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ABSTRACT 
 

Block-based Neural Networks (BbNNs) provide a flexible and modular 

architecture to support adaptive applications in dynamic environments. Reconfigurable 

computing (RC) platforms provide computational efficiency combined with flexibility. 

Hence, RC provides an ideal match to evolvable BbNN applications. BbNNs are very 

convenient to build once a library of neural network blocks is built.  This library-based 

approach for the design of BbNNs is extremely useful to automate implementations of 

BbNNs and evaluate their performance on RC platforms. This is important because, for a 

given application there may be hundreds to thousands of candidate BbNN 

implementations possible and evaluating each of them for accuracy and performance, 

using software simulations will take a very long time, which would not be acceptable for 

adaptive environments. This thesis focuses on the development and characterization of a 

library of parameterized VHDL models of neural network blocks, which may be used to 

build any BbNN. The use of these models is demonstrated in the XOR pattern 

classification problem and mobile robot navigation problem. For a given application, one 

may be interested in fabricating an ASIC, once the weights and architecture of the BbNN 

is decided. Pointers to ASIC implementation of BbNNs with initial results are also 

included in this thesis. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Neural Networks 

 A neural network (NN), or artificial neural network (ANN), is a set of processing 

elements or nodes, which are connected by communication links that have numerical 

weights associated with them. Each node performs operations on the data available at its 

inputs and collectively, these nodes (the NN) solve a more complex problem. ANNs are 

also called “connectionist classifiers” [1]. 

Historically, neural networks were inspired by Man’s desire to produce systems 

capable of performing complex functions, which the human brain performs [1]. 

Typically, NNs are “trained” using examples so that they “learn” from experience and 

adjust their weights and structure and can be applied to data beyond the training data. It 

can be safely said that NNs today are far from mimicking the functions of the human 

brain, yet are very useful for a variety of applications that have a lot of training data 

available. NNs are especially useful in applications which require complex problem 

solving and for those that have no algorithmic solution. The advantage of NNs lies in 

their resilience against distortions in the input data and their capability of “learning” [1]. 

Typical applications of NNs include pattern classification problems, pattern recognition, 

information (signal) processing, automatic control, cognitive sciences, statistical 

mechanics and so on.  
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Neural networks are built by interconnecting processing nodes called “neurons”. 

A neuron (Figure 1.1) is usually an n-input, single-output processing element, which can 

be imagined to be a simple model of biological neuron [1]. Figure 1.2 shows the structure 

of a typical NN. The input signal is a vector, x. Each element of the vector is excited or 

inhibited by a synapse. Each synapse is characterized by an associated weight. Let the 

vector representing the weights be w. The synapses, which are essentially multipliers, are 

arranged along a dendrite, which aggregate the post-synaptic signals. An activation 

function ϕ is usually applied on the aggregated signal, resulting in the output signal. It is 

sometimes convenient to add a “bias” or “threshold”, b, to the sum-of-products of 

weights and inputs. Thus, mathematically, a neuron computes the output according to: 

y   =   ϕ (w.xT + b)    =   ϕ (w1x1 + w2x2 + … + wnxn + b)  

 

Figure 1.1:   Representations of a single p-input neuron [1] 
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Figure 1.2:   Representations of a p-input m-neuron single-layer neural network [1] 
 

Figure 1.3 shows typical activation functions, which include linear or piecewise linear 

functions, step functions, sigmoid functions and so on. A NN is formed by arranging 

many neurons to form “layers”. The most popular NNs are those consisting of an input 

layer, one or more hidden layers and an output layer [1].  

 

1.2 Block-based Neural Networks 

A Block-based Neural Network (BbNN) consists of a two-dimensional array of 

basic neural network blocks [2]. Each of these blocks has four input/output nodes, and is 

a simple feedforward NN. Each node can be either an input node or an output node, 

depending on the direction of signal flow. Thus, there are four basic configurations for  
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Figure 1.3:   Examples of activation functions used in neural networks [1] 
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 the blocks as shown in Figure 1.4. For easier implementation on hardware, BbNN 

models are restricted to have only integer or fixed-point weights. 

Figure 1.5 shows the structure of an m x n BbNN model [2]. The first stage is the 

input stage (i = 1), and the last stage is the output stage (i = m). There can be as many as 

n inputs and n outputs. Each block is directly connected to its neighbors. The leftmost 

and rightmost blocks are also connected to each other. Signal flow between the blocks 

determines the overall structure of the BbNN as well as the internal structure of each of 

the blocks.  

The modular structure of BbNNs makes them easy to implement on digital 

hardware such as field-programmable gate arrays (FPGAs). The highly modular structure  

 

 

Figure 1.4:   Four types of basic blocks used to build BbNNs [2]  
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Figure 1.5:   Structure of a BbNN [2] 
 

of the BbNN enables an effective binary representation of BbNNs. An arrow between the 

blocks represents a signal flow. The signal flow bits between the blocks can represent 

network structure and internal configuration of the BbNN. A node with incoming signal 

flow is the input, and an output node has outgoing signal flow. A node output becomes an 

input to the neighboring blocks.  

Figure 1.6 shows a signal flow representation of network structure that preserves 

2D topological information of the BbNN. In Figure 1.6(a), all the connections between 

the basic blocks are represented with either 0 or 1. Bit 0 represents both downward (�) 

and leftward (�) connections, while bit 1 represents upward (�) and rightward (�) 

signal flows. Signal flow of all input and all output stage blocks are all 0. The number of 

bits to represent the signal flow of an m×n block-based neural network is (2m-1)n [2]. 
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Figure 1.6:   Signal flow representation of BbNN structure. (a) A 3x4 BbNN example 

(b) 2-D binary signal-flow representation of the BbNN 

 

Figure 1.6(b) shows a 2D binary string that represents the signal flow and therefore the 

structure of the BbNN of size 3×4 given in Figure 1.6(a). Four bits in a diamond region 

represents the block B23. Two neighboring blocks share signal-flow bits to ensure valid 

structures are available. Input and output signal flows are all 0s and not included in the 

binary representation. 

 

1.3 Optimization of Block-based Neural Networks 

Neural networks are optimized for structure and weights using a “learning” 

method. Sets of input data and corresponding output data are used to train the network. 

Once a near optimal structure and set of weights is established the NN is ready to operate 

on data outside the training data, to solve problems.  
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The structure and weights of a BbNN are encoded in bit-strings and are optimized 

using genetic algorithms. Different encoding schemes may be used to represent BbNNs. 

An encoding scheme is just a way of describing the BbNN in bit-strings or arrays, so that 

it can be used in the GA optimization process. The details of encoding schemes are 

beyond the scope of this thesis. 

Figure 1.7 shows how genetic algorithms may be used to determine near-optimal 

structure and weights for a specific application. A set of candidate BbNNs, called “initial 

population”, is randomly generated. Each candidate, represented in an encoded format for 

optimization using the genetic algorithm, is referred to as a chromosome. The fitness of 

these candidate architectures and weights is measured using a fitness function. A genetic 

algorithm evolves this population and the process of optimization continues until a 

population with acceptable fitness is obtained. 

 

 

Figure 1.7:   Optimizing BbNNs using genetic algorithms 
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1.4 Reconfigurable Computing (RC) 

Reconfigurable computing is a computing paradigm that has matured greatly over 

the past decade. RC platforms are typically circuit boards housing one or more 

programmable integrated circuits, usually Field-Programmable Gate Arrays (FPGAs). 

 FPGAs have a regular structure consisting of a number of functional units and an 

interconnection fabric between them.  The functional units are often implemented as 

look-up tables (LUTs), which can support general boolean formulas. By loading the 

appropriate bit patterns into the LUTs, each is configured to compute a specific boolean 

function. These LUTs are interconnected using a configurable communications fabric. 

Designers route the primary inputs to certain LUTs, the resulting intermediate values 

among other LUTs, and the final results to the output pins. With this flexibility in 

specifying the function of each LUT and their interconnection, one can implement any 

digital logic circuit subject to resource constraints. Figure 1.8 illustrates a typical FPGA 

structure. The RC boards are connected to a host microprocessor, allowing one to 

dynamically migrate functionality between the processor and the reconfigurable logic.  

 

 

      

0/1 

0/1 

0/1 

0/1 

2 input 
LUT 

 

Figure 1.8:   FPGA structure 
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This helps in implementing portions of the functionality in hardware (implemented on the 

FPGA) and other portions in software (running on the host processor). This makes it 

possible for the user to exploit inherent parallelism in algorithms and implement fast 

versions of it on hardware, while inherently serial tasks can be performed on the 

processor.  

 Various companies have built a wide variety of RC boards. These boards could 

differ in the number of FPGAs, capacity (transistor-count or gate-count) of the FPGAs, 

and the communication protocol used for processor-to-board communications. Latest 

FPGAs can accommodate millions of gates. The RC board is typically connected to the 

host processor through the PCI, VME or memory bus. Examples of RC boards include 

the SRC-6E [3] and Pilchard [4] systems that are attached to the memory bus, and 

platforms such as the Firebird™ and Wildcard™ from Annapolis Micro Systems Inc. [5], 

which can be connected to the PCI bus or other busses. A host program, running on the 

processor, usually controls the configuration and initialization of the FPGA(s) and 

communication between the processor and the RC board.  

 

1.5 BbNNs on RC Platforms 

Neural networks are inherently a collection of massively parallel processing 

nodes. This makes them an ideal fit for hardware implementation rather than traditional 

software implementations on microprocessors, which are essentially sequential 

computing engines. Also, many applications will require quick response times, which 

may not be achievable with software implementations. Hardware implementations on 

FPGAs are also economical. The flexible and modular architecture of BbNNs, which 
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makes them suitable for adaptive applications in dynamic environments, combined with 

flexibility (due to reconfigurability) and computational efficiency, in terms of speed and 

power-consumption (due to implementation on customized digital logic) of FPGAs, 

makes the implementation of BbNNs on RC platforms a natural choice. Various BbNN 

architectures, differing in structure and weights, may be downloaded onto the FPGA and 

evaluated for fitness, according to the flow described in Section 1.3. RC platforms seem 

to be the best environment to prototype candidate BbNNs for a given application, because 

the number of possible network structures increases exponentially with the network size 

(i.e., number of basic blocks used to build the BbNN). For example, 2 x 2 BbNNs can 

have 64 possible structures, while a 2 x 4 BbNN will be one of 4096 possible structures. 

The number of generations of chromosomes that have to be evaluated before a 

satisfactory solution is obtained could run into hundreds even for BbNNs with less than 

ten blocks. Exploiting the reconfigurability and computational efficiency of FPGAs seem 

the best way to zero-in on the final BbNN structure and weights. Of course, this would 

require using modified genetic algorithms and/or genetic operators to account for the 

encoding scheme used to represent the BbNNs. 

 

1.6 Neural Networks on-chip - Related Work  

A significant amount of work has been done in the field of NN simulation 

environments on von-Neumann (sequential) machines. These are summarized in [25]. 

However, hardware implementations are better suited for dynamic environments and 

adaptive NN applications like speech-recognition and robot navigation control, because 

of their quicker response time when compared to traditional software implementations. 
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There have been successful attempts for implementing NNs on hardware [6–18, 27, 28]. 

Digital, analog and hybrid ASICs have been used for NN implementation.  

1.6.1 Analog IC Implementations of NNs 

Analog electronic devices possess characteristics which may directly aid the 

implementation of NNs. For example, operations like multiplication and integration may 

be easily implemented using operational-amplifier circuits or even single transistors [24]. 

Also, the fact that analog VLSI chips interface more naturally to real-world signals 

(analog) makes them the fastest responding hardware implementation for a given 

problem. Analog circuits can consume less power when compared to their software and 

digital hardware implementations. However, the limitation with analog circuits is that 

they are not as suitable for dynamic environments and adaptive applications as they are 

generally not reconfigurable on the fly, and are difficult to design. Moreover, design of 

analog circuits becomes increasingly difficult as the noise immunity constraints get 

tighter. The circuit is also highly dependent on process-parameter variations, making 

prediction with a great degree of accuracy, difficult. [7] and [8] detail some of the issues 

and results achieved in the attempt to implement analog neural chips. 

1.6.2 Digital Implementations of NNs on ASICs and FPGAs 

Digital ASIC implementations for NNs are probably the most powerful hardware 

implementations of NNs today [24]. This is despite the fact that digital circuits for NN 

applications will most likely have less computational density (amount of computation per 

unit area on silicon), occupy more area and consume more power. The reason for this is 

that they are easier to design than analog chips and are more reliable and programmable. 

Examples of digital NN chips include CNAPS [27] and SYNAPSE-1 [28]. Custom 
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ASICs have the drawback that they are not reconfigurable and so provide very little scope 

for implementing NN for adaptive applications in dynamic environments. However they 

prove useful in applications where the NN has fixed structure and weights.  

The first successful FPGA implementation of ANNs was published more than a 

decade ago [21]. In the GANGLION project [6], FPGAs were used for rapid prototyping 

of different ANN implementation strategies and for initial simulation or proof of concept. 

In the work done by Eldredge et al. [13], the “density enhancement” method was used, 

which essentially aims at increasing the functionality per unit area on the FPGA through 

reconfiguration. In this work, a back-propagation learning algorithm is divided into a 

series of feed-forward and back-propagation stages, and each is executed on the same 

FPGA successively. James-Roxby et al. [14] implemented a technique known as 

“dynamic constant folding” where an FPGA is shared over time (time-multiplexing) for 

different NN circuits. A 4-8-8-4 multi-layer perceptron (MLP) was implemented by them 

on a Xilinx® Virtex™ FPGA. Zhu et al. [15] explored similar techniques, where they 

exploited training-level parallelism with batch-updates of weights at the end of each 

training epoch [21]. Iterative construction of NNs [16] can be realized through “topology 

adaptation”. During training, the topology and desired computational precision can be 

adjusted according to some criteria. GA-based evolution of NNs was used by de Garis et 

al. [29]. Zhu and Sutton [17] implemented Kak’s fast classification NNs on FPGAs.  

It is not that there are no difficulties involved in implementing NNs on digital 

hardware. Nonlinear activation functions and real-valued weights make it difficult to 

realize NNs on digital hardware. Usual methods of getting around this problem are to use 

piece-wise linear approximation of the function or use look-up tables. In either case, the 
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cost of implementation usually grows very rapidly as more resolution is demanded. 

Another problem with digital hardware implementations of NNs is the difficulty in 

accommodating floating-point precision weights. A few attempts have been made to 

implement NNs with floating-point weights, but none have reported any success [21]. 

Recent work by Nichols et al. [19] show that even with advances in FPGA capacities, it is 

impractical to implement NNs with floating-point precision weights. FPGA realizations 

for large NNs have been a problem in the past, because it is expensive to implement 

many multipliers on fine-grained FPGAs. Marchesi et al. [18] explored the possibility of 

implementing NNs without multipliers. They achieved this by restricting weights to be 

powers of two, or sums of powers of two, hence performing multiplication by a series of 

shift operations. This greatly reduces the area occupied by the design on the FPGA, but 

restricts the domain of weight-values, which is already reduced to being just integers or 

fixed-point numbers. The limited area resources on an FPGA may not be as significant an 

issue with today’s and future-generation FPGAs, which will be capable of supporting 

circuitry containing millions of gates.  

The capabilities of BbNNs have been proven using software simulations for 

applications such as pattern classification, pattern recognition and mobile robot 

navigation control [30] [31] [32]. This thesis describes the development of the first 

implementations of BbNNs on FPGAs and lays out a methodology to implement BbNNs 

for various applications using a library-based approach. 

 



 15 

1.7 Scope and Outline of Thesis 

The work presented in this thesis is part of a bigger research project, which aims 

at implementing BbNNs on digital hardware, analyzing encoding schemes, coming up 

with modified genetic operators and implementing evolution schemes for optimizing the 

BbNN using genetic algorithms, optimizing bit-widths, and addressing issues like design 

automation and runtime reconfiguration of the FPGAs. This thesis focuses on the 

development of VHDL models for the basic neural network blocks of a BbNN and 

putting them together to solve problems like the XOR pattern classification problem. The 

implementations target the Xilinx® Virtex™ 1000E FPGA [26], which is housed on the 

Pilchard RC board. 

