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ABSTRACT 

 
 

As the supply chain activities’ backbone, demand forecasting must be accurate. 

This paper proposes an artificial neural network forecasting model, which 

integrates and synchronizes shared information, such as sales or consumption 

rate among different partners, to improve the forecasting’s accuracy. This 

information sharing is part of the collaborative planning, forecasting and 

replenishment (CPFR) model, which is a supply chain model aiming to enhance 

the supply chain’s efficiency by jointly planning and forecasting between two or 

more supply chain partners that will be used as the base for production and 

replenishment activities. The model is validated using a tuna product sales data, 

and the combination of individual forecasts resulted in better demand forecasting 

accuracy for the supply chain. This improvement will lead to reduced costs 

associated with the forecast’s overestimation or underestimation. 
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CHAPTER ONE  

INTRODUCTION AND GENERAL INFORMATION 

 
 

Supply chains are widening and becoming more complicated since businesses 

(e.g., manufacturers, retailers, pharmacies, and health providers) have suppliers 

globally. Having said that, lead times are also getting longer because of 

increased distances   and are putting more pressure on businesses to have 

accurate forecast systems. Demand forecasting results in either overestimation 

or underestimation. Overestimation can lead to overstock, adding up costs, 

including holding costs, dumping costs for perishable items, and return costs. 

Underestimation leads to loss of potential sales and as a result less revenue. To 

overcome these problems, companies are developing new ways and models for 

forecasting and managing their inventories. One of the models is called Vendor-

Managed Inventory, which Walmart initiated. With this model, suppliers are 

responsible for managing their products at Walmart’s stores and have access to 

sales data. As a result, Walmart can achieve close to 100% order fulfilment on 

merchandise [1]. Another innovation in the supply chain field is the Collaborative 

Planning, Forecasting and Replenishment (CPFR) model, which is “an evolving 

business practice that seeks to reduce supply chain costs by promoting greater 

integration, visibility, and cooperation between trading partners’ supply chain” [2]. 

CPFR involves four main collaborative activities: Strategy & Planning, Demand & 

Supply Management, Execution, and Analysis. Toiviainen and Hansen have 

divided these activities into eight tasks, which are listed in Table 1.1 [3]. 

 
This paper focuses on collaborative forecasting and how to get a forecast that 

satisfies the partners in terms of better accuracy. In collaborative forecasting, the 

partners conduct their forecast individually using point of sales (POS) data 

shared with them. Then the forecasts are combined using the proposed model. 
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Table 1.1. Tasks under Collaborative Planning, Forecasting and 

Replenishment (CPFR) 

 
Collaborative Activities Collaborative Tasks 

Strategy and Planning 1. Collaboration Arrangement 

2. Joint Business Plan 

Demand and Supply Management 3. Sales Forecasting 

4. Order Planning/Forecasting 

Execution 5. Order Generation 

6. Order Fulfillment 

Analysis 7. Exception Management 

8. Performance Assessment 

 

 

Tremendous work has been done in the area of supply chain management 

(SCM). Rouse defined supply chain management as “the oversight of materials, 

information, and finances as they move in a process from supplier to 

manufacturer to wholesaler to retailer to consumer. Supply chain management 

involves coordinating and integrating these flows both within and among 

companies” [4]. Rouse’s definition identifies three main flows in any supply chain: 

products or materials flow, information  flow, and  finances flow. Many types of 

information can be shared among partners of a supply chain. In their article 

“Information Sharing in Supply Chain Management,” Lotfi, Mukhtar, Sahran, and 

Zadeh mentioned some of the types of shared information including inventory 

information, order information, sales data, sales forecasting, exploitation 

information about new products, and product ability on formation [5]. These 

authors have also investigated the benefits of information sharing within supply 

chains and summarized them along with the sources as shown in Table 1.2. This 

study proves how sharing two types of information, sales data and forecasts, can 

improve the forecast’s accuracy. This improvement can lead to better customer 

satisfaction products will be available, and reduce the cost of holding extra 

inventory resulting from over estimation will be reduced. To benefit from the 

shared information, we are going to combine the forecasts. 



 

3 
 

Table 1.2. Information Sharing Benefits 

No. Benefits Sources 

1 Inventory reduction and efficient inventory management  [6, 7, 8, 9] 

2 Cost reduction  [6, 7, 9, 10] 

3 Increased visibility (significant reduction of uncertainties)  [9, 10, 11, 12, 13] 

4 Significant reduction or complete elimination of bullwhip effect  [9, 11, 15, 16] 

5 Improved resource utilization  [6, 9] 

6 Increased productivity, organizational efficiency, and improved services  [6, 9, 10, 14] 

7 Building and strengthening social bonds  [9, 10, 17] 

8 Early problem detection  [9, 16, 18] 

9 Quick response  [9, 16] 

10 Reduced cycle time from order to delivery  [10] 

11 Better tracing and tracking  [10] 

12 Earlier time to market  [9] 

13 Expanded network  [9] 

14 Optimized capacity utilization  [9] 

 
 
Forecast Combination 
When more than one forecast for the same event is available, most businessmen 

and statisticians try to find which one is better (or best). In 1969, Bates and 

Granger developed the idea of combining forecasts. They showed how the 

combination improved forecast accuracy and was better than either forecast 

separately in terms of a better mean squared forecast error. The easiest way to 

do the combination is to drive the forecasts’ average (assigning identical weights 

to individual forecasts).  In his article “Combining Forecasts: A Review and 

Annotated Bibliography,” Clemen mentioned how he increased the forecast’s 

accuracy by combining multiple forecasts, whether the forecasts are econometric 

or extrapolation, judgmental or statistical. According to Clemen, huge accuracy 

improvements can be made by averaging the forecasts. [19]  

