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ABSTRACT

The purpose of this pamer is to investigate methods
to obtain initial feasible solutions of three dimensional
transportation problems. Schell's procedure was tested on
various randomly generated problems, and it was determined
that this algorithm did not always yield an initial feasible
solution. Thus a modified Schell procedure was developed.

Computer programs were written to compare the modified
Schell procedure with Phase I of Simplex method. It was
concluded , from cases tested, that the mndified Schell
procedure requires much less computing time and
generally gives a feasibie solution closer to the ontimum

solution.,
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1. INTRCORUPTICM

Althoueh the Simniex method provides a eeneral
algorithm for solving LP (Linear Programming) probiems,
various technicues have been developed for <classes of
problems with speéial structure., Perhaps the most famous of
these is the Hitchcock-Kooromans transportation problem where
it is required to distribute some products from m producers
(origins) to n consumers (destinations), subject to minimum
total shipoing cost. This well known problem is such that
it can be solved directly using the '"stepping stone"
alegorithm as apolied to any initial basic feasihle solution
which again may be constructed in several ways (see, for
examnle Hadley (1}). In a recent numerical study,
McWilliams (2), compared several of the methods for
obtaining 1initial basic feasible solutinns of randomly
generated transnortation problems. It is the purpose of
this thesis to examine the question of obtaining initial
basic feasible solutions to 'a class of LP problems obtained
by sgeneralizing the Hitchcock=-Koopmans transportation
problen, This «class of problers, to be called " three
dimensional tranzportation problems ", has been’ considered
by Schell (3), Cline and Pyle (4), and others,

fallowing the eeneral usage of notation in (1),(4%),
canital Latin letters will desiesnate matrices and small
Latin letters will desisnate calumn vectors., (Thus, if A is

1



m by n, x is an n-tuple anc b is an m-tuple, Ax=b is simply
a system of m linear equations in n unknowns.) The symbol 0
will be used to denote both zero and the null matrix, where
the size of the null matrix is determined by the contex. «x
will designate a row vector and x 2 0 implies that every

element in vector x is greater than or ecual to zero. Then

a genaral LP problem ( in eavality form) is to determine x
such that

Ax=b

x2 0N

min(max) =z = c'x.
As indicated in the next section the Hitchcock-Koopmans
transportation problem and the three dimengional
transportation problem to he considered herein are obtained

by special choices of the matrix A.



IT. BACKGROUND

wo dimensional transnortation problem

Let m and n be any positive integers. Then the two
dimensional transportation problem can be formulated as
follows: A product is avaiiabie in known quantiites at each
of morigins. It is reguired that given quantities of
the product be shinped to each of n destinations, where the
cost of shippineg from any origin to any destination s
known. The problem is to determine the shioping schedule
which minimizes the total cost of shipping. To now
formulate the problem mathematically, let a; be the quantity
of the product available at origin i, oend let bj ba the
quantity of the product required at destination j. Also,
let the cost of shipping one wunit from origin i to

destination j be ¢ Then if Xi; denotes the number of

ij*
units to be shipped from origin i to destination j, we want

to minimize the total shipeing cost
zZ = 'Z'. cijxij , (1)
1,)

subject to the constraints

n

oy . = a;»0, i=1,¢c00..,m, (2)
)=1

m

inj: b5>0, =1 e o s onep 0} (3)
i=1

i'Z’O' =1y 575 yopin; (4)
J J=1, 0% s g ;

and



Origins

m n
.E ap; = Z bj (5)

In case equality in eanation (5) does not hnld , we only
have to add 2 pseudo oriefin or a pseudo destination which
requires the number of units which is the difference of

(See, for example, Hadley (1)).

A two dimensional transportation oprobiem is usually
written in tableau form. The tableau of an m X i two

dimensional transnortation proklem is shown in Figure 1.

Nestinations

Dy D, o) Dy e r)n}
B tiEalt il 17 * el
% K ¢!

' 4 yd
L ] L ] ® L L L ] » e
& L] L] £ * L] * L]
s | B s ® £ = . e <,
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(ﬁ 1% 12 3.7 3] ai
il X - teb X.
an ] i2 19 in
- 9 L] - . - L] L d
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1 2 mj mn |
x bie o 3 i 5 & b ‘
ml m2 : mj 5 m
tﬁ !b - L] h L3 . * b
3 n

Fipure 1. Tahle of 2 two dimensicnal transportation probiem.



To formulate the general m x n two dimensional

transnortation nroblem as a LP problem, we let

T = (11 I 1)
m,n n n* * ° n n
T
e, N . « 0O 0
T
0 e, « - . 29 9

000 . . . elo

o0 . . . O eg

L .
r
where I, 1is n x n identity matrix,eg is a row vector such

that every element is 1 and the number of submatrices I, s

m. Also let
)T,

b = (bl'b'z' ou.’bn,al.oaz,o-o,an]

T
c = (Cll,Clz,...,Cln,Cz:l,...,le,...,Cmn).

Then the conditions in (2),(%) and (4) can be written as

Tm,n x = b

and
x20,
where
X = (xll'xlz"‘"xln'x21""'xm1""'xmnx
corresponding to the Rk in the tableau form.
Moreover, z in (1) can be written as the inner product
T

zZ=c¢cx = (x,c).



Three dimensional transnortation problem

Let 1,m and n be any positive integers. Then the three
dimensional transportation problem can be formulatecd as
follows: Assume 1 kinds of products are available in known
quantities at each of m origins. It is required that given
quantities of the products be shipped to n destinations,
where the cost of shipping any kind of product frem any
origin to any destination is known. The oroblem is to
determine the shinnine schedule which minimizes the total
shipping cost. To now formulate the prohlem mathematically,
let A be the quantity of product k avqi]able at origin i,
let by be the quantity of prolet duct k required at

destination j and let d;; be the total quantity of cvery

3
kind of product to be shipped from origin i to destination
Jj. Also let the cost of shipping one unit of pfoduct k from
origin i to destination j be cjjk. Then if x;;kx denotes

the number of units of product k to be shipped from origin i

to destination j, we want to minimize total shipping cost

z = 2 CijkXijk » (6)
i,i, k

subject to the constraints

a M3

Xijk = ajk> ", 121, 00000,1,  (7)

1 kzl)ooooo,n[

.
)
Pl

]
E Xk

N 1 bjk)r)’ jzl,...-.,lﬁ, (8.)
l:

k'—'l,..-..,n,



|
Z xR 3 = b'k>0 j‘-‘-l,..-..,m, (8)
i=1 'Jk / k"‘"l,c 20,
n
'Zl A‘JK = d'j70 i=l,oo . I]I (9)
,(?:
n m
PN g = X d (10)
k=1 j=1 ']
z 5
d: - = ) b (11)
=1 ! &1 F
m |
j=1 i=l
x‘.jk;::f) (13)

(Schell (3) also suggested various @lternatives which
can be considered as three dimensinal problems ( for
example, elimination of constraints (9),(10) and (11)). 1In
this thesis, however only the case in which the constraints

(7) to (13) are all includerd is considered as this is the
most obvious direct extension tc the twn dimensional
transnortaion prohlem, ) A tabieau form of a three

dimensional transnortation prokler is shown in Fizure 2,
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A tableau form of a @x m x n three
dimensional transportation problem.

Figure 2.
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As shown in Fiegure 3, the tableau of a three
dimensional transnortaticn nroblem can be viewed as slices
which are two dimensional tableaus, subject to the condition
that corresponding elements from each tableau sum to a final
quantity. This decomposition of a three dimensional tableau
into slices is illusrated in Figure 3 for the snecial case

1=3,m=2 and n=4.