The rest of this document is organized as follows. Chapter 2 describes the 

approach adopted for the development of VHDL models and the basic design-flow used 

in digital design. The target RC platform, namely, the Pilchard RC board, is also briefly 

described in chapter 2. Chapter 3 discusses in detail, the implementation, verification and 

characterization of the library of basic NN blocks needed for building BbNNs on digital 

hardware. Preliminary investigations and results of ASIC implementations are also 

presented. In chapter 4, applications of BbNNs and their implementation using the library 

of NN blocks, on the Pilchard RC platform are described. The applications chosen for the 

demonstration are the XOR pattern classification problem and mobile robot navigation 

control problem. Results of these case-studies are analyzed. Conclusions from the 

research are drawn, and a discussion on future work is presented in chapter 5. 
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CHAPTER 2 

APPROACHES FOR IMPLEMENTING BBNNs ON HARDWARE 

 

2.1 VHDL and Design Flow 

 VHDL is a programming language used to model and test hardware designs. 

VHDL stands for VHSIC (Very High-Speed Integrated Circuit) Hardware Description 

Language. Programs written in VHDL can be used to simulate the functional behavior of 

hardware implementations of the design as well as its timing characteristics. VHDL 

programs may be “synthesizable”, which means that they can be translated into 

physically realizable circuits using CAD tools. The target hardware for synthesis may be 

a programmable logic device (PLD) (like PALs, PLAs and FPGAs) or an ASIC. In either 

case, the job of the synthesis tool is to map the design described in VHDL to a physically 

realizable circuit, using the components available in a library. PLDs are often used for 

testing algorithms implemented in VHDL before using them to fabricate ASICs, because 

the functionality of ASICs cannot be altered once fabricated. However, with FPGAs 

today capable of housing circuits with millions of transistors, they are gaining popularity 

for applications like hardware acceleration and reconfigurable computing, where the 

design in the chip can be configured on the fly.  

Figure 2.1 shows the basic design flow used to design test and implement 

hardware models using a hardware description language like VHDL. The target hardware 

may be an FPGA or an ASIC, the major difference in them being the library used by the 

synthesis tool for mapping the design into hardware. While in the case of targeting  
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Figure 2.1:   Basic design flow used for FPGA or ASIC implementations 
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 FPGAs, the tool is provided with libraries describing the blocks available inside the 

FPGA fabric, for ASICs, a library of “standard height cells” of a particular technology, 

typically containing logic gates, flip-flops and latches, buffers and so on, are provided to 

the tool to use. 

The first step in the design process is to understand the requirements, generate 

specifications and translate it into VHDL code, usually written at the Register-Transfer 

Logic (RTL) level. This has to be done by a human programmer and requires specialized 

skills. A “test-bench”, also written in VHDL, is used to test the design by providing test-

vectors and collecting and comparing responses with known “correct” results. This is 

known as pre-synthesis simulation of the design. There are many commercially available 

VHDL simulators which help the programmer in this phase.  

Once the VHDL models have been verified for functional correctness using 

simulation, it is ready to be synthesized. Not all VHDL statements are synthesizable. This 

means that some statements used may not be physically realizable on hardware. For 

example, the wait statement in VHDL can be used only for simulation purposes, 

because it is not possible to introduce an element in hardware which will introduce an 

exact delay in the signal path. Synthesis is the process of converting a design from one 

level of abstraction to a lower level of abstraction. Thus, synthesis could mean, 

converting a design described in RTL level to gate-level, or from gate-level to switch-

level and so on. Synthesis is done using CAD tools which usually accept design 

constraints like area, delay and power-consumption from the user and try to implement 

and optimize the design for one or more of these variables. Once synthesis is performed, 

the resulting implementation from the CAD tool is verified for functional correctness 
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using simulation. However, it is now common to use formal verification techniques to 

check that the implemented design (written out as a “netlist” from the synthesis tool) is 

equivalent to the design input to the tool.  

Once synthesis and post-synthesis verification are completed successfully, Place 

and Route (PAR) CAD tools are used for the physical implementation of the design. As 

the name suggests, there are two basic tasks performed by the tools – placement of the 

different design blocks and routing the interconnections inside and between them. These 

tools work with the timing and area constraints provided by the user. A post-layout 

simulation is done to check whether the final placed-and-routed design meets the timing 

goals desired. It is not unusual to simply do a static timing analysis instead of regression 

testing (using test vectors) of the routed design. Equivalence checking as described 

before may be done again at this stage – this time, between the post-synthesis and post-

PAR netlists. Timing analysis at this stage is the most accurate as the design includes 

both cell delays and the delays due to parasitic capacitance and resistance of the 

interconnecting wires. Any failure to meet timing constraints means that a more 

aggressive PAR has to be done in the next iteration or may be the synthesis or even the 

RTL coding may have to be modified. 

 

2.2 Design-for-reuse 

Design-for-reuse is a method of developing hardware designs so that they may be 

reused in other designs. This helps in greatly reducing design-time of future projects, 

though the development-time for the initial reusable code may take longer to develop 

than a regular application-specific code. Designs which can be reused are generally 



 20 

“parameterized”. This means that the code allows a developer to change some parameters 

(e.g., bit-widths of signals and variables) depending on specific needs for the application.  

In VHDL, design-for-reuse may be done using the generic declaration and/or 

the generate statement. A generic declaration allows the programmer to describe 

constants whose values may be changed in different instances of the block of code. For 

example, the number of bits used to represent the weights and inputs to a neural network 

block may be 8 for one particular application and 16 for another which requires more 

resolution for these inputs. Declaring the bit-width of inputs and weights as a parameter, 

using the generic declaration, allows one to easily reuse the block of code for the 

neural network block, by simply changing the value assigned to the parameter in different 

implementations. The section of VHDL code shown in Figure 2.2 illustrates the use of 

generic declaration. 

A generate statement is handled during synthesis of the VHDL code. It can be  

 
entity block22 is 

 generic ( data_width: integer = 8; 

      wt_width: integer = 8 

  ); 

 port ( clock, resetn: in std_logic; 

        x1, x2: in std_logic_vector(data_width-1 downto 0); 

        w13, w14: in std_logic_vector(wt_width-1 downto 0); 

 w23, w24: in std_logic_vector(wt_width-1 downto 0); 

        y3, y4: out std_logic_vector(data_width-1 downto 0) 

      ); 

end block22;  

 
Figure 2.2:   Using generics in VHDL 
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used as a “conditional” generate statement or, an “unconditional” generate 

statement. A conditional generate statement creates logic depending on the truth-value 

of a condition. An unconditional generate statement uses a loop to create designs 

which involve repeating operations. Examples include adder trees, combinational 

multipliers and so on.  

 

2.3 Pilchard – A Reconfigurable Computing Platform 

The FPGA prototyping board used in this research is the Pilchard reconfigurable 

computing board (shown in Figure 2.3), which was developed at the Chinese University 

of Hong Kong [4]. It houses a million-gate FPGA, the Xilinx® Virtex™1000E 

(XCV1000E). Table 2.1 lists the important features of the XCV1000E part, obtained 

from the manufacturer’s website [26]. The Pilchard board has a memory slot interface 

with the host processor, unlike most commercially available reconfigurable boards like 

the Firebird™ or Wildcard™ from Annapolis Micro Systems, Inc [5], which have a PCI 

bus interface to the host processor. The advantage of a DIMM interface over the standard 

PCI interface is higher bandwidth for communication between the host processor and the 

RC board. Figure 2.4 shows the block diagram of the Pilchard board [4]. Table 2.2 

summarizes the features of the Pilchard board. 

Communications between the host processor and the RC board is achieved 

through a software interface program running on the host Pentium® III processor. The 

software interface has four API functions to help this communication possible: 

(i) void read64(int64, char *) - To read 64 bits from Pilchard 

(ii) void write64(int64, char *) - To write 64 bits to Pilchard 
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Figure 2.3:   Pilchard reconfigurable computing board 

 

Table 2.1:   Xilinx® Virtex™ FPGA Device XCV1000E Product Features [26] 

 
Feature Specification 

Package Used in Pilchard  HQ240 (32mm x 32mm)  
CLB Array (Row x Col.)  64x96  
Logic Cells  27,648  
System Gates  1,569,178  
Max. Block RAM Bits  393,216  
Max. Distributed RAM Bits  393,216  
Delay Locked Loops (DLLs)  8  
I/O Standards Supported  20  
Speed Grades  6,7,8  
Available User I/O  158 pins (for package PQ240) max. 660 
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Figure 2.4:   Block diagram of Pilchard board [4] 
 

Table 2.2:   Features of the Pilchard RC platform [4]  

Feature Specification 
Host Interface  • DIMM Interface  

• 64-bit Data I/O  
• 12-bit Address Bus  

External (Debug) Interface  27-Bits I/O  
Configuration Interface  X-Checker, MultiLink and JTAG  
Maximum System Clock Rate  133 MHz  
Maximum External Clock Rate  240 MHz  
FPGA Device  XCVE1000E-HQ240-6  
Dimension  133mm x 65mm x 1mm  
OS Supported  GNU/LINUX  
Configuration Time  16s Using Linux download program  
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(iii) void read32(int, char *) - To read 32 bits from Pilchard 

(iv) void write32(int, char *) - To write 32 bits from Pilchard 

 “int64” is a special data type that is defined in “iflib.h”, as a two-element integer array. 

“download.c” is a utility that can be used to configure the FPGA with the design bit-

stream. 

 

2.4 Approaches for Implementing BbNNs on Hardware 

BbNNs may be implemented on hardware (ASICs or FPGAs) using the library-

based approach or by using a generic processing-engine for computing the output of each 

neural network block. In this thesis, the library-based approach has been investigated and 

implemented. The library-based approach seems to be well-suited for automation and 

ease-of-use. Parameterized structural VHDL models provide great flexibility as far as 

resolution of the inputs, outputs and weights are concerned, and also make it possible to 

easily implement and automate the process of building any BbNN from the basic NN 

blocks and activation functions available in the library.  Chapter 3 discusses the 

implementation details of the models in the library of NN blocks. This section provides 

an overview of the approach taken to implement the models, keeping in mind the need for 

flexibility, ease-of-use and automation of the process of developing any mxn BbNN from 

components available the library.   

2.4.1 Library of NN blocks and activation functions 

 A BbNN consists of an array of basic NN blocks, which may be one of three 

types, depending on the number of input and output ports in the block. Every NN block 

computes the sum-of-products of weights and inputs. The result is passed through an 
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activation function, which could be one of many possible forms, depending on the 

requirement of the specific application.  

Typical activation functions include unipolar and bipolar linear, ramp, saturation 

and ramp-with-saturation functions (as an approximation of the sigmoid function that is 

normally used with NNs). These functions are tailor-made to suit easy hardware 

implementation. As a general rule, it is easier to implement functions with minimal non-

linearity, on hardware, than those that involve more non-linearity. Also, multiplication is 

easier to implement than division. One way to implement functions which involve non-

linearities is to use LUTs. In this method, values of the function for different values of the 

independent variable(s) involved are stored in a ROM and read when required, instead of 

actually computing the numerical value of the function each time. Another possible 

method of implementing non-linear activation functions on hardware is to use 

algorithmic methods to approximate the function. An example of this is method is the 

commonly used algorithm to generate sinusoids - the CORDIC algorithm. The strategy 

adopted in the hardware implementation of BbNNs is to use activation functions which 

do not involve non-linearities, but still provide fairly accurate results in applications such 

as pattern classification and mobile robot navigation control. This keeps the design 

simple and easy to implement, and at the same time, provide better performance when 

compared to implementation with more complex activation functions. Thus, this research 

has focused on building activation functions which do not involve non-linearities of any 

kind. 

The library of basic NN blocks consists of the three types of basic NN blocks, 

namely, 3-input 1-output block, 2-input 2-output block and 1-input 3-output block. Each 
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of these consists of the sum-of-products function and an activation function, which may 

be chosen from the library of activation functions.  

Many variations are possible in each of the components of the library. These are: 

(i) Variation in bit-widths of inputs, weights and outputs help in adjusting the 

resolution of the BbNN as required for the application. This is achieved by 

developing parameterized, synthesizable VHDL models. The VHDL models 

of the different activation functions are also parameterized. 

(ii) Variation in architectures for the multiplier and adder units helps in 

exploring the design-space for different speed, area and power goals. For 

example, fast adders (e.g., carry-look-ahead, carry-save and so on) could be 

used to improve the performance of the circuit. Gated-clock designs may be 

developed to make low-power designs.  

(iii) Synchronous and asynchronous NN blocks are designed. Synchronous 

blocks are invariably needed for implementations in which the RC unit 

(FPGA) has to interact with the host processor. However, asynchronous 

blocks will be useful for the ASIC implementation of a BbNN for a given 

application. Asynchronous designs have better performance typically, but are 

more difficult to design. For BbNN designs with feedback, synchronous 

designs have to be used. However, in applications where feedback is not 

required, it would be a good idea to make use of the performance gains 

provided by asynchronous designs.  

(iv) Different forms of activation functions (with different possible resolutions) 

have been designed and implemented in the library of activation functions.  
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The approach for building the library can thus be summarized in the following steps: 

(i) Development of VHDL models for each of the three types of NN blocks and 

activation functions 

(ii) Validation of the above NN models through pre-synthesis simulations 

(iii) Synthesis to Xilinx® Virtex™ 1000E FPGA 

(iv) Place-and-route (PAR) 

(v) Implementation and verification on the FPGA 

(vi) Characterization of the components of the library 

(vii) Building test BbNNs using components from the library 

(viii) Simulation, synthesis and PAR of models developed in (vii) 

(ix) Implementation and verification of test BbNNs on the FPGA 

2.4.2 Other possible approaches 

The library-based approach for implementing BbNNs was chosen for this research 

keeping in mind the ease of automation and the ease of use. Parameterized and 

synthesizable structural VHDL models support the flexibility and modularity that BbNNs 

require. However, this is not the only possible method for implementing BbNNs. One 

alternate method would be to build a generic processing engine, which could be used to 

compute the output of each neuron. This would save a lot of real-estate on the FPGA 

because replication of the NN blocks is avoided. The NN blocks are multiplier-rich and 

multipliers are very area-greedy. The area-saving however, comes at a cost – the latency 

(time taken to obtain an output after the inputs have been sensitized) will increase. 

Latency may be reduced by pipe-lining the design, but this would increase the area of the 

design. One other factor to be weighed while implementation BbNNs using a generic 
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processing engine would be the maintenance-of-state and state-machine implementation 

for the controller. Maintenance-of-state means that memory elements (register/register-

files or RAM) are required to store intermediate processing results. A state-machine 

would be required to orchestrate various processing actions and this would become more 

complex with increase in the number of blocks and depth of pipelining, because there 

would be more states to keep track of. Automatic generation of VHDL models in this 

case would be difficult. Thus, choosing the appropriate implementation is a trade-off 

among various factors which the user has to decide depending on the need for the 

application. 

2.4.3 ASIC Implementations of BbNNs 

  FPGA implementations of BbNNs help one zero-in on a specific structure and set 

of weights for a given application. They fit very well in the GA-scheme of “design-

implement-evaluate-modify” cycle illustrated in Figure 1.7, because of the ability to 

reconfigure FPGAs. ASIC implementations have proved to be superior in performance 

than FPGA implementations for a given circuit. However, the circuit cannot be modified, 

once the ASIC has been fabricated. Thus, it would be very practical to use FPGAs for 

fitness evaluation and prototyping of a given BbNN, and then fabricate an ASIC for 

actual deployment, once the structure and weights of the BbNN have been optimized to 

the required level. The ASIC can be custom-designed and implemented as an analog or 

digital IC, to reduce power consumption, and at the same time operate at higher speeds 

than FPGA.  
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CHAPTER 3 

IMPLEMENTATION DETAILS 

 

3.1 Detailed design flow used to target Pilchard RC platform 

 The target platform used for this research is the Pilchard RC platform, described 

in chapter 2. It houses a Xilinx® Virtex™ 1000E FPGA. The detailed design-flow used 

for the implementation of BbNNs on this FPGA with the role of the various EDA tools is 

described in this section.  

 Figure 3.1 shows the detailed design-flow for implementing BbNNs on the 

Pilchard RC platform. The BbNN is designed using the library of NN blocks and 

modeled in VHDL. Before steps to translate this design into a physically realizable circuit 

are taken, it is simulated using test-vectors provided from a test-bench written in VHDL. 

