

# University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

#### Masters Theses

**Graduate School** 

5-2014

# Data Quality Assessment of Continuous Forest Inventory on State Forest Lands in Tennessee

Matthew Wade Holt University of Tennessee - Knoxville, mholt5@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk\_gradthes

Part of the Forest Management Commons

#### **Recommended Citation**

Holt, Matthew Wade, "Data Quality Assessment of Continuous Forest Inventory on State Forest Lands in Tennessee. "Master's Thesis, University of Tennessee, 2014. https://trace.tennessee.edu/utk\_gradthes/2722

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by Matthew Wade Holt entitled "Data Quality Assessment of Continuous Forest Inventory on State Forest Lands in Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Forestry.

Donald Hodges, Major Professor

We have read this thesis and recommend its acceptance:

Keith Belli, Tom Brandeis, Tim Young

Accepted for the Council: Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Data Quality Assessment of Continuous Forest Inventory on State Forest Lands in Tennessee

> A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville

> > Matthew Wade Holt May 2014

### ACKNOWLEDGMENTS

The author wishes to thank Dr. Don Hodges and Dr. Keith Belli of the Department of Forestry, Wildlife and Fisheries for their assistance and mentoring throughout this study and for serving as major professors.

Appreciation is also extended to Dr. Tim Young of the Department of Forestry, Wildlife, and Fisheries and Dr. Tom Brandeis of the US Forest Service FIA program for serving as committee members.

An unmeasurable amount of gratitude needs to be expressed to the author's wife, Jessica, for her support and assistance throughout this study. Sincere thanks are extended to the author's family for their support and encouragement.

#### ABSTRACT

The Tennessee Division of Forestry (TDF) implemented a Continuous Forest Inventory (CFI) system in 2009 for the 15 state forests, encompassing multiple physiographic land types and forest types. The initial design contained plans to measure the plots on five-year intervals. The objectives of the CFI system include: determining the growth by species and forest types for all state forest land, estimating growth models for individual trees in mixed hardwood stands, developing a harvest schedule, and assessing the impact of different silvicultural treatments over time. Following the implementation, the University of Tennessee Department of Forestry, Wildlife and Fisheries was asked to assess the study. The objectives for this assessment were to: assess the data quality of the initial plot measurements and identify inconsistencies; determine the usefulness of the Forest Vegetation Simulator (FVS) in producing accurate estimates of current volume per acre (VPA); and evaluate the current inventory design. In order to produce future growth estimates, an accurate estimate of the current inventory is needed. Known relationships in forestry were used to establish metrics for assessing the quality of the plot measurements. Two estimates of volume were used in this study: Lasher's equation contained in FVS and the  $d^{2}H$  (diameter and height) equation used by FIA. The FVS equation consistently over estimated volume at the acre level and individual tree level. The overall design was determined to be inadequate for providing information by forest type within each state forest. This can be remedied by utilizing stratified samples by delineating each forest by its forest type. The results of this investigation will provide a starting point for improving the work already conducted by the Division in regards to quantifying the current inventory of the Tennessee State Forest system.

iii

| <b>TABLE OF</b> | CONTENTS |
|-----------------|----------|
|-----------------|----------|

| Chapter I Introduction and Literature Review |
|----------------------------------------------|
| Inventory2                                   |
| Continuous Forest Inventory                  |
| Growth and Yield5                            |
| FVS7                                         |
| Data Quality                                 |
| Chapter II Overview of the State Forests10   |
| Chapter III Methods14                        |
| Data14                                       |
| Plot Layout15                                |
| Data Quality                                 |
| Calculations19                               |
| Implementation of FVS21                      |
| Statistics                                   |
| Stratified Sampling23                        |
| Forest Type Classification25                 |
| Chapter IV Results                           |
| Forest Overview                              |
| Data Quality                                 |
| Tree data26                                  |
| Volume Assessment                            |
| Traditional vs FVS                           |
| Overall Design                               |
| Chapter V Discussion                         |
| Tree level Quality62                         |
| Volume per Acre Outliers65                   |
| FVS vs Traditional65                         |
| Design67                                     |
| Chapter VI Recommendations                   |
| Field Work70                                 |
| Units                                        |

| Age              | 71  |
|------------------|-----|
| FVS              | 71  |
| Sampling Design  | 72  |
| Literature Cited | 73  |
| APPENDICES       | 77  |
| APPENDIX A       | 78  |
| APPENDIX B       | 85  |
| APPENDIX C       | 94  |
| APPENDIX D       |     |
| APPENDIX E       |     |
| VITA             | 142 |

# LIST OF TABLES

| Table 1. Plot sizes by product type    17                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Frequency of species for all plots on all 15 State Forests. Data collected by TDF in 2007 using1/5 acre permanent plots in a CFI design                                                                                                                                        |
| Table 3. Distribution of Forest Types of all plots on all 15 State Forests. Data collected by TDF in 2007using 1/5 acre permanent plots in a CFI design                                                                                                                                 |
| Table 4. Board feet per acre estimates for the central region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (*) in the Outliers Removed rows did not contain any outliers |
| Table 5. Board feet per acre estimates for the central region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (*) in the Outliers Removed rows did not contain any outliers |
| Table 6. Board feet per acre estimates for the east region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (*) in the Outliers Removed rows did not contain any outliers    |
| Table 7. FIA region estimates of volume per acre (board feet) of Public Timberland using Evalidationaccessed on February 11, 2014 for TN51                                                                                                                                              |
| Table 8. Overall sampling error at the 95 % level exspressed as a percent of the mean for all 15 State      Forests      53                                                                                                                                                             |
| Table 9. Estimates of overall board feet per acre using stratified sampling formulas. Mean and Confidence         Interval (95% level) reported in board feet, Total Area in acres, and Total Board Feet reported in MMBF                                                               |
| Table 10. Allocation of 711 plots using proportional and optimal allocation methods contained in stratified sampling desing.       55                                                                                                                                                   |
| Table 11. Forest type estimates of VPA (board feet) of Natchez Trace State Forest. Confidence interval and sampling error calculated at the 95% level.         57                                                                                                                       |
| Table 12. Sampling intensity to reach a desired sampling error of 20% of the mean at the 95% confidence      level      58                                                                                                                                                              |
| Table 13. Forest type estimates of VPA (board feet) of Chickasaw State Forest. Confidence interval and sampling error calculated at the 95% level.       59                                                                                                                             |
| Table 14. Sampling Intensity to reach a sampling error of 20% of the mean at the 95% confidence level         on Chickasaw State Forest         60                                                                                                                                      |

| Table 15. Species code and equation used by each species (Oswalt et. al. 2011)                                                                                          | ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table 16. Coefficients by Species (Table 15) for FIA cubic foot volume (equation CU000067) from a 1'         stump to a 4" top (Oswalt et al. 2011).                    | 2 |
| Table 17. Coefficients by species (Table 15) for converting CU000067 to cubic foot volume of the saw log portion of the tree (Equation CU000069) (Oswalt et al. 2011)   | 3 |
| Table 18. Coefficients by species (Table 15) for converting cubic foot volume from a 1' stump to a 4" top to board feet volume (equation BD000049).(Oswalt et al. 2011) | 4 |

# LIST OF FIGURES

| Figure 1. State Forests locations and acreage, map generated by the Tennessee Division of Forestry                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Plot design used by TDF. Figure prepared by TDF 16                                                                                                                                                                               |
| Figure 3. Distribution of age of all plots on all 15 State Forests. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design                                                                                           |
| Figure 4. X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet for John Tully State Forest. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007 |
| Figure 5. X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet for Bledsoe State Forest. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007    |
| Figure 6. Relationship of DBH vs. Total height for Loblolly pine on Bledsoe SF                                                                                                                                                             |
| Figure 7. Scatter plot of DBH vs Total Height for all sawtimber trees measured on Natchez Trace<br>State Forest with 15 points highlighted                                                                                                 |
| Figure 8. Distribution of Merchantable Height (logs) by DBH for Martha Sundquist State Forest of all measured sawtimber trees                                                                                                              |
| Figure 9. Distribution of Merchantable Height (logs) by DBH for Chickasaw State Forest of all measured sawtimber trees                                                                                                                     |
| Figure 10. Distribution of Traditional VPA board feet estimates by age Franklin State Forest 38                                                                                                                                            |
| Figure 11. Distribution of VPA (board feet) by age for Oak-Hickory forest type on Natchez<br>Trace State Forest                                                                                                                            |
| Figure 12. Distribution of volume per ace (Board Feet) for all plots on Chickasaw State Forest box plot with whiskers included for outlier detection                                                                                       |
| Figure 13 distribution of volume per acre (Board Feet) for 49 plots on Chickasaw State Forest 1 outlier removed from figure 8                                                                                                              |
| Figure 14. FVS vs. Traditional of individual trees board feet estimates. 1:1 line included for reference                                                                                                                                   |

| Figure 15. FVS with cull vs. Traditional Calculations estimates are of individual trees 1:1 line included for reference                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 16. FVS vs. Traditional of Cubic feet for individual trees. The estimate is for the portion of the tree from a 1' stump to a 4" top for both methods. 1:1 line included for reference                                       |
| Figure 17. FVS vs. Traditional of board feet for individual trees. The estimate is for the portion of the tree from a 1' stump to a 7" top for softwood species and a 9" top for hardwood species. 1:1 line included for reference |
| Figure 18. Bledsoe State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)             |
| Figure 19. Cedars State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)              |
| Figure 20. Chickasaw State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)           |
| Figure 21. Chuck Swan State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)          |
| Figure 22. Franklin State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)            |
| Figure 23. Martha Sundquist State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)    |
| Figure 24. Lewis State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)               |
| Figure 25. Lone Mountain State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)       |

| Figure 26. Natchez State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 27. Pickett State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)            |
| Figure 28. Prentice Cooper State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)    |
| Figure 29. Scott State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)              |
| Figure 30. Standing Stone State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)     |
| Figure 31. Stewart State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)            |
| Figure 32. John Tully State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)         |
| Figure 33. Cedars of Lebanon X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007 |
| Figure 34. Chickasaw X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007         |
| Figure 35. Chuck Swan X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007        |
| Figure 36. Franklin X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007          |

| Figure 37. Martha Sundquist X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 38. Lewis X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                                    |
| Figure 39. Lone Mountain X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                            |
| Figure 40. Pickett X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                                  |
| Figure 41. Prentice Cooper X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                          |
| Figure 42. Scott X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                                    |
| Figure 43. Standing Stone X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                           |
| Figure 44. Stewart X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007                                                                                                                  |
| Figure 45. Natchez Trace State Forest All Plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)        |
| Figure 46. Natchez Trace State Forest Outliers Removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011) |

| Figure 47. Bledsoe State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 48. Cedars of Lebanon State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)             |
| Figure 49. Cedars of Lebanon State Forest with outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011) |
| Figure 50. Chuck Swan State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)                    |
| Figure 51. Franklin SF all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)                                |
| Figure 52. Franklin State Forest Outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)               |
| Figure 53. Lone Mountain State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)                 |
| Figure 54. Lewis State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)                         |
| Figure 55. Martha Sundquest State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in                                                                                                                                                  |

| 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA | 'S  |
|------------------------------------------------------------------------------------------|-----|
| equation (BD000049) (Oswalt et al. 2011)                                                 | 118 |

| Figure 64. Bledsoe State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 65. Cedars of Lebanon State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011) |
| Figure 66. Chickasaw State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)         |
| Figure 67. Chuck Swan State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)        |
| Figure 68. Lone Mountain State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)     |
| Figure 69. Lewis State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)             |
| Figure 70. Martha Sundquist State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)  |
| Figure 71. Natchez Trace State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)     |
| Figure 72. Prentice Cooper State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)   |
| Figure 73. Pickett State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)           |
| Figure 74. Scott State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011)             |

### Chapter I Introduction and Literature Review

The State of Tennessee owns and manages 166,897 acres of state forests, which are managed by the Tennessee Department of Agriculture, Forestry Division (TDF). These acres are spread across the entire state and cover multiple geographic and physiographic regions. As stated in Plan 2020 circulated by the Tennessee Department of Agriculture: "following decades of restoration, conservation, and careful management Tennessee's state forest system now contains an abundant supply of high-quality timber and other forest products." From the same document an independent audit report from the Rainforest Alliance, Smartwood Program, in 2006 stated

"Many stands on the state forests are mature and beginning to senesce. Regeneration efforts need to be increased on these areas but personnel limitations have prevented handling of needed sales." (TDF 2007)

In 2007 TDF implemented a plan to measure forest growth across all 15 state forests. Measurements of growth for individual forests as well as total state forest land will be used to determine harvest limits, make policy decisions, and study management practices. Prior to measuring or quantifying growth, an inventory must be completed. Lacking an adequate understanding of the current inventory will prohibit any progress on future growth calculations. TDF designed a Continuous Forest Inventory (CFI) methodology that would be used to establish the sampling design for all 15 state forests.

The objectives of the TDF study were to: determine the growth by species and forest types for all state forest land, develop growth models for individual trees in mixed hardwood stands in Tennessee, develop a harvest schedule, and assess the impact of different silvicultural treatments over time. Forest management depends heavily on the understanding of the quantity and quality of the current growing stock (Davis et al. 1960). Following the implementation of the inventory, TDF requested an in depth analysis of their study by The University of Tennessee Department of Forestry, Wildlife and Fisheries. In order to determine the effectiveness of the current inventory in answering the questions TDF was asking, the decision was made to address three key objectives:

- 1. Assess the quality of the plot level measurements
- Determine the usefulness of the outputs produced by the Forest Vegetation Simulator (FVS) (USDA 2002)
- 3. Identify changes that should be made to the current design

#### Inventory

Chapman and Meyer (1949) state "the forest is an enterprise in which volume is produced and the time required for production is essential in understanding the forest's ability." Forest lands being held for long term objectives such as development and or investments need to be inventoried for quantity and quality (Meteer 1965). Inventories are a direct responsibility of forester managers and have become the major source of information on which to base management decisions (Hall 1965). Crossley (1960) argues an inventory should be capable of measuring change that happens in forest conditions through time. Predictions of change require a starting point, commonly referred to as current volume or inventory; a projection of existing conditions into the future or growth; and an adjustment of projected values for mortality and ingrowth or growing stock (Lynch 1962, Davis 1960). The concept of a continuously productive or regulated forest is rooted in the understanding of site, quality, growth, and yield (Davis 1954).

The importance of an inventory in forest management is well documented. The primary questions then are what type of information should be collected, how should it be quantified, and

how often should it be measured? Avery and Burkhart (2002) state that an inventory should contain knowledge of current volume in the form of numerical data that can be used to make management decisions. Volume is the most common unit of numerical data used to quantify an inventory, this being the amount of wood that could be harvested and sold (Baker 1953, Chapman and Meyer 1949). A forest inventory most commonly requires an inventory that is drawn from a sample rather than a census due to the size of populations needing to be represented (Husch et al. 1972). Sampling in forestry generally consists of an aggregation of points, plots, or strips that can be permanent or temporary. These samples are then used to make an inference regarding the entire population. Historically these samples have been related to sales, purchases, tax appraisals, or accounting practices and in some instances may be referred to as a cruise. Sampling provides a snapshot of a population at one point in time, commonly referred to as non-recurring temporary sample (Putnam et al. 1960). Non-recurring inventories will continue to have a place in forest management. Organizations and or managers attempting to quantify long term sustained yield, growth, or impacts of certain management practices require an inventory that can be periodically re-measured to capture changes in time (Crossley 1960).

#### **Continuous Forest Inventory**

Continuous Forest Inventory (CFI) is the repeated measurement of a permanent plot at a set interval in time. This practice has been implemented throughout the United States and most of the developed world. Continuous measurement or repeated measurement of forest stands was developed in France in 1878, and first applied in Switzerland by Biolley in the 1890s. The method was developed in the forest of Covet and became known as the *methode du controle*. This method was introduced to American forest management in the 1930s by Kirkland, Meyer, and Stevenson (Spur 1952). CFI in the US has evolved from European models since its introduction in the 1930s. The *methode du controle* used grouped data focusing on one

parameter, diameter. American CFI identifies individual trees and focuses on multiple parameters. While both methods can use permanent plots, American CFI requires exact locations with precise measurement (Spur 1952). The most direct way of measuring growth is the repeated measurement of the same location, often referred to as a permanent plot. The value of permanent plots was recognized early and has become essential in management and research (Spur 1952). Repeated measurements of permanent plots constitute a record of growth and changes of various parameters associated with the plot. Growth and stocking estimates could be measured from two successive inventories not using permanent plots; however, the precision and accuracy of growth will be less than when using permanent plots (Husch et al. 1972). Hall (1959) describes CFI as a way to use past performance to make future predictions. CFI provides a clinical study of the individual trees and their relationship to the environment. Changes or patterns can easily be translated from research into forest management (Bourdo 1965). CFI can be used to identify appropriate silvicultural practices on individual trees and stands. This numerical assessment can be used to bring the ratio of growth to removal closer, quantify management practices, and provide valuable insight into policy decisions. Empirical models can be developed using this assessment and provide estimates prior to implementation of management decisions (Avery and Burkhart 2002).

Determining the optimal sampling intensity in CFI is more difficult than a temporary sample. The acceptable or desired level of sampling error is unique to each CFI implementation. Most CFI implementations seek to achieve a sampling error based on the outcomes desired; however, designs generally are created based on financial limitations. As in all samples, variance within the forest and the area of the forest demand different levels of intensity, but most samples range from 0.03 to 0.1 percent of a given area. Variability tends to increase as the size of the

forest increases but not at the same rate, implying a larger forest requires a lower intensity for a desired level of precision (Husch et al. 1972).

Inaccurate measurements can have substantial effects when CFI plots represent a small fraction of the population. Scott (1965) emphasizes all initial plot work needs to be done with the anticipation of direct comparison of subsequent repeated measurements. Methodologies for CFI need to contain specific procedures and work to remove all subjective measurements. The notion that mensuration is an imprecise science should not be an excuse or encouragement for careless field procedures. Two concepts considered to be the most important in CFI measurements are careful and accurate measurement and truly comparable data, ensuring that the change in a forest can be captured with the data (Meteer 1965).