(1) (2) (3) (%) »
311 812 %3 | Ui § %
221 | %2 49 G2 91 | 92
931 932 933 O3y 451 | %52
Byy " Byq b1, b2 Pys- Bz3 1y Doy

Figure 3: The tableau of a 3 x 2 x b three dimensional

transportation nroblem.

To formulate the general 1 x m x n three dimensiconal

transportation problem mathematically, we let

Tl,m,n= IIm Iim : * . Ilm Ilm\
TLm 0 3 . 0 0
0 T L] L] 0 0
1,m
0 0 " . . Tl,m 0
0 0 L] * L 0
\ T? sm
L.




and let b
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~
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c =( '...c ? o e 0
X “11n* 120 * C%ont S21n° 7% iy

Then the conditions in (7),(8),(9) and (i0) can be written as

x = b
1,m,n
and
x 20,
where
= (xLxT,.oco.,xDT
X x1 x2 ,xn
with
= ( V2 . Y3 ? o o9
*1 7 YM11v %1 Xam1”” 211" 'xlmly'
= ( ’ , 7000y ’-
X2 T X112 1220 M 1m2t ¥ 212 o Y
= 7000y ’, 01 Tg e g0 ’
xn (xlln'x12n x1mn x21n' ““1mn
corresponding to the x,_k in the tableau form.
1)

Moreover z in (6) can be written as the inner product

z = ¢clx = (x,c).



IIT. METHODS FAR OBTAIMING IMITIAL FEASIBLE SOLUTICNS

As described in the introductinn, there are algorithms
to find an optimum snlution for two dimensional
transnortation preblem civen a basic feasible solution. We
alsno have various alegorithms (1) to find initial besic
feasible solutions. These algorithms are daveloped

utilizing the following algorithm (4),

Alpgorithm

Given that x::.is the variable to be given a value, maxke
it as large as posélbie, consistent with row and ¢l umn
totals, i.e., set

X.. = Min (a;,b.)
1) tey

Casel: If aj¢b:, .then all the otnher variables in the ith
row are’to be given the value zero and designated
as nonbasic. Next, deTnte the jth row, reduce the
value of b. to (b.-2;), and proceed in the came
manner to evaluate a variable in the reduced array
comnposed of the m-1 rows and n columns remaining,

Case2: If a, )b then the jth columns is to be deleted
and 5 enlaced be ai'bj'

Case3: 1If a; =b., then delete either the row or the column

: bhut nof both. If several columns, but only one row
remain in the reduced array, then drop jth column
and converseily, if several rows and. one column,dron
the ith row.

This rule wiil select as many variables for the basic set as
there are rows plus coiumns, i1ess one, m+n-1, since on the
last step, when one row and one column remain, both must be
dropped after the last variable is assigend.
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Various algorithms such as '"north west corner

rule","row minima" "

column minima" (1), etc., are simply
different methods for making the sequence of assignments.
As noted in the introduction, McWilliams (2) tested certain
of these methods in her thesis.

An approach for obtaining initial basic feasible
solutions for three dimensional transportation problem was
suggested by Schell (3) and can be described as follows:

= MIN .
(1) Let mijk LIJ(aik,bjk,dij)

[¢]
If (dijs\"P: mijk))o then assiegn the difference
=1, PHK

to the cell (i,j,k) as a lower limit value.
Reduce the amount of dij by the lower limit
value. Repeat this step for all slices.

(2) Construct a feasible solution to the two dimen-
sional transportation problem of the f}rst slice.

(3) Remove first slice from three dimensional tableau
reducing planar sums (aik'bjk'dij) by appropriate
amounts and repeat steps (1) through (3) with the
reduced three dimensional tableau until only one
slice remains in three dimensional tableav.
The entries for the last slice are the reduced
planar entries and they comslete the feasible
solution.

( A general flow diagram of this procedure Is shown

in Appendix 1. )
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It should be noted that the above procedure described
by Schell is somewhat ambicuous since it does not specify
precisely how to construct the feasible solution to the
first slice. Although there are various algorithms which
always give feasible soluticns to the two dimensional
transportation problem, it 1is not <clear whether these
algorithms will always give feasible solutions to the slice
of the three dimensional transoportation problem, for there
is the third constraint which will iimit the maximum amount
to be assiened to celils. This difficulty is illustrated by
the foilowing example.

Given a &I x b x U three dimensional transnortation
problam which can be shown to have feasible seolutions,
Schell's procedure " was applied. "Matrix minima (1)" was
used to attempt to obtain feasible solution for slices.
Figure 4 shows the slices of this problem before amounts are
assigned to cells. Figure 5 shows a feasible solution

obtained in the first siice.



(1) (2) (3)

17} g 13
13 2 14
12 ra] 18
22 27| | 18
28 18 10 8 22 23 14 16 28 15 6 13
(4) T
17 21] 6l1617]
23 | ar 23|11} 9|
20 | | 21113]11]18
18] | | 26 [22{20 116
18 8 28 24

Figure 4. Slices before values are assigned,

The feasible solution of. the first slice was obtained

with the following assignrent order.

(i,3,k) amount
1l (3 L) 12
2 (1a8, 1) 1n
3 (1,4,1) 7
4 (4,1,1) 16
5 (4,2,1) 6
6 (242,1) 12
7 (2,4,1) b 4



Figure 5.

After

reduced to a 4 x &

The feasibie

(1)
17 n | 71
1) 12 1
12 |12
22]1t] &
28 18 10 8

eliminatineg th

e

firse

15

solution obtained in the first slice.

slice, the problem is

x 3 three dimensional problem as shown in

Figure 6. (23 (3) (L) Z:
14 13 17 21 F{ F ’ﬂ
21 AL 2% 28111411 8
13 1R 20 CERESERENEE:
27 17 19 nj1ei2nlar
22 23 14 1R 22 15 € 13 18 8 28 24

Ficure 6.

Then

and reported that the orocedure would not work.

Fipure 7.)

%lices after eliminating the first slice.

the procedure gave the following assignment order

DRV E NN =

WAL J o )

N NN

~
NN

LI N T

NN AN AN A N AN
TN N NN N NN N
QD BN Y ™A™ A

- A ) ‘=t N

(Observe

amount

[y

—d 2
DY =D WMo

* renorted not assimnable,
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(2)

14 3 o 2
21] 211 8
13|10 8|
27]10

22 23 14 16

Figure 7: Assiognments for the second slice.

The cell (3,1,2) is not assignable.

Notice that to satisfy b12 =22, amount 10 must be
assigned to cell (3,1,2), however 5 is the maximum amount
assignable to the same cell because of the limit of a32=l3
- 8 =5. Here we have encountered the problem that we
cannot just employ the same procedure which is used for two
dimensional transportation prcblem to obtain the initial
basic feasible solution for the three dimensional
transportation problem.

Suppose we used some other scheme and obtained the

feasible solution for the second slice as shown in Figure

8.

(2)

14 6§ 6F2
211 3§10 3
13 79 4

271104 71 41 6

22 23 14 16

Figure 8: The fcasible solution for the second slice.
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Then the problem is reduced to 4 x 4 x 2 three dimensional
transportation problem as shown in Figure 9. (MNote that

cells which contain a dash must be assigned the value zero

since corresponding summation of slices is zero. )
oo SRS - 4) &

13 3 1/ o 1211 0] Of 9

14 -1 23 - | Ps 1] o

181 = ‘ 201~ 0131 7|18

17 - 1ef- | | 1ofoafis|10

28 8 6 13 18 8 28 2u

Figure 9. Slices after eliminating two slices.