A VHDL simulator (in this case, ModelSim® version 5.7d, from Mentor Graphics®) is 

used to simulate the design. The in-built waveform viewer helps the designer analyze the 

design for correct functionality. Once the design is verified to be functionally correct, it is 

synthesized using a design synthesis tool to target the Xilinx® Virtex™ 1000E FPGA. In 

this research Synopsys® FPGA Compiler-II was used. The tool is supplied with all the 

design files and delay constraints and it generates a structural netlist in EDIF format. This 

is a gate-level circuit-description. The synthesis tool also reports timing violations in this 

implementation of the design. These have to be fixed before going to the next step, 

namely, PAR. Xilinx® ISE tools are used for PAR. The tool is provided with the EDIF  
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Figure 3.1:   Detailed design-flow for implementation on Pilchard RC platform  

(Courtesy: Dr. Chandra Tan) 
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netlist generated from synthesis and a pin constraints file (PCF). The design is first 

translated into Xilinx’s Native Generic Database (NGD) format, and then mapped to 

primitives inside the particular FPGA being targeted (in this case Virtex™ 1000E). The 

output from the “map” program is a NCD file which serves as an input to the “par” 

program.  The next step is to place and route (PAR) the design. A logical DRC (Design 

Rule Check) (device-independent) is performed after building the NGD files to verify the 

logical design. The output of the PAR program is a native-circuit description (NCD) file 

which can be used with the “bitgen” program to generate the FPGA configuration file. 

Post-route static timing analysis is done using the “trce” (trace) program and this would 

report any timing violations in the design. The designer may have to run a more 

aggressive PAR in the next iteration, to overcome these violations, or may have to step 

back and re-synthesize the design, or may even have to change the VHDL design files to 

meet constraints. On successful bit-file generation using the “bitgen” program, the design 

is ready to be “downloaded” onto the FPGA residing on the Pilchard RC board. A post-

route simulation netlist (VHDL or Verilog) and back-annotation timing file (in the 

Standard Delay Format or SDF) may be written out from the toolset if the user wishes to 

perform post-layout simulation. Power estimation of the design may be done using the 

Xilinx® Xpower™ tool. 

 In the case of the Pilchard RC board, a host program is written to communicate to 

the board. Typically, the parameters and data required for the design are written to the 

Xilinx® block RAM from the host program, and these are used by the design residing 

inside the FPGA. 
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3.2 Library of NN blocks 

A library of NN blocks consisting of different parameterized, synthesizable 

VHDL models is first created. VHDL models for different types of activation functions 

are also built. This library can be used to build any mxn BbNN easily.  

Every NN block consists of 4 ports to interface to the primary inputs or outputs of 

the system, or the neighboring blocks. There are 3 types of NN blocks that are considered 

“legal” – 3-input-1-output block (“block31”), 2-input-2-output block (“block22”, and 1-

input-3-output block (“block13”). Blocks with all four ports being of the same type are 

not considered valid NN blocks. The computation performed by each NN block is a 

weighted sum of the inputs and biases that is passed through an “activation function”, 

before being passed to the output port. The weight for the bias-inputs is always 1. 

Mathematically, the output of each output port from a NN block can be represented by 

the equation: 

y   =   ϕ (w.xT + b)    =   ϕ (w1x1 + w2x2 + … + wnxn + b)  

where y is the output, w is the weight vector, x is the input vector, b is the bias and ϕ is 

the activation function. The form of the equation shown is identical to that of 

computations performed by neurons in ordinary NNs, but in BbNNs, the inputs, weights, 

biases and outputs are restricted to be integers or fixed-point numbers to facilitate easy 

implementation on-chip. Also, the activation functions do not involve non-linearities. 

3.2.1 The Sum-of-Products function 

The Synopsys® DesignWare™ IP library contains parameterized IP cores 

(VHDL and Verilog models) which can be incorporated in designs through component 

instantiation or inference. This saves a lot of development time for the designer who can 
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spend more time on verification and system-level architectural improvements. As 

depicted in Figure 3.2, every NN block consists of a sum-of-products of inputs and 

weights, to which a bias is added. This result is followed by an activation function block 

devoid of non-linearities, and its output is passed on to the output port.  

The DesignWare™ generalized sum-of-products IP was used to implement the 

sum-of-products and adder function combined. The bias input can be considered to be a 

regular x-input with its associated weight being 1. Thus, the bias can be augmented with 

the x-input vector and a “1” can be augmented to the weights-vector and the computation 

can be implemented with just one DesignWare™ core. The activation function has been 

implemented in RTL VHDL code from scratch, without using the DesignWare™ library.  

Figure 3.3 shows the pin-diagram of the DesignWare™ sum-of-products IP core. 

The primary inputs to the block are the vectors whose sum-of-products is to be found and 

a bit (“TC”) to indicate the format of the numbers in the vectors, namely two’s-

complement mode (to accommodate representation of negative numbers) or unsigned 

numbers. The number of inputs, word-length of input data on the two vectors and the 

width of the resulting sum are parameters. Figure 3.4 shows how the data has to be 

organized into the input vectors for the block to do the sum-of-products computation. 

Table 3.1 shows the pin description of the IP block and table 3.2 explains the parameters 

involved in it. 

During synthesis of a DesignWare™ IP block, the implementation architecture can 

be chosen from one of the existing varieties, by using compiler directives in the HDL 

description itself, or in the Synopsys® synthesis script. If a Synopsys® synthesis tool is 
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Figure 3.2:   Computation of the outputs of a NN block 
 

 

Figure 3.3:   DesignWare™ generalized sum-of-products IP block [33] 

 

 

Figure 3.4:   Arranging the inputs in vectors for sum-of-products computation [33] 

 

Synopsys® 
DesignWare™ 

Generalized sum-of-
products IP core 

A 

B 

TC 

SUM 



 35 

 

 

 

Table 3.1:   Pin description of DesignWare™ generalized sum-of-products [33] 

Pin Name Width Direction Function 

A A_width x num_inputs bit(s) Input Concatenated input data 

B B_width x num_inputs bit(s) Input Concatenated input data 

TC 1 bit Input Two’s complement 
0 = unsigned; 1 =signed 

SUM SUM_width bit(s) Output Sum of products 

 

 

 

 
Table 3.2:   Parameters in DesignWare™ generalized sum-of-products [33] 

Parameter Values Description 

A_width � 1 Word length of A 

B_width � 1 Word length of B 

num_inputs � 1 Number of inputs 

SUM_width � 1 Word length of SUM 
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 used, the tool can choose the synthesis implementation by itself, depending on the 

constraints given to the tool. However, the user may choose to force the synthesis tool to 

implement a particular architecture. In the case of the sum-of-products IP core, the user 

can choose from one of the options specified in Table 3.3. In the design of NN blocks and 

BbNNs, the unpipelined synthesis models have been chosen for their ease of 

implementation and performance gain. Also, in BbNN circuits with feedback, pipelining 

the NN blocks will complicate the state-machine used to control the BbNN.  

3.2.2 The Activation function 

The output of the sum-of-products function is passed on to an “activation 

function” before it is sent as output of the NN block. Typical activation functions in 

traditional NNs consist of the sigmoid function or other functions involving non- 

linearities. However, the activation functions in BbNNs are simple and involve no non-

linearities. The activation functions implemented in the library of NN blocks that have 

been developed in this research, include unipolar and bipolar saturation functions (Figure 

3.5) and unipolar and bipolar saturating linear (or ramp) functions (Figure 3.6). The 

VHDL models for these functions are parameterized and synthesizable. The bit-widths of 

 

Table 3.3:   Synthesis implementations of DesignWare™ generalized sum-of-products [33] 

Implementation Function 
csa Carry-save array synthesis model 
wall Booth-recoded Wallace-tree synthesis model 
nbw Either a non-booth (A_width + B_width � 41) or a 

Booth Wallace-tree (A_width + B_width > 41) synthesis model 
mcarch MC-inside-DW Wallace-tree 
csmult MC-inside-DW flexible Booth Wallace 
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Figure 3.5:   Unipolar and bipolar saturating activation functions 

 

 

 

 
Figure 3.6:   Unipolar and bipolar linear saturating activation functions 
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input and output are parameters and so is the slope of the linear portion of the linear 

saturation function. The activation function to be used on the output nodes depends on 

the application. For example, the bipolar saturating linear function is used in the XOR 

pattern classification problem, and the bipolar saturation function is used in the mobile 

robot navigation control problem described in chapter 4.  

3.2.3 The three types of NN blocks 

The three types of NN blocks are block31, block22 and block13. These are 

formed by choosing the sum-of-product IP core (with a desired synthesis 

implementation) and an activation function. Each of these is depicted in Figure 3.7. The 

NN blocks are designed such that all the inputs and outputs are of the same bit-widths. 

This ensures that a block can get its input directly from another block or its output can be 

directly fed into the input of a neighboring block. 

 

  
 

Figure 3.7:   Three types of NN blocks (a) Block22 (b) Block13 (c) Block31 
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3.3 Facilitating Designs with feedback - Blocks with registered outputs 

Most BbNNs are designed with lateral feedback from the last layer of NN blocks 

to the first. An example is shown in Figure 3.8. a, b and c are inputs to the BbNN and Y1, 

Y2 and Y3 are the outputs. Feedback connections in synchronous digital circuits have to 

be made through memory elements. Flip-flops or registers are the most commonly 

inferred memory elements by automatic synthesis tools. A clock signal is required control 

the functioning of the memory element. This class of designs, where operations are 

performed on a clock-edge is known as “synchronous design”. 

In VHDL, memory elements are inferred using clock-sensitive processes. To 

register output signals, the output port is assigned a value only on a clock-edge (e.g., 

rising edge). The section of VHDL code in Figure 3.9 illustrates how registers are 

inferred. 

 Figure 3.8:   NN blocks with registered outputs 

Y2 

b c a 

Y1 
 

Y3 

Flip-flop/Register 
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... 
 
entity regout_block13 is 
 
    generic ( x_width : NATURAL := 8;  
              w_width : NATURAL := 8; 
         b_width : NATURAL := 8;  
              y_width : NATURAL := 64 
            ); 
    port (  clk, rst     : in std_logic; 
     x1            : in std_logic_vector(x_width-1 downto 0); 
            w12, w13, w14 : in std_logic_vector(w_width-1 downto 0); 
     b2, b3, b4    : in std_logic_vector(b_width-1 downto 0); 
            tc            : in std_logic; 
            y2_y3_y4   : out std_logic_vector(y_width-1 downto 0) 
         ); 
 
end regout_block13; 
 
architecture regout_structure13 of regout_block13 is 
 

constant bias_wt : std_logic_vector(w_width-1 downto 0) := 
"00000001"; 

  
 signal y2, y3, y4 : std_logic_vector(x_width-1 downto 0); 
  

... 
    
begin 
 
-- calculation of output y2 
 
 w12_bias_wt <= w12 & bias_wt; 
 x1_b2 <= x1 & b2; 
 
 U1_sop: DW02_prod_sum_inst 
                port map ( inst_A => x1_b2, 
                           inst_B => w12_bias_wt, 
                           inst_TC => tc, 
                           SUM_inst => sop2 
                         ); 
 U1_y2:  rampsat_bi_13 
   port map (  act_in => sop2,  
        act_out => y2 
       ); 
 

... 
 
-- calculation of outputs y3 and y4 

... 
 

 
Figure 3.9:   Inferring registers in the design using VHDL 
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-- Inferring registers at outputs using clock-sensitive process  
 
 process (clk, rst, y2, y3, y4) 
 begin 
  if (rst = '1') then 
   y2_y3_y4 <= (others => '0'); 
  elsif (clk'event and clk = '1') then 
   y2_y3_y4(63 downto 24) <= (others => '0'); 
   y2_y3_y4(23 downto 16) <= y2;  
   y2_y3_y4(15 downto 8) <= y3;  
   y2_y3_y4(7 downto 0) <= y4;  
  end if; 
 end process; 
end regout_structure13; 

 
 

Figure 3.9:   (Continued) 
 

In this example, y2, y3 and y4 are signals which are passed on to the output port 

y2_y3_y4 only on every rising clock-edge. 

 

3.4 Accuracy and Resolution Considerations 

BbNNs are designed to have integer or fixed-point weights and inputs to facilitate 

easy implementation on hardware. Moreover the number of bits used to represent the 

inputs and outputs are the same (i.e., same word-length or bit-width for inputs and 

outputs) to ensure that the blocks can be used to interface directly to other blocks or 

primary inputs and outputs. The output from the sum-of-products function present in 

every NN block will have more bits than the inputs and weights. Thus, the activation 

function has to scale the input it receives from the sum-of-products computation to fall 

within a certain range of numbers which can be represented with the same number of bits 

as the inputs. A mathematical analysis to show how the word-length increases is shown 

below. 

Let the number of bits used to represent each input and bias = x_width 
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Let the number of bits used to represent each weight  = w_width 

Let the number of inputs to the block  = n 

Let the number of outputs from the block = m 

Clearly,  

m + n = 4 where m, n � {1, 2, 3} 

Number of bits in each partial-product of the sum-of-products  

= x_width + w_width  

Number of partial-product terms (including the bias term) 

= n + 1 

Number of bits on the output from the sum-of-products function 

      = n + 1 + x_width + w_width - 1 

      = n + x_width + w_width 

 There are m such outputs from the NN block. 

Thus, the activation function has to scale an input of (n + x_width + w_width) bits to 

x_width bits so that it can serve as input to the neighboring block. The designer of the 

BbNN has to make sure that the bits lost due to truncation of bits at the activation 

function stage do not adversely affect the performance of the BbNN for that specific 

application. Typically, one would try to drop bits in the fractional part of the fixed point 

notation number. A detailed analysis example of these issues is presented in the XOR 

pattern classification problem in chapter 4. 
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3.5 Validation of NN blocks 

3.5.1 Methodology 

The method adopted to validate the functional correctness of the NN blocks is 

described here. First, a software implementation of each type of NN block is done in the 

C programming language. The results of computations from this implementation are 

taken as the “correct results” and then VHDL models are developed. These are simulated 

using ModelSim® VHDL simulator. Test vectors are supplied to the design from a test-

bench and responses collected and compared to the software implementation. Once the 

two results match, the rest of the hardware design steps are performed, namely synthesis, 

PAR and implementation on the FPGA. 

3.5.2 Software Implementation 

The software is written in the C programming language and executed on the 

Pilchard RC board’s host-processor, which is a Pentium® III processor running at 933 

MHz. The host computer has 256 MB of RAM. The OS on this is Mandrake Linux 9.1. 

In the XOR pattern classification problem and mobile robot navigation control problems, 

the time for computation in software and hardware is compared. 

3.5.3 VHDL Design and Simulation 

Parameterized, structural VHDL models are developed and simulated using the 

VHDL simulator, ModelSim®. These are verified for correct functioning for integer and 

fixed-point, signed and unsigned data. Extensive test-benches have been written to 

maximize the coverage of possible test-cases. The VHDL models are provided in the 

appendices at the end of this document. 
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3.5.4 Hardware Implementation 

The NN blocks are implemented on the Pilchard RC platform and tested. A host C 

program is capable of communicating with the board. Weights, biases and data are loaded 

into the Xilinx® Block RAM inside the Virtex™ 1000E FPGA and then a “start” signal 

is issued to the design inside the FPGA. The design performs the computations and writes 

the results back to the RAM, which can then be read by the host code. The working 

details of this process of hardware implementation are presented in the case studies in 

chapter 4.  

 

3.6 Characterization of the library of NN blocks 

3.6.1 Area  

 The area occupied by the NN block is obtained from the Xilinx® PAR tool. It 

reports the device utilization summary for the designer to review. Table 3.4 shows the 

number of slices occupied by each of the three types of blocks with registered outputs, for 

different bit-widths. 

3.6.2 Delay 

 The maximum clock frequency that can be used with the design is also reported 

by the Xilinx® ISE tools. On the Pilchard RC platform, the clock used for the design is 

derived from the SDRAM interface clock. The Pilchard RC board allows this clock (133 

MHz) to be divided by 2, 2.5, 3, 4, 5, 8 or 16. Thus the design can be implemented only 

at one of these speeds. However, the design itself may be run at the maximum speed 

reported by the PAR tool. Table 3.5 summarizes the performance of the different blocks. 
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Table 3.4:   Area (in number of slices of Virtex™ 1000E) for the three types of NN blocks 

with bipolar linear saturating activation function 

 Block13 Block22 Block31 

4 – bit 104 39 69 

8 – bit 185 103 176 

16 – bit 582 327 532 

 

 

 

Table 3.5:   Performance comparison of the three types of NN blocks with bipolar linear 

saturating activation function 

 Block13 Block22 Block31 

4 – bit 64.259 MHz 81.606 MHz 43.985 MHz 

8 – bit 46.856 MHz 52.751 MHz 34.108 MHz 

16 – bit 29.641 MHz 37.063 MHz 30.975 MHz 
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3.6.3 Power 

Power estimation is done using Xilinx® XPower™. These estimates, shown in 

table 3.6, are done by setting a 0.25 switching activity on each node. This is useful for 

comparison of the various designs, but to make better estimates of power consumption, 

realistic test-vectors have to be used to generate a switching activity (VCD) file from the 

VHDL simulator, to serve as an input to the power-estimation tool. 

