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Abstract 
 

      Spallation Neutron Source (SNS) uses heavy liquid metal (mercury) as the target 

material for high power proton beam bombardment to produce neutrons for scientific 

research. Though the liquid target is not subject to material degradation due to radiation 

damage, the stainless steel pressure boundary confining the liquid metal flow is damaged 

by radiation and cavitation erosion induced by the thermal shock waves caused by the 

deposition of the incoming high-power proton beam. This puts a limit on the lifetime of 

the target holder. 

      To mitigate the cavitation-induced erosion damage to the target holder, it is aimed 

to introduce microbubbles to the target mercury with expected nominal size of 30μm 

diameter and volume fraction of 0.5%, which can substantially lower the pressure 

amplitude resulting from the proton beam deposition due to the added compressibility. 

      The noble gas bubble behavior in mercury is studied in this thesis. The acoustics 

of the two-phase mixture under the perturbation due to beam deposition, specifically 

acoustic streaming, is simulated in a bubbly two-phase flow for the first time in the 

literature. The numerical simulation shows the magnitude of obtained streaming velocity 

is much smaller than the pumped mercury flow in the target and will not cause distortion 

to flow patterns and heat transfer in the target. 

      Single bubble dynamics, which includes noble gas solubility evaluation in 

mercury and the bubble radius evolution under the effect of mass diffusion across the 

bubble wall, is also simulated. Two different profiles of bubble size distribution are 

studied. The solubility evaluation provides a theoretical basis for the inert gas solubility 

measurement experiments. The mass diffusion induced bubble behavior simulation based 

on the solubility results indicates that xenon bubbles creates a more viable and stable 

bubble population in mercury than helium bubbles, which means xenon is a possible 

better candidate to add compressibility to pure mercury in the SNS target. 
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1 Introduction 

1.1 Background 

      Neutron scattering is an advanced experimental method used in a wide variety of 

research activities to study the arrangement, motion, and interaction of atoms in materials. 

The advantage of using neutron scattering is that it can provide important information on 

material structures that often cannot be revealed by other methods, such as electron 

microscopy and X-ray diffraction method. 

      The Spallation Neutron Source (SNS), under construction in the Oak Ridge 

National Laboratory (ORNL), is aimed to be the most powerful spallation source in the 

world upon completion. The accelerator-based pulsed neutron source will have a 1-GeV 

energy proton beam of up to 1.4 megawatts power impinging on the target to produce 

neutrons as the result of the collision between the heavy target material atoms and the 

proton beam. The beam energy is deposited in pulses of one microsecond duration, with 

sixty pulses delivered each second. The neutrons are subsequently collimated and 

moderated to accommodate the needs in the scientific research activities. The SNS will 

greatly benefit the scientific community by providing valuable information on material 

structures that cannot be obtained using other methods and facilitating research activities 

in material, biological and physical sciences. 

      The SNS is also to be the first scientific device using pure mercury as the target 

material for neutron production. The usage of liquid mercury can exclude the material 

degradation effect due to the radiation damage common to solid target materials. Mercury 

atoms are also rich in neutrons and susceptible to spallation reactions. However, the 

deposition of each proton beam pulse in mercury will result in high amplitude pressure 

waves in the target region. The interaction between the pressure waves and the target 

vessel will cause cavitation damage to the pressure boundary. This will reduce the 

lifetime and may limit beam power handling capacity of the target. 

      One promising method to mitigate the cavitation damage to the pressure vessel is 

to inject very small helium gas bubbles into mercury. The reason for using microbubbles 
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is that they can respond to the one-microsecond pressure rise caused by the proton pulse 

deposition due to their high resonance frequencies. A suitable bubble size distribution in 

mercury will add compressibility and lower the amplitude of the pressure waves, which 

will reduce cavitation damage. Also the small bubbles tend to stay entrained in mercury 

flow, while large bubbles are more buoyant and will stratify in the target mercury flow 

circuit. 

      A full-scale test facility of the SNS target loop (TTF) was constructed to perform 

the flow test of the mercury and obtain expertise with target body remote handling. The 

TTF is also incorporated with a gas injection system for the purpose of testing gas bubble 

deployment at a full-scale level [Riemer, et al, 2004]. The components in the TTF are 

identical to those planned for application in the actual SNS target system. 

      The TTF has been used in a series of tests to characterize the transient and steady 

state behavior of the target flow. Also initial helium bubble injection experiments have 

been performed in the TTF, which exposed the difficulties in obtaining the desired gas 

volume fraction of 0.5% and bubble diameter near 30μm. This motivates the careful 

study of small bubble behaviors in mercury. Inert gas types other than helium may also be 

good candidates for bubble injection and they are also studied along with helium. For 

example, the solubility of xenon is much smaller than helium in mercury, which promotes 

long-term stability of xenon bubbles when deployed in the mercury flow circuit. 

      It is also interesting to examine the flow field induced by periodic proton beam 

insertion near the target window, which causes window deflection. The SNS target 

module consists of the mercury target vessel and the mercury feed and return lines. The 

target module is illustrated in Figure 1. The green arrows indicate the mercury flow 

direction in the target and the cyan arrow shows the orientation of the incoming proton 

beam. With gas bubble injection, the target contains bubbly flow, which will be perturbed 

by the deposition of a proton beam pulse of one microsecond duration, sixty pulses per 

second. The beam deposition will cause the target structure to ring at resonance. The 

acoustic drive is modeled here as a sinusoidally vibrating window, which drives flow and 

also forms the boundary condition and initial condition for the numerical simulation. The 

flow field is modeled by solving the response of the mercury-helium system subject to a 



 

Figure 1 Target Vessel Module [Pointer, 2001] 

sinusoidally vibrating target window with frequency of 10kHz. The bubble resonance 

frequency of a 30μm diameter bubble in mercury is very high (around 100kHz for 

isothermal gas behavior), so the chosen driving frequency is well below the resonance 

value. 

1.2 Purpose and Organization of the Thesis 

      The interaction between gas bubbles and the liquid mercury is idealized and 

studied numerically using an extension of techniques developed to examine the acoustic 

streaming phenomenon in single-phase systems. The simulation was developed to study 

flows induced by pressure waves caused by proton pulses. Such flows were not 

considered in the initial target design and are scaled herein. The target is considered to be 

a one-dimensional duct containing bubbly two-phase flow. The structure response to the 

beam pulses is modeled as periodic boundary condition at the beam window, which 

drives flow in the target. 

      The design of the inert gas injection system requires understanding of the 

behavior of the gas bubbles in mercury and the interaction between the gas bubbles and 

mercury. To understand the bubble behavior, the gas solubility in mercury is essential to 

know, since the bubble lifetime greatly depends on how much gas will dissolve in 

mercury. In this thesis, the solubility of different inert gases in mercury is theoretically 

evaluated. And the bubble behavior due to mass diffusion is studied based on the 
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solubility results. 

      The acoustics of the two-phase mixture under the perturbation due to beam 

deposition, specifically acoustic streaming, is simulated in a bubbly two-phase flow for 

the first time in the literature. The numerical simulation shows the magnitude of obtained 

streaming velocity is much smaller than the pumped mercury flow in the target and will 

not cause distortion to flow patterns and heat transfer in the target. 

      Inert gas solubility in mercury is theoretically investigated to provide a theoretical 

basis for the inert gas solubility measurement experiments, as there is still no available 

theoretical and experimental data available in the literature. This information is important 

for successful operation of inert gas bubble injection experiments in the SNS. 

      The bubble behavior under the effect of mass diffusion across the bubble wall is 

also simulated. Two different profiles of bubble size distribution are studied. The mass 

diffusion induced bubble behavior simulation based on the solubility results indicates that 

xenon bubbles creates a more viable and stable bubble population in mercury than helium 

bubbles, which shows xenon is another more promising candidate to add compressibility 

to pure mercury in the SNS target other than helium. 

 

 



 5

2 Acoustic Streaming in Mercury-Helium Two-Phase Flow 

2.1 Literature Review 

      Since the first work by Rayleigh [1884] addressing the circulation phenomenon of 

air in Kundt’s tubes, acoustic streaming has been extensively investigated. Acoustic 

streaming refers to the time-average velocity fields induced in single-phase compressible 

gas or liquid by a steadily oscillating acoustic field. The nonlinear acoustic field variables 

can be expanded about their equilibrium values, where the first order term is the primary 

sinusoidally oscillating field. The second order terms contain both the steady and 

second-order harmonic fields. The mechanism inducing the steady flow is the interaction 

between second order terms in the nonlinear sound field. The second harmonic term is 

filtered out using time average over a single primary cycle to generate the steady term. 

Though the magnitude of the streaming velocity remains quite small relative to the 

primary oscillatory particle velocity amplitude even at high sound intensity for most 

applications, this phenomenon has important potential engineering applications in 

micromechanical flow systems that use acoustic pumping. 

      Both Nyborg [1965, 1998] and Riley [2001] reviewed the theoretical 

fundamentals of acoustic streaming. Nyborg adopted an approach of successive 

approximation to the sound field variables. The steady streaming is included in the 

second-order approximation equation system. In Riley’s work a time-average operation is 

directly applied to the governing partial differential equations, and the solution of the 

resulting equations gives the time averaged streaming velocity. Both methods render 

analytical solutions of the streaming velocity field and other field variables. However, 

due to the complexity of the governing equations, analytical solutions are only available 

for single-phase flow cases where the boundary geometries are simply planes, cylinders 

or spheres. 

      More recent work has been dedicated to the numerical solutions of the streaming 

velocity field. Kawahashi [1996], Yano [1999] and Farouk [2004] successfully simulated 

acoustic streaming phenomena in resonators containing single-phase gases, which have a 
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piston or moving wall vibrating harmonically to motivate the flow in a closed 

two-dimensional duct and create the sound field in the duct. The results show that 

streaming field has a circulatory pattern and the magnitude of the streaming velocity 

increases with increasing velocity amplitude of the oscillating piston or moving wall. 

      Some historical evaluations take into consideration the engineering applications 

of the acoustic streaming phenomenon. The secondary flow induced by acoustic 

streaming may enhance heat transfer. Wan and Kuznetsov [2001] simulated the cooling 

effect of a computer chip subjected to traveling waves and standing waves and found that 

the addition of an acoustic field increased the cooling efficiency up to three times the 

value of conventional convective cooling method. Deymier [2000] developed the theory 

for particle removal forces induced by second order terms in an acoustic field in a 

cleaning process for silicon wafers. The results show that the cleaning efficiency could be 

improved by subjecting the wafer to an incident acoustic wave of megahertz frequency in 

a wide range of incidence angles. 