Based on the literature review, combining forecasts has been shown to be useful, 

cost-effective, and beneficial. Conducting a survey to determine how often firms 

combine forecasts, Dalrymple found that 40% of the firms frequently or usually 

combine forecasts. [20] This finding indicates that combining forecasts is 

becoming popular. Many methods can be used to find the weights for combining 
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forecasts. Blair, Leonard, and Elsheimer identified the following nine methods for 

determining the weights: [21] 

 
1. Simple average 

2. User-defined weights 

3. Rank weights 

4. Ranked user weights 

5. Root mean squared error (RMSE) weights 

6. Corrected Akaike’s information criterion (AICC) weights 

7. Ordinary least squares (OLS) weights 

8. Restricted least squares weights 

9. Least absolute deviation (LAD) weights 

Other methods for finding weights are available.  

For example, some researchers suggested conducting a linear regression to find 

the combination weights. Bayesian approaches have also been used in finding 

the best combination. Adhikari, and Agrawal suggested using the artificial neural 

network for combining multiple time-series forecasts. [22] Thus, many options are 

available for combining forecasts; however, a problem arises in determining each 

forecast’s weight. In this paper, the artificial neural network is used because it 

can estimate any continuous function. Another advantage of neural networks is 

that a linear relationship between outputs and inputs does not have to be 

assumed; instead, it can approximate nonlinear functions. 
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CHAPTER TWO  

PROBLEM DEFINITION 

 
        

2.1. Problem Statement 

One of the major tasks for any inventory controller is to predict upcoming sales. 

This task may help determine how much to order from the suppliers and when, 

how much inventory should be kept in distribution centers to feed stores, and 

how much to keep in retail stores. Demand forecast is the foundation of supply 

chain planning.  Forecasts are always associated with some error, but are good 

indicators of demand. Short-term forecasts are usually more accurate than long-

term forecasts. Indeed, the standard deviation of error relative to the mean is 

larger with long-term forecasts. In addition, disaggregate forecasts are less 

accurate than aggregate ones. One of any retailer’s nightmares is being out of 

stock, especially when quickly moving items because lack of stock means loss of 

potential sales. Being out of stock is also critical for imported items, especially 

those with long lead times (i.e., the time between ordering an item and receiving 

it). Over predicting is also an issue but not as big as being out of stock because 

this problem can be corrected with price markdowns. Thus, forecasting is 

important, and its accuracy can affect a company’s revenues because it adds 

costs associated with inventory, ordering, transportation, and labor for shipping 

and receiving. Many forecasting models can be used to predict sales for any 

product of interest. The key is finding the best model with the highest accuracy to 

represent a product. In combining different forecast data using the neural 

network, the problem is finding the weight each forecast contributes to the final 

forecast. 
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2.2. Problem Formulation 

2.2.1 Parameters 

The following parameters (i.e., data needed) must be defined before solving the 

problem:  

𝑖 : Suppliers index 

𝑡 : Weeks index 

𝐴𝑡 : Actual sales in week t 

𝐹𝑡 : Company’s internal sales forecast for week t 

𝑋𝑖𝑡 : Collected sales forecast from supplier i for week t 

𝑌𝑡 : Combined sales forecast for week t using neural network 

𝑇         : Number of historical data available 

𝐼         : Total number of suppliers available for the product of interest. 

 

2.2.2 Objective Function: 

The two main objective functions are identified below: 

 Finding the weight for each forecast to contribute to the combined forecast 

that will have the minimum error 

 

                             𝑴𝒊𝒏 (
𝟏

𝑻
∑

|𝑨𝒕−𝒇( 𝑭𝒕 ,𝑿𝒊𝒕)|

𝑨𝒕

𝑻
𝒕=𝟏  ) ∗ 𝟏𝟎𝟎               (1) 

 
Given that 
 

                                                             𝒀𝒕 = 𝒇( 𝑭𝒕 , 𝑿𝒊𝒕)                                             (2) 
 

 Choosing the forecast that has the minimum error from the competing 

ones: company’s internal forecast, suppliers’ forecast, and the combined 

neural network forecast. 

𝑪𝒐𝒎𝒑𝒂𝒏𝒚′𝒔 𝑬𝒓𝒓𝒐𝒓 = (
𝟏

𝑻
∑

|𝑨𝒕− 𝑭𝒕|

𝑨𝒕

𝑻
𝒕=𝟏  ) ∗ 𝟏𝟎𝟎       (3) 

 

𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒓′𝒔 𝑬𝒓𝒓𝒐𝒓 = (
𝟏

𝑻
∑

|𝑨𝒕− 𝑿𝒊𝒕|

𝑨𝒕

𝑻
𝒕=𝟏  ) ∗ 𝟏𝟎𝟎   for i = 1, … , 𝐼        (4) 
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𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 𝑬𝒓𝒓𝒐𝒓 = (
𝟏

𝑻
∑

|𝑨𝒕− 𝒀𝒕|

𝑨𝒕

𝑻
𝒕=𝟏  ) ∗ 𝟏𝟎𝟎               (5) 
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CHAPTER THREE  

METHODOLOGY 

 
 
Most companies worldwide are conservative when sharing data with their 

suppliers. Some are afraid of losing their business (e.g., car dealers think if they 

share the demand data, manufacturers would bypass them and sell the cars 

themselves). To get a better deal, others don’t share sales data. For example, 

when I was working for one of the biggest retailers in Saudi Arabia as an 

inventory controller, buyers didn’t want me to share the actual sales data with the 

suppliers in order to get discounted goods.  