 

3.7 ASIC Implementation of one data path of a 2-input-2-output NN block 

ASIC implementations yield better performance than FPGA implementations as 

the circuit designed is specific to the application. Thus, there is a performance gain at the 

cost of reconfigurability. A single data path of a 2-input-2-output ASIC was designed, 

simulated and physically laid out for fabrication in the AMI-C5F/N (0.6u technology). 

The design is a fully combinational circuit that performs the operation: 

 f (w13 x1+ w23 x2 + b)  

 

Table 3.6:   Power estimates of the three types of NN blocks with bipolar linear saturating 

activation function 

 Block13 Block22 Block31 

4 – bit 976 mW 973 mW 976 mW 

8 – bit 979 mW 975 mW 979 mW 

16 – bit 994 mW 981 mW 984 mW 
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where x1 and x2 are 4-bit inputs, w13 and w23  are 4-bit weights, b is the 4-bit bias input 

and f is the activation function, in this case a constant multiplier with the constant being a 

parameter input for testing purposes. The multipliers were generated using Cadence® 

Silicon Ensemble® automatic layout-generation tool and the adders were custom-

designed data paths. The area occupied by the design is about 198000 square microns. 

Simulation was done using Cadence® Spectre® transistor-level simulator. 

Figure 3.10 shows the architecture implemented in for this ASIC. Figure 3.11 

shows the ASIC layout including the pads for the chip. 
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Figure 3.10:   Architecture of ASIC implementation in AMI 0.6u process 
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Figure 3.11:   ASIC implementation of f(w13x1 + w23x2 + b) in AMI 0.6u process 
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CHAPTER 4 

CASE STUDIES AND RESULTS 

 

4.1 Building BbNNs using the library of NN blocks 

The library of NN blocks that has been developed and characterized can be used 

to build BbNNs for various applications. Software simulations have shown that BbNNs 

are suitable for pattern classification and robotic control problems. In this chapter, two 

specific applications of BbNNs, namely, the XOR pattern classification problem and the 

mobile robot navigation control problem, and their implementations on the Pilchard RC 

platform are described in detail. The issues related to the FPGA implementations and the 

results obtained from the hardware and software implementations are analyzed. Both the 

BbNNs for the above-mentioned applications involve feedback and hence NN blocks 

with registered outputs are used. 

 Building a BbNN from the library of blocks involves describing a structural 

VHDL model to interconnect the various blocks through port-mapping and integrating 

the design with a RAM which can hold the weights, biases and input data. Also, a state 

machine will have to be designed to orchestrate data-flow between various blocks and 

maintaining the states during each clock cycle so that computations are performed 

correctly. Additional design files required for implementation of the design on the 

Pilchard RC platform include a VHDL wrapper with descriptions for the pads of the 

Virtex™ 1000E FPGA (“pilchard.vhd”). A host C program (“iftest.c”) is also required to 

interface to the Pilchard RC platform. 
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4.2 The XOR Pattern Classification Problem 

4.2.1 Background 

The XOR function takes in two inputs, x1 and x2. The output of this boolean 

function is 0, when both inputs are identical and 1, when they are not the same. The truth-

table of the XOR function is shown in Table 4.1 below. The XOR pattern classification 

problem aims at classifying input data other than (0,0), (0,1), (1,0) and (1,1) into one of 

the output classes – output 0 and output 1. The input data are in the range from 0 to 1. For 

example, the data (0.95, 0.89) may be classified to an output 0 class while (0.05, 0.98) 

may be classified as an output 1 class. The XOR pattern classification problem is a 

linearly inseparable problem. This means that a single line (or “decision boundary”) in 

the x1-x2 plane cannot separate the regions representing class 0 and class 1. Figure 4.1 

shows the linearly inseparable output classes 0 and 1.  

4.2.2 BbNN for XOR Pattern Classification 

The BbNN used for XOR pattern classification is shown in Figure 4.2 [2]. It 

consists of four 2-input-2-output blocks (labeled A, B, C and D). The structure and 

weights shown in the figure are obtained after optimization using genetic algorithms. The 

inputs x1 and x2 are fractional numbers (represented as fixed-point numbers) between 0  

 

Table 4.1:   XOR truth-table 

X1 X2 Output 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
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Figure 4.1:   Decision boundaries for the XOR pattern classification problem 

 

 

Figure 4.2:   BbNN used for XOR pattern classification [2] 
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and 1, and the output y, is positive for class 0 (output = 0) and negative for class 1 (output 

= 1) data. The activation function used, is a bipolar linear saturating function with a slope 

of 1/20 and saturation occurring if the output goes above 1 (saturated to 1) or below -1 

(saturated to -1) (Figure 4.3). 

4.2.3 Implementation on Pilchard RC platform 

4.2.3.1 Data format 

 The weights and biases in this problem are integers and fall within the range -32 

to 31. In hardware implementation at least 6 bits are required to represent these numbers 

in the two’s complement form. The input data xi’s lie in the range 0 to 1. These are 

fractional numbers and have to be represented using some number of bits depending on 

the resolution desired for the input data. Using n bits to represent the magnitude of a 

fractional number gives a resolution of 2-n. In this problem, 8 bits are used for 

representing numbers between 0 and 1. Thus, the interval between 0 and 1 is divided 

uniformly to represent 256 numbers with a resolution of 0.00390625.  

 The DesignWare™ sum-of-products IP core requires that all inputs be in the same 

 

 

 

 

 

Figure 4.3:   Activation function used in XOR pattern classification 

 

1 
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format – signed or unsigned. Also, there is a need to represent all inputs, weights, biases 

and outputs in the same data format – in terms of signed representation and number of 

bits in the fractional part. The total number of bits used to represent the input need not 

necessarily be the same as those of the weights and biases. Thus, the integers have to be 

shifted left by m bits, if m bits are used to represent the magnitude of the fractional 

inputs. All the numbers are represented in two’s-complement form.  

In this implementation of BbNN for XOR pattern classification 9 bits are used to 

represent the fractional input data x1 and x2. The leading bit is a signed bit, and is always 

‘0’ because x1 and x2 are always positive. Thus, only the 8 bits representing the 

magnitude needs to be stored in the RAM, and the leading sign-bit can be appended 

before sum-of-products computation, because it is known to be ‘0’ always. Similarly, the 

integer weights and biases should be represented in the two’s-complement p.q format 

where p is the number of bits used to represent the integer part (8 in this case) and q is the 

number of bits for the fractional part (should be 8 in this case). The extension to include 

the fractional part of the integer number (always “00000000”) is done just before it is 

presented as input to the sum-of-products function. The weights and biases stored in the 

RAM need to be only 8 bits wide and this saves considerable space in the RAM. Figure 

4.4 shows the format of data inside the RAM and that when presented as inputs to the 

block.  

4.2.3.2 Data organization in Xilinx® Block RAM 

 The weights, biases and inputs are stored in the Xilinx® Block RAM. A 256 

(rows) x 64 (bits per row) dual-port RAM, generated using Xilinx® Core Generator™, 
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Figure 4.4:   Data format of inputs, weights and biases in block13 

 
is used in this design. Port A is used by the host processor to access the RAM on the 

FPGA. Port B is used by the design residing in the FPGA to access the RAM. For the 

XOR BbNN, 16 weights and 8 biases are required. Each needs 8 bits to be represented in 

the RAM. Thus 192 bits or 3 rows of the RAM are needed to store these inputs. Each pair 

of data is stored in one row, for convenience. The 8 biases are concatenated and stored in 

the first row (address 0) of the RAM. The second row (address location 1) contains the 

weights for blocks A and B. The third row (address location 2) stores the weights for 

blocks C and D. This is followed by 64 rows of data input pairs (x1, x2). This is from 

address location 3 to 66. Address locations 67 to 130 will store the outputs. The 

arrangement of weights, biases and inputs in the RAM, is shown in Figure 4.5. 

Data for input to Sum-of-products 

X1 = 0.25 
W12 = 27 
W13 = -18 
W14 = 17 

… 

y3 

y4 

y2 

x1 

RAM 
0 1 0 0 0 0 0 0 
0 0 0 1 1 0 1 1 
1 1 1 0 1 1 1 0 
0 0 0 1 0 0 0 1 

… 

0 . 0 1 0 0 0 0 0 0 
 
0 0 0 1 1 0 1 1 . 0 0 0 0 0 0 0 0 
 
1 1 1 0 1 1 1 0 . 0 0 0 0 0 0 0 0 
 
0 0 0 1 0 0 0 1 . 0 0 0 0 0 0 0 0  

… 

X1 (9 bits) 
 

W12 (16 bits) 
 

W13 (16 bits) 
 

W14 (16 bits) 
… 
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Figure 4.5:   Data organization in 256 x 64 dual port RAM for XOR BbNN 

 

4.2.3.3 Read and Write operation timing diagrams for Xilinx® Block RAM 

 To use the dual port RAM, it is important to understand its read and write 

operations clearly so that the state machine to control data flow to and from the RAM can 

be described correctly. The Xilinx® dual port RAM is generated using the Xilinx® Core 

Generator™. The RAM generated is implemented on-chip by mapping the RAM design 

to physically separate RAM blocks and it does not consume the CLBs inside the FPGA. 

Figure 4.6 shows the write and read operation timing diagrams.  

4.2.3.4 State Machine implementation 

 The BbNN used for XOR pattern classification (Figure 4.2) involves a circuit 

which does not have a complete ordering when described as an acyclic graph. This is 



 57 

 
 

Figure 4.6:   Read and write operations on Xilinx® Dual port RAM [34] 

 
because the output of block A depends on the output of block B, and vice-versa. This is 

the same with blocks C and D. Thus, unless we assume some initial state for the outputs 

(i.e., on reset), a “valid” solution can never be obtained. In this design, to begin with (on 

reset), the outputs of all blocks are assumed to be zero. This gives block A, a starting 

point to compute its outputs and in subsequent cycles, the outputs of other blocks can be 

considered “valid”. In this particular BbNN, output ‘y’ from block D is the final answer 

(which represents the class where the input belongs) and is taken to be “valid” after three 

clock cycles. Each block takes one clock cycle to compute the outputs and clearly, there 

are 3 cycles of delay from input x1 to output y. It can be shown that in a BbNN with m 

NN blocks, the final output can be obtained in a maximum of m+1 clock cycles, if each 

NN block is implemented as a purely combinational circuit with the outputs alone being 

registered on every clock cycle. 

 A state machine is implemented to initially load the weights and biases for the 

BbNN and then successively read input data sets, i.e., (x1, x2), one at a time, from the 
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RAM, compute the result and write the output back to the RAM. The important points to 

be remembered when writing the state machine are: 

(i) The outputs of the blocks have to be initialized to zero and kept at that value till the 

end of the first clock cycle. The outputs of the blocks at the end of the first clock cycle 

are then used as valid inputs to the neighboring blocks in subsequent cycles. 

(ii) The next input data set is not read until the computation for the previous data set is 

complete.  

(iii) The outputs are reset to zero at the end of the computation for every data set. 

Table 4.2 describes the states in detail. The state diagram of the state machine 

implemented for the XOR BbNN is shown in Figure 4.7. It involves 12 states.  

 The state machine waits in state 0 till it receives a “start” signal issued by the host 

program. This indicates that the data required for computation are ready in the RAM and 

that the BbNN can start its computations. Once this signal is sensed by the state machine, 

it starts loading the biases and weights of the BbNN in successive cycles. ip_addr_ctr 

and op_addr_ctr are counters used to keep track of the address location to read the input 

data set and write the output. The states 6 – 12 form the loop for repeating the process of 

reading input data, computing output and writing the output to the RAM, for 64 data sets.  

4.2.3.5 Host C Program 

The host C program communicates with the Pilchard RC board. “read64” and 

“write64” are the two APIs which facilitate reading and writing data from and to the 

Xilinx® dual port RAM, through its port A. For this application, the program loads the 

biases, weights and inputs into the RAM and issues a “start” signal to the BbNN 
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Table 4.2:   Details of state machine for XOR BbNN 

STATE OPERATIONS 
0 If (start = 1), then initialize all outputs of the 4 blocks to 0,  

                     initialize ip_addr_ctr to 3 and op_addr_ctr to 67,     
                     STATE = 1;  
else, wait for start to become 1 

1 Issue address for reading row 1 of RAM (bias values for all 4 
blocks); STATE = 2 

2 Issue address for reading row 2 of RAM (weights for A and B 
blocks); STATE = 3 

3 Store the bias values into a temporary buffer; Issue address for 
reading row 3 of RAM (weights for C and D blocks); STATE = 4 

4 Store the weight values of A and B blocks into a temporary buffer; 
Issue address for reading row 4 of RAM (input data set 1); STATE 
= 5 

5 Store the weight values of C and D blocks into a temporary buffer; 
STATE = 6 

6 If  (ip_addr_ctr = 67) set STATE = 0;  
else if (ip_addr_ctr = 3) store the input data set 1 value into a       
                                        buffer; STATE = 8;  
else STATE = 7                                                         

7 Store the input data set value into a temporary buffer; STATE = 8 
8 STATE = 9; Allow feedback values to serve as “valid” inputs to 

the neighboring blocks (i.e., no more forcing outputs to 0) 
9 STATE = 10 (this is a dummy state to wait for completion of 

computation) 
10 STATE = 11 (this is a dummy state to wait for completion of 

computation) 
11 Write the output data to RAM; Increment ip_addr_ctr by 1; Reset 

all block outputs to 0 for computation using next data set; STATE 
= 12 

12 Issue address for next input data set; Increment op_addr_ctr by 1; 
STATE = 6 
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Figure 4.7:   State diagram for XOR BbNN state machine 

 
 controller (state machine). The “start” signal is nothing but a write operation (data being 

“00000000”) to the 256th row of the 256 x 64 RAM used in the design. The BbNN 

controller checks for this signal on every rising clock-edge. Once the required weights, 

biases and inputs are loaded into the RAM, the host program enters an idle state (state 0) 

in which it waits for computation to be completed by the BbNN core, so that it can read 

the results from the RAM. The C program polls for a write operation to address location 

130 (where the last output is written) and then begins reading the contents of the RAM. 

States 6 to 12 form the loop in which the computation of outputs and storing results in the 

RAM takes place. The state machine ensures that the FPGA need not be configured each 

time classification operation on a new data set has to be performed. 
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4.2.4 Results 

4.2.4.1 XOR Pattern Classification Results 

The results obtained from hardware and software implementations of the XOR 

BbNN are found to be consistent. Figure 4.8 shows the decision boundaries of the XOR 

pattern classification. 

4.2.4.2 Area 

The XOR BbNN occupies about 5 % of the Virtex™ 1000E FPGA. Figure 4.9 

shows the layout of the design on the FPGA. 

4.2.4.3 Speed 

The circuit can operate at a maximum speed of 26.824 MHz. However, the design 

was tested on the Pilchard board at a speed of 16.63 MHz, because only clocks of certain 

frequencies can be easily generated on-board in the Pilchard RC system. The clock used 

for the design is derived from the 133 MHz SDRAM interface clock. For generating 

other frequencies, this clock has to be divided inside the FPGA. The factors that can be 

used for this division should be one of 2, 2.5, 3, 4, 5, 8 and 16.  

4.2.4.4 Speed- up achieved with hardware 

The time taken by the hardware and software implementations are measured using the C 

function, “gettimeofday()”. For the software implementation, the data is presented 

in a file, and the time is measured only for the computation of the outputs for the 64 input 

data sets. For hardware execution-time measurement, the time is measured from the  
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Figure 4.8:   XOR pattern classification by BbNN 

 

 

Figure 4.9:   Layout of XOR BbNN 
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Table 4.3:   Speed-up for XOR BbNN 

Run-time in hardware(�s) thw Run-time in software(�s) tsw Speed-up = thw/tsw 

23 52362 2277 

 

instant when it issues the “start” signal to the BbNN controller, to when the output data is 

started to be read from the block RAM. Table 4.3 shows the comparison between 

hardware and software execution times. 

 

4.3 The Mobile Robot Navigation Control Problem 

4.3.1 Background 

 Robots as arm manipulators are mostly programmed in a very explicit way to 

execute well-defined tasks. Mobile robots, however, may work under unknown and 

dynamic environments in nature, avoiding obstacles. The robot has no prior knowledge of 

the environment, navigation paths, shapes and positions of obstacles. The robot also has 

to acquire knowledge about the configuration of its sensors, which can be blinded or 

disabled from time to time. The robot behaves based on its current sensory input and its 

previous interactions with the environment. Its controller can be considered as a kind of 

adaptive reactive system, which can be described by a dynamic Boolean function easily 

implemented in hardware using EHW. The robot learns how to navigate in the 

environment by on-line evolution and builds an explicit model of the environment as a 

collection of events. The mobile robot considered in this case study, consists of 5 sensors 

to detect obstacles, and 2 wheels which are controlled by a navigation controller. The 
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controller decides the rotation angle of the wheels depending on the inputs from the 

sensor. 