Observing the third slice , we see at once that the
third slice cannot have a feasible solution. HNotice that B3
=282 and the total amount which is assignable to that column
is a 13+ ag3 = 13 + 14 = 27. In othar words, we <can not
have a feasible solution for the third slice, although we
started with a problem which has at least one feasible
solution. This type of difficulty certainly necessitates
some sort of changes in Schell's procedure. To modify the
Schell procedure, the author usecd a computer program which
permitted a variety of choices of assignment orders in each
slice. A general flow chart of this modified procedure is

shown in Appendix B.



Thie
feasible
(1) Set
(2) Set

(a)

(b)
(3) et

(a)

(b)
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modified Schell procedure for obtaining an initial

solution can be described as follows:
k = 0.
k

k + 1,
If k is less than 1 then stop.
Otherwise go to (3).
Mijp = MINn(a;p,bjp,dij).
If (dy;= & Mg,
cell (i,j,p) as a lower limit value.

Go to (4).

Otherwise go to (4).

(4) Examine kth slice.

(a)

(b)

If there is no solution in kth slice, then the
cell which was assigned first in (k-=1)th slice
should not be considered as a first as;iﬂnment
cell.

Set k = k - 2,

Go to (2).

Otherwise go to (5).

(5) Find a cell which can be considered as a first assign-

ment cell in kth slice.

(a)

If all cells are prohibited as first assignment,

then the cell which was assigned first in (k-1)th

slice should not be considered as a first assign-

ment cell.

Delete all desirnations of nonassignable cells

in

) 20 then assign the difference to
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kth sllce.
Set k = k - 2,
Go "Pe: {2V

(b) If not all cells are prohibited then try to obtain
a feasible soiutioen in kth slice using "Matrix
minima".

Start assiesning values fram the minimum cost cell
which is not nrohihited.
Go to (6).

(6) (a) If a solution is found, subtract the amounts assig-
ned to kth slice from slice totals (qj D .
(al) 1If k¢n-1 then go to (2).
(a2) If k=n-1 then go to (7).

(b) If a solution is not found, then the cell which
was assigned first in kth slice shou]d‘ not be
considered as a first assignment cell.

Co to (5).
(7) Assign remaining slice total (qj ) to nth slice.

Go to (8).

(8) An initial! feasible snlution was found.

Stop.

An  examnle for obtaining an initial feasible solution
using the modified Schell procedure 1is shown in the

following pages.



A basic

feasible

solution of

20

the same problem was

obtained in the following manner using a modification of

which

was

Schell's procedure. The first feasible solution , which is
shown in Figure 10 , is exactly the same result
abtained previously.
(1) (2) (3)
17 181 71 14 3
13 12 iy 21 14
12§12 13 F ' | 18
2215| 6 27 : 17
28 18 10 8 22 2% Th 36 28 15 6 13
(4) T
17 21} 61 6} 9
23 28§11411} 8
20 9f13§11}1¢8
18 10§16§22 316
18 8 28 24
Figure 10: Feasibie solution with
first slice assigned.
Next the procedure tried the focllowing assignment order to

obtain a feasible so]ution for the second slice.

assignment order

1
2
3

cel

1

(i,j, k)

amount

(oMo lNar ]
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)
)
) 10
) 11
)
)

wooNOYWN &

10

At the nineth assignment, the obrocedure found that the
assignment order was improper - which indicated that the
cell (1,2,2) should not be wused as the first assisnment

cell. Then the procedure tried the following assignment

order.
assignment order cell (i,j, k) amount
1 (1.:3.,2) 6
2 (102520 6
3 (2 & 29 8
4 (1,r,2) 2
5 £3.:5.52) 8
- 6 N, 1.2 10
7 L2, Zp) 11
8 2,9.,2) 2
9 (859,2) 10

Again at the nineth assionment the procedure found that the
assignment order was improner and the cell (1,3,2) should
not be wused as the first assignning cell. The procedure
tried several additional assignment orders and found the
following assignment order to obtain the feasible solution
for the second slice shown in Figure 11. (Note that ceils
which contain an asterisk could not be used as the first

assignment cells.)
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13
12
22

17
23
20
18

assiegnment order cell (i,j, k)
g (3,152
2 ol 2 ,2)
3 ¢1,3,2)
N (2,4,2)
5 €1,4,2)
6 (3,3,2)
7 (4,4,2)
8 (4,1,2)
9 (2,1,2)
10 (2,2,2}
11 (4,2,2)
12 (4,3,2)
(1) (2)
10| 7 14 6] 6] 2
= |¥ ¥
12 1 21| 3|10 8
% |3 |*¥
9 Iy
12 154, !
16| 6 27 (30 7
28 18 10 8§ 22 23 14 16
(%) T
- |- ¥11-0f o}l @
= 25) 1{11§ 0
- 0f13] 7118
- ol 9f16]10
18 8 28 24

Figure 11.

The
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obtained the feasible soluticn shown in Figure 13.
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Finally, the feasible solution of the last slice was
obtained by simply assigning the remaining d to the
fourth slice Fisure 14 shows the basic feasible solution

obtained by the procecdure.

(1) (2) (3) (%)
0] 7 6] 6] 2 13 8 9
i 1 i (L 6] @8 10| 2111
12 0f13 | 9 6] 3 5115
16 6 10| 3| g| 6 71 |10 6]12

Figure 14. Initial feasible solution.

The difficulties observed in the example can be
explained in the following manner: When assigning amounts io
any slice k (k€n-1), any algorithm described in Hadley (1)
and McWilliams (4) will give a feasible solution to the
slice as long as dijz MIN (aik ,bjk ) for all i and j since
MIN (ajk 'bjk 'dij) = MIN (aik 'bjk ) guarantees that
assisnment orcder and amounts to be assigned to each cell
will be exactly the same as those obtained by existing
algorithms for two dimensional transportation problem.
However, when d; ;{MIN {ajg +b;x ) for one or more pairs of
indices, i and j, the amount which can be assifsned to such

a cell (i,j,k) is restricted and the algorithm for the two

dimensional transportation problem must be modified.
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IV NUMERICAL EXPERIMENTS

Numerical experiments for obtaining initial basic
feasible solutions were conducted using a LP code and the
modi fied Schell method. The size of the problems was
limited to 4 x & x 4,  Problems which had at least one
feasible solution were obtained by first generating random
numbers for each celi. Row totals, column totals and slice
totals were obtained by summing the numbers in cells in the
row direction, column direction and slice direction
respectively, The «cost entries and numbers to obtain
row,column and slice totals were selected from 2 wuniform

distribution of integer values in the range Os.c3 <% and 0¢

jk
Xp 3642

Ten problems were examined. Among the ten
problems which were examined, the modified Schell procedure
found initial feasible solution to all problems, although
the direct appiication of Schell's procedure found feasible
solutions to two out of ten oroblems. Roth the LP procedure
and the modified Schell brocedure were written in PL2
language for IBM 360 MODFL 65 digital computer. To cbtain
the initial basic feasible solution by LP prozedure, the Two
Phase method (1) was used.

Computing time for obtaining initial feasible solutions

by the modified Schell procedure cveraged 10 seconds

compared to approximately 2 minutes by Fhasc I.



