds 

of cream from the condensing plant to the ice cream processing plant is $2,297,586, 

37.2% of the total cost.  

The twenty-nine Tennessee counties supplying milk to the condensing plant (out 

of forty-three potential supplying Tennessee counties) are shown in Figure 4.1. The three 

Alabama counties out of five potential Alabama counties supplying milk are shown in 

Figure 4.1. The eleven Kentucky counties supplying milk out of sixteen potential 

Kentucky milk supplying counties are shown in Figure 4.1.  

The amount of fluid milk sent from each county to the Rutherford potential 

condensing plant is shown in Table 4.1. The county supplying the most fluid milk to the 
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Rutherford County location is Barren County, Kentucky with 95,896,321 pounds of milk 

sent, 14% of all whole fluid milk sent to the condensing plant. The Tennessee county 

supplying the most fluid milk to the Rutherford County location is McMinn County with 

41,965,103 pounds of milk sent, 6% of all whole fluid milk sent to the condensing plant. 

 The base scenario was run for each potential condensing plant location to create a 

ranking of the 18 potential locations (Table 4.2). The possible plant locations in seven 

other counties with total shipping costs under $8 million in order of least cost are Maury, 

DeKalb, Humphreys, Coffee, Warren, Cumberland, and Grundy Counties. 

 The total transportation costs for each potential condensing location are separated 

into fluid milk, nonfat dry milk, and cream shipping costs (Table 4.3). While Rutherford 

County has the lowest total transportation costs, DeKalb County has the lowest cost of 

transporting fluid milk. It costs $3,745,417 to transport fluid milk to DeKalb County, 

while it costs $3,878,422 to transport fluid milk to Rutherford County. Rutherford 

County has the lowest cost of transporting nonfat dry milk to the yogurt producer, 

$5,821, as the product is only being shipped four miles. Compare that result to Coffee 

County, with the next lowest cost of transporting nonfat dry milk to the yogurt producer 

at $56,029. Haywood County has the lowest cost of transporting cream to the ice cream 

producer at $295,884, as it is only 26 miles from the ice cream producer. The next lowest 

cost of transporting cream to the ice cream producer is Crockett County at $431,498.  

 While DeKalb County has the lowest shipping cost for fluid milk, Cumberland 

County has the lowest fluid milk shipping cost as a percentage of total transportation 

costs at 54%, equal to $3,950,083 (Table 4.3). Cumberland County also has the highest 
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cream shipping cost as a percentage of total transportation cost at 44%, equal to 

$3,216,620. On the other hand, Haywood County has the highest fluid milk shipping cost 

as a percentage of total transportation costs at 94% ($8,508,791), and the lowest cream 

shipping cost percentage at 3% ($295,884).  

 

Tennessee First Scenario 

 

 The Tennessee First Scenario section discusses results when Tennessee’s 

potential fluid milk supply must be exhausted before fluid milk can be sourced from 

counties in Alabama and Kentucky. 

Rutherford County was also found to be the cost minimizing location for the milk 

condensing plant under this scenario, with total shipping costs of $6,985,357. This result 

is an increase of $803,528 or 13% over the base scenario. The Rutherford County 

location is located 4 miles from the yogurt producer in Murfreesboro, and 205 miles from 

the ice cream producer in Covington. The cost to ship all 676,795,580 pounds of fluid 

milk from supplying counties to the Rutherford County condensing plant location is 

$4,681,950, 67% of the total cost. The cost to ship all 44,100,000 pounds of nonfat dry 

milk from the condensing plant to the yogurt processing plant is $5,821, 0.1% of the total 

cost. The cost to ship all 186,795,580 pounds of cream from the condensing plant to the 

ice cream processing plant is $2,297,586, 32.9% of the total cost. All forty-three potential 

Tennessee milk supplying counties sent milk to the condensing plant, which leads to a 

higher cost than the base scenario as many Tennessee dairy producing counties are 
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farther away from the optimal condensing plant location than some dairy producing 

counties in Alabama and Kentucky. Out of five potential Alabama milk supplying 

counties, no Alabama county supplies milk. The six Kentucky counties supplying milk 

out of sixteen potential Kentucky milk supplying counties are shown in Figure 4.2.  

The amount of fluid milk sent from each county to the Rutherford potential 

condensing plant is shown in Table 4.4. The county supplying the most fluid milk to the 

Rutherford County location is Barren County, Kentucky with 80,264,957 pounds of milk 

sent, 12% of all whole fluid milk sent to the condensing plant. The Tennessee county 

supplying the most fluid milk to the Rutherford County location is McMinn County with 

43,505,618 pounds of milk sent, 6% of all whole fluid milk sent to the condensing plant.  

 The Tennessee First scenario was run for each potential condensing plant location 

to create a ranking of the 18 potential locations (Table 4.5). Locations in seven other 

counties beside Rutherford County with total estimated shipping costs under $8 million 

are found in DeKalb, Maury, Cumberland, Warren, Coffee, Humphreys, and Grundy 

Counties. 

 The total transportation costs for each potential condensing plant location are 

separated into fluid milk, nonfat dry milk, and cream shipping costs (Table 4.6). While 

Rutherford County has the lowest total transportation costs, Cumberland County has the 

lowest cost of transporting fluid milk. It costs $4,155,610 to transport fluid milk to 

Cumberland County, while it costs $4,681,950 to transport fluid milk to Rutherford 

County. The costs of shipping nonfat dry milk and cream to the value-added producers do 

not differ from the base scenario. 
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 Cumberland County also has the lowest fluid milk shipping cost as a percentage 

of total transportation costs at 55%, equal to $4,155,610 (Table 4.6). Cumberland County 

also has the highest cream shipping cost as a percentage of total transportation cost at 

43%, equal to $3,216,620. These percentages are a slight change from those found in the 

Base Scenario. Contrary, Haywood County has the highest fluid milk shipping cost as a 

percentage of total transportation costs at 95% ($9,747,476), and the lowest cream 

shipping cost percentage at 3% ($295,884). Here, these percentages are also a slight 

change from the Base Scenario. 

