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ABSTRACT 

Iron (Fe) limitation of primary productivity in high-nutrient, low-chlorophyll 

(HNLC) regions is relatively well-studied. Iron fertilization experiments as well as bottle 

incubations have been used to study changes in phytoplankton community biomass and 

diversity, changes in bacterial growth rates, etc. However, viral activity has been largely 

ignored in these studies. Viral activity was monitored during an iron budget study 

(FeCycle) in the HNLC waters of the Southern Ocean southwest of New Zealand as well 

as during a mesoscacle iron fertilization in the subarctic Pacific (SEEDS II). The goal of 

these studies was to evaluate the role of viruses in the lysis of bacterial cells and the 

subsequent regeneration of iron and other key nutrients. Two methods, a transmission 

electron microscopy (TEM) approach and a dilution assay, were used to measure viral 

production in each study and comparisons were made as to the appropriateness of each. 

From these studies, it appears that the viral community indirectly responds to changes in 

trophic production as observed by changes in virus abundance and production, while 

burst size and frequency of infection remain constant. These results suggest that there is a 

decrease in the length of lytic cycle after productivity is stimulated. Virus-induced lysis 

was found to regenerate up to 70 pM Fe in the Southern Ocean, and nearly 200 pM Fe in 

the subarctic Pacific. While there is little doubt as to the usefulness of TEM and its 

importance in determining lytic burst sizes in natural populations, the observations in this 

study suggest that there are problems associated with inferences concerning community 

mortality from such observations, especially during periods of trophic change. 
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1. The Microbial Food Web 

Traditionally, phytoplankton, which are responsible for nearly 50% of the 

photosynthesis on the planet (Field et al. 1998), are considered to be the lowest trophic 

level in marine food webs. These primary producers are grazed upon by zooplankton, 

providing carbon flow through the food web as well as leading to the liberation and 

recycling of both organic and inorganic nutrients. Recent attention, however, has also 

been focused on the interactions of viruses with members of the microbial community, 

including phytoplankton as well as protozoans and heterotrophic bacteria (Figure 1 ). 

Bacteriophage (from Greek bakterion "small staff', -phagos, "eater of', viruses infecting 

prokaryotic cells) and heterotrophic bacteria play a major role in the recycling of 

dissolved organic matter (DOM) as well as other nutrients (Fuhrman 1999). Referred to 

as the "microbial loop" (Azam et al. 1983), this model shows how bacteria feed on 

carbon released from phytoplankton, thus converting DOM into particulate organic 

matter (POM). Bacteria are then grazed upon by protozoans, again liberating nutrients 

for use by zooplankton. Viral infection contributes to this process by shunting organic 

nutrients into the dissolved phase where they are assimilated by heterotrophic bacteria 

(Fuhrman 1999; Wilhelm & Suttle 1999). Because the nutrients released by viral lysis of 

bacterial cells are organically complexed, and this supply is probably differentially 

bioavailable relative to that which is not bound to organics (Gobler et al. 1997; Wilhelm 

and Suttle 2000; Poorvin et al. 2004 ), much of this organic material is kept within the 

microbial loop and away from secondary consumers, who primarily use POM (Wilhelm 

and Suttle 1999). 
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Illustration showing the importance of the microbial food web to nutrient cycling. 
Heterotrophic bacteria, protozoans and viruses contribute to the DOM pool. Viral lysis 
of microbial communities releases DOM, POM, and organic nutrients, which are then 

used by other members of the community (modified from DeBruyn et al. 2004). 
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2. Viruses in Marine Systems 

Bacteriophage were independently discovered almost a century ago by Twort 

(1915) and d'Herelle (1917) (Weinbauer 2004). In spite of these early beginnings, only 

during the last 15 years has the potential importance of viruses and their role in infecting 

eukaryotic plankton been seriously considered (Suttle et al. 1990). Heterotrophic 

bacteria, which have been shown to account for 70% of the "living carbon in the photic 

zone" (Fuhrman et al. 1989) and phytoplankton serve as the main hosts for viruses in 

marine systems (Wilhelm and Suttle 1999). Viruses are now known to outnumber 

prokaryotes as well as cause significant mortality to these populations (Proctor et al. 

1988; Bergh et al. 1989; Proctor and Fuhrman 1990), and to populations of eukaryotic 

algae (Sieburth et al. 1988; Suttle et al. 1990). Fuhrman and Noble (1995) reported that 

the extent to which viruses cause bacterial mortality is close to that caused by protists 

(i.e. grazing). Such findings have led to increased interest in the ecological role of 

viruses in marine systems. 

Nutrients released as a result of viral lysis of bacteria are, in most cases, thought 

to be organically complexed, while grazing activity releases a mixture of organic and 

inorganic nutrients (Wilhelm and Suttle 2000; Poorvin et al. 2004). It is thought that 

marine plankton are better able to use some nutrients such as iron when they are 

organically bound (Rue and Bruland 1995; Poorvin et al. 2004 ), so particular interest has 

been placed on the potential impact that viral activity may have on nutrient cycling in 

natural systems. DOM (particles with< 0.2 µm diameter) is used by heterotrophic 

bacteria and phytoplankton, while POM (> 0.2 µm diameter) is taken up by zooplankton 

and other grazers. It has recently been shown that most of the organic matter released by 
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viral lysis of bacteria is into the dissolved phase (Poorvin et al. 2004). These materials 

include nucleic acids (Reisser et al. 1993; Weinbauer et al. 1995), carbohydrates 

(Weinbauer and Peduzzi 1995) and small proteins (Hirayama et al. 1993). Some 

dissolved nutrients are quickly assimilated by heterotrophic bacteria, while others require 

enzymatic and grazer activity to be broken down further. Larger proteins and cellular 

debris (e.g., cell walls) are thought to operationally partition into the particulate form 

(Wilhelm and Suttle 1999). 

Using radioactive tracers in laboratory studies, Gobler et al. (1997) demonstrated 

that the lysis of the marine algae Aureococcus anophagefferens, resulted in a nearly 

150% increase in the concentration of dissolved organic carbon (DOC) relative to 

uninfected controls, and that this DOC resulted in a ten-fold increase in bacterial 

abundance. From this, Gobler et al. predicted a potential 40 µM increase in DOC if a 

natural bloom of A. anophagefferens were subjected to viral lysis. This study also 

demonstrated that the nutrients released were assimilated by (and therefore bioavailable 

to) other organisms. Similar increases in dissolved phosphorous ( 117% ), selenium 

(150%), and iron (135%) were seen as well, followed by a decrease in dissolved forms of 

these nutrients and a rise in the particulate phase, indicating bacterial uptake. Similarly, 

Middelboe et al. (1996) reported a 72% increase in DOC uptake after viral lysis of 

heterotrophic bacteria. Although a two- to three-fold rise in bacterial production was 

reported in this study, a 66% decrease in the biomass production to substrate ratio was 

also seen, indicating that the bacteria required energy to assimilate the cellular products 

of viral lysis, and are converting more DOC toward energy than into biomass. Another 

important study (Poorvin et al. 2004) demonstrated that 250% more iron was in the 
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dissolved phase following viral lysis of both cyano- and heterotrophic bacteria. 

Additionally, this iron was assimilated more rapidly than iron leaked from unlysed 

control cells or iron added in inorganic forms. 

Other studies, summarized in Table 1, have shown the estimated nutrients and 

carbon released each day as a result of viral lysis of bacterial cells. These estimates are 

determined by multiplying the number of cells lysed each day by the predetermined 

cellular quotas [iron (1.1 ag ceU- 1
; Tortell et al.1996), phosphorus (0.5 fg ceU-1

; Heldal, et 

al. 1996), nitrogen (5.6 fg ceU-1; Lee and Fuhrman 1987), and carbon (10 fg ceU- 1
; 

Fukuda et al. 1998, or 23 .3 fg ceir 1; Simon and Azam 1989)]. The abundance of cells 

lysed each day is determined by dividing the experimentally determined viral production 

rate by the number of viruses released per lytic event (burst size). Burst sizes are either 

estimated (usually 25 to 50) or determined by transmission electron microscopy for each 

study. 
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Table 1. Viral Activity and Regeneration of Nutrients. Values in italics were not 
calculated in the reported study, but determined using viral production estimates given 
in each reported study. 

Location Burst 
Size 

Lake PluJ3see8 5-500 

Lake 21-121 

Constanceb 

Subtropical 
Pacificc 

Gulf of Mexico 10-23 

( offshore )d 

Gulf of Mexico 29-64 

(coastal)d 

Gulf of Mexico 
(phytoplanktonl 
Gulf of Mexico 
(phytoplankton)' 
-Bering and 
Chukchi Seasg 

Strait of Georgia 
( stratifiedl 
Strait of Georgia 
!mixedt 

FVIC% 

0.5-6.4% 

VIM1 

2-10% 

VIM1 

5-14% 

VIM1 

9-23% 

C 
released 
{µM d-1} 

1.89-7.46 

0.01-0.05 

0.06-0.43 

0.12-0.35* 

0.15** 

0.02-0.25 

0.09-0.13 

0.17-0.69 

N 
released 
{µM d-1} 

0.39-1.54 

0.001-
0.008 

0.01-0.07 

0.005-
0.051 

0.02-0.03 

0.03-0.14 

p 
released 
{nM d-1} 

15.74-
62.05 

0.08-0.38 

0.5-3.6 

0.21-2.8 

0.65-0.97 

1.29-5.81 

Fe 
released 
(pM d-1} 

19.2-75.7 

0.01-0.46 

0.61-4.4 

0.25-2.54 

0.9-1.3 X 
103 

1.6-7.0 X 
103 

1VIM (viral-induced mortality of bacterial cells) measured according to Proctor 
and Fuhrman (1990). *Assuming 63-67 fg C ceU-1; **Assuming 125 fg C ceU-1 
8Weilbauer & Hofle 1998; 'llennes & Simon 1995; cPoorvin et al. 2004; 
dWilhelm et al. 1998; ecottrell & Suttle 1991; rsuttle & Chan 1994; 8Steward et 
al. 1996; hWilhelm & Suttle 2000. 
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3. The Iron Hypothesis 

Eppley et al. (1973) reported that primary production in the majority of the 

World's ocean is limited by nitrogen, while silica can limit growth in some taxa (Swift 

1981 ). Bacterial growth is not only limited by carbon availability (Ducklow and Carlson 

1992), but likely by phosphorus (Thingstad et al. 1998) and nitrogen (Kirchman 1994) as 

well. Although Leibig's Law of the Minimum suggests that aquatic organisms should be 

limited by whatever nutrient is in lowest concentration, Brandt and Raben (1992) 

suggested that a single limiting factor may not be possible to find. The difficulty in 

identifying a single limiting factor is evident when one considers the complex 

interactions of light, salinity, temperature and gas exchange, in addition to the relative 

nutrient concentrations in a given region. 

The special cases in the World's ocean are those areas with high nutrient content, 

but relatively low levels of phytoplankton biomass (measured in terms of chlorophyll a). 

Such "high-nutrient, low-chlorophyll" (HNLC) regions include the Southern Ocean, the 

Equatorial Pacific, and the subarctic Pacific. There are several possible factors that may 

limit primary production in these waters, including zooplankton grazing, which may keep 

phytoplankton populations at a level that prevents them from utilizing the major nutrients 

in the area, trace metal limitation, and low light and temperature, especially in the 

Southern Ocean and sub-Arctic Pacific (Chisholm and Morel 1991; Hutchins 1995). 

