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Abstract

The unit commitment (UC) problem is a typical application of optimization

techniques in the power generation and operation. Given a planning horizon, the

UC problem is to find an optimal schedule of generating units, including on/off

status and production level of each generating unit at each time period, in order

to minimize operational costs, subject to a series of technical constraints. Because

technical constraints depend on the characteristics of energy systems, the formulations

of the UC problem vary with energy systems. The self-scheduling problem is a variant

of the UC problem for the power generating companies to maximize their profits

in a deregulated energy market. The deterministic self-scheduling UC problem is

known to be polynomial-time solvable using dynamic programming. In this thesis,

a stochastic model for the self-scheduling UC problem is presented and an efficient

dynamic programming algorithm for the deterministic model is extended to solve the

stochastic model. Solutions are compared to those obtained by traditional mixed

integer programming method, in terms of the solution time and solution quality.

Computational results show that the extended algorithm can obtain an optimal

solution faster than Gurobi mixed-integer quadratic solver when solving a stochastic

self-scheduling UC problem with a large number of scenarios. Furthermore, the results

of a simulation experiment show that solutions based on a large number of scenarios

can generate more average revenue or less average loss.
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Chapter 1

Introduction

1.1 Motivation

The energy market has undergone deregulation in the past decades. Briefly speaking,

the generating companies (GENCOs) sell their electricity via auction to retailers,

also known as Independent System Operator (ISO), and then retailers sell the

electricity to customers [20]. Deregulation improves resource utilization and also

increases competition among GENCOs. In auction, GENCOs derive their prices and

bid against others. Hence, price becomes a very important uncertain parameter

when GENCOs decide their production plan in order to maximize their profits.

Optimization techniques have a long history of application in the area of power

generation, operation, and control. The scheduling problem faced by GENCOs for the

maximization of their profit is referred to as stochastic self-scheduling UC problem

with the uncertainty of price.

Moreover, renewable energies such as hydro, solar and wind have been incorpo-

rated into the energy system in order to reduce the green house emissions produced

by fossil fuels. The supply of these renewable resources can be influenced greatly by

natural conditions such as weather which is hard to forecast accurately, thus intensi-

fying the uncertainty of power planning. Both the deregulation of electricity market

1



and the integration of renewable energies have made demand/supply increasingly

unpredictable. The stochastic self-scheduling UC problem proposed in this thesis can

be used as a subproblem to address the UC problem with unknown demand by using

Lagrangian relaxation and decomposing the original multi-unit commitment problem

into subproblems with individual units.

1.2 Mathematical Preliminaries

1.2.1 Integer Programming

Integer Programming (IP) is a type of mathematical programming that requires

decision variables to be positive integers. If only some decision variables are to be

integers, it is referred to as the Mixed Integer Programming (MIP). The function

of integer variables arise in many settings. For example, in the classical knapsack

problem, each item is associated with a binary variable. If an item is put in the

knapsack, its corresponding binary variable value will be 1; otherwise, it will be 0.

In this thesis, in the mixed integer quadratic programming, three types of binary

variables will be associated with the generating unit to formulate the on/off status,

start-up status, and shut-down status. More information about IP and combinatorial

optimization can be found in [19].

A general IP problem can be formulated as

max cTx

s.t.

Ax = b

x ≥ 0, x ∈ Z,

where c ∈ <n, b ∈ <m, A is a m× n matrix.
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As we know, the feasible region of a linear programming (LP) problem is a convex

set. If an LP has an optimal solution, then an optimal solution must be one of the

extreme points of its feasible region. The methods for solving an LP like the Simplex

method can find an optimal solution by searching to improve the solution along the

edges. The feasible region of an IP is comprised of discrete points. IP and MIP are

in the scope of NP-hard, which means that not all or none of IP and MIP problems

can be solved in polynomial time by a known method. General methods for solving

IP and MIP are linear relaxation, branch and bound, and cutting plane. It can also

be solved by decomposition techniques such Bender’s decomposition and heuristic

methods like genetic algorithm. Optimization software such as Gurobi contain all

these algorithms in their solvers. Before a problem is solved, it is usually preprocessed

such as discarding some redundant constraints and deleting variables with fixed values

in order to reduce the size of the problem.