 

To encourage these companies to share their sales or consumption data with 

their suppliers, a tangible benefit must be provided. The proposed method shows 

how sharing sales or consumption data with the supply chain’s key players can 

improve the forecast’s accuracy, which is the heart of any business’s planning 

process. The artificial neural network is used to combine forecasts because it can 

estimate not only any continuous function but also nonlinear data. Below are the 

steps for the proposed method: 

1. Gather historical sales or consumption data for the product of interest. 

2. Share the data with key supply chain players, such as manufacturers or 

suppliers. 

3. Have the players conduct individual forecasts based on the gathered data 

using their own forecast model. Thus, internal and external forecasts will 

be available. 

4. Construct the collaborative neural network using the actual data as the 

target variable and the individual forecasts as the input. For conducting 

the neural network, Alyuda Forecaster XL, which is add-in software within 

Excel can be used. One of this software’s best features is that neural 

networks can be generated while retaining all the data-operation tools in 
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Excel.  In fact, it is “the only forecasting Excel add-in with an automatic 

neural network architecture and parameters selection.” [23] One 

advantage of the program is that the user doesn’t need to be an expert in 

artificial intelligence or statistics to generate neural networks. 

5. Compare the neural network’s output with each forecast based on three 

different criteria: Mean Absolute Deviation (MAD), Mean Square Errors 

(MSE), and Mean Absolute Percentage Error (MAPE). 

6. Conduct the forecast using the best model. 

Steps 3, 4, and 5 are explained below. 
 

3.1. Step 3: Individual Forecasts  

3.1.1 Internal Forecast 

For the internal forecast, a Matlab Module was created to choose the best- fitting 

ARMA model for the date for which we are interested in generating a forecast. 

First, the model reads the data. In our case, it reads the data from an Excel 

sheet, but it can be adjusted to read from other files. Second, it generates three 

graphs for the data: time-series distribution curve, autocorrelation function (ACF), 

and partial autocorrelation function (PACF).  

 

Autocorrelation is the linear dependence of a variable with itself at two 

points in time. For stationary processes, autocorrelation between any two 

observations depends on the time lag k between them. 

 Autocovariance is defined by 

 

𝑪𝒐𝒗(𝒚𝒕, 𝒚𝒕−𝒌) =
𝛄𝒌  

𝛄𝟎
  for all lags  𝒌 = 𝟎, 𝟏,−

+  𝟐, … −
+       (6) 

 

 Autocorrelation is defined by 

𝝆𝒌 =  𝑪𝒐𝒓𝒓(𝒚𝒕, 𝒚𝒕−𝒌) =  
𝑪𝒐𝒗(𝒚𝒕,𝒚𝒕−𝒌)

𝛄𝟎
=  

𝛄𝒌  

𝛄𝟎
    𝒌 = 𝟎, 𝟏,−

+  𝟐, … −
+       (7) 

 

http://www.alyuda.com/products/forecaster_xl/key_features.htm
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 Partial autocorrelation is the autocorrelation between yt and yt-k after 

removing any linear dependence on y1, y2,…, yt-h+!. The partial lag-k 

autocorrelation is denoted Øk,k. The denominator γ0 is the lag 0 

covariance, i.e., the unconditional variance of the process. A plot of 𝜌k 

against non-negative values of k gives the autocorrelation function. Note 

that 𝜌0 = 1 by definition. 

To estimate the theoretical autocorrelation and partial autocorrelation, we use the 

sample autocorrelation and sample partial autocorrelation, which are important 

statistics. They are used as qualitative model selection tools to compare with 

known theoretical autocorrelation functions. For an observed series y1, y2,…, yt, 

denote the sample mean �̅�. The sample lag − k autocorrelation is given by 

 

                              𝝆�̂� =  
∑ (𝒚𝒕−𝑻

𝒕=𝒌+𝟏 �̅�) (𝒚𝒕−𝒌−�̅�)

∑ (𝒚𝒕−𝑻
𝒕=𝟏 �̅�)𝟐                      (8) 

 
The standard error for testing the significance of a single lag – k 

autocorrelation, 𝜌�̂�, is approximately 

 

                            𝑺𝑬𝝆 =  √
𝟏

𝑻
 (𝟏 + 𝟐 ∑ 𝝆𝒊

𝟐𝒌−𝟏
𝒊=𝟏                     (9) 

 
When we use (autocorr), a matlab-built ifn function to plot the sample 

autocorrelation function (also known as the correlogram), approximate 95% 

confidence intervals are drawn at 2−
+ SE𝜌. 

 

The sample lag − k partial autocorrelation is the estimated lag − k coefficient in 

an AR model containing k lags, Ø̂k,k. The standard error for testing the 

significance of a single lag − k partial autocorrelation is approximately 1/√T −  1 . 

 

Third, the module fits different ARMA(p,q) models and calculates the likelihood 

for each of them.  The user can decide on the maximum for both p and q. Fourth, 
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the module calculates two different model-selection criteria: Akaike’s information 

criterion (AIC) and Bozdogan’s consistent AIC (CAIC). 