Trace metal limitation, especially iron, is likely in many pelagic regions, given that 

much of the supply of many trace metals enters the ocean via atmospheric dust, and dust 

entering these areas was found to be low by Duce and Tindale ( 1991 ). Prior to these 

findings, Hart ( 1941) suggested that iron was a limiting nutrient in several Antarctic 
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regions, including the Weddell Sea. Experimental design was a major limiting factor in 

this work and other early studies of trace metal limitation (Harvey 1933, 1947; Gran 

1931; Menzel and Ryther 1961), as contamination (usually in the sub-picomolar range) 

was a constant problem, causing many of these studies to be discounted. The trace metal 

clean techniques developed by Bruland et al. (1979) served to circumvent many of these 

problems. Martin later applied these techniques to conduct on-deck bottle incubation 

experiments where iron and other nutrients such as zinc, sulfur, and copper were added. 

After conducting these experiments in the three HNLC regions mentioned above, Martin 

et al. ( 1991) concluded that iron was a limiting nutrient of phytoplankton biomass. Coale 

et al. (1991) found that adding 0.86 nM iron in bottle incubations in the subarctic Pacific 

increased phytoplankton production by 360 % in the> 0.7-µm size-class and by 1300 % 

in the > 25 - µm size-class. In addition, chlorophyll a concentrations increased by 924 % 

after the addition of iron. Similar experiments in the Weddell and Scotia Seas have 

shown that adding iron to shipboard incubations did not stimulate primary production in 

all areas of the Southern Ocean ( de Baar et al. 1990; Buma et al., 1991 ). 

Many HNLC regions are dominated by picoplankton (planktonic organisms < 2 µm 

diameter). These organisms are more efficient nutrient scavengers under oligotrophic 

conditions possibly due to their greater surface area-volume ratio and are more efficient 

at assimilating iron (Sunda and Huntsman 1997). Microzooplankton (grazing organisms 

ranging from 2 to 20 µm diameter) are responsible for keeping the populations of 

picoplankton lower by grazing (Price et al. 1994). When iron is added to these waters, 

diatoms are thought to proliferate because of their ability to grow at faster rates than both 

the organisms that normally graze upon them and the smaller species that they compete 
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with for nutrients when in limited amounts (Geider and LaRoche 1994). These 

interactions are difficult to study using shipboard bottle experiments, as they seldom 

account for grazing activity or vertical export in the water column (sinking, Buma et al. 

1991). 

The "Iron Hypothesis" was first proposed by John Martin (1990), who 

hypothesized that adding iron to HNLC waters would stimulate primary production, thus 

sequestering CO2 into the sea. A man of bold words, Martin stated in 1988 that "300,000 

tons of iron in the Southern Ocean would cause a phytoplankton bloom and remove 2 

billion tons of carbon dioxide." and that "with half a shipload of Fe . . .  I could give you an 

ice age." This proposition was not received well in the scientific community, as many 

felt and still feel that, to reduce global warming, the United States (the top producer of 

greenhouse gases) should lower fossil fuel emissions (Chisholm and Morel 1991). The 

outspoken Martin responded more conservatively stating that if the need arises, fertilizing 

the ocean with iron may be the most feasible way to remove atmospheric CO2 by 

stimulating phytoplankton production (Martin et al. 1990). Not until Roberts (1991) 

stated it more calmly, saying that small-scale iron fertilization experiments would not 

have global impacts, but simply test Martin's hypothesis (1991), did the idea seem 

practical. 
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4. Iron Fertilization Experiments 

A number of mesoscale iron fertilizations have been performed in the equatorial 

Pacific Ocean (Martin et al. 1994; Coale et al. 1996), the Southern Ocean (Boyd et al. 

2000; Gervais et al. 2002; Coale et al. 2004), and the subarctic Pacific Ocean (Tsuda et 

al. 2003 ; Boyd et al. 2004) to test Martin's hypothesis that adding iron to HNLC waters 

would increase phytoplankton productivity. The first iron fertilization experiment 

(lronEx I; Martin et al. 1994) took place in 1993 in the equatorial Pacific. This study 

involved a single addition of iron ( 4 nM) as ferrous sulfate over an 8 x 8 km area. A 

three-fold increase in chlorophyll a concentration was observed, primary production 

increased by a factor of four, and atmospheric CO2 decreased by 10 µatm. However, the 

iron patch seemed to sink by day 4 of observation due to a marked decrease in salinity. 

At that time, primary production and chlorophy 11 a also decreased. It remains unclear if 

these observations were related, or if production in the area became limited by the 

availability of other micronutrients such as zinc or silicate. 

In May 1995, the IronEx II study (Coal et al. 1996) addressed the problems 

encountered in IronEx I, discussed above and examined the activity of grazers and their 

potential effects on bloom formation. Before fertilization, the study area was surveyed to 

ensure that the patch was uniform and to eliminate the possibility of the patch sinking 

again. The study area received two further iron infusions (1 nM) on days 3 and 7 after 

the initial addition (2 nM) on day 1. At day 9, a 26-fold increase in chlorophyll a was 

reported, as well as a rise in diatom abundance (85x) and grazing rates. Bottle 

incubations indicated that the area was not limited by zinc or silicate. Due to these 
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findings, the authors from IronEx II claimed that the iron hypothesis should be termed the 

"iron theory" (Coale et al. 1996). 

The Southern Ocean iron release experiment (SOIREE) took place in February 9-

22, 1999 in the Australian sector of the Southern Ocean. Before iron fertilization, the 

area was found to have high concentrations of nitrate (25 µM) and phosphate ( 1.5 µM), 

medial concentrations of silicate (10 µM), and a low iron concentration (0.08 nM). After 

a 3 nM addition of iron on day 1 and three further 1 nM amendments on days 3, 5, and 7, 

a six-fold increase in chlorophyll a (primarily diatoms) and 75 % rise in primary 

production rates were reported. There was not a significant change in bacterial 

abundance, but a three-fold increase in bacterial production was observed. Increases in 

nitrate, phosphate, and silicate uptake were also seen, indicating that these nutrients were 

not limiting in the area at the time of the study (Boyd et al. 2000). 

The SOIREE study prompted Gervais et al. (2002) to explore the effects of iron 

amendments in the Atlantic sector of the Southern Ocean. Eisen (eisen = iron in German) 

experiment (EisenEx) took place in the Austral spring (November, 2000), rather than 

summer, as in SOIREE (Boyd et al. 2000). Again, non-limiting concentrations of nitrate 

(> 20 µM), phosphate (> 1.5 µM), and silicate ( 10 µM) were found in the area prior to 

fertilization, along with very low iron concentrations ( < 0.1 nM). Three iron additions 

were made during this study, although the resulting iron concentrations were not 

reported. There was a five-fold increase in chlorophyll a. Primary production rates were 

also raised three and a half times. There was also a noteworthy shift in the dominant 

algal size class. Picophytoplankton ( < 2 µM diameter) accounted for 40 % of the total 

chlorophy 11 a at the beginning of the study, but only made up 13 % by the end of EisenEx. 

12 



Nanophytoplankton (2-20 µM diameter) decreased from 50 % to 44 %, while 

microphytoplankton (> 20µM) increased from 10  % to 43 % of the total chlorophyll a 

concentration in the area. These findings seem to confirm the ideas of Geider and 

LaRoche (1 994) that diatoms (> 20 µM) would proliferate upon the addition of iron. 

The most recent iron fertilization of the Southern Ocean, and perhaps the most 

unique to date, was the Southern Ocean iron experiment (SOFeX; Coale et al. 2004). In 

this study, low ( < 3 µM)- and high (,..., 60 µM)-silicate waters of the Southern Ocean were 

amended with three ( 1 .2 nM) and four (0.7 nM) additions of iron respectively. Also 

unique to this experiment, the researchers left the experimental area and returned 4 weeks 

later to survey the patch dynamics. At this time, rates of photosynthesis had increased 

2 1 -fold in the low silicate waters, and 14-fold in the high-silicate waters, probably due to 

the increased amount of iron in the former, as well as higher temperatures. As expected, 

an increase in phytoplankton biomass was seen, but was dominated by diatoms only in 

the high-silicate patch, which increased by a factor of 20. In both patches, atmospheric 

CO2 decreased by nearly 40 µatm. Wingenter et al. (2004) reported on changes in 

different gases over the course of SOFeX. They reported a 4-fold increase in isoprene 

gas, which is produced by phytoplankton and contributes to the longevity of atmospheric 

dimethyl sulfide thereby increasing cloud cover (Wingenter et al. 1996; 1 999). This 

study also resulted in an increase in methyl bromide and methane gases, both known 

contributors to global warming and ozone depletion (Intergovernmental Panel on Climate 

Change 1995). Such findings are indications that, although iron fertilization may 

decrease CO2 levels, the increase in planktonic activity may lead to the liberation of other 

harmful gases. 
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In July of 2001, the subarctic Pacific iron experiment for ecosystem dynamics 

study (SEEDS) took place in the western subarctic gyre of the North Pacific (Tsuda et al. 

2003). This study involved a single (2.9 nM) addition of iron, resulting in a 20 µg L- 1 (> 

20-fold) rise in chlorophyll a and a 94 µatm decrease in atmospheric CO2 over the study 

area. Interesting and unique to this study was the diatom bloom seen after fertilization. 

In this case, the dominant species was a centric, chain forming diatom, Chaetoceros 

debilis, whose growth rate in this study was higher than the pennate diatom 

(Pseudonitzechia turgidula) growth reported during IronEx II (Coal et al. 1996) and 

higher than all algal growth seen in SOIREE (Boyd et al. 2000). The centric diatom seen 

here is known to be fast growing, and is probably found in this area due to the 

intermittent natural iron amendments the area receives from dust from the Asian 

continent (Bishop et al. 2002). This observation is also evidence of the different 

responses likely from the complex ecosystems seen across HNLC regions. Finally, an 

increase in nitrate, silicate, and phosphate uptake rates indicated that these nutrients did 

not limit production at the time of the study (Tsuda et al. 2003). 

The subarctic ecosystem response to iron enrichment study (SERIES) took place 

in the Gulf of Alaska in July of 2002 (Boyd et al. 2004). An initial ( lnM) followed by a 

second (0.6nM) iron addition resulted in a five-fold increase in chlorophyll a and an 

increase in bacterial activity in the area. This bloom (primarily consisting of diatoms) 

lasted more than 30 days, indicating that the added iron was retained in the area. 

Throughout each of these iron fertilization experiments, the influence of changes 

in system chemistry on virus activity has remained largely unstudied. Given the recent 

attention placed on viruses and their impact(s) on nutrient cycling, it is reasonable to 
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assume that the viral impact in high-nutrient, low-chlorophyll regions is potentially 

significant and worthy of investigation. Moreover, it is also reasonable to assume that 

changes in water column chemistry due to these mesoscale addition events will alter this 

relationship. The purpose of this thesis is to test the following hypotheses: 1 .) that viral 

activity plays an important role in the cycling of nutrients in HNCL regions; and 2.) that a 

mesoscale iron fertilization experiment will result in heightened virus activity in these 

regions. 
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PART ONE: AN ESTIMATION OF VIRAL DYNAMICS IN AN SFrLABELED 
HNLC PATCH 
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1. Introduction 

The Southern Ocean has been characterized as an HNLC region. Iron fertilization 

studies in this region have stimulated phytoplankton blooms, primarily caused by 

diatoms, as well as increased draw-down of CO2 and nutrient uptake (Boyd et al. 2000; 

Gervais et al. 2002; Coale et al. 2004). This area has also been extensively studied 

without the addition of iron (Dugdale and Wilkerson 1998). However, during all of these 

studies, parameters associated with the activity of viruses were largely ignored. Due to 

the potential role of viruses in the recycling of nutrients (Poorvin et al. 2004; Wilhelm et 

al. 1998; Cottrell & Suttle 1991; Suttle & Chan 1994; others), it seems appropriate to 

determine the influence that virus-mediated bacterial cell lysis has on the regeneration of 

nutrients in an area that is iron-limited. During this study (denoted "FeCycle") in the low­

iron waters of the Southern Ocean, the inert tracer SF 6 was used to mark and follow a 

patch of seawater and the entrained microbial community to construct a balanced Fe 

budget. 
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2. Materials and Methods 

2.1 Study site and sampling 

All samples for measurements taken in the Southern Ocean were obtained with 

surface water pumps on board the RV Tangaroa from February 3 to 11, 2003 (Figure 2). 