4.3.2 BbNN for Navigation Control 

 Figure 4.10 shows the mobile robot with BbNN controller. S1 – S5 are five sensors 

placed on the periphery of the base and outputs from the sensor provide inputs to the 1x5 

BbNN. Each sensor outputs a ‘1’ or ‘0’ to indicate the presence or absence of an obstacle. 

The bipolar saturation activation function (Figure 4.11) is used in this BbNN. Thus, the 

output of each block is either ‘1’ or ‘-1’. The outputs of blocks with inputs from S2 – S5 

are provided to a decoder which translates the encoded BbNN output to inputs for the 

motor used to control the angle of rotation of the 2 wheels. Figure 4.12 shows the 

optimized weights, biases and structure used to implement the BbNN controller. It 

consists of all the three types of NN blocks – three blocks of 2-input-2-output type, and 

one each of 1-input-3output and 3-input-1-output types.  

 

 
 

Figure 4.10:   Robot with BbNN navigation controller 
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Figure 4.11:   Saturation activation function for BbNN robot controller 

 

 
 

Figure 4.12:   Final structure and weights of BbNN controller for robot navigation 
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4.3.3 Implementation on Pilchard 

4.3.3.1 Data format  

 The weights and biases in this problem are integers and fall within the range -32 

to 31. At least 6 bits are required to represent these numbers in the two’s complement 

form. The input data Si’s are either 0 or 1. One bit is enough to represent these. 

 Just as in the XOR pattern classification problem, there is a need to represent all 

inputs, weights, biases and outputs in the same data format – in terms of signed 

representation. There is no fractional number involved in this problem. All the numbers 

are represented in two’s-complement form. Thus, leading zeros have to be appended to 

the input data to ensure that they are interpreted as positive numbers. 8 bits are used to 

represent weights, biases and inputs in this implementation.  

4.3.3.2 Data organization in Xilinx® Block RAM 

 Data organization in the RAM, for a set of 64 input data sets (S1 – S5) is shown in 

Figure 4.13. 

4.3.3.3 State Machine implementation 

 The state machine implementation for the robotic BbNN controller can be 

represented as an acyclic graph with complete ordering. The block B does not depend on 

inputs from any block and its outputs are all valid after one clock cycle. All four outputs 

are valid after 3 clock cycles. Figure 4.14 and Table 4.4 explain the states in the BbNN 

controller. 
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Figure 4.13:   Data organization in 256 x 64 Xilinx® dual port RAM for BbNN robot 

controller 
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Figure 4.14:   State diagram for BbNN robot controller state machine 
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Table 4.4:   Details of state machine for BbNN robot controller 

 
STATE OPERATIONS 

0 If (start = 1), then initialize all outputs of the 4 blocks to 0,  
                     initialize ip_addr_ctr to 5 and op_addr_ctr to 69,     
                     STATE = 1;  
else, wait for start to become 1 

1 Issue address for reading row 1 of RAM (bias values for blocks A, 
B and C); STATE = 2 

2 Issue address for reading row 2 of RAM (bias values for blocks D 
and E); STATE = 3 

3 Store the bias values of A, B and C blocks into a temporary buffer; 
Issue address for reading row 3 of RAM (weights for A and B 
blocks); STATE = 4 

4 Store the bias values of D and E blocks into a temporary buffer; 
Issue address for reading row 4 of RAM (weights for C and D 
blocks); STATE = 5 

5 Store the weight values of A and B blocks into a temporary buffer; 
Issue address for reading row 5 of RAM (weights for E block); 
STATE = 6 

6 Store the weight values of C and D blocks into a temporary buffer; 
Issue address for reading row 6 of RAM (input data set 1);  
STATE = 7  

7 Store the weights of block E into a temporary buffer; STATE = 8 
8 If  (ip_addr_ctr = 69) set STATE = 0;  

else if (ip_addr_ctr = 5) store the input data set 1 value into a       
                                        buffer; STATE = 10;  
else STATE = 9 

9 Store the input data set value into a temporary buffer; STATE = 10  
10 STATE = 11 (this is a dummy state) 
11 Allow feedback values to serve as “valid” inputs to the neighboring 

blocks (i.e., no more forcing outputs to 0); STATE = 12 
12 STATE = 13 (this is a dummy state to wait for completion of 

computation) 
13 Set Write the output data to RAM; Increment ip_addr_ctr by 1; 

Reset all block outputs to 0 for computation using next data set; 
STATE = 14 

14 Issue address for next input data set; Increment op_addr_ctr by 1; 
STATE = 8 
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4.3.4 Results 

4.3.4.1 Mobile Robot Controller Results 

The results obtained from hardware and software implementations of the BbNN 

controller are found to be consistent. The 4-bit output is translated into motor rotation 

angles by the translator. 

4.3.4.2 Area 

The BbNN robot controller occupies about 7 % of the Virtex™ 1000E FPGA. 

Figure 4.15 shows the layout of the design on the FPGA. 

4.3.4.3 Speed 

The circuit can operate at a maximum speed of 22.936 MHz. The design was 

tested on the Pilchard board at a speed of 16.63 MHz. 

4.3.4.4 Speed-up achieved with hardware 

The time taken by the hardware and software implementations are measured using 

the C function, “gettimeofday()”. For the software implementation, the data is 

presented in a file, and the time is measured only for the computation of the outputs for 

the 64 input data sets. For hardware execution-time measurement, the time is measured 

from the instant when it issues the “start” signal to the BbNN controller, to when the 

output data is started to be read from the block RAM. Table 4.5 shows the comparison 

between hardware and software execution times. 
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Figure 4.15:   Layout of BbNN robot controller  

 
 

Table 4.5:   Speed-up for BbNN robot controller 

Run-time in hardware(�s) thw Run-time in software(�s) tsw Speed-up = thw/tsw 

50 8678 174 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

A library of parameterized synthesizable VHDL models for the three different 

types of neural network blocks has been developed. The use of the library has been 

demonstrated in two BbNN applications, namely, the XOR pattern classification problem 

and the mobile robot navigation control problem. Significant speed-ups over software 

implementations of BbNNs have been achieved in hardware. This lays the foundation for 

using hardware implementations of BbNNs in adaptive and dynamic environments. 

 

5.2 Future Work 

This work is part of a bigger project that aims at implementing evolvable BbNNs 

for dynamically changing environments. The structure and weights of the BbNN will be 

generated using an iterative genetic algorithm after fitness evaluation of each candidate 

solution (BbNN). The immediate extension to this work would be implement a generic 

parameterized state machine to act as BbNN controller for any m x n BbNN. The other 

important issue to be addressed before implementing BbNNs for dynamic environments 

is to reduce the time taken to go from the generation of the BbNN structure and weights 

using the genetic algorithms, to physical implementation on FPGAs. This process 

involves generation of a HDL model for the BbNN, synthesis, PAR and downloading the 

FPGA configuration file. The time taken for this process could vary anywhere between a 
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few minutes to a few hours, depending on the size of the BbNN. Ways to reduce this time 

have to be explored.  
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PILCHARD.VHD 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity pilchard is 
port ( 
 PADS_exchecker_reset: in std_logic; 
 PADS_dimm_ck: in std_logic; 
 PADS_dimm_cke: in std_logic_vector(1 downto 0); 
 PADS_dimm_ras: in std_logic; 
 PADS_dimm_cas: in std_logic; 
 PADS_dimm_we: in std_logic; 
 PADS_dimm_s: std_logic_vector(3 downto 0); 
 PADS_dimm_a: in std_logic_vector(13 downto 0); 
 PADS_dimm_ba: in std_logic_vector(1 downto 0); 
 PADS_dimm_rege: in std_logic; 
 PADS_dimm_d: inout std_logic_vector(63 downto 0); 
 PADS_dimm_cb: inout std_logic_vector(7 downto 0); 
 PADS_dimm_dqmb: in std_logic_vector(7 downto 0); 
 PADS_dimm_scl: in std_logic; 
 PADS_dimm_sda: inout std_logic; 
 PADS_dimm_sa: in std_logic_vector(2 downto 0); 
 PADS_dimm_wp: in std_logic; 
 PADS_io_conn: inout std_logic_vector(27 downto 0) ); 
end pilchard; 
 
architecture syn of pilchard is 
 
 component INV 
 port ( 
  O: out std_logic; 
  I: in std_logic ); 
 end component; 
 
 component BUF 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component BUFG 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component CLKDLLHF is 
 port ( 
  CLKIN: in std_logic; 
  CLKFB: in std_logic; 
  RST: in std_logic; 
  CLK0: out std_logic; 
  CLK180: out std_logic; 
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  CLKDV: out std_logic; 
  LOCKED: out std_logic ); 
 end component; 
 
 component FDC is 
 port ( 
  C: in std_logic; 
  CLR: in std_logic; 
  D: in std_logic; 
  Q: out std_logic ); 
 end component; 
 
 component IBUF 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component IBUFG 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component IOB_FDC is 
 port ( 
  C: in std_logic; 
  CLR: in std_logic; 
  D: in std_logic; 
  Q: out std_logic ); 
 end component; 
 
 component IOBUF 
 port ( 
  I: in std_logic; 
  O: out std_logic; 
  T: in std_logic; 
  IO: inout std_logic ); 
 end component; 
 
 component OBUF 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component STARTUP_VIRTEX 
 port ( 
  GSR: in std_logic; 
  GTS: in std_logic; 
  CLK: in std_logic ); 
 end component; 
 
 component pcore 
 port ( 
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  clk: in std_logic; 
  clkdiv: in std_logic; 
  rst: in std_logic; 
  read: in std_logic; 
  write: in std_logic; 
  addr: in std_logic_vector(13 downto 0); 
  din: in std_logic_vector(63 downto 0); 
  dout: out std_logic_vector(63 downto 0); 
  dmask: in std_logic_vector(63 downto 0); 
  extin: in std_logic_vector(25 downto 0); 
  extout: out std_logic_vector(25 downto 0); 
  extctrl: out std_logic_vector(25 downto 0) ); 
 end component; 
 
 signal clkdllhf_clk0: std_logic; 
 signal clkdllhf_clkdiv: std_logic; 
 signal dimm_ck_bufg: std_logic; 
 signal dimm_s_ibuf: std_logic; 
 signal dimm_ras_ibuf: std_logic; 
 signal dimm_cas_ibuf: std_logic; 
 signal dimm_we_ibuf: std_logic; 
 signal dimm_s_ibuf_d: std_logic; 
 signal dimm_ras_ibuf_d: std_logic; 
 signal dimm_cas_ibuf_d: std_logic; 
 signal dimm_we_ibuf_d: std_logic; 
 signal dimm_d_iobuf_i: std_logic_vector(63 downto 0); 
 signal dimm_d_iobuf_o: std_logic_vector(63 downto 0); 
 signal dimm_d_iobuf_t: std_logic_vector(63 downto 0); 
 signal dimm_a_ibuf: std_logic_vector(14 downto 0); 
 signal dimm_dqmb_ibuf: std_logic_vector(7 downto 0); 
 signal io_conn_iobuf_i: std_logic_vector(27 downto 0); 
 signal io_conn_iobuf_o: std_logic_vector(27 downto 0); 
 signal io_conn_iobuf_t: std_logic_vector(27 downto 0); 
 
 signal s,ras,cas,we : std_logic; 
 
 signal VDD: std_logic; 
 signal GND: std_logic; 
 
 signal CLK: std_logic; 
 signal CLKDIV: std_logic; 
 signal RESET: std_logic; 
 signal READ: std_logic; 
 signal WRITE: std_logic; 
 signal READ_p: std_logic; 
 signal WRITE_p: std_logic; 
 signal READ_n: std_logic; 
 signal READ_buf: std_logic; 
 signal WRITE_buf: std_logic; 
 signal READ_d: std_logic; 
 signal WRITE_d: std_logic; 
 signal READ_d_n: std_logic; 
 signal READ_d_n_buf: std_logic; 
 
 signal pcore_addr_raw: std_logic_vector(13 downto 0); 
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 signal pcore_addr: std_logic_vector(13 downto 0); 
 signal pcore_din: std_logic_vector(63 downto 0); 
 signal pcore_dout: std_logic_vector(63 downto 0); 
 signal pcore_dmask: std_logic_vector(63 downto 0); 
 signal pcore_extin: std_logic_vector(25 downto 0); 
 signal pcore_extout: std_logic_vector(25 downto 0); 
 signal pcore_extctrl: std_logic_vector(25 downto 0); 
 signal pcore_dqmb: std_logic_vector(7 downto 0); 
 
-- CLKDIV frequency control, default is 2 
--  uncomment the following lines so as to redefined the clock rate 
--  given by clkdiv 
 attribute CLKDV_DIVIDE: string;  
 attribute CLKDV_DIVIDE of U_clkdllhf: label is "8";  
 
 
begin 
 
 VDD <= '1'; 
 GND <= '0'; 
 
 U_ck_bufg: IBUFG port map ( 
  I => PADS_dimm_ck, 
  O => dimm_ck_bufg ); 
 
 U_reset_ibuf: IBUF port map ( 
  I => PADS_exchecker_reset, 
  O => RESET ); 
 
 U_clkdllhf: CLKDLLHF port map ( 
  CLKIN => dimm_ck_bufg, 
  CLKFB => CLK, 
  RST => RESET, 
  CLK0 => clkdllhf_clk0, 
  CLK180 => open, 
  CLKDV => clkdllhf_clkdiv, 
  LOCKED => open ); 
 
 U_clkdllhf_clk0_bufg: BUFG port map ( 
  I => clkdllhf_clk0, 
  O => CLK ); 
 
 U_clkdllhf_clkdiv_bufg: BUFG port map ( 
  I => clkdllhf_clkdiv, 
  O => CLKDIV ); 
 
 U_startup: STARTUP_VIRTEX port map ( 
  GSR => RESET, 
  GTS => GND, 
  CLK => CLK ); 
 
 U_dimm_s_ibuf: IBUF port map ( 
  I => PADS_dimm_s(0), 
  O => dimm_s_ibuf ); 
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 U_dimm_ras_ibuf: IBUF port map ( 
  I => PADS_dimm_ras, 
  O => dimm_ras_ibuf ); 
 
 U_dimm_cas_ibuf: IBUF port map ( 
  I => PADS_dimm_cas, 
  O => dimm_cas_ibuf ); 
 
 U_dimm_we_ibuf: IBUF port map ( 
  I => PADS_dimm_we, 
  O => dimm_we_ibuf ); 
 
 G_dimm_d: for i in integer range 0 to 63 generate 
 
  U_dimm_d_iobuf: IOBUF port map ( 
   I => dimm_d_iobuf_i(i), 
   O => dimm_d_iobuf_o(i), 
   T => dimm_d_iobuf_t(i), 
   IO => PADS_dimm_d(i) ); 
 
  U_dimm_d_iobuf_o: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => dimm_d_iobuf_o(i), 
   Q => pcore_din(i) ); 
 
  U_dimm_d_iobuf_i: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => pcore_dout(i), 
   Q => dimm_d_iobuf_i(i) ); 
 
  U_dimm_d_iobuf_t: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => READ_d_n_buf, 
   Q => dimm_d_iobuf_t(i) ); 
 
 end generate; 
 
 G_dimm_a: for i in integer range 0 to 13 generate 
 
  U_dimm_a_ibuf: IBUF port map ( 
   I => PADS_dimm_a(i), 
   O => dimm_a_ibuf(i) ); 
 
  U_dimm_a_ibuf_o: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => dimm_a_ibuf(i), 
   Q => pcore_addr_raw(i) ); 
 
 end generate; 
 
 pcore_addr(3 downto 0) <= pcore_addr_raw(3 downto 0); 
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 addr_correct: for i in integer range 4 to 7 generate 
  ADDR_INV: INV port map ( 
   O => pcore_addr(i), 
   I => pcore_addr_raw(i) ); 
 end generate; 
 pcore_addr(13 downto 8) <= pcore_addr_raw(13 downto 8); 
 
 G_dimm_dqmb: for i in integer range 0 to 7 generate 
 
  U_dimm_dqmb_ibuf: IBUF port map ( 
   I => PADS_dimm_dqmb(i), 
   O => dimm_dqmb_ibuf(i) ); 
 