      While a large amount of work has been done to investigate acoustic streaming in 

single-phase fluid flow, relatively much less effort is dedicated to two-phase (or 

two-component) flow systems. Wu [1997] investigated the streaming field induced by a 

vibrating bubble in an ultrasound field. He evaluated streaming patterns both inside and 

outside the bubble. Yarin [2001] solved analytically the streaming field due to the shape 

oscillation of a liquid droplet in an immiscible fluid, and evaluated the effect on mass 

transfer in a liquid-liquid system. Both of these studies focus on the streaming field inside 

a single bubble or droplet and in the surrounding fluid, without the consideration of the 

situation with a large number of dispersed bubbles or drops in the ambient liquid. 

      The reviews indicate that current studies on acoustic streaming contribute to the 

single-phase fluid flows. In this thesis project, the numerical simulation of acoustic 

streaming is applied to mercury-helium two-phase flow. 

2.2 Physical Models 

      The numerical simulation of acoustic streaming in gas-liquid two-phase flow 

requires suitable modeling of two-phase flow and an accurate numerical scheme to solve 



the governing equations under certain initial conditions and boundary conditions. 

      The two-fluid model has been extensively studied to model two-phase fluid flow 

by a large number of researchers [Ishii, 1975; Delhaye, 1981; Drew, 1983]. The model 

assumes inter-penetrating continuum for both two phases, so distinct partial differential 

equations describing single-phase fluid flow can be applied to two phases for mass, 

momentum and energy conservation. The two phases interact through interfacial mass, 

momentum and energy transfer. A complete two-fluid model needs detailed formulation 

of the interaction terms to form a solvable equation system. 

      For simplicity, only mass and momentum equations are illustrated from Ishii & 

Kocamystafafaogullari [1982]: 

• Mass continuity equation 

( ) kkkk
kk v

t
Γ=⋅∇+

∂
∂ ραρα

      (1) 

• Momentum equation 

( )

kikkikikkkkkk

kkkk
kkk

Mvgp

vv
t

v

,,, ταραταα

ραρα

α ⋅∇−+Γ++⋅∇+∇−

=⋅∇+
∂

∂

      (2) 

where: 

• αk is the volume fraction for phase k 

• Γk  is the mass transfer to phase k; 

• Mi,k is the interfacial drag 

• τk is the shear stress tensor 

• τi,k is the shear stress evaluated at the interface 

      In general, the dependent variable vector from the governing equations can be 

rewritten into the following forms, which are not exactly in conservative form. 

( ) ( )( ) ( ) ( )( txUG
x

txUtxUA
t

txU ,,,,
= )

∂
∂

+
∂

∂
      (3) 

      If the matrix A has complex eigenvalues, the equation set is ill-posed, which 
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implies that small perturbations may grow unconditionally if not damped in some way. 

Though in some problems the ill-posed equations still render meaningful solutions, it is 

better to find a way to modify the original equations or modeling of interaction terms to 

obtain a well-posed system. 

      Besides the two-fluid model, a one-dimensional homogeneous two-phase model is 

also successfully applied in those cases where the relative motion between two phases is 

negligible [van Wijngaarden, 1972; Ruggles, 1987; Wang & Brennen, 1998; Preston, et al, 

2000]. The homogeneous model uses mixture state variables. 

      For mercury-helium bubbly flow considered here, a continuum model for bubbly 

flow is adopted from van Wijngaarden [1972]. This model neglects the relative motion 

between the phases and compressibility of the liquid phase. The gas inside the bubble 

excludes mercury vapor and only consists of helium gas. The model couples the 

conventional continuity and momentum equations for the mixture with the 

Rayleigh-Plesset equation, which governs bubble dynamics. These equations govern 

pressure field and bubble size evolution. Bubbles remain spherical during oscillations and 

are permanent. The volume fraction of the gas phase is initially near 0.5%. The 

applicability of this model to helium-mercury bubbly flow here can be approximately 

validated by evaluating helium gas bubble terminal velocity in mercury with a bubble 

radius of 15μm [Lamb, 1932], 

f

l
r

Rgv
μ
ρ
3

2

=       (4) 

where: 

• ρl is the density of mercury 

• R is the bubble radius 

• μf is the dynamic viscosity coefficient of mercury 

      Evaluated at the given mercury properties and bubble radius, 

smvr /0064.0=       (5) 

      The bubble terminal velocity is small compared to convective velocities and 
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acoustic velocities in this system, indicating the homogeneous two-phase model can be 

applied to mercury-helium bubbly flow. Using the Rayleigh-Plesset equation to couple 

the bubble dynamics with fluid mechanics, the system is well posed. The complete 

system in one-dimensional format is described as follows with mixture state variables, 

• Mass and momentum equation: 
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• Rayleigh-Plesset equation 
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where S is the surface tension of mercury.  

      Neglecting relative motion between phases and gas contribution to the mixture 

density implies a relationship between mixture density and the bubble radius, 
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where α0 and R0 are initial gas volume fraction and bubble radius, respectively. 

2.3 Problem Description 

      To simulate the flow field in the target induced by the deposition of the proton 

beam near the target window, the target is considered as a one-dimensional closed duct 

initially filled with mercury and uniformly dispersed with uniform-sized helium bubbles. 

The structure response from the beam insertion is approximated as the sinusoidally 

vibrating window left wall, which performs as a sound source in the simulation and 

drives the flow in the duct. The duct is chosen with a length of 0.2m similar to the 

dimension of the actual target (Figure 2). 
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Figure 2 Schematic of the Simulation Domain 

 

      The vibrating frequency of the left wall is fixed at 10kHz. Two different vibrating 

velocity amplitudes of the left wall are used to simulate streaming velocity field in 

response to changes in sound intensity. The harmonically oscillating velocity of the left 

wall is given by uw=Asin(ωt), where A is the maximum velocity of the left wall, and ω is 

the angular frequency of the vibration (ω=2πf). Reflecting boundary conditions are used 

for both ends of the enclosure. A suitable numerical scheme is applied to solve the 

governing equations. The streaming velocity is obtained by a time-averaged operation on 

the instantaneous acoustic velocity field. 

2.4 Numerical Methods 

      To solve the governing partial differential equations in Eulerian framework, the 

scheme is required to reformulate the equations into a discretized form using finite 

difference or finite volume methods on a fixed-grid basis. The difficulty and complexity 

in this framework stems from the discretization of Rayleigh-Plesset equation, which is a 

second-order partial differential equation. 

      A method developed by Colonius, et al [2000] treats the equations in the 

Lagrangian coordinate system through a finite volume scheme. The one-dimensional duct 

is initially divided into N subdivisions of equal length with N+1 interfaces on which field 

variables are defined and to be solved (Figure 3). Mass and momentum balance equations 

are integrated over each of these N cells. The key here is to convert the partial differential 

equations into ordinary differential equations, which excludes the spatial difference for 

the discretization of the partial differential equations. The Rayleigh-Plesset equation will  

 10



 

Figure 3 Schematic of Numerical Computational Domain 

 

also be solved at each interface to update the radius values with the isothermal gas 

behavior determined from the work by Sawyer and Ruggles [2004].  

      For the subdivision with interface number of j and j+1, the integrated mass and 

momentum balance equations are transformed into the following equations, 

01 =∫
+j

j

x

x
dx

dt
d ρ       (10) 
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ppudx
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j
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      The integration of mass and momentum over the control volume is approximated 

by the following formula suggested by Colonius [2000], 
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1
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      In using Lagrangian methods, the positions on which the variables are defined are 

moving and the cell size also changes with the time. The compression and decompression 

the cell vary from time step to time step. Taking into account the moving cell boundaries, 

the spatial integration over each cell results in a system of ordinary differential equations 

for all cells. The accuracy of the numerical scheme will only depend on the integration 

method and the method for solving the ordinary differential equations. 

      Another useful equations addressing moving cell walls is as follows relating each 

wall position (xj) and velocity (uj), 

j
j u

dt
dx

=       (13) 
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      Combined with the Rayleigh-Plesset equation for each cell interfaces, the whole 

system contains 5(N+1)-2 ordinary differential equations for 5(N+1) unknown variables 

on N+1 cell boundaries. Two boundary conditions complete the system. As suggested by 

Colonius [2000], an implicit time marching scheme shall be used. At each time step, 

Newton’s method is adopted to obtain the solution from the nonlinear system of 

discretized equations. In this case, the Jacobian matrix is band diagonal and easy to get 

root correction for convergence. A first-order Euler’s method is chosen for the ordinary 

differential equations and small time step shall be employed. A mesh structure of 

3000×5000 is used for space and time respectively in each vibration period. 

2.5 Results and Discussion 

      The numerical simulation of acoustic streaming generated by the sinusoidal 

motion of the left wall is performed in the one-dimensional enclosure containing a 

mixture of mercury and uniformly dispersed helium gas bubbles. The initial pressure in 

the bulk liquid is taken as 3bar and the initial bubble radius is 15μm. The volume fraction 

of gas is 0.5% before the left wall begins to vibrate. The study is focused on the effect of 

two different velocity amplitudes of the left vibrating wall on the streaming velocity 

distribution at a fixed vibrating frequency. The computations begin with a quiescent 

mixture. A large number of vibration cycles are used to form an approximately steady 

acoustic field in the one-dimensional enclosure. Up to 2,000 cycles are run in the current 

numerical investigation. Two different cases are run with different left wall vibration 

amplitudes. 

2.5.1 Case one with Vm=0.2m/s 

      In the first case, the wall velocity amplitude is chosen at 0.2m/s. Figure 4 and 

Figure 5 plot the pressure and velocity profiles respectively for four different times in the 

No. 2000 cycle, when ωt=0, π/2, π and 3π/2. The profiles are plotted only for the first 

twentieth portion of the enclosure. 

      The acoustic field created in the enclosure is approximately stable. The 

nonlinearity of the acoustic field is apparent. The profiles are propagated to the right and  
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Figure 4 Mixture Pressure Profile in the Enclosure at Four Different Phases (ωt=0, 

π/2, π, 3π/2) during the Cycle of No.2000 
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Figure 5 Mixture Velocity Profile in the Enclosure at Four Different Phases (ωt=0, 

π/2, π, 3π/2) during the Cycle of No.2000 
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reflected at the right wall. The profiles at subsequent times are similar. At ωt=0 and ωt=π, 

the pressure at the left wall reaches the maximum value, and the velocities are also 

maximum which demonstrates the near zero phase shift between pressure and velocity. 

This is expected for a weakly nonlinear system where the pressure and velocity are 

related by: 

ucp Δ≈Δ ρ       (14) 

where c is the sound velocity in the two-phase mixture. The driving frequency of 10kHz 

is much less than the bubble resonance frequency, which also contributes to keeping 

pressure and velocity in phase. The flow field is approximately periodic in time, and the 

maximum displacement velocity is about 0.4m/s, which is two times the vibrating 

velocity amplitude of the left wall. 