1.2.2 Stochastic Programming

Stochastic Programming (SP) is a framework that deals with the uncertainty of

parameters in the area of optimization. In many situations, we have to make a

decision first before we know what is exactly going to happen and then after the

event is realized, we take make-up actions. For example, a news vendor has to order

papers in the morning but he doesn’t know what the demand of that day will be.

If the demand is larger than what he ordered in the morning, he will have to pay a

penalty for a back order. Otherwise, he will have to pay for a holding cost. In this

thesis, we treat the price of the electricity as an uncertain parameter. The review is

focused on two-stage SP, but both formulations and solution methods of two-stage

SP can be extended to multi-stage SP. More information about SP can be found in

[4].

Uncertain parameters in a problem are formulated as random variables. These

random variables can be continuous or discrete. When the distribution of a random
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variable is discrete, it is represented by a finite number of realizations, also known

as scenarios, with a particular probability associating with each scenario, where the

sum of all probabilities is equal to 1. When the distribution of a random variable is

continuous, SP will take advantage of its probability distribution.

SP formulates problems with different characterizations in different categories.

Based on the way uncertainty is addressed, SP can be classified into expected-value

SP or chance-constrained SP. In this thesis, we adopt the expected-value model

because we will use a finite number of scenarios to formulate the the uncertainty

of the parameter, which is price in this thesis. The idea of expected-value model is to

put the expected value of second-stage objectives of all scenarios into the objective

function.

We solve a SP problem by approximation, transforming it to its deterministic

equivalent problem and solving its deterministic equivalent problem. To implement

it, a finite number of scenarios must be constructed, either based on historical data

or experts’ opinions. Monte Carlo technique is usually used to reduce the size of the

scenario set. The idea is to generate a sample {ξ1, ξ2, · · · , ξN} of N scenarios with

corresponding possibility pi for each scenario i, i = 1, · · · , N . An application of this

method on two-stage SP is illustrated below.

min
x∈<n

cTx+ E[Q(x, ξ)]

s.t. Ax = b

x ≥ 0

where Q(x, ξ) is the optimal value of the second-stage problem.

min
y∈<m

Q(x, ξ) = q(ξ)Ty

s.t. T (ξ)x+Wy = h(ξ)

y ≥ 0

4



Using Monte Carlo sampling method, the expectation function E[Q(x, ξ)] can be

approximated by
i=N∑
i=1

piQ(x, ξi)

In a multi-stage process, we have to add a nonanticipativity constraint to ensure

the effectiveness of scenarios. To illustrate nonanticipativity constraint, let us consider

the scenario tree in Figure 1.1. A scenario is a realization of uncertainties along the

time horizon. So in this tree, each path denotes a scenario and there are three

scenarios in this case. To make scenarios applicable, two conditions must be satisfied:

• The decisions made for scenario 1, 2, 3 at time 0, 1, 2 must be the same.

• The decisions made for scenario 2, 3 at time 3 must be the same.

The above two conditions are called nonanticipativity constraint.

Scenario 1

Scenario 2

Scenario 3

t=0 t=1 t=2 t=3 t=4

Figure 1.1: Scenario Tree

With many scenarios, this problem can become very large. It would be more

efficient to explore the special structure of a SP problem. Its deterministic equivalent

problem can be linear or mixed-integer programming problem. Methods for large-

scale problems such as Lagrangian relaxation and Bender’s decomposition can be

applied.

5



1.2.3 Graph Theory

A graph or network is made up of nodes and arcs connecting its nodes. It can be used

as a media to study many problem solutions such as shortest path, maximum capacity,

and minimum-cost. Natural networks exist in many areas such as transportation,

communication, and manufacturing. Moreover, many problems that do not have

an obvious structure of natural network can be transformed into network problems

and then be solved easily. The self-scheduling UC problem in this thesis will be

transformed into a shortest path problem in the dynamic programming procedure.

Graph Theory studies problems that use networks as their objects. More information

about graph theory can be found in [2].

First of all, a network must be represented and stored in computer storage in

some format (data structure) before we can use it as an object to analyze a problem.