 
The Akaike information criterion (AIC) is an unknown constant, which can be 

determined and used to measure statistical models’ relative quality for a 

particular set of data. Given several different models for a certain data, AIC 

estimates each model’s quality, relative to that of the other models. Therefore, 

AIC provides a means for model selection and is approximated by  

 

        AIC = −2logL(�̂�) + 2k                       (10) 
 

 
where 

 L(𝜃) is the maximized likelihood function, 𝜃 is the MLE of, and k is the 

number of free parameters in the model.  

 

 In AIC, the compromise occurs between the maximized log likelihood, i.e., 

−2logL(𝜃)  (the lack of fit component) and the number of free parameters 

estimated within the model (the penalty component); the latter is a 

measure of complexity or the compensation for the bias in the lack of fit 

when the maximum likelihood estimators are used. 

 

 The model with minimum AIC value is chosen as the best model to fit the 

data. 

Bozdogan’s consistent AIC (CAIC) is also a model selection criterion developed 

by Bozdogan in 1987. It is similar to AIC, but the difference is in the penalty term. 

CAIC resolves issues related to AIC’s second term (e.g., the consistency similar 

to SBC). To make AIC consistent, the multiplier of the number of free parameters 

in the penalty term (i.e., AIC’s second term) depends on the sample size. Thus, 

CAIC is defined in equation 11, and the model with minimum CAIC value is 

chosen as the best model to fit the data. 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Model_selection
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CAIC = −2logL(�̂�) + k(log(n)+1)                  (11) 
 

Fourth, based on the criterion’s minimum, the module generates an ARMA model 

and finds the its parameter estimates. Finally, it forecasts the number of periods 

the user defines and creates a plot for the actual data versus the forecasted data. 

 

3.1.2 External Forecast 

For generating the external forecasts, proForecaster, an add-in application within 

Excel, was used. proForecaster was developed for business users who create 

educated predictions quickly and without statistical training. It uses state-of-the-

art statistical forecasting methods and neural network technology to accurately 

predict the future [24]. One of this application’s best features is that it can 

generate many sophisticated forecasting models within the Excel environment. 

Table 3.1 shows this product’s features. 

 

Table 3.1. ProForecaster Application Features 

Feature Benefit 

Forecasting Wizard 
Make predictions quickly without needing statistical 
know-how 

15 Statistical Forecasting Models plus Neural 
Network Technology and a Hybrid 
Forecasting Model 

Accurately predict historical data 

Expert Forecasting Engine 
Make all technical decisions so that non-statisticians 
can produce sophisticated predictions 

Regression Wizard to forecast cross-sectional 

data and time-series data through explanatory 
variables 

Make regression analysis at a fly and determine how 
variables influence the target variable 

Advanced Reporting generated in an Excel 

worksheet 
Create the prediction results in Excel and easily 
insert them into the corporate layout 

Forecasting up to 1,000,000 time series in one 

run. 
Create forecasts simultaneously for different time 
series 
 (pro BS, 2016) 

 
 
Forecasting Steps 

 
Step 1: Select data in Excel 
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Data can be chosen by columns or rows, and there is an option to select if the 

data contain a header. Another option can be selected for seasonality. A 

screenshot of this step is presented in Figure 3.1. 

 

 

 

Figure 3.1. Screenshot for Data Selection in Excel 

 
Step 2: Select Forecast Options 

In this step, we can choose the preferred forecasting methods as well as the 

ranking method (e.g., MAD, RMSE, MAPE, or expert rank) that will check the 

goodness of fit on validation data. The number of periods to predict can also be 

selected in this step. A screenshot of this step appears in Figure 3.2. 
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Step 3: View the forecasting results 

In this step the models’ results can be seen for each forecasting method 

selected.  A graphic of the actual versus the fitted model along with the forecast 

is provided. Also included is a box containing the parameter estimates for the 

forecasting method chosen and a summary containing the accuracy. A 

screenshot of this step is presented in Figure 3.3. 

 

Step 4: Select Report Options 

This step’s purpose is to determine what to include in the report in terms of  

forecasting methods’ statistics and forecasting charts. The option is also 

available to show the predictions for either the best model or the best three 

models. A screenshot of this step is shown in Figure 3.4. Figures 3.5 and 3.6 are 

screenshots of the generated reports. 

 

 

Figure 3.2. Screenshot for Selecting Forecast Options in Excel 
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Figure 3.3. Screenshot for Forecast Results in Excel 

 

 

Figure 3.4. Screenshot for Report Option Selection in Excel 
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Figure 3.5. Screenshot for the Forecast Statistics Report                                   

by ProForecaster 

 

 
 

Figure 3.6. Screenshot for the Periodical Forecast Report                                    

by ProForecaster 
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3.2. Step 4: Constructing the Collaborative Neural Network  

Below are the steps for creating a neural network Using Alyuda Forecaster XL: 
 

Step 1: Load all data into an Excel sheet: the actual data as well as the 

internal forecast and the external forecasts. 

 
Step 2: Click the Create Network button.  

 

Step 3: After the button is clicked, a box (as shown in Figure 3.7) appears, 

and you can select your data. Choose both forecasts (i.e., internal and 

external) as the input data. Then choose the actual data as the target. 

 

 

 

Figure 3.7. Network Creation Using Alyuda Forecaster XL 

 
 
Step 4: Hit the Train button, which is shown in Figure 7to generate  a 

performance report containing the following: actual versus forecast graph, 

deviation graph, input importance, input importance table, and actual 

versus forecasted table. 
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Step 5:  Once you have created the network, you can start forecasting 

using the network by clicking the Forecast button. Then a box 

as shown in Figure 3.8 will appear, and you can choose your input data 

and where you want the forecast to be stored. 