      A time average of the displacement velocity field for the last 100 cycles preceding 

the No. 2000 cycle is performed to obtain steady streaming velocity profile. After around 

2000 cycles of vibrating excitation, the acoustic field is approximately stable in the 

enclosure. Figure 6 shows the streaming velocity distribution along the enclosure axis at t 

=0.2s at full enclosure length. The streaming velocity distribution fluctuates along the 

axis in part because a standing wave is present in the enclosure. 

      The shape of obtained streaming velocity profile (Figure 6) qualitatively agrees 

with single phase streaming evaluations investigated in Nyborg’s review [Nyborg, 1965], 

where the streaming velocity is opposite to the direction of the traveling wave in the 

enclosure. It is noted that this one-dimensional evaluation creates streaming velocity 

solutions that do not satisfy mass continuity condition for the enclosure. A 

multi-dimensional representation would allow patterns of circulation to form satisfying 

continuity for the time averaged flow field. 

      The existence of acoustic streaming is further validated by the frequency spectra 

of left wall pressure history. Figure 7 and Figure 8 plot the time variation of pressure at 

the left wall (No.1999 & No.2000 cycle) and the power spectral density of the pressure 

variation at the left wall. The pressure shape is distorted from the pure sine waveform as 

shown in Figure 7. A frequency spectral analysis of the pressure fluctuation (Figure 8)  
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Figure 6 Streaming Velocity Profile in the Enclosure at t=0.2s with Vibration 

Velocity Amplitude of 0.2m/s 
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Figure 7 Time-Dependent Pressure Profile at the Left Wall for the Cycle of No.1999 

and No.2000 
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Figure 8 Frequency Spectrum of the Pressure Fluctuations at the Left Wall 
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 19

shows the second-order harmonic component is present, and higher harmonic 

components are also visible. The distortion in the pressure is caused by the higher-order 

harmonic components. This type of distortion in the pressure is typical for situations in 

single-phase flow where streaming is present. 

2.5.2 Case two with Vm=0.4m/s 

      In the second case, the velocity amplitude is increased to 0.4m/s to study the 

effect of elevated amplitude on the profile of streaming velocity. The increased intensity 

of the sound source results in the strengthened nonlinearity in the sound field (Figure 9 

and Figure 10). The pressure perturbation signal and velocity history have more sharp 

spikes than the first case. The pressure and instantaneous velocity are still in phase with 

each other, though the sound field is more nonlinear. 

      The streaming velocity distribution is again obtained through the time-average of 

the instantaneous velocity profiles in the last 100 cycles preceding the No.2000 cycle. 

After around 2000 cycles of vibrating excitation, the acoustic field is approximately 

stable in the enclosure. Figure 11 shows the streaming flow field along the enclosure axis 

at t=0.2s with the vibrating velocity amplitude of 0.4m/s. It can be seen that the increased 

vibrating velocity amplitude has changed the distribution of streaming velocity and 

pressure amplitude. More violent vibrating motion of the left wall causes the acoustic 

field to be more nonlinear, which increases the streaming velocity.  

      Figure 12 and Figure 13 plot the pressure variation in time and frequency 

spectrum, respectively. The frequency spectrum shows more harmonic components are 

present, which contribute to the distorted pressure waveform at the left wall. 
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Figure 9 Mixture Pressure Profile in the Enclosure at Four Different Phases (ωt=0, 

π/2, π, 3π/2) during the Cycle of No.2000 
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Figure 10 Mixture Velocity Profile in the Enclosure at Four Different Phases (ωt=0, 

π/2, π, 3π/2) during the Cycle of No.2000 
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Figure 11 Streaming Velocity Profile in the Enclosure at t=0.2s with Vibration 

Velocity Amplitude of 0.4m/s 
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Figure 12 Time-Dependent Pressure Profile at the Left Wall for the Cycle of No.1999 

and No.2000 

 

 23



0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

50

100

150

Frequency

Po
w

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

10kHz 

20kHz 

 

Figure 13 Frequency Spectrum of the Pressure Fluctuations at the Left Wall 
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2.5.3 Conclusions 

      The simulation of acoustic streaming in gas-liquid two-phase flow is performed 

based on the numerical solution of a one-dimensional bubbly flow model using a 

finite-volume Lagrangian method. The bubbly flow model does not include damping due 

to thermal transport between the two phases. The only attenuation considered is caused 

by viscous damping effect. The homogeneous model also excludes the relative motion 

between gas and liquid, which may also contribute to damping and attenuation. 

      The streaming velocity distribution in the target is obtained after applying time 

average to the instantaneous velocity field in the computation domain. Acoustic field and 

fluid flow are generated due to the harmonic vibration of the left wall. Compared with the 

convective velocity due to the pumped mercury flow in the target, with mean flow 

velocity of order 2m/s, the predicted magnitude of streaming velocity is quite small, and 

will not cause distortion to flow patterns and heat transfer in the target. 
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3 Theoretical Investigation of Inert Gas Solubility in Mercury 

3.1 Introduction 

      Initial helium gas bubble injection experiments at a full-scale level in the TTF 

showed the difficulties in obtaining anticipated gas volume fraction and bubble size 

distribution in mercury [Riemer, et al, 2004]. Much smaller gas volume fraction was 

observed than expected. These results motivated the study of the mixture properties and 

the bubble behavior in the solution. The gas solubility in mercury must be known to 

understand the bubble behavior, since the bubble lifetime will depend on how much gas 

will dissolve in mercury [Epstein & Plesset, 1950]. Inert gas solubility in liquid metals is 

also an important parameter for applications in nuclear reactor engineering, where the 

formation and dissolution of inert gases from nuclear reactions can affect the heat transfer 

capability of liquid metal as heat-transfer agents, such as helium in liquid sodium. In this 

part of the thesis, the solubility of different inert gases in mercury is theoretically 

evaluated. 

3.2 Model for Inert Gas Solubility Evaluation in Mercury 

      A number of papers have been dedicated to the theoretical investigation of gas 

solubility in liquid, most of which are based on the thermodynamic equilibrium between 

the solvent and the solute [Pierotti, 1965; Shoor and Gubbins, 1969; Neff and McQuarrie, 

1973; Fukase and Satoh, 1976; Thormeier, 1970; Shpil’rain, et al, 2000]. Thermodynamic 

equilibrium state determines the amount of solvent and solute that can coexist under 

certain thermodynamic conditions. 

      Among previous work, the methods used by Thormeier [1970] and Shpil’rain, et 

al [2000] render good agreement with available experimental data. Though the methods 

are developed for liquid alkali metals, they are independent of the chosen substances. The 

theoretical evaluation for inert gases in mercury adopts the method from Shpil’rain, et al 

[2000]. This approach starts from formulating the free energy expression of the binary 

solution of inert gas in mercury using the Fowler-Guggenheim expression [Fowler and 



Guggenheim, 1949], which is a function of quantities of the substances, individual 

properties and system temperature and pressure, 
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where n1 and n2 are the number of moles of the solvent and the solute, respectively; Φ1, 

Φ2 and ΔΦ12 are the molar binding energy of the two components and the correlation part, 

respectively; v1 and v2 denote molar volumes of the two substances; and Z1 and Z2 are two 

state variables. This expression is used to evaluate the chemical potentials for the two 

components. 

      The solubility is usually expressed as the ratio of the solute’s number of moles to 

the total number of moles, 
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n
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+
=       (16) 

which can be used to rewrite the free energy expression. Thermodynamic equilibrium 

state requires the equality between the chemical potential of gas in gas phase ( ) and 

the chemical potential of gas in mercury ( ). For the chemical potential of gas in 

mercury, it takes the partial derivative of free energy (F) against the number of moles of 

the solute in the solution (n

)2(
2ϕ

)1(
2ϕ

2). And the chemical potential of gas in gas phase, it has an 

explicit form [Neff and McQuarrie, 1973], 
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      Equating the two chemical potentials with some mathematical manipulations, a 

formulation for solubility evaluation is obtained [Shpil’rain, et al, 2000], 
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where  is the cover gas pressure above the solution; F)2(
2p 12 is the free energy of the gas 

in the solution and can be written in the following form, 

121212 TSUF −=       (19) 

in which U12 is the temperature-dependent molar internal energy required to introduce a 

gas atom into mercury; S12 is the vibration entropy of gas dissolved in liquid. Both of 

them have certain formulations and can be evaluated using specific property values of the 

solute and the solvent [Shpil’rain, et al, 2000]. 

      It remains to select property values of mercury and the chosen gases. 

Unfortunately, a range of nuclear or physical property values exists in the literature. 

3.3 Numerical Results of Solubility Evaluation 

      Typical property values are excerpted from the literature [Radzig and Smirnov, 

1985; Perry and Green, ed., 1997; Lide, ed., 2005]. The solubility results are dependent 

on the chosen values and may be very sensitive to some values chosen, especially for 

atomic radius. Either metallic radius or covalent radius are used to measure the atomic 

radius depending on the bonding types. The method used to measure atomic radius for 

elements other than noble gases is to measure the distance between two touching atoms. 

Since noble gas atoms do not form bonds, the values of noble gas atomic radius can only 

be measured as van der Waals radius. The values in the literature range from 30 

picometers (pm) to 130 pm for the helium atomic radius. The choice of property values 

would be improved if experimental solubility results are available for validation. 

      Using Table 1, inert gas solubility is evaluated using the aforementioned model. 

The solubility depends on system temperature and pressure. The solubility of helium, 

neon, argon, krypton and xenon in mercury in a temperature range from 300K to 600K is 

computed. Since the solubility is approximately proportional to cover gas pressure 

(mercury vapor pressure is negligible compared to the cover gas pressure), the results will 

be represented in the unit of molar fraction per bar of system pressure [Table 2]. 
 28
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Table 1 Nuclear and Physical Properties of Noble Gases and Mercury 

Substance 

Atomic 

Weight 

(a.m.u) 

Atomic 

Radius 

(10-10m) 

Effective 

Charge 

Polarizability 

(10-30 m3) 

Helium 4.0026 0.31 1.7 0.205 

Neon 20.18 0.71 8.8 0.396 

Argon 39.948 0.98 12.65 1.641 

Krypton 83.8 1.12 20.1 2.484 

Xenon 131.29 1.31 24.3 4.044 

Mercury 200.59 1.51 2 5.02 

 

 

Table 2 Calculated Solubility Values of Noble Gases in Mercury 

Inert Gas Type 
T (K) 

Helium Neon Argon Krypton Xenon 

300.0 8.3658×10-5 2.8808×10-6 6.0368×10-8 5.6825×10-9 9.7188×10-11

350.0 7.8241×10-5 2.7868×10-6 5.8931×10-8 5.5873×10-9 9.5879×10-11

400.0 7.4308×10-5 2.7175×10-6 5.7866×10-8 5.5165×10-9 9.4904×10-11

450.0 7.1329×10-5 2.6644×10-6 5.7047×10-8 5.4619×10-9 9.4150×10-11

500.0 6.8995×10-5 2.6224×10-6 5.6397×10-8 5.4184×10-9 9.3550×10-11

550.0 6.7120×10-5 2.5883×10-6 5.5869×10-8 5.3831×10-9 9.3061×10-11

600.0 6.5580×10-5 2.5601×10-6 5.5431×10-8 5.3537×10-9 9.2654×10-11

 



      The results show that the solubility values for the same gas slightly decrease as 

the system temperature increases, but have significant dependence on the gas atomic 

number (atom size) and nuclear and physical properties. The values drop dramatically 

with decreasing atomic number from 4 (helium) to 54 (xenon). For helium and xenon, the 

difference is up to 6 orders of magnitude. The largest part of the total energy in 

introducing the gas atoms into mercury is the energy of the formation of holes in liquid 

for gas atoms [Shpil’rain, Skovorod’ko and Mozgovoi, 2000]. This explains that the 

lighter noble gas types have bigger solubilities than the heavier ones. So the results are 

very sensitive on the chosen radius values. The smaller the gas atomic radius used, the 

bigger the solubility predicted. 