Basically there are two ways: adjacency matrix and adjacency list. Note that a graph

is denoted by G(N,E), where N is the set of all nodes in the graph, and E is the set

of all edges in the graph.

2

3

1 4

2

4

1

1

1

Figure 1.2: Graph Example

In Figure 1.3, the graph is represented as an |N | × |N | matrix (2-dimensional

array). If there is an edge from node i to node j and the weight on the edge is

w, the ijth element of the matrix will be w; otherwise, it is 0. It can be cast in a

straightforward way, but regular solution approaches are not very efficient when the

matrix is sparse.

In Figure 1.4, the graph is represented as an array of single linked list with the

size |N |. The adjacency list of v, ∀v ∈ G, is denoted as Adj[v] in this thesis. In a

6



0 2 4 0

1 2 3 4

0 0 1 1

0 0 0 1

0 0 0 0

1

2

3

4

Figure 1.3: Adjacency Matrix

/2 2 / 3 4

/3 1 / 4 1

4 1 /

/

1

2

3

4

Figure 1.4: Adjacency List

single linked list, there are two types of fields, data and link. Data field stores node

information. Pointer field stores the pointer which points to its next adjacency node.

Double linked list can be used in order to sweep backward. Comparing to single linked

list, double linked list has one more link field that stores a pointer pointing to the

7



previous adjacent node. In general, single linked list is enough to explore a structure

of a network problem. Compared with adjacency matrix, it is harder to implement,

but more space efficient. We adopt this representation in the code.

Sometimes we need to do some transformations on the original network for

computational convenience. For example, in some graphs, there are also weights

on nodes (see Figure 1.5). In this case, the weight of a node must be transferred to

its adjacent edge in order to implement some algorithms such as the shortest-path

algorithm. The weight transformation can be easily done.

Weight of node 1 Weight of node 2

1 2

Figure 1.5: An Example of Graph Transformation

Single-source shortest path problem is a typical application in graph theory.

General algorithms for computing shortest path problems are Dijsktra’s algorithm

and Bellman-Ford algorithm. The time complexity of Dijkstra’s algorithm is

O(|E|+ |N |log|N |) with Fibonacci heap implementation [2], but it cannot deal with a

network with negative edge weight or negative cycle. The time complexity of Bellman-

Ford algorithm is O(|E||N |) [2]. It allows the network to have negative edge weights,

but no negative cycle. There is a special group of graphs called directed acylic graphs

(DAG). The algorithm for computing the shortest path in a DAG can do better. The

idea is that we topologically sort a graph to get a linear representation of a graph

before we compute its shortest path. Topological sorting is to rearrange a graph in

a linear ordering such that every node is processed before all the nodes to which it

points. As an example, Figure 1.7 shows the topological sorting of the graph in Figure

1.6.

The single-source shortest paths in a DAG is solved by Algorithm 1. The

computation procedure for graph in Figure 1.7 is described from Figure 1.8, where

8



a c e h i

b

d f

g

3 2 3 4

2

2

2

8

1

2

Figure 1.6: Graph before Topological Sort

a b c d e hf g2 1 i

2 2

3 2 2

3

4

1

8

Figure 1.7: Graph after Topological Sort

the source node is node a and the number on each node denotes the shortest distance

from node a to that node. The concrete procedure is as follows, where the notation

of node is based on Figure 1.7.

Step 1 Initialize the shortest distance from the source node to itself to be 0 and from

the source node to each other node to be infinity.

Step 2 Compute the shortest distance from node a to its adjacent nodes, which are

node b, c, d. The shortest distance from node a to node b, c, d is updated

from infinity to 2, 3, 2, respectively.

Step 3 Compute the shortest distance to adjacent nodes of node b, c, d, respectively.

For node b, its adjacent node is node c. The distance along the path a− b− c is

2 + 1 = 3, while the current shortest path is 3 along the path a− c. Hence the

shortest path to node c doesn’t have to be updated. For node c, its adjacent

nodes include node e and f . The shortest distance to node e, f is updated from

infinity to 5 and 4 along the path a − c − e and a − c − f , respectively. For

9



node d, its adjacent nodes include node f and g. The distance to node f along

the path a − d − f is 10, while the current shortest distance along the path

a− c− f is 4. So the shortest distance to node f doesn’t have to be updated.