Both optimum solutions ( maximum

cost) were also obtained wusing the LP
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cost and minimum

procedure. After

matrix generation, the maximizing and minimizineg vectors,

x' and y', respectively, were computed along with related

maximum and minimum values of the objective functions

((x',c) and (y

abocut a particular problem, initial

c) respectively). With

this information

feasible solutions

obtained by Phase I and the modified Schell procedure were

comnared using the ratio

(z,c) - (v',e)

(et ed = oY e)

This ratio, which was also used by McWilliams is the

measure of the portion of the rangpe
function covered by the initial solution.

result of this experiment.

of the objective

TABLE I shows the



TABLE I

PORTION OF THT? RAIGr QF THET ORTICTIVIE FUNCTIOM
COVLRrED BY THE IHITIAL SOLUTION OBTAINTD BY THE
MODIFIED SCITTL'S PROCEDURE AMNP BY LP PROCEDURE

PROBLE™ PPOCEDURg A PROCFDURE B
1 : n.052 0.492
2 0.082 0.355
3 0.383 6.362
4 0.031 0.457
5 0.403 0.564
6 . 225 0.716
7 N.213 N.271
8 n.159 0.397
9 n.nga 0.378

1n N.159 ' n.27n

(Z,C) = (_‘/' rc)

(x',c) =~ (¥',c)

PROCEDNUPE A: The modified Schell prrocedure
PROCEDURE B: LP procedure



V. AREAS FaORr FURTHER STUDY

The following problems are areas for further study.

1. Use of methods cther then "matrix minima" in
assigning values in cells, for example, methods used by
McWlilliams (2).

2. Investigation of '"stepping stone method" type
algorithm for three dimensional transportation problems.

3., Attempt to find physical problems which can be
formulated as three dimensicnal transportation problems.

L, Examination of k dimensional transportation

problems (k>3).
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Apoendix N

A GENERAL FLOW CHART OF SCHELL'S PROCEDURE

assion
lower limrit
amounts

i

find a feasible.:_i
solution of
ith slice

assign remaining
dﬁ to nth slice

(—;I..'OP

N e e
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APPENDIX B.

A GENERAL FL2W CHART OF A MCDIFIED SCHELL PROCEDURE

( START )

k=10
, r<
k=k ~1 k=k +1
Py |
A 5 —
(k(l N STNP
¥
s ﬂ/// . no solution
i : ice
\\\ in P%.n slice
clear all flags in select the first
k th slice assignment cell
: which has no flag i
T !
no cells in k th remember the indices
can be used for (i,j,k) of the
first assionment first assignment cell
. attenot: to find
a feasible solution
- of k th slice
set a flaog to cell 41

(i,3,k) so that it | _ i
will not be used forryf<; solution found N
. A

first assianment

| T

<[ last slice \\QEMM______
.

N\

Fr
assion reraining
d to the last
slice
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APPENDIX C

COMPUTER PRCGRAM FNR A MODIFIED SCHELL PRACEDURE
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SETDUP: PROCEDURE OPTICNS(MAIN)3Z
DECLARE AMOUNT FIXED;

OCECL ARE TEMP FIXED (15.0)
/% 7 o e e ob o o o sk ol s oo oK o o e o o o ok o o o o o o o ok oo o ok o o ok ok o o ook ok ko ok /

/* */

/* RANDCM NUMBER GENERATING PROCEDURE */
RANDU: PROCEDURE (IX,IYsYFL);

[*% x/

[ %ok ok ok ok ek Rk vk Rk ok Rk ok ok ke ek ok ok ok ok ok ok ok Rk k /
DECLARE IX BINARY FIXED (31,0)3
DECLARE IY BINARY FIXED (314003
/% DECLARE MK FIXED (15,0)3 */
S: I1Y=[{X*65539;
IF IY € O THEN GO TO A; ELSE GO 70 B3
A: 1IY=1Y+214748364T7 +1;
B YFL=1Y;
YFL=YFL*.4655613E-93

END;
/% % % kel e s o s ok ok o ol e Aol ek e ok ook e e ko ok ikl ek e sk ok ak ke ek kR e ok ke ko /
/% */
/% THIS PROCEDURE WILL PRIMT TABLEAU IN TWO DIMENSINAL  #/
/% FIGURE (SLICES). */
PRINT_TABLE: PROCFDURE {MATRIX,NO_OF_RCW,NO_OF_COLUMN);

/* */

Rtk kkok ik ok rhrhk kg kokrkkdekfk kb mhkkkkkkxik /
DECLARE MATRIX (NO_OF_ROW+NO_OF_COLUMN) FIXED3
DO I=1 TO NO_OF_ROW;
. PUT SKIP (1)
DO J=1 TO NO_TF_COLUMN;
PUT EDLIT (v=—to—-r ~%)(A);
END;3
PUT SKIP{1)3
DO J=1 TO WO_DF_COLUMN + 13
PUT EBIT (*'I°)(A)3
PUT EDIT (°* v)la)e
END3
PUT SKIP (1)3
DO J=1 7O NO_OF_CDLUMN;
PLUT EDIT (*Iv}(A);
PUT EDIT (* *)(A);
PUT EDIT(MATRIX(IJII(F(2))3
PUY EDIT(* *I)(A);
END;
PUT EDIT(*I *,I){A,F(L});
PUT SKIP;
DO J=1 VYO NO_OF_COLUMN +1;
PUT EDIT (*1'){A)3
oUT EDIT(? t)(A)s
SND;
RUT EBIF¥ (Y- *)(A);
END;



/%
/%
/*
/ *
/%
/%

PUT SKIP[1);

DO J=1 TO NO_CF_COLUMN;

END; ‘

PUT SKIP(1);

DO J=1 TO NO_OF_CCLUMN;
PUT EDITL®  %0,"  *){AFil}sA);

END; :

END;

THIS PART WILL GENERATE
AND N=43

SIZE OF PROBLEM. L=43 M=4;
WILL FCRCE TO GENERATE & X 4 X 4 X MATRIX.

L+M AND N ARE NUMBER OF DIMENSIOM 3F RWO, COLUMN AND
SLICE RESPECTI VELY.

DECLARE IX BINARY FIXED

{31.0):

DECLARE 1Y BINARY FIXED (31,50);

DECLARE ALL_DCNE

BIT(Ll)s

ON FIXEDOVERFLOMWS

IX=
IX

INC:
CALL

468573
= IX +23
RAMDUI(IXy1YeYFL) 3

BEGINS

L=YFL*103

IF L <=

! THEN GO TO INC3;

CALL RANDU( IYsIXsYFLIS
M=YFL*10:

IF M &=

1 THEN GO TO INC;

CALL RANDU [(IX 1Y YFLJ3
N=YFL*10;

IF N &=
L=43

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECL ARE

1 THEN GO 7O
M=43 N=4;

INC:

THREEX (LyMeN) FIXED;
THREE (LsMyN) FIXED;
COSY (L+MyN) FIXED;
ROW_SUM (M4N) FIXED;
COLUMN_SUM (LeNJ} FIXED;
SLICE_SUM (LsM} FIXED;
VALUE FI1XEDs3

DECLARE

DECL ARE
DECLARE
DECL ARE
DECLARE
DECLARE
DECLARE
DECL ARE
DECLARE
DECLARE
DECL ARE
DECLARE
DECL ARE

WORK_MATRIX (LsM) FIXEDS
CURRENT_TRANSACTION (LsM) FIXED (15,0)3
OME_SPACE_ALREADY_FOUND BIT({1};
ONE_SPACE_IN_ROW_REMAINED BIT({1);
ONE_SPACE_IN_COLUMN_REMAINED BIT (1)3
ONE_SPACE_IN_SLICE_REMAINED BIT (1)
ASSIGNED_CELL (LsMsN)} BIT (11}
ASSIGNABLE BIT (1)