      Figure 14 to Figure 18 plot the temperature-dependent inert gas solubility in 

mercury with the temperature ranging from 300K to 600K. The solubility is shown to 

drop approximately exponentially against system temperature. The results also indicate 

that the temperature rise due to proton beam deposition in the SNS target will drive the 

dissolved gas out of mercury. A comparison of different inert gas solubility in mercury is 

plotted in Figure 19 at the system temperature of 300K.  

3.4 Henry’s Law Constant 

      Gases dissolve into liquids to form solutions. The dissolution is an equilibrium 

process and some equilibrium constants can be used to correlate the equilibrium state. For 

most gases, the concentration of a solute gas in a solution is directly proportional to the 

partial pressure of that gas above the solution. This relationship can be modeled in an 

empirical law named after J. W. Henry using so-called Henry’s law constant. The 

constant then can be used to determine the gas concentration in the solution 

approximately under certain cover gas pressure, which is another method to represent the 

solubility [Barton, 1991]. The Henry’s law states as follows,  

cKp H=       (20) 

where p is the gas partial pressure above the solution, KH is Henry’s law constant and c is 

the gas concentration in the solution. As yet another form to represent the gas solubility in 

liquid, Henry’s law constant can be evaluated from the calculated solubility results (molar  
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Figure 14 Temperature-Dependent Helium Solubility in Mercury (bar-1) 
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Figure 15 Temperature-Dependent Neon Solubility in Mercury (bar-1) 
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Figure 16 Temperature-Dependent Argon Solubility in Mercury (bar-1) 
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Figure 17 Temperature-Dependent Krypton Solubility in Mercury (bar-1) 
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Figure 18 Temperature-Dependent Xenon Solubility in Mercury (bar-1) 
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Figure 19 Comparison of Inert Gas Solubility in Mercury at 300K 
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fraction). To facilitate the study of helium and xenon bubble behavior in mercury in the 

following chapter, the unit of gas concentration in mercury is taken as kg/m3, which is the 

same as the density unit. The computed values are in Table 3. 

      Again the values differ by several orders of magnitude. A comparison of Henry’s 

law constants is plotted in Figure 20. With evaluated Henry’s law constant, gas solubility 

at different gas partial pressure can be computed easily. For example, the gas 

concentration near the gas bubble wall in the liquid is conveniently obtained using 

Henry’s law constant and gas pressure inside the bubble. 

 

 

 

Table 3 Henry’s Law Constants of Noble Gases in Mercury 

Inert Gas Type 
T (K) 

Helium Neon Argon Krypton Xenon 

300.0 4.426×106 2.5495×107 6.1460×108 3.1125×109 1.1616×1011

350.0 4.7328×106 2.6356×107 6.2959×108 3.1656×109 1.1775×1011

400.0 4.9833×106 2.7028×107 6.4117×108 3.2062×109 1.1895×1011

450.0 5.1915×106 2.7567×107 6.5038×108 3.2382×109 1.1991×1011

500.0 5.3670×106 2.8008×107 6.5788×108 3.2642×109 1.2068×1011

550.0 5.5170×106 2.8377×107 6.6410×108 3.2857×109 1.2131×1011

600.0 5.6465×106 2.8690×107 6.6934×108 3.3037×109 1.2184×1011
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Figure 20 Comparison of Henry’s Law Constants for Inert Gases in Mercury at 

300K 
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4 Mass Diffusion Induced Inert Gas Bubble Behavior in 

Mercury 

4.1 Introduction 

      Inert gas is to be injected into mercury to form a void fraction of 0.5%. The gas 

bubble size will vary in time under the effect of several different mechanisms. For 

example, in a time-dependent pressure field, bubble growth can be studied using the 

Rayleigh-Plesset equation. Another important effect is mass diffusion induced bubble 

growth, resulting from the concentration gradient at the gas bubble wall. In the current 

study, mercury is initially saturated with gas under a cover gas pressure. The injected 

bubbles will shrink if the gas concentration in mercury is less than that at the bubble wall, 

which causes gas atoms to diffuse into the mercury across the bubble wall. The objective 

here is to study bubble behavior under the mass diffusion effect. The phenomenon of 

mass diffusion induced bubble growth is important in the effort of maintaining a desired 

volume fraction of gas bubbles in mercury and the desired bubble diameter. 

      Many analytical models describing bubble growth rate have been developed in the 

literature [Epstein and Plesset, 1950; Scriven, 1959; Manley, 1960; Barlow and Langlois, 

1962]. Most of these models exclude the convective term caused by relative velocity 

between gas bubble and liquid at the bubble wall. The model by Epstein and Plesset 

[1950] provides an approximate solution to the bubble behavior in good agreement with 

experimental data. This model will be used to predict helium and xenon bubble behavior 

here. However, this model doesn’t consider the change in ambient gas concentration 

caused by gas dissolution from the bubbles. This effect is included to complete the bubble 

behavior study. 

4.2 Diffusion Coefficient of Helium and Xenon in Mercury 

      The study of mass diffusion induced bubble behavior requires the knowledge of 

gas diffusion coefficient in the liquid. The diffusion coefficients of helium and xenon in 

mercury are not available in the literature, so some existing theoretical models are used to 



estimate the values. These models are useful in obtaining orders of magnitude for the 

diffusion coefficient values. Here, the classical Stokes-Einstein equation is used, which 

applies for the binary mixture considered, 

glr
kTD
πμ6

=       (21) 

where D is the diffusion coefficient; k is the Boltzmann constant; μl is the liquid (solvent) 

dynamic viscosity and rg is the gas (solute) atomic radius. 

      The formula is shown to be applicable in obtaining the diffusion coefficient for 

spherical solute particles in the solvent, which appears as a continuum for the solute 

atoms [Thormeier, 1970]. This also requires the solute particle having a much smaller 

size than the solvent. The equation is applicable for He-Hg system. While for Xe-Hg 

system it will likely predict a diffusion coefficient value greater than the actual one, 

which is conservative in estimating the bubble growth or dissolution rate. Using the gas 

and mercury properties at system temperature of 300K, the diffusion coefficient is 

evaluated for helium, neon, argon, krypton and xenon in mercury. The computed results 

are listed in Table 4. The diffusion coefficient goes as one over the atomic radius in the 

Stokes-Einstein model. The values for helium and xenon are used to study helium and 

xenon bubble behavior in the following sections.  

4.3 Model for Predicting Bubble Growth Rate 

      As indicated in the first section of this chapter, the model from Epstein and 

Plesset [1950] is used to predict the bubble behavior under the effect of mass diffusion. 

The model is an approximate analytical solution to the governing gas diffusion equation 

coupled with mass balance equation in the bubble, 
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      (22) 

where R is the bubble radius; D is the diffusion coefficient; S is the surface tension of 

mercury; p∞ is the liquid pressure around the bubble; c∞ is the gas concentration in the  
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Table 4 Inert Gas Diffusion Coefficients in Mercury 

Inert Gas Type 
T (K) 

Helium Neon Argon Krypton Xenon 

300.0 4.6431×10-9 2.0272×10-9 1.4687×10-9 1.2851×10-9 1.0987×10-9

350.0 5.4169×10-9 2.3651×10-9 1.7135×10-9 1.4993×10-9 1.2819×10-9

400.0 6.1907×10-9 2.7030×10-9 1.9583×10-9 1.7135×10-9 1.4650×10-9

450.0 6.9646×10-9 3.0409×10-9 2.2031×10-9 1.9276×10-9 1.6481×10-9

500.0 7.7384×10-9 3.3787×10-9 2.4479×10-9 2.1419×10-9 1.8312×10-9

550.0 8.5122×10-9 3.7166×10-9 2.6927×10-9 2.3561×10-9 2.0144×10-9

600.0 9.2861×10-9 4.0545×10-9 2.9374×109 2.5703×10-9 2.1975×10-9

 

infinity; cs is the concentration at the bubble wall; ρg is gas density in the bubble at the 

gas pressure of p∞. 

      Though the above model is shown to be valid in estimating the bubble growth 

rates [Epstein and Plesset, 1950], it does not include the effect of increased gas 

concentration in the ambient mercury due to the inert gas bubble dissolution. This effect 

is taken into account in this thesis by adding an ordinary differential equation to the 

above bubble growth model to form a system of ordinary differential equations. The 

first-order approximation for updating the liquid concentration can be incorporated to 

update the ambient gas concentration at each time step. 

⎟
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⎛−=−=∞

dt
dRRn

dt
d

dt
dc

bgg
24πραρ       (23) 

      The system is solved using classical 4th-order Runge-Kutta method to obatin 

accurate numerical results. 

      The numerical analysis assumes that mercury is initially saturated with cover gas 

at the pressure of 3 bars. The initial concentration and the concentration at the bubble 

wall are evaluated using Henry’s law. Two different cases are studied. The first one 

assumes the bubbles are initially of the same radius of 15μm. In the second case the 
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bubble size distribution is modeled by using two groups of bubbles with different radii 

(10μm and 15μm) of same number density. Time-dependent bubble radii and 

concentration are numerically computed. 

4.4 Numerical Analysis of One-Size Group of Bubbles 

      If one assumes the gas bubbles are of the same size of radius Rb, the initial bubble 

number density in mercury is 

⎟
⎠
⎞

⎜
⎝
⎛= 3

3
4/ bb Rn πα       (24) 

      For 30μm-diameter and 0.5%-volume fraction, the bubble number density is 

about 3.537×1011m-3. This indicates the bubbles are widely separated from others at a 

distance of more than 100 times the radius value. 