The shortest distance to node g is updated from infinity to 2 + 2 = 4 along the

path a− d− g.

Step 4 Compute the shortest distance to adjacent nodes of node e, f, g, respectively.

For node e, its adjacent node includes node h. The shortest distance to node

h is updated from infinity to 8 along the path a − c − e − h. For node f , its

adjacent node includes node h. The distance along the path a − c − f − h is

6, which is smaller than the current shortest distance. The shortest distance is

updated from 6 to 8. For node g, there is no adjacent node.

Step 5 Compute the shortest distance to adjacent nodes of node h. For node h,

its adjacent node include i. The shortest distance is updated from infinity to

6 + 4 = 10 along the path a− c− f − h− i.

Algorithm 1 Shortest Path Algorithm for DAG

procedure Topological Sort(G)
Mark all nodes in Graph G unvisited
visit v ∈ G and mark v visited
for u ∈ Adj[v] and u is marked unvisited do

visit u and mark u visited
end for

end procedure
dist[] is an array that stores the shortest distance from source s to all nodes
procedure Shortest Path for DAG(G, s)

Topological Sort G
Initialize dist[] = [0, inf, · · · , inf]
for u ∈ Adj[v],∀v ∈ G do

if dist[u] > dist[v] + weight(u, v) then
dist[u] = dist[v] + weight(u, v)

end if
end for

end procedure

10
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(a) Step 1

(b) Step 2

(c) Step 3

(e) Step 5

(d) Step 4

Figure 1.8: Computation of Shortest Path
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1.2.4 Dynamic Programming

Dynamic programing (DP) represents a mathematical framework for computing

solution to modeling problems where information and decisions evolve over time. The

idea behind DP is that we first solve different parts of the problem (subproblems),

then combine the solutions of the subproblems to reach an overall solution. DP is

broadly applied in many settings. A shortest path problem is one of the best known

applications of DP. Moreover, shortest path problems arise in a variety of settings

that do not have natural network structures, based on the fact that many problems

that do not have physical network structure can be represented by networks. Hence,

many applications of dynamic programming can be reduced to finding the shortest (or

longest) path that joins two nodes in a constructed network [43]. More information

can be found in [28].

1.3 Contribution

This thesis extends an efficient DP algorithm [10] that solves the deterministic self-

scheduling problem in polynomial time to deal with uncertain price and compares

it with traditional MIP method both in solution quality and time efficiency. The

numerical results show that the method proposed in this thesis performs better than

the traditional MIP method when solving stochastic self-scheduling UC problems with

a large number of scenarios. Furthermore, the results of the simulation experiment

show that decisions based on more scenarios can yield more profit or less loss in

average. Hence, the work in this thesis caters to the deregulation of energy market

and has economic significance for GENCOs.

What’s more, the proposed approach can also be used to solve the subproblem of a

multiple unit commitment problem with uncertain demand, which can be decomposed

into subproblems for each generating unit after Lagrangian relaxation. The resulting

12



model will help reduce the total production cost and ultimately the consumption of

natural resources in a whole, which have been demonstrated by many references.

The self-scheduling UC problem is a variant of the UC problem , a classical

problem in the power generation, operations, and control. Chapter 2 gives a review

of formulations and solution methods of deterministic unit commitment problems. It

also gives literature review on the stochastic UC problems and the stochastic self-

scheduling UC problems. In Chapter 3, we propose a stochastic model for stochastic

self-scheduling problem, present the DP solving procedure, illustrate computational

experiments comparing DP method and traditional MIP method, and analyze the

computational results. The conclusions and future work can be found in Chapter 4.

13



Chapter 2

Literature Review of Unit

Commitment Problem

Unit commitment (UC) problem is a typical problem in electricity generation and

operation. Given a planning horizon, its purpose is to find an optimal schedule of

generating units, including on/off status and production amount of each generator

at each time instance, in order to minimize operational costs, subject to a series

of operational constraints. Because of the complexity of the nature of electricity

generation procedure, different literature address different aspects of UC problems.