  U_dimm_dqmb_ibuf_o: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => dimm_dqmb_ibuf(i), 
   Q => pcore_dqmb(i) ); 
 
 end generate; 
 
 pcore_dmask(7 downto 0) <= (others => (not pcore_dqmb(0))); 
 pcore_dmask(15 downto 8) <= (others => (not pcore_dqmb(1))); 
 pcore_dmask(23 downto 16) <= (others => (not pcore_dqmb(2))); 
 pcore_dmask(31 downto 24) <= (others => (not pcore_dqmb(3))); 
 pcore_dmask(39 downto 32) <= (others => (not pcore_dqmb(4))); 
 pcore_dmask(47 downto 40) <= (others => (not pcore_dqmb(5))); 
 pcore_dmask(55 downto 48) <= (others => (not pcore_dqmb(6))); 
 pcore_dmask(63 downto 56) <= (others => (not pcore_dqmb(7))); 
 
 G_io_conn: for i in integer range 2 to 27 generate 
 
  U_io_conn_iobuf: IOBUF port map ( 
   I => io_conn_iobuf_i(i), 
   O => io_conn_iobuf_o(i), 
   T => io_conn_iobuf_t(i), 
   IO => PADS_io_conn(i) ); 
 
  U_io_conn_iobuf_o: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => io_conn_iobuf_o(i), 
   Q => pcore_extin(i - 2) ); 
 
  U_io_conn_iobuf_i: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => pcore_extout(i - 2), 
   Q => io_conn_iobuf_i(i) ); 
 
  U_io_conn_iobuf_t: IOB_FDC port map ( 
   C => CLK, 
   CLR => RESET, 
   D => pcore_extctrl(i - 2), 
   Q => io_conn_iobuf_t(i) ); 
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 end generate; 
 
 U_io_conn_0_iobuf: IOBUF port map ( 
  I => dimm_ck_bufg, 
  O => open, 
  T => GND, 
  IO => PADS_io_conn(0) ); 
 
 U_io_conn_1_iobuf: IOBUF port map ( 
  I => GND, 
  O => open, 
  T => VDD, 
  IO => PADS_io_conn(1) ); 
 
 READ_p <= 
  (not dimm_s_ibuf) and 
  (dimm_ras_ibuf) and 
  (not dimm_cas_ibuf) and 
  (dimm_we_ibuf); 
 
 U_read: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => READ_p, 
  Q => READ ); 
 
 U_buf_read: BUF port map ( 
  I => READ, 
  O => READ_buf ); 
 
 U_read_d: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => READ, 
  Q => READ_d ); 
 
 WRITE_p <= 
  (not dimm_s_ibuf) and 
  (dimm_ras_ibuf) and 
  (not dimm_cas_ibuf) and 
  (not dimm_we_ibuf); 
 
 U_write: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => WRITE_p, 
  Q => WRITE ); 
 
 U_buf_write: BUF port map ( 
  I => WRITE, 
  O => WRITE_buf ); 
 
 U_write_d: FDC port map ( 
  C => CLK, 



 87 

  CLR => RESET, 
  D => WRITE, 
  Q => WRITE_d ); 
 
 READ_n <= not READ; 
 
 U_read_d_n: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => READ_n, 
  Q => READ_d_n ); 
 
 U_buf_read_d_n: BUF port map ( 
  I => READ_d_n, 
  O => READ_d_n_buf ); 
 
 -- User logic should be placed inside pcore 
 U_pcore: pcore port map ( 
  clk => CLK, 
  clkdiv => CLKDIV, 
  rst => RESET, 
  read => READ, 
  write => WRITE, 
  addr => pcore_addr, 
  din => pcore_din, 
  dout => pcore_dout, 
  dmask => pcore_dmask, 
  extin => pcore_extin, 
  extout => pcore_extout, 
  extctrl => pcore_extctrl ); 
 
end syn; 
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PCORE.VHD 

-- pcore wrapper for parith/block31 and DPRAM 
-- author: Sampath Kothandaraman 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity pcore is 
 
    port ( clk: in std_logic; 
    clkdiv: in std_logic; 
    rst: in std_logic; 
    read: in std_logic; 
    write: in std_logic; 
    addr: in std_logic_vector(13 downto 0); 
    din: in std_logic_vector(63 downto 0); 
    dout: out std_logic_vector(63 downto 0); 
    dmask: in std_logic_vector(63 downto 0); 
    extin: in std_logic_vector(25 downto 0); 
    extout: out std_logic_vector(25 downto 0); 
    extctrl: out std_logic_vector(25 downto 0)  
  ); 
 
end pcore; 
 
 
architecture syn of pcore is 
 
    component dpram256_64 
 port ( addra: IN std_logic_VECTOR(7 downto 0); 
               clka: IN std_logic; 
               dina: IN std_logic_VECTOR(63 downto 0); 
               douta: OUT std_logic_VECTOR(63 downto 0); 
               wea: IN std_logic; 
               addrb: IN std_logic_VECTOR(7 downto 0); 
               clkb: IN std_logic; 
               dinb: IN std_logic_VECTOR(63 downto 0); 
               doutb: OUT std_logic_VECTOR(63 downto 0); 
               web: IN std_logic 
      ); 
    end component; 
 
    component parith 
        port ( clk: in std_logic; 
               rst: in std_logic; 
               data_fromram: in std_logic_vector(63 downto 0);  
               start: in std_logic; 
        addr: out std_logic_vector(7 downto 0); 
               data2ram: out std_logic_vector(63 downto 0);  
               we: out std_logic;  
               finish: out std_logic 
         ); 
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    end component; 
 
    signal addrb:std_logic_VECTOR(7 downto 0); 
    signal clkb: std_logic; 
    signal dinb: std_logic_VECTOR(63 downto 0); 
    signal doutb: std_logic_VECTOR(63 downto 0);  
    signal web: std_logic; 
    signal start: std_logic; 
    signal finish: std_logic; 
    signal bram_dout : std_logic_VECTOR(63 downto 0); 
    --debug signal 
    signal  start_debug:std_logic; 
    signal start_ctr : std_logic_vector(4 downto 0); 
    signal tmp_start_ctr : std_logic_vector(3 downto 0);  
    --register interface 
    --signal reg0: std_logic_VECTOR(31 downto 0); 
 
begin 
 
    ram0:dpram256_64 port map  ( addra => addr(7 downto 0), 
                          clka => clk, 
                          dina => din, 
                          douta => bram_dout, 
                                 wea => write, 
                                 addrb => addrb, 
                          clkb => clkb, 
                          dinb => dinb, 
                          doutb => doutb, 
                          web => web 
                               ); 
 
    parith0: parith port map ( clk => clkb, 
                        rst => rst, 
                        data_fromram => doutb, 
                        start => start_debug, 
                               addr => addrb, 
                        data2ram => dinb, 
                        we => web, 
                        finish => finish  
                             ); 
 
 
    process(clk,rst) 
    begin 
        if (rst = '1') then 
     start_debug <= '0'; 
        elsif (clk'event and clk ='1') then 
  start_debug <= start_debug or start; 
 end if; 
    end process; 
 
 
    dout <= bram_dout; 
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    start <= '1' when (write = '1' and addr(7 downto 0) = "11111111") 
else '0'; 
 
-- define the core clock 
 
    clkb <= clkdiv; 
 
end syn; 
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PARITH.VHD FOR XOR PATTERN CLASSIFICATION 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity parith is 
 
    port ( clk: in std_logic; 
           rst: in std_logic; 
           data_fromram: in std_logic_vector(63 downto 0);  
-- data read from block ram 
           start: in std_logic; 
    addr: out std_logic_vector(7 downto 0); 
           data2ram: out std_logic_vector(63 downto 0);   
-- data to write to block ram 
           we: out std_logic;     -- write enable 
           finish: out std_logic 
         ); 
 
end parith; 
 
 
architecture rtl of parith is 
    --signal state_flag : std_logic_vector( 1 downto 0); 
    signal state : std_logic_vector(3 downto 0); 
    signal idx: std_logic_vector(7 downto 0); 
    signal buf_inp, buf_bias, buf_wAB, buf_wCD: std_logic_vector(63 
downto 0); 
    signal out2: std_logic_vector(63 downto 0); 
    signal flag_parith: std_logic;   -- tc, 
    signal ip_addr_ctr, op_addr_ctr: std_logic_vector(7 downto 0); 
      
    constant zeros : std_logic_vector(63 downto 8) := (others => '0'); 
     
component xor_bbnn 
 generic ( x_width: NATURAL := 8; 
    b_width : NATURAL := 8; 
    w_width : NATURAL := 8; 
    y_width: NATURAL := 64 
  ); 
 port (  clk : in std_logic; 
  rst : in std_logic; 
  inp : in std_logic_vector(2*x_width-1 downto 0); 
  bias_ABCD : in std_logic_vector(8*x_width-1 downto 0); 
  w_AB: in std_logic_vector(8*x_width-1 downto 0);  
  w_CD: in std_logic_vector(8*x_width-1 downto 0); 
  flag: in std_logic; 
  out2: out std_logic_vector(y_width-1 downto 0) 
      ); 
end component; 
 
begin 
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    -- retrieve data from block RAM and do the block31 opereation 
     
    U0: xor_bbnn port map ( clk => clk, 
       rst => rst, 
       inp => buf_inp(15 downto 0), 
          bias_ABCD => buf_bias, 
       w_AB => buf_wAB, 
       w_CD => buf_wCD, 
       flag => flag_parith, 
       out2 => out2 
      ); 
  
 --   tc <= '0'; 
        
    process (clk, rst) 
    begin 
        if (rst = '1') then 
     flag_parith <= '1';  
     state <= "0000"; 
     finish <= '0'; 
     ip_addr_ctr <= "00000011";   
-- initialize ip_addr_ctr = 3, the location of first input dataset  
--(in1, in2)  
     op_addr_ctr <= "01000011"; 
      -- initialize ip_addr_ctr = 67, the 
location of first output data out2 
   --  state_flag <= (others => '0'); 
     idx <= (others => '0'); 
     we <= '0'; 
        elsif (clk = '1' and clk'event)  then 
     if (state = "0000") then 
  if (start = '1') then  -- state machine 
       flag_parith <= '1';  
       ip_addr_ctr <= "00000011";  

-- 3 - start loc of inp data 
       op_addr_ctr <= "01000011";  

-- 67 - start loc of output data 
   state <= "0001"; 
   finish <= '0'; 
   --state_flag <= (others => '0'); 
  end if; 
     elsif (state = "0001") then 
  idx <= "00000000"; -- issue addr for bias (0) 
  state <= "0010"; 
     elsif (state = "0010") then -- issue addr for wts_AB (1) 
  idx <= "00000001"; 
  state <= "0011"; 
     elsif (state = "0011") then -- get bias values, issue addr 
for wts_CD (2) 
  idx <= "00000010"; 
  buf_bias <= data_fromram;  
  state <= "0100"; 
     elsif (state = "0100") then  -- get wts_AB values, issue addr 
for inp dataset in row 1 (3) (in1, in2) 
  idx <= ip_addr_ctr; 
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  buf_wAB <= data_fromram;  
  state <= "0101"; 
     elsif (state = "0101") then  -- get wts_CD values 
  buf_wCD <= data_fromram;  
  state <= "0110"; 
   
-- ^^ loading biases and weights for a given BbNN and for a set of 64 -
-- data ^^ 
-- vv reading input data, computing output and writing to RAM vv 
  
     elsif (state = "0110") then -- get inp row 1 values 
  if (ip_addr_ctr = "01000011") then 
   finish <= '1'; 
   state <= "0000"; 
  elsif (ip_addr_ctr = "00000011") then 
   buf_inp <= data_fromram; 
   state <= "1000"; 
  else  
   state <= "0111"; 
  end if; 
     elsif (state = "0111") then 
      buf_inp <= data_fromram; 
  state <= "1000";   
     elsif (state = "1000") then 
  flag_parith <= '0'; 
  state <= "1001"; 
     elsif (state = "1001") then 
  state <= "1010"; 
     elsif (state = "1010") then 
  state <= "1011"; 
     elsif (state = "1011") then -- BRK 
  idx <= op_addr_ctr; 
  ip_addr_ctr <= ip_addr_ctr + 1; 
  we <= '1'; 
  state <= "1100"; 
     elsif (state = "1100") then  
  we <= '0'; 
  idx <= ip_addr_ctr; 
  op_addr_ctr <= op_addr_ctr + 1; 
  state <= "0110"; 
 -- state <= "1101"; 
  --   elsif (state = "1101") then 
  --    state <= state; 
     else -- dummy, NDR 
  finish <= '0';      
     end if; 
 end if; 
    end process; 
 
    addr <= idx; 
    data2ram <= out2; 
end rtl; 
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XOR_BBNN.VHD 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_signed.all; 
 
entity xor_bbnn is 
 generic ( x_width: NATURAL := 8; 
    b_width : NATURAL := 8; 
    w_width : NATURAL := 8; 
    y_width: NATURAL := 64 
  ); 
 port (  clk : in std_logic; 
  rst : in std_logic; 
  inp : in std_logic_vector(2*x_width-1 downto 0); 
  bias_ABCD : in std_logic_vector(8*b_width-1 downto 0); 
  w_AB: in std_logic_vector(8*w_width-1 downto 0);  
  w_CD: in std_logic_vector(8*w_width-1 downto 0); 
  flag: in std_logic;  
--  out2: out std_logic_vector(x_width-1 downto 0) 
  out2: out std_logic_vector(y_width-1 downto 0) 
      ); 
end xor_bbnn; 
 
architecture structure_xor of xor_bbnn is 
  
 signal tc: std_logic; 
 signal tmp_a_out, tmp_b_out, tmp_c_out, tmp_d_out: 
std_logic_vector(y_width-1 downto 0); 
 signal sig_BA, sig_DC : std_logic_vector(x_width-1 downto 0); 
 signal sig_b_inx2 : std_logic_vector(x_width-1 downto 0); 
 signal sig_c_inx1 : std_logic_vector(x_width-1 downto 0); 
 signal sig_d_inx1 : std_logic_vector(x_width-1 downto 0); 
 signal sig_d_inx2 : std_logic_vector(x_width-1 downto 0); 
       
 component regout_block22  
  generic ( x_width : NATURAL := 8;  
                  w_width : NATURAL := 8;         
     b_width : NATURAL := 8;   
                  num     : NATURAL := 2; 
                  y_width : NATURAL := 64    
              ); 
      port (  clk, rst, flag : in std_logic; 
   x1, x2 : in std_logic_vector(x_width-1 downto 0); 
             w13, w23, w14, w24 : in std_logic_vector(w_width-1 
downto 0); 
             b3, b4 : in std_logic_vector(b_width-1 downto 0); 
     tc : in std_logic; 
             y3_y4 : out std_logic_vector(y_width-1 downto 0) 
              ); 
 end component; 
  
begin 
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-- concurrent statements 
 
 tc <= '0'; 
 
 -- output  
  
 out2 <= tmp_d_out; 
 
-- instantiating the basic blocks 
  
 A_22: regout_block22  
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => inp(2*x_width-1 downto x_width), 
      x2 => sig_BA, 
                w13 => w_AB(w_width-1 downto 0), 
      w23 => w_AB(2*w_width-1 downto w_width), 
      w14 => w_AB(3*w_width-1 downto 2*w_width), 
      w24 => w_AB(4*w_width-1 downto 3*w_width), 
                b3 => bias_ABCD(b_width-1 downto 0), 
      b4 => bias_ABCD(2*b_width-1 downto b_width), 
      tc => tc, 
                y3_y4 => tmp_a_out 
    ); 
 
 B_22: regout_block22 
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => inp(x_width-1 downto 0), 
      x2 => sig_b_inx2(x_width-1 downto 0), 
                w13 => w_AB(5*w_width-1 downto 4*w_width), 
      w23 => w_AB(6*w_width-1 downto 5*w_width), 
      w14 => w_AB(7*w_width-1 downto 6*w_width), 
      w24 => w_AB(8*w_width-1 downto 7*w_width), 
                b3 => bias_ABCD(3*b_width-1 downto 2*b_width), 
      b4 => bias_ABCD(4*b_width-1 downto 3*b_width), 
      tc => tc, 
                y3_y4 => tmp_b_out 
    ); 
 
 C_22: regout_block22 
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => sig_c_inx1(x_width-1 downto 0), 
      x2 => sig_DC, 
                w13 => w_CD(w_width-1 downto 0), 
      w23 => w_CD(2*w_width-1 downto w_width), 
      w14 => w_CD(3*w_width-1 downto 2*w_width), 
      w24 => w_CD(4*w_width-1 downto 3*w_width), 
                b3 => bias_ABCD(5*b_width-1 downto 4*b_width), 
      b4 => bias_ABCD(6*b_width-1 downto 5*b_width), 
      tc => tc, 