      Figure 21 shows all the helium bubbles dissolve completely in about 0.62 seconds 

after being injected into mercury. This is because of the higher pressure at the bubble wall 

than in mercury due to the surface tension effect. For 15μm-radius helium bubble, the 

pressure difference between gas and liquid (pg-pl) is about 1/2 bar according to the 

Laplace equation. The bulk concentration in mercury increases as a result of bubble 

dissolution, but the concentration is still lower than at the bubble wall, which causes the 

bubbles to dissolve completely. 

      In contrast, the xenon bubbles show a totally different behavior as shown in 

Figure 22. Since xenon has much smaller solubility in mercury than helium, slightly 

dissolving the gas bubble increases the gas concentration in mercury sufficiently to stop 

bubble dissolution. The bubble radius remains at approximately the initial value. Xenon 

is more viable than helium to form a specified volume fraction. 

4.5 Numerical Analysis of Two-Size Group of Bubbles 

      A realistic study on bubble behavior must include the effect of bubble size 

distribution. Any method for bubble injection cannot create a perfectly mono-sized 

bubble population. Bubbles of different size will have different behaviors due to different 

internal pressures, causing different concentrations at the bubble wall. For simplicity, a 
 42
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Figure 21 Time-Dependent Helium Bubble Radius and Gas Concentration in 

Mercury 
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Figure 22 Time-Dependent Xenon Bubble Radius and Gas Concentration in 

Mercury 
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 45

two-group distribution is included here to display the physical behavior. The study begins 

by introducing bubbles with two sizes (10μm & 15μm in radius) and equal number 

densities. The dominant effect is still the mass diffusion across the bubble wall and the 

concentration in the ambient mercury is updated at each time step. 

      Due to the relatively high solubility in mercury, helium bubbles still dissolve 

away in the two-group situation. Numerical results show the small bubbles dissolve in 

less than 0.2s, while the larger bubbles shrink to zero radii in about 0.64s, which 

contributes to the continuously increasing concentration displayed in Figure 23. Xenon 

has much smaller solubility in mercury, so little gas from the bubbles dissolves. However, 

smaller bubbles move gas into the mercury that later devovles into the larger bubbles, 

causing smaller bubbles to get smaller, and bigger bubbles to get bigger, as shown in 

Figure 24. The concentration stops increasing after a steep initial change. This indicates 

the number of gas atoms diffusing out of the bubbles of the smaller group is nearly equal 

to the number of xenon gas atoms entering the bigger group, which has little net effect on 

the gas concentration in the ambient liquid. 
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Figure 23 Time-Dependent Helium Bubble Radii and Gas Concentration in 

Mercury 
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Figure 24 Time-Dependent Xenon Bubble Radii and Gas Concentration in Mercury
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5 Conclusions and Suggestions for Future Work 

      Inert gas solubility and bubble behavior in mercury is intensively investigated in 

this thesis project. The bubbly dynamics is coupled with acoustic simulation to produce 

numerical simulation of acoustic streaming in helium-mercury two-phase flow. The 

results indicate that the acoustic streaming velocities are small relative to convective 

velocities expected in the SNS target flow. 

     Inert gas solubility and gas diffusivity in mercury are theoretically evaluated. These 

are used to simulate inert helium and xenon gas bubble behavior under the effect of mass 

diffusion across the bubble wall. The simulations show the injected helium bubbles are 

dissolved if mercury is not oversaturated initially with helium. The case of xenon bubble 

injection results in a more stable bubble population due to the much smaller solubility 

than helium in mercury. 

      The process of computing theoretical inert gas solubility in mercury indicates the 

results are very sensitive to the chosen inert gas and mercury property values, which have 

a range of values reported in the literature. Well-designed solubility measurement 

experiments shall be performed to validate the computed results. This will allow the 

simulation results of bubble behavior to be of higher confidence. 

       More accurate bubble behavior simulation must include the effect of bubble size 

distribution, since any method of bubble formation method will not create a bubble 

mono-sized distribution. The bubble size distribution function from actual bubble 

injection experiments will be included for bubble behavior simulation, combined with 

inert gas solubility measurement results. 
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Appendix A 

1-D Acoustic Streaming Simulation Code in FORTRAN 90 for 

Helium-Mercury Two-Phase Bubbly Flow  

!********************************************************************** 
! Finally, the new method of Colonius (1998) is implemented in a more simple way only using Implicit 
Euler method, instead of Richardson Extrapolation method. Thanks goes to Dr. Al Preston for providing me 
his old codes. Some of the subroutines here are modified from them. 
!********************************************************************** 
MODULE consts 
 ! Define constants here for use 
 IMPLICIT NONE 
 REAL(8),PARAMETER::P0=3.0D5,R0=15.0D-6,Rho_Hg=13.546D3,S=425.41D-3 
 REAL(8),PARAMETER::Mu_Hg=1.552D-3,Nu_Hg=Mu_Hg/Rho_Hg,Beta0=0.5D-2 
 REAL(8),PARAMETER::Pg0=P0+2.D0*S/R0,C2=Pg0*R0**3,C3=Rho_Hg*R0**3*(1-Beta0)/Beta0 
 REAL(8),PARAMETER::C4=R0**3*(1-Beta0)/Beta0,xmax=0.2D0,eps=1.D-10 
END MODULE consts 
 
!********************************************************************** 
MODULE vars 
 ! Define variables 
 IMPLICIT NONE 
 REAL(8)::delt,A,fn,pi,emax1,emax2 
 ! emax1 for r & emax2 for x 
 REAL(8),ALLOCATABLE::rn(:),ro(:),xn(:),xo(:),pn(:),po(:),un(:),uo(:),vn(:),vo(:) 
 REAL(8),ALLOCATABLE::jac(:,:),pw(:),f(:),jacl(:,:),det(:),f1(:),rhs(:),pr(:) 
 INTEGER,ALLOCATABLE::indx(:) 
 INTEGER::nx,nt,l,i,j,k,TN1,TN2 
  
END MODULE vars 
 
!********************************************************************** 
MODULE some_functions 
! Define some functions here 
 
CONTAINS 
!********************************************************************** 
 FUNCTION rhof(r) 
 ! Calculate the density of corresponding radius value 
   
  USE consts 
  IMPLICIT NONE 
  REAL(8)::rhof,r 
  rhof=C3/(C4+r**3) 
  
 END FUNCTION rhof 
 
!********************************************************************** 
 FUNCTION drhof(r) 
 ! Calculate d(rho)/d(r) for Jacobian Matrix 
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  USE consts 
  IMPLICIT NONE 
  REAL(8)::r,drhof 
 
  drhof=-3.D0*(rhof(r)*r)**2.D0/C3 
 END FUNCTION drhof 
 
!********************************************************************** 
 FUNCTION pf(rn,ro,vn,vo,delt) 
 ! calculate the pressure 
 
  USE consts 
  IMPLICIT NONE 
  REAL(8)::rn,ro,vn,vo,delt,pf 
  
  pf=(rn*vn-ro*vo)/delt+0.5D0*vn*vn+4.D0*Nu_Hg*vn/rn 
  pf=pf*Rho_Hg+2.D0*S/rn 
  pf=C2/rn**3.D0-pf 
!  IF (pf.lt.0.D0) THEN 
!   PRINT*,'p= ',pf 
!  END IF 
 END FUNCTION pf 
 
!********************************************************************** 
 FUNCTION dpf(rn,ro,vn,vo,delt) 
 ! Calculate dp/dr for Jacobian Matrix 
  
 USE consts 
 IMPLICIT NONE 
 REAL(8)::rn,ro,vn,vo,delt,dpf 
 
 dpf=(vn+rn/delt)/delt+vn/delt-4.D0*Nu_Hg*vn/rn**2.D0+4.D0*Nu_Hg/rn/delt 
 dpf=-dpf*Rho_Hg-3.D0*C2/rn**4.D0+2.D0*S/rn**2.D0 
 END FUNCTION dpf 
 
!********************************************************************** 
END MODULE some_functions 
 
!********************************************************************** 
!********************************************************************** 
PROGRAM AC1D 
 USE consts 
 USE vars 
 USE some_functions 
 
 IMPLICIT NONE 
 !REAL(8)::Omega0 
 Real(8)::sv(3000) 
 do i=1,3000 
  sv(i)=0.D0 
 end do 
 PRINT*,'Input the number of spatial mesh steps:' 
 READ*,nx 
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 PRINT*,'Input the number of time mesh steps:' 
 READ*,nt 
 
 PRINT*,'Input the number of periods to compute:' 
 print*,'TN1:' 
 READ*,TN1 
 print*,'TN2:' 
 read*,TN2 
 !TN1=1401 
 !TN2=1500 
  
  
! Omega0=sqrt(3.D0*P0/Rho_Hg)/R0 
  
 fn=1.D4 
 A=0.4D0 
 k=1 
 l=0 ! Count the number of vibrating cycles used 
 pi=dacos(-1.D0) 
 delt=1.D0/fn/(nt-1) 
 
 ! roots only include x(2)-x(nx) and r(1)-r(nx), totally 2*nx-2 
 ! Solution: r1,x2,r2,x3,...,r(nx-2),x(nx-1),r(nx-1),r(nx) 
 ALLOCATE (rn(nx)) 
 ALLOCATE (ro(nx)) 
 ALLOCATE (xn(nx)) 
 ALLOCATE (xo(nx)) 
 ALLOCATE (pn(nx)) 
 ALLOCATE (po(nx)) 
 ALLOCATE (un(nx)) 
 ALLOCATE (uo(nx)) 
 ALLOCATE (vn(nx)) 
 ALLOCATE (vo(nx)) 
 
 ALLOCATE (f(2*nx-2)) 
 ALLOCATE (f1(2*nx-2)) 
 ALLOCATE (indx(2*nx-2)) 
 ALLOCATE (det(2*nx-2)) 
 ALLOCATE (rhs(2*nx-2)) 
  
 ALLOCATE (jac(2*nx-2,5)) 
 ALLOCATE (jacl(2*nx-2,2)) 
 
 ALLOCATE (pw(nt)) 
 ALLOCATE (pr(nt)) 
    
 ! Set up initial field  
 DO i=1,nx 
  po(i)=P0 
  ro(i)=R0 
  xo(i)=xmax*(i-1)/(nx-1) 
  uo(i)=0.D0 
  vo(i)=0.D0 
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  pn(i)=po(i) 
  xn(i)=xo(i) 
  rn(i)=ro(i) 
  vn(i)=vo(i) 
  un(i)=uo(i) 
 END DO 
 pw(1)=P0 
 CALL output2(1,pw(1)) 
 pr(1)=P0 
 CALL output3(1,pr(1)) 
 