Different emphasis of UC problem will lead to different formulations and probably

different solution techniques. Section 2.1.1 sketches variants of formulations of

UC problem that exist in the literature. Section 2.1.2, 2.2, and 2.3 discuss the

development of solution techniques of deterministic UC problem, stochastic UC

problem, and stochastic self-scheduling UC problem, respectively.

14



2.1 Unit Commitment Problem

2.1.1 Fomulations

The variants of UC problem in the literature are roughly summarized as below

according to the number of units, planning horizon, energy resources, technical

constraints, demand satisfactions, and uncertainty of parameters considered in the

UC problems..

Number of generating units Some literature only consider one generating unit,

referred to as single UC problem [10]. Other literature consider multiple

generating units [23]. In most of the literature, the UC problem considers more

than one generating unit. Because multiple UC problems can be decomposed

into subproblems that only involve one generating unit by some decomposition

techniques such as Lagrangian relaxation and Bender’s decomposition, to be

able to solve single UC problem efficiently will help significantly solve multiple

UC problems efficiently. UC problems usually refer to multiple UC problems in

the literature.

Planning Horizon The planning horizon can range from one day to several years

[29]. Long-term planning, lasting more than two years, emphasizes the study of

the capacity expansion decisions such as the location of new generating units

[18] [46]. Medium-term planning, lasting from one month to two years, results

from long-term planning and generates schedules in smaller time units such

as weekly [13]. Short-term planning, lasting from several hours to one week,

generates schedules in hours [26]. Most literature studied in this thesis focus on

short-term UC problem.

Energy Resources Some literature only consider thermal unit or hydro unit [5] [21]

[8]. Some literature consider hydro-thermal units [11] [30]. And other literature

integrate some renewable energy such as wind and solar [40] [42]. Different

15



resources manifest themselves as different objective function and constraints in

UC problems.

Technical Constraints Technical constraints depend on unit characteristics. Typ-

ical constraints are general capacity limits, minimum up-time, minimum down-

time, maximum ramp-up rate, maximum ramp-down rate, and time-dependent

start-up cost.

Demand Satisfaction In a regulated environment, the generation of electricity

must meet the expected demand, which is referred to as the Security Con-

strained Unit Commitment problem (SCUC) [46]. In deregulated environment,

GENCOs sell power to ISO and ISO is in charge of meeting the demand.

So for GENCOs, they don’t have to meet the demand. Instead the price is

important for maximizing their profits. This is refered to as the Price Based

Unit Commitment problem (PBUC) [16], which is also known as self-scheduling

problem, so described in this thesis.

Uncertainty of Parameters Some literature assume that all parameters in UC

problem are known. Other literature incorporate the uncertainties of some

parameters such as demand and price into the problem formulation and solution.

This part will be elaborated and illustrated in 2.2.

2.1.2 Solution Methods

Mathematically speaking, UC problem is a complex problem. It is very hard to get

an optimal solution. Obviously enumeration can assure us an optimal solution. But

the computational time and space will increase exponentially as the problem size

increases [44]. Solution methods proposed in the literature are listed below.

Mixed Integer Programming It is a rigorous method and can reach a better

solution than other methods. But it is restricted by the size of the problem.

With the advance of computational techniques such as MIP solvers and parallel
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computing, it becomes attractive to solve large-scale UC problem by MIP.

Ostrowski [23] introduces a tight MIP formulation for UC problem by including

a new class of inequalities regarding minimum up- and down-time that tightens

the feasible region, improving the solution quality and computational time.

Aghaei [1] proposes MIP for generalized hydro-thermal self-scheduling problem

consisting of practical constraints such as prohibited zones, and the effectiveness

has been demonstrated by case studies. In [32], a modified branch-and-

bound method is developed, which branches binary variables based on their

difference from bounds, and no decomposition approach is required in the

solving procedure. As the model incorporates more constraints or generating

units, the solution space will become very complex. In many cases, the

combination of decomposition techniques such as Lagrangian relaxation and

Benders decomposition is applied.