 

Step 6: Hit the Forecast button, which is shown  in Figure 3.8. Once you 

hit that button, the forecast will be stored in the chosen cells. 

 

3.3. Step 5: Comparing Individual Forecasts 

As mentioned earlier, three different criteria are used—Mean Absolute Deviation 

(MAD), Mean Square Errors (MSE), and Mean Absolute Percentage Error 

(MAPE)—to compare the neural network’s output with each forecast. Below are 

definitions for each criterion.  

 

3.3.1 Mean Absolute Deviation (MAD) 

MAD is used to measure the difference between the values in a data set and the 

mean. The absolute value prevents the differences with positive sign from 

cancelling the ones with negative sign [25]. The MAD function can be expressed 

as 

 

𝑴𝑨𝑫 =  
𝟏

𝒏
 ∑ | 𝒙𝒊 − �̅�𝒏

𝒊=𝟏 |  (12) 

 

3.3.2 Mean Square Errors (MSE) 

The mean squared error is one of the most important criteria used for measuring 

the accuracy of an estimator or a predictor. It is useful for transmitting the 

concepts of accuracy, bias, and precision in statistical approximation. To use the 

mean squared error, a target of estimation is needed as well as a predictor that is 

a function of the data. [26]. The MSE function can be expressed as 
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𝑴𝑺𝑬 =  
𝟏

𝒏
 ∑ (𝒙𝒊 − �̅�)𝟐𝒏

𝒊=𝟏   (13) 

 

3.3.3 Mean Absolute Percentage Error (MAPE) 

The MAPE measures how big the error is in terms of a percentage. Many 

organizations focus primarily on the MAPE when assessing forecast accuracy. 

According to Stellwagen (the vice president and co-founder of Business Forecast 

Systems, Inc. (BFS) and co-author of the Forecast Pro software product line), 

most people like to think in percentage terms; thus, the MAPE is easy to 

understand when the user doesn’t know anything about the size of the demand 

of a certain product. For example, telling someone who doesn’t know a product’s 

demand size that we are off by 10%” is easier to understand than saying “we are 

off by 2000 cases” [27]. The MAPE function can be expressed as 

 

𝑴𝑨𝑷𝑬 = (
𝟏

𝒏
 
|𝐀𝐜𝐭𝐮𝐚𝐥−𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭|

|𝐀𝐜𝐭𝐮𝐚𝐥|
) ∗ 𝟏𝟎𝟎 (14) 

 
 

 
 

Figure 3.8. Forecasting Step Using Alyuda Forecaster XL 
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CHAPTER FOUR  

CASE STUDY 

 
 

4.1. Data Gathering 

Sales data for a tuna product was gathered from Panda, one of the largest 

supermarket chains in Saudi Arabia. The product’s weekly sales data from 

January of 2012 till June of 2013 is shown in Table 4.1. The sales data’s 

distribution curve is represented in Figure 4.1. The first 71 weeks were used to 

find the best model. The sales data for weeks 72 to 77 were used to compare the 

forecasted sales generated from the neural network combination model. 

 

Table 4.1. Sales Data for the Tuna Product 

Week 
Actual Qty 

Sold 
Week 

Actual Qty 
Sold 

Week 
Actual Qty 

Sold 
Week 

Actual Qty 
Sold 

1 1049 21 545 41 751 61 793 

2 916 22 695 42 810 62 902 

3 873 23 398 43 543 63 616 

4 880 24 545 44 850 64 617 

5 833 25 553 45 943 65 511 

6 806 26 602 46 758 66 770 

7 887 27 614 47 821 67 836 

8 747 28 649 48 891 68 724 

9 765 29 573 49 918 69 522 

10 619 30 440 50 846 70 555 

11 723 31 337 51 749 71 780 

12 792 32 466 52 1099 72 612 

13 737 33 159 53 969 73 508 

14 488 34 250 54 752 74 546 

15 1260 35 524 55 775 75 765 

16 2266 36 401 56 637 76 657 

17 702 37 590 57 681 77 578 

18 631 38 739 58 805   
19 511 39 671 59 873   
20 601 40 818 60 718   
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Figure 4.1. Distribution Curve of the Gathered Data (Tuna Sales) 

 

4.2. Conducting Individual Forecasts 

4.2.1 Internal Forecast 

For generating a forecast for Panda, a Matlab module was created to find the 

best ARMA model for the sales data. For selecting the best ARMA model, the 

module used two information criteria: Akaike’s Information Criterion (AIC, and 

Bozdogan’s Consistent AIC (CAIC). The best- fitting ARMA model was AR(1). 

The parameter estimates are shown in Table 4.2. The module also plots samples 

ACF and PACF, which are used as qualitative model selection tools to compare. 

Samples ACF and PACF plots are shown in Figure 4.2. 