#### **Growth and Yield**

The basic components of growth calculations are: current inventory growth, ingrowth, mortality, and removals (Husch et al. 1972). While individual tree diameter or basal area growth can be quantified with single measurements, stand growth is a more complex issue (Spur 1952). Forest managers often must forecast stand dynamics many years into the future due to long rotation lengths. Managers working with mixed species stands and forests that are constantly changing face several complex issues. Two types of methods, direct and indirect, are used to forecast stand dynamics. Direct methods consist of using past data trends to predict future growth and mortality, such as stand table projections. Limitations occur when forecasts are needed in areas not included in past data, management practices have not been measured, or long periods of time need to be forecast. Indirect methods use other stands to make inferences about the stand in question. This method consists of equations, tables, and computer simulators that are collectively referred to as growth and yield models. (Avery and Burkhart 2002)

Growth and yield models were first developed in the 1850s, starting in Europe and contain graphs of documented yields through time for important species. Early American models started in the 1920s followed guide curve assumptions and continued to be the standard until advancements in computer technology (Peng 2000). Growth models can be classified into two main categories - whole stand and individual tree models.

Whole stand models contain parameters associated with a stand, such as basal area, density, or known underlying diameter distributions. Whole stand models provide adequate growth and development numbers for the stand as a whole, but lack information regarding individual tree development (Peng 2000). Guide curve models historically contained two variables due to the complexity of graphing three. Normal yield and empirical tables are two types of graphical models. Normal yield tables are based on an ideal (commonly referred to as "fully" stocked) stand. Points from plots are collected from stands of various site qualities and ages, graphed, then connected to create a normal yield table (Husch at al. 1971). To apply normal yield tables, a manager must assume that the stand is fully stocked and that the curve was derived from a stand that has always been fully stocked. Empirical yield tables are based on the concept of average stocking. Normal and empirical tables both are based on indirect measurements being applied to the stand in question and provide some estimate of volume per acre. Normal and empirical tables both have limitations due to the absence of a density measure, and hence are unable to accommodate stands that have been managed. (Avery and Burkhart 2002)

Variable density models were introduced in 1939 by MacKinney and Chaiken in the form of multiple regression equations and addressed the issue of requiring a measure to address specific stand dynamics such as trees per acre, age, or basal area. This technique has since been

applied to stands to predict aggregate numbers such as total stand volume (Avery and Burkhart 2002).

Individual tree models were first developed in the 1960s for even-aged Douglas-fir (Newham 1964). Individual tree models progressed beyond even-aged, single species to multiple species and uneven-aged stands. Yield tables do not allow for estimating the diameter distribution of growth, a common need for forest managers. Individual tree models contain a distribution of diameter, stand dynamics, and information about the structure of the stand. Individual tree models grow individual trees then aggregate this growth to provide estimates at the stand level (Avery and Burkhart 2002). Individual tree models can be classified into two main categories, distance dependent and distance independent. Distance independent models do not require the known location of the trees. Avery and Burkhart (2002) list three main components of a distance independent model - diameter growth, height growth, and mortality - in which they claim mortality can either be generated stochastically or be a function of a growth rate. The data required to use independent models are generally available and the outputs are capable of estimating growth (Peng 2000). Distance dependent models are similar in components, but contain the actual coordinates of the individual trees. Distance dependent models are often expensive to develop due to the labor involved in collecting the required data. This method does allow for the competition indexes and other interactions of individual trees to be based on size and distance to neighbors.

#### FVS

The U.S. Forest Service (USFS) developed the Forest Vegetation Simulator (FVS) as a distance independent individual tree growth and yield model, comprised of 22 regions of the US. The growth equations for FVS are derived from plot data collected by the USFS Forest Inventory

and Analysis group (FIA) (Donnelley et al. 2001). The Southern Variant was developed in 1998 and released in 2001 with updated growth equations (Donnelley et al. 2001). Input variables for the model include: species, dbh, height, site quality, and plot design. FVS predicts diameter growth, height growth, and mortality, making this a robust model in the sense it takes very little data to predict future results. Outputs include stand and stock tables that can forecast multiple rotations into the future. FVS employs two types of mortality models: background and density related. Background mortality is a function of stand density being below a specified level, while density is based on the individual tree's density relative to the stand's maximum density (Radtke et al. 2012).

#### **Data Quality**

CFI measurements are subject to highly erratic results compared to the amount of growth for the often short period between measurements (Spur 1952). While computers assist in the calculations, data quality is often overlooked. Data quality control for the initial assessment of the plot data most often will be focused on distinguishing points that appear to be outliers. Outliers according to Anscombe (1960) arise from two main sources, variation within the data and errors among the data. Outliers have been described as observations that deviate so much from others that they appear to come from other processes (Hawkins 1980), observations that appear to be inconsistent with the other data (Johnson 1992) and as being odd in the eyes of the researcher (Dixon 1950, Wainer 1976). In most instances outliers are associated with extreme values. It is important to note that not all outliers are illegitimate points, and not all illegitimate points are extreme (Barnett and Lewis 1994). Aggarwal and Yu (2001) describe that often outlier points contain information about abnormal behavior in a system. This assumes the value associated with the outlier is a product of the same noise or variation associated with the mean of the variable in which the outlier is contained. Terminology also often discussed in the outlier

conversation is "fringeliers" or points "on the fence". Wainer (1976) introduced the concept of "unusual events that happen more often than seldom". Osborn (2004) describes these points as having a wide dispersion and a stronger influence with less ability to be easily identified. The impacts that outliers can have not only on analysis but also models can at times be costly. With an increased dispersion of data the error associated is generally inflated.

### **Chapter II Overview of the State Forests**

The purpose of this section is not to provide an in-depth examination of the history of the state forests, but rather to highlight a few key points related to the purposes of this study. As in all measures of prediction, the past must reflect the future. While it may be assumed that ownership plays little role in biological functions, the management that the owners choose to implement does. The state of Tennessee, through the Division of Forestry, has decided to manage the forests on an 80-year rotation for hardwoods and a 60-year rotation for pine (TDF 2007). These are important numbers to remember when determining the sampling frame used in making predictions. The current state of each individual state forest is unique in the time that it has been under state management. The question becomes how will the change in management affect the growth rates through time? This section is intended to highlight that some state forests have been under the management regime of the state longer than others. Therefore the ability to make direct comparisons may not be appropriate in all instances. This will likely play out after multiple rotations, but for now the past is crucial in understanding the future. Historical information that is presented was chosen based on its potential to affect the results presented in subsequent chapters. The results were not analyzed in terms of understanding these impacts but rather that they may have some influence.

The mission of TDF is to manage the 15 state forests for a mix of natural resources. This includes game and nongame wildlife and high-quality timber. The 15 state forests are spread across 4 regions of the state (Figure 1): East, Cumberland, Highland Rim, and West. (TDF)

The East region contains Martha Sundquist, Chuck Swan, Scott, and Lone Mountain State Forests. Martha Sundquist was acquired in 2001 from International Paper. It has been



Figure 1. State Forests locations and acreage, map generated by the Tennessee Division of Forestry.

owned and managed by wood industry companies since the 1930s. It lies in the Blue Ridge region of the state and is the only forest located in this unique physiographic land type. Chuck Swan was acquired from TVA is 1952, under an agreement that the land would be managed. Prior to the acquisition of the land by TVA the area was comprised of small farms which succession has reverted back to forest. Chuck Swan is in the Ridge and Valley physiographic land type. Scott State Forest was acquired by the state in 1938 at a tax delinquent sale, and is on the Cumberland Plateau. Lone Mountain was acquired partially through a tax sale in 1929 and through a deed transfer in 1938 by the Lone Mountain Land Company. Under the ownership of the Lone Mountain Land Company the land was heavily logged and mismanaged preventing any harvest from taking place aside from a few salvage harvests. Lone Mountain lies on the Cumberland Plateau. (TDF)

The Cumberland region of the state contains Pickett, Standing Stone, Bledsoe, Prentice Cooper, and Franklin State Forests. Pickett was acquired through a donation to the state by Stearns Coal and Lumber Company in 1933, becoming a state forest in 1935. Standing Stone was deeded to the state in 1955 under the Resettlement Administration. The previous tenants used the land for agriculture and as a result erosion can be seen across the landscape. Standing Stone sits on the Eastern Highland Rim. Bledsoe was acquired by the state in 1907 and became a state forest in 1933. Standing Stone sits on the Cumberland Plateau. Prentice Cooper was acquired between 1938 and 1944 then deemed a state forest in 1945. Prentice Cooper lies along the scenic Tennessee River Gorge. Franklin State Forest was acquired in 1936 from the Cross Creek Coal Company and became a state forest in 1940. As a result of the previous land use Franklin was highly degraded and has since returned to mature forest. (TDF)

The Cedars of Lebanon, Lewis, and Stewart State Forests are located in the Highland Rim region of the state. Cedars of Lebanon was purchased by the Resettlement Administration in 1935 and turned over to the Division in 1955. The landscape was mostly small farms prior to acquisition and suffered from heavy grazing, erosion, and indiscriminant burning. Cedars of Lebanon is unique to the state, containing the largest continuous cedar glade-barren in Tennessee. Lewis was acquired though a delinquent tax sale in 1933 and deeded to the Division of Forestry in 1936. Stewart State Forest was once part of the Leech Estate and became a state forest in 1935. (TDF)

The Western region of the state contains Natchez Trace, Chickasaw, and John Tully State Forests. Natchez Trace was acquired in 1949 through the Resettlement Administration. The land was once highly eroded, and as a result deep gullies are still present. Management since the time of acquisition has been focused on fire prevention and erosion reduction. This can be seen by the quantity of loblolly pine (*Pinus taeda*) present on the state forest. Chickasaw became state property in 1938 and a state forest in 1955. Similar to Natchez Trace, the land was highly eroded and degraded due to land use practices. John Tully was acquired in 2002 from the Anderson Tully Land and Timber Company. Prior to the acquisition most of the merchantable timber was harvested. John Tully is the only state forest found in the Mississippi River alluvial valley, containing unique forest types not found on other state forests. (TDF)

## Chapter III Methods

#### Data

Division personnel began establishing the original CFI plots on the 15 state forests in 2007 and completed the initial sample in 2009. The extended time was due to several factors, but primarily the multiple responsibilities and priorities of the personnel within this time period. Inventories began in the spring and were conducted across growing seasons, ultimately requiring a more complex growth analysis following multiple measurements.

The following information was derived from the methodology used by the Division during the initiation of plots (Morrissey et al. 2007). A systematic approach was taken for each state forest and a ratio of 250 acres represented by one plot was established, with a minimum of 20 plots per state forest. This number was derived from previous experience, literature, and the cost per plot. Spacing was calculated based on the acreage of the state forest being measured and then mapped using GIS technology.

Plot centers were identified on aerial photos and then located using GPS. Crew members were given coordinates and allowed a 25-foot error from the exact location. To avoid plots with multiple conditions each plot was required to be classified as forested or non-forested. Plot type or condition was determined by the condition at plot center. Plots that had multiple conditions were moved 60 feet perpendicular to the forested/non-forested boundary, to maintain a single condition within the plot.

#### **Plot Layout**

Plots consisted of four subplots (Figure 2), three concentric circular subplots and one offset circular subplot located 10 feet east (90°) of the center pin. Table 1 describes the size and radius used for each subplot listed. Two witness trees were established for the location of plot center; criteria for tree selection included common species, proximity to plot center, and position in relation to plot center (perpendicular to each other). Aluminum tags were attached to each tree less than six inches from the ground and another at least 6 inches above DBH, both facing plot center. Diameter, azimuth, distance from plot center, and species were recorded to aid in the location of plot center for the next measurement.

Site index was recorded at each plot location using suitable trees off plot that represented plot conditions. Species, age, and height were recorded and an average plot age was assigned to each plot. Sawtimber was defined as twelve inches in diameter and larger at breast height for hardwoods and ten inches in diameter and larger at breast height for softwoods. All trees were mapped by collecting azimuth and distance measurements from plot center. Trees were then assigned a numerical value to assist in the measurement process. The following attributes were collected for all trees that fell within the plot boundary.

- Species
- Diameter at Breast Height (DBH) to the nearest 0.1"
- Status "alive or dead"
- Total Height (feet)
- Merchantable Height
- Percent cull of the merchantable portion
- Percent live crown ratio



Figure 2. Plot design used by TDF. Figure prepared by TDF.

| $\frac{1}{1} = \frac{1}{1} = \frac{1}$ |       |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size  | Radius(feet) |
| Sawtimber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20  | 52.7         |
| Poletimber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05  | 26.3         |
| Sapling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01  | 11.8         |
| Regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001 | 3.7          |

Table 1. Plot sizes (Acre) by product type

#### **Data Quality**

The first process was to determine any species code errors associated with the plots. This was mostly found through the implementation of the USFS species groups. The plot boundary was checked by adding a filter to the raw data sheet and by sorting the distances from greatest to least. This process was conducted for total height, DBH, merchantable height, and percent cull. A large portion of the plots had no value for percent cull. It was assumed that this was the result of no cull being present. Individual trees were compared to trends of each state forest using known relationships in forestry. A DBH vs. Height relationship was used to identify trees that contained an extreme value either due to transcription or measurement. A XY scatter plot was used with both variables being continuous. To verify the results the function plot(x, y) was conducted in R (www.jmp.com). No inconsistencies were found between the two programs. Errors in the tree data that could be identified from revisiting the original data sheets were corrected, while errors that could not be resolved were left, but noted as being potentially odd. Merchantable height was compared to total height for individual trees on each state forest to determine if there was a relationship in the two variables. This was conducted in JMP and R to verify the plots. Volume per acre (VPA) estimates were checked using non-parametric techniques (e.g., box-plots) to establish potential outliers. Box plots of each individual state forest identified VPA estimates that appeared large or small relative to the estimates for the individual state forest. JMP analysis of distributions with boxplots was used, while boxplots (x, data=) were used in R. Outlier plots that had a large amount of volume relative to the other plots on the state forest were checked by examining basal area. Individual tree basal area was added to the original data set by generating a new column and multiplying the diameter squared by 0.005454.

#### Calculations

Volume estimates were produced using regression equations developed from the USFS Southern Research Station (SRS) Forest Inventory Analysis (FIA) program. First, the raw data were checked for consistencies between plot id and forest id. To verify this, all plots were classified by state forest with identification number checked to confirm the assignment. No inconsistencies were found. Species-specific inside bark equations from the general form of a linear regression model were used from trees felled on public land (Oswalt et al. 2011). The FIA equations will be referred to as Traditional going forward in this report.

$$V = \alpha + \beta (dbh^2Ht) + \varepsilon$$

Where:

dbh = bole diameter at breast height
Ht = Total tree height
α & β are species specific coefficients
V = Volume

Prior to assigning the coefficients, the species identification numbers were grouped based on the grouping used to develop the equations. All changes can be found in Table 15 (Appendix A).

Cubic-foot volume was calculated for all trees using the Equation Form CU000067 (CV4), which calculated cubic-foot volume from a 1-foot stump to a 4-inch top (Oswalt et al. 2011). A function in Microsoft Excel was employed to match and lookup coefficient values from a table. Checks were conducted to verify that the function was working properly by species and that no inconsistencies were found.
$$CV4_{Sawtimber} = D1 + D2 * (dbh2 * HT)$$

Where:

D1 & D2 = Species specific coefficients

Table 16 (Appendix A) contains the coefficients by species groups for both D1 & D2 used in the CV4 equation.

The saw-log portion of the tree measured in cubic-feet was determined using equation CU000069 (CUSAW). The same function in Excel was used but referenced the array containing the coefficients for CU000069. This process created a ratio containing the merchantable portion of the tree dependent on species group (hardwood to a 10" top and softwood to a 8" top). The same grouping of USFS species codes was used throughout all of the calculations. This ratio was then multiplied by the total cubic feet estimate from CV4 to produce an estimate of total merchantable cubic feet volume.(Oswalt et al. 2011)

$$R = H1 + H2 * \left(\frac{1}{DBH - 5}\right)^{2}$$
  
CUSAW = R \* CV4

Where:

H1 & H2 = Species specific coefficients

The saw-log portion of the tree measured in board feet was calculated using equation BD000049 (BD). This equation calculates a ratio of the merchantable portion of the tree in terms of board feet. An Excel function was used to match and lookup the corresponding coefficients from a table. Coefficients can be found in Table 17 (Appendix A)

$$R = I1 + I2 * \left(1 - \left(\frac{1}{DBH}\right)\right)$$

Where:

I1 & I2 = Species specific coefficients

Gross board feet were then derived using the following equation by multiplying the ratio of board feet to the total cubic feet estimate. This is cited as being log rule International <sup>1</sup>/<sub>4</sub>, however how this was derived has not been documented. This log rule will be used for estimating board foot volume in this study.

$$BD = R * CV4$$

Net saw-log volume for individual trees was calculated by extracting the percent cull from the original plot data and reducing the gross board feet volume estimate by this percentage. The process of determining percent cull required the field crew to estimate a merchantable height. This height, however, could be different from the predicted heights contained in the estimate. The variation of quality found in hardwoods and the subjective nature of cull reduction could influence both the accuracy and precision of this reduction. The use of this percent cull reduction was used to indicate the need for more precise estimates of cull reduction and not to show the accuracy of the reduction. Given that 1/5 acre plots were used, an expansion factor of 5 was applied to each tree to produces estimates at the per acre level.