Lagrangian and Benders Decomposition The adoption of decomposition tech-

niques is based on the structure of the problem. By exploiting UC problem,

we can easily find one way of decomposition. All constraints express the

characterizations of each individual unit except the demand constraint or some

other reserve requirements. Under this case, Lagrangian relaxation (LR) can

be applied [41]. The bundle constraint or some other hard constraints, such

as the demand constraint, are moved to the objective function associated

with a Lagrangian multiplier, which will cause a penalty by the violation of

bundle constraints. The problem can be decomposed into subproblems for each

individual unit. Given a set of Lagrangian multipliers, we can get a lower

bound to the original problem by solving the subproblems. The dual problem

obtained from LR is easier to solve than the original UC problem, but the

gap between the dual optimal solution and the original optimal solution is a

weakness. However, the computational results in many literature show that

this method converge rapidly and the solution is satisfactory. Discussions in
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the literature also include how to update Lagrangian multipliers, how to solve

the Lagrangian function, which is usually a nondifferential function, and how

to tackle the duality gap. Subgradient method is adopted to handle the dual

of a subproblem in [3]. Lauer [15] tackled the duality gap problem using a

constrained Netwon’s method. Virmani [41] illustrates the practical aspects of

LR for solving thermal UC problem. Frangioni [11] uses LR method to solve

large-scale hydro-thermal UC problem with ramp constraints on thermal units.

Finardi [9] presented a comparative analysis of dual problems based on LR in

the hydro UC.

Another decomposition technique commonly used in large-scale UC problems

in recent years is Benders decomposition (BD) [22]. In BD, the original

problem is reformulated into a relaxed master problem and a set of subproblems.

By decomposing UC problem, the relaxed master problem only involves

integer variables which model the unit’s on/off status, while subproblems

involve continuous variables which model the generating level. The relaxed

master problem and suproblems interact iteratively until an optimal solution is

found. Because the relaxed subproblem only includes a subset of constraints,

subproblems are solved to examine the optimal solution of the relaxed master

problem and to find if any constraint is violated. There are two types of

constraints added. One is called feasibility cut, while the other is called

optimality cut. In each iteration, if suproblems are feasible, the relaxed master

problem with less constraints provides a lower bound to the original problem,

while the upper bound of original problem is obtained by calculating a new

objective function using solutions of that relaxed master problem. Finally the

upper bound and lower bound will converge, and the optimal solution of the

original problem is obtained. The application of BD in UC has been discussed

recently. Shahidehopour [33] reviews the application of BD in power system. A
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BD method is extended for two-stage SCUC in [17]. And an improved scheme

of DB is proposed for network-constrained UC in [45].

Dynamic Programming DP is not efficient to solve UC problem independently

because of the curse of the high dimensionality in UC. It is usually applied

with other methods. Hobbs [14] combined priority list with DP. Nowadays, it

is mostly used to solve subproblems disaggregated by decomposition techniques

such as Lagrangian relaxation, where the subproblem only deals with a single

generating unit. Fan [7] proposed an efficient DP algorithm for UC problem

considering ramp constraints and time-dependent start-up cost with a piecewise

linear function describing production cost. The production cost function is

extended to an arbitrary convex function in [10].

Heuristic methods Because of the complexity of UC problem, heuristic methods

such as priority list [37] and genetic algorithm [6] have been applied in solving a

UC problem. The main drawback of this type of method is that an optimal

solution is not guaranteed. Because no heuristic method is involved with

this thesis, the application of heuristics in UC problems will not be discussed

extensively here.

Summaries of optimization methods applied in UC problem can be found in

[31][24][25][47][22].

2.2 Stochastic Unit Commitment Problem

Electric load, or demand, fluctuates over time. For example, on a typical day, the load

requirement during the daytime is usually bigger than that at later night. And the

transformation of energy market from regulation to deregulation has increased the

uncertainty of energy system. More and literature in UC problems include uncertainty

of parameters in the model. With the advance of computation techniques, many

researchers made contributions to formulating and solving stochastic UC problem.
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In 1996, Takriti, Birge, and Long [38] incorporated the uncertainty of demand

in the UC problem. This is the first paper that has incorporated the uncertainty in

the unit commitment problem. The uncertainty was modeled by a finite number of

scenarios, and each scenario is associated with a corresponding probability. Please

refer to Figure 1.1 in Section 1.2.2 Stochastic Programming for more details. The

Lagrangian relaxation technique was then applied and the problem was decomposed

into suproblems of each generating unit. The DP method was used to solve the

subproblem. In 2012, Shiina [34] used the same method, the combination of

Lagrangian relaxation and DP method, to solve the UC problem with uncertain

demand, but developed an algorithm that combined the lambda iteration and golden

section to update dual multiplier method. The formulation and solution procedure

in this paper is presented as follows. Notations and decision variables used in the

formulation are below.