DANGER_CELL (L M) BIT(1)3

ZERQ FIXED;:

Swi BIT (1)

Sw2 81T (1)

SW3 BIT (1);

36

*/
*x/
*/
x/
*/
®/
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DECLARE SW5 BIT (1)
DECL ARE SW6 BIT (1)5
DECLARE PROHIBIT_CELL (L,MsN) BIT(L)3
DECLARE RESTART_SLICE FIXED3
DECLARE IP (N) FIXED;
DECLARE JP(N) FIXEDS

BEGINS
/) % % ook e e e o o ke A o o sfeoke e e e e e o ok ke e e e o e vie o ok ok 3 ot ok e e o o o o e ke ok ko e gk e ok o e Xk g/
/* */
/* THIS PROCEDURE TRY TO ASSIGN VALUE IN TO CELL (IsdyK) */
/* IF IT IS ASSIGNABLE IT IwWLL ASSIGN AMOUNT “AMOUNT™ */
/* IN TO CELL {I,J,K) AND SUBTRACT AMOUNT FROM PLANNAR /s
/% SUMS. */
/% IF IT IS NOT ASSIGNABLE IT WILL SEND A SIGNAL BACK */
/% TO CALLING PRQCEDURE "NQT ASSIGNABLE". */
JUST_ASSIGN: PROCEDURE {IeJsKi;
/* */

/% % ook b ok ookt ok sk ook o ok o ok o ok ok ook ook ok ok o ook ok ook ok ok /
ASSIGNABLE =*1'8;
THREEX (I +JsK} = THREEX(I,J.K)} + AMOUNT;
ROW_SUM (JsK} = ROW_SUM (J,X) — AMOUNT3S
COLUMN_SUM(I+K) = CCLUMN_SUM (IsK) — AMOUNT;
SLICE_SUM (IsJ) = SLICE_SUM (IsJ) — AMOUNT;
CURRENT_TRANSACTION (I,J) =
CURRENT_TRANSACTION + AMOUNT;
IF RCW_SUM (J.K} < 0 ! COLUMN_SUM (I,K) < 0
| SLICE_SUM [I:J) <O THEN NO:
ASSIGNABLE =°0'8;
GO TO JUST_ASSIGN_END;
END3
JUST_ASSIGN_END: ENDs
7 %% e sk ok ok e o ool ok ko oo ok ook ok kool ok o ok ol e ke okl ok ok ok ok /
/* */
/* THIS PROCEDURE WILL FIND THE CELLS SUCH THAT IT IS THE*/
/% ONLY CELL LEFT TO BE UNASSIGNED IN A PARTICULAR ROW, */

/* COLUMN AND SLICE. */
FINAL_ASSIGN: PROCEDURE;

/x */

/) % % 0 e ok e e e e ol o ke S o Ak o e e o ok o e o o e o o o o kel ok oo ok ok ok ok R R ek ok ok /

PUT SKIP3

PUT LIST('*FINAL®);
ASSIGNABLE=*1"'B3

SW2="1'B3

SW3=*1'8B;

K3= MK3

SW1l = *0'B:

DO J3 =1 TO M;

D03
ONE_SPACE_IN_ROW_REMAINED = *0'B;
ONE_SPACE_ALREADY_FCUND = ®0"'B;
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DO I3 =1 70 L3
IF ~ ASSIGNED_CELL (I3,J3,K3)
THEN DG;
IF CNE_SPACE_ALREADY_FOUND THEN
GO TO NEXT_ROW;
CNE_SPACE_ALREADY_FOUND = '1'B;
IF ~ ONE_SPACE_IN_ROW_REMAINED

THEN DO;
ONE_SPACE__IN_ROW_REMAINED = *1'8;
Li=13;
END3
ELSE ONE_SPACE_IN_ROW_REMAINED = *0°'B;
END3
END3
IF DNE_SPACE_IN_ROW_REMAINED
THEN DO;

ASSIGNED_CELL (LIyJ3,K3) = *1'B;
AMOUNT =RDW_SUM[J3,K3)3
CALL JUST_ASSIGN {LI 9J3,K3)3;
IF ~ ASSIGNARIE THEN GO TO FINAL_ASSIGN_END;
SWl=*1'8B3:
END;
NEXT_ROW: END;
END 3
IF -~ SWL & ~ SW2 & ~ SW3 THEN GO TGO FINAL_ASSIGN_END;
SW2 = *'0¢8B;
DO I3= 1 TO L3
DOs
ONE_SPACE_ALREADY_FOUND = '0'B;
ONE_SPACE_IN_CCLUMN_REMAINED = ¢0'B3;
DO J3=1 TO M;
IF -~ ASSIGNED_CELL (13,J3,K3)
THEN 00;
IF ONE_SPACE_ALREADY_FDUND THEN
GO TO NEXT_COLUMN;
ONE_SPACE_ALREADY_FOUND = '1'8B;
IF -~ OME_SPACE_IN_COLUMN_REMATINED

THEN DO
ONE_SPACE_IN_COLUMN_REMAINED = %1°B;
td=d3:
END 3
ELSE ONE_SPACE_IN_COLUMN_REMAINED = *0°'B;
END;
END;
IF ONE_SPACE_IN_COLUMN_REMAINED
THEN DO;

ASSIGNED_CELL (I3,LJyK3) = *1°'B;

AMOUNT = COLUMN_SJM (I3¢K3};

CALL JUST_ASSIGN (I3+LJyK3):

IF -+ ASSIGNA3LE THEN GO TO FINAL_ASS IGN_END;
SW2=%1183
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END3
NEXT _CQLUMN: END3;
END 3
IF ~ SWL & - SW2 & ~ SW3 THEN GO TO FINAL_ASSIGN_END;
SW3 = '0'B;
IF ~ SWL & -~ SW2 & -~ SW3 THEN GO TO FINAL_ASSIGN_END;
GO YO A;
FINAL_ASSIGN_END: END;
o A%k vic ok sk vk e o e e ok o s s sl o o ke e sk ok ol o ok ke e x s ok ok o e e vk e e o o ol o ol e o ook o ok ok ik ok Xk /
/% %/
/* THIS PROCEDURE SET A FLAG "ASSIGNED_CELL" TO DESIGNA-*/
/% TE THAT VALUE IS ALREADY ASSIGNED TO THAT CELL, OR x/
/* THE CELL HAS BEEN DECIDED AS A NOMBASIC VARIABLE. %/
ZERO_SUM: PROCEDURE;
/¥ */
J % ek ol ool AR ko ok ok ek ok ok sk kol ok ko f ededkokokk ok ko k ko ok ko kk kokkkkkkk /
ASSIGNABLE ='1'83
K1l = MK3
DO J1 = 1 TO M3
DO
IF ROW_SUM (J1l,K1) = 0 THEN
DO
00O Il= 1 TO L3
ASSIGNED_CELL (Il:J1lyK1l) = *1'B3
END:
CALL FINAL_ASSIGN;
IF -~ ASSIGNABLE THEN GO TO ZERO_SUM_END;
END3
END;
END
DO Il =1 TO L;
D03
IF COLUMN_SUM ({I1sK1l} = O THEN
D03
DO Jl= 1 TC Mg
ASSIGNED_CELL {IleJ1lsKl) = *1'B;
ENDs
CALL FINAL_ASSIGN;
IF - ASSIGNABLE THEN GO TO ZERO_SUM_END;
END;3
END3
END 3
DO Il =1 TO L
DO Jl1= 1 TO M;
IF SLICE_SUM {TisJd1l) = O THEN
D03
DO K1= 1 TC N;
ASSIGNED_CELL (IleJlsK1) = '17B;
END3
CALL FINAL_ASSIGN;:
iF NOT ASSIGNABLE THEN
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GO TO ZERC_SUM_END;
END;
END3
END3
ZERO_SUM_END: ENDs3
/) % st o e e ook e e ok ok e ool ok o el ok ok ok ook o ok e o ok ok ok ok ok o o ook ok ok ok Rk kok /
/* x/
/* THIS PROCEDURE ASSIGN LOWER LIMIT VALUES TO CELLS. */
LIMIT_ASSIGN: PROCEDURE (I,J4K);