This study took take place near New Zealand's National Institute for Water and 

Atmosphere (NIWA)'s Southern mooring site (-- 46°30 S, 178°30 E). The area was 

examined (Boyd et al. submitted) and found to have high nitrate (> 25 µM), high 

phosphate (> 1 µM) high silicate (> 10 µM) and low chlorophyll a (< 1 µg L-1). 

Extremely low iron concentrations (0.05 nM) in surface water suggested that 

phytoplankton growth in the area may be limited by iron. The center of the study site 

was marked with a GPS navigated drifter buoy, which transmitted its location to the ship 

every 10 minutes. Seawater was injected with SF 6 and released into the surface and 

mixed layers to form a 4 7 km2 patch. This release was completed in a "lawnmower" 

pattern while the ship was navigated with a Lagrangian system (Law et al . 1998). The 

position and shape of the patch was mapped by an underway survey of SF 6 using gas 

chromatography. 

2.2 Phytoplankton, bacterial, and viral abundance 

Phytoplankton biomass at sample stations was inferred from measurements of 

chlorophyll a. Samples were collected on 0.2-µm nominal pore-size polycarbonate filters 

(47mm diameter; Millipore). Chlorophyll a was extracted in the dark in 90% acetone for 

24 h at 4°C, and quantified using a Turner Designs TD 700 fluorometer according to the 

non-acidification approach (Welschmeyer 1994). 
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Figure 2. Study Area for �eCycle 
Sea surface height anomaly (left) and bathymetry map for study area (right) prior to the 

beginning of the FeCycle experiment (Jan 26, 2003). Taken from Croot et al. 2005 

Samples for bacteria and virus enumeration were preserved in glutaraldehyde 

(final concentration, 2.5%) and returned to the laboratory for analysis. Samples were 

stained with Acridine orange (Hobbie et al. 1977) for bacterial direct counts. Briefly, 2 

mL of water was treated with Acridine orange and collected onto black polycarbonate 0.2 

µm pore-size filters (Millipore GTBP). For determining viral abundance, sample water 

(0.8 mL) was collected onto 0.02 µm pore-size Anodise filters (Whatman) and stained 

with SYBR Green I prior to enumeration of virus-like particles by epifluorescence 

microscopy (Noble and Fuhrman 1998). Samples with high virus abundance required 

dilutions: in this case 10 or 100 µL of the sample were respectively diluted with 790 or 

700 µL of sterile marine media (ESAW). Samples were viewed with an epifluorescence 
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microscope (Leica DMRXA) with a standard Acridine orange filter set (exi = 450-490 

nm; emi = 510  nm; suppression filteri = 510  nm). In each case, 200 particles or 20 fields 

of view were enumerated. 

2.3 Determination of estimated burst size and the frequency of visibly infected cells 

Whole water ( 40 mL) was preserved with glutaraldehyde ( as above) and stored in 

the dark at 4°C. Samples were subsequently collected onto carbon-coated collodion (2%, 

Electron Microscopy Sciences) films atop 400-mesh electron microscope grids by 

centrifugation. Grids were then rinsed with sterile water and stained with 0.75% uranyl 

formate. The frequency of visibly infected bacterial cells (FVIC) and burst size were 

determined by use of transmission electron microscopy (TEM) according to the 

recommendations of Weinbauer and Suttle ( 1996). Samples were viewed with a Hitachi 

H-800 TEM with an accelerating voltage of 100 KeV. For each sample, two grids were 

prepared, and at least 1 ,000 bacteria cells were examined per grid for infection. Burst 

size was defined as the average number of viral particles in all visibly infected cells 

(VIC). This is likely the minimum burst size, as more viral particles may accumulate 

before the infected cell lyses. 

2.4 Calculating the frequency of infected cells and viral-mediated bacterial mortality 

Viral particles are only visible by TEM during the final -10% of the lytic cycle 

(V anentine and Chapman 1966), so the frequency of infected cells (FIC) was calculated 

from FVIC obtained by TEM using the empirically determined conversion factors of 3.7 

to 7. 17  (Proctor et al. 1993). This process gave an estimated range for the percentage of 

infected cells in a sample. Viral-mediated mortality of bacteria (VMB) was found using 
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the factor-of-two rule of Proctor et al. (1993). FIC and VMB were also determined 

according to Binder (1999), where data were also given as percentages from the 

following equations: 

(a) FIC = 7. 1 FVIC - 22.5 FVIC2 

(b) VMB = (FIC + 0.6 FIC2) / (1-1.2 FIC) 

2.5 Bacterial and viral production and virus-induced mortality rate estimates 

Bacterial production rates were measured using a 3H-thymidine incorporation 

microcentrifuge method (Smith and Azam 1992). Briefly, triplicate samples were 

amended with 20 µL of a stock solution of 3H-thymidine (final concentration, 40 nM) and 

incubated at in situ temperatures in the dark for one hour. Two controls were killed with 

the addition of 100% trichloroacetic acid (TCA) at T = 0. After incubation, the live 

samples received 100% TCA and all samples were treated with subsequent washes of 5% 

TCA and 80% EtOH, with centrifugation and liquid extraction between each treatment. 

After drying overnight, 1 mL of scintillation cocktail was added to each tube. A Wallac 

1450 Microbeta Trilux scintillation counter was used to measure 3H-thymidine 

incorporation by the bacteria to provide gross production estimates for all samples. 

Bacterial carbon production estimates were determined by converting mol thymidine to g 

C using the conversion factor of 2.4 x 10 18 grams of carbon per mol of thymidine 

incorporated (Fuhrman and Azam 1982). 

Viral production rates were independently estimated using the dilution approach 

of Wilhelm et al. (2002) and the TEM approach of Proctor et al. (1993) as modified by 

Binder (1999). For the dilution assay of virus production rates, the bacterial community 
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from 450 mL of seawater was gently collected on a 0.2-µm nominal pore-size 

polycarbonate filter (47-mm dia., Millipore) in order to wash viral particles from the 

sample. These cells were resuspended with a transfer pipette, while maintaining the 

initial volume with ultra-filtered seawater (< 30 KDa). Three 150 mL subsamples were 

transferred to individual 500 mL polycarbonate bottles and incubated at in situ 

temperatures in the dark. A 4 mL sample was collected from each bottle every 2.5 hours, 

and preserved with glutaraldehyde (final concentration, 2.5%). Each experiment was 

limited to 10 hours to reduce the amount of virus production observed from new 

infections. Mean production rates (viruses m.L-1 h- 1
) were calculated from the 

reoccurrence of viruses in each replicate over time. Virus-induced mortality (VIM) rates 

were inferred by dividing viral production by the burst size, giving the number of 

bacterial cells lysed m.L- 1 h-1 (Wilhelm et al. 2002). Using the TEM approach, viral 

production rates were determined by the following equation, where VMB is the viral 

mediated mortality of bacteria in a given population, at the time of sampling. 

( c) Viral production= VMB x bacterial growth rate8 x burst size 

8assuming that bacterial growth equals bacterial mortality 

As discussed above, dividing viral production by burst size gives the number of cells 

lysed each day by viral activity. Thus, the t'Yo methods for calculating viral-induced 

mortality rates can be summarized by the following two equations: 

( d) VIM = viral production / burst size [ dilution method (Wilhelm et al. 2002)] 

(e) VIM = VMB x bacterial production [TEM method (Nobel and Steward 2001)] 
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These results were used to subsequently calculate the rates of nutrient regeneration by 

viral lysis of bacterial cells by multiplying the bacterial cell quota for iron ( 1 . 1  ag ceir 1 , 

Tortell et al. 1 996), phosphorus (0.5 fg ceU-1 , Heldal, et al. 1996), nitrogen (5.6 fg ceU- 1 , 

Lee and Fuhrman 1987), and carbon ( 10  fg ceU-1
; Fukuda et al. 1998, or 23.3 fg ceU- 1

; 

Simon and Azam 1 989), by the number of cells lysed each day by viral activity. 
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3. Results 

3.1 Bacterial and viral abundance and production 

Bacterial and viral abundance ranged from 5.75 - 21.8 x 105 (mean = 12.0 x 105) 

cells mL-1 and 4.1 - 84.1 x 107 (mean = 24.4 x 107
) particles mL-1, respectively 

throughout the study area in the Southern Ocean (Figure 3). Although there was no 

pattern in the distribution of these particles from station to station, the changes showed a 

weak correlation to the distributions of chlorophyll a (bacterial abundance, r2 = 0.45; 

virus abundance, r2 = 0.35) and dissolved iron (bacterial abundance, r2 = 0.41; virus 

abundance, r2 = 0.41) in the sample area. Bacterial and viral abundances were also 

positively correlated (r = 0.71; p = 0.003). 

3.2 Chlorophyll a, dissolved iron and iron regeneration 

During the survey of the area, an increase in chlorophyll a was observed, as well 

as an increase in dissolved iron and viral production. Chlorophyll a increased from 0.37 

to 0.65 µg L-1 over a period of 9 days. During the same time frame, dissolved iron 

concentrations increased from ,_, 30 to -70 pM, while the flux of iron released by viral­

mediated cell lysis ( as estimated by the dilution method) increased from almost zero to 

nearly 75 pM d- 1 (Figure 4). An apparent lack of agreement between the two viral 

production estimates is shown in Figure 5, where the dilution assay indicated that nearly 

one hundred times more bacteria are lysed each day, thus remobilizing more Fe, than was 

shown by the TEM method. 
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3.3 VMB, burst size other nutrient regeneration 

Values for burst size, % of bacterial mortality attributable to viral lysis (VMB), 

and nutrient regeneration (as measured by the dilution method) are presented in Table 2. 

Burst sizes ranged from 5 to 250 virus-like particles (VLP) per cell (mean = 29.75; n = 

543) and did not vary over the course of the study. Virus- mediated bacterial cell lysis 

(VMB) ranged from 10.79 to 22.54% (mean = 15.66) and also did not change throughout 

the study. Viral lysis of bacteria was responsible for the regeneration of 0.16 - 120 µM 

C, 1.33 - 986 nM P, and 0.03 - 25 µM N each day. Nutrient remobilization estimates 

reported here were found using the dilution approach because they are consistent with 

nutrient remobilization reports of previous studies (Table 1 ). Because of this, they follow 

the same trends reported above for the remobilization of Fe in these waters (also 

determined according to the dilution method). 
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Table 2. Nutrient Remobilization and Viral Parameters during the FeCycle Study. 
Mean bacterial abundance = 1 . 1 7  x 106 mL-1 

Water samples were taken using the ship's surface pump. 