 

Close to Covington Scenario 

 

 This scenario is a constrained optimization. Specifically, only the three locations 

within 50 miles of the ice cream plant in Covington were candidates for the condensing 

plant under this scenario. The potential plant in Haywood County was found to be the 

cost minimizing location within 50 miles of Covington, with total shipping costs of 

$9,066,791. This result is an increase of $2,884,962 or 47% over the optimal solution 

from the base scenario. Fluid milk shipping cost increases by $4,630,369 or 119% over 

the base scenario. Nonfat dry milk shipping cost increases by $256,133 or 440% over the 

base scenario. Cream shipping cost decreases by $2,001,702 or 87% below the base 

scenario. The Haywood County location is located 180 miles from the yogurt producer in 

Murfreesboro, and 26.4 miles from the ice cream producer in Covington. The cost to ship 

all 676,795,580 pounds of fluid milk from supplying counties to the Haywood County 
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condensing plant location is $8,508,791, 93.8% of the total cost. The cost to ship all 

44,100,000 pounds of nonfat dry milk from the condensing plant to the yogurt processing 

plant is $261,954, 2.9% of the total cost. The cost to ship all 186,795,580 pounds of 

cream from the condensing plant to the ice cream processing plant is $295,884, 3.3% of 

the total cost. The twenty-nine Tennessee counties supplying milk to the condensing 

plant out of forty-three potential Tennessee milk supplying counties are provided in 

Figure 4.3. All five of the potential Alabama milk supplying counties are supplying milk. 

The fourteen Kentucky counties supplying milk out of sixteen potential Kentucky milk 

supplying counties are shown in Figure 4.3.  

The amount of fluid milk sent from each county to the Haywood potential 

condensing plant is shown in Table 4.7. The county supplying the most fluid milk to the 

Haywood County location is Barren County, Kentucky with 95,896,321 pounds of milk 

sent, 14% of all whole fluid milk sent to the condensing plant. The Tennessee county 

supplying the most fluid milk to the Haywood County location is Marshall County with 

29,514,670 pounds of milk sent, 4% of all whole fluid milk sent to the condensing plant. 

 The ranking of these locations based on minimized cost are shown in Table 4.8. 

As shown in Table 4.9, Haywood County is also the location with the lowest fluid milk 

shipping cost ($8,508,791), nonfat dry milk shipping cost ($261,954), and cream shipping 

cost ($295,884). 

 While Haywood County has the lowest shipping cost for fluid milk, Dyer County 

has the lowest fluid milk shipping cost as a percentage of total transportation costs at 

92%, equal to $9,126,326 (Table 4.9). Dyer County also has the highest cream shipping 
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cost as a percentage of total transportation cost at 5%, equal to $450,551. Haywood 

County has the highest fluid milk shipping cost as a percentage of total transportation 

costs at 94% ($8,508,791), and the lowest cream shipping cost percentage at 3% 

($295,884). Crockett County has a fluid milk cost percentage of 93% ($8,961,329) and a 

cream cost percentage of 4% ($431,498). 

 

Scenarios with Changing Transportation Unit Costs 

 

 Shadow prices show what change in unit costs force the optimal solution to 

change in mathematical programming models. In a linear programming model, shadow 

prices can be used to test the sensitivity of model results to changes in key parameters, 

such as per mile shipping cost in transportation problems. However, reported shadow 

prices may not be accurate for a mixed integer model containing binary decision 

variables (Ragsdale, 2012). Accordingly, following Garcia-Flores et al. (2015), 

transportation price changes were set at 50% to determine if and how the optimal location 

of the milk condensing plant would change when unit costs are increased and decreased. 

In the first scenario, the cost of shipping fluid milk and cream was increased by 

50%. Both costs were adjusted simultaneously as it is assumed they are equal. The total 

transportation costs increased by 49.95% to $9,269,832; Rutherford County remained the 

optimal location for a milk condensing plant. In the second scenario, the cost of shipping 

fluid milk and cream was decreased by 50%. The total transportation costs decreased by 

49.95% to $3,093,825; Rutherford County remained the optimal location for a milk 
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condensing plant. In the third scenario, the cost of shipping nonfat dry milk was increased 

by 50%. The total transportation costs increased by 0.05% to $6,184,739; Rutherford 

County remained the optimal location for a milk condensing plant. In the fourth scenario, 

the cost of shipping nonfat dry milk was decreased by 50%. The total transportation costs 

decreased by 0.05% to $6,178,918; Rutherford County remained the optimal location for 

a milk condensing plant. In the fifth scenario, the cost of shipping fluid milk and cream 

was increased by 50% and the cost of shipping nonfat dry milk was decreased by 50%. 

The total transportation costs increased by 49.91% to $9,266,922; Rutherford County 

remained the optimal location for a milk condensing plant. In the sixth scenario, the cost 

of shipping fluid milk and cream was decreased by 50% and the cost of shipping nonfat 

dry milk was increased by 50%. The total transportations costs decreased by 49.91% to 

$3,096,736; Rutherford County remained the optimal location for a milk condensing 

plant.  

In the seventh scenario, all transportation unit costs were increased by 140%.  The 

total transportation cost increased by 140% to $8,654,561; Rutherford County remained 

the optimal location for a milk condensing plant. 

None of the changes in fluid and dry shipping unit costs to the base scenario 

changed the optimal location of the milk condensing plant. While the total costs changed, 

the Rutherford County location remained the cost minimizing location.  
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East Tennessee Traffic Scenario 

 

 This scenario represents a change in the fluid milk supply’s transportation 

network. This scenario is a modification of the base scenario, where distances from 

supplying counties in East Tennessee are doubled to indicate potential road closures and 

traffic issues. 

 Rutherford County remains the optimal location for a milk condensing plant 

under this scenario (i.e., it is the least-cost location). Transportation costs increased by 

2.42% above the base scenario to $6,331,449 (Table 4.10). With the increase in distance, 

fluid milk supply from the East Tennessee region ceased, with Kentucky and Alabama 

supplying more milk to meet the demand. 

 The potential condensing plant location with the largest percentage increase in 

transportation costs is Cumberland County with a 10.4% increase over the costs from the 

base scenario. Cumberland County is in a location that easily sources milk from all of 

East Tennessee, so the effect of the distance increase makes sense. 

 The potential condensing plant location with the smallest percentage increase in 

transportation costs is Dyer County with a 0.45% increase over the costs from the base 

scenario. Dyer County is the location farthest from the East Tennessee region and sources 

very little milk from the region in the base scenario, thus the small change in costs.       
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Summary of Results 

 

 In the base scenario, Rutherford County was chosen as the cost minimizing 

location for a milk condensing plant in Tennessee. The total cost of shipping fluid milk to 

the plant and nonfat dry milk and cream from the plant is $6,181,829. Counties in 

Tennessee supplied 45% of the whole fluid milk input for the condensing plant. 

 In the Tennessee First scenario, Rutherford County was again chosen as the cost 

minimizing location for a milk condensing plant in Tennessee. The total cost of shipping 

fluid milk to the plant and nonfat dry milk and cream from the plant is $6,985,357. 

Counties in Tennessee supplied 66% of the whole fluid milk input for the condensing 

plant. 