! Compute field in enough periods till it stops changing,  
DO WHILE(k.gt.0) 
 l=l+1 
 if (l.eq.TN1) then 
  sv=sv+uo 
 end if 
 IF (MOD(l,TN2).eq.0) THEN 
  CALL output(nx,po,ro,xo,uo) 
 END IF 
 DO i=2,nt 
  ! boundary conditions 
  un(1)=A*dsin(2.D0*pi*(i-1)/(nt-1)) 
  xn(1)=xo(1)+delt*un(1) 
 DO WHILE(.true.) 
  ! get the function values of the current field 
   DO j=1,nx-1 
    f(2*j-1)=0.5D0*(xn(j+1)-xn(j))*(rhof(rn(j))+rhof(rn(j+1)))- & 
     0.5D0*(xo(j+1)-xo(j))*(rhof(ro(j))+rhof(ro(j+1))) 
    f(2*j)=0.5D0*(xn(j+1)-xn(j))*(rhof(rn(j))*un(j)+ & 
     rhof(rn(j+1))*un(j+1))-(xo(j+1)-xo(j))/2.D0* & 
     (rhof(ro(j))*uo(j)+rhof(ro(j+1))*uo(j+1))- & 
     delt*(pf(rn(j),ro(j),vn(j),vo(j),delt)- & 
     pf(rn(j+1),ro(j+1),vn(j+1),vo(j+1),delt)) 
   END DO 
   rhs=-f 
   ! calculate the Jacobian Matrix first 
   CALL compute_jacobian(jac,xn,xo,rn,ro,vn,vo,nx,delt,rhs) 
     
   ! find the solution for the root correction 
   CALL bandec(jac,2*nx-2,2,2,2*nx-2,5,jacl,2,indx,det) 
   CALL banbks(jac,2*nx-2,2,2,2*nx-2,5,jacl,2,indx,rhs) 
 
   ! update the field of x,r,v,u 
   DO j=1,nx-2 
    rn(j)=rn(j)+rhs(2*j-1) 
    xn(j+1)=xn(j+1)+rhs(2*j) 
   END DO 
   rn(nx-1)=rn(nx-1)+rhs(2*nx-3) 
   rn(nx)=rn(nx)+rhs(2*nx-2) 
 
   DO j=2,nx-1 
    un(j)=(xn(j)-xo(j))/delt 
    vn(j)=(rn(j)-ro(j))/delt 
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   END DO 
   vn(1)=(rn(1)-ro(1))/delt 
   vn(nx)=(rn(nx)-ro(nx))/delt 
   un(nx)=0.D0 
   xn(nx)=xmax 
 
   DO j=1,nx 
    pn(j)=pf(rn(j),ro(j),vn(j),vo(j),delt) 
   END DO 
   DO j=1,nx-1 
    f1(2*j-1)=0.5D0*(xn(j+1)-xn(j))*(rhof(rn(j))+rhof(rn(j+1)))- & 
     0.5D0*(xo(j+1)-xo(j))*(rhof(ro(j))+rhof(ro(j+1))) 
 f1(2*j)=0.5D0*(xn(j+1)-xn(j))*(rhof(rn(j))*un(j)+ & 
     rhof(rn(j+1))*un(j+1))-(xo(j+1)-xo(j))/2.D0* & 
     (rhof(ro(j))*uo(j)+rhof(ro(j+1))*uo(j+1))- & 
     delt*(pf(rn(j),ro(j),vn(j),vo(j),delt)- & 
     pf(rn(j+1),ro(j+1),vn(j+1),vo(j+1),delt)) 
   END DO 
   emax1=0.D0 ! for variable values 
   emax2=0.D0 ! for function values 
    
   ! check for convergence 
   DO j=1,2*nx-2 
    emax1=MAX(DABS(rhs(j)),emax1) 
 emax2=MAX(DABS(f1(j)-f(j)),emax2) 
   END DO 
!   PRINT*,l,i,emax1,emax2 
   IF ((emax1.lt.eps).or.(emax2.lt.eps)) THEN  
!    PRINT*,i,' EXIT' 
!    DO j=1,nx 
!     IF (pn(j)<0.d0) THEN 
!   PRINT*,i,j,pn(j) 
!   STOP 
!  END IF 
 !   END DO 
 EXIT 
   ENDif   
  END DO ! inner while loop 
   
  IF (MOD(l,TN2).eq.0) THEN 
   CALL output(nx,pn,rn,xn,un) 
  END IF 
  if (l.ge.TN1) then 
   sv=sv+un 
  end if 
 
  ! save the pressure history near wall 
  pw(i)=pn(1) 
  pr(i)=pn(nx) 
 
  ! update the old field for the next time step 
  xo(1:nx)=xn(1:nx) 
  uo(1:nx)=un(1:nx) 
  po(1:nx)=pn(1:nx) 
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  vo(1:nx)=vn(1:nx) 
  ro(1:nx)=rn(1:nx) 
 END DO ! time step stops here 
 CALL output2(nt-1,pw(2:nt)) 
 CALL output3(nt-1,pr(2:nt)) 
 pw(1)=pw(nt) 
  
 PRINT*,'No',l,' period of calculation completed!' 
 PRINT*,sv(1) 
  
 IF (MOD(l,TN2).eq.0) THEN 
  PRINT*,'to stop, input 0; to go on, input 1:' 
  !READ*,k 
  k=0 
 END IF 
END DO ! outer WHILE loop   
sv=sv/((TN2-TN1+1.D0)*5000.D0-TN2+TN1) 
open(1,file='sv.dat',form='formatted',status='unknown') 
write(1,'(e14.6)'),(sv(i),i=1,3000) 
close(1) 
 
stop 
END 
 
!********************************************************************** 
SUBROUTINE compute_jacobian(jac,xn,xo,rn,ro,vn,vo,nx,delt,f) 
! Calculates the Jacobian matrix for Newton's Method 
 USE consts 
 USE some_functions 
  
 IMPLICIT NONE 
 INTEGER::nx,i,j 
 REAL(8),DIMENSION(2*nx-2,5)::jac 
 REAL(8),DIMENSION(nx)::rn,xn,ro,xo,vn,vo  
 REAL(8)::delt,f(2*nx-2),maxjac 
  
 DO i=1,nx-1 
  IF(i.eq.1) THEN 
  ! d/dr1,d/dx2,d/dr2 
   jac(2*i-1,1)=0.D0 
   jac(2*i-1,2)=0.D0 
   jac(2*i-1,3)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i)) 
   jac(2*i-1,4)=0.5D0*(rhof(rn(i))+rhof(rn(i+1))) 
   jac(2*i-1,5)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i+1)) 
       
   jac(2*i,1)=0.D0 
   jac(2*i,2)=0.5D0*(xn(i+1)-xn(i))*(xn(i)-xo(i))/delt*drhof(rn(i))- & 
    delt*dpf(rn(i),ro(i),vn(i),vo(i),delt) 
   jac(2*i,3)=0.5*(rhof(rn(i))*(xn(i)-xo(i))/delt+ & 
    rhof(rn(i+1))*(xn(i+1)-xo(i+1))/delt)+ & 
 0.5D0*(xn(i+1)-xn(i))*rhof(rn(i+1))/delt 
   jac(2*i,4)=0.5D0*(xn(i+1)-xn(i))*(xn(i+1)-xo(i+1))/delt*drhof(rn(i+1))+ & 
    delt*dpf(rn(i+1),ro(i+1),vn(i+1),vo(i+1),delt) 
   jac(2*i,5)=0.D0 
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  ELSEIF(i.eq.(nx-1)) THEN 
  ! d/dx(nx-1),d/dr(nx-1),d/dr(nx) 
   jac(2*i-1,1)=0.D0 
   jac(2*i-1,2)=-0.5D0*(rhof(rn(i))+rhof(rn(i+1))) 
   jac(2*i-1,3)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i)) 
   jac(2*i-1,4)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i+1)) 
   jac(2*i-1,5)=0.D0 
    
   jac(2*i,1)=-0.5D0*(rhof(rn(i))*(xn(i)-xo(i))/delt+ & 
    rhof(rn(i+1))*(xn(i+1)-xo(i+1))/delt)+ & 
 0.5D0*(xn(i+1)-xn(i))*rhof(rn(i))/delt 
   jac(2*i,2)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i))*(xn(i)-xo(i))/delt- & 
    delt*dpf(rn(i),ro(i),vn(i),vo(i),delt) 
   jac(2*i,3)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i+1))*(xn(i+1)-xo(i+1))/delt+ & 
    delt*dpf(rn(i+1),ro(i+1),vn(i+1),vo(i+1),delt) 
   jac(2*i,4)=0.D0 
   jac(2*i,5)=0.D0 
  ELSE 
  ! d/dx(i),d/dr(i),d/dx(i+1),d/dr(i+1) 
   jac(2*i-1,1)=0.D0 
   jac(2*i-1,2)=-0.5D0*(rhof(rn(i))+rhof(rn(i+1))) 
   jac(2*i-1,3)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i)) 
   jac(2*i-1,4)=0.5D0*(rhof(rn(i))+rhof(rn(i+1))) 
   jac(2*i-1,5)=0.5D0*(xn(i+1)-xn(i))*drhof(rn(i+1)) 
    
   jac(2*i,1)=-0.5D0*(rhof(rn(i))*(xn(i)-xo(i))/delt+ & 
    rhof(rn(i+1))*(xn(i+1)-xo(i+1))/delt)+ & 
 0.5D0*(xn(i+1)-xn(i))*rhof(rn(i))/delt 
   jac(2*i,2)=(xn(i+1)-xn(i))/2.D0*(xn(i)-xo(i))/delt*drhof(rn(i))- & 
    delt*dpf(rn(i),ro(i),vn(i),vo(i),delt) 
   jac(2*i,3)=0.5D0*(rhof(rn(i))*(xn(i)-xo(i))/delt+ & 
    rhof(rn(i+1))*(xn(i+1)-xo(i+1))/delt)+ & 
 0.5D0*(xn(i+1)-xn(i))*rhof(rn(i+1))/delt 
   jac(2*i,4)=(xn(i+1)-xn(i))/2.D0*(xn(i+1)-xo(i+1))/delt*drhof(rn(i+1))+ & 
    delt*dpf(rn(i+1),ro(i+1),vn(i+1),vo(i+1),delt) 
   jac(2*i,5)=0.D0 
  END IF 
 END DO 
 DO j=1,2*nx-2 
  maxjac=0.D0 
  DO i=1,5 
   maxjac=MAX(DABS(jac(j,i)),maxjac) 
  END DO 
  jac(j,1:5)=jac(j,1:5)/maxjac 
  f(j)=f(j)/maxjac 
 END DO 
END SUBROUTINE compute_jacobian 
 
!********************************************************************** 
SUBROUTINE output(nx,pn,rn,xn,un) 
! Output the data 
 