Date Mean n % Elemental remobilization 
(Feb) Burst VMB 

Size *pM **pM **µM **nM **µM 

Fe d-1 
Fe d-

1 
C d-1 

P d-1 
N d-1 

3 24.2 54 15 Nd 1 .6 0.16 1 .33 0.03 
4 23 .7 53 1 8. 1  0.23 Nd Nd Nd Nd 

4 1 8.3 40 16.8 Nd Nd Nd Nd Nd 

5 28.2 27 10.8 Nd Nd Nd Nd Nd 

5 32.3 41 17.4 0.42 3.6 0.35 2.92 0.07 
7 28.8 36 15 0.22 42.5 4. 18  34.79 0.86 
7 2 1 . 1  39 16.4 0.37 70.2 6.92 57.57 1 .43 
7 48. 1 51  22.5 Nd Nd Nd Nd Nd 

7 1 8.7 1 8  15. 1  0.22 Nd Nd Nd Nd 

9 45 35 14.7 0.38 Nd Nd Nd Nd 

9 50. 1 37 1 5.5 0.42 Nd Nd Nd Nd 

1 1  20.9 38 15.9 0.27 1203 .0 1 1 8.5 986 . 1  24.41 
1 1  34.7 2 1  1 1 .5 Nd Nd Nd Nd Nd 

1 1  22.6 53 14.6 0.96 Nd Nd Nd Nd 

VMB = Viral- mediated mortality of bacteria 
Nd = No data 
*Measured by TEM method. N = 5 
* *Measured according to the dilution method. n = 9 
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4. Discussion 

Several interesting observations arise from this data set. The results demonstrate 

that a minor shift in phytoplankton biomass (as inferred from chlorophyll a) occurred 

during observations of the SF6 labeled FeCycle patch of water. This shift was 

accompanied by changes in the dissolved Fe concentration in the upper mixed layer. As 

such, either an internal process released more Fe from the particulate to dissolved phase, 

or an intrusion / mixing event occurred, which introduced water with higher a Fe 

concentration. Secondly, the results demonstrate a lack of agreement between the two 

methods employed to estimate virus productivity. While the methods were in agreement 

during the early observations of the patch, concurrent to the increases in Fe and 

chlorophyll a, these methods produced markedly different results. Taken together, the 

results of this study suggest a potential role for viruses in the shift in production observed 

within this patch, and suggest that rapid changes in system trophic status may not be 

mirrored in the results of the TEM approach used to estimate viral-mediated bacterial 

cell lysis. 

4.1 Increase in chlorophyll a, dissolved iron, and viral activity (by dilution approach) 

As reported above, the dilution approach to estimate virus-mediated cell lysis 

suggested that viral activity resulted in the recycling of up to 75 pM Fe d-1 during the 

latter parts of the survey. This is a substantial amount, when one takes into account that 

the eukaryotic size class's daily demand for iron is 20-70 pM (McKay et al. submitted). 

This magnitude of Fe release is comparable to previous estimates in the subtropical 

southeastern Pacific Ocean (Poorvin et al. 2004). However, due to a limited data set 
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( samples were damaged during shipping) these findings need to be considered cautiously. 

Moreover, it is difficult to determine the cause of the increase in chlorophyll a, viral 

activity ( according to the dilution method), and dissolved iron, although there are three 

possible explanations. The first is that an amount of iron entered the area. Originally, it 

was thought that this may have occurred due to the ship's activity in the study site, but, 

upon further analysis, it was found that the ship would have had to lose 1 1 1  kg of 

dissolved Fe to account for such an increase (KA Hunter, pers.com.). It is more likely 

that the change in iron concentration was due to the entrainment of another water mass, 

which in turn stimulated phytoplankton production. This is a logical assumption, as the 

SF6-labeled patch appeared to shift during the experiments, becoming notably oblong, as 

opposed to the square-shaped area mapped at the onset of the sampling (Figure 6). While 

such movement in water masses made sampling a challenge, it could potentially bring in 

additional amounts of Fe to the area. Previous work has shown phytoplankton 

productivity in this region to be Fe-limited (Boyd et al. 2000). As such, shifts in cellular 

chlorophyll would be anticipated from such an event. Assuming this influenced cell 

abundance, the viral community would respond to the higher host abundance as contact 

rates (the frequency with which a virus contacts a host cell) are directly dependent on 

viral abundance (Murray and Jackson 1992; Wilhelm et al. 1998). Secondary effects, 

such as enhanced DOM release, leading to the stimulation of bacterial abundance and 

subsequent infection may have also occurred. This theory is difficult to verify however, 

as a higher amount of chlorophyll a does not always indicate a larger phytoplankton 

population, the sampling scheme may have missed any statistically significant shift in the 

abundance of a specific virus-sensitive group. 
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Figure 6. Movement of the SF6 Patch during FeCycle from Croot et al. 2005 . 

A second possibility is that the viral community responded to an increase in 

heterotrophic bacteria (which occurred prior to the chlorophyll a increase), resulting in 

the release of iron into the area. Poorvin et al. (2004) demonstrated that iron released by 

viral-mediated cell lysis is bioavailable to other microorganisms, including marine 

phytoplankton. This may have led to the increase in chlorophyll a. The problem with 

this theory is that heterotrophic bacterial populations did not increase significantly 

throughout the study (Figure 3). 

The final possibility is the increase in chlorophy 11 a occurred first, leading to 

heightened viral activity, thus liberating iron. This option is the least likely because in 

this high nutrient, low chlorophy 11 area, iron has been shown as the limiting nutrient 

(Boyd et al. 2000; Gervais et al. 2002; Coale et al. 2004), so it is difficult to say what 
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may have caused the increase chlorophyll a in the area. The first possibility is the most 

probable, when referring to Figure 4. Although it is difficult to accurately discern the 

sequence with which these parameters changed, according to this figure, the increase in 

dissolved iron occurred first, resulting in higher amounts of chlorophyll a, followed by 

heightened viral activity. 

4.2 VMB, burst size and nutrient remobilization 

Due to the time requirements and technical skills required to examine samples by 

transmission electron microscopy (TEM), very few studies include reports of burst size. 

Instead, an assumed burst size, ranging from 25 - 100 (depending on the author) is 

commonly used. In this study, TEM was used to empirically determine burst sizes. Of 

543 infected cells examined during this study, the burst sizes ranged from 5 to 250, with a 

mean burst size of 29.75 virus-like particles (VLPs) produced per lytic event. 

The significance of these TEM results is two fold: first, if an assumed ( and in this case 

lower) estimate of burst size, such as 25 VLPs is used, the results will provide an 

overestimate of cells lysed each day (an average burst size of almost 30 was found in this 

study); and , second, using an assumed burst size of 25 across all samples does not 

account for the variation between samples, such as the 5 to 250 VLPs per lytic event 

observed in this study. 

While the use of TEM is a useful method of determining burst size, the values 

found are likely minimum estimates due to the fact that these infected cells are not 

exactly viewed at the last moment before lysis. With more accurate estimates of burst 

sizes, it is becoming apparent that the use of 25 VLPs for a given sample is not only 
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possibly an underestimate, but fails to address the lack of uniformity within a study area, 

where burst sizes are concerned. 

It is important to point out here that the average burst size did not vary over the 

study area, even when estimates of viral production seemed to increase (using the dilution 

method). Similarly, VMB did not change during the study. While the estimates of VMB 

are consistent with those reported in previous studies (Table 1 ), it was surprising to find 

that these values did not vary. It is possible that the TEM method is not useful for 

tracking the viral response to community changes, as it is expected that an increase in 

trophic production would lead to a rise in viral activity in the study area, and such an 

increase was not detected by this method. This is expected when one considers host 

contact kinetics as given by the following equation: 

(f) C = (2S1t·ro·Dv)V·B 

Where C is the contact rate, S is the Sherwood number (1.06, Wilhelm et al., 1998), ro is 

the diameter of a marine bacterium ( ca 0.45 x 104 cm, Lee and Fuhrman, 1987), Dv is 

viral diffusivity (3.456 x 10-3 cm2 d- 1 , Murray and Jackson, 1992), and V and B are viral 

and bacterial abundance, respectively. Because S, ro, 1t, and Dv are constants, increases 

in bacterial abundance will increase the contact rate between bacteria and viruses. It 

follows that if 30 VLPs are liberated by one lytic event, the contact rate will increase a 

further 30- fold. This would lead to a rapid increase in the rate of host cell infection and 

ultimately to an increase in viral production. Therefore, the increase in viral production 

that is apparent when using the dilution method appears to label this method the more 

accurate of the two. 
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The nutrient remobilization due to viral lysis of bacterial cells (0.16 - 120 µM C, 

1.33 - 986 nM P, and 0.03 - 25 µM N) each day found during this study is impressive. 

Although it is unclear if these nutrients are of use to the bacterial community, there is 

little doubt that viral activity plays an important role in their regeneration. 
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5. Part I Conclusions 

The amounts of Fe, N, C, and P released due to viral lysis in this study provides 

strong evidence in support of the theory that marine bacteriophage play a major role in 

the cycling of nutrients in the Southern Ocean. Furthermore, because iron is released in 

an organically complexed form, it remains bioavailable to the microbial community in 

the area. 

This study provides insight into the intricacies of aquatic microbial food webs, 

while it also offers insight into the utility of the two methods used to study viral 

production. The limited data set suggests that the dilution method is most useful for 

tracking changes in trophic production, as the TEM approach discerned little change in 

virus activity. 
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PART TWO: A MESOSCALE IRON FERTILIZATION IN THE SUBARCTIC 
PACIFIC OCEAN AND ITS EFFECTS ON VIRAL ACTIVITY 
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1. Introduction 

Two iron fertilization experiments in the subarctic Pacific Ocean [SEEDS (Tsuda 

et al. 2003) and SERIES (Boyd et al. 2004)] have demonstrated that the availability of 

elemental iron (Fe) limits primary productivity of the phytoplankton community. Both 

studies reported significant increases in chlorophyll a, coupled with a rise in diatom 

abundance in waters to which Fe was added. The subarctic Pacific Ocean iron 

experiment for ecosystem dynamics study (SEEDS; Tsuda et al. 2003) resulted in a 

nearly 20-fold increase in chlorophyll a, and a bloom that lasted nearly 30 days as seen 

from satellite images. While it is known that this bloom consisted primarily of the centric 

diatom, Chaetoceros deb/is, little else is said about other members of the microbial food 

web, and nothing is reported concerning viral activity following the addition of iron. In 

fact, during the six published iron fertilization experiments, the activity of the virus 

community has been left unstudied. The SOFeX experiment in the Southern Ocean 

(Coale et al. 2004) resulted in an increase in the release of other greenhouse gases, such 

as methane, isoprene, and methyl bromide (Wingenter et al. 2004). These gases are 

thought to have increased with a rise in planktonic activity. It stands to reason that virus­

mediated lysis of these organisms could lead to the release of these gases. 

During the FeCycle experiment, reported in Part One, an increase in virus activity 

was observed during a natural increase in both dissolved iron and chlorophyll a 

concentrations, which seemed to indicate that viruses were acting as feedback when 

primary production was stimulated. These results raise questions as to the response of 

viruses when changes occur in the trophic status of their host. 
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In July and August 2004, a second subarctic Pacific Ocean iron experiment for 

ecosystem dynamics study (SEEDS II) took place at the same location of SEEDS I 

(48.5°N, 1 65°E). As a component of this program, changes in the activity of the virus 

community following the mesoscale iron fertilization were monitored. Moreover, in order 

to follow up on observations from FeCycle concerning the discrepancies in the two 

common techniques used to examine virus activity, samples were processed by both the 

dilution method (Wilhelm et al. 2002) and the TEM method (Binder 1999) to estimate 

virus induced microbial mortality. 
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2. Materials and Methods 

2.1 Study site and sampling 

Samples from the subarctic Pacific Ocean were taken from July 16 to August 5, 

2004 in the area shown in Figure 7 while on board the RV Hakuho Maru using acid 

washed Niskin-X bottles and Kevlar wire. To ensure that a uniform patch of water was 

monitored in the subarctic Pacific, the upper-mixed layer of the water column was 

labeled in a manner analogous to FeCycle with the inert tracer SF6, which was combined 

with iron sulfate (6 to 10 metric tons) dissolved in seawater. Fe additions were made on 

days 1 and 3 of the study. 