 $BD - (BD^*(\% \text{ cull})) = Net Volume (board feet)$ 

## **Implementation of FVS**

The USFS provides a template for an Access database available to the public on the USFS website and it was accessed on 5/10/2013. The template contained two tables, StandInit and TreeInt. StandInt contains attributes used at the plot level (i.e., Plot Number, Stand ID, Variant (Southern), SI, Age, Plot Size (used for expansion factor), location (Lat., Long), Region,

District, and Forest). TreeInt contains the attributes of each individual tree including Plot Number, Tree Number, Species, DBH, Total Height, and Crown Ratio.

The SUPPOSE GUI for FVS provided by the USFS website and accessed on 5/15/2013 was used to input and calculate per plot estimates. A Treelist file (stand and stock table) was generated and used to reference individual trees. The outputs were put into an Access database that could be extracted and loaded into JMP to allow for statistical calculations. TDF provided an Excel file containing the estimates produced from FVS. These estimates were verified by comparing them to this study.

## **Statistics**

The following statistics were calculated for each state forest for the volume estimated from the USFS SRS FIA equations and for the FVS plot estimates: mean VPA, standard deviation of VPA, standard error of the mean, and confidence intervals at the 95% level of confidence. Confidence intervals were calculated for each state forest. Finite population corrections were not used due to the small sampling fraction. A coefficient of variation and sampling error as a percent of the mean were calculated for each state forest for comparison purposes. Data were compiled using code written in VBA in Microsoft's VBA developer. This process combined the individual trees volume estimates by plot id for both total cubic feet (CV4) and merchantable board feet (BD). Pivot tables were used to verify that no inconsistencies were found. There were no inconsistencies found between the pivot table results and the macro compiled results. Results for each state forest were then loaded into JMP, a program used for statistical analysis and part of the SAS Institute, Inc. (www. jmp.com). JMP was selected due to the user friendly nature of the GUI, track record for accuracy, ability to quickly analyze results, and save script for repetition. All summary statistics were calculated in JMP, R, and Excel to verify that the correct estimates were being produced. Distributions were calculated in R version 3. 0. 2 to compare with distributions produced in JMP. R was used due to the ease of producing multiple figures quickly with consistent formatting. To prevent the possibility of errors occurring during the creation of new files all procedures were run from the original data set and verified against a saved copy of the original.

## **Stratified Sampling**

Once volume per acre (FIA equations) was estimated, stratified sampling statistics were calculated for the overall population mean. It was assumed that averages differ by strata and that the associated variance is small in comparison to overall variance. This should produce a more precise estimate of the total population mean (Avery and Burkhart 2002). The sample mean was calculated for each stratum and combined in a weighted overall mean. The calculations were carried out in Excel due to the ease of manipulation as well as the ability to visually verify reference. Columns were generated for each attribute of the equation and area estimates were derived from TDF.

$$\overline{y}_{st} = \frac{\sum_{h=1}^{L} N_h \overline{y}_h}{N}$$

Where:

L = number of strata

 $N_h$  = total number of units in stratum h (h = 1,...,L)

N = total number of units in all strata

To calculate standard error it is first necessary to compute the variance for each individual strata  $s_{h}^2$ . Variance is calculated using the equation from simple random sampling. From the individual strata variances the standard error of the mean is computed as (this equation ignores the finite population correction factor - see Avery and Burkhart (2002)).

$$s_{\bar{y}_{st}} = \sqrt{\frac{1}{N^2} \sum_{h=1}^{L} \frac{N_h^2 s_h^2}{n_h}}$$

Confidence intervals for the mean are computed as

$$\bar{y} \pm ts_{\bar{y}_{st}}$$

Where:

degrees of freedom for the t value can be computed by

$$(n1 - 1) + (n2 - 1) + \dots + (nL - 1), [i.e., by \sum_{h=1}^{L} (n_h - 1)]$$

To calculate the optimum allocation of field plots

$$n_h = \left[\frac{N_h s_h}{\sum_{h=1}^L N_h s_h}\right] n$$

## **Forest Type Classification**

Forest type classification was derived using the algorithm contained in FVS. Arner et al. (2001) describe the process tree used to obtain stocking, stand size, and forest type. The process of plot delineation was not used in this classification; therefore the entire plot was classified as one forest type. As detailed in Arner et al. (2001), the origin of the forest types derived from the algorithm is Eyre (1980), which has been used by FIA units for plot classification for some time.

# Chapter IV Results

The results are presented in three separate components: data quality, volume comparison, and design. Data quality refers to the individual tree attributes as well as the plot level estimates. The volume comparison presents the differences between the two methods of calculating board feet estimates and cubic feet estimates (traditional and FVS), and the differences found between the equations/models. The design topic describes the current quality based on sampling error, and the multiple options for improving the precision, based on altering the overall design both for the overall estimates as well as within forest estimates. Prior to presenting these topics an overview of the key results for the state forests is reported to provide a context of what species types, age, and species groups are being discussed in the subsequent sections.

#### **Forest Overview**

White oak (*Quercus alba* L.) was the most common species reported on the state forests, followed by loblolly pine (*Pinus taeda* L.) (Table 1). The distribution of plot age can be seen in Figure 1, with reported ages ranging from 0 to 195 years. The average age was 65 years. The distribution of each state forest can be found in Appendix E. The most common forest type was Oak-hickory, which comprised more than 70 percent of all forest groups (Table 2).

## **Data Quality**

#### Tree data

The initial assessment of plot data began with checking the measurements with known values. Distance of trees from plot center was to be equal to or less than 52.7 feet. Nineteen trees fell outside the plot boundary or were recorded incorrectly, 228 trees contained no percent cull value, and 2 trees contained species codes not listed in the Southern Variant. The errors due to transcription were corrected by reviewing the data sheets and were not included. The assessment

26

of individual trees began at the state forest level looking at known relationships. Scatter plots were used to depict overall trends among the individual forest as well as individual trees that were separated from the surrounding data. A plot containing no odd data points or patterns (Figure 2) was included for reference. Rounding of total height measurements (Figure 3) was noted on two state forests (Bledsoe and Franklin). To magnify this result Figure 4 illustrates the rounded values of loblolly pine on Natchez Trace. There is no increase recorded in height as DBH increases. Individual trees that stood out (Highlighted) (Figure 5) were investigated for having incorrect data.

Height measurements that were identified as being taller or shorter than the surrounding data were further investigated for the units of the measurements in the data sheets. The most common type of data error was the total height being recorded in logs (16 feet) or the values in the merchantable column being switched with total height. Two state forests reported total height measurements that stood out as potential taller errors (Natchez Trace and Pickett); these two points also were the two tallest trees recorded on all state forests at 180 and 200 feet. Appendix C contains all of the relationships of DBH to height not presented in this section.

Table 2. Frequency of species for all plots on all 15 State Forests. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design.

| Common Name       | Frequency |                    |      |
|-------------------|-----------|--------------------|------|
| Yellow buckeye    | 1         | Birch spp.         | 12   |
| Bitternut hickory | 1         | Southern magnolia  | 12   |
| Shellbark hickory | 1         | Elm spp.           | 13   |
| Nutmeg hickory    | 1         | Black cherry       | 14   |
| Hackberry spp.    | 1         | Green ash          | 16   |
| Cottonwood        | 1         | Yellow birch       | 19   |
| Oak deciduous     | 1         | Sycamore           | 19   |
| Blackjack oak     | 1         | Pin oak            | 19   |
| Shumard oak       | 1         | Cherrybark oak     | 27   |
| Slash pine        | 2         | Ash spp.           | 33   |
| Eastern hemlock   | 2         | unknown hardwood   | 37   |
| Boxelder          | 2         | Sugar maple        | 40   |
| Buckeye           | 2         | American beech     | 45   |
| Overcup oak       | 2         | Shagbark hickory   | 47   |
| Basswood spp.     | 2         | Hemlock spp        | 71   |
| American elm      | 2         | Blackgum           | 74   |
| Slippery elm      | 2         | Eastern redcedar   | 83   |
| Silver maple      | 3         | Pignut hickory     | 84   |
| Honeylocust       | 3         | Eastern white pine | 91   |
| Red hickory       | 4         | Mockernut hickory  | 96   |
| Common persimmon  | 4         | Northern red oak   | 109  |
| Sourwood          | 4         | Hickory spp.       | 142  |
| Paulownia         | 4         | Post oak           | 149  |
| Pecan             | 5         | Sweetgum           | 162  |
| Hackberry         | 5         | Shortleaf pine     | 174  |
| Swamp tupelo      | 5         | Virginia pine      | 198  |
| Water oak         | 5         | Black oak          | 230  |
| Willow oak        | 7         | Red maple          | 254  |
| Black locust      | 8         | Southern red oak   | 269  |
| Black walnut      | 9         | Scarlet oak        | 435  |
| White ash         | 10        | Chestnut oak       | 493  |
| Cucumbertree      | 10        | Yellow-poplar      | 537  |
| Chinkapin oak     | 11        | Loblolly pine      | 617  |
|                   |           | White oak          | 766  |
|                   |           | Total              | 5509 |



Figure 3. Distribution of age of all plots on all 15 State Forests. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design.

**Table 3.** Distribution of Forest Types of all plots on all 15 State Forests. Data collected by TDF in 2007 using1/5 acre permanent plots in a CFI design.

| Forest Group            | Frequency |
|-------------------------|-----------|
| Oak-gum-cypress         | 8         |
| White-red-jack pine     | 9         |
| Elm-ash-cottonwood      | 14        |
| Maple-beech-birch       | 22        |
| Other-nonstocked        | 25        |
| Loblolly-shortleaf pine | 64        |
| Pine                    | 67        |
| Oak -hickory            | 502       |
| Total                   | 711       |



**Figure 4.** X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet for John Tully State Forest. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



**Figure 5.** X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet for Bledsoe State Forest. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 6. Relationship of DBH vs. Total height for loblolly pine on Bledsoe SF.



Figure 7. Scatter plot of DBH vs Total Height for all sawtimber trees measured on Natchez Trace State Forest with 15 points highlighted

Merchantable height is the measurement describing the portion of the tree that can be used for a specific product type. One-way plots were used to view the distribution across different x values or levels (horizontal axis). DBH was used as the x value due to the merchantable limits being based on a diameter at breast height and an upper stem diameter specified based on hardwood or softwood. Figure 6 shows the expected trend on Martha Sundquist; Figure 7 illustrates the distribution on Chickasaw and no trend can be seen indicating that merchantable increases with DBH.

Age was compared to volume, assuming that an increase of volume could be seen as age increased (Figure 8). Franklin State Forest exhibited no obvious increase or change across age. To investigate the impacts of multiple forest types masking patterns, Natchez Trace's Oak-Hickory forest type displayed no increase in volume as age increased (Figure 9). The distribution of volume by age indicated two points that seemed extreme, a 0 year old plot with an estimate of 7,000 board feet per acre as well as a 24 year old plot with an estimate around 27,000 board feet per acre.



Figure 8. Distribution of Merchantable Height (MERCH\_HEIGHT) (logs) by DBH for Martha Sundquist State Forest of all measured sawtimber trees.



Figure 9. Distribution of Merchantable Height (MERCH\_HEIGHT) in (logs) by DBH for Chickasaw State Forest of all measured sawtimber trees.



Figure 10. Distribution of Traditional Volume per acre (VPA) board feet (bdft) estimates by age Franklin State Forest.



Figure 11. Distribution of VPA (board feet) by age for Oak-Hickory forest type on Natchez Trace State Forest.

## **Volume Assessment**

VPA estimates were compiled for each state forest and box plots were used to distinguish outliers. Histograms were included for distributions and to display the spread of an individual or group of outliers. State forests that contained outliers (figure 12) were reevaluated with the outliers removed (figure 13). Seven state forests contained outliers relative to other plot estimates. In the West region Chickasaw and Natchez Trace contained 1 outlier. In the Central region Cedars of Lebanon contained 4 outliers, the most outliers across all 15 state forests. In the East region Franklin, Standing Stone, Pickett, and Scott all contained 1 outlier. Prentice Cooper and Pickett both contained 3 outliers. All state forests box plots with distribution not presented in this section are in Appendix D.

## **Traditional vs FVS**

The Forest Vegetation Simulator (FVS) was used to compile the initial plot estimates by TDF. Confidence intervals at the 95 % level were used to distinguish a difference of means between the three estimates: traditional calculation (All Plots), traditional calculations with outliers removed, and FVS. It is assumed that the populations within each state forest are normally distributed therefore standard formulas for calculating the mean, standard error, and confidence intervals were used (Avery and Burkhart 2002)

If either tail of the confidence interval overlapped the tail of the other methods, no difference of the mean was assumed. The 15 state forests were divided into three regions West, Central, and East for comparison purposes. The West region (Table 3) contained one forest, Natchez Trace, with a mean that differed from the other estimates. Outliers removed differed from the FVS estimate but not from the traditional estimate. The Central region (Table 4) contained two state forests that did not contain any outliers, Stewart and Lewis. Cedars of Lebanon's All Plots and Outliers Removed both differed from the FVS estimate.

40



Figure 12. Distribution of volume per ace (Board Feet) for all plots on Chickasaw State Forest box plot with whiskers included for outlier detection.



Figure 13 distribution of volume per acre (Board Feet) for 49 plots on Chickasaw State Forest 1 outlier removed from figure 8

Table 4. Board feet per acre estimates for the central region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (\*) in the Outliers Removed rows did not contain any outliers.

| WEST REGION      |     |       |       |       |
|------------------|-----|-------|-------|-------|
| John Tully       | n   | Mean  | LCL*  | UCL*  |
| All Plots        | 20  | 5672  | 2555  | 8789  |
| Outliers Removed | 19  | 4501  | 2463  | 6540  |
| FVS              | 20  | 5517  | 2677  | 8358  |
| Chickasaw        |     |       |       |       |
| All Plots        | 50  | 11341 | 8915  | 13767 |
| Outliers Removed | 49  | 10674 | 8609  | 12739 |
| FVS              | 50  | 13258 | 10793 | 15723 |
| Natchez Trace    |     |       |       |       |
| All Plots        | 144 | 12070 | 10672 | 13468 |
| Outliers Removed | 143 | 11903 | 10535 | 13271 |
| FVS              | 144 | 14962 | 13434 | 16491 |

Table 5. Board feet per acre estimates for the central region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (\*) in the Outliers Removed rows did not contain any outliers.

| CENTRAL REGION   |    |       |      |       |
|------------------|----|-------|------|-------|
| Stewart          | n  | Mean  | LCL* | UCL*  |
| All Plots        | 20 | 6557  | 4342 | 8772  |
| Outliers Removed | *  | *     | *    | *     |
| FVS              | 20 | 8875  | 6012 | 11738 |
| Lewis            |    |       |      |       |
| All Plots        | 20 | 7745  | 5582 | 9908  |
| Outliers Removed | *  | *     | *    | *     |
| FVS              | 20 | 11660 | 8708 | 14611 |
| Cedars           |    |       |      |       |
| All Plots        | 31 | 2640  | 1622 | 3659  |
| Outliers Removed | 27 | 1740  | 1265 | 2215  |
| FVS              | 31 | 4982  | 3676 | 6288  |

The East region (Table 5) contained four state forests that did not contain any outliers (Bledsoe, Lone Mountain, Chuck Swan, and Martha Sundquist). Prentice Cooper's All Plots and Outliers Removed differed from FVS. Outliers Removed differed from FVS for both Franklin and Pickett while Chuck Swan's All Plots was different from the FVS estimate. While only six state forests had statistically different means, there was a consistent pattern of higher estimation from FVS. To better understand the difference in the two estimates FVS and traditional, individual tree comparisons were calculated. The FVS estimates were compared to traditional (Figure 12) for 27 trees spread across multiple state forest and species groups. Using FVS, 26 of the 27 trees were overestimated. To assess the potential of FVS not having a similar cull percent used, Figure 13 depicts the same 27 trees with a reduction in cull that was used in the traditional calculations. The distance between the two methods was reduced, but there was still an overriding trend of over estimating volume. In order to determine the location of the difference, both methods produce an estimate of cubic feet (Figure 14). To identify the potential extreme cases of difference, the species that showed the greatest difference in Figure 14 was 832 (Chestnut Oak) and was used for further investigation (Figure 15). There appears to be a more precise estimate of cubic feet between the two methods than of board feet (Figure 14).

FIA estimates were calculated using the Evalidator tool on the USFS data mart website on February 22, 2014 (Table 6). The numerator was set to net volume of the sawtimber portion of the tree for timberland. The denominator was set to the area of timberland in acres. A row variable was included to classify TN based on the five units: West, West Central, Central, Plateau, and East. A filter (and cond.owngrpcd<40) was applied to both the numerator and denominator to only calculate public ownership estimates. The report shows the number of nonzero plots and is not clear if zeros were included in the calculations. Table 6. Board feet per acre estimates for the east region separated by state forests. LCL (Lower Confidence Limit) and UCL (Upper Confidence Limit) calculated using a 95% confidence limit. State Forests containing (\*) in the Outliers Removed rows did not contain any outliers.

| EAST REGION      |                  |       |       |       |
|------------------|------------------|-------|-------|-------|
| Franklin         | n                | Mean  | LCL   | UCL   |
| All Plots        | 27               | 7962  | 5822  | 10101 |
| Outliers Removed | 26               | 7372  | 5536  | 9209  |
| FVS              | 27               | 12624 | 10037 | 15211 |
| Prentice Cooper  |                  |       |       |       |
| All Plots        | 96               | 5730  | 4869  | 6591  |
| Outliers Removed | 93               | 5308  | 4570  | 6046  |
| FVS              | 96               | 10805 | 9468  | 12143 |
| Standing Stone   |                  |       |       |       |
| All Plots        | 33               | 8798  | 6431  | 11165 |
| Outliers Removed | 32               | 8241  | 6137  | 10345 |
| FVS              | 33               | 12458 | 9265  | 15651 |
| Bledsoe          |                  |       |       |       |
| All Plots        | 30               | 5701  | 3848  | 7553  |
| Outliers Removed | *                | *     | *     | *     |
| FVS              | 144              | 9554  | 7051  | 12058 |
| Pickett          |                  |       |       |       |
| All Plots        | 82               | 6165  | 5009  | 7322  |
| Outliers Removed | 79               | 5450  | 4648  | 6252  |
| FVS              | 82               | 8901  | 7234  | 10568 |
| Scott            |                  |       |       |       |
| All Plots        | 23               | 2970  | 1876  | 4064  |
| Outliers Removed | 22               | 2633  | 1750  | 3517  |
| FVS              | 23               | 4440  | 2948  | 5931  |
| Lone Mountain    |                  |       |       |       |
| All Plots        | 20               | 5299  | 3368  | 7229  |
| Outliers Removed | *                | *     | *     | *     |
| FVS              | 20               | 10239 | 6982  | 13497 |
| Chuck Swan       |                  |       |       |       |
| All Plots        | 95               | 7281  | 5879  | 8682  |
| Outliers Removed | *                | *     | *     | *     |
| FVS              | 95               | 11046 | 9346  | 12746 |
| Martha Sundquist | Martha Sundquist |       |       |       |
| All Plots        | 20               | 11638 | 9161  | 14114 |
| Outliers Removed | *                | *     | *     | *     |
| FVS              | 20               | 15159 | 11860 | 18459 |



Figure 14. FVS vs. Traditional of individual trees board feet estimates. 1:1 line included for reference.