/* i
/) % 2 o o die o e e o o e ol o ok o3 e o ol X o o ook e ok ok ok ok o o e ok ke e gk ok Xk Sk e o ade o o o ok ok ok ok ok dk ke ko /
PUT SKIP; '

PUT LIST ('LIMIT_ASSIGN')S

ASSIGNABLE = *¢1'83

THREEX (I+4J9K}) = THREEX (I ,Js,K) + AMOUNT;

ROW_SUM (JsK) = ROW_SUM (J,K) - AMOUNT;

COLUMN_SUM (I+K) = COLUMN_SUM (I+K) =~ AMOUNT;

SLICE_SUM (I,J) = SLICE_SUM (I,J) - AMOUNT;

IF ROW_SUM (IyJ) < O | COLUMN_SUM (I,K) <0 |

SLICE_SUM ({1,J) € O THEN ASSIGNABLE = ®0'B;
END3

/) % % d e e o A e o ok o e o o o s e ek sk e s 2 o o e o e o ol vk sk o o e o e o o ok ok ok o ok e g ok ok e ke ok /
/% */
/% THIiS RECURSIVE PROCEDURE WilL GO BACK TO {(K-1)TH 4
/* SLICE IN CASE THERE IS NO SOLUTIGON IN KTH SLICE. */
/% 1P,JP ARE STACKS WHICH CONTAINS THE HTISTORY OF ASSIGN=-%/
/¥ MENT. IN OTHER UWORDS [PyJP CONTAINS WHICH CELL IN */

/* [K-1)TH SLICE WAS FIRSTLY ASSIGNEDe WE KNOW THAT */
/% ASSI GNMENT CELL. B8ECAUSE IT CAUSED NO SOLUTION IN ®/
/*K TH SLICE, */

/* ALSOs THERE ARE MANY CLEARING WORK SUCH AS RESETTING */
/% ROW_SUMsCOLUMN_SUM AND SLICE_SUM TO K-1 SLICE STVAGE. */
/% */
NEXT_TRY: PROCEDURE (NO) RECURSIVE;

/* ' */
/) % v e e 3 ok e g o ks e ok ook ok e ok ok vk ok skl ok ke o ok e e e ok ok ok ok e ok ok e o o ok ok ok sk ok ki dk ko k f

DECLARE I FIXED3:

DECLARE J FIXED;

DECLARE K FIXED:

DECLARE ROW (M) FIXED3

DECLARE COLUMN (L) FIXED;

DECLARE SLICE (L,M) FIXED:
PUT LIST{'NEXT_TRY?®);
PUT SKIP3:

RESTART_SLICE = NO -13

NO_1 = NO - 13

IF NJ_1 = O THEN DO: PUT LIST(*NO GOOD');

GO TO DEAD;3
END;
PUT EDIT ('N=°*,NO_1)(A,F(1));
PROHIBIT_CELL (IP{NO_1)+JP{NO_1),NO_ 1) ='17B;



DGO I=1 TO L=
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CCLUMN (1) = O3
END: :
00 J= 1 TO M3
ROW (J) = O3
END3
DO I= 1 TO Ls
D0 J= 1 TO M;
SLICE ([+d) = 03
EMD;
END 3§
DO J= 1 TO M;
DO I= 1 TO L3
ROW (J) = ROW (J) + THREEX (I.J,NO_1):
END3
END;
OO0 I= 1 TO Ls
DO J=1 TO s
coLumMN (1) = COLUMN (I) + THREEX (IsJoNO_1)
END 3
END3
DO I= 1 TO L3
D0 J= 1 TG M3
SLICE (IsJ) = SLICE (IeJ) # THREEX (I4JsNO_1135
SLICE(TI+J} = SLICE (I4J) + SLICE_SUM (T4J);
END 3
END3
DO I= 1 TO L3
TF COLUMN {I) = O THEN DO
DO J= 1 TO M;
PROHIBIT_CELL (IsJoNO_1) = *1'8;
END3
END3
END 3
00 J= 1 TO M;
[F ROW (4) = O THEN
DC:
CO I= 1 TC L
PRCHIBIT_CELL (I,JeNO_1) = ¢1'3;
END3
END;
END s
o2 I= 1 TO Ls
DO J= 1 TO M3
PROHIBIT_CELL (I,J4sNO_1) = *1°B;
IF SLICE (isJ) = 0O THEN
END;
END:
D0 I= 1 YO L3
DO J =1 TO M3
IF ~ PROHIBIT_CELL (I+JyNO_Y) THEN GO TO PEND;
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END:

END;

CALL NEXT_TRY (NO_1)3;

PEND 2

DO K = NO_1 7O N-13

DO I= 1 Y0 L3

00 J=1 70O M;
ROW__SUM (JyK) = ROW_SUM (JsK) + THREEX (I+JyK):
COLUMN_SUM (I+K) = COLUYMN_SUM {[,K)} + THREEX (I+JyK);
SLICE_SUM {1,442 = SLICE_SUM (I¢d) + THREEX {[9sJsK};
THREEX(I o+ JvK) =0C3

ASSIGNED_CELL (I4JyK) = °0'B3
END
END3
END
DO K= NO TO N-13
DO I=1 TO L3
DO J=1 1O M;
PROHIBIT_CELL (IsJ9K) = *0'B;
END3
END;
END3

END;
DO 126= 1 7O 103
/% ZERO CLEAR OF THREEX */
ee 1= 1O L:
DO J= 1 TO M:
DO K=1 TO N3
THREEX(I4J+K)=03
ENGs ENDS END;
/% ASSIGN VALUE */
DO I= 1 TO L;
D0 J=1 TO M;
DO K=1 TO N3
CALL RANDU (IX,IY,YFL):
VALUE= 10 * YFL;
THREE (I,49K) = VALUES
CALL RANDU (IYsIXsYFL);
VALUE= YFL * 103
COST (IyJeK) = VALUE;
END; END: END;
GO TO COSTY;
IF [26 ~=10 THEN GO TO TEND;
/% SET ROW SUM,COLUMN SUM AND SLICE SUM TO ZERO */
DG J=1 TO M;
DO K=1 TO N3
ROW_SUM(J,K) =03
END: END;
DO I= 1 TO Ls
DO K=1 TO Nj;
COLUMN_SUM (I,K) =03