2.2 Phytoplankton, bacterial and viral abundance, and bacterial production 

Phytoplankton biomass was inferred from estimates of chlorophyll a 

concentrations, as in Part One with two slight variations. Samples were collected on 0.2 

µm nominal pore-size polycarbonate filters ( 4 7 mm diameter; Millipore) and stored in the 

dark at -20°C until processing. Samples were extracted in 90% acetone for 24 h at 4°C in 

the dark, and quantified using a Turner Designs TD700 fluorometer using the non­

acidification approach (Welschmeyer, 1994). 

Samples for the estimation of the abundance of viruses and bacteria were 

collected from stations both inside and outside the fertilized patch and direct counts were 

completed using the methods described in Part One. Slides for viral abundance 

measurements were, however, prepared while at sea and shipped back to the laboratory 

frozen (-20°C) where they were enumerated. 
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Figure 7. Study Area for SEEDS II Experiment 

Bacterial production rates were measured using Kirchman's (2001) 3H-leucine 

incorporation microcentrifuge method. Briefly, triplicate samples were amended with 20 

µL of a stock solution of 3H-Leucine (173 Ci mmor1
, Perkin Elmer Life Sciences, Inc., 

final concentration of 40 nM) and incubated at in situ temperatures in the dark for one 

hour. Two controls were killed with 100% trichloroacetic acid (TCA) at T = 0. After 

incubation, the live samples received 100% TCA and all samples were treated with 

subsequent washes of 5% TCA and 80% EtOH, with centrifugation and liquid extraction 

between each treatment. After drying overnight, 1 mL of scintillation cocktail was added 

to each tube. A Wallac 1450 Microbeta Trilux scintillation counter was used to measure 

3H-Leu incorporation by the bacteria to provide gross production estimates for all 

samples. Where bacterial carbon production estimates are provided, the conversion 

factor (3.1 kg C mor1 leucine) of Wetzel and Likens (2000) was employed. 
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2.3 Additional viral parameters and tests for significance 

Other measurements of viral activity, including lytic burst size, frequency of 

visibly infected cells (FVIC), viral induced mortality rates (VIM) by TEM and dilution 

methods, viral production and nutrient regeneration rates were conducted using the 

methodology described for the F eCycle study. 

All statistical tests for differences between "in" and "out" stations or before or 

after Fe addition were completed with independent sample t-tests at 95% confidence 

level. Statistical tests for differences between the two methods for measuring viral 

production were conducted by using paired sample t-tests using 95% confidence level. 

Finally, tests for the correlation between viral activity and chlorophyll a concentration 

were completed using Pearson correlation. All statistical tests were conducted using 

SPSS 12.0 software. 
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3. Results 

3.1 Dissolved Fe and chlorophyll a 

Inside the patch, dissolved iron (dFe) concentrations increased from 18 pM before 

fertilization to -- 300 pM by day 4, and increased again after the second addition to 660 

pM by day 8. This rise in dFe was significantly different from measurements taken prior 

to fertilization (p = 0.033). Dissolved Fe then dropped until the end of the experiment. 

The dissolved Fe outside of the patch averaged 89.62 pM and remained significantly 

lower (p = 0.021) than that inside the fertilization area (Figure 8 A). 

Concurrent to the rise in Fe concentration, a substantial increase (p < 0.001) was 

observed in chlorophyll a concentrations from 0.36 µg L- 1 before Fe addition to as high 

as 2.25 µg L- 1 after Fe addition. As was observed for iron, chlorophyll a remained 

significantly lower (p = 0.001) outside the patch than inside (Figure 8 B). The rise in 

chlorophyll a seen in this study was primarily due to an increase in the picoplanktonic 

size class (Tsuda and Suzuki per. com), as opposed to the diatom bloom seen in SEEDS I 

(Tsuda et al. 2003). 

3.2 Bacterial and viral abundance 

The highest bacterial abundance was estimated prior to the addition of Fe in the 

study area [mean = 1.55 (± 0.3) x 106 cells mL-1 ] .  Following Fe fertilization, bacterial 

abundance significantly decreased (p < 0.001) and remained lower than the initial 

abundance [mean = 5.07 (± 1.8) x 105 cells mL-1 ] .  Although initial abundance estimates 

were high, the bacterial abundance found for the remainder of the study were not 

significantly different (p = 0.59) from those outside of the patch prior to day 12. There 
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Figure 8. Dissolv:ed Fe and Chlorophyll a Inside and Outside of the Patch 
during SEEDS II. 

Significant increases can be seen in both dFe (A;p  = 0.033) and chl a (B;p  < 0.001)  
inside the patch following the addition of iron, but not outside. This indicates that the 

study area was in fact iron limited. Dotted lines stand for iron additions. 
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was, however a significant increase (p < 0.001) in bacterial abundance observed on day 

12 inside the iron patch (Figure 9 A). 

Viral abundance was also high [mean = 5.3 (± 0.03) x 10� particles mL-1 ] prior to 

fertilization. After the Fe addition, a slight but insignificant (p = 0.60) decrease was seen, 

but abundance increased significantly (p = 0.003) at the end of sampling. As was 

observed for bacterial abundance, viral abundance inside the Fe patch was not 

substantially different (p = 0.701) from estimates from outside, (Figure 9 B). 

3.3 Viral production measurements 

Viral production, as measured by either method, appears to be weakly correlated 

with changes in chlorophyll a measurements (TEM r = 0.575; dilution r = 0.173; Figure 

10). However, the TEM method gives values [mean = 1.85 (±0.57) x 107 bacterial cells 

lysed L-1 dai1
] that are much lower (-- 10-3) than those found using the dilution method 

[mean = 6.31 (± 2.5) x 109 bacterial cells lysed L-1 daf1
] .  Therefore, the rates estimated 

by these two methods for measuring viral production are significantly different (p < 

0.001). 

Although viral production was not significantly correlated with the increase in 

chlorophyll a, it was seen to significantly increase (dilutionp = 0.001; TEMp = 0.002) 

from 2.58 (± 0.61) x 109 prior to Fe addition to 9.00 (± 2.5) x 109 cells lysed L-1 day-1 by 

the end of the study. Additionally, both methods showed that measurements taken inside 

the Fe patch (after day 5) were significantly different from those taken outside (dilutionp 

= 0.023; TEMp = 0.001). 
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Figure 9. Bacterial and Viral Abundance Inside and Outside the Fe Patch 

during SEEDS II. 
A. Bacterial abundance inside the Fe patch significantly dropped (p < 0.001) with the 
addition of Fe, remained statistically similar (p = 0.59) to measurements outside the 

patch, and significantly increased (p < 0.001) by D 12 in reference to all days prior to this 
following to the Fe addition. B. Virus abundance displays similar trends and begins to 
rise around D 9 with a significant change (p = 0.003) by D 12, compared to the days 

leading up to this after fertilization. N = 3 for all points shown, except where "x" 
indicates n = 2. Dashed lines represent Fe additions. 
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Figure 10. Chlorophyll a and Viral Production [measured by dilution (A) and TEM (B) 
methods] Inside the Fe Patch during SEEDS II. 

Neither method indicates that viral activity is correlated with changes in primary 
production (TEM r = 0.433; dilution r = 0. 1 73). The methods are statistically different (p 

< 0.001), with the dilution method showing values that are 103 higher. Dashed lines 
represent iron additions. 
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3.4 VMB, burst size and nutrient remobilization 

Viral-mediated mortality of bacterial cells estimated using TEM (VMB) did not 

vary greatly inside or outside of the Fe patch (p = 0.921; Tables 3 & 4) and did not 

significantly change upon the addition of Fe (p = 0.251). The percentage of the 

heterotrophic population whose mortality was attributable to virus-mediated lysis was 

7.32% (± 1.33) inside the patch and 7.16% (± 1.53) outside. Burst size followed similar 

trends, where values reflected no significant change after the addition of Fe (p = 0.644) 

and showed little difference inside or out of the patch (p = 0.504) during the study [mean 

= 12.9 (± 2.1) inside; 12.1 (± 0.8) outside]. 

The nutrient remobilization estimates found using the dilution assay, although 

high, are more consistent with values given in previous studies (Table 1) than estimates 

found using the TEM approach. In the waters outside of the Fe patch, viral lysis of 

bacterial cells was responsible for the remobilization of as much as 191. 8 pM Fe, 9. 73 

µM C, 2.00 µM N, and 80.09 nM P (Table 3). In the area to which Fe was added, the 

viral release of 194.8 pM Fe, 11.47 µM C, 2.36 µM N, and 95.45 nM P was estimated on 

day 2, just after the addition of Fe (Table 4). 
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Table 3 .  Nutrient Remobilization and Virus Parameters during the SEEDS II Study 
Outside Fe Patch. 
Water samples were taken using Niskin- X bottles. 

*Fe pM d-1 **Fe pM d-1 Sampling Mean n % **µ.M C **nM P **µ.M 
Day Burst VMB (+/-) (+/-) d-1 d-1 N d-1 

Out of Size 
Patch 

D 02 1 1 .5 20 5.66 0.22 152.5 5.40 44.2 1 . 1 1 
(0.09) (20.9) 

D 05 12.8 22 6.74 0.29 98.7 2.30 19. 1  0.47 
(0.03) (1 1 .7) 

D 1 1 12.9 25 6.97 0. 19 191 .8 9.73 80.9 2.00 
(0.03) (34.8) 

D 1 1 1 1 .4 14 9.27 0.2 1 339.8 20. 12 167.4 4.15 
(0.002) (10&7) 

VMB = viral- mediated bacterial cell lysis 
*Measured by TEM method. 
* *Measured according to the dilution method. 

47 



Table 4. Nutrient Remobilization and Viral Parameters during the SEEDS II Study 
Inside Fe Patch. 
Water samples were taken using Niskin- X bottles. 

Sampling Mean n % Elemental remobilization 
Day Burst VMB 

In Patch Size *pM Fe **pM Fe **p.1M C **nM P **p.1M N 
d-1 d-1 d-1 d-1 d-1 

{+/-} {+/-} 
PS 11.97 31 8.33 0.45 125.7 5.69 47.3 1.17 

(0.03) (2.88) 
PS 15.24 17 7.25 0.34 103.2 5.16 42.9 1.06 

(0.03) (24.1) 
D 02 12.35 23 6.44 0.23 87.6 2.49 20.7 0.51 

(0.02) (53.5) 
D 02 10.7 13 5.53 0.19 194.8 11.5 95.5 2.36 

(0.01) (61.2) 
D 94 10.3 23 6.61 0.27 141.5 7.97 66.3 1.64 

(0.02) (40.4) 
D 05 14 11 10.05 0.37 80.7 4.45 37.6 0.92 

(0.14) (18.1) 
D 08 12.13 31 8.90 0.53 179.1 8.55 71.2 1.76 

(0.13) (66.9) 
D 08 12.54 28 7.67 0.40 105.5 4.34 36.1 0.89 

(0.04) (58.0) 
D 10 16.6 22 6.08 0.30 61.5 2.01 16.7 0.41 

(0.06) (38.8) 
D 12 15.59 17 7.09 0.50 175.8 7.93 66.6 1.63 

�0.05} �42.3} 

VMB = viral- mediated bacterial cell lysis 
*Measured by TEM method. 
* *Measured according to the dilution method. 