Figure 15. FVS with cull vs. Traditional Calculations estimates are of individual trees 1:1 line included for reference



Figure 16. FVS vs. Traditional of Cubic feet for individual trees. The estimate is for the portion of the tree from a 1' stump to a 4'' top for both methods. 1:1 line included for reference



Figure 17. FVS vs. Traditional of board feet for individual trees. The estimate is for the portion of the tree from a 1' stump to a 7'' top for softwood species and a 9'' top for hardwood species. 1:1 line included for reference

| Evaluation accessed on repruary 11, 2014 for 11 |           |                |
|-------------------------------------------------|-----------|----------------|
| Region                                          | Mean      | Sampling Error |
| Total                                           | 9,612.36  | 10%            |
| West                                            | 14,380.70 | 22%            |
| West Central                                    | 10,401.13 | 24%            |
| Central                                         | 7,193.80  | 40%            |
| Plateau                                         | 8,299.17  | 19%            |
| East                                            | 9,195.23  | 18%            |

Table 7. FIA region estimates of volume per acre (board feet) of Public Timberland usingEvalidatior accessed on February 11, 2014 for TN

The sampling error reported by FIA is at the 68% level of confidence and was converted to a 95% by dividing by the z score for the 68% level then multiplying by the z score for the 95% level. In the west region, John Tully was the only state forest with estimates that stood out from the estimates of FIA. All of the other state forests were not distinguishably different from FIA's estimates of public timberland volume per acre.

### **Overall Design**

Sampling error with all plots was calculated for each state forest (Table 7) for comparison purposes. John Tully State Forest contained the highest sampling error at 55% while Natchez Trace was the lowest at 12%. In order to provide a more precise estimate of the total population average (Table 6) stratified sampling formulas were used to calculate an overall per acre mean, standard error, and confidence interval. Individual state forests were considered subpopulations. Total estimate of volume for the 15 state forests (Table 8) was included to provide a total estimate for the current inventory. The mean per acre board feet (Int. <sup>1</sup>/<sub>4</sub>) was 8,159.10 with a sampling error of 509.38 or 6.24%. Plot allocation (Table 9) was calculated using a proportional method in which the larger the area the more plots it received and the optimum allocation method, which takes variability into consideration (Avery and Burkhart 2002). The results of using a proportional allocation would result in 6 state forests receiving a more intense sample (Bledsoe, Chickasaw, Chuck Swan, Franklin, Natchez Trace, and Pickett). Nine state forests could use inventories with a decreased intensity (Cedars, John Tully, Lewis, Lone Mountain, Martha Sundquist, Prentice Cooper, Scott, Stewart, and Standing Stone). Natchez Trace would receive the largest number of new plots at 24. Optimum allocation allows for the smallest possible standard error to be calculated for the overall mean. The overall number of plots was not adjusted from the original sample design. While the proportional is solely based on area, the optimal is based on the overall

52

Table 8. Overall sampling error at the 95 % level expressed as a percent of the mean forall 15 State Forests

| State Forest     | Sampling Error(%) |  |
|------------------|-------------------|--|
| John Tully       | 55%               |  |
| Cedar            | 39%               |  |
| Scott            | 37%               |  |
| Lone Mountain    | 36%               |  |
| Stewart          | 34%               |  |
| Bledsoe          | 32%               |  |
| Lewis            | 28%               |  |
| Standing Stone   | 27%               |  |
| Franklin         | 27%               |  |
| Chickasaw        | 21%               |  |
| Martha Sundquist | 21%               |  |
| Chuck Swan       | 19%               |  |
| Pickett          | 19%               |  |
| Prentice Cooper  | 15%               |  |
| Natchez Trace    | 12%               |  |
|                  |                   |  |

Table 9. Estimates of overall board feet per acre using stratified sampling formulas. Mean and Confidence Interval (95% level) reported in board feet, Total Area in acres, and Total Board Feet reported in MMBF

| Mean                       | 8159.10          |  |
|----------------------------|------------------|--|
| <b>Confidence Interval</b> | 8159.1+/-509.38  |  |
| (LCL , UCL)                | (7649.72 , 8668) |  |
| Total Area                 | 145922           |  |
| Total Board Feet           | 1190.59+/-74.33  |  |
| (LCL, UCL)                 | (1116, 1265)     |  |

| State Forest     | Current Plots | Proportinal Allocation | <b>Optimum Allocation</b> |
|------------------|---------------|------------------------|---------------------------|
| Bledsoe          | 30            | 38                     | 30                        |
| Cedars           | 31            | 25                     | 11                        |
| Chickasaw        | 50            | 59                     | 80                        |
| Chuck Swan       | 95            | 112                    | 122                       |
| Franklin         | 27            | 28                     | 24                        |
| John Tully       | 20            | 10                     | 10                        |
| Lewis            | 20            | 6                      | 4                         |
| Lone Mountain    | 20            | 17                     | 11                        |
| Martha Saunquist | 20            | 9                      | 8                         |
| Natchez Trace    | 144           | 168                    | 225                       |
| Pickett          | 82            | 86                     | 71                        |
| Prentice Cooper  | 96            | 87                     | 59                        |
| Scott            | 23            | 14                     | 6                         |
| Standing Stone   | 33            | 34                     | 35                        |
| Stewart          | 20            | 19                     | 15                        |
| Sum              | 711           | 711                    | 711                       |

 Table 10. Allocation of 711 plots using proportional and optimal allocation methods

 contained in stratified sampling design.
variance as well as the area of each stratum. Under the optimum allocation Natchez Trace would receive the most plots at 225 while Lewis would receive the least at 4.

To assess the task of reallocating plots, two state forests were investigated, Natchez Trace and Chickasaw. Natchez Trace was chosen due to the results of the proportional and optimum allocation, while Chickasaw was chosen due to the similarities it shares with Natchez Trace geographically and from a comparison stand point. The results of the inventory were compiled for these two state forests based on forest types (Tables 10 and 12). Natchez Trace has 4 forest types, Loblolly/Shortleaf, Oak-Pine, Oak-Hickory, and Upland Hardwoods. Oak-Hickory makes up the majority of the forest at 60%, while Upland Hardwoods is the least common at 2%. Table 10 shows the estimates of board feet per acre for the different forest types. Ten plots did not contain enough information for the algorithm to calculate a forest type, due to the lack of information; therefore it was listed as no stocking. The current sampling error by forest type is highest for Upland Hardwoods and least for Oak-Hickory. In order to achieve an allowable error of 20% of the mean chosen as an arbitrary point, but often used in forestry the results can be seen in Table 11. Loblolly/Shortleaf would see a decrease in plots from 24 to 19, Oak-Pine would increase from 19 to 44, Oak-Hickory would decrease from 87 to 41, and Upland Hardwoods would increase from 4 to 51. Applying the percentage increase from the results of the desired sampling error of 20% we can allocate the proportional number of 168 and the optimum of 225 accordingly. Under the proportional method, Loblolly/Shortleaf would receive 20, Oak-Pine 48, Oak-Hickory 44, and Upland Hardwoods 55. The optimum allocation would result in Loblolly receiving 26, Oak-Pine 64, Oak-Hickory 59, and Upland Hardwoods 74. Chickasaw State Forest had 4 forest types, Loblolly/ Shortleaf, Oak-Pine, Oak-Hickory, and Bottomland Hardwoods (Table 12). The distribution of Chickasaw is described in Table 13.

| somidence miter fur und sumpring error curculated at the se for terent |                    |          |             |                  |             |  |  |  |  |
|------------------------------------------------------------------------|--------------------|----------|-------------|------------------|-------------|--|--|--|--|
| Forest Type                                                            | Loblolly/Shortleaf | Oak-Pine | Oak-Hickory | Upland Hardwoods | No Stocking |  |  |  |  |
| Mean                                                                   | 19,259             | 14,633   | 10,985      | 10,537           | *           |  |  |  |  |
| n                                                                      | 24                 | 19       | 87          | 4                | 10          |  |  |  |  |
| ±                                                                      | 3,311              | 4,674    | 1,471       | 11,829           | *           |  |  |  |  |
| SE%                                                                    | 17%                | 32%      | 13%         | 112%             | *           |  |  |  |  |
| CV                                                                     | 41%                | 66%      | 63%         | 71%              | *           |  |  |  |  |

Table 11. Forest type estimates of VPA (board feet) of Natchez Trace State Forest.Confidence interval and sampling error calculated at the 95% level.

 Table 12. Sampling intensity to reach a desired sampling error of 20% of the mean at the 95% confidence level

| Forest Type        | n  |
|--------------------|----|
| Loblolly/Shortleaf | 19 |
| Oak-Pine           | 44 |
| Oak-Hickory        | 41 |
| Upland Hardwoods   | 51 |

| inter var and sampning error calculated at the 25 70 leven. |                    |          |             |                      |  |  |  |  |  |
|-------------------------------------------------------------|--------------------|----------|-------------|----------------------|--|--|--|--|--|
| Forest Type                                                 | Loblolly/Shortleaf | Oak-Pine | Oak-Hickory | Bottomland Hardwoods |  |  |  |  |  |
| Mean                                                        | 9,399              | 9,893    | 12,290      | 472                  |  |  |  |  |  |
| n                                                           | 9                  | 4        | 37          | 1                    |  |  |  |  |  |
| ±                                                           | 7,493              | 13,821   | 2,670       | *                    |  |  |  |  |  |
| SE %                                                        | 80%                | 140%     | 22%         | *                    |  |  |  |  |  |
| CV                                                          | 104%               | 88%      | 67%         | *                    |  |  |  |  |  |

Table 13. Forest type estimates of VPA (board feet) of Chickasaw State Forest. Confidence interval and sampling error calculated at the 95% level.

 Table 14. Sampling Intensity to reach a sampling error of 20% of the mean at the 95%

 confidence level on Chickasaw State Forest

| Forest Type        | n   |
|--------------------|-----|
| Loblolly/Shortleaf | 106 |
| Oak-Pine           | 77  |
| Oak-Hickory        | 46  |

To compare the variability of the forest types between Natchez Trace and Chickasaw, Coefficient of Variation (CV) was calculated. Where Natchez Trace has a mean of 19,259 board feet per acre for Loblolly and Chickasaw has a mean of 9,399, little can be concluded regarding variation. The CV is a ratio of the standard deviation to the mean which makes it insensitive to size, allowing for a comparison of relative variability. The variability for Chickasaw was 104% while Natchez had a variability of 41% for Loblolly/Shortleaf. Tables 10 and 12 contain the measures of variability for all forest types of both state forests. This analysis could be conducted for each state forest and region; however, this is beyond this investigation.

# Chapter V Discussion

This section will discuss the results, draw conclusions for those results requiring further explanation, and provide recommendations based on the information presented. The discussion will explore and describe the implications of the results; however, it will not try to infer the exact impacts on management. Variance and quality are assumed to be cumulative, implying that a loss of precision or accuracy at the tree level will impact the plot, state forest, and overall estimates.

### **Tree level Quality**

Data quality can affect population as well as future growth estimates substantially. As described previously, an estimate of current inventory is crucial for calculating growth. Trees that fell outside of the plot but were included would overestimate the VPA. Trees containing no value for percent cull that were assumed correct must be verified and recorded as zero, rather than "blank" for cull percent. Species code errors need to be verified and compared following each measurement cycle. It is possible to infer the likelihood of potential errors for certain species from the initial inventory, e.g., species that are outside of native or known ranges, but this is not definitive. The second measurement of the CFI plot will provide more insight into corrections that need to be made to species codes.

Total height was collected in order to implement the volume model and equation contained in FVS and to serve as a measure of growth. Figure 2 was included to provide an example of the trend and pattern expected between DBH and total height. To be more descriptive, the relationship between DBH and total height is often linear for small ranges of DBH and curvilinear for a wider range of DBH of a given species (Avery and Burkhart 2002). The slope or gradient of a curve should be positive and steeper near the origin, then decrease further from the origin. All 15 state forests showed some indication of a curvilinear relationship

across the full range of DBH recorded. Rounding total height was detected on two state forests (Natchez Trace and Bledsoe) (Figure 3). The presence of straight lines parallel with the x-axis implies the height estimate was rounded, while straight lines parallel with the y-axis implies the diameter estimates were grouped. Rounding will result in an inability to produce precise measures of growth following the second measurement. A loss of precision when predicting volume of the current inventory can be expected for these two state forests (where total height rounding was detected) as well (Figure 4). The implications of rounding are likely small in terms of volume calculations, due to the taper of this section of the tree. However, the actual difference is unknown. Height errors due to transcription, if not identified, could result in an over or underestimation of volume (Figure 5). The use of an equation when calculating volume will likely not result in a recognizable error when a positive number is present; hence there is a need to distinguish these points prior to running any calculations.

The use of subjective attributes such as merchantable height to calculate volume proved to be inconsistent in terms of upper stem limits (Figure 7). Figure 6 was included for reference of an ideal distribution, an increasing upper limit, and increased height variability as diameter increases. Species vary in terms of taper, the percent change between the upper stem diameter inside bark and the DBH inside bark. Several state forests contained estimates of taper that appeared extreme, however. It is unclear if there is a lack of understanding in regards to the limits of merchantability or if the methodology did not specify clearly the upper stem diameter. The distributions of merchantable heights by diameter appear unlikely. As a result, total height was used for volume calculations. Furthermore, to use merchantable height, a measure of form class or taper is required. The amount of labor involved in measuring taper may prove to be too time consuming for the objectives of this inventory. Generally, merchantability is measured in

16 foot logs and half logs. The use of these units has the potential to not capture growth between two consecutive measurement periods on a 5 year increment and to overestimate growth in the  $3^{rd}$  or  $4^{th}$  measurement period. To reduce this potential for sudden ingrowth of a log or half-log a finer level of granularity should be pursued. Total height, while often inaccurate, can prove more precise depending on the crew or individual measuring the tree. To improve on this it should be specified in the inventory methods that all total height measurements should be to the nearest foot and measured, not estimated.

The use of tree age in forest management is well documented. Many decisions are based around the changes across time, as well as the desired level of production for a certain amount of time. There is a strong need and desire for accurate estimates of age in forest management (Davis et al. 1960). Figure 8 indicates that there are issues surrounding the age estimates. The cause of the inaccuracies is unclear, but there are two points to be made. First, if no age was recorded on a plot, a '0' could have been the default, explaining the high level of volume at age 0. Second, on some plots the trees measured off-plot were a different age than the ones contained on the plot. Logically, as stand age increases volume should increase, barring intermediate harvests. However, this was not found at the forest level or by forest types within a state forest (Figure 9). While there is variation based on productivity there should be some visible pattern or increase from a subjective point of view. These results should be considered when determining the usefulness of measures such as Mean Annual Increment (MAI). MAI in terms of harvest scheduling or allowable cut is the volume at rotation age over the length of the rotation. MAI outside of the context of allowable cut could be used to determine the average rate of growth at the point measured. This is not a linear relationship in either instance, implying that the average growth rate changes over the length of a rotation, and must be assessed appropriately. The use of

a single MAI to calculate allowable cut would not be possible. Periodic Annual Increment (PAI) is the more precise measure of growth and directly translates into allowable cut. Periodic is a more targeted measure of growth due to the growth being measured and the increment being the time between the two measures. The ability to correlate PAI with stand age should be considered, based on these results. Measures should be taken to correct the inaccuracies if there is a need to apply PAI to a stand age. Lacking an understanding of the true age of the forest can have substantial impacts on forest management.

#### **Volume per Acre Outliers**

The ability to distinguish errors that did not appear as extreme values is difficult, if not impossible. Box plots were generated for each state forest at the plot level in an attempt to identify potential errors or odd occurrences. Chickasaw State Forest was chosen as an example. All 15 state forests should be further investigated using this analysis. This process identified plot 04032 as an outlier which is estimated to contain 44,015 board feet per acre (Figure 10). Removing this plot reduced the lower limit estimate by nearly 300 and the upper by 1000 board feet (Table 3). Upon further investigation this revealed a relatively high amount of basal area (198ft<sup>2)</sup> which should be verified. Some of the outliers contained in the data could be accurate measures on the ground. The small sample sizes associated with CFI demand that each plot be as precise and accurate as possible. All outlier plots should be investigated for their accuracy. If a plot is considered accurate, it becomes the division's decision to determine if this plot falls within an area that is unique or not representative of the remaining area represented by the plot. The discussion on "handling" outliers on the state forest is beyond this study.