Notations:

T Number of time periods.

I Number of generating units.

S Number of scenarios of demand.

dst Demand at time t under scenario s

P Feasible region constructed by minimum up-time, minimum down-time, capac-

ity, and bundle constraints.

Decision Variables:

uit uit = 1, if the unit i is on at time t; otherwise, uit = 0.

xsit The generating amount of the unit i at time t under scenario s.
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The formulation of the stochastic UC problem is presented below.

min
xs
it,uit

S∑
s=1

ps

T∑
t=1

I∑
i=1

{fi(xsit)uit + gi(ui,t−1, uit)} (2.1)

s.t.
I∑

i=1

xsit ≥ dst , t = 1, · · · , T, s = 1, · · · , S (2.2)

uit, x
s
it ∈ P (2.3)

where fi(x
s
it)uit is a fuel cost function, a convex quadratic function of xsit, and

gi(ui,t−1, uit) is a start-up cost function. Let λst(≥ 0) be Lagrange multipliers

associated with the demand constraints 2.2. The Lagrangian Relaxation Problem

is as follows.

L(λ) = min
xs
it,uit

S∑
s=1

ps

T∑
t=1

I∑
i=1

{fi(xsit)uit + gi(ui,t−1, uit)} −
S∑

s=1

T∑
t=1

λst(
I∑

i=1

xsit − dst)

(2.4)

s.t.uit, x
s
it ∈ P (2.5)

The objective function 2.4 can be written as follows.

L(λ) = min
I∑

i=1

T∑
t=1

S∑
s=1

[ps{fi(xsit)uit} − λstxsit] +
I∑

i=1

T∑
t=1

gi(ui,t−1, uit) +
S∑

s=1

T∑
t=1

λstd
s
t

(2.6)

In 2.6, the term
∑S

s=1

∑T
t=1 λ

s
td

s
t is a constant. So the problem after Lagrangian

relaxation can be decomposed into subproblems for each generating unit. And then

the problem is solved by DP procedure on the scenario tree. The production level xsit

is obtained first by solving the below problem.

min
xs
it

∑
s′′∈B(s,t)

ps′′{fi(xsit)} − λstxsit (2.7)

s.t. capacity constraint (2.8)
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And then on/off status uit are determined by the calculation of DP, which is

done by the a series of recursive equations. When solving DP problem by recursive

equations, the curse of high dimensionality of DP cannot be avoided. Frangioni

[10] presented an efficient dynamic programming (DP) algorithm for solving single

deterministic UC problem with ramp constraints and arbitrary convex cost function.

That algorithm is one of the most efficient ways of solving this kind of problem. We

extended that algorithm to solve the subproblems for each generating unit under the

uncertain price. Basically the definitions of stage and state are different. In [38]

and [34], each time instance in the planning horizon is a stage, and the number of

potential states of a stage is dependent on minimum up-time and down-time. For

example, there are 24 time periods in the planning horizon, and the minimum up-

and down-time is 6, 4, respectively. Based on the DP method in these papers, there

are 24 stages and each stage has 10 potential states. A recursive equation is then

defined to solve this problem. However, the stage of the DP method presented in

this thesis is a valid up-time interval that satisfies minimum-up time. So there is

only one state at each stage, which is ”on” during that time interval. It is easier to

implement and more efficient, because the problem is transformed to compute the

shortest path in a directed acyclic network, avoiding the curse of high dimensionality

of DP . The stage of the DP method presented in this thesis is a valid up-time interval

that satisfies minimum-up time. So there is only one state at each stage, which is ”on”

during that time interval. It is easier to implement and more efficient, because the

problem is transformed to compute the shortest path in a directed acyclic network,

avoiding the curse of high dimensionality of DP .