48 



4. Discussion 

4.1 Dissolved Fe and chlorophyll a 

After fertilization inside the patch, dissolved Fe predictably increased inside, but 

not outside of the patch. The timing of this increase coincides with the Fe additions on 

days 1 and 3 (Figure 8 A). An increase in particulate chlorophyll a concentration was 

also observed inside, but not outside of the patch (Figure 8 B), suggesting that the 

addition of Fe stimulated primary production. As mentioned, this increase was seen in 

the smallest size class of phytoplankton, the picophytoplankton. In SEEDS I, a 20- fold 

increase in chlorophyll a was reported along with a large bloom of the centric diatom, 

Chaetoceros deblis (Tsuda et al. 2003). However, in SEEDS II, little or no increase was 

observed in the microzooplanktonic size class, which would include this species. In 

comparison to SEEDS I, the magnitude of the chlorophyll a increase seen in SEEDS II 

was much lower ( only 6- fold). The larger phytoplankton size class typically contains 

more chlorophy 11 a per cell than the picophytoplankton that was seen to increase in this 

study. Moreover, given that picoplankton typically have larger Fe:C demands (Wilhelm 

1995) it is anticipated that the net amount of increased production in this group after Fe 

fertilization would be less. 

4.2 Bacterial and viral abundance 

It is difficult to determine the cause of the decrease in bacterial abundance 

following iron fertilization. It is possible that the addition of iron caused this decline. 

However, this argument is not a compelling one, as bacterial abundance outside of the 
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iron patch was not significantly different than that seen inside the patch following this 

addition. It is possible that sampling and/or microscopy errors resulted in these data, but 

this is doubtful as virus abundance also was seemingly high prior to fertilization. Natural 

fluxes in bacterial abundances are known to occur in natural systems (Ducklow and 

Carlson 1992). As previously discussed, when a bacterial population increases, a natural 

rise in viral activity will inevitably follow due to higher host-phage contact rates. This 

will serve to decrease the bacterial abundance, followed by a rise and subsequent drop in 

viral abundance when host populations are lowered. Figure 9 can possibly be explained 

by this phenomenon. 

Perhaps of greater interest is the significant increase in both bacterial and viral 

abundances at day 12. While it is possible that these increases could be caused by the 

trends discussed above, it is also likely that the addition of iron caused the apparent 

heightened microbial activity seen in Figure 9. This is probable when considering the 

sequence of events when trophic activity is stimulated. Figure 8 shows that the 

concentration of chlorophyll a increased with the addition of Fe. The subsequent decay 

of these organisms releases a substantial supply of DOM on which heterotrophic bacteria 

will feed, leading to an increase in bacterial abundance, followed by the expected 

response by the viral community. Therefore, while the addition of iron does not directly 

lead to an increase in bacterial or viral abundance, the secondary effects are increases in 

both, as is apparent in Figure 9. It is important to mention that while these trends may be 

explained by the above, additional sampling after day 12 would be useful for constructing 

a clearer picture of the changes occurring here. 
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4.3 Viral production measurements 

As seen in Figure 10, viral production measured by either the TEM or dilution 

methods is not significantly correlated with changes in phytoplankton biomass. It 

appears highly unlikely that viral activity would not follow community changes, given 

the above discussion of the close ties between communities. In fact, an increase in viral 

activity is seen with each method after the addition of iron, but it is not directly correlated 

with phytoplankton activity. Monitoring these populations for extended periods of time 

following iron addition might lead to results which offer further insight into population 

dynamics here. This is possible because viral activity measured here is of phage 

infecting heterotrophic bacterial populations, which seem to respond to the increased 

DOM released from phytoplankton decay Again, it is expected that viral activity would 

increase with somewhat of a delay after the addition of Fe. This is further verified by the 

fact that viral production was not seen to increase outside of the iron patch. While the 

FeCycle study seemed to indicate that viral activity (measured by the dilution method) 

· follows primary production, it is likely that the limited data set was not sufficient to allow 

for such conclusions. It is also possible that since no amendments were made in the 

FeCycle study, viral activity would not take as long to respond to community fluxes. 

This study again made the lack of agreement between the two methods used to 

measure rates of host cell lysis apparent (Figure 10). The dilution method gives results 

that are 103 higher than those estimated using the TEM method. In order to determine 

which of the methods is more accurate (or perhaps least prone to error), it is appropriate 

to reconsider the parameters of each. The dilution method, which gives results which are 

higher, relies on viral abundance estimates measured over time from a resuspension of 
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cells trapped on a 0.2 µm filter, therefore, the release of viral particles from any cell type 

larger than 0.2 µm diameter will be counted. In contrast, the TEM method only measures 

viral infection of heterotrophic bacteria cells. However, this difference is not substantial 

because the majority of cell types ( other than heterotrophic bacteria) that would be 

resuspended from the filter are probably phototrophs. Since the incubations for this 

experiment are made in the dark, this would likely slow the production of these cells. 

Although it is probable that these phototrophic cells may still lyse at this point, it is also 

likely that incubating these organisms in the dark would hinder their lysis by viruses, as 

the lack of photosynthesis may inhibit the cellular energy exploited by viruses. Possibly 

accounting for a large difference in the results found using the two methods is the fact 

that, even though viral abundances in the resuspensions were greatly reduced due to 

filtering, they were still considerably high, and therefore, difficult to monitor for changes. 

The other measurement required for determining the number of cells lysed each day by 

viral activity using the dilution method is burst size. As mentioned earlier, burst sizes 

were low in this study [mean = 12.9 (± 2.1) inside; 12.1 (± 0.8) outside]. Dividing viral 

production rates, measured by the dilution method, by lower burst sizes, such as those 

reported in this study, yields higher estimates of cells lysed each day. The TEM method 

does not rely on burst size. 

The TEM method, however, is not without its possible caveats. As mentioned 

above, this method only makes it possible to examine heterotrophic cells which are 

infected ( other cell types require thin sectioning), reducing the number of infected cells 

that are visible in a sample. Furthermore, conversion factors are used in order to account 

for the following: the fact that viral particles are only able to be viewed with TEM 
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during the last approximately 10% of the lytic cycle; grazing; and natural mortality (that 

not imposed by viral activity) of bacteria cells. It is possible that the addition of Fe may 

lengthen the lytic cycle, making it more difficult to see changes in the frequency of 

infected cells after fertilization. 

The lytic cycle is a function of viral production, burst size and virus-mediated 

mortality of bacteria, given by the following equation: 

(g) Vprod � TLc-1 • (VMB • BS) 

Where V prod is viral production, TLC is the length of the lytic cycle, VMB is the 

percentage of bacterial mortality attribu�ble to viral lysis, and BS is burst size (Dean et 

al. 2005). Utilizing this equation, it can be concluded that, because there was not a 

significant change in BS or VMB, but an increase was observed in V prod, the lytic cycle 

must have been shortened. This would cause a problem with quantifying the frequency 

of visibly infected cells, while its effects would not be seen when using the dilution 

method, as measurements taken here would not allow for the observation of a lengthening 

in lytic cycles. 

The TEM method is also dependent on bacterial production rates, as it is assumed 

that in a steady state, death equals growth. The problems with this are obvious. After the 

addition of iron, steady state was disrupted, as production (and therefore growth) was 

stimulated. This would lead to an imbalance in the production and loss processes, 

making this calculation unreliable. Also contributing to the discrepancy between the two 

methods is that the bacterial production rates only account for heterotrophic bacteria. 

Again, the dilution method does not discriminate here, leading to higher estimates of viral 

production. 
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As outlined here, the dilution method relies on far fewer possible "loopholes" 

than does the TEM method. The dilution assay is more reliable and less prone to error 

accrued during tedious measurements such as bacterial production and estimating VMB. 

4.4 VMB, burst size and nutrient remobilization 

The nutrient remobilization estimates reported in Tables 3 and 4, with the 

exception of iron, are given using the dilution method, as these values are more similar to 

those in previously reported studies. Estimates found using the TEM method were 

substantially lower. Although the nutrient remobilization approximations made using the 

dilution method are considerably higher than those previously reported they are more in 

support of previous results than those estimated using the TEM method. A possible 

explanation for the higher values reported here is that the burst sizes found during this 

study were very low (mean -13 virus-like particles). This would result in the finding that 

more cells were lysed each day, as the virus production rate is divided by burst size in 

order to calculate cells lysed per day. As mentioned in Part One, previous studies have 

been conducted without estimating burst sizes by TEM, but assuming a burst size of 25 to 

50. This is substantially higher than the mean of 13 reported here. 

As was seen in the FeCycle study, there was not a significant change in burst size 

or VMB during the SEEDS II study. Notable here however, was the significantly lower 

(p < 0.001)  mean burst sizes (-1 3) in this study compared to that of FeCycle (-30). This 

was also the case with VMB estimates, which were 15.7% in FeCycle and 7.32% in this 

study. There are several possible explanations for this trend, but unfortunately none are 

without much speculation. One thought is that increased day length typical of the 
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SEEDS II study area may have contributed to these differences. It was also thought that 

lower host (bacterial) abundance may lead to lower burst size; however, there was not a 

significant difference in bacterial abundance found in these studies. Finally, although 

unconfirmed by previous studies, adding Fe may change the viruses' ability to adhere to 

host cells, reducing rates of infection. Clearly, all that can be offered at this point is 

speculation as to the cause of the differences in viral activity between the two study sites. 
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5. Part II Conclusions 

This study has again confirmed the hypothesis that iron limits primary 

productivity in the subarctic Pacific Ocean. However, there remains much to be 

understood about the intricacies of the microbial communities in HNLC areas and the 

world's oceans in general. Just as in FeCycle, the results of this study show that a 

disconnect exists between the two methods used to measure viral production, but unlike 

the FeCycle study, SEEDS II measurements failed to confirm any significant correlation 

between viral activity and chlorophyll a when production is stimulated. Furthermore, this 

study confirms that viral activity is responsible for the regeneration of substantial 

amounts of nutrients which are organically bound. 
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FINAL SUMMARY AND CONCLUSIONS 
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In this study, several objectives have been accomplished. The activity of viruses 

in HNCL regions was evaluated with respect to rates of host cell lysis, the regeneration of 

nutrients, parameters of infection, such as burst size, and the ability for these activities to 

be tracked through changes in trophic production using two methods by which to 

measure viral production. These parameters were monitored during an iron budget study 

in the Southern Ocean (F eCycle) and before, during, and after a mesoscale iron 

fertilization in the subarctic Pacific Ocean (SEEDS II). 

From these findings, several conclusions can be drawn. The results from the 

Southern Ocean study established that viral lysis of bacterial cells is responsible for the 

regeneration of significant concentrations of nutrients. Of great importance is the fact 

that these nutrients are organically complexed, and, in the case of Fe (Poorvin et al. 2004, 

have been shown to be bioavailable to the nearby microbial community. The FeCycle 

study also revealed the need to further evaluate the two methods used to measure viral 

production, as the dilution method provided results that suggest that the virus community 

follows changes in trophic production, while the TEM method seems to report little or no 

change in virus activity when trophic production is stimulated. 

The findings of FeCycle provided the framework for SEEDS II: the goal was to 

compare two methods used to measure virus production and to further examine the role 

that viruses play in the cycling of nutrients. From this work it was concluded that viruses 

do play a major role in nutrient recycling (especially Fe). This is of obvious importance, 

as this study confirmed Fe to be a limiting nutrient for phytoplankton growth in the 

subarctic Pacific. Additionally, it was concluded that, while virus activity does not 

directly follow changes in primary productivity, viral production does increase as a result 
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of the effects of community changes. With this study, more information was gathered to 

compare the methods used to measure virus production. As reported for F eCycle, a lack 

of agreement remains between the two methods. As a result, it was concluded the 

complexities of the TEM method in particular prevent it form being a useful tool by 

which to track viral activity through changes in system trophic status, leaving the dilution 

assay as the method of choice. 