#### **FVS vs Traditional**

When determining the utility of a specific model it is important to evaluate and verify the outputs. Board feet estimates from FVS were compared to traditional calculations that were

calculated using an Excel spreadsheet. The interest was not in FVS's ability to grow the trees but in the current estimate of volume by species at the plot level. Lasher's equation (USDA 2013) used by FVS to estimate board feet was compared to the  $d^{2}H$  equation (Oswalt et al. 2011) FIA uses to estimate board feet. Mean board feet per acre was compared between FVS, Traditional (FIA Eq.), and Traditional outliers removed. This analysis of different methods was not used to check the accuracy of the volume estimates, but to identify the potential for different estimates when using different models and equations. Fourteen of the estimates of FVS were greater than the estimate of the traditional method with one exception - John Tully (Tables 3, 4, and 5). The trend of over-estimation was investigated at the tree level to verify that there was not an expansion factor issue (Figure 12). The process of running FVS through SUPPOSE did not contain a reduction of cull for the merchantable portion of the tree. The consistent overestimation can be partially attributed to the traditional method having a reduction of cull % from the final volume (Figure 13). This, however, does not explain all of the variation. To further investigate the point of variation, cubic foot volume was calculated and compared, revealing a 3% difference between the two methods (Figure 14). FVS uses Clark's profile model (USDA 2013) and the traditional came from the  $d^{2}H$  equation. Comparing the board foot estimates of the same trees resulted in a difference of 14% (Figure 15). The log rule associated with the Lasher equation used by FVS in not clear (USDA 2013). This could explain some of the variation, but the traditional estimates are based on Int. 1/4 and should be larger for smaller diameters if the effect is due to a log rule reduction. The definite cause for different estimates of board feet also is not clear, other than they can be attributed to either the Lasher equation or BD00049. A thorough evaluation of the differences between these two equations should be conducted and the results compared to local volume tables or equations to identify the most accurate estimator.

Including a % cull reduction in the FVS model to account for the over estimation that is not due to the difference in the equations is recommended also.

Region estimates collected by the USFS FIA (Table 6) were calculated to present a third volume estimate. The estimates were not compared using confidence intervals due to the differences between methodologies and populations being potentially different. Generally, the unit estimates reported by FIA were similar to the estimates in this examination with the exception of John Tully State Forest. This can most likely be attributed to the management activities conducted on the state forest as well as the current structure of the forest. The average age of John Tully is 20.25 years, which resulted in a difference when comparing it to estimates that have had different management (see history of John Tully in overview of State Forests).

#### Design

The overall design was evaluated by assessing the sampling error as a percent of the mean by state forest (Table 7). The over sampling of Natchez Trace, Prentice Cooper, Pickett, and Chuck Swan could be redistributed to those state forests with higher sampling errors. This assumes that 711 is the total number of possible plots based on a financial limit. If the desire is to have a large enough sample to assume a normal distribution, the minimum should be set, by convention, to 30. If this condition is not satisfied a t-distribution should be used for estimates of confidence intervals and sample size calculations. The stratified estimate of total population was 1.1 billion board feet  $\pm$  74 million board feet at the 95% level (Table 8). This estimate was derived using the traditional calculations, considered to be the more conservative estimate based on the previous results. To provide a more precise estimate of the overall mean VPA, plots should be redistributed (Table 9). The optimum allocation will still over sample the same four state forests, due to the optimal allocation process containing both variability and area in its

formula. Overall population estimates may not be the most important estimate of this inventory, however.

Changing the design and allocation of the CFI plots requires an understanding of the importance of the desired outcomes. The redistribution most likely should be based on the stratification of each individual state forest, depending on the variance associated with each stratum within forests. The overall sampling error associated with Natchez Trace was 12% and Chickasaw 22% (Table 7). This result is potentially misleading in terms of assessing the different forest types within the state forest, which are often used in making management decisions or analyzing policies. When delineated based on forest type, the lowest sampling error is 13% for Oak-Hickory and the highest is 112% for upland hardwoods (Table 10). This implies the estimate of Natchez Trace overall is acceptable, but the use of the data for examining specific forest types could be limited to a portion of the state forest. Likewise, for Chickasaw the lowest percent sampling error by forest type was 24% for Oak-Hickory while the largest was 157% for loblolly. While the overall mean per acre estimate provides insight into the forest-by-forest comparison, it does not provide insight into management decisions that should take place within each forest. The use of stratification within a state forest is not possible with the current design from a standpoint of increasing volume estimate precision with the same data. The plot-to-area ratio prohibits the use of stratification due to each plot having equal weight. This nullifies the benefit of a weighted average as well as the intensification process. Therefore, each state forest should be reevaluated for the percent of each forest type that comprises the total population. The use of the forest type algorithm used by FVS (Arner et. al 2001) would provide a classification system to describe the different stratum. A more precise estimate of the overall population means by state forest could be achieved by using stratification techniques (Avery and

Burkhart 2002). The classification process will not require additional permanent plots but the use of historical plot tally data or cruise data can be used. TDF should determine the appropriate grouping of forest types to avoid having too many strata. A desired or acceptable level of sampling error should be determined before reallocating plots. Table 11 depicts the number of plots needed to reach a 20% sampling error at the 95% level for the forest types on Natchez Trace. This percent is arbitrary but is included for reference. It may not be appropriate based on the desired results for the division. Loblolly/Shortleaf and Oak-Hickory were over sampled to reach 20% (Table 10). This creates an opportunity to reallocate plots to different forest types without incurring more cost or effort and achieving a desired level of confidence. Chickasaw was included as an example where a single forest type was not over sampled. If the number of plots needed cannot be implemented, TDF should determine the impacts of each forest type on production to determine the course of action for increasing confidence in the most important forest types.

The use of forest type grouping by region will provide direct comparisons between state forests to assess the management activities, growth rates, policies, and changes. The volume of Loblolly/Shortleaf on Chickasaw (Table 12) is estimated to be 9,399 board feet per acre with a CV of 104% while on Natchez Trace (Table 10) is estimated to be 19,259 with a CV of 41%. It is important to consider the amount of relative variation (CV), age, productivity, climate, aspect, and management when making inference between two state forests. Determining the appropriate inference to make in regard to the differences between state forests is beyond the scope of this investigation.

# Chapter VI Recommendations

### **Field Work**

The use of merchantable height should be reevaluated to clearly specify the desired upper stem diameter. This measure should also be avoided when comparing growth due to its subjective nature. For this reason, total height, being a more objective measure, should be used when determining volume. Rounding total height will present issues in future growth estimates. The methodology for measuring total height should specify that total height should be measured to the nearest foot. To better understand the measure of quality, tree grade should be collected. This practice will enhance the results in making management decisions. Lacking an understanding of quality in a hardwood region presents unique situations in terms of the value of stands. Trees recorded as outside the plot should be carefully evaluated to determine their exact location. The methodologies should specify that all fields should be reported, even those containing zeroes, to remove the ambiguity in measurements such as cull.

#### Units

This study presented volume estimates in board feet due to the practice of marketing the product in such units. This was based on custom and not on the accuracy of the measure. Cubic foot estimates do not suffer the same problems associated with board feet estimates. Board feet are subject to different log rules and at times these can be unknown as seen in FVS. Growth analysis should be computed in cubic feet and then converted to the log rule of choice. The use of total height presents issues when determining the merchantable portion of the tree. Local volume tables should be compared to estimates of FVS and FIA equations to determine the most accurate estimate of board feet. While board feet is crucial in making management or financial decisions the use of cubic feet or basal area as a measure of growth should be considered.

The current assessment of plot age should be reevaluated. The methodology should specify that the trees being used to determine age must be dominant or co-dominant and appear to have been present during the entire life of the stand, meaning the trees did not grow into a dominant position after the original cohort established dominance. The use of the age numbers should also be carefully interpreted in the context of allowable cut.

## FVS

It is important to note that model validation and model verification differ. Validation is testing a model's prediction to observed or measured values. Verification is the process of determining if the model is using its components correctly. FVS should be validated for accuracy, the average error between the predicted and observed values and precision, the average deviation of predicted values from the true value. The validation process should include comparing predicted board feet estimates to measured values or predicted mortality to measured mortality. The verification process should determine if the model is implementing the correct expansion factors and growth equations. Clark's model should be compared outside of SUPPOSE to verify that the correct equation is being used. All tree list files should be analyzed to verify expansion factors. While the goodness of non-calibrated FVS estimates may suffice in some measurements it may be important to calibrate estimates such as board feet. All per acre estimates should be compared to historical estimates to determine how reasonable they are. There are many statistical techniques for model testing that are beyond the scope of this investigation. The USFS produced a "Model Validation Protocol for FVS" that would serve well as the starting point for model validation. (USDA 2010)

71

### Age

#### **Sampling Design**

The current sampling design should be revised to a stratified sampling design. This will allow for more precise estimates within each state forest as well as overall. TDF should determine the appropriate number of strata as well as the grouping by species to use. The number of plots should be redistributed based on the variance of each state forest as well as the acceptable sampling error.

The objectives of this study were to evaluate the quality, use of FVS, and overall design. The assessment of data quality will need to be repeated after each measurement cycle. The future use of FVS will need to be determined by TDF based on the findings in this study. A model is only as good as its data and cannot over compensate for error. The overall design may take multiple measurement cycles to stabilize depending on the variation associated with the growth by different strata. While the objectives of this study were addressed, it is worth noting, that the ability to meet all of TDF's original objectives may not be realistic given the intensity as well as the level of measurement. The ability to determine growth by species can be addressed for sawtimber trees, but may prove difficult with other tree classes i.e., seedling or sapling. Addressing growth and yield models becomes increasingly difficult when attempting to grow trees from "seed to cut". Modeling or predicting the growth for closed canopy sawtimber trees may be possible given the data, but further modeling into other stages in forest succession may prove to be highly erratic. This however should not be seen as a reason to not continue on with the measurements. There are multiple other outputs that can be generated using the data collected in this study. The generation of local height equations should be considered a high priority once the data quality is at an acceptable level.

**Literature Cited** 

AGGARWAL, C. C. AND P.S. YU 2001. Outlier Detection for High Dimensional Data. Proceedings of the ACM SIGMOD Conference 2001.

ANSCOMBE F.J., 1960. Rejection of outliers, *Technometrics*, 2: 123–147

- ARNER, S. L., WOUDENBERG, S., WATERS, S., VISSAGE, J., MACLEAN, C., THOMPSON, M., AND HANSEN, M. 2001. National algorithms for determining stocking class, stand size class, and forest type for Forest Inventory and Analysis plots. *Internal Rep. Newtown Square*, PA: US Department of Agriculture, Forest Service, Northeastern Research Station. 10p.
- AVERY, T. E. AND H. E. BURKHART 2002. *Forest Measurements*. New York, NY, McGraw-Hill Companies, Inc.
- BAKER, F.S. 1953. Stand Density and Growth. Journal of Forestry 51: 95-97
- BARNETT V., T. LEWIS 1994. Outliers in Statistical Data Wiley, Chichester, UK
- BOURDO, E. 1966. *Proceedings: A Conference on Continuous Forest Inventory*. Michigan Technological University
- CHAPMAN, H.H. AND W.H. MEYER 1949. Forest Mensuration. McGraw-Hill Book Company. New York.
- CROOKSTON, N. L. AND G. E. DIXON 2005. The forest vegetation simulator: A review of its structure, content, and applications. *Computers and Electronics in Agriculture* 49(1): 60-80.
- CROSSLEY, D.I.1959. Continuous Forest Inventory and its Relation to Forest Management at Northwestern Pulp and Power Ltd. W.S.I. 1854 C.P.P.A. Montreal.
- DAVIS, L.S. AND K.N. JOHNSON 1987. *Forest Management*, New York, NY, McGraw-Hill Companies, Inc.
- DIXON, G. E. 2002. Essential FVS: A User's Guide to the Forest Vegetation Simulator. Fort Collins, CO, U.S. Department of Agriculture, Forest Service, Forest Management Service Center: 189.
- DIXON, W.J. 1950. Analysis of Extreme Values, Annals of Mathematical Statistics, 21: 488-506
- DONNELLY, D., ET AL. 2001. Southern (SN) Variant Overview. F. S. United States Department of Agriculture. Fort Collins, CO, Forest Management Service Center: 63.

- EK, A. R. AND R. A. Monserud 1974. Trials with program FOREST: growth and reproduction simulation for mixed species even- or uneven-aged forest stands. Growth models for tree and stand simulation. F. J. Stockholm, Sweden, Royal College of Forestry, Research Notes 30: 56–73.
- EYRE, F.H. 1980. *Forest cover types of the United States and Canada*. Society of American Foresters, Washington, DC. 148 p.
- FOREST MANAGEMENT SERVICE CENTER. 2011. *National volume estimator library* (*NVEL*)—*library of national tree volume estimators*. Available online at www.fs.fed.us/fmsc/measure/volume/nvel/index.php; last accessed February 10,2014
- HALL, O. 1966. *Proceedings: A Conference on Continuous Forest Inventory*. Michigan Technological University.
- HAWKINS D.M., 1980. Identification of Outliers. Chapman and Hall, London
- HUSCH, B., C. MILLER, T. BEERS, 1972. Forest Mensuration. New York, NY. Ronald Press
- JOHNSON R., 1992. Applied Multivariate Statistical Analysis. Prentice Hall
- LYNCH, T. B. AND J.W. MOSER, 1986. A Growth Model for Mixed Species Stands. *Forest Science*, 32(3): 697-706.
- METEER, J. W. 1966. *Proceedings: A Conference on Continuous Forest Inventory*. Michigan Technological University.
- MORRISSEY P. ET AL. 2011. *Plan 2020 Harvest Plan for Sustainable State Forests* Tennessee Division of Forestry Nashville, TN
- NEWNHAM, R. M. 1964. The development of a stand model for Douglas-fir. Forestry Fac. Vancouver, Canada, University of British Columbia. PhD thesis: 201.
- OSBORNE, J. W. AND A. OVERBAY 2004. The power of outliers (and why researchers should always check for them). *Research & Evaluation*. 9(6). Retrieved December 13, 2013 from http://PAREonline.net/getvn.asp?v=9&n=6
- OSWALT, C., R. CONNER. 2011. Southern Forest Inventory and Analysis Volume Equation User's Guide. Gen Tech. Rep. SRS-138. Asheville, NC: USDA Forest Service, Southern Research Station. 22p.
- PENG, C. H. 2000. Growth and yield models for uneven-aged stands: past, present and future. *Forest Ecology and Management* 132(2-3): 259-279.

- PUTNAM, J., G. FURNIVAL, J. MCKNIGHT, 1960. Management and Inventory of Southern Hardwoods, Agriculture Handbook 181. Washington, DC: USDA
- RADTKE, J., N. HERRING, LOFTIS L., KEYSER C., 2012. Evaluating Forest Vegetation Simulator Predictions for Southern Appalachian Upland Hardwoods with a Modified Mortality Model. *Southern Journal of Applied Forestry*. 36(2):61-70.

SAS Institute Inc., JMP Pro 10, Cary, NC: SAS Institute Inc., 2014.

- SCOTT, C. 1966. *Proceedings: A Conference on Continuous Forest Inventory*. Michigan Technological University.
- SPURR, S. H. 1952. Forest Inventory. New York, NY. Ronald Press
- State Forest Information.. In Tennessee Department of Agriculture. Retrieved July 9, 2013
- WATSON, E. 1979. Analysis of 15 Years of University of Tennessee Continuous Forest Inventory Data. Forestry. Knoxville, University of Tennessee. Masters.
- WAINER, H. 1976 Robust statistics: A survey and some prescriptions, *Journal of Educational Statistics* 1(4): 285-312