 In the Close to Covington scenario, Haywood County was chosen as the cost 

minimizing location for a milk condensing plant in Tennessee. The total cost of shipping 

fluid milk to the plant and nonfat dry milk and cream from the plant is $9,065,108. 

Counties in Tennessee supplied 34% of the whole fluid milk input for the condensing 

plant. 

None of the potential locations in the Base, Tennessee First, or Close to 

Covington scenarios have a nonfat dry milk cost as a percentage of total transportation 

cost greater than 3%. Thus, at least 97% of each county’s total transportation costs are 

due to fluid milk and cream transportation. The most influential factor in the location 

decision is a potential location’s balance between distance from the supply of fluid milk 

and distance to the ice cream producer. 
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 In lieu of shadow prices, seven scenarios were implemented as modifications of 

the base scenario that adjusted shipping unit costs for fluid milk, dry milk, and cream by 

individual 50% increases and decreases, combinations of 50% increases and decreases, 

and a 140% increase in fuel costs. Rutherford County remained the optimal, cost 

minimizing location for the milk condensing plant in Tennessee for all seven cost-

changing scenarios.  

 A transportation network sensitivity analysis scenario was implemented to find 

the optimal condensing plant location when East Tennessee supply distances are doubled. 

Rutherford County remained the cost minimizing location, with a 2.42% increase in 

transportation costs over the base scenario. 

Accordingly, the Rutherford County potential condensing plant location remained 

the optimal location for all analyzed scenarios except one (the Close to Covington 

scenario, when it was ruled out as a location). These sets of results indicate the 

Rutherford County location is the best location under a variety of situations, as the results 

of the model do not change with large changes in relative shipping costs between inputs 

and outputs. 
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CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATIONS 

 
 

 A milk condensing plant with outputs of nonfat dry milk and cream was 

determined to potentially meet the needs of Tennessee value-added producers and dairy 

producers, as discussed in Chapter One. Two value-added dairy processing plants (a 

yogurt producer in Murfreesboro and an ice cream producer in Covington) have shown 

interest in sourcing inputs (nonfat dry milk and cream) from a dairy processor in 

Tennessee. Tennessee dairy producers have also shown an interest in a new market for 

their milk. This study’s goal is to determine a transportation cost minimizing location for 

this potential milk condensing plant. 

 Previous literature regarding plant location and milk processing was discussed in 

Chapter Two. The production processes and benefits of powdered milk were discussed 

(Pearce, 2017; Casey, 2013). The least cost (cost minimizing) approach to location 

programming was also discussed (Shaffer et al., 2004; Hilger et al., 1977; Faminow and 

Sarhan, 1983; Tembo et al., 1999; Wu et al., 2010; Garcia-Flores et al., 2015). 

Specifically, studies regarding milk processing location programming were analyzed in 

detail (Kloth and Blakley, 1971; Beck and Goodin, 1980; Dalton et al., 2002; Wouda et 

al., 2002). The major takeaway from these studies is in most cases, transportation costs 

are the major factors influencing a plant’s optimal location. Methods used to find the 

optimal location for a Tennessee milk condensing plant were discussed in Chapter Three. 

The conversions fluid milk endures through the skimming, evaporation, and drying 

processes, as well as the model constraints representing these processes were discussed. 
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Methods used to estimate supply of fluid milk and demand of nonfat dry milk and cream 

were presented. Methods used to estimate distances and costs regarding the transportation 

of fluid milk, dry milk, and cream were also presented. Further, the mixed integer 

programming model (including relevant constraints) used to find the optimal location, 

inputs, and outputs of a milk condensing plant was examined. The scenarios introduced 

to the model representing possible transportation situations with which a milk condensing 

plant might face are introduced. The results from the different scenarios are summarized 

below.  

 Rutherford County is the optimal location for a milk condensing plant in 

Tennessee, with a total transportation cost of $6,181,829 in the base scenario and 

$6,985,357 in the Tennessee First Scenario. In the base and Tennessee First scenarios, 

Rutherford County was the potential location with the lowest total shipping costs (with an 

increase in total transportation costs of $803,528 or 13% in the Tennessee First scenario 

compared to the base scenario). The main reason for this result is Rutherford County is a 

central location in Tennessee and is not too distant from any potential fluid milk 

supplying counties. The second and strongest reason for this result is the Rutherford 

County milk condensing plant location and the yogurt processing plant location are both 

located in Murfreesboro, TN; a short 4 mile drive from each other. 

 Haywood County is the optimal location for a milk condensing plant in the Close 

to Covington scenario. The main reason for this result is there are only three potential 

locations within 50 miles of the ice cream plant and Haywood County is the closest one, 

resulting in the lowest cost of shipping cream to the ice cream plant. While this location 
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is the most desired by the ice cream processing plant, it would not be the ideal location 

for the Tennessee dairy industry as a whole.  

 When shipping unit costs are changed, the optimal milk condensing plant location 

is identical to the result of the base scenario, Rutherford County. While changes in 

shipping costs do change the total cost of transporting the inputs and outputs, these 

changes are not influential enough to move the optimal milk condensing plant location. 

 When the transportation network for fluid milk supply in East Tennessee (a major 

source of Tennessee milk production) is affected, Rutherford County remains the optimal 

condensing plant location. Increased shipment of fluid milk from Alabama and Kentucky 

replace the supply from East Tennessee, under this scenario. 

 Given the results of the scenarios in this paper and the interest in this project by 

the yogurt processing plant, it is recommended that a milk condensing plant should be 

located in Rutherford County. 

 A weakness of this study is the omission of real estate, construction costs, and 

operating costs. Firms interested in a milk condensing plant would evaluate the total costs 

of production, which would include production costs in addition to transportation costs. 

Another main weakness regards the supply of fluid milk from producers. Milk 

condensing plant operators generally purchase Class II or Class III milk and most 

Tennessee milk is sold as Class I fluid milk. Class II and Class III prices are usually 

lower than Class I prices. Hence, the potential milk condensing plant operators would 

almost certainly not offer a price premium of 10.0 - 12.5% over market (Class I) price. In 

addition, many of the dairy farmers hypothetically supplying milk to the condensing plant 
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in this study are currently participating in other milk markets and might not be interested 

in supplying to this milk condensing plant. Anecdotal evidence suggests this due to 

previous experience with the atrophy of new milk markets. 