 

4.2.2 External Forecast 

For generating the external forecasts, proForecaster, an add-in application within 

Excel was used. The best three models the application proposed were used as 

the external forecast.  The external and internal forecasts, including weeks 3 

through 71, are shown in Table 4.3.  
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Table 4.2. Best-fitted ARMA Model for Sales Data 

 

ARIMA(1,0,0) Model 

Conditional Probability Distribution: Gaussian 

                                  Standard           t 

Parameter       Value          Error       Statistic 

Constant        399.413       67.0738        5.95483 

AR{1}       0.450475     0.0513621        8.77057 

Variance        56548.1       4313.09        13.1108 

 
 
 

 
 

Figure 4.2. ACF and PACF Plots for the Sales Data 
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Table 4.3. Internal and External Forecasts Generated 

 

Internal Forecast

AR1 External Forecast #1 External Forecast #2 External Forecast #3

3 873 812.05 824.93 718.02 916.00

4 880 792.68 818.78 719.10 903.70

5 833 795.83 815.29 719.47 896.92

6 806 774.66 805.39 719.41 878.64

7 887 762.50 794.37 719.82 857.87

8 747 798.98 798.97 720.06 866.20

9 765 735.92 780.24 719.35 832.11

10 619 744.03 770.46 720.61 812.91

11 723 678.26 740.44 720.47 757.46

12 792 725.11 735.75 721.84 747.60

13 737 756.19 742.14 720.83 760.30

14 488 731.41 738.26 720.20 753.64

15 1260 619.24 697.49 720.77 677.66

16 2266 967.01 788.42 722.93 844.21

17 702 1420.19 1005.50 717.48 1250.84

18 631 715.65 918.05 711.65 1093.87

19 511 683.66 850.90 721.06 961.49

20 601 629.61 781.65 721.79 832.65

21 545 670.15 746.41 722.95 766.40

22 695 644.92 711.82 722.07 703.08

23 398 712.49 710.80 722.57 700.77

24 545 578.70 663.41 721.20 614.18

25 553 644.92 654.07 724.12 594.39

26 602 648.53 646.99 722.63 582.55

27 614 670.60 649.95 722.53 588.12

28 649 676.00 653.72 722.04 595.52

29 573 691.77 661.92 721.91 610.81

30 440 657.53 655.93 721.59 600.00

31 337 597.62 631.59 722.39 554.24

32 466 551.22 598.68 723.79 492.11

33 159 609.33 595.11 724.79 484.64

34 250 471.04 544.27 723.61 391.51

35 524 512.03 523.86 726.74 351.04

36 401 635.46 550.07 725.66 400.50

37 590 580.05 548.88 722.90 400.65

38 739 665.19 578.66 724.07 454.80

39 671 732.31 621.66 722.11 536.08

40 818 701.68 641.84 720.70 574.67

41 751 767.90 679.70 721.31 644.26

42 810 737.72 695.57 719.96 674.79

43 543 764.30 716.73 720.57 713.46

44 850 644.02 690.17 720.06 664.71

45 943 782.32 719.93 722.54 717.70

46 758 824.21 753.40 719.67 782.14

47 821 740.87 749.30 718.86 775.23

48 891 769.25 757.12 720.50 788.32

49 918 800.79 772.72 719.93 817.69

50 846 812.95 787.93 719.32 846.38

51 749 780.51 787.76 719.08 846.27

52 1099 736.82 773.03 719.71 818.45

53 969 894.48 816.74 720.55 898.69

54 752 835.92 826.27 717.65 918.80

55 775 738.17 800.97 718.64 871.09

56 637 748.53 787.01 720.56 843.61

57 681 686.37 755.01 720.37 784.52

58 805 706.19 739.62 721.68 754.91

59 873 762.05 747.15 721.22 769.24

60 718 792.68 762.65 720.07 798.91

61 793 722.85 749.87 719.47 775.77

62 902 756.64 753.18 720.88 780.70

63 616 805.74 771.59 720.17 815.39

64 617 676.91 740.36 719.22 758.37

65 511 677.36 719.76 721.90 717.93

66 770 629.61 687.81 721.93 658.75

67 836 746.28 705.43 722.88 690.57

68 724 776.01 726.75 720.39 732.16

69 522 725.56 725.22 719.80 729.83

70 555 634.56 693.62 720.88 670.39

71 780 649.43 676.70 722.86 637.39

External Forecasts Using proForecaster ADD-IN
Week Actual Demand
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4.3. Conducting the Neural Network Forecasting Model 

Once all the individual forecasts are obtained, they can be used to find the best 

neural network for predicting actual sales. To find the best network, Alyuda 

forecaster XL, a forecasting Excel add-in based on neural networks, is used. The 

forecasted sales using the neural network are presented in Table 4.4, while the 

actual versus the forecasted sales using the network are shown in Figure 4.3. As 

illustrated in Figure 4.4, the neural network diagram has 4 inputs (1 internal 

forecast and 3 external forecasts), 9 hidden neurons, and 1 output that is the 

forecast. The input data used in the neural network is divided into two sets: the 

learning set (83% of the data) and the testing set (17% of the data). 

 

4.4. Comparing the Outputs 

Once the forecast is generated from all the models, a comparison is conducted 

based on three criteria: Mean Absolute Deviation (MAD), Mean Square Errors 

(MSE), and Mean Absolute Percentage Error (MAPE) to determine the best-

fitting model for the data. Table 4.5 shows each forecasting model’s errors. The 

forecasting combination is the best-fitting model since it has the minimum criteria. 

For calculating errors, the testing set was used. 

 

4.5. Conducting the Forecast 

Based on the previous step, the best-fitting model is the neural network 

combination model; thus,  it was used to predict future forecasts (weeks 72 to 
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77). The results are presented in Table 4.6. The calculated Mean Absolute 

Percentage Error (MAPE) for the upcoming 6 weeks was found to be 18.47%, 

showing how effective the neural network combination model is. The neural 

network combination was better than the individual forecasts; however, the other 

two combining methods (i.e., linear regression combination and simple average 

combination)  are suggested in the literature. 