APPENDICES

**APPENDIX A** SPECIES CODES AND VOLUME COEFFICIENTS

|      |                        | Species |                      |      |                          | Species |                      |
|------|------------------------|---------|----------------------|------|--------------------------|---------|----------------------|
| SPCD | Common name            | number  | SPCD_EQ <sup>a</sup> | SPCD | Common name              | number  | SPCD_EQ <sup>a</sup> |
| 10   | Fir spp.               | 10      | 10                   | 320  | Norway maple             | 320     | 318                  |
| 12   | Balsam fir             | 12      | 10                   | 321  | Rocky Mountain maple     | 321     | Chojnacky 1988       |
| 16   | Fraser fir             | 16      | 10                   | 323  | Chalk maple              | 323     | 317                  |
| 43   | Atlantic white-cedar   | 43      | 43                   | 330  | Buckeye, horsechestnut   | 330     | 330                  |
| 58   | Pinchot juniper        | 58      | Chojnacky 1994       | 331  | Ohio buckeye             | 331     | 330                  |
| 59   | Redberry juniper       | 59      | Chojnacky 1994       | 332  | Yellow buckeye           | 332     | 330                  |
| 61   | Ashe juniper           | 61      | Chojnacky 1994       | 334  | Texas buckeye            | 334     | 330                  |
| 63   | Alligator juniper      | 63      | Chojnacky 1994       | 341  | Ailanthus                | 341     | 999                  |
| 66   | Rocky Mountain juniper | 66      | Chojnacky 1994       | 345  | Mimosa, silktree         | 345     | 491                  |
| 67   | Southern redcedar      | 67      | 67                   | 356  | Serviceberry             | 356     | 999                  |
| 68   | Eastern redcedar       | 68      | 68                   | 367  | Pawpaw                   | 367     | 999                  |
| 69   | Oneseed juniper        | 69      | Chojnacky 1994       | 370  | Birch spp.               | 370     | 370                  |
| 90   | Spruce spp.            | 90      | 90                   | 371  | Yellow birch             | 371     | 371                  |
| 93   | Engelmann spruce       | 93      | 90                   | 372  | Sweet birch              | 372     | 371                  |
| 97   | Red spruce             | 97      | 90                   | 373  | River birch              | 373     | 370                  |
| 106  | Common pinyon          | 106     | Chojnacky 1994       | 379  | Gray birch               | 379     | 371                  |
| 107  | Sand pine              | 107     | 107                  | 381  | Chittamwood, gum bumelia | 381     | 999                  |
| 110  | Shortleaf pine         | 110     | 110                  | 391  | American hornbeam,       |         |                      |
| 111  | Slash pine             | 111     | 111                  |      | musclewood               | 391     | 999                  |
| 115  | Spruce pine            | 115     | 115                  | 400  | Hickory spp.             | 400     | 400                  |
| 121  | Longleaf pine          | 121     | 121                  | 401  | Water hickory            | 401     | 400                  |
| 122  | Ponderosa pine         | 122     | Hann and Bare 1978   | 402  | Bitternut hickory        | 402     | 400                  |
| 123  | Table Mountain pine    | 123     | 123                  | 403  | Pignut hickory           | 403     | 400                  |
| 126  | Pitch pine             | 126     | 126                  | 404  | Pecan                    | 404     | 400                  |
| 128  | Pond pine              | 128     | 128                  | 405  | Shellbark hickory        | 405     | 400                  |
| 129  | Eastern white pine     | 129     | 129                  | 406  | Nutmeg hickory           | 406     | 400                  |
| 131  | Loblolly pine          | 131     | 131                  | 407  | Shagbark hickory         | 407     | 400                  |
| 132  | Virginia pine          | 132     | 132                  | 408  | Black hickory            | 408     | 400                  |
| 140  | Mexican pinyon pine    | 140     | Chojnacky 1994       | 409  | Mockernut hickory        | 409     | 400                  |
| 202  | Douglas-fir            | 202     | Hann and Bare 1978   | 410  | Sand hickory             | 410     | 400                  |
| 221  | Baldcypress            | 221     | 221                  | 421  | American chestnut        | 421     | 999                  |
| 222  | Pondcypress            | 222     | 222                  | 422  | Allegheny chinkapin      | 422     | 999                  |
| 241  | Northern white-cedar   | 241     | 241                  | 423  | Ozark chinkapin          | 423     | 999                  |
| 260  | Hemlock spp.           | 260     | 260                  | 450  | Catalpa spp.             | 450     | 999                  |
| 261  | Eastern hemlock        | 261     | 260                  | 451  | Southern catalpa         | 451     | 999                  |
| 262  | Carolina hemlock       | 262     | 260                  | 452  | Northern catalpa         | 452     | 999                  |
| 299  | Unknown conifer        | 299     | 10                   | 460  | Hackberry spp.           | 460     | 460                  |
| 310  | Maple spp.             | 310     | 318                  | 461  | Sugarberry               | 461     | 460                  |
| 311  | Florida maple          | 311     | 311                  | 462  | Hackberry                | 462     | 460                  |
| 313  | Boxelder               | 313     | 313                  | 463  | Netleaf hackberry        | 463     | 460                  |
| 314  | Black maple            | 314     | 317                  | 471  | Eastern redbud           | 471     | 999                  |
| 315  | Striped maple          | 315     | 999                  | 481  | Yellowwood               | 481     | 491                  |
| 316  | Red maple              | 316     | 316                  | 491  | Flowering dogwood        | 491     | 491                  |
| 317  | Silver maple           | 317     | 317                  | 492  | Pacific dogwood          | 492     | 491                  |
| 318  | Sugar maple            | 318     | 318                  | 500  | Hawthorn                 | 500     | 999                  |
| 319  | Mountain maple         | 319     | 999                  | 501  | Cockspur hawthorn        | 501     | 999                  |
|      |                        |         |                      |      |                          |         | continued            |

Table 15. Species code and equation used by each species (Oswalt et. al. 2011).