  

Future Research 

 

 Further studies on this topic should include commercial real estate costs, 

construction costs, and variable costs of production in the model. This model could be 

expanded by analyzing the possibility of locating multiple milk condensing plants in the 

state. Instead of one centrally-located condensing plant, multiple plants could be located 

in different supply hubs. This policy could further minimize transportation costs by 

reducing the distance fluid milk has to travel from farms to the condensing plant and 

instead put the transportation burden on the less costly (per mile) shipments nonfat dry 

milk, although other costs could increase. Additionally, more detailed information 

regarding the willingness of fluid milk producers to sell their milk to a new buyer is 

needed. In this regard, analysis could be conducted assessing the possibility of the more 

efficient Tennessee dairy farmers receiving fee-cost plus contracts with the condensed 

milk processor. Such dairy producers could be assured of a steady market at a reasonable 

price and the value-added producers could be assured of at least some local supply, which 

they could use in promoting their product to final consumers (i.e., yogurt produced with a 

certain percentage of milk that is obtained through a short supply chain). These additions 

to the project could result in a more accurate assessment regarding the total costs 



 

47 
 

(construction, production, and transportation) for a potential milk condensing plant in 

Tennessee. These additions could also move the project closer to becoming a reality.  
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Table 3.1. Estimated Available Tennessee and Surrounding Region Milk Supplies 

by County and County Seat at a 10 – 12.5% Price Premium (2012). 

Location (County) County Seat Pounds of Milk 

Bedford Shelbyville 13,500,776 

Bledsoe Pikeville 4,138,651 

Blount Maryville 6,586,397 

Bradley Cleveland 16,174,498 

Carter Elizabethton 1,561,580 

Cocke Newport 7,828,721 

Coffee Manchester 8,596,968 

Fentress Jamestown 1,333,074 

Franklin Winchester 4,628,352 

Gibson Trenton 3,254,469 

Giles Pulaski 3,019,821 

Grainger Rutledge 2,800,433 

Greene Greeneville 33,768,299 

Grundy Altamont 1,479,304 

Hamblen Morristown 7,301,254 

Henry Paris 18,285,560 

Humphreys Waverly 1,057,618 

Jefferson Dandridge 12,843,128 

Johnson Mountain City 145,747 

Lawrence Lawrenceburg 10,147,687 

Lincoln Fayetteville 6,634,764 

Loudon Loudon 32,033,210 

Marion Jasper 1,041,053 

Marshall Lewisburg 29,514,670 

Maury Columbia 21,233,967 

McMinn Athens 43,505,618 

Meigs Decatur 6,128,334 

Monroe Madisonville 25,967,340 

Obion Union City 367,276 

Overton Livingston 7,015,643 

Polk Benton 26,283,126 

Putnam Cookeville 4,910,610 

Roane Kingston 2,134,159 

Robertson Springfield 20,193,353 

Rutherford Murfreesboro 3,839,390 

Smith Carthage 3,138,846 

Sullivan Blountville 4,233,617 

Sumner Gallatin 5,478,527 

Warren McMinnville 13,959,871 

Weakley Dresden 2,951,807 
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Table 3.1. Continued 

Location (County) County Seat Pounds of Milk 

White Sparta 20,125,339 

Williamson Franklin 3,383,696 

Wilson Lebanon 3,876,797 

Cullman, AL Cullman 18,479,400 

De Kalb, AL Fort Payne 2,951,807 

Etowah, AL Gadsden 2,723,960 

Franklin, AL Russellville 680,140 

Morgan, AL Decatur 16,506,995 

Adair, KY Columbia 46,430,978 

Allen, KY Scottsville 3,808,783 

Barren, KY Glasgow 95,896,321 

Christian, KY Hopkinsville 32,687,522 

Graves, KY Mayfield 1,761,562 

Laurel, KY London 614,221 

Logan, KY Russellville 67,303,241 

Metcalfe, KY Edmonton 22,060,337 

Monroe, KY Tompkinsville 27,960,550 

Pulaski, KY Somerset 13,894,592 

Russell, KY Jamestown 18,287,837 

Simpson, KY Franklin 7,848,814 

Todd, KY Elkton 38,472,112 

Trigg, KY Cadiz 5,087,446 

Warren, KY Bowling Green 32,694,323 

Wayne, KY Monticello 1,818,373 

Source: 2012 Agricultural Census, NASS and author’s calculations. 
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Table 3.2. Distances (in miles) from each County to each Potential Condensing Plant 

County Haywood Humphreys Maury Rutherford Warren 

Blount-

Alcoa 

Blount-

Rockford Cumberland Loudon 

Bedford 177 106 39 27 41 211 211 137 174 

Bledsoe 283 210 146 94 61 94 96 35 66 

Blount 336 263 218 189 142 3 8 77 40 

Bradley 309 224 171 131 112 87 87 75 51 

Carter 455 359 332 296 249 130 125 185 148 

Cocke 389 293 259 230 183 64 58 119 81 

Coffee 210 137 73 33 16 176 155 81 144 

Fentress 278 205 159 130 100 87 97 32 96 

Franklin 234 148 96 56 37 183 183 97 148 

Gibson 36.3 75 140 170 215 331 327 253 316 

Giles 156 102 50 76 85 251 251 178 210 

Grainger 364 289 244 215 168 50 43 104 66 

Greene 411 315 281 252 205 86 80 141 104 

Grundy 233 160 96 56 23 141 146 75 113 

Hamblen 388 292 258 229 182 63 57 118 81 

Henry 85 47 116 146 191 293 294 220 283 

Humphreys 101 4 7 100 146 262 258 184 247 

Jefferson 362 288 243 214 167 49 42 102 65 

Johnson 135 410 365 336 289 171 164 225 188 

Lawrence 135 87 48 84 104 260 260 186 249 

Lincoln 192 122 65 53 54 215 215 120 180 

Loudon 331 235 201 183 127 27 38 64 6 

Marion 257 184 120 80 62 133 141 80 105 

Marshall 159 98 34 40 63 235 235 149 224 

Maury 138 66 12 48 93 224 224 150 213 

McMinn 336 236 198 158 103 46 62 61 26 

Meigs 313 226 175 123 90 70 70 51 34 

Monroe 357 244 219 179 123 30 37 87 25 

Obion 72 93 164 194 240 368 362 288 341 

Overton 262 167 133 104 73 111 111 37 100 

Polk 324 239 187 147 128 60 67 84 50 

Putnam 231 157 112 83 55 111 106 32 95 

Roane 295 222 179 126 121 42 40 36 29 

Robertson 178 78 65 64 109 212 212 138 199 

Rutherford 179 106 42 2 47 188 184 110 173 

Smith 206 133 88 59 60 144 140 66 129 

Sullivan 433 349 315 286 239 120 114 175 138 

Sumner 179 105 72 43 89 179 175 101 164 

Warren 221 136 83 41 9 130 130 56 119 
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Table 3.2. Continued 