 IMPLICIT NONE 
 INTEGER::i,nx 
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 REAL(8)::pn(nx),rn(nx),xn(nx),un(nx) 
 
 open(1,file='p.dat',form='formatted',status='unknown',position='append') 
 open(2,file='r.dat',form='formatted',status='unknown',position='append') 
 open(3,file='x.dat',form='formatted',status='unknown',position='append') 
 open(4,file='u.dat',form='formatted',status='unknown',position='append') 
 WRITE(1,9010),(pn(i),i=1,nx) 
 WRITE(2,9010),(rn(i),i=1,nx) 
 WRITE(3,9010),(xn(i),i=1,nx) 
 WRITE(4,9010),(un(i),i=1,nx) 
 9010 format(10000e14.6) 
 
 CLOSE(1) 
 CLOSE(2) 
 CLOSE(3) 
 CLOSE(4) 
END SUBROUTINE output 
 
!********************************************************************** 
SUBROUTINE output2(nt,pw) 
! Output the pressure history at wall 
 
 IMPLICIT NONE 
 INTEGER nt,i 
 REAL(8)::pw(nt) 
  
 open(5,file='pw.dat',form='formatted',status='unknown',position='append') 
 DO i=1,nt 
   WRITE(5,'(e14.7)'),pw(i) 
 END DO 
 CLOSE(5) 
END SUBROUTINE output2 
 
!********************************************************************** 
SUBROUTINE output3(nt,pr) 
! Output the pressure history at wall 
 
 IMPLICIT NONE 
 INTEGER nt,i 
 REAL(8)::pr(nt) 
  
 open(5,file='pr.dat',form='formatted',status='unknown',position='append') 
 DO i=1,nt 
   WRITE(5,'(e14.7)'),pr(i) 
 END DO 
 CLOSE(5) 
END SUBROUTINE output3 
 
!********************************************************************** 
SUBROUTINE bandec(a,n,m1,m2,np,mp,al,mpl,indx,d) 
 IMPLICIT NONE 
 INTEGER, INTENT(IN) :: n,m1,m2,np,mp,mpl 
 REAL(8), DIMENSION(np,mp), INTENT(INOUT) :: a 
 REAL(8), DIMENSION(np,mpl), INTENT(OUT) :: al 
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 INTEGER, DIMENSION(n), INTENT(OUT) :: indx 
 REAL(8), INTENT(OUT) :: d 
 REAL(8), PARAMETER :: TINY=1.0D-20 
 INTEGER :: i,j,k,l,mm 
 REAL(8) :: dum 
 
 mm = m1 + m2 + 1 
 IF(mm > mp .OR. m1 > mpl .OR. n > np ) PAUSE 'bad args in bandec' 
 l = m1 
 DO i = 1,m1 
    a(i,m1+2-i-l:mm-l) = a(i,m1+2-i:mm) 
    l = l-1 
    a(i,mm-l:mm) = 0.D0 
 END DO 
 d = 1.D0 
 l = m1 
 
 DO k = 1,n 
    dum = a(k,1) 
    i = k 
    IF ( l < n ) l = l+1 
 
    DO j = k+1,l 
       IF ( ABS( a(j,1) ) > ABS(dum) ) THEN 
   dum = a(j,1) 
   i = j 
       END IF 
    END DO 
    indx(k) = i 
    IF (dum == 0.D0) THEN 
       WRITE(*,*) 'Matrix is singular, using TINY pivot' 
       a(k,1) = TINY 
    END IF 
    IF (i .NE. k) THEN 
       d = -d 
       DO j = 1,mm 
   dum = a(k,j) 
   a(k,j) = a(i,j) 
   a(i,j) = dum 
       END DO 
    END IF 
    DO i = k+1,l 
       dum = a(i,1) / a(k,1) 
       al(k,i-k) = dum 
       a(i,1:mm-1) = a(i,2:mm) - dum*a(k,2:mm) 
       a(i,mm) = 0.D0 
    END DO 
 END DO 
 RETURN 
END SUBROUTINE bandec 
 
!********************************************************************** 
SUBROUTINE banbks(a,n,m1,m2,np,mp,al,mpl,indx,b) 
 IMPLICIT NONE 
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 INTEGER, INTENT(IN) :: n,m1,m2,np,mp,mpl 
 REAL(8), DIMENSION(np,mp), INTENT(IN) :: a 
 REAL(8), DIMENSION(np,mpl), INTENT(IN) :: al 
 INTEGER, DIMENSION(n), INTENT(IN) :: indx 
 REAL(8), DIMENSION(n), INTENT(INOUT) :: b 
 INTEGER :: i,k,l,mm 
 REAL(8) :: dum 
 
 mm = m1+m2+1 
 IF(mm > mp .OR. m1 > mpl .OR. n > np ) PAUSE 'bad args in banbks' 
 l = m1 
 DO k = 1,n 
    i = indx(k) 
    IF ( i .NE. k ) THEN 
       dum = b(k) 
       b(k) = b(i) 
       b(i) = dum 
    END IF 
    IF ( l < n ) l = l+1 
    b(k+1:l) = b(k+1:l) - al(k,1:l-k)*b(k) 
 END DO 
 l = 1 
 DO i = n,1,-1 
    dum = b(i) 
    DO k = 2,l ; dum = dum - a(i,k)*b(k+i-1) ; END DO 
    b(i) = dum / a(i,1) 
    IF( l < mm ) l = l+1 
 END DO 
 RETURN 
END SUBROUTINE banbks 
!********************************************************************** 
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Appendix B 

MATLAB Script for Inert Gas Solubility Evaluation in Mercury 

% MATLAB script to compute the solubility of noble gases in mercury 
% based on the method by Shpilrain, E.E., et.al, High Temperature, 38(3), 
% 407-411, 2000 
% sub- & super- script 1 means mercury(solvent) 
% sub- & super- script 2 means gas phase(solute) 
% output: x21 (molar fraction of component 2 in component 1, dimensionless); 
% kh: Henry's law constants; D: gas diffusion coefficient 
 
clear all; 
% *************************common constants*************************  
% universal gas constant (J/mol*K) 
R=8.31441; 
% electron charge(C) 
e=-1.60221892e-19; 
% electron mass(kg); 
me=9.109534e-31; 
% planck's constant (J*s) 
h=6.626176e-34; 
% Avogadro's Constant (1/mol) 
A=6.022045e+23;  
% atomic mass unit (kg) 
amu=1.6605655e-27; 
% Boltzmann's constant (J/K) 
k=1.3800662e-23; 
 
% ********************common variable************************* 
% system  temperature(K), can use more values 
Ts=300.0:50.0:600.0; 
% gas cover pressure(bar), can use more values 
p2s=1.0e5; 
% mercury vapor pressure (pa): it varies with temperature,  
% but it's small enough to be neglected. Typical value at room temperture 
% adopted (From CRC Handbook of Chemistry and Physics, 85th version, 
% pp.6-147, 2004-2005  
p12=3.68e-4*1e3; 
 
p2s=p2s-p12; 
% ********* MERCURY (1) properties to be used  ************ 
% From: Lange's Handbook of Chemistry (15th Edition), Table 4.6 
% atomic radius and diameter (m) 
r1=1.51e-10; 
d1=2*r1; 
 
% atomic mass 
m1=200.59*amu; 
% molar weight/mass (kg/mol) 
M1=m1*A; 
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% density (kg/m^3) 
rho1=13.5336e+3; 
% number density (1/m^3) 
rho1a=rho1*A/M1; 
% molar volume of mercury (m^3/mol) 
v1=M1/rho1; 
 
% From CRC Handbook of Chemistry and Physics, 85th version, 
% pp.6-134, pp.6-186, pp.10-167, 2004-2005  
% thermal expansion coefficient 100^oC (1/K) TEMPERATURE DEPENDENT 
alpha=1.81e-4;  
% isothermal compressibility 100^oC(/Pa) TEMPERATURE DEPENDENT 
beta=4.410e-11; 
% dynamic viscosity (Pa*s) at 25^oC 
mu1=1.526e-3; 
% polarizability of mercury atom (m^3) 
alpha1=5.02e-30; 
% number of electrons in the outer shell of atoms of mercury 
y1=41.76; 
 
% eta in U^in 
eta=pi*rho1a*d1^3/6; 
% Debye temperature of mercury 
deb1=3/4*mu1*h/k*((A/M1)^2/rho1)^(1/3); 
 
% *******************gas(2) properties for calculation*************** 
% in the list, the sequence is HELIUM, NEON, ARGON, KRYPTON & XENON 
% initial values 
% r2=[0.49 0.55 0.88 1.03 1.24]*1.0e-10; 
% shpilrain 
% r2=[1.35 1.60 1.71 1.83 2.03]*1.0e-10;  
% thormeier 
% r2=[1.30 1.60 1.70 1.86 2.05]*1.0e-10; 
% From chemicool.com 
r2=[31 71 98 112 131]*1.0e-12; 
 
% From CRC Handbook of Chemistry and Physics, 85th version, 
% pp.10-167, 2004-2005;  
% polarizability of gass atom (m^3) 
alpha2=[0.204956e-30 0.3956e-30 1.6411e-30 2.4844e-30 4.044e-30]; 
 
% number of electrons in the outer shell of gas atoms 
y2=[1.7 8.8 12.65 20.1 24.3]; 
 
% gas atomic mass 
m2=[4.002602 20.1797 39.948 83.8 131.29]; 
% Gas molar mass 
m2a=m2*1.0e-3;  
% Gas atomic mass 
m2=m2*amu; 
 
% use the loop to compute for each pressure and temperature 
for i=1:length(Ts) 
    T=Ts(i); 
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    % gas partial pressure above the solution(Pa) 
     
    % internal presure 
    P1=T*alpha/beta; 
     
    % dk=r1+r2 (m) 
    dk=r1+r2; 
     
    %********************U^in_12********************% 
    q0=R*T*(-log(1-eta)+4.5*(eta/(1-eta))^2)-pi*A*d1^3*P1/6; 
    q1=-R*T/d1*(6*eta/(1-eta)+18*(eta/(1-eta))^2)+pi*A*d1^2*P1; 
    q2=R*T/d1^2*(12*eta/(1-eta)+18*(eta/(1-eta))^2)-2*pi*A*d1*P1; 
    q3=4*pi*A*P1/3; 
    Uin=q0+q1*dk+q2*dk.^2+q3*dk.^3; 
    %********************U^p_12 *******************% 
    C=3*e*h/4/pi/sqrt(me)*alpha1*alpha2; 
    C=C./(sqrt(alpha1/y1)+sqrt(alpha2./y2)); 
     
    Up=-8*pi*rho1a*A/9*C./dk.^3; 
    %********************U^os_12*******************% 
    % Debye temperature of gases 
    deb2=deb1.*sqrt(m1./m2); 
    Uos=R*deb2./(exp(deb2/T)-1); 
     
    %********************U12***********************% 
    U12=Uin+Up+Uos; 
    %********************S12 entropy********************% 
S12=deb2/T./(exp(deb2/T)-1)-log(1-exp(-deb2/T)); 
    %****x21(molar fraction): output for each pressure and temperature****% 
    x21(i,:)=p2s*v1/R/T*exp(-U12/R/T+S12); 
    kh(i,:)=1.0e5*v1./(x21(i,:).*m2a);   
    D(i,:)=k*T/6/pi/mu1./r2; 
end 
disp('!!*******************compuatation finished*****************************!!'); 
disp(['Temperature from ',num2str(300),'K ','to ',num2str(600),'K ',... 
    'with step of ', num2str(50),'K']); 
x21 
kh 
D 
save sol.mat 
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Appendix C 

MATLAB Script for One-Group Bubble Growth Rate Simulation 

Only the code for helium is attached. For xenon case, see the comment in the script. One 

only needs to change some values for some constants. 