# Table 16. Species code and equation used by each species (Oswalt et. al. 2011).

| 502         Downy hawthom         502         999         742         Eastern cottonwood         742         740           510         Eucalyptus         510         999         743         Bigtooft aspen         743         741           521         Commo persimmon         521         521         744         Swamp cottonwood         744         740           531         American beech         531         531         745         Plains cottonwood         745         740           540         Ash spp.         540         540         755         Mesquite         755         Chojnacky 1988           543         Black ash         543         540         766         762         762         762         762         762         762         762         762         762         762         5148         Carolina ash         544         540         766         Chokecherry         761         999         755         Lobioly-bay         555         555         800         Cok deciatous         800         812         572           551         Matericcust         551         999         765         Canada plum         766         999         555         Lobioly-bay         555 <th>SPCE</th> <th>Common name</th> <th>Species number</th> <th>SPCD_EQ<sup>a</sup></th> <th>SPCD</th> <th>Common name</th> <th>Species<br/>number</th> <th>SPCD_EQ<sup>a</sup></th> | SPCE | Common name                | Species number | SPCD_EQ <sup>a</sup> | SPCD | Common name            | Species<br>number | SPCD_EQ <sup>a</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|----------------|----------------------|------|------------------------|-------------------|----------------------|
| 510       Euca.prus       510       999       743       Bigooth aspen       743       741         521       Commo persimmon       521       521       744       Swamp cottonwood       745       740         531       American beech       531       531       531       531       531       531       531       745       Pilins cottonwood       745       740         540       Ash sp.       540       540       755       Mestern honey mesquite       756       Chojnacky 1988         543       Black ash       543       540       760       Cherry and plum sp.       761       999         545       Pumpkin ash       545       540       761       Pin cherry       762       762         544       Gravina ash       546       540       762       Black cherry       763       762         551       Buolity-bay       555       555       800       Oak deciduous       800       812         571       Kentucky cofferere       571       999       802       White oak       804       804         591       591       591       806       Scarlet oak       806       806         600       Walut <td>502</td> <td>Downy hawthorn</td> <td>502</td> <td>999</td> <td>742</td> <td>Eastern cottonwood</td> <td>742</td> <td>740</td>                                                                                                                                                          | 502  | Downy hawthorn             | 502            | 999                  | 742  | Eastern cottonwood     | 742               | 740                  |
| 521         Common persimmon         521         521         744         Swamp cottonwood         744         740           531         Anerican beech         531         531         745         Plains cottonwood         745         740           541         Mite ash         541         540         756         Western honey mesquite         756         Chojnacky 1988           544         Green ash         544         540         760         Cherry and plum spp.         760         Chojnacky 1988           544         Green ash         546         540         761         Pin cherry         762         762           548         Carolina ash         548         999         763         Chokecherry         763         762           551         Waterlocust         551         999         763         Chada plum         766         999           552         Lobiolty-hay         555         555         800         Oak eciduous         800         812           571         Kentucky coffeettree         571         999         802         White oak         802         802           580         Silverbell         580         580         804         Swamp white oak                                                                                                                                                                                              | 510  | Eucalyptus                 | 510            | 999                  | 743  | Bigtooth aspen         | 743               | 741                  |
| 531       American beech       531       531       745       Plains cottonwood       745       740         540       Ash spp.       540       540       755       Mesquite       756       Chojnacky 1988         541       Black ash       541       540       758       Screwbean mesquite       756       Chojnacky 1988         543       Black ash       543       540       761       Pin cherry       761       999         545       Pumpkin ash       545       540       762       Black cherry       762       762         544       Green ash       544       540       762       Chokecherry       763       762         544       Gradina ash       548       999       763       Chokecherry       763       762         551       Waterocust       551       555       555       580       000       Oak deciduous       800       812         571       Kentucky cofferetre       571       999       802       White oak       802       806         580       Walnut       600       601       808       Suarmy white oak       804       804         591       American holly       591       591 <td>521</td> <td>Common persimmon</td> <td>521</td> <td>521</td> <td>744</td> <td>Swamp cottonwood</td> <td>744</td> <td>740</td>                                                                                                                                                         | 521  | Common persimmon           | 521            | 521                  | 744  | Swamp cottonwood       | 744               | 740                  |
| 540         Ash spp.         540         755         Mesquite         755         Chojnacky 1988           541         White ash         541         540         756         Westem honey mesquite         756         Chojnacky 1988           543         Black ash         543         540         760         Cherry and plum spp.         760         Oppole           544         Green ash         544         540         760         Cherry and plum spp.         761         999           545         Mupphin ash         545         540         762         Black cherry         762         762           518         Waterlocust         551         999         763         Chokecherry         763         762           551         Mololly-hay         552         555         800         Oak decidroms         800         812           571         Kentucky coffeetree         571         999         802         White oak         804         804           580         Silverbell         580         580         804         Swamp white oak         806         806           600         Wahu         600         601         808         Purupha         813         813                                                                                                                                                                                                         | 531  | American beech             | 531            | 531                  | 745  | Plains cottonwood      | 745               | 740                  |
| 541         White ash         541         540         756         Western honey mesquite         756         Chojmacky 1988           543         Black ash         543         540         760         Cherry and plum spp.         760         999           545         Pumpkin ash         545         540         761         Pin cherry         761         999           545         Pumpkin ash         545         540         762         Black cherry         763         762           548         Carolina ash         548         999         763         Chokecherry         763         762           551         WaterJocust         551         999         763         Chada plum         766         999           555         Lobiolly-bay         555         555         800         Oka deciduous         800         812           571         Kentucky coffeetree         571         999         802         White oak         804         804           591         American holly         591         591         806         Scarlet oak         806         806           600         Walnut         600         601         812         Southern red oak         813                                                                                                                                                                                                            | 540  | Ash spp.                   | 540            | 540                  | 755  | Mesquite               | 755               | Chojnacky 1988       |
| 543       Black ash       543       540       758       Screwbean mesquite       758       Chejmacky 1988         544       Green ash       544       540       760       Cherry and plum spp.       760       999         546       Blue ash       546       540       761       Pin cherry       762       762         548       Carolina ash       548       999       763       Chokecherry       763       762         515       Waterlocust       551       999       763       Canada plum       766       999         552       Hoholylo-bay       555       555       555       550       00       0ak deciduous       800       8012         571       Kentucky coffeetree       571       999       802       White oak       804       804         573       Marcina holly       591       580       Sa0       804       Samp white oak       808       806         600       Walnut       600       601       808       Durand oak       808       808         601       Buternut       601       601       802       Surphard ask       813       813         602       Pack walnut       602       <                                                                                                                                                                                                                                                                                             | 541  | White ash                  | 541            | 540                  | 756  | Western honey mesquite | 756               | Chojnacky 1988       |
| 544         Green ash         544         540         760         Cherry and plum spp.         760         999           545         Pumpkin ash         545         540         761         Pin cherry         761         999           546         Buc ash         546         540         762         Black cherry         763         762           548         Carolina ash         548         999         763         Chockcherry         763         762           551         Waterlocust         552         555         Canda plum         766         999           552         Lobiolly-bay         555         555         800         Oak deciduous         800         802           580         Silverbell         580         580         804         Swamp white oak         804         804           600         Wahut         600         601         809         Durand oak         809         830           610         Butternut         601         601         810         Berray oak         810         Chojnacky 1988           620         Black valnut         605         601         812         Southern red oak         813         813 <t< td=""><td>543</td><td>Black ash</td><td>543</td><td>540</td><td>758</td><td>Screwbean mesquite</td><td>758</td><td>Chojnacky 1988</td></t<>                                                                                   | 543  | Black ash                  | 543            | 540                  | 758  | Screwbean mesquite     | 758               | Chojnacky 1988       |
| 545       Pumpkin ash       545       540       761       Pin cherry       761       999         546       Blue ash       546       540       762       Black cherry       763       762         548       Carolina ash       548       999       765       Chokecherry       763       999         551       Waterlocust       551       999       765       Canada plum       765       999         552       Hoholybay       555       555       800       Oak deciduous       800       812         571       Kentucky coffeetree       571       999       802       White oak       802       802         580       Silverbeil       580       580       804       Swamp white oak       804       804         600       Walmt       600       601       808       Durand oak       808       808         601       Buternot       601       601       809       Northern pin oak       810       Choipacky 1988         611       Sueegum       611       611       812       Churyhark oak       813       813         621       Yellow-poplar       621       621       821       Turkooak       817 </td <td>544</td> <td>Green ash</td> <td>544</td> <td>540</td> <td>760</td> <td>Cherry and plum spp.</td> <td>760</td> <td>999</td>                                                                                                                                                               | 544  | Green ash                  | 544            | 540                  | 760  | Cherry and plum spp.   | 760               | 999                  |
| 546       Blue sh       546       540       762       Black cherry       762       762         548       Carolina ash       548       999       763       Chokecherry       763       762         551       Waterlocust       551       999       765       Canada plum       766       999         552       Honeylocust       552       555       800       Oak deciduous       800       812         571       Kentucky coffetree       571       999       802       Wite oak       804       804         591       American holly       591       591       806       Scarlet oak       806       806         600       Walnut       600       601       809       Northern pin oak       809       830         601       Buternot       601       601       809       Northern red oak       812       812         611       Swetgum       611       611       813       Cherybark oak       813       813         621       Back walnut       605       652       819       Turkey oak       819       817         631       Swetgum       611       611       813       Cherrybark oak       813                                                                                                                                                                                                                                                                                                        | 545  | Pumpkin ash                | 545            | 540                  | 761  | Pin cherry             | 761               | 999                  |
| 548       Carolina ash       548       999       763       Chokecherry       763       762         551       Waterlocust       551       999       765       Canada plum       765       999         555       Loblolly-bay       555       555       800       Oak deciduous       800       812         571       Kentucky coffeetree       571       999       802       White oak       802       802         583       Iverbell       580       580       804       Swamp white oak       804       804         600       Walnut       600       601       808       Durand oak       808       808         601       Black walnut       602       602       810       Emery oak       810       Chojnacky 1988         611       611       611       813       Cherrybark oak       813       813         621       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         641       999       817       Shingle oak       817       817       817         651       652       652       820       Curvp oak       823       823         653                                                                                                                                                                                                                                                                                                                   | 546  | Blue ash                   | 546            | 540                  | 762  | Black cherry           | 762               | 762                  |
| 551       Waterlocust       551       999       765       Canada plum       765       999         552       Honeylocust       552       552       556       800       Oak deciduous       800       812         571       Kentucky coffeetree       571       999       802       White oak       802       802         580       Silverbell       580       580       804       Swamp white oak       806       806         600       Walnut       600       601       808       Durand oak       808       808         601       Butternut       601       601       809       Northern pin oak       809       830         602       Back walnut       602       601       812       Southern red oak       812       812         611       Sweetgum       611       611       813       Cherybark oak       813       813         612       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         611       Osage-orange       641       999       817       Shingle oak       817       817         612       Venubertree       651       651       820                                                                                                                                                                                                                                                                                                        | 548  | Carolina ash               | 548            | 999                  | 763  | Chokecherry            | 763               | 762                  |
| 552       Honeylocust       552       552       766       Wild plum       766       999         555       Loblolly-bay       555       555       800       Oak deciduous       800       812         571       Kentucky coffeetree       571       999       802       White oak       802       802         580       Silverbell       580       580       804       Swamp white oak       804       804         600       Malnt       600       601       808       Durand oak       808       806         601       Butternut       601       601       809       Northern pin oak       809       830         602       Black walnut       602       602       810       Emery oak       810       Chojnacky 1988         611       Sweetgum       611       611       813       Cherybark oak       813       813         621       Yellow-poplar       621       621       821       Sure oak       817       817         631       Sweetgum       651       651       820       Laurel oak       820       820         655       Soutemangolia       652       652       822       Overcup oak       823                                                                                                                                                                                                                                                                                                 | 551  | Waterlocust                | 551            | 999                  | 765  | Canada plum            | 765               | 999                  |
| 555       Lobiolly-bay       555       555       800       Oak deciduous       800       812         571       Kentucky coffeetree       571       999       802       White oak       802       802         580       Silverbell       580       580       804       Swamp white oak       804       804         591       American holly       591       591       806       Scarlet oak       806       806         600       Walnut       600       601       808       Durand oak       808       808         601       Butternut       601       601       809       Northern pin oak       809       830         605       Fexas walnut       605       601       812       Southern red oak       812       812         611       Sweetgum       611       611       813       Black       813       813         621       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         641       999       817       Shingle oak       817       817       817         651       Cucumbertree       651       652       822       Overcup oak       822       822                                                                                                                                                                                                                                                                                                 | 552  | Honeylocust                | 552            | 552                  | 766  | Wild plum              | 766               | 999                  |
| 571       Kentucky coffeetree       571       999       802       White oak       802       804         580       Silverbell       580       580       804       Swamp white oak       804       804         591       American holly       591       591       806       Scarlet oak       806       806         600       Walnut       600       601       808       Durand oak       808       808         601       Butkernut       601       601       809       Northern pin oak       809       830         602       Black walnut       602       602       810       Emery oak       812       Chojnacky 1988         601       Sweetgum       611       611       813       Cherrybark oak       813       813         611       Sweetgum       611       611       813       Cherrybark oak       817       817         650       652       819       Turkey oak       819       817       817         651       652       652       819       Turkey oak       823       823         653       654       651       824       Blackjack oak       824       824         655       6                                                                                                                                                                                                                                                                                                                  | 555  | Loblolly-bay               | 555            | 555                  | 800  | Oak deciduous          | 800               | 812                  |
| 580       Silverbell       580       580       804       Swamp white oak       804       804         591       American holly       591       591       806       Scarlet oak       806       806         600       Wahut       600       601       808       Durand oak       809       830         601       Butternut       601       601       809       Northern pin oak       809       830         602       Black walnut       602       602       810       Emery oak       812       Slate         605       Texas walnut       605       601       812       Southern red oak       813       813         611       Sweetgum       611       611       813       Cherrybark oak       816       842         641       Osage-orange       641       999       817       Shingle oak       817       817         651       Cacumbertree       651       651       820       Cacumberta       822       822         652       Southern magnolia       652       652       822       Overcup oak       823       823         653       Bigleaf magnolia       654       651       825       Swamp chestnut oak <td>571</td> <td>Kentucky coffeetree</td> <td>571</td> <td>999</td> <td>802</td> <td>White oak</td> <td>802</td> <td>802</td>                                                                                                                                                             | 571  | Kentucky coffeetree        | 571            | 999                  | 802  | White oak              | 802               | 802                  |
| 591       American holly       591       591       806       Scarlet oak       806       806         600       Walnut       600       601       808       Durand oak       808       808         601       Buternut       601       601       809       Northern pin oak       809       830         602       Black walnut       602       602       810       Emery oak       810       Chojnacky 1988         605       Texas walnut       605       601       812       Southern red oak       812       812         611       Sweetgum       611       611       813       Cherrybark oak       813       813         611       Osage-orange       641       999       817       Shingle oak       817       817         651       Cucumbertree       651       651       820       Laurel oak       820       822         653       Sweetbay       653       653       823       Bur oak       823       823         654       Bigleaf magnolia       655       651       824       Blackjack oak       824       824         655       Multian magnolia       655       651       825       Swamp chestnut oak <td>580</td> <td>Silverbell</td> <td>580</td> <td>580</td> <td>804</td> <td>Swamp white oak</td> <td>804</td> <td>804</td>                                                                                                                                                                | 580  | Silverbell                 | 580            | 580                  | 804  | Swamp white oak        | 804               | 804                  |
| 600         Wahnut         600         601         808         Duranden dak         808         808           601         Butternut         601         601         809         Northern pin oak         809         830           601         Butkernut         602         602         810         Emery oak         810         Chojnacky 1988           605         Texas walnut         605         601         812         Southern red oak         812         812           611         Sweetgum         611         611         813         Cherrybark oak         813         813           621         Yellow-poplar         621         621         816         Bear oak, scrub oak         816         842           641         Osage-orange         641         999         817         Shingle oak         817         817           651         Cucumbertree         651         651         820         Laure oak         820         820           652         Southern magnolia         654         651         823         Burcak at         821         822           655         Mountain magnolia         655         651         825         Swamp thestnut oak         826                                                                                                                                                                                                            | 591  | American holly             | 591            | 591                  | 806  | Scarlet oak            | 806               | 806                  |
| 601         Butternut         601         601         809         Northern pin oak         809         830           602         Black walnut         602         602         810         Emery oak         810         Chojnacky 1988           605         Texas walnut         605         601         812         Southern red oak         812         Chojnacky 1988           605         Texas walnut         611         611         813         Cherrybark oak         813         813           621         Yellow-poplar         621         621         816         Bear oak, scrub oak         816         842           641         Osage-orange         641         999         817         Shingle oak         817         817           650         Magnolia spp.         653         651         820         Laurel oak         820         820           651         Cumbertree         653         653         823         Burglack oak         824         824           655         Mouthain magnolia         655         651         825         Swarp chestnut oak         825         825           656         Muberry spp.         680         680         827         Water oak                                                                                                                                                                                                     | 600  | Walnut                     | 600            | 601                  | 808  | Durand oak             | 808               | 808                  |
| 602         Black walnut         602         602         810         Emery oak         810         Chojnacky 1988           605         Texas walnut         605         601         812         Southern red oak         812         812           611         Sweetgum         611         611         813         Cherrybark oak         813         813           621         Yellow-poplar         621         621         816         Bear oak, scrub oak         816         842           641         Osage-orange         641         999         817         Shingle oak         817         817           650         Magnolia spp.         650         652         820         Laurel oak         820         820           652         Southern magnolia         652         652         822         Overcup oak         822         822           653         Sweetbay         653         653         823         Bur oak         824         824           655         Moutain magnolia         654         651         824         Blackjack oak         824         824           656         Mulberry spp.         680         680         827         Water oak         830 <td< td=""><td>601</td><td>Butternut</td><td>601</td><td>601</td><td>809</td><td>Northern pin oak</td><td>809</td><td>830</td></td<>                                                                            | 601  | Butternut                  | 601            | 601                  | 809  | Northern pin oak       | 809               | 830                  |
| 605       Texas walnut       605       601       812       Southern red oak       812       812         611       Sweetgum       611       611       813       Cherrybark oak       813       813         621       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         641       Osage-orange       641       990       817       Shingle oak       817       817         650       Magnolia spp.       650       652       819       Turkey oak       819       817         651       Cucumbertree       651       651       820       Laurel oak       820       822         653       Sweetbay       653       653       823       Bur oak       823       823         654       Bigleaf magnolia       655       651       825       Swamp chestnut oak       825       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       826       826         660       Apple spp.       680       680       827       Water oak       827       827         681       White mulberry       682       680       830       Pin oa                                                                                                                                                                                                                                                                                        | 602  | Black walnut               | 602            | 602                  | 810  | Emery oak              | 810               | Chojnacky 1988       |
| 611       Sweetgum       611       611       813       Cherrybark oak       813       813         621       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         641       Osage-orange       641       999       817       Shingle oak       817       817         650       Magnolia spp.       650       652       819       Turkey oak       819       817         651       Cucumbertree       651       651       820       Laurel oak       820       820         653       Sweetbay       653       653       823       Bur oak       823       823         654       Bigleaf magnolia       654       651       824       B1ackjack oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       825       825         660       Apple spp.       660       999       826       Chinkapin oak       826       826         671       White mulberry       681       999       828       Nuttall oak       830       830         680       Mulberry spp.       680       680       830       Pin oak <td>605</td> <td>Texas walnut</td> <td>605</td> <td>601</td> <td>812</td> <td>Southern red oak</td> <td>812</td> <td>812</td>                                                                                                                                                              | 605  | Texas walnut               | 605            | 601                  | 812  | Southern red oak       | 812               | 812                  |
| 621       Yellow-poplar       621       621       816       Bear oak, scrub oak       816       842         641       Osage-orange       641       999       817       Shingle oak       817       817         650       Magnolia spp.       650       652       819       Turkey oak       819       817         651       Cucumbertree       651       651       820       Laurel oak       820       820         652       Southern magnolia       652       652       822       Overcup oak       822       822         653       Sweetbay       653       653       823       Bur oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       825       825         660       Apple spp.       660       999       826       Chinkapin oak       826       826         680       Mulberry spp.       681       999       828       Nuttall oak       831       831         681       White mulberry       682       680       830       Pin oak       832       832         682       Red mulberry       683       693       833       Northern red oa                                                                                                                                                                                                                                                                                        | 611  | Sweetgum                   | 611            | 611                  | 813  | Cherrybark oak         | 813               | 813                  |
| 641       Osage-orange       641       999       817       Shingle oak       817       817         650       Magnolia spp.       650       652       819       Turkey oak       819       817         651       Cucumbertree       651       651       820       Laurel oak       820       820         652       Southern magnolia       652       652       822       Overcup oak       822       822         653       Sweetbay       653       653       823       Bur oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       826       826         680       Apple spp.       660       999       826       Chinkapin oak       826       826         680       Mulberry spp.       681       999       828       Nutall oak       828       813         682       Red mulberry       682       680       830       Pin oak       830       830         691       Water tupelo       691       691       831       Willow oak       831       831         692       Ogechee tupelo       692       999       832       Chestnut oak <t< td=""><td>621</td><td>Yellow-poplar</td><td>621</td><td>621</td><td>816</td><td>Bear oak, scrub oak</td><td>816</td><td>842</td></t<>                                                                                                                                                            | 621  | Yellow-poplar              | 621            | 621                  | 816  | Bear oak, scrub oak    | 816               | 842                  |
| 650       Magnolia spp.       650       652       819       Turkey oak       819       817         651       Cucumbertree       651       651       651       820       Laurel oak       820       820         652       Southern magnolia       652       652       822       Overcup oak       822       822         653       Sweetbay       653       653       823       Bur oak       823       823         654       Bigleaf magnolia       654       651       824       Blackjack oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       826       826         660       Apple spp.       660       999       826       Chinkapin oak       826       826         680       Mulberry spp.       681       999       828       Nuttall oak       828       813         682       Red mulberry       682       680       830       Pin oak       830       830         691       Water tupelo       691       691       831       Willow oak       831       831         692       Ogechee tupelo       692       999       832                                                                                                                                                                                                                                                                                                        | 641  | Osage-orange               | 641            | 999                  | 817  | Shingle oak            | 817               | 817                  |
| 651       Cucumbertree       651       651       820       Laurel oak       820       820         652       Southern magnolia       652       652       822       Overcup oak       822       822         653       Sweetbay       653       653       823       Bur oak       823       823         654       Bigleaf magnolia       654       651       824       Blackjack oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       826       826         660       Apple spp.       660       999       826       Chinkapin oak       827       827         681       White mulberry       681       999       828       Nuttall oak       828       813         682       Red mulberry       682       680       830       Pin oak       830       830         691       Water tupelo       691       691       831       Willow oak       831       831         692       Ogechee tupelo       693       693       833       Northern red oak       833       833         693       Blackgum       693       693       835       Post oak                                                                                                                                                                                                                                                                                                 | 650  | Magnolia spp.              | 650            | 652                  | 819  | Turkey oak             | 819               | 817                  |
| 652       Southern magnolia       652       652       822       Overcup oak       822       822         653       Sweetbay       653       653       653       Bur oak       823       823         654       Bigleaf magnolia       654       651       824       Blackjack oak       824       824         655       Mountain magnolia       655       651       825       Swamp chestnut oak       825       825         660       Apple spp.       660       999       826       Chinkapin oak       826       826         680       Mulberry spp.       680       680       827       Water oak       827       827         681       White mulberry       681       999       828       Nuttall oak       830       830         682       Red mulberry       682       680       830       Pin oak       831       831         693       Blackgum       693       693       833       Northern red oak       833       833         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak                                                                                                                                                                                                                                                                                              | 651  | Cucumbertree               | 651            | 651                  | 820  | Laurel oak             | 820               | 820                  |
| 653Sweetbay653653823Bur oak823823654Bigleaf magnolia654651824Blackjack oak824824655Mountain magnolia655651825Swamp chestnut oak825825660Apple spp.660999826Chinkapin oak826826680Mulberry spp.680680827Water oak827827681White mulberry681999828Nuttall oak828813682Red mulberry682680830Pin oak830830691Water tupelo691691831Willow oak831831692Ogechee tupelo692999832Chestnut oak832832693Blackgum693693833Northern red oak833833694Swamp tupelo694694834Shumard oak835835711Sourwood711999836Delta post oak836836712Paulownia, empress-tree712999838Live oak838838721Redbay721999836Delta post oak840840731Sycamore731731841Dwarf post oak841840740Cottonwood and poplar spp.740740842Bluejack oak842Chojancky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 652  | Southern magnolia          | 652            | 652                  | 822  | Overcup oak            | 822               | 822                  |
| 654Bigleaf magnolia654651824Blackjack oak824824655Mountain magnolia655651825Swamp chestnut oak825825660Apple spp.660999826Chinkapin oak826826680Mulberry spp.680680827Water oak827827681White mulberry681999828Nuttall oak828813682Red mulberry682680830Pin oak830830691Water tupelo691691691831Willow oak832832693Blackgum693693833Northern red oak833833694Swamp tupelo694694834Shumard oak835835711Sourwood711999836Delta post oak836836712Paulownia, empress-tree712999837Black oak838838721Redbay721999838Live oak838838722Water-elm, planertree722999840Dwarf post oak840840731Sycamore731731841Dwarf live oak841840740Cottonwood and poplar spp.740740842Bluejack oak842Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 653  | Sweetbay                   | 653            | 653                  | 823  | Bur oak                | 823               | 823                  |
| 655Mountain magnolia655651825Swamp chestnut oak825825660Apple spp.660999826Chinkapin oak826826680Mulberry spp.680680827Water oak827827681White mulberry681999828Nuttall oak828813682Red mulberry682680830Pin oak830830691Water tupelo691691831Willow oak831831692Ogechee tupelo692999832Chestnut oak833833693Blackgum693693833Northern red oak833833694Swamp tupelo694694834Shumard oak835835701Eastern hophornbeam701999835Post oak836836712Paulownia, empress-tree712999837Black oak838838721Redbay721999838Live oak838838722Water-elm, planertree722999840Dwarf post oak841840731Sycamore731731841Dwarf live oak842842740Cottonwood and poplar spp.740740842Bluejack oak842842741Balsam poplar741741843Silverleaf oak842Matuer oak842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 654  | Bigleaf magnolia           | 654            | 651                  | 824  | Blackjack oak          | 824               | 824                  |
| 660Apple spp.660999826Chinkapin oak826826680Mulberry spp.680680827Water oak827827681White mulberry681999828Nuttall oak828813682Red mulberry682680830Pin oak830830691Water tupelo691691691831Willow oak831831692Ogechee tupelo692999832Chestnut oak832832693Blackgum693693833Northern red oak833833694Swamp tupelo694694834Shumard oak835835701Eastern hophornbeam701999835Post oak836836711Sourwood711999836Delta post oak838838721Redbay721999838Live oak838838722Water-elm, planertree722999840Dwarf post oak840840731Sycamore731731841Dwarf live oak842442740Cottonwood and poplar spp.740740842Bluejack oak843Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 655  | Mountain magnolia          | 655            | 651                  | 825  | Swamp chestnut oak     | 825               | 825                  |
| 680       Mulberry spp.       680       680       827       Water oak       827       827         681       White mulberry       681       999       828       Nuttall oak       828       813         682       Red mulberry       682       680       830       Pin oak       830       830         691       Water tupelo       691       691       691       831       Willow oak       831       831         692       Ogechee tupelo       692       999       832       Chestnut oak       832       832         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840                                                                                                                                                                                                                                                                                                | 660  | Apple spp.                 | 660            | 999                  | 826  | Chinkapin oak          | 826               | 826                  |
| 681       White mulberry       681       999       828       Nuttall oak       828       813         682       Red mulberry       682       680       830       Pin oak       830       830         691       Water tupelo       691       691       831       Willow oak       831       831         692       Ogechee tupelo       692       999       832       Chestnut oak       832       832         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak <td>680</td> <td>Mulberry spp.</td> <td>680</td> <td>680</td> <td>827</td> <td>Water oak</td> <td>827</td> <td>827</td>                                                                                                                                                                    | 680  | Mulberry spp.              | 680            | 680                  | 827  | Water oak              | 827               | 827                  |
| 682       Red mulberry       682       680       830       Pin oak       830       830       830         691       Water tupelo       691       691       831       Willow oak       831       831         692       Ogechee tupelo       692       999       832       Chestnut oak       832       832         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         740       Cottonwood and poplar spp.       740       740       842                                                                                                                                                                                                                                                                                        | 681  | White mulberry             | 681            | 999                  | 828  | Nuttall oak            | 828               | 813                  |
| 691       Water tupelo       691       691       831       Willow oak       831       831       831         692       Ogechee tupelo       692       999       832       Chestnut oak       832       832         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740                                                                                                                                                                                                                                                                                               | 682  | Red mulberry               | 682            | 680                  | 830  | Pin oak                | 830               | 830                  |
| 692       Ogechee tupelo       692       999       832       Chestnut oak       832       832         693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                               | 691  | Water tupelo               | 691            | 691                  | 831  | Willow oak             | 831               | 831                  |
| 693       Blackgum       693       693       833       Northern red oak       833       833         694       Swamp tupelo       694       694       834       Shumard oak       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 692  | Ogechee tupelo             | 692            | 999                  | 832  | Chestnut oak           | 832               | 832                  |
| 694       Swamp tupelo       694       694       834       Shumard oak       834       834       834         701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 693  | Blackgum                   | 693            | 693                  | 833  | Northern red oak       | 833               | 833                  |
| 701       Eastern hophornbeam       701       999       835       Post oak       835       835         711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 694  | Swamp tupelo               | 694            | 694                  | 834  | Shumard oak            | 834               | 834                  |
| 711       Sourwood       711       999       836       Delta post oak       836       836         712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       843       Silverleaf oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 701  | Eastern hophornbeam        | 701            | 999                  | 835  | Post oak               | 835               | 835                  |
| 712       Paulownia, empress-tree       712       999       837       Black oak       837       837         721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       842       842         741       Balsam poplar       741       741       843       Silverleaf oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 711  | Sourwood                   | 711            | 999                  | 836  | Delta post oak         | 836               | 836                  |
| 721       Redbay       721       999       838       Live oak       838       838         722       Water-elm, planertree       722       999       840       Dwarf post oak       840       840         731       Sycamore       731       731       841       Dwarf live oak       841       840         740       Cottonwood and poplar spp.       740       740       842       Bluejack oak       842       842         741       Balsam poplar       741       741       843       Silverleaf oak       843       Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 712  | Paulownia, empress-tree    | 712            | 999                  | 837  | Black oak              | 837               | 837                  |
| 722Water-elm, planeftree722999840Dwarf post oak840840731Sycamore731731841Dwarf live oak841840740Cottonwood and poplar spp.740740842Bluejack oak842842741Balsam poplar741741843Silverleaf oak843Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 721  | Redbay                     | 721            | 999                  | 838  | Live oak               | 838               | 838                  |
| 751Sycamore751751841Dwarf live oak841840740Cottonwood and poplar spp.740740842Bluejack oak842842741Balsam poplar741741843Silverleaf oak843Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 722  | water-elm, planertree      | 722            | 999                  | 840  | Dwarf post oak         | 840               | 840                  |
| 740Cottonwood and poplar spp.740740842Bluejack oak842842741Balsam poplar741741843Silverleaf oak843Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /31  | Sycamore                   | 731            | /31                  | 841  | Dwarf live oak         | 841               | 840                  |
| 141 Baisam popiar 141 141 843 Silverleaf oak 843 Chojnacky 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 740  | Cottonwood and poplar spp. | 740            | 740                  | 842  | Bluejack oak           | 842               | 842<br>Chaineal 1000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /41  | baisam popiar              | /41            | /41                  | 843  | Suveriear oak          | 843               | Chojnacky 1988       |

| SPCE | Common name           | Species<br>number | SPCD EQ <sup>a</sup> | SPCD | Common name        | Species<br>number | SPCD EO <sup>a</sup> |
|------|-----------------------|-------------------|----------------------|------|--------------------|-------------------|----------------------|
|      |                       |                   | ~~~ <u>_</u>         |      |                    |                   | ~~- <u>_</u>         |
| 844  | Oglethorpe oak        | 844               | 842                  | 970  | Elm spp.           | 970               | 970                  |
| 845  | Dwarf chinakapin oak  | 845               | 842                  | 971  | Winged elm         | 971               | 970                  |
| 846  | Gray oak              | 846               | Chojnacky 1988       | 972  | American elm       | 972               | 970                  |
| 901  | Black locust          | 901               | 901                  | 973  | Cedar elm          | 973               | 970                  |
| 911  | Palmetto spp.         | 911               | 999                  | 974  | Siberian elm       | 974               | 970                  |
| 919  | Western soapberry     | 919               | 999                  | 975  | Slippery elm       | 975               | 970                  |
| 920  | Willow                | 920               | 920                  | 976  | September elm      | 976               | 970                  |
| 921  | Peachleaf willow      | 921               | 920                  | 977  | Rock elm           | 977               | 970                  |
| 922  | Black willow          | 922               | 920                  | 989  | Mangrove           | 989               | 999                  |
| 927  | White willow          | 927               | 920                  | 992  | Melaleuca          | 992               | 999                  |
| 931  | Sassafras             | 931               | 999                  | 993  | Chinaberry         | 993               | 999                  |
| 935  | American mountain-ash | 935               | 999                  | 994  | Chinese tallowtree | 994               | 999                  |
| 950  | Basswood spp.         | 950               | 950                  | 995  | Tung-oil-tree      | 995               | 999                  |
| 951  | American basswood     | 951               | 950                  | 996  | Smoketree          | 996               | 999                  |
| 952  | White basswood        | 952               | 950                  | 997  | Russian-olive      | 997               | 999                  |
| 953  | Carolina basswood     | 953               | 950                  | 999  | Unknown hardwood   | 999               | 999                  |