County Haywood Humphreys Maury Rutherford Warren 

Blount-

Alcoa 

Blount-

Rockford Cumberland Loudon 

Weakley 64 69 139 169 214 327 327 253 316 

White 247 162 102 63 37 103 103 29 92 

Williamson 153 60 16 30 78 200 200 126 189 

Wilson 201 97 63 34 79 155 155 81 144 

Cullman, 

AL 

193 197 121 147 145 233 240 185 205 

De Kalb, 

AL 

309 236 172 132 114 159 167 136 131 

Etowah, 

AL 

244 239 163 169 150 196 203 173 168 

Franklin, 

AL 

144 137 109 166 164 280 288 269 252 

Morgan, 

AL 

170 169 93 118 116 232 240 220 204 

Adair, KY 280 207 168 161 139 165 181 103 166 

Allen, KY 214 141 103 76 103 191 187 113 176 

Barren, KY 244 171 132 100 145 181 174 100 163 

Christian, 

KY 

156 74 109 103 159 257 253 179 242 

Graves, 

KY 

108 89 183 176 222 332 327 253 316 

Laurel, KY 354 280 242 235 205 114 108 141 128 

Logan, KY 203 81 103 84 130 227 221 147 210 

Metcalfe, 

KY 

262 189 151 143 116 185 168 94 157 

Monroe, 

KY 

237 164 130 100 95 151 147 74 137 

Pulaski, 

KY 

321 248 210 202 146 146 119 98 160 

Russell, 

KY 

298 225 186 179 133 155 171 89 153 

Simpson, 

KY 

194 120 82 75 121 206 202 128 191 

Todd, KY 171 71 106 94 151 249 244 171 234 

Trigg, KY 142 68 121 114 171 271 265 191 254 

Warren, 

KY 

214 107 102 95 141 214 210 136 199 

Wayne, 

KY 

299 226 180 151 121 124 117 71 135 

Source: Google Maps 
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Table 3.2. Continued 

County Rhea Dyer Crockett Grundy Roane DeKalb Coffee Carroll Meigs 

Bedford 120 212 203 46 171 64 24 162 132 

Bledsoe 19 302 294 60 50 55 82 254 33 

Blount 85 358 349 170 51 135 163 308 70 

Bradley 31 330 321 85 63 121 105 280 34 

Carter 192 465 457 278 159 243 271 415 178 

Cocke 126 399 391 212 92 176 204 349 111 

Coffee 94 231 223 20 115 43 7 181 106 

Fentress 77 299 291 122 67 76 121 249 82 

Franklin 110 254 246 20 142 62 20 204 122 

Gibson 297 27 29 219 287 209 208 38 302 

Giles 172 177 169 82 211 116 65 137 184 

Grainger 111 384 376 197 77 161 189 334 96 

Greene 148 421 413 234 114 198 226 371 133 

Grundy 67 254 246 16 99 47 32 205 79 

Hamblen 125 398 390 211 92 175 204 348 111 

Henry 260 78 79 196 253 176 185 22 269 

Humphreys 240 122 114 150 218 140 139 45 233 

Jefferson 110 382 374 195 76 160 188 333 95 

Johnson 232 505 497 318 198 282 310 455 217 

Lawrence 192 157 148 102 219 125 85 116 204 

Lincoln 142 236 228 51 174 84 35 186 154 

Loudon 51 345 336 136 38 122 157 295 36 

Marion 67 278 270 33 99 91 54 229 80 

Marshall 142 204 196 77 195 100 46 154 154 

Maury 161 159 151 97 183 89 63 109 174 

McMinn 26 356 348 111 48 102 131 306 15 

Meigs 13 333 325 89 40 87 111 283 1 

Monroe 47 367 359 132 61 110 153 317 32 

Obion 308 33 41 243 310 233 232 47 326 

Overton 81 273 264 95 71 50 94 223 86 

Polk 45 345 337 100 71 137 121 295 38 

Putnam 76 252 244 77 66 29 77 202 81 

Roane 42 316 308 116 10 93 122 266 32 

Robertson 180 200 191 109 170 92 98 118 185 

Rutherford 110 200 192 51 144 40 40 151 122 

Smith 110 228 219 82 100 35 71 179 115 

Sullivan 182 455 446 268 148 232 260 405 167 

Sumner 145 200 192 92 135 57 82 150 150 

Warren 71 242 234 33 90 21 30 192 83 

Weakley 310 56 56 218 286 208 208 22 302 

White 55 268 260 59 63 20 59 211 71 

Williamson 144 168 160 80 160 71 69 118 176 

Wilson 125 203 195 84 115 37 75 153 130 

Cullman, 

AL 

167 221 213 117 199 188 118 186 179 

De Kalb, 

AL 

94 330 322 85 126 143 106 280 106 

Etowah, 

AL 

130 273 264 122 162 179 142 283 142 

Franklin, 

AL 

215 173 165 136 247 207 137 138 227 
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Table 3.2. Continued 

County Rhea Dyer Crockett Grundy Roane DeKalb Coffee Carroll Meigs 

Morgan, 

AL 

166 199 191 88 198 159 89 213 179 

Adair, KY 147 301 293 161 137 105 160 251 153 

Allen, KY 157 236 227 125 146 78 115 186 162 

Barren, KY 144 265 257 149 134 94 139 215 149 

Christian, 

KY 

223 151 159 152 213 135 141 93 228 

Graves, 

KY 

297 69 76 226 286 209 215 57 302 

Laurel, KY 146 375 367 200 114 155 199 325 158 

Logan, KY 191 189 197 133 181 103 123 118 196 

Metcalfe, 

KY 

138 283 275 167 128 88 157 233 143 

Monroe, 

KY 

117 258 250 131 107 67 112 208 123 

Pulaski, 

KY 

140 342 334 169 108 123 168 293 138 

Russell, 

KY 

134 319 311 155 128 109 154 269 139 

Simpson, 

KY 

172 215 207 124 162 84 114 165 177 

Todd, KY 214 175 182 143 204 127 133 105 220 

Trigg, KY 235 123 131 164 225 147 153 79 240 

Warren, 

KY 

180 228 227 145 170 101 134 143 185 

Wayne, 

KY 

115 320 312 143 105 97 142 270 121 

Source: Google Maps 
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Table 3.3. Mean, Standard Deviation, and Coefficient of Variation of the Distances (in 

miles) from each County to each Potential Condensing Plant 

Potential 

Condensing Plant 

Mean Standard Deviation Coefficient of 

Variation 
DeKalb 118.78 59.84 0.50 

Warren 124.91 60.78 0.49 

Cumberland 126.18 63.54 0.50 

Coffee 127.63 64.79 0.51 

Rutherford 128.00 71.66 0.56 

Grundy 131.24 66.14 0.50 

Rhea 140.04 71.01 0.51 

Roane 140.76 68.60 0.49 

Maury 143.02 76.43 0.53 

Meigs 143.23 73.11 0.51 

Loudon 155.43 77.91 0.50 

Blount-Rockford 166.06 82.70 0.50 

Blount-Alcoa 167.02 83.56 0.50 

Humphreys 172.44 85.90 0.50 

Carroll 211.34 99.80 0.47 

Haywood 236.90 93.87 0.40 

Crockett 251.90 100.70 0.40 

Dyer 258.08 103.43 0.40 
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Table 3.4. Distances (in miles) from Potential Condensing Plant to Value-Added 