 
 

Table 4.4. Forecasted Sales Using the Neural Network Combination 
 

Week 
Neural Network Forecast 

Combination 
Week 

Neural Network Forecast 
Combination 

Week 
Neural Network Forecast 

Combination 

3 790.83 26 533.35 49 752.14 

4 757.75 27 615.83 50 731.28 

5 726.07 28 635.83 51 870.41 

6 827.64 29 687.81 52 1114.00 

7 891.32 30 349.39 53 1009.66 

8 724.42 31 408.34 54 743.61 

9 990.58 32 480.14 55 839.92 

10 1097.94 33 247.38 56 1002.03 

11 657.14 34 919.37 57 678.02 

12 770.00 35 436.20 58 745.73 

13 678.66 36 607.44 59 814.56 

14 450.19 37 620.87 60 780.64 

15 771.61 38 822.29 61 406.18 

16 2140.14 39 619.71 62 911.21 

17 693.23 40 808.39 63 739.60 

18 583.75 41 765.53 64 653.17 

19 792.42 42 740.51 65 628.02 

20 575.78 43 819.05 66 621.61 

21 636.32 44 738.96 67 803.29 

22 654.11 45 821.93 68 803.22 

23 798.08 46 730.94 69 382.47 

24 172.28 47 857.74 70 707.61 

25 452.75 48 845.43 71 760.32 
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Figure 4.3. Actual vs. Forecasted Sales Using the Neural Network Model 

 
 

 
 

Figure 4.4. Neural Network Diagram for the Sales Data  
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Table 4.5. Comparison of Forecasting Models Using MAD, MSE, and MAPE 

Forecast Model MAD MSE MAPE 

AR1 143.27 56565.46 23.87 

External Forecast #1 150.25 60504.03 25.19 

External Forecast #2 165.99 69789.59 29.45 

External Forecast #3 161.20 64499.73 25.22 

Neural Network Combination 108.97 21369.39 16.52 

Linear Regression Combination 142.69 55768.24 23.68 

Simple Average Combination 146.70 58403.77 24.68 

 
 

Table 4.6. Forecast for the Upcoming Six Weeks 

Week Actual Demand Neural Network Forecast Combination 

72 873 739.95 

73 880 742.88 

74 833 707.33 

75 806 663.37 

76 887 628.90 

77 747 611.50 
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATIONS 

 
 

5.1 Conclusion 

 
This study explored the importance of demand forecasting and how its accuracy 

can impact a supply chain’s profitability. Overestimation leads to overstock and 

added costs (e.g., holding cost, dumping cost for perishable items, and return 

cost). Underestimation leads to loss of potential sales and as a result less 

revenue. Then the following innovations in the supply chain were discussed: 

Vendor Managed Inventory (VMI), and Collaborative, Planning, Forecasting, and 

Replenishment (CPFR). CPFR aims to enhance the supply chain’s efficiency by 

having a joint plan and by forecasting between two or more supply chain partners 

that will be used as the basis for production and replenishment activities. Next  

information sharing in the supply chain, including the types and benefits of 

shared information, was discussed . Also discussed was the process of 

combining forecasts and how it can improve forecast accuracy in terms of a 

better mean squared error. Then, a neural network forecasting model was 

proposed, which combines different forecasting models generated by different 

key players in a supply chain.  Finally, a case study was presented to test the 

model. The results show that sharing point-of-sales data with key suppliers and 

having a combined forecast improved the accuracy and was better than each 

making individual forecast.  These findings  indicate that this model is effective 

for collaborative forecasting, an essential part of the collaborative planning, 

forecasting and replenishment (CPFR) model.  

5.2 Recommendations for Future Research 

 
In this study, different software packages were used to find the forecast: Matlab 

for the internal forecast and Alyuda forecaster XL for the neural network. 
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Designing a program that can do both activities without having to shift between 

software packages is recommended. Furthermore, the model presented in this 

study was tested on a food retailing company’s sales data; however, it could be 

tested on other fields. 
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ARMA Fitting Matlab Module 

 
Import the data ................................................................................................ 35 
Create output variable ..................................................................................... 35 
Clear temporary variables ............................................................................... 35 
Plot the Time Series ........................................................................................ 36 
Plot the sample autocorrelation function (ACF) and partial autocorrelation 
function (PACF) ............................................................................................... 36 
Fit ARMA(p,q) models ..................................................................................... 37 
Calculate the model selection criteria .............................................................. 38 
Fitting the best model ...................................................................................... 39 
Finding the future forecast using the best model ............................................. 41 
Observations of the fitted model ...................................................................... 41 

 

%USAGE: ARMA_Fitting_Enani 

 

% Created by Abdulrahman Enani 

%            Department of Industrial and Systems Engineering 

%            The University of Tennessee 

%            Knoxville, TN, 37996, USA 

 

 

clear all; 

clc; 

clf; 

close all 

%Load or enter the time series data set 

Import the data 

[~, ~, raw] = xlsread('C:\Users\abood\Desktop\UTK- materials\Thesis\Sales-Tuna-

Sys.xlsx','Sales Data','B2:B78'); 

Create output variable 

Data = reshape([raw{:}],size(raw)); 

Clear temporary variables 

clearvars raw; 
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Plot the time series 

Y = Data(1:71); 

 

figure (1) 

plot(Y,'b') 

xlim([0,80]) 

 

Plot the sample autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) 

%for the simulated data. 

 

figure (2) 

subplot(2,1,1) 

autocorr(Y) 

subplot(2,1,2) 

parcorr(Y) 

 

 

%Note that both the sample ACF and PACF decay relatively slowly. 