L3
END: END3
DO I=1 TO L3
DO J=1 TO M3
SLICE_SUM (I+J) = 03
ENDs END;3
/% RCW SUM %/
D0 J=1 70 M3
DC K=1 YO N3
DO I=1 70 L3
ROW_SUMI(J 9K)= THREE{ I4JyK) + ROW_SUMLJK)
END; END; END3
/¥ COLUMN SUM %/
DC I=1 TC L;
DO K=1 T3 N3
DO J=1 TO M3
COLUMN_SUM (I,K) = THREE (I,J,K) + COLUMN_SUM (I,K)3
END; END; END;
/% SLICE SUM */
B0 I=1 TO L3
DO J=1 TO M;
DO K=1 TO N;
SLICE_SUM (I+J) = THREE (1+JsK) #+SLICE_SUMII,J )3
END3 END: END:
PUT PAGE;
PUT LIST ('ORIGINAL ROW_SUM®);
PUT SKTIP(1)3
PUT LIST('ROW SUM ( J 4 K )*)3
PUT SKIP{(3)3:
CALL PRINT_TABLE(ROW_SUMsM,N};
PUT PAGE;
PUT LIST ('ORIGINAL COLUMN SUM?);
PUT SKIP (13
PUT LISTU'COLUMN SUM (I 4 K )%)3
PUT SKIP(3):
CALL PRINT_TABLE(CCLUMN_SUMyLyN}3
PUT PAGE;
PUT LIST ('ORIGINAL SLICE SUM®};
PUT SKIP {1)3
PUT LIST(*SLICE SUM (T 4 J )*);
PUT SKIP(3);
CALL PRINT_TABULE{(SLICE_SUM:L,M);
FLAG__INITIAL_SET:
DO I=1 TO L3
DO J= 1 TO M;
DO K=1 TO N3
ASSIGNED_CELL (IsJoK) = *0*33
END; END3F END;
ZERD =03
DO I= 1 TO L;s
DO J= 1 TO M;
DO K= 1 TO N3



PROHTBIT_CELL (IsJ,K) = v0*B;
END; END; END;
DO KK = 1 TO N-13;
JUMP4:
MK =KK 3
PUT DATA ( MK );

Ly

/) 3% A e e e o o o o 3 o o ok ok o el o ok o s ok ol s ok o ok e e ok ok ok ok ok ok ok et ok o o ok ok ok ok o e ke /

/%
/%
/%
/%
/%

THIS IS A CHECKING STEP TO FIiND OUT WHETHER K TH

SLICE HAS SOLUTICN OR NOT., IF THERE IS NOT GO TO

THE PROCEDURE NEXT_TRY.

*/
*/
*/
*/
*/

/) % S sl g e g ook e s o e o o ok 3 ofe e e sfe oy e o e o ook o ok o oo e ok o ok e ofe N ok e e sk ke e dk Ak ok ek ek /

/%

/%

DO J=1 TO M3
TEMP=03
DO I=1 70 L3

IF ASSIGNED_CELL(IyJyMK) THEN GO TO JUMPL;

TEMP= TEMP + COLUMN_SUM (I,MK)3
JUMPLl: END;

IF ROW_SUM (J,MK) > TEMP THEN GO TO GOBACKI1;S

END

ANOTHER CHECK */
DO I= 1 TO Ls
TEMP= 03
DO J= 1 TO M3

IF ASSIGNED_CELL ({!,JoMK} THEN GO TG JunF2;

TEMP = TEMP + ROW_SUM (Jy MK}
JUMP2: END;S

IF COLUMN_SUM (I.MK) > TEMP THEN GO TO GOBACKI1;

END:
SLICE CHECK 0K */

GO TO JUMP3;
GOBACK]:

MK2=MK 3

CALL NEXT_TRY(MK2):

KK= RESTART_SLICE;S

GO TC JUMP4;
JUMP3:
JUMPS

SW5=1(Q'B;

/%% gkt e e o sje sk xRk B e ol o e o e o oz ok o e o o o e e ofe e o ok kol e o e oo ok ofe e e e ol e e ek ek ok ok /)

/%
/%
/%

IN THIS PROGRAM DANGER CELL IS AFFECTING NONE.

*/
*/
*/

/) % e e g o e g e e S A o e s o o e ok e o s dk s e ok e ok sfe ke sk ok e e ke ool e 3 ofe e e e ek ook ok ok R ok ok ik /

/*

DANGER CELL FLAG RESET =*/
DO I4 = 1 TO L5
DO J4= 1 TO M;5
DO K5 = MK TO N3
ASSIGNED_CELL (I4+J4yKS5} = '0'8B;
END;



b5
CURRENT_TRANSACTION (I14,J4)=0;

DANGER_CELL (I4,J4) = "0'8B;
IF MIN {ROW_SUM(J4,MK)oCOLUMN_SUMITI4,MK),
SLICE_SUM (16,J4)) = SLICE_SUM (I4,J4)
THEN DANGER_CELL (I4,J4)='1"'8;
END: END3
/% ot o o oo o o o sk o o o ke o e ko o o o ke ook ok o ool ook o o ol o o o o e o ook ok o ol ok koo ok /

/% */
/% THIS PART CF PROGRAM IS FINDING LOWER LIMIT VALUES */
/* */

/ % ok o e d o o xk e vk s sk ok o o Xe 3k e 2k o ik o o o o e o o ok ko o ok e ok o ke e ok o e e e e ok ok ok ke ke ke %k /
DO K8 = MK TO N-13
DG I=1 71O L;
GO J=1 TO M3
TEMP=03
00 K=1 TO N;
IF K= K8 THEN GO TO ENDS;
TEMP=TEMP + MIN (RCW_SUMtJyK)»COLUMN_SUM (I,K),
SLICE_SUM (I,J));
END5: END3
/* CALCULATE LOWER LIMIT CF SLICE MK */
LOVWER_LIMIT = SLICE_SUM (I4J) - TEMP;
/% ASSIGN AMOUNT TO THE CELL WHICH HAS LOWER_LIMIT >0 */
IF LOWER_LIMIT > O THEN
DO 3
AMDUMY = LOWER_LIMITS
MM= K33
CALL LIMITY_ASSIGN (1yJ¢MMi;
IF -~ ASSIGNABLE THEN GO TO T3
END;
END 3
END3
END 3
CALL ZERO_SuM3
IF -~ ASSIGNABLE THEN GO TO T3
CALL FINAL_ASSIGN;

IF - ASSIGNABLE THEN GO TN T3
/% et g e e ok el ke e ot o o o ol g o o e ok ok e e ok e ook ok ok e ok ok ke ok /

/% THI5 PART IS FINDING SEQUENCE OF ASSIGNMENT BY */
/% “MATRIX MINIMAW, */
/% */

/% e ke e e ik o ok o o ok ok ok g o o o o ok e o gk o ook ko o o ok ok ok o o o o ok o i o ook ok e Sk o /
MINIMUM_COSY_METHOD:
K=MK 3
MINIMUM_C0OST=9999;
ALL_DONE = '1'8;
DO I=1 TO Ls
00 J= 1 TO M;
IF PROHIBIT_CELL {leJeMK) & ~ SW5 THEN GO TO ENDG;
DO
IF MINIMUM_COST > COST (IsJyK)



& -~ ASSIGNEO_CELL

00 3

[F ROW_SUM (JyK) > 0 &
& SLICE_SUM (I,J) >
THEN 0O 3

ALL _DONE="*0"8B;

MINIMUM_CIJST

L6

(I¢JsK) THEN

COLUMN_SUM (I,K) > O
0

COST (I4JsK) 3

MI =13 Md=J3
END s
END;
END3
ENDG6:
END;
END:
IF -~ ALL_DONE THEN
DO;
MIJK= MIN {ROW_SUM {MJI,MK),COLUMN_SUM (MI,4MK),
SLICE_SUM (MI,MJ));
AMOUNT = MIJK;
MM=MK 3
CALL JUST_ASSIGN (MI MJ,MM)
IF -~ ASSIGNABLE THEN GO TO T;
CALL FIMNAL_ASSIGN;
[F -~ ASSIGMNABLE THEN GO TO T;
CALL ZERO_SuUM;
IF ~ ASSIGNABLE THCENWN 30 TO T3
IF SWS THEN GO TC ENDT7;
MIl= MI;
MJl = MJ;
SW5 = '11'B3
/% */
/¥ ASSIGN MIN_SUM TO CELL (MI. MJ,MK) */
/% x/
/* CHECK SUCCEEDED OR NO GOOD %/
ENDT s
GO TO MINIMUM__COST_METHOD;
" END;
IP{MK) = MIl;
JP(MK) = MJLl3s
END3
DO J= 1 TO M;
DO K= 1 7O N-13
IF ROW_SUM {J,K) > O THEN GO TO LIVE;
END:
END;