Producers 

Potential Condensing 

Plant 

Yogurt in 

Murfreesboro, TN 

Ice Cream in Covington, TN 

Haywood 180 26 

Humphreys 95 131 

Maury 42 174 

Rutherford 4 205 

Warren 44 249 

Blount-Alcoa 189 361 

Blount-Rockford 189 361 

Cumberland 115 287 

Loudon 177 350 

Rhea 112 331 

Dyer 201 40 

Crockett 192 39 

Grundy 49 254 

Roane 143 315 

DeKalb 46 243 

Coffee 39 244 

Carroll 151 92 

Meigs 125 336 

Source: Google Maps  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

61 
 

Table 3.5. Mean, Standard Deviation, and Coefficient of Variation of the Distances (in 

miles) from Potential Condensing Plant to Value-Added Producers 

Potential 

Condensing Plant 

Mean Distance Standard Deviation Coefficient of 

Variation 
Haywood 103.20 76.80 0.74 

Rutherford 104.50 100.50 0.96 

Maury 108.00 66.00 0.61 

Humphreys 112.95 18.05 0.16 

Crockett 115.25 76.75 0.67 

Dyer 120.60 80.40 0.67 

Carroll 121.25 29.75 0.25 

Coffee 141.25 102.75 0.73 

DeKalb 144.30 98.70 0.68 

Warren 146.30 102.70 0.70 

Grundy 151.35 102.65 0.68 

Cumberland 201.00 86.00 0.43 

Rhea 221.50 109.50 0.49 

Roane 229.00 86.00 0.38 

Meigs 230.50 105.50 0.46 

Loudon 263.50 86.50 0.33 

Blount-Alcoa 275.00 86.00 0.31 

Blount-Rockford 275.00 86.00 0.31 
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Table 4.1. Pounds of Milk Sent to Rutherford County Potential Condensing Plant 

by Supplying County and County Seat in Base Scenario. 

Location (County) County Seat Pounds of Milk 

Tennessee Counties   

McMinn Athens 41,965,103 

Marshall Lewisburg 29,514,670 

Polk Benton 26,283,126 

Maury Columbia 21,233,967 

Robertson Springfield 20,193,353 

White Sparta 20,125,340 

Henry Paris 18,285,560 

Bradley Cleveland 16,174,498 

Warren McMinnville 13,959,871 

Bedford Shelbyville 13,500,776 

Lawrence Lawrenceburg 10,147,687 

Coffee Manchester 8,596,968 

Overton Livingston 7,015,643 

Lincoln Fayetteville 6,634,764 

Meigs Decatur 6,128,334 

Sumner Gallatin 5,478,527 

Putnam Cookeville 4,910,610 

Franklin Winchester 4,628,352 

Bledsoe Pikeville 4,138,651 

Wilson Lebanon 3,876,797 

Rutherford Murfreesboro 3,839,390 

Williamson Franklin 3,383,696 

Smith Carthage 3,138,845 

Giles Pulaski 3,019,821 

Roane Kingston 2,134,159 

Grundy Altamont 1,479,304 

Fentress Jamestown 1,333,074 

Humphreys Waverly 1,057,617 

Marion Jasper 1,041,053 
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Table 4.1. Continued 

Location (County) County Seat Pounds of Milk 

Alabama Counties   

Cullman, AL Cullman 18,479,400 

Morgan, AL Decatur 16,506,995 

De Kalb, AL Fort Payne 2,951,807 

Kentucky Counties   

Barren, KY Glasgow 95,896,321 

Logan, KY Russellville 67,303,241 

Todd, KY Elkton 38,472,112 

Warren, KY Bowling Green 32,694,324 

Christian, KY Hopkinsville 32,687,522 

Monroe, KY Tompkinsville 27,960,550 

Metcalfe, KY Edmonton 22,060,337 

Simpson, KY Franklin 7,848,814 

Trigg, KY Cadiz 5,087,446 

Allen, KY Scottsville 3,808,783 

Wayne, KY Monticello 1,818,373 

Potential milk supplying Tennessee counties that supplied no milk to the Rutherford 

County location: Blount, Carter, Cocke, Gibson, Grainger, Greene, Hamblen, Jefferson, 

Johnson, Loudon, Monroe, Obion, Sullivan, and Weakley Counties. 

 

Potential milk supplying Alabama counties that supplied no milk to the Rutherford 

County location: Etowah and Franklin Counties. 

 
Potential milk supplying Kentucky counties that supplied no milk to the Rutherford 

County location: Adair, Graves, Laurel, Pulaski, and Russell Counties. 
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Table 4.2. Ranking of the Possible Milk Condensing Plants When Sourcing from 

Tennessee and the Surrounding Region in Base Scenario. 

Rank County 
Total Shipping 

Cost (in $) 

Percent Above 

Optimal 

Location (in %) 

1 Rutherford 6,181,829 Optimal 

2 Maury 6,438,155 4 

3 DeKalb 6,535,259 6 

4 Humphreys 7,004,825 13 

5 Coffee 7,218,584 17 

6 Warren 7,266,386 18 

7 Cumberland 7,334,063 19 

8 Grundy 7,523,976 22 

9 Carroll 8,190,705 32 

10 Roane 8,289,635 34 

11 Rhea 8,396,103 36 

12 Meigs 8,525,868 38 

13 Haywood 9,066,630 47 

14 Loudon 9,203,448 49 

15 Crockett 9,672,244 56 

16 Alcoa, Blount 9,810,527 59 

17 Rockford, Blount 9,813,813 59 

18 Dyer 9,869,392 60 
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Table 4.3. Fluid Milk, Nonfat Dry Milk, and Cream Transportation Costs of the 

Possible Milk Condensing Plants When Sourcing from Tennessee and the Surrounding 

Region in Base Scenario. 