 96 

                y3_y4 => tmp_c_out 
    ); 
 
 D_22: regout_block22 
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => sig_d_inx1(x_width-1 downto 0), 
      x2 => sig_d_inx2(x_width-1 downto 0), 
                w13 => w_CD(5*w_width-1 downto 4*w_width), 
      w23 => w_CD(6*w_width-1 downto 5*w_width), 
      w14 => w_CD(7*w_width-1 downto 6*w_width), 
      w24 => w_CD(8*w_width-1 downto 7*w_width), 
                b3 => bias_ABCD(7*b_width-1 downto 6*b_width), 
      b4 => bias_ABCD(8*b_width-1 downto 7*b_width), 
      tc => tc, 
                y3_y4 => tmp_d_out 
    ); 
 
-- processes 
  
-- flag = 1 means, reset all block outputs to 0; flag = 0 means, work  
-- with feedbck data 
  
 process (rst, flag, tmp_a_out, tmp_b_out, tmp_c_out, tmp_d_out)  
-- clk removed from sensitivity list : MUX on flag  
 
 begin 
  if (rst = '1' or flag = '1') then 
   sig_DC <= (others => '0'); 
   sig_BA <= (others => '0'); 
   sig_b_inx2 <= (others => '0'); 
   sig_c_inx1 <= (others => '0'); 
   sig_d_inx1 <= (others => '0'); 
   sig_d_inx2 <= (others => '0'); 
  elsif (flag = '0') then  
   sig_b_inx2 <= tmp_a_out(x_width-1 downto 0); 
   sig_c_inx1 <= tmp_a_out(2*x_width-1 downto x_width); 
 -- y4 output of A 
   sig_d_inx1 <= tmp_b_out(2*x_width-1 downto x_width); 
 -- y4 output of B 
   sig_d_inx2 <= tmp_c_out(x_width-1 downto 0); 
 -- y3 output of C  
   sig_BA <= tmp_b_out(x_width-1 downto 0);   
-- y3 output of B 
   sig_DC <= tmp_d_out(x_width-1 downto 0);   
-- y3 output of D 
  end if; 
 end process; 
  
end structure_xor; 
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REGOUT_BLOCK22.VHD 

-- Author : Sampath Kothandaraman 
 
-- Synthesizable 2-input 2-output block 
-- Uses IP from Synopsys(C) DesignWare(TM): generalized sum-of-products 
-- 8-bit version 
-- activation function: bipolar-ramp-with-saturation 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_signed.all; 
 
entity regout_block22 is 
 
    generic ( x_width : NATURAL := 8;  
              w_width : NATURAL := 8; 
       b_width : NATURAL := 8;  
              num     : NATURAL := 2; 
              y_width : NATURAL := 64    
            ); 
    port ( clk, rst, flag : in std_logic; 
        x1, x2 : in std_logic_vector(x_width-1 downto 0); 
           w13, w23, w14, w24 : in std_logic_vector(w_width-1 downto 
0); 
           b3, b4 : in std_logic_vector(b_width-1 downto 0); 
    tc : in std_logic; 
           y3_y4 : out std_logic_vector(y_width-1 downto 0) 
         ); 
 
end regout_block22; 
 
 
architecture regout_structure22 of regout_block22 is 
 
 constant bias_wt : std_logic_vector(w_width-1 downto 0) := 
"00000001"; 
 signal sop3, sop4: std_logic_vector(num+x_width+w_width-1 downto 
0); 
 signal x1_x2_b3, x1_x2_b4 : std_logic_vector(2*x_width+b_width-1 
downto 0); 
 signal w13_w23_bias_wt, w14_w24_bias_wt : 
std_logic_vector(2*w_width+b_width-1 downto 0); 
 signal y3, y4 : std_logic_vector(x_width-1 downto 0); 
  
        component DW02_prod_sum_inst 
                generic ( inst_A_width : NATURAL := 8; 
                          inst_B_width : NATURAL := 8; 
                          inst_num_inputs : POSITIVE := 3; 
                          inst_SUM_width : NATURAL := 18 
                        ); 
                port ( inst_A : in 
std_logic_vector(inst_num_inputs*inst_A_width-1 downto 0); 
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                       inst_B : in 
std_logic_vector(inst_num_inputs*inst_B_width-1 downto 0); 
                       inst_TC : in std_logic; 
                       SUM_inst : out std_logic_vector(inst_SUM_width-1 
downto 0) 
                     ); 
        end component; 
 
 component rampsat_bi 
  generic ( in_width: POSITIVE := 18; 
       out_width: POSITIVE := 8 
   ); 
  port ( rst, flag : in std_logic; 
         act_in  : in std_logic_vector(in_width-1 downto 0); 
         act_out: out std_logic_vector(out_width-1 downto 0) 
           ); 
 end component; 
 
begin 
 
-- leading bits of output vector padded with 0's 
 
        y3_y4(63 downto 16) <= (others => '0');   -- new 
 
-- calculation of output y3 
 
 x1_x2_b3 <= x1 & x2 & b3; 
 w13_w23_bias_wt <= w13 & w23 & bias_wt; 
 
        U1_sop: DW02_prod_sum_inst 
                port map ( inst_A => x1_x2_b3, 
                           inst_B => w13_w23_bias_wt, 
                           inst_TC => tc, 
                           SUM_inst => sop3 
                         ); 
 U1_y3: rampsat_bi 
  port map( rst => rst, 
     flag => flag, 
     act_in => sop3, 
     act_out => y3 
   ); 
 
-- calculation of output y4 
 
 x1_x2_b4 <= x1 & x2 & b4; 
 w14_w24_bias_wt <= w14 & w24 & bias_wt; 
      
        U2_sop: DW02_prod_sum_inst 
                port map ( inst_A => x1_x2_b4, 
                           inst_B => w14_w24_bias_wt, 
                           inst_TC => tc, 
                           SUM_inst => sop4 
                         ); 
 U2_y4: rampsat_bi 
  port map ( rst => rst, 



 99 

      flag => flag,  
             act_in => sop4, 
      act_out => y4 
    ); 
     
 process (clk, rst, y3, y4) 
 begin 
  if (clk'event and clk = '1') then  
   y3_y4(15 downto 8) <= y3; 
   y3_y4(7 downto 0) <= y4; 
  end if; 
 end process; 
    
end regout_structure22; 
 



 100 

DW02_PROD_SUM_INST.VHD 

library IEEE,DWARE,DW02; 
use IEEE.std_logic_1164.all; 
use DWARE.DWpackages.all; 
use DW02.DW02_components.all; 
 
entity DW02_prod_sum_inst is 
      generic ( 
     inst_A_width : NATURAL; 
     inst_B_width : NATURAL; 
     inst_num_inputs : POSITIVE; 
     inst_SUM_width : NATURAL  
     ); 
      port ( 
     inst_A : in std_logic_vector(inst_num_inputs*inst_A_width-1 
downto 0); 
     inst_B : in std_logic_vector(inst_num_inputs*inst_B_width-1 
downto 0); 
     inst_TC : in std_logic; 
     SUM_inst : out std_logic_vector(inst_SUM_width-1 downto 0) 
     ); 
    end DW02_prod_sum_inst; 
 
architecture inst of DW02_prod_sum_inst is 
 
begin 
 
    -- Instance of DW02_prod_sum 
    U1 : DW02_prod_sum 
 generic map ( A_width => inst_A_width, B_width => inst_B_width, 
num_inputs => inst_num_inputs, SUM_width => inst_SUM_width ) 
 port map ( A => inst_A, B => inst_B, TC => inst_TC, SUM => 
SUM_inst ); 
 
 
end inst; 
 
 
-- pragma translate_off 
library DW02; 
configuration DW02_prod_sum_inst_cfg_inst of DW02_prod_sum_inst is 
for inst 
    for U1 : DW02_prod_sum use configuration 
DW02.DW02_prod_sum_cfg_sim; end for; 
end for; -- inst 
end DW02_prod_sum_inst_cfg_inst; 
-- pragma translate_on 
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RAMPSAT_BI.VHD 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_signed.all; 
 
entity rampsat_bi is 
 generic ( in_width: POSITIVE := 18; 
    out_width: POSITIVE := 8 
  ); 
 port(  rst, flag : in std_logic; 
  act_in  : in std_logic_vector(in_width-1 downto 0); 
  act_out: out std_logic_vector(out_width-1 downto 0) 
     ); 
end rampsat_bi; 
 
architecture working of rampsat_bi is 
 
 constant sat_high: std_logic_vector(in_width+out_width-1 downto 
0) := "01111111111111111111111111"; 
        constant sat_low: std_logic_vector(in_width+out_width-1 downto 
0) :=  "10000000000000000000000000"; 
        constant sat_xlow: std_logic_vector(out_width-1 downto 0) := 
"10000011"; 
        constant sat_xhigh: std_logic_vector(out_width-1 downto 0) := 
"01111111"; 
 constant sat_slope: std_logic_vector(out_width-1 downto 0) := 
"00000001"; 
  
 signal act_out_sig : std_logic_vector(in_width+out_width-1 downto 
0); 
  
begin 
 
 process(rst, flag, act_in) 
 begin 
  if (rst = '1') then 
   act_out_sig <= (others => '0'); 
    
  else  
   if (flag = '1') then  
    act_out_sig <= (others => '0'); 
   else  
     act_out_sig <= sat_slope * act_in;  
   end if;  
  end if; 
 end process; 
 
 act_out <= act_out_sig(out_width-1 downto 0); 
  
end working; 
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TB.VHD FOR XOR PATTERN CLASSIFICATION 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity tb is 
end tb; 
 
architecture syn of tb is 
 
component pcore  
port ( 
 clk: in std_logic; 
 clkdiv: in std_logic; 
 rst: in std_logic; 
 read: in std_logic; 
 write: in std_logic; 
 addr: in std_logic_vector(13 downto 0); 
 din: in std_logic_vector(63 downto 0); 
 dout: out std_logic_vector(63 downto 0); 
 dmask: in std_logic_vector(63 downto 0); 
 extin: in std_logic_vector(25 downto 0); 
 extout: out std_logic_vector(25 downto 0); 
 extctrl: out std_logic_vector(25 downto 0) 
); 
end component; 
 
signal clk: std_logic; 
signal clkdiv: std_logic; 
signal reset: std_logic; 
signal read: std_logic; 
signal write: std_logic; 
signal addr: std_logic_vector(13 downto 0); 
signal din: std_logic_vector(63 downto 0); 
signal dout: std_logic_vector(63 downto 0); 
signal dmask: std_logic_vector(63 downto 0); 
signal extin: std_logic_vector(25 downto 0); 
signal extout: std_logic_vector(25 downto 0); 
signal extctrl: std_logic_vector(25 downto 0); 
 
begin 
 
 
pcore0: pcore port map( 
clk, clkdiv, reset, read, write, addr,  
din, dout, dmask, extin, extout, extctrl 
); 
 
process 
begin 
 
reset <= '1'; 
clk <= '0'; 
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wait for 100 ns; 
 
loop 
 reset <= '0'; 
 clk <= '1'; 
 wait for 50 ns; 
 clk <= '0'; 
 wait for 50 ns; 
end loop; 
end process; 
 
process (clk, reset) 
begin 
if reset = '1' then 
 clkdiv <= '0'; 
elsif clk'event and clk = '1' then 
 clkdiv <= not clkdiv; 
end if; 
end process; 
 
process              
begin 
read <= '0'; 
write <= '0'; 
addr <= "00000000000000"; 
 
wait for 200 ns; 
read <= '0'; 
 
--------------------------- 
-- insert the 64 data here 
 
write <= '1'; addr(7 downto 0) <= "00000000" ; 
din <= 
"0000000000000001000000100000001100000000000000010000001000000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000001" ; 
din <= 
"0000000000000001000000100000001100000000000000010000001000000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000010" ; 
din <= 
"0000000000000001000000100000001100000000000000010000001000000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000011" ; 
din <= 
"0110110100100001110011001010010100110100110000000000101010111001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000100" ; 
din <= 
"1000000000111110111101011101111001100101101100110011100010110110"; 
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wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000101" ; 
din <= 
"1000000110000010100110000110011011101000110000100001010100111100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000110" ; 
din <= 
"0010000100101000011010011001000011011101111010101001111111011101"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00000111" ; 
din <= 
"1001011011101110011000111001010111001010010011101110000001111000"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001000" ; 
din <= 
"0100010101000000001100100110100110110110010110000000001000000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001001" ; 
din <= 
"0111000110110001001110011110011100110101010101001000101111011111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001010" ; 
din <= 
"1000101101000100001110010101101001010100000011110111000101001000"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001011" ; 
din <= 
"0000100001001111110011110101101110010001011101001001001110100010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001100" ; 
din <= 
"0110101100010011010001110000011011101000011001101100000101100010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001101" ; 
din <= 
"0010100100110011010100111011110111011001111011111110000011101011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001110" ; 
din <= 
"0010110100011100010010110110001101010101101010100110100010100101"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00001111" ; 
din <= 
"1001000001011100110010000111100111111111000110100001100011101101"; 
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wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010000" ; 
din <= 
"1010110000010001001011101111001111001000110111011101011110100011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010001" ; 
din <= 
"1000101100011111000011001100100010110110111001010000111110101100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010010" ; 
din <= 
"0110101111100000100100011001101010000010110001010010101100100010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010011" ; 
din <= 
"0011110011100100001011101100100100100100100110000001100011110101"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010100" ; 
din <= 
"1010011001110011110100110000000001010001101111011000111101011110"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010101" ; 
din <= 
"1100100000011000110100101110001100100010000111010111100010011001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010110" ; 
din <= 
"0100000110011110100111000011111100111100000000110000000111011100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00010111" ; 
din <= 
"0111101101111110001010000011101010001001010101000001111001111011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011000" ; 
din <= 
"1000101101000100111101000100100100011001101001011001101011111001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011001" ; 
din <= 
"0000110011110011110101001010101100001111001100000011101100011111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011010" ; 
din <= 
"1100010011000111100001110101100000101101011111000100111010010101"; 
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wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011011" ; 
din <= 
"0100101100110101101000110010001000100001000111000111111110001111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011100" ; 
din <= 
"0110100010110101011100111110000011011011010101001100010110101001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011101" ; 
din <= 
"1110110101001100000000100000001011100111111100111011101001011010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011110" ; 
din <= 
"0110110001111010101001110101010110000110111101101011111001001011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00011111" ; 
din <= 
"1101000111010111100101101100001000111001101110110101100100001001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100000" ; 
din <= 
"0101011110011101111000010000111000100110001010110110111001010001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100001" ; 
din <= 
"0001111100101111100010000000110000010111001101101101111110001001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100010" ; 
din <= 
"1011110011001001010101100011010110001011010001111100000111000111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100011" ; 
din <= 
"1110001011110111010010101000100101000110001001100011110100111001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100100" ; 
din <= 
"0111011100001101100000111110100100100110010101100000101011001100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100101" ; 
din <= 
"1110101011100011010100100110011011011000000101100001011110011101"; 
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wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100110" ; 
din <= 
"0001000110000001011001000100111011111001111001011001110111000110"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00100111" ; 
din <= 
"0000101001010111000010011111110101100010000010100010000001111001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101000" ; 
din <= 
"1100111000000110111110001000011100000010001010110010101000111011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101001" ; 
din <= 
"1110011111011100111000010010111000101010000100111000011110110011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101010" ; 
din <= 
"0010101000011110010010001110011111010010100011001011001110000000"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101011" ; 
din <= 
"0101100011010001100111010111111101001100010001001011010110111011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101100" ; 
din <= 
"0010001110100111100111000011000110000001101000111010111111100001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101101" ; 
din <= 
"0010000101111100111011011011101001111110001100011001010000110111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101110" ; 
din <= 
"0101111100101111000000100000011111111101110010011100100101000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00101111" ; 
din <= 
"0000100000100100111011101000010110100010110011100001101011001000"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110000" ; 
din <= 
"0100001101011100100010001000111001100010011111100000001010011011"; 