LIVE:

GO TO ALL_COMPLETEDS

MK2 = MK;

CALL NEXT_TRY (MK2);
KK= RESTART_SLICE ;
GO TO JUMP4;
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ALL_CCMPLETED:
0O I=1 TO L3
D0 J=1 TO M;
AMCUNT = SLICE_SUMITI,J);
CALL JUST_ASSIGN {I+J4N)3:
ENDs END;
GO TO OEAD:
T2
/% 3 3 s e e e e s e o o o e e o e o o 3 o st s ol o o o e o ok ok o ok e o o o o i o o o ot o o e e o o ke ko ke /
/* x/
/% THIS PART WILL SET A FLAG “PROHIBIT_CELL"™ TO CELLS */
/¥ WHICH WAS A FIRST ASSIGNMENT CELLS AND IT WAS FOUND */
/% THAT ASSIGNMENTS SEQUENCE IS NCT PROPER, */
/* */
/%3 3 sk o e st e e o e e o oo e e o sk ok e b e e ok o ot e o o o oo e o o o ofe oo o o ok ok ok ko e ok
If ~ALL._DONE THEN DO;j
PROHIBIT_CELL (MI1eMJlsMK)='1"8B;
/ % % % o e e e ok o s oo ik o e B e e e o e ae ofe e e o e 3 s e o oo oo o e ke s o o ok ok o e ek ok ok ok Sk ek %k /

/% o/
/¥ THIS PART WILL 0O HOUSE KEEPING TO TRY ANDOTHER */
/% ASSIGNMENTS SEQUENCE IN K TH SLICE. *4
/* */

/%% % 3 3 oo e s s o s e sde e ook o e gk o ko d e sk o e e ot e ke ok o o e ke e o e ke ek ek ek e ke dk A
DO IS= i TO Ls
D0 JS5S = 1 TO M;
ROW_SUMIJS,HK) = ROW_SUM (J5,MK)
+ CURRENT_TRANSACTION { I5,J5);
COLUMN_SUM (ISyMK) = CIOLUMN_SUM (I5,MK)
+ CURRENT_TRANSACTION (15,45);
SLICE_SUM {I5,J5) = SLICE_SUM (I[5,45)
+ CURRENT_TRANSACTYION (15,450
THREEX (I54J54FK) = THREEX (154459 MK)
- CURRENT_TRANSACTION (15,45}
END;
END
GO TO JUMPS;
END;
DEAD:

PUT DATA (PROHIBIT_CELL)S
/% Akt o s ok ek e ok Ao ok ok ikl e ekl e e e e ok e ok ok ok ok ok R ok Kk ek ke kot /

/% */
/% LSISTING RESULTS %/
/% */
/%% e e e ook e et ok o o oo o o o ook o R o o ek o ok oo o o o o ok e Xk ok ko ko ok oy /
PUT PAGE:
PUT LIST (°* ROW_SUM' ) ;

PUT SKIP(1)3

PUT LIST(*ROW SUM { J 4 K J');
PUT SKIP{3};

CALL PRINT_TABLE(ROW_SUMyM,N);
PUT PAGE;
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PUT LIST (! COLUMN SUM')3

PUT SKIP (1)
PUT LIST('COLUMN SUM [ T » K )")3
PUT 3SKIP{3):
CALL PRINT_TABLE(CCLUMN_SUM)L+N);
PUT PAGE;
PUT LIST (* SLICE SUMY);
PUT SKIP (1)3;
PUT LIST{'SLICE SUM (I » J )}*')3
PUT SKIP(3);
CALL PRINT_TABLE{SLICE_SUMyL M};
DO K=1 TO N;
PUT PAGE;
60 I=1T1T0 L3
DO J=1 TD M;
WORK_MATRIX{IyJ) =THREEX(I1+JyK)3
END;
END3
PUT ENIT (*RESULTED MATRIX OF TYPE**x%x¢,K)(A:F(1));
PUT SKIP{2)3
CALL PRINT_TABLE!WORK_MATRIXsL M) 3§

END;
TTT:
/ %% vk o o oo e deade o e oo o e e e ofe o oo ok ok oede o e o ade s ok o e oo ke ok o e ok e o o ok ok ok ek ke ko /
/% */
/% CALCULATING TOTAL SHIPPING COST . */
/% %/

/) % g e g ook o ok o g o A ko e ok ok o ke ol o bl e o o e ok ok e ook o ook o ok ook ok ok ok ok ok /

COSTY:

DO K=1 TO N3
PUT PAGE;
DO I=1 TO L;
DO J=1 TO M;
WORK_MATRIX (Isd) = COST (IoJdsKD3

END3

END;
CALL PRINT_TABLE {(WORK_MATRIX,L,M}3
END;
MCNEY =03

TEND:
END 3
END3
END3
END;

DO I=1 O L:

DO J= 1 YO M;

DO K= 1 TO N3

MONEY = MONEY + COST(IsJsK) * THREEX(IyJe¢K) 3

ENDS

END;

END3:

PUT EDIT ('TOTAL CCST BY MY METHOD **%xk%x%x*' MONEY)(A,F(4));
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APPENDTY D

NUMERICAY, RYXAMPLES

A numerical example of iritial feasihle solutions
obtained by LP nrocedure and by the mnmodified method are
shown., Also, both ontimum (maxisrwumn cost and minimum cost)

solutions obtained by the LP procedure ara shown.

17 14 13
13 21 14
12 | 13 18
32 27 18
H i |
28 18 10 8 22 22 14 16 2 15 6 13
17 21| 6135 1r
33 2a]23l11] o
20 2113f11] 10
18 26122 20] 16
13 8 28 24

Slices before assicnments.
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7[s5]4aa 710101 3 AR B 7] 4| 8| 4
9l6]s|e 91als]o 7] 3] 3] 1 gl 2] 3] 7
3% 394 §5 RN sl 5[ 1] 4 sl s|o|a
4alaj7]o E—i gls|e s afaf 2 3| 1| ef 6

Cost matrix

161 1 14 51 3 3 16 1
13 o AR 2 101 4 581k 7
4 8 4 9 1§ 6}]1})10 16713} 1

32 10 224 5 }2 . 5 2 16

Total cost = 1498

Initicial feasible solution obtained by LP procedure

19| 7 6| 6 2] 13 8 a
12 Y 4[]0 8 6| ¢ 194 2331
12 n{13 a 613 5(15
16| 6 In| 3| 2|6 7 1n 6[12

Total cost = 1273

Initial feasible sclution ohtained by the mrodified method.



12} & 10 A 13 16| 1
41 9 14 1] 14 14 9
1f: 3 2k 1 19 w78 i | 1 11

12 10 22101 3% 2 1%} 3 1] 14

Total cost = 10216
Optimur solution (maxirmum cost)
9 fl 71 2 i3 e s)

13 12 Q 13y 3 A 13

12 S5 3 a 8 5 151
31181 1 22 24 3 4 13 A 17

Total cost = 1174

Optimum solution (minirum cost)
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