County 
Fluid Milk 

Shipping Cost 

Nonfat Dry Milk 

Shipping Cost  

Cream Shipping Cost  

 (in $) 

(% of 

total 

cost) 

(in $) 

(% of 

total 

cost) 

(in $) 

(% of 

total 

cost) 

Rutherford 3,878,422 63% 5,821 0% 2,297,586 37% 

Maury 4,426,887 69% 61,123 1% 1,950,146 30% 

DeKalb 3,745,417 57% 66,362 1% 2,723,480 42% 

Humphreys 5,398,504 77% 138,108 2% 1,465,213 21% 

Coffee 4,427,868 61% 56,029 1% 2,734,687 38% 

Warren 4,412,209 61% 63,451 1% 2,790,726 38% 

Cumberland 3,950,083 54% 167,360 2% 3,216,620 44% 

Grundy 4,606,339 61% 70,873 1% 2,846,765 38% 

Carroll 6,945,447 85% 219,750 3% 1,025,508 13% 

Roane 4,551,091 55% 208,108 3% 3,530,436 43% 

Rhea 4,523,349 54% 162,994 2% 3,709,760 44% 

Meigs 4,578,157 54% 181,913 2% 3,765,799 44% 

Haywood 8,508,791 94% 261,954 3% 295,884 3% 

Loudon 5,023,153 55% 257,588 3% 3,922,707 43% 

Crockett 8,961,329 93% 279,418 3% 431,498 4% 

Alcoa, Blount 5,489,483 56% 275,052 3% 4,045,992 41% 

Rockford, 

Blount 
5,492,769 56% 275,052 3% 4,045,992 41% 

Dyer 9,126,326 92% 292,515 3% 450,551 5% 
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Table 4.4. Pounds of Milk Sent to Rutherford County Potential Condensing Plant 

by Supplying County and County Seat in Tennessee First Scenario. 

Location (County) County Seat Pounds of Milk 

Tennessee Counties   

McMinn Athens 43,505,618 

Greene Greeneville 33,768,299 

Loudon Loudon 32,033,210 

Marshall Lewisburg 29,514,670 

Polk Benton 26,283,126 

Monroe Madisonville 25,967,340 

Maury Columbia 21,233,967 

Robertson Springfield 20,193,353 

White Sparta 20,125,339 

Henry Paris 18,285,560 

Bradley Cleveland 16,174,498 

Warren McMinnville 13,959,871 

Bedford Shelbyville 13,500,776 

Jefferson Dandridge 12,843,128 

Lawrence Lawrenceburg 10,147,687 

Coffee Manchester 8,596,968 

Cocke Newport 7,828,721 

Hamblen Morristown 7,301,254 

Overton Livingston 7,015,643 

Lincoln Fayetteville 6,634,764 

Blount Maryville 6,586,397 

Meigs Decatur 6,128,334 

Sumner Gallatin 5,478,527 

Putnam Cookeville 4,910,610 

Franklin Winchester 4,628,352 

Sullivan Blountville 4,233,617 

Bledsoe Pikeville 4,138,651 

Wilson Lebanon 3,876,797 

Rutherford Murfreesboro 3,839,390 

Williamson Franklin 3,383,696 

Gibson Trenton 3,254,469 

Smith Carthage 3,138,845 

Giles Pulaski 3,019,821 

Weakley Dresden 2,951,807 

Grainger Rutledge 2,800,433 

Roane Kingston 2,134,159 

Carter Elizabethton 1,561,580 

Grundy Altamont 1,479,304 

Fentress Jamestown 1,333,074 

Humphreys Waverly 1,057,617 



 

67 
 

Table 4.4. Continued 

Location (County) County Seat Pounds of Milk 

Tennessee Counties, 

continued  

 

Marion Jasper 1,041,053 

Obion Union City 367,276 

Johnson Mountain City 145,747 

Kentucky Counties   

Barren, KY Glasgow 80,264,957 

Logan, KY Russellville 67,303,241 

Todd, KY Elkton 38,472,112 

Warren, KY Bowling Green 32,694,324 

Simpson, KY Franklin 7,848,814 

Allen, KY Scottsville 3,808,783 

All five potential milk supplying Alabama counties supply no milk to the Rutherford 

County location. 

 
Potential milk supplying Kentucky counties that supplied no milk to the Rutherford 

County location: Adair, Christian, Graves, Laurel, Metcalfe, Monroe, Pulaski, Russell, 

Trigg, and Wayne Counties. 
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Table 4.5. Ranking of the Possible Milk Condensing Plants When Sourcing from 

Tennessee and the Surrounding Region in Tennessee First Scenario. 

Rank County 
Total Shipping Cost 

(in $) 

Percent Above 

Optimal 

Location (in %) 

1 Rutherford 6,985,357 Optimal 

2 DeKalb 7,025,536 1 

3 Maury 7,409,347 6 

4 Cumberland 7,539,590 8 

5 Warren 7,560,370 8 

6 Coffee 7,649,408 10 

7 Humphreys 7,922,506 13 

8 Grundy 7,925,346 13 

9 Roane 8,509,803 22 

10 Rhea 8,587,518 23 

11 Meigs 8,705,345 25 

12 Carroll 9,347,306 34 

13 Loudon 9,436,050 35 

14 Alcoa, Blount 10,012,546 43 

15 Rockford, Blount 10,036,891 44 

16 Haywood 10,305,315 47 

17 Crockett 10,840,051 55 

18 Dyer 11,039,606 58 
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Table 4.6. Fluid Milk, Nonfat Dry Milk, and Cream Transportation Costs of the 

Possible Milk Condensing Plants When Sourcing from Tennessee and the Surrounding 

Region in Tennessee First Scenario. 

County 
Fluid Milk Shipping 

Cost 

Nonfat Dry Milk 

Shipping Cost 

Cream Shipping 

Cost 

 (in $) 

(% of 

total 

cost) 

(in $) 

(% of 

total 

cost) 

(in $) 

(% of 

total 

cost) 

Rutherford 4,681,950 67% 5,821 0% 2,297,586 33% 

DeKalb 4,235,694 60% 66,362 1% 2,723,480 39% 

Maury 5,398,078 73% 61,123 1% 1,950,146 26% 

Cumberland 4,155,610 55% 167,360 2% 3,216,620 43% 

Warren 4,706,193 62% 63,451 1% 2,790,726 37% 

Coffee 4,858,692 64% 56,029 1% 2,734,687 36% 

Humphreys 6,316,185 80% 138,108 2% 1,468,213 19% 

Grundy 5,007,708 63% 70,873 1% 2,846,765 36% 

Roane 4,771,259 56% 208,108 2% 3,530,436 41% 

Rhea 4,714,764 55% 162,994 2% 3,709,760 43% 

Meigs 4,757,634 55% 181,913 2% 3,765,799 43% 

Carroll 8,102,048 87% 219,750 2% 1,025,508 11% 

Loudon 5,255,755 56% 257,588 3% 3,922,707 42% 

Alcoa, Blount 5,691,502 57% 275,052 3% 4,045,992 40% 

Rockford, 

Blount 
5,715,847 57% 275,052 3% 4,045,992 40% 

Haywood 9,747,476 95% 261,954 3% 295,884 3% 

Crockett 10,129,136 93% 279,418 3% 431,498 4% 

Dyer 10,296,540 93% 292,515 3% 450,551 4% 
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Table 4.7. Pounds of Milk Sent to Haywood County Potential Condensing Plant by 

Supplying County and County Seat in Close to Covington Scenario. 