The conclusions drawn from this study serve several functions. First, they 

highlight the importance of viral activity in HNLC regions in the recycling of nutrients 

and indicate the appropriateness of studying such parameters. Secondly, it becomes 

apparent when examining these results that interpretation of these methods requires 

caution. Finally, the results of this study highlight the complexity of the microbial 

community within HNLC regions and the community's ability to regulate itself through 

the combined activity of each of its members. 

59 



LIST OF REFERENCES 

60 



Az.am, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., and Thingstad, F. 1983. 
The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-
263. 

Bergh, 0., B0rsheim, K.Y., Bratbak, G., and Heldal, M. 1989. High abundance of viruses 
found in aquatic environments. Nature 340:467-468. 

Binder, B. 1999. Reconsidering the relationship between virally induced bacterial 
mortality and frequency of infected cells. Aquatic Microbial Ecology 18:207-215. 

Bishop, J .K., Davis, R.E., and Sherman, J. T. 2002 Robotic observations of dust storm 
enhancement of carbon biomass in the North Pacific Science 298:817-821. 

Boyd, P.W., Law, C.S., Hutchins, D.A., Abraham, E.R., Croot, P., Ellwood, M. Frew, 
R., Hall, J., Handy, S.M., Hare, C., Higgins, J.L., Hill, Hunter, LeBlanc, C., Maldonado, 
M.T., McKay, R.M., Oliver, Pickmere, S., Safi, K., Sanudo-Wilhelmy, S., Strzepek, R.F., 
Tovar-Sanchez, and Wilhelm, S.W. 2005. FeCycle - attempting an iron biogeochemical 
budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Global 
Biogeochemical Cycles (submitted). 

Boyd, P.W., Law, C.S., Wong, C.S., Nojiri, Y., Tsuda, A., Levasseur, M., Takeda, S., 
Rivkin, R., Harrison, P.J., Strzepek, R., Gower, J., McKay, R.M., Abraham, E.R., 
Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford, D., Hale, M., Harada, K., 
Johnson, K., Kiyosawa, H., Kudo, I., Marchetti, A., Miller, W., Needoba, J., Nishioka, J., 
Ogawa, H., Page, J., Robert, M., Saito, H., Sastri, A., Sherry, N., Soutar,T., Sutherland, 
N., Taire, Y., Whitney, F., Wong, S.E., and Yoshimura, T. 2004. The decline and fate of 
an iron-induced subarctic phytoplankton bloom. Nature 428:549-553. 

Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, 
D.C., Bowie, A.R., Buesseler, K.O., Chang, H., Charette, M., Croot, P., Downing, K., 
Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., 
Liddicoat, M., Ling, R., Maldonado, M.T., McKay, R.M., Noddler, S., Pickmere, S., 
Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., 
Waite, A., and Zeldis, J. 2000. A mesoscale phytoplankton bloom in the polar Southern 
Ocean stimulated by iron fertilization. Nature 407 :695-702. 

Brandt, K. and Raben, E. 1992. Zur kenntuiss der chemischen zusammensetzung des 
plankton. Wiss. Meerestuntersuchungen, Kiel 19:177-210. 

Bruland, K.W., Franks, R.P., Knauer, G.A., and Martin, J.H. 1979. Sampling and 
analytical methods for the determination of copper cadmium� zinc and nickel at the 
nanogram per liter level in sea-water. Analytica Chimica Acta 105: 233-245. 

61 



Bwna, A.G., debar, H.J., Nolting, R.F., and van Bennekom, A.J. 1991. Metal enrichment 
experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various 
plankton communities. Limnology and Oceanography 36:1865-1878. 

Chisholm, S.W., and Morel, F.M. 1991. What controls phytoplankton production in the 
nutrient-rich areas of the open sea? Limnology and Oceanography Vol 36, No. 8. 

Coale, K.H. 1991. Effects of iron, manganese, copper, and zinc enrichments on 
productivity and biomass in the subarctic Pacific. Limnology and Oceanography 
36:1851-1864. 

Coale, K.H., Johnson, K.S., Chavez, F.P., Buesseler, K.O., Barber, R.T., Brzezinski, 
M.A., Cochlan, W.P., Millero, F., Falkowski, P.G., Bauer, J.E., Wanninkhof, R.H., 
Kudela, R.M., Altabet, M.A., Bidigare, R.R., Wang, X., Chase, Z., Strutton, P.G., 
Friederich, G.E., Gorbunov, M.Y., Lance, V.P., Hitling, A.K., Hiscock, M.R., Demarest, 
M., Hiscock, W.T., Sullivan, K.F., Tanner, S.J., Gordon, R.M., Hunter, C.N., Elrod, 
V.A., Fitzwater, S.E., Jones, J.L., Tozzi, S., Koblizek, M., Roberts, A.E., Herndon, J., 
Brewster, J., Ladizinski, N., Smith, G., Cooper, D., Timothy, D., Brown, S.L., Selph, 
K.E., Sheridan, C.C., Twining, B.S., and Johnson, Z.I. 2004. Southern Ocean iron 
enrichment experiment: Carbon cycling in high- and low-Si waters. Science 304:408-414. 

Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S.J., Chavez, F.P., 
Ferioli, L., Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., Nightengale, P., Cooper, 
D., Cochlan, W.P., Landry, M.R., Constantinou, J., Rollwagen, G., Transvina, A., and 
Kudela, R. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron 
fertilization experiment in the equatorial Pacific Ocean. Nature 383:495-501. 

Cottrell, M.T. and Suttle, C.A. 1991. Wide-spread occurrence and clonal variation in 
viruses which cause lysis of a cosmopolitan eukaryotic marine phytoplankter Microsomas 
pusilla. Marine Ecology Progressive Series 78:1-9. 

Croot, P.L., Frew, R.D., Sander, S., Hunter, K.A., Elwood, M.J., Abraham, E.R., Law, 
C.S., and Boyd, P.W. 2005. The effects of physical forcing on iron chemistry and 
speciation during the FeCycle experiment in the South West Pacific. Global 
Biogeochemical Cycles (to be submitted). 

Dean A.L., Higgins, J.L., DeBruyn, J.M., Rinta-Kanto, J.M., Bourbonniere, R.A., 
Wilhelm, S.W. 2005. Viral populations in Lake Erie: Abundance, production and 
predicted impacts. Aquatic Ecosystem Health Management in press: 

de Baar, H.W., Bwna, A.G., Nolting, R.F., Cadee, G.C., Jaques, G., and Treguer, P.J. 
1990. On iron limitation of the Southern Ocean: experimental observation in the Weddell 
and Scotia Seas. Marine Ecology Progressive Series 65:105-122. 

62 



DeBruyn, J.M., Leigh-Bell, J.A., McKay, M.L., Bourbonniere, R.A., Wilhelm, S.W., 
2004. Microbial distributions and the impact of phosphorus on bacterial activity in Lake 
Erie. Journal for Great Lakes Research 30: 1 66-1 83 .  

d'Herelle, F .  19 17. Sur un microbe invisible antagonistic des bacilles dysenteriques. 
Comtes Rendus de l.'Academie des Sciences de Paris 1 65 :373-375. 

Duce, R.A., and Tindale, N.W. 1991 .  Atmospheric transport of iron and its deposition in 
the ocean. Limnology and Oceanography 36: 1 71 5- 1726. 

Ducklow, H. W. and Carlson, C.A. 1992. Oceanic Bacterial Production. Advances in 
Microbial Ecology 12 :  1 1 3-1 8 1 .  

Dugdale R.C., Wilkerson F .P. 1998. Silicate regulation of new production in the 
equatorial Pacific upwelling. Nature. 391 : 270-273. 

Epply, R., Renger, E., Venrick, E., and Mullin, M. 1973. A study of plankton dynamics 
and nutrient cycling in the central gyre of the North Pacific Ocean. Limnology and 
Oceanography 1 8:534-55 1 .  

Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P.G. 1998. Primary 
production of the biosphere: integrating terrestrial and oceanic components. Science 
28 1 :237-240. 

Fuhrman, J. A. 1999. Marine Viruses and their biogeochemical and ecological effects. 
Nature 399:54 1 -548. 

Fuhrman, J .A., and Az.am, F. 1982. Thymidine incorporation as a measure of 
heterotrophic bacterial production in marine surface waters: evaluation and field results. 
Marine Biology 66: 1 06-120. 

Fuhrman, J.A. and Nobel, R.T. 1995. Viruses and protists cause similar bacterial 
mortality in coastal water. Limnology and Oceanography 40: 1236-1242. 

Fuhrman, J.A., Sleeter, T.D., Carlson, C.A., and Proctor, L.M. 1989. Dominance of 
bacterial biomass in the Sargasso Sea and its ecological implications. Marine Ecology 
Progressive Series 57:207-217. 

Fukuda, R., Ogawa, H., Nagata, T., and Kioke, I. 1998. Direct determination of carbon 
and nitrogen contents of natural bacterial assemblages in marine environments. Applied 
and Environmental Microbiology 64:3352-3358. 

Geider, R.S. and LaRoche, J. 1994. The role of iron in phytoplankton photosynthesis and 
the potential of iron-limitation of primary production in the sea. Photosynthesis Research 
39:275-301 . 

63 



Gervais, F., Riebesell, U., and Gorbunov, M.Y. 2002. Changes in primary productivity 
and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. 
Limnology and Oceanography 47:1324-1335. 

Gobler, C.J., Hutchins, D.A., Fisher, N.S., Cosper, E.M., and Saiiuder-Wilhelmy, S.A. 
1997. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine 
chrysophyte. Limnology and Oceanography 42:1492-1504. 

Gran, H.H. 1931 On the conditions for the production of phytoplankton in the sea. Rapp. 
Proc. Verb . Cons. Int. Explor. Mer 75:37-46. 

Hart, T .J. 1941. Phytoplankton periodicity in Antarctic surface waters. Discovery Reports 
21 :261-356. 

Harvey, H.W. 1933. On the rate of diatom growth. Journal of the Marine Biological 
Association of the UK 12:253-277. 

Harvey, H.W. 1947. Maganese and the growth of phytoplankton. Journal of the Marine 
Biological Association of the UK 26:562- 519. 

Heldal, M., Norland, S., Fagerbakke, K.M., Thingstad, F., Bratbak,G. 1996. The 
elemental composition of bacteria: a signature of growth conditions? Marine Political 
Bulletin 33:3-9. 

Hennes, K.P. and Simon, M. 1995. Significance ofbacteriophages for controlling 
bacterioplankton growth in a mesotrophic lake. Applied and Environmental Microbiology 
61 :333-340. 

Hirayama, S., Ueda, R., Sugata, K., and Kamiyoshi, H. 1993. Production of proteolytic 
enzyme by bacteriophage from seawater. Bioscience, Biotechnology, and Biochemistry 
57:2166-2167. 

Hobbie, J.E., Daley, R.J., and Jasper, S. 1977. Use ofnuclepore filters for counting 
bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225-
1228. 

Hutchins, D.A. 1995. Iron and the marine phytoplankton community. Progress in 
Phycology Research 11: 1-48. 

Kirchman, D.L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. 
Microbial Ecology 28: 255-271. 

64 



Kirchman, D., 2001. Measuring bacterial biomass production and growth rates from 
leucine incorporation in natural aquatic environments. In: J.H. Paul (Ed.), Methods in 
Microbiology, 30:227-236. Academic Press, San Diego. 

Law, C.S, Watson, A.J., Liddicoat, M.I., and Stanton, T. 1998. Sulphur hexafluoride as a 
tracer of biogeochemical and physical processes in an open-ocean iron fertilization 
experiment. Deep-Sea research II 45:977-994. 