 108 

wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110001" ; 
din <= 
"0000000100101110100001000011100111100000000000100011000000011010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110010" ; 
din <= 
"0101100100100110001001000101011010010001101110000100001101110110"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110011" ; 
din <= 
"0011111000110001100101011101011101010110001101010100000100010011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110100" ; 
din <= 
"1100101001000011011111011111011111011010100010110000000101000011"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110101" ; 
din <= 
"0011011000000000110010010011101011010110010111000000000001110100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110110" ; 
din <= 
"1100001011010000111010011111011011001100111010011010000010110001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00110111" ; 
din <= 
"0011011001111000111010100101100101110110011110100011100011100100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111000" ; 
din <= 
"1101101001010111110101101011100001101110011110011000001101110101"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111001" ; 
din <= 
"0000001101101101000110111000011010101011000010110010110110111100"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111010" ; 
din <= 
"1001110100011111111100011000100000010001110111000010011111011111"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111011" ; 
din <= 
"1011111101000000000111111110010010010101110101001111011011100111"; 
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wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111100" ; 
din <= 
"1010011101100101010011111101111101011101100100011100000001100101"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111101" ; 
din <= 
"0010111001000011010110100111000000101110000001000010010111111000"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111110" ; 
din <= 
"0011100011011100101010010101011000100010110101101111100000110001"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "00111111" ; 
din <= 
"1100001011000111100101011111101111110101110111101001101010111010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "01000000" ; 
din <= 
"1100001011000111100101011111101111110101110111101001101010111010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "01000001" ; 
din <= 
"1100001011000111100101011111101111110101110111101001101010111010"; 
wait for 100 ns; 
 
write <= '1'; addr(7 downto 0) <= "01000010" ; 
din <= 
"1100001011000111100101011111101111110101110111101001101010111010"; 
wait for 100 ns; 
 
--------------------------- 
write <= '1'; addr(7 downto 0) <= (others => '1');        
-- start  
din <= 
"0000000000000000000000000000000000000000000000000000000000000000"; 
wait for 100 ns; 
 
write <= '0'; addr(7 downto 0) <= (others => '1'); 
din <= 
"0000000000000000000000000000000000000000000000000000000000000000"; 
wait for 200 ns; 
 
wait; 
 
end process; 
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-- dummy signal 
extin <= (others => '0'); 
dmask <= (others => '0'); 
end syn; 
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PARITH.VHD FOR MOBILE ROBOT NAVIGATION CONTROL 

-- Modified by Sampath Kothandaraman 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity parith is 
 
    port ( clk: in std_logic; 
           rst: in std_logic; 
           data_fromram: in std_logic_vector(63 downto 0);  
-- data read from block ram 
           start: in std_logic; 
      addr: out std_logic_vector(7 downto 0); 
           data2ram: out std_logic_vector(63 downto 0);   
-- data to write to block ram 
           we: out std_logic;     -- write enable 
           finish: out std_logic 
         ); 
 
end parith; 
 
 
architecture rtl of parith is 
    --signal state_flag : std_logic_vector( 1 downto 0); 
    signal state : std_logic_vector(3 downto 0); 
    signal idx: std_logic_vector(7 downto 0); 
    signal buf_inp, buf_biasABC, buf_biasDE, buf_wAB, buf_wCD, buf_wE: 
std_logic_vector(63 downto 0); 
    signal out1234: std_logic_vector(63 downto 0); 
    signal flag_parith: std_logic;   -- tc, 
    signal ip_addr_ctr, op_addr_ctr: std_logic_vector(7 downto 0); 
      
    constant zeros : std_logic_vector(63 downto 8) := (others => '0'); 
 
 component robot  
  generic ( x_width: NATURAL := 8; 
     b_width: NATURAL := 8; 
     w_width: NATURAL := 8; 
       y_width: NATURAL := 64 
   );  
  port (  clk: in std_logic;  
          rst: in std_logic; 
          inp: in std_logic_vector(8*x_width-1 downto 0); 
 -- 64; using 40 
          bias_ABC: in std_logic_vector(8*b_width-1 
downto 0); -- 64; using 56 
          bias_DE: in std_logic_vector(8*b_width-1 downto 
0); -- 64; using 24 
          w_AB: in std_logic_vector(8*w_width-1 downto 
0); -- 64; using 56 
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          w_CD: in std_logic_vector(8*w_width-1 downto 
0); -- 64;  
          w_E: in std_logic_vector(8*w_width-1 downto 0); 
 -- 64;  
          flag: in std_logic; 
          out1234: out std_logic_vector(y_width-1 downto 
0) -- 64;  
           ); 
 end component; 
    
begin 
 
    -- retrieve data from block RAM and do the block31 opereation 
     
    U0: robot port map ( clk => clk, 
    rst => rst, 
    inp => buf_inp, 
       bias_ABC => buf_biasABC, 
       bias_DE => buf_biasDE, 
    w_AB => buf_wAB, 
    w_CD => buf_wCD, 
    w_E => buf_wE, 
    flag => flag_parith, 
    out1234 => out1234 
              ); 
     
    process (clk, rst) 
    begin 
        if (rst = '1') then 
     flag_parith <= '1';  
     state <= "0000"; 
     finish <= '0'; 
     ip_addr_ctr <= "00000101";   
-- initialize ip_addr_ctr = 5, the location of first input dataset   
-- (in1, in2)  
     op_addr_ctr <= "01000101";   
-- initialize ip_addr_ctr = 69, the location of first output data out2 
     idx <= (others => '0'); 
     we <= '0'; 
        elsif (clk = '1' and clk'event)  then 
     if (state = "0000") then 
  if (start = '1') then  -- state machine 
       flag_parith <= '1';  
       ip_addr_ctr <= "00000101";  
-- 5 - start loc of inp data 
       op_addr_ctr <= "01000101";  
-- 69 - start loc of output data 
   state <= "0001"; 
   finish <= '0'; 
  end if; 
     elsif (state = "0001") then -- issue addr for bias_ABC (0) 
  idx <= "00000000";  
  state <= "0010"; 
     elsif (state = "0010") then -- issue addr for bias_DE (1) 
  idx <= "00000001"; 
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  state <= "0011"; 
     elsif (state = "0011") then  
-- get bias_ABC, issue addr for wts_AB (2) 
  idx <= "00000010"; 
  buf_biasABC <= data_fromram;  
  state <= "0100"; 
     elsif (state = "0100") then   
-- get bias_DE value, issue addr for wts_CD (3)  
  idx <= "00000011"; 
  buf_biasDE <= data_fromram;  
  state <= "0101"; 
     elsif (state = "0101") then   
-- get wts_AB values, issue addr for wts_E (4) 
  idx <= "00000100"; 
  buf_wAB <= data_fromram;  
  state <= "0110"; 
     elsif (state = "0110") then   
-- get wts_CD values, issue addr for input dataset 1 
  buf_wCD <= data_fromram;  
  state <= "0111"; 
     elsif (state = "0111") then  -- get wts_E values, 
      buf_wE <= data_fromram; 
  state <= "1000"; 
          
-- ^^ loading biases and weights for a given BbNN and for a set of 64 -
-- data ^^ 
 
-- vv reading input data, computing output and writing to RAM vv 
 
     elsif (state = "1000") then  -- get input dataset 1 
or stop or pass this state 
  if (ip_addr_ctr = "01000101") then  
-- stop when ip_addr_ctr is > last ip_addr 
   finish <= '1'; 
   state <= "0000"; 
  elsif (ip_addr_ctr = "00000101") then 
   buf_inp <= data_fromram; -- getting input dataset 1 
   state <= "1010"; 
  else 
   state <= "1001"; 
  end if; 
     elsif (state = "1001") then   
-- getting input dataset other than 1st set 
      buf_inp <= data_fromram; 
  state <= "1010";   
     elsif (state = "1010") then 
  state <= "1011"; 
     elsif (state = "1011") then 
  flag_parith <= '0'; 
      state <= "1100"; 
     elsif (state = "1100") then 
      state <= "1101";  
     elsif (state = "1101") then   
-- writing output of that particular dataset to RAM 
  idx <= op_addr_ctr; 
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  ip_addr_ctr <= ip_addr_ctr + 1; 
  we <= '1'; 
  state <= "1110"; 
  flag_parith <= '1'; 
     elsif (state = "1110") then   
-- issue address for next dataset 
  we <= '0'; 
  idx <= ip_addr_ctr; 
  op_addr_ctr <= op_addr_ctr + 1; 
  state <= "1000"; 
     else    -- dummy 
  finish <= '0';      
     end if; 
 end if; 
    end process; 
 
    addr <= idx; 
    data2ram <= out1234; 
 
end rtl; 
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ROBOT.VHD 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_signed.all; 
 
entity robot is  
 generic ( x_width: NATURAL := 8; 
    b_width: NATURAL := 8; 
    w_width: NATURAL := 8; 
    y_width: NATURAL := 64 
  );  
 port ( clk: in std_logic;  
        rst: in std_logic; 
        inp: in std_logic_vector(8*x_width-1 downto 0); 
 -- 64; using 40 
        bias_ABC: in std_logic_vector(8*b_width-1 downto 0);  
-- 64; using 56 
        bias_DE: in std_logic_vector(8*b_width-1 downto 0);  
-- 64; using 24 
        w_AB: in std_logic_vector(8*w_width-1 downto 0);  
-- 64; using 56 
        w_CD: in std_logic_vector(8*w_width-1 downto 0);  
-- 64; using 64 
        w_E: in std_logic_vector(8*w_width-1 downto 0);  
-- 64; using 24 
        flag: in std_logic; 
        out1234: out std_logic_vector(y_width-1 downto 0)  
-- 64;  
      ); 
end robot; 
 
architecture structure_robot of robot is 
 
 signal tmp_a_out, tmp_b_out, tmp_c_out, tmp_d_out, tmp_e_out: 
std_logic_vector(y_width-1 downto 0); 
 signal tc: std_logic; 
 signal sig_a_inx2, sig_AE, sig_c_inx2, sig_d_inx2, sig_e_inx2: 
std_logic_vector(x_width-1 downto 0);  
 signal out_robot: std_logic_vector(4*x_width-1 downto 0); 
 signal zeros: std_logic_vector(8*x_width-1 downto 4*x_width); 
   
 component regout_block13 
      generic ( x_width : NATURAL := 8;  
                  w_width : NATURAL := 8; 
           b_width : NATURAL := 8;  
                  y_width : NATURAL := 64 
              ); 
      port ( clk, rst, flag : in std_logic; 
      x1       : in std_logic_vector(x_width-1 downto 0); 
             w12, w13, w14 : in std_logic_vector(w_width-1 downto 
0); 
      b2, b3, b4    : in std_logic_vector(b_width-1 downto 
0); 
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             tc            : in std_logic; 
             y2_y3_y4      : out std_logic_vector(y_width-1 downto 
0) 
               ); 
 end component;   
  
 component regout_block22 
      generic ( x_width : NATURAL := 8;  
                  w_width : NATURAL := 8; 
           b_width : NATURAL := 8;  
                  num     : NATURAL := 2; 
                  y_width : NATURAL := 64    
              ); 
      port (  clk, rst, flag : in std_logic; 
          x1, x2 : in std_logic_vector(x_width-1 downto 0); 
             w13, w23, w14, w24 : in std_logic_vector(w_width-1 
downto 0); 
             b3, b4 : in std_logic_vector(b_width-1 downto 0); 
      tc : in std_logic; 
             y3_y4 : out std_logic_vector(y_width-1 downto 0) 
               ); 
 end component;   
 
 component regout_block31 
  generic ( x_width : NATURAL := 8;  
                  w_width : NATURAL := 8; 
           b_width : NATURAL := 8;  
                  num     : NATURAL := 3; 
                  y_width : NATURAL := 64    
              ); 
      port (  clk, rst, flag : in std_logic; 
          x1, x2, x3 : in std_logic_vector(x_width-1 downto 0); 
             w14, w24, w34 : in std_logic_vector(w_width-1 downto 
0); 
             tc : in std_logic; 
      b4 : in std_logic_vector(x_width-1 downto 0); 
             y4 : out std_logic_vector(y_width-1 downto 0) 
               ); 
 end component;   
 
begin 
 
 
-- instantiating the basic blocks 
 
 A_22: regout_block22  
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => inp(x_width-1 downto 0), 
      x2 => sig_a_inx2, 
                w13 => w_AB(w_width-1 downto 0), 
      w23 => w_AB(2*w_width-1 downto w_width), 
      w14 => w_AB(3*w_width-1 downto 2*w_width), 
      w24 => w_AB(4*w_width-1 downto 3*w_width), 
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                b3 => bias_ABC(b_width-1 downto 0), 
      b4 => bias_ABC(2*b_width-1 downto b_width), 
      tc => tc, 
                y3_y4 => tmp_a_out 
    ); 
 
 B_13: regout_block13 
    port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
         x1 => inp(2*x_width-1 downto x_width), 
                w12 => w_AB(5*w_width-1 downto 4*w_width), 
      w13 => w_AB(6*w_width-1 downto 5*w_width), 
      w14 => w_AB(7*w_width-1 downto 6*w_width), 
         b2 => bias_ABC(3*b_width-1 downto 2*b_width), 
      b3 => bias_ABC(4*b_width-1 downto 3*b_width), 
      b4 => bias_ABC(5*b_width-1 downto 4*b_width), 
                tc => tc, 
                y2_y3_y4 => tmp_b_out 
                   ); 
 
 C_22: regout_block22  
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => inp(3*x_width-1 downto 2*x_width), 
      x2 => sig_c_inx2, 
                w13 => w_CD(w_width-1 downto 0), 
      w23 => w_CD(2*w_width-1 downto w_width), 
      w14 => w_CD(3*w_width-1 downto 2*w_width), 
      w24 => w_CD(4*w_width-1 downto 3*w_width), 
                b3 => bias_ABC(6*b_width-1 downto 5*w_width), 
      b4 => bias_ABC(7*b_width-1 downto 6*b_width), 
      tc => tc, 
                y3_y4 => tmp_c_out 
    ); 
 
 D_22: regout_block22  
  port map ( clk => clk, 
      rst => rst, 
      flag => flag, 
      x1 => inp(4*x_width-1 downto 3*x_width), 
      x2 => sig_d_inx2, 
                w13 => w_CD(5*w_width-1 downto 4*w_width), 
      w23 => w_CD(6*w_width-1 downto 5*w_width), 
      w14 => w_CD(7*w_width-1 downto 6*w_width), 
      w24 => w_CD(8*w_width-1 downto 7*w_width), 
                b3 => bias_DE(b_width-1 downto 0), 
      b4 => bias_DE(2*b_width-1 downto b_width), 
      tc => tc, 
                y3_y4 => tmp_d_out 
    ); 
 
 E_31: regout_block31  
  port map ( clk => clk, 
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      rst => rst, 
      flag => flag, 
      x1 => inp(5*x_width-1 downto 4*x_width),  
      x2 => sig_e_inx2,  
      x3 => sig_AE, 
                w14 => w_E(w_width-1 downto 0), 
      w24 => w_E(2*w_width-1 downto w_width),  
      w34 => w_E(3*w_width-1 downto 2*w_width), 
         b4 => bias_DE(b_width-1 downto 0), 
                 tc => tc, 
         y4 => tmp_e_out 
    ); 
 
 tc <= '0'; 
 zeros <= "00000000000000000000000000000000";  -- 32 
 out1234(8*x_width-1 downto 4*x_width) <= zeros; 
 out1234(4*x_width-1 downto 0) <= out_robot; 
 
-- processes 
 
 -- flag = 1 means, reset all block outputs to 0; flag = 0 means, 
work with feedbck data 
 
  
 process (rst, flag, tmp_a_out, tmp_b_out, tmp_c_out, tmp_d_out)  
-- clk removed from sensitivity list: MUX on flag, no FF  
 begin 
  if (rst = '1' or flag = '1') then 
   sig_a_inx2 <= (others => '0'); 
   sig_AE <= (others => '0'); 
   sig_c_inx2 <= (others => '0'); 
   sig_d_inx2 <= (others => '0'); 
   sig_e_inx2 <= (others => '0'); 
  elsif (flag = '0') then 
   sig_a_inx2 <= tmp_b_out(x_width-1 downto 0);      
-- y4 output from block B_13 
   sig_AE <= tmp_a_out(2*x_width-1 downto x_width);  
-- y3 output from block A_22 
   sig_c_inx2 <= tmp_b_out(3*x_width-1 downto 
2*x_width); -- y2 output from block B_13 
   sig_d_inx2 <= tmp_c_out(2*x_width-1 downto x_width); 
-- y3 output from block C_22 
   sig_e_inx2 <= tmp_d_out(2*x_width-1 downto x_width); 
-- y3 output from block D_22 
  end if; 
 end process; 
  
 process(tmp_b_out, tmp_c_out, tmp_d_out, tmp_e_out) 
 begin 
  out_robot <= tmp_b_out(x_width-1 downto 0) & 
tmp_c_out(x_width-1 downto 0) & tmp_d_out(x_width-1 downto 0) & 
tmp_e_out(x_width-1 downto 0); 
 end process; 
  
end structure_robot; 
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