Location (County) County Seat Pounds of Milk 

Tennessee Counties   

Marshall Lewisburg 29,514,670 

Maury Columbia 21,233,967 

Robertson Springfield 20,193,353 

White Sparta 20,125,339 

Henry Paris 18,285,560 

Warren McMinnville 13,959,871 

Bradley Cleveland 14,093,032 

Bedford Shelbyville 13,500,776 

Lawrence Lawrenceburg 10,147,687 

Coffee Manchester 8,596,968 

Overton Livingston 7,015,643 

Lincoln Fayetteville 6,634,764 

Sumner Gallatin 5,478,527 

Putnam Cookeville 4,910,610 

Franklin Winchester 4,628,352 

Bledsoe Pikeville 4,138,651 

Wilson Lebanon 3,876,797 

Rutherford Murfreesboro 3,839,390 

Williamson Franklin 3,383,696 

Gibson Trenton 3,254,469 

Smith Carthage 3,138,845 

Giles Pulaski 3,019,821 

Weakley Dresden 2,951,807 

Roane Kingston 2,134,159 

Grundy Altamont 1,479,304 

Fentress Jamestown 1,333,074 

Humphreys Waverly 1,057,617 

Marion Jasper 1,041,053 

Obion Union City 367,276 
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Table 4.7. Continued 

Location (County) County Seat Pounds of Milk 

Alabama Counties   

Cullman, AL Cullman 18,479,400 

Morgan, AL Decatur 16,506,995 

De Kalb, AL Fort Payne 2,951,807 

Etowah, AL Gadsden 2,723,960 

Franklin, AL Russellville 680,140 

Kentucky Counties   

Barren, KY Glasgow 95,896,321 

Logan, KY Russellville 67,303,241 

Adair, KY Columbia 46,430,978 

Todd, KY Elkton 38,472,112 

Warren, KY Bowling Green 32,694,324 

Christian, KY Hopkinsville 32,687,522 

Monroe, KY Tompkinsville 27,960,550 

Metcalfe, KY Edmonton 22,060,337 

Russell, KY Jamestown 18,287,837 

Simpson, KY Franklin 7,848,814 

Trigg, KY Cadiz 5,087,446 

Allen, KY Scottsville 3,808,783 

Wayne, KY Monticello 1,818,373 

Graves, KY Mayfield 1,761,562 

Potential milk supplying Tennessee counties that supplied no milk to the Haywood 

County location: Blount, Carter, Cocke, Grainger, Greene, Hamblen, Jefferson, Loudon, 

McMinn, Meigs, Monroe, Polk, and Sullivan Counties. 

 

Potential milk supplying Kentucky counties that supplied no milk to the Rutherford 

County location: Laurel and Pulaski Counties. 
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Table 4.8. Ranking of the Possible Milk Condensing Plants When Sourcing from 

Tennessee and the Surrounding Region in Close to Covington Scenario. 

Rank County 
Total Shipping Cost 

(in $) 

Percent Above 

Optimal 

Location (in %) 

1 Haywood 9,066,630 Optimal 

2 Crockett 9,672,244 7 

3 Dyer 9,869,392 9 
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Table 4.9. Fluid Milk, Nonfat Dry Milk, and Cream Transportation Costs of the 

Possible Milk Condensing Plants When Sourcing from Tennessee and the Surrounding 

Region in Close to Covington Scenario. 

County 
Fluid Milk Shipping 

Cost 

Nonfat Dry Milk 

Shipping Cost 

Cream Shipping Cost 

 (in $) 

(% of 

total 

cost) 

(in $) 

(% of 

total 

cost) 

(in $) 
(% of 

total cost) 

Haywood 8,508,791 94% 261,954 3% 295,884 3% 

Crockett 8,961,329 93% 279,418 3% 431,498 4% 

Dyer 9,126,326 92% 292,515 3% 450,551 5% 
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Table 4.10. Ranking of the Possible Milk Condensing Plants When Sourcing from 

Tennessee and the Surrounding Region in East Tennessee Traffic Scenario. 

Rank County 
Total Shipping Cost 

(in $) 

Percent Above 

Base Scenario 

(in %) 

1 Rutherford 6,331,449 2.42 

2 Maury 6,495,809 0.90 

3 DeKalb 6,885,838 5.36 

4 Humphreys 7,053,982 0.70 

5 Coffee 7,500,744 3.91 

6 Warren 7,659,748 5.41 

7 Grundy 7,977,720 6.03 

8 Cumberland 8,096,694 10.40 

9 Carroll 8,231,351 0.50 

10 Rhea 8,976,084 6.91 

11 Meigs 9,078,910 6.49 

12 Roane 9,092,965 9.69 

13 Haywood 9,109,057 0.48 

14 Loudon 9,586,535 7.10 

15 Crockett 9,716,982 0.46 

16 Dyer 9,913,984 0.45 

17 Alcoa, Blount 10,553,315 7.57 

18 Rockford, Blount 10,625,468 8.27 
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Figure 1.1. Number of Dairy Cows in Tennessee, 1995-2015. 

 

Source: Hughes et al., 2016 based on U.S. Department of Agriculture, National 

Agricultural Statistical Service, 2016. 
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Figure 3.1. Potential Condensing Plant Locations (designated by blue stars) 
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Figure 3.2. Potential Supply of Fluid Milk by County in Tennessee and the Surrounding 

Region 
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Figure 3.3. Changes in U.S. December Gasoline Prices from 2000 to 2017, Indexed to 

December 2000 

 

Source: U.S. Bureau of Labor Statistics 
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Figure 4.1. Fluid Milk Sent to Rutherford County Potential Condensing Plant under the 

Base Scenario 
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Figure 4.2. Fluid Milk Sent to Rutherford County Potential Condensing Plant under the 

Tennessee First Scenario 
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Figure 4.3. Fluid Milk Sent to Rutherford County Potential Condensing Plant under the 

Close to Covington Scenario 
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