C.1 Master Script 

clear all; 
global D R T S kh cinf nb pinf p0 % define global variables to be used in functions 
% temperature at T=300K 
 
% constants 
S=425.41e-3; % surface tension of mercury 
p0=3.0e5; % cover gas pressure 
pinf=3.0e5; % ambient liquid pressure 
kh=1/4.4264e6; % Henry's law constant; for xenon, change to xenon's Henry's law constant 
D=4.643e-9; % diffusion coefficient; for xenon, change to xenon's diffusion coefficient 
alpha=0.005; % initial gas volume fraction 
r0=15e-6; % initial gas bubble radius 
nb=alpha*3/4/pi/r0^3; % gas bubble number density 
 
pg=pinf+2*S/r0; % gas pressure 
rhog=pg*4.0e-3/8.3125/300; % gas density; for xenon, 4.0e-3 should be replace as xenon's molar mass 
cinf0=p0*kh; % initial concentration at infinity 
 
f=[@fun1,@fun2]; % function handle vector 
ic=[r0,cinf0]; % initial values vector 
rk4(f,0,1,ic,8092); % call r-k method 
save He1G.mat % save results 
plotyy(T,R/R(1),T,cinf/cinf(1)); % plot time-dependent radius and concentration 
 

C.2 Fourth Order Runge-Kutta Function 

function rk4(f,a,b,y0,n) 
% 4th order classic Runge-Kutta 
% 
% input: function handle(f);solution interval([a,b]); initial value(y0); no.of subdivisions(n) 
%  
% output: y(b) 
% When the R becomes less than zero or stops changing, 
% the computation is stopped 
global R T S cinf nb 
% calculate the step size according 
% to no.of subdivisions prescirbed 
h=(b-a)/n; 
% set the starting time value 
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tn=a; 
% set y initial value 
y=y0; % Y1 
T(1)=a; 
R(1)=y0(1); 
cinf(1)=y0(2); 
% temporary value for old step 
y_temp0=y0; 
for i=1:n 
    % add the first approximation term to y 
    for j=1:2 
       y_temp1(j)=0.5*h*feval(f(j),tn,y_temp0);  
    end 
    y=y+y_temp1/3; % Y1 added 
    y_temp2=y_temp0+y_temp1; % Y2 
    % add the second approximation term to y  
    for j=1:2 
       y_temp1(j)=0.5*h*feval(f(j),tn+0.5*h,y_temp2); 
    end 
    y=y+y_temp1*2/3; %Y2 added 
    y_temp2=y_temp0+y_temp1; % Y3 
    % add the third approximation term to y 
    for j=1:2 
       y_temp1(j)=h*feval(f(j),tn+0.5*h,y_temp2); 
    end 
    y=y+y_temp1/3; % Y3 added 
    y_temp2=y_temp0+y_temp1; % Y4 
    % add the fourth approximation to y 
    for j=1:2 
       y_temp1(j)=h*feval(f(j),tn+h,y_temp2); 
    end 
    y=y+y_temp1/6; % Y4 added 
    % update old step value for y 
    y_temp0=y; 
 
    % advance in time 
    R(i+1)=y(1); 
    cinf(i+1)=y(2); 
     
    tn=tn+h; 
 T(i+1)=tn; 
    e1=abs(R(i+1)-R(i))/R(i); 
    if (R(i+1)<0)|(e1<1e-5) 
       break; 
    end 
end 
return; 
 

C.3 Bubble Growth Rate Function 

function z=fun1(ts,rc) 
% for dR/dt=fun1(t,R) 
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global D R T S kh cinf nb pinf p0  
%pg=pinf+2*S/rc(1); 
rhog=pinf*4.0e-3/8.3125/300; % for xenon, 4.0e-3 changes to xenon's molar mass 
 
cs=pinf*kh; % saturation concentration 
if ts==0 z=0; 
else 
    z=D/rc(1)/rhog*(rc(2)-cs*(1+2*S/rc(1)/pinf)); 
    z=z/(1+4*S/3/rc(1)/pinf); 
    z=z*(1+rc(1)/sqrt(pi*D*ts)); 
end 
return; 

C.4 Gas Concentration Changing Rate 

function z=fun2(ts,rc) 
% for dcinf/dt=fun2(t,cinf) 
 
global D R T S kh cinf nb pinf p0  
pg=pinf+2*S/rc(1); 
rhog=pg*4.0e-3/8.3125/300; % for xenon, 4.0e-3 should be replace as xenon's molar mass 
 
z=-rhog*nb*4*pi*rc(1)^2*fun1(ts,rc); 
return; 



 71

Appendix D 

MATLAB Script for Two-Group Bubble Growth Rate Simulation 

Only the code for helium is attached. For xenon case, see the comment in the script. One 

only needs to change some values for some constants. 

D.1 Master Script 

clear all; 
clc; 
global D S kh nb pinf p0 rhog alpha 
 
% constants 
alpha=.005; % volume fraction 
pinf=3.e5; % pressure in mercury 
p0=3.e5; % cover gas pressure before bubble injection 
kh=1/4.426e6; % For xenon, changes to xenon's Henry's law constant 
r0=15e-6; % nomial bubble radius 
D=4.643e-9; % diffusion coefficient. For xenon, change to xenon's value 
S=425.41e-3; % surface tension 
rhog=pinf*4.0e-3/8.3125/300; % gas density inside bubble; For xenon, 4.0e-3 changes to xenon's molar % 
% mass 
 
% initial radius group 
m=2; % group number 
R=[10 15]; % micro-m 
R=R*1.0e-6; 
f=[0.5 0.5]; 
% total bubble number density 
nb=alpha/(4*pi/3*sum(R(1:m).^3.*f(1:m))); 
 
% time grid 
dt=1.0e-3; % time step. Can be changed for xenon 
t(1)=0; 
 
% initial concentration 
c(1)=p0*kh; 
vf(1)=alpha; 
fn=@fun1; 
rh(1,:)=R; 
 
i=1; 
% time step advancing 
while (1) 
    i=i+1; 
    t(i)=t(i-1)+dt; 
    lt=length(R); 
     
    % update the radius value 
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    for j=1:lt 
       if R(j)>0 
           ic=[R(j),c(i-1)]; 
           Rtemp(j)=rk4(fn,t(i-1),dt,ic); 
       else 
           Rtemp(j)=0; 
       end 
    end 
    % update the concentration 
    dc=0; 
    for j=1:lt 
       if R(j)>0 
           if Rtemp(j)>0 
              dc=dc-rhog*(1+2*S/R(j)/pinf)*4*pi/3*(Rtemp(j)^3-R(j)^3)*f(j)*nb; 
           else 
              dc=dc+4*pi/3*rhog*(1+2*S/R(j)/pinf)*R(j)^3*f(j)*nb; 
           end 
       end 
    end 
    c(i)=dc+c(i-1); 
    rh(i,:)=Rtemp; 
    temp=find(rh(i,:)<0); 
    rh(i,temp)=0; 
     
    lt=length(Rtemp); 
    vf(i)=0; 
    for j=1:lt 
       if Rtemp(j)>0 
           vf(i)=vf(i)+Rtemp(j)^3*f(j)*4*pi/3*nb; 
       end 
    end 
    %vf(i)=sum(R(1:lt).^3.*f(1:lt))*4*pi/3*nb; 
    temp=find(Rtemp>0);    
    if (isempty(temp)) 
       disp(['All bubbles have dissolved at time: ',num2str(t(i))]); 
       %keyboard; 
       break; 
    end 
    e1=dc/c(i-1); 
    e2=(vf(i)-vf(i-1))/vf(i-1); 
     
    if (abs(e1)<=1.0e-8)&(abs(e2)<=1.0e-6) 
       disp('Bubble size distribution stops changing!!!'); 
       break; 
    end 
    R=Rtemp; 
end 
save HeBPM.mat 
 

D.2 Fourth-Order Runge-Kutta Function 

function [nr,nc]=rk4(f,t0,dt,y0) 
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% 4th order classic Runge-Kutta 
% 
% input: function handle(f);solution interval([a,b]) 
% initial value(y0);no.of subdivisions(n) 
%  
% output: y(b) 
% When the R becomes less than zero or stops changing, 
% the computation is stopped 
tn=t0; 
h=dt; 
% set y initial value 
y=y0; % Y1 
% temporary value for old step 
y_temp0=y0; 
 
    % add the first approximation term to y 
    for j=1:1 
       y_temp1(j)=0.5*h*feval(f(j),tn,y_temp0);  
    end 
    y=y+y_temp1/3; % Y1 added 
    y_temp2=y_temp0+y_temp1; % Y2 
    % add the second approximation term to y  
    for j=1:1 
       y_temp1(j)=0.5*h*feval(f(j),tn+0.5*h,y_temp2); 
    end 
    y=y+y_temp1*2/3; %Y2 added 
    y_temp2=y_temp0+y_temp1; % Y3 
    % add the third approximation term to y 
    for j=1:1 
       y_temp1(j)=h*feval(f(j),tn+0.5*h,y_temp2); 
    end 
    y=y+y_temp1/3; % Y3 added 
    y_temp2=y_temp0+y_temp1; % Y4 
    % add the fourth approximation to y 
    for j=1:1 
       y_temp1(j)=h*feval(f(j),tn+h,y_temp2); 
    end 
    y=y+y_temp1/6; % Y4 added 
     
 
    nr=y(1); 
    %nc=y(2); 
     
return; 

D.3 Bubble Growth Rate Function 

function z=fun1(ts,rc) 
% for dR/dt=fun1(t,R) 
global D S kh nb pinf p0 rhog 
cs=pinf*kh; 
if ts==0 z=0; 
else 
    z=D/rc(1)/rhog*(rc(2)-cs*(1+2*S/rc(1)/pinf)); 
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    z=z/(1+4*S/3/rc(1)/pinf); 
    z=z*(1+rc(1)/sqrt(pi*D*ts)); 
end 
return; 
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