Lee, S., and Fuhrman, J .A. 1987. Relationships between biovolume and biomass of 
naturally derived marine bacterioplankton. Applied and Environmental Microbiology 
53: 1298-1303. 

Martin, J.H. 1990. A new iron age, or a ferric fantasy? U.S. JGOFS News 1 :5-11. 

Martin, J.H., Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S.J., 
Hunter, C.N., Elrod, V.A., Nowicki, J.L., Coley, T.L., Barber, R.T., Lindley, S., Watson, 
A.J., VanScoy, K., Law, C.S., Liddicoat, M.I., Ling, R., Stanton, T., Stockel, J., Collins, 
C., Anderson, A., Bridigare, R., Ondrusek, M., Latasa, M., Millero, F .J ., Lee, K., Yao, 
W., Zhang, F., Swift, R., Yungel, J., Turner, S., Nightengale, P., Hatton, A., Liss, P., and 
Tindale, N. W. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific 
Ocean. Nature 371:23-129. 

Martin, J.H., Gordon, R.M., and Fitzwater, S.E. 1990. Iron in Antarctic waters. Nature 
345:156-158. 

Martin, J.H., Gordon, R.M., and Fitzwater, S.E. 1991. The case for iron. Limnology and 
Oceanography 36: 1793-1802. 

McKay, R.M.L., Wilhelm, S.W., Hall, J., Hutchins, D.A., Mioni, C.E., Al-Rshaidat, 
M.D.D., Porta, D., Boyd, P.W. The impact of phytoplankton on the biogeochemical 
cycling of iron in subantarctic waters southeast of New Zealand: Observations from the 
FeCycle study. Global Biogeochemical Cycles, submitted. 

Menzel, D.W., and Ryther, J.H. 1961. Nutrients limiting the production of phytoplankton 
in the Sargasso Sea, with special reference to iron. Deep Sea Research 7:276-281. 

Middelboe, M., Jorgensen, N.O.G., and Kroer, N. 1996. Effects of viruses on nutrient 
turnover and growth efficiency of marine bacterioplankton. Applied and Environmental 
Microbiology 62: 1991-1997. · ' 

Murray, A. G., and Jackson, G. A. 1992. Viral dynamics: a model of the effects of size, 
shape, motion and abundance of single-celled planktonic organisms and other particles. 
Marine Ecology Progress Series 89:103-116. 

65 



Nobel, R.T., and Furman, J.A. 1998. Use ofSYBR Green I for rapid epifluorescence 
counts of marine viruses and bacteria. Aquatic Microbial Ecology 14:113-118. 

Nobel, R.T., and Steward, G.F. 2001. Estimating viral proliferation in aquatic samples. 
In: J.H. Paul (Ed.), Methods in Microbiology, 30: 67-84. Academic Press, San Diego. 

Price, N.M., Ahner, B.A., and Morel, F.M. 1994. The equatorial Pacific Ocean: grazer­
controled phytoplankton populations in an iron-limited ecosystem. Limnology and 
Oceanography 39:520-534. 

Proctor, L.M., and Fuhrman, J.A. 1990. Viral mortality of marine bacteria and 
cyanobacteria. Nature 343 :60-62. 

Proctor, L.M., Fuhrman, J.A., and Ledbetter, M.C. 1988. Marine bacteriophages and 
bacterial mortality. EOS 69:1111-1112. 

Proctor, L.M., Okubo, A, and Furman, J.A. 1993. Calibrating estimates of page-induced 
mortality in marine bacteria: ultrastructural studies of marine bacteriophage development 
from one-step growth experiments. Microbial Ecology 25: 161-182. 

Poorvin, L., Rinta-Kanto, J.M., Hutchins, D.A., and Wilhelm, S.W. 2004. Viral release of 
iron and its bioavailability to marine plankton. Limnology and Oceanography 49: 1739-
1741. 

Reisser, W., Grein, S., and Krambeck, C. 1993. Extracellular DNA in aquatic ecosystems 
may in part be due to phycovirus activity. Hydrobiologia 252:199-201. 

Roberts, L. 1991. Report nixes "geritol" fix for global warming. Science 253:1490-1491. 

Rue, E.L., and Bruland, K.W. 1995. The complexation of iron (111) by natural organic­
ligands in the central north Pacific as determined by a new competitive ligand 
equilibration absorptive cathodic stripping voltametric method. Marine Chemistry 50: 
117-138. 

Sieburth, J.M., Johnson, P.W., and Hargraves, P.E. 1988. Untrastructure and ecology of 
Aurococcus anophagejferens gen et sv. nov. (Chrysophyceae): the dominant picoplankter 
during a bloom in Narragansett Bay, Rhode Island, summer, 1985. Journal of Phycology. 
24:416-425. 

Simon, M., and Azam, F. 1989. Protein content and protein synthesis rates of planktonic 
marine bacteria. Marine Ecology Progressive Series 51 :201-213. 

Smith, D.C., and Azam, F. 1992. Protein content and protein synthesis rates ofplanktonic 
marine bacteria. Marine Ecology Progressive Series 51 :201-213. 

66 



Steward, G.F., Smith, D.C., and Azam, F. 1 996. Abundance and production of bacteria 
and viruses in the Bering and Chukchi Seas. Marine Ecology Progressive Series 1 3 1  :287-
300. 

Sunda, W.G. and Huntsman, S.A. 1997. Interrelated influence of iron light and cell size 
on marine phytoplankton growth. Nature 390:389-392. 

Suttle, C.A. and Chan, A.M. 1994. Dynamics and distribution of cyanophages and their 
effect on marine Synechococcus spp. Applied and Environmental Microbiology 60:3 167-
3 1 74. 

Suttle, C.A., Chan, A.M., and Cottrell, M.T. 1 990. Infection of phytoplankton by viruses 
and reduction of primary productivity. Nature 347:467-469. 

Swift, D.G. 198 1 .  Vitamin levels in the Gulf of Maine and ecological significance of 
vitamin B12  there. Journal of Marine Research 39:375-403 . 

Thingstad, T.F., Zweifel, U.L., Rassoulzadegan, F. 1998. P limitation of heterotrophic 
bacteria and phytoplankton in the northwest Mediterranean. Limnology and 
Oceanography 43 : 88-94. 

Tortell, P.O., Maldonado, M.T., and Price, M.N. 1996. The role ofheterotrophic bacteria 
in iron-limited ocean ecosystems. Nature 383 :330-332. 

Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y, Kudo, I., Kiyosawa, H., 
Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., 
Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., 
Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., and Saino, T. 2003 . A mesoscale iron 
enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 
300:958-96 1 .  

Twort, F.W. 1 9 1 5. An investigation on the nature of ultra-microscope viruses. Lancet 
2 : 124 1 - 1243 . 

Valentine, A.F., and Chapman, G.B. 1 966. Fine structure and host-virus relationship of a 
marine bacterium and its bacteriophage. Journal of Bacteriology 92: 1535-1 554. 

Weinbauer, M.G. 2004. Ecology ofprokaryotic viruses. FEMS Microbiology Reviews 
28: 127- 1 8 1 . 

Weinbauer, M.G., Fuks, D., Puskoric, S. , and Peduzzi, P. 1 995. Diel, seasonal and depth­
related variability of viruses and dissolved DNA in the Northern Adriatic Sea. Microbial 
Ecology 30:25-41 . 

67 



Weinbauer, M.G. and Hofle, M.G. 1998. Size-specific mortality of lake bacterioplankton 
by natural virus communities. Aquatic Microbial Ecology 15:103-113. 

Weinbauer, M.G. and Peduzzi, P. 1995. Effect of virus-rich high-molecular weight 
concentrations of seawater on the dynamics of dissolved amino acids and carbohydrates. 
Marine Ecology Progressive Series 127:245-253. 

Weinbauer, M.G. and Suttle, C.A. 1996. Potential significance of lysogeny to 
bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. 
Applied and Environmental Microbiology 62: 4374-4380. 

Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of 
chlorophyll b and phenopigments. Limnology and Oceanography 39: 1985-1992. 

Wetzel, R.G., Likens, G.E., 2000. Limnological Analyses, Third Edition. Springer, New 
York. 

Wilhelm, S. W., Brigden, S.M., and Suttle, C.A. 2002. A dilution technique for the direct 
measurement of viral production: a comparison in stratified and tidally mixed coastal 
waters. Microbial Ecology 43:168-173. 

Wilhelm, S.W. and Suttle, C.A. 1999. Viruses and nutrient cycles in the sea. Bioscience 
49:781-788. 

Wilhelm, S.W., and Suttle, C.A. 2000. Viruses as regulators of nutrient cycling in aquatic 
environments. Microbial Biosystems: New Frontiers. Proceedings of the 8th International 
Symposium on Microbial Ecology. Bell, C.R., Brylinsky, M., and Johnson-Green, P. 
(eds). Atlantic Canada Society for Microbial Ecology. Halifax, Canada. 

Wilhelm, S.W., 1995. The ecology of iron-limited cyanobacteria: a review of 
. physiological responses and implications for aquatic systems. Aquatic Microbial Ecology 

9: 295-303. 

Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. 1998. The role of 
sunlight in the removal and repair of viruses in the sea. Limnology and Oceanography 
43 :586-592. 

Wingenter, O.W., Blake, D.R., Blake, NJ., Sive, B.C., and Rowland, F.S. 1999. 
Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales 
determined from hydrocarbon and halocarbon measurements made over the Southern 
Ocean. Journal of Geophysical Research 104:21819-21828. 

Wingenter, O.W., Haase, K.B., Strutton, P., Friederich, G., Meinard, S., Blake, D.R., and 
Rowland, F.S. 2004. Changing concentrations of CO, CH.t, C5H8, CH3Br, CH3I, and 

68 



dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. PNAS 
10 1  :8537-854 1 .  

Wingenter, O.W., Kubo, M.K., Blake, N.J., Smith, T.W., Jr., Blake, N.J. and Rowland, 
F .S. 1996. Hydrocarbon and halocarbon measurements as photochemical and dynamical 
indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during 
Lagrangian flights. Journal of Geophysical Research 1 0 1 :433 1 -4340. 

69 



Vita 

Julie Higgins was born in Nashville, Tennessee on May 18, 1979. She was raised 

in Brentwood and Nashville, Tennessee and attended Oak Hill Elementary School, junior 

high at Franklin Road Academy (Nashville), and graduated with honors from Brentwood 

High School in 1998. In the fall of 1998, she began her undergraduate studies at the 

University of Tennessee, Knoxville. During this time, she was involved in the Sea­

Mester program in Long Key, Florida, where she discovered her love for research. 

After receiving her B.S. in Ecology and Evolutionary Biology in May, 2002, she 

went on to work in Steven Wilhelm's microbial ecology laboratory at the University of 

Tennessee. In the fall of 2002, she took an internship opportunity at Mote Marine 

Laboratory's Center for Shark Research in Sarasota, Florida under the direction of Colin 

Simpfendorfer. After retuning to Knoxville, Julie continued work in Dr. Wilhelm's lab 

and became involved with the FeCycle project. 

In the fall of 2003, Julie enrolled as a Masters candidate in Microbiology with 

Steve Wilhelm as her advisor. She will receive her Master of Science degree in May 

2005. After this, Julie plans to remain with the Wilhelm lab for a brief period before 

seeking a technician position elsewhere, where she hopes to work with microbial 

ecology, harmful algal blooms, or elasmobranch research. 

70 

�9171� , 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2005

	Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters
	Julie Linda Higgins
	Recommended Citation


	tmp.1493054292.pdf.iAU_f