Table 17. Species code and equation used by each species (Oswalt et. al. 2011).

| <b>L</b> ` | Coefficients |          | Coefficients |           |          |  |
|------------|--------------|----------|--------------|-----------|----------|--|
|            | Sawti        | mber     | Sawtimber    |           |          |  |
| SPCD_EQ    | D1           | D2       | SPCD_EQ      | D1        | D2       |  |
| 10         | 0.879371     | 0.001845 | 651          | 0.735415  | 0.001775 |  |
| 43         | 1.668389     | 0.001822 | 652          | 0.735415  | 0.001775 |  |
| 60         | -0.104252    | 0.002145 | 653          | 0.735415  | 0.001775 |  |
| 67         | -0.104252    | 0.002145 | 680          | -0.202284 | 0.001818 |  |
| 68         | -0.104252    | 0.002145 | 691          | 1.749738  | 0.001659 |  |
| 90         | 0.879371     | 0.001845 | 693          | 0.690730  | 0.001767 |  |
| 107        | 0.377006     | 0.002239 | 694          | 1.284413  | 0.001760 |  |
| 110        | -0.687060    | 0.002211 | 731          | 2.326908  | 0.001649 |  |
| 111        | -0.611225    | 0.002088 | 740          | 0.518892  | 0.001802 |  |
| 115        | 0.118241     | 0.002168 | 741          | 0.518892  | 0.001802 |  |
| 121        | -0.443190    | 0.002165 | 762          | -0.607326 | 0.001957 |  |
| 123        | 0.870587     | 0.002205 | 802          | 0.148434  | 0.001880 |  |
| 126        | -0.379670    | 0.002171 | 804          | 0.248363  | 0.001823 |  |
| 128        | -0.279600    | 0.002093 | 806          | 0.003343  | 0.001887 |  |
| 129        | 0.604023     | 0.001857 | 808          | -0.085426 | 0.001783 |  |
| 131        | -0.658316    | 0.002107 | 812          | -0.085426 | 0.001783 |  |
| 132        | 0.333364     | 0.002118 | 813          | 1.212451  | 0.001791 |  |
| 221        | 1.757944     | 0.001752 | 817          | 0.248363  | 0.001823 |  |
| 222        | 1.044195     | 0.001712 | 820          | 0.846919  | 0.001840 |  |
| 241        | 0.879371     | 0.001845 | 822          | 0.248363  | 0.001823 |  |
| 260        | -0.216081    | 0.001798 | 823          | 0.248363  | 0.001823 |  |
| 311        | -0.202284    | 0.001818 | 825          | 0.376354  | 0.001818 |  |
| 313        | 0.518892     | 0.001802 | 826          | 0.248363  | 0.001823 |  |
| 316        | 0.680247     | 0.001742 | 827          | 1.195722  | 0.001795 |  |
| 317        | 0.518892     | 0.001802 | 830          | 0.248363  | 0.001823 |  |
| 318        | 0.352087     | 0.001838 | 831          | -0.460755 | 0.001904 |  |
| 330        | 0.218924     | 0.001833 | 832          | -0.069945 | 0.001818 |  |
| 370        | 0.543581     | 0.001751 | 833          | 0.793996  | 0.001779 |  |
| 371        | 0.169526     | 0.001893 | 834          | 0.248363  | 0.001823 |  |
| 400        | -0.793179    | 0.001884 | 835          | 0.301286  | 0.001791 |  |
| 460        | 0.500522     | 0.001670 | 837          | -0.515373 | 0.001775 |  |
| 491        | -0.202284    | 0.001818 | 838          | 0.344387  | 0.001580 |  |
| 521        | -1.1/3042    | 0.002028 | 899          | -0.035319 | 0.001807 |  |
| 531        | 1.468854     | 0.001/65 | 824          | -0.035319 | 0.001807 |  |
| 540        | 0.1/2/01     | 0.001851 | 840          | -0.035319 | 0.001807 |  |
| 552        | -0.202284    | 0.001818 | 842          | -0.035319 | 0.001807 |  |
| 555        | 0.735415     | 0.001775 | 830          | -0.035319 | 0.001807 |  |
| 501        | 0.518892     | 0.001802 | 901          | 0.603856  | 0.001483 |  |
| J71<br>(01 | 0.762909     | 0.001903 | 920          | 0.024400  | 0.001802 |  |
| 001<br>602 | 0.518892     | 0.001802 | 950          | 0.034400  | 0.001882 |  |
| 002        | 0.421890     | 0.001055 | 9/0          | -0.316500 | 0.001620 |  |
| 011        | -0.629168    | 0.001907 | 777          | 0.823520  | 0.001630 |  |
| 021        | 0.485232     | 0.001807 | 1            |           |          |  |

Table 18. Coefficients by Species (Table 15) for FIA cubic foot volume (equation CU000067) from a 1' stump to a 4" top (Oswalt et al. 2011).

| Coefficients |          |            | Coefficients |          |            |
|--------------|----------|------------|--------------|----------|------------|
| SPCD_EQ      | H1       | H2         | SPCD_EQ      | H1       | H2         |
| 10           | 0 987226 | -4 396825  | 651          | 1 016073 | -15 025004 |
| 43           | 1.006045 | -4.962611  | 652          | 1.016073 | -15.025004 |
| 60           | 0.987563 | -4.027958  | 653          | 1.005781 | -14.518615 |
| 67           | 0.987563 | -4.027958  | 680          | 0.970888 | -12.114880 |
| 68           | 0.987563 | -4.027958  | 691          | 0.973498 | -12.868316 |
| 90           | 0.987226 | -4.396825  | 693          | 0.967984 | -13.248708 |
| 107          | 1.005598 | -4.595382  | 694          | 0.975950 | -12.390384 |
| 110          | 1.017129 | -5.035009  | 731          | 0.977294 | -16.118257 |
| 111          | 1.018317 | -5.202751  | 740          | 0.993648 | -14.095485 |
| 115          | 1.012739 | -5.021693  | 741          | 0.993648 | -14.095485 |
| 121          | 1.007357 | -4.383530  | 762          | 0.967082 | -11.074226 |
| 123          | 1.019967 | -3.831951  | 802          | 0.984900 | -12.754068 |
| 126          | 0.990799 | -4.465552  | 804          | 0.970577 | -11.942936 |
| 128          | 1.015474 | -4.750206  | 806          | 0.985882 | -12.214161 |
| 129          | 0.985634 | -4.484123  | 808          | 1.004199 | -14.775319 |
| 131          | 1.018534 | -5.661877  | 812          | 1.004199 | -14.775319 |
| 132          | 0.988876 | -4.339684  | 813          | 1.011594 | -16.475117 |
| 221          | 0.976887 | -6.372196  | 817          | 0.970577 | -11.942936 |
| 222          | 0.982780 | -4.980440  | 820          | 0.962858 | -10.854013 |
| 241          | 0.987226 | -4.396825  | 822          | 0.970577 | -11.942936 |
| 260          | 0.979075 | -4.860084  | 823          | 0.970577 | -11.942936 |
| 311          | 0.970888 | -12.114880 | 825          | 1.022046 | -16.551048 |
| 313          | 0.993648 | -14.095485 | 826          | 0.970577 | -11.942936 |
| 316          | 0.957247 | -12.838405 | 827          | 0.951738 | -10.055145 |
| 317          | 0.993648 | -14.095485 | 830          | 0.970577 | -11.942936 |
| 318          | 0.986670 | -13.285690 | 831          | 0.976525 | -12.140112 |
| 330          | 0.993648 | -14.095485 | 832          | 0.968616 | -11.614055 |
| 370          | 0.990427 | -14.816790 | 833          | 0.925404 | -10.109039 |
| 371          | 0.970888 | -12.114880 | 834          | 0.970577 | -11.942936 |
| 400          | 0.975054 | -11.967499 | 835          | 0.981927 | -11.738632 |
| 460          | 0.884844 | -10.966955 | 837          | 0.973573 | -13.391067 |
| 491          | 0.970888 | -12.114880 | 838          | 0.956531 | -10.588513 |
| 521          | 1.017439 | -13.174563 | 899          | 0.970577 | -11.942936 |
| 531          | 0.939240 | -10.377629 | 824          | 0.970577 | -11.942936 |
| 540          | 0.990354 | -13.866570 | 840          | 0.970577 | -11.942936 |
| 552          | 0.970888 | -12.114880 | 842          | 0.970577 | -11.942936 |
| 555          | 1.016073 | -15.025004 | 836          | 0.970577 | -11.942936 |
| 580          | 0.993648 | -14.095485 | 901          | 0.920003 | -9.999206  |
| 591          | 0.970888 | -12.114880 | 920          | 0.993648 | -14.095485 |
| 601          | 0.993648 | -14.095485 | 950          | 0.977669 | -12.161698 |

Table 19. Coefficients by species (Table 15) for converting CU000067 to cubic foot volume of the saw log portion of the tree (Equation CU000069) (Oswalt et al. 2011).

| Coefficients |            |           | Coefficients |            |           |
|--------------|------------|-----------|--------------|------------|-----------|
| SPCD_EQ      | I1         | I2        | SPCD_EQ      | I1         | I2        |
| 10           | 32 068404  | 40 000754 | 651          | 13 831111  | 51 473501 |
| 10           | -36 113637 | 40.000754 | 652          | -43.831114 | 51 473501 |
| 4J<br>60     | -31 028220 | 40.082406 | 653          | -32 151472 | 38 751286 |
| 67           | -31.928229 | 40.082406 | 680          | -33 /60503 | 40 320487 |
| 68           | -31.928229 | 40.082406 | 691          | -62 218744 | 70 635109 |
| 90           | 32.068404  | 40.002400 | 603          | 42 670508  | 50.056472 |
| 107          | -39 657770 | 48.447531 | 694          | -45 206541 | 53 020202 |
| 110          | -40 778119 | 40.447551 | 731          | -45 /10707 | 53.020202 |
| 111          | -40.778117 | 53 682127 | 740          | -46 585716 | 54 641538 |
| 115          | -30 697896 | 38 676749 | 740          | -46 585716 | 54 641538 |
| 121          | -37 533739 | 46 221683 | 762          | -46 585716 | 54 641538 |
| 121          | -36 169514 | 44 588514 | 802          | -40.853917 | 48 314853 |
| 125          | -47 178011 | 56 153368 | 802          | -39 207446 | 46 599115 |
| 128          | -39.081750 | 47 663171 | 806          | -41 609919 | 49 261334 |
| 120          | -38 021863 | 46 299422 | 808          | -39 405006 | 46 869861 |
| 131          | -45 233296 | 54 320184 | 812          | -39 405006 | 46 869861 |
| 132          | -30 487486 | 37 943803 | 813          | -57 253809 | 66 161822 |
| 221          | -39 852794 | 47 638868 | 817          | -39 207446 | 46 599115 |
| 222          | -37 780331 | 45 512476 | 820          | -39 258381 | 46 972932 |
| 241          | -32,968494 | 40 900754 | 822          | -39 207446 | 46 599115 |
| 260          | -35.837266 | 43.682868 | 823          | -39.207446 | 46.599115 |
| 311          | -33.469593 | 40.320487 | 825          | -52.928852 | 61.522970 |
| 313          | -46.585716 | 54.641538 | 826          | -39.207446 | 46.599115 |
| 316          | -37.873060 | 44.918110 | 827          | -33.821051 | 41.219217 |
| 317          | -46.585716 | 54.641538 | 830          | -39.207446 | 46.599115 |
| 318          | -23.292189 | 29.478650 | 831          | -46.836658 | 55.060205 |
| 330          | -46.585716 | 54.641538 | 832          | -37.716845 | 44.770685 |
| 370          | -23.210675 | 29.141604 | 833          | -34.016058 | 40.773236 |
| 371          | -33.469593 | 40.320487 | 834          | -39.207446 | 46.599115 |
| 400          | -43.385922 | 51.122382 | 835          | -41.637640 | 49.438943 |
| 460          | -46.585716 | 54.641538 | 837          | -42.235900 | 49.659282 |
| 491          | -33.469593 | 40.320487 | 838          | -32.557196 | 39.284646 |
| 521          | -33.469593 | 40.320487 | 899          | -39.207446 | 46.599115 |
| 531          | -7.036861  | 11.665187 | 824          | -39.207446 | 46.599115 |
| 540          | -44.046785 | 51.632536 | 840          | -39.207446 | 46.599115 |
| 552          | -33.469593 | 40.320487 | 842          | -39.207446 | 46.599115 |
| 555          | -43.831114 | 51.473501 | 836          | -39.207446 | 46.599115 |
| 580          | -46.585716 | 54.641538 | 901          | -7.456203  | 11.992934 |
| 591          | -33.469593 | 40.320487 | 920          | -46.585716 | 54.641538 |
| 601          | -46.585716 | 54.641538 | 950          | -37.777411 | 44.944982 |
| 602          | -16.280751 | 21.457858 | 970          | -33.168491 | 39.961348 |
| 611          | -50.712592 | 59.264535 | 999          | -39.207446 | 46.599115 |
| 621          | -54.639851 | 63.549737 |              |            |           |

 Table 20. Coefficients by species (Table 15) for converting cubic foot volume from a 1' stump to a 4'' top to board feet volume (equation BD000049).(Oswalt et al. 2011)

# **APPENDIX B** DISTRIBUTION OF AGE BY STATE FOREST



Figure 18. Bledsoe State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 19. Cedars State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 20. Chickasaw State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 21. Chuck Swan State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 22. Franklin State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 23. Martha Sundquist State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 24. Lewis State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 25. Lone Mountain State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 26. Natchez State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 27. Pickett State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 28. Prentice Cooper State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 29. Scott State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).


Figure 30. Standing Stone State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 31. Stewart State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 32. John Tully State Forest distribution of plot age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).

## **APPENDIX C** DIAMETER AND HEIGHT RELATIONSHIPS



Figure 33. Cedars of Lebanon X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 34. Chickasaw X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 35. Chuck Swan X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 36. Franklin X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 37. Martha Sundquist X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 38. Lewis X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 39. Lone Mountain X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 40. Pickett X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 41. Prentice Cooper X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 42. Scott X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 43. Standing Stone X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.



Figure 44. Stewart X Y scatter of relationship between diameter, (DBH) in inches, and total height, in feet. Trees measured on 1/5 acre permanent CFI plots implemented by Tennessee Division of Forestry (TDF) in 2007.

## **APPENDIX D**

DISTRIBUTION OF VOLUME WITH BOX PLOT INCLUDED



Figure 45. Natchez Trace State Forest All Plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 46. Natchez Trace State Forest Outliers Removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 47. Bledsoe State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 48. Cedars of Lebanon State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 49. Cedars of Lebanon State Forest with outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 50. Chuck Swan State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 51. Franklin SF all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 52. Franklin State Forest Outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 53. Lone Mountain State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 54. Lewis State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 55. Martha Sundquest State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 56. Scott State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 57. Scott State Forest Outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 58. Pickett State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 59. Pickett State Forest Outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 60. Prentice Cooper State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 61. Prentice Cooper State Forest Outliers removed. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 62. Standing Stone State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 63. Stewart State Forest all plots. Box plot with whiskers used for determining the presence of outliers, distribution of plots included for reference. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).

## **APPENDIX E**

DISTRIBUTION OF VOLUME PER ACRE ESTIMATES BY AGE


Figure 64. Bledsoe State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 65. Cedars of Lebanon State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 66. Chickasaw State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 67. Chuck Swan State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 68. Lone Mountain State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 69. Lewis State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 70. Martha Sundquist State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 71. Natchez Trace State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 72. Prentice Cooper State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 73. Pickett State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 74. Scott State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 75. John Tully State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 76. Standing Stone State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).



Figure 77. Stewart State Forest distribution of VPA by age. Data collected by TDF in 2007 using 1/5 acre permanent plots in a CFI design. The volume was calculated using FIA's equation (BD000049) (Oswalt et al. 2011).

## VITA

Matthew Holt came to The University of Tennessee after graduating from Arlington high school in Arlington, Tennessee. He earned a B.S. in Forestry with a concentration in resource management in 2012. He entered graduate school in August 2012, working towards a M.S. in Forestry concentrating in biometrics. During his tenure as a master's student he worked as a graduate research assistant and graduate teaching assistant. The author is a member of the Society of American Foresters (SAF) and The Forest Guild.