%This is consistent with an ARMA model. The ARMA lags cannot be selected 
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%solely by looking at the ACF and PACF, but it seems no more than four AR or MA terms 

%are needed. 

 

Fit ARMA(p,q) models 

%To determine the best lags, we fit several models with different lag choices. Here, 

%we fit all combinations of p = 0,...,4 and q = 0,...,4 (a total of 32 models). Then we 

store 

%the loglikelihood objective function values for each model fit and number of 

coefficients for 

%each fitted model. 

 

pMax=4; 

qMax=4; 

LOGL = zeros(pMax+1,qMax+1); %Initialize 

PQ=zeros(pMax+1,qMax+1); 

 

for p = 0:pMax 

    for q = 0:qMax 

 

        Md1 = arima(p,0,q); 

       [EstMd1,EstParamcov,logL] = estimate(Md1,Y,'print',false); 

        LOGL(p+1,q+1)=logL; 
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        PQ(p+1,q+1)=p+q; 

     end 

end 

Calculate the model-selection criteria 

%Calculate the model-selection criteria. Number of parameters for ARMA(p,q) 

%model is p+q+1. 

 

 

LOGL = reshape(LOGL,(pMax+1)*(qMax+1),1);... 

    %Elements taken column wise 

 

PQ=reshape(PQ,(pMax+1)*(qMax+1),1); 

 

disp('AIC Computation') 

 

n=length(Y); 

[aic,~]=aic_caic(LOGL,PQ+1,n); %numParams=PQ+1 

 

AIC=reshape(aic,pMax+1,qMax+1) 

minAIC=min(aic) 

[bestP,bestQ]=find(AIC==minAIC) 

 

 

disp('SBC/BIC Computation') 

 

[~,caic]=aic_caic(LOGL,PQ+1,n); 

 

CAIC=reshape(caic,pMax+1,qMax+1) 

minCAIC=min(caic) 

[bestP,bestQ]=find(CAIC==minCAIC) 

AIC Computation 

 

AIC = 

 

  995.2194  982.1339  983.7173  985.5674  986.1617 

  981.6530  983.3951  982.1344  984.0613  985.8734 

  983.3777  985.3407  987.1572  982.0896  987.8046 

  983.3165  983.8736  985.8413  988.1631  985.5012 

  985.0178  985.5839  988.5228  990.1652  985.0309 

 

 

minAIC = 

 

  981.6530 

bestP = 

 

     2 
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bestQ = 

 

     1 

 

SBC/BIC Computation 

 

CAIC = 

 

   1.0e+03 * 

 

    0.9985    0.9887    0.9935    0.9986    1.0025 

    0.9882    0.9932    0.9952    1.0004    1.0054 

    0.9932    0.9984    1.0035    1.0017    1.0106 

    0.9964    1.0002    1.0054    1.0110    1.0116 

    1.0013    1.0052    1.0114    1.0163    1.0144 

 

 

minCAIC = 

 

  988.1783 

 

 

bestP = 

 

     2 

 

 

bestQ = 

 

     1 

Fitting the best model 

Md1 = arima(bestP-1,0,bestQ-1); 

EstMd1=estimate(Md1,Y); 

[res,~,logL]=infer(EstMd1,Y); 

 

stdr = res/sqrt(EstMd1.Variance); 

 

figure (3) 

 

subplot(2,2,1) 

plot(stdr) 

title('Standardized Residuals') 

subplot(2,2,2) 

hist(stdr) 

title('Standardized Residuals') 

subplot(2,2,3) 

autocorr(stdr) 

subplot(2,2,4) 

parcorr(stdr) 
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fit = estimate(Md1,Y); 

  

    ARIMA(1,0,0) Model: 

    -------------------- 

    Conditional Probability Distribution: Gaussian 

 

                                  Standard          t      

     Parameter       Value          Error       Statistic  

    -----------   -----------   ------------   ----------- 

     Constant        399.413       67.0738        5.95483 

        AR{1}       0.450475     0.0513621        8.77057 

     Variance        56548.1       4313.09        13.1108 

  

    ARIMA(1,0,0) Model: 

    -------------------- 

    Conditional Probability Distribution: Gaussian 

 

                                  Standard          t      

     Parameter       Value          Error       Statistic  

    -----------   -----------   ------------   ----------- 

     Constant        399.413       67.0738        5.95483 

        AR{1}       0.450475     0.0513621        8.77057 

     Variance        56548.1       4313.09        13.1108 
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Finding the future forecast using the best model 

%Finding the future forecast using the best model (6 coming weeks) 

[yF,yMSE] = forecast(fit,6,'Y0',Y); 

upper = yF + 1.96*sqrt(yMSE); 

lower = yF - 1.96*sqrt(yMSE); 

 

figure 

lw1= plot(Y,'Color',[.75,.75,.75]); 

hold on 

plot((Y-res),'r','LineWidth',2); 

hold on 

h1 = plot(n+1:n+6,yF,'r','LineWidth',2); 

h2 = plot(n+1:n+6,upper,'k--','LineWidth',1.5); 

plot(n+1:n+6,lower,'k--','LineWidth',1.5) 

xlim([0,n+6]) 

title('Forecast and 95% Forecast Interval') 

legend([lw1,h1,h2],'Actual Sales','Forecast','95% Interval','Location','NorthWest') 

hold off 

 

Observations of the fitted model 

AR1= Y(3:71)-res(3:71); 

Published with MATLAB® R2015a 
 

http://www.mathworks.com/products/matlab
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