In addition to the deregulation of energy market, as the renewable resources

are integrated into the generating systems, the uncertainty of electricity generating

system has been more broadly considered. The availability of renewable resources such

as wind and solar is controlled by weather conditions to a significant extent. Wang

[42] and Tuohy [40] studied wind power forecasting uncertainty and demonstrated the

effectiveness of stochastic modeling in incorporating wind power.
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A detailed literature review for large-scale unit commitment under uncertainty

can be found in [22].

2.3 Stochastic Self-scheduling Problem

As mentioned earlier, the self-scheduling UC problem is a variant of UC problems.

The main difference between self-scheduling problem and UC problem is that self-

scheduling problem is to find an optimal schedule at the standpoint of the GENCOs

in order to maximize their profits [27]. In deregulated environment, the GENCOs

decide generating schedules by themselves, which is what the self-scheduling means.

In addition to constraints in UC problems, self-scheduling problem may also consider

the interaction between GENCO and the rest of the system and include conditions

particular to a GENCO, such as risk management and bilateral agreements, which

makes the model very complex , but it is reasonable to only consider the simplest

case by assuming that the GENCO is the price taker when GENCO is small and

its behavior doesn’t influence the market price [29]. In many literature [36] [12],

self-scheduling problem is used by a GENCO that may own one or more generating

units. In this thesis, under the assumption that GENCO is the price taker and the

restriction of one generating unit, we present a stochastic model for self-scheduling

problem, considering the fact of auction when GENCOs sell electricity to ISO, which

makes price uncertain.

2.4 Review Summary

UC problem is to find an optimal production schedule of available generating units

subject to a series of operational constraints. Because of varieties of characterizations

of electricity system worldwide, UC problem is not a well-defined problem. People

incorporate different considerations in the formulation of UC problem in different

situations. Among all variants, the self-scheduling UC problem is one that addresses
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the profit of GENCOs. The elements considered in the model in this thesis is listed

in Table 2.1.

Table 2.1: Elements considered in the Model

No. of Unit Planning Horizon Energy Resources Technical Constraints Demand Satisfaction Uncertain Parameter
1 Short-term Thermal General Capacity No Price

Minimum up-time
Minimum down-time
Maximum ramp-up rate
Maximum ramp-down rate
Time dependent start-up cost

The complexity of operational restrictions leads UC problem to a large-scale

and non-convex problem. Driven by the real-time operation and economic interest,

many researchers have devoted to solving UC problem faster. The optimization

techniques have been broadly used to tackle UC problem, especially methods for large-

scale problems, such as mixed integer programming, Lagrangian relaxation, Bender’s

decomposition, and heuristics.

The incorporation of uncertainty in the model makes the size of the problem

much larger. Researchers usually use a finite number of scenarios to formulate the

uncertainty of such elements as demand and price in the model. The literature

shows that Lagrangian relaxation is a popular way of solving the problem. The

hard constraints such as demand and nonanticitipativity constraints are moved to

the objective and then the dual problem can be decomposed by generating units.

Furthermore, the DP method is a favorable way of solving the subproblem for each

generating unit resulting from relaxation and decomposition. We present a different

DP procedure to solve such a subproblem, which transforms to compute a shortest

path in a directed acyclic network, avoiding the curse of high dimensionality, which

may result from the DP methods that are used in papers that solve stochastic UC

problems.
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Chapter 3

Problem Solving

3.1 Problem Formulation

The stochastic self-scheduling UC problem in this thesis is described as follows. A

thermal generating unit is given. We want to generate an optimal schedule in planning

horizon T in order to maximize the profit resulted from selling generated electricity.

The characterization of the unit is that it has maximum output level P̂ and minimum

output level P , which is its capacity. There are two types of cost associated with the

electricity generation process. One is generation cost, while the other is start-up cost.

The generating cost is formulated by a quadratic function in production level. The

start-up cost depends on how long the unit has been off before it is turned on. The

start-up cost is formulated by a piece-wise constant function. When the down-time

periods surpass the cold-start moment T̂C, it will be cold start-up cost C; otherwise,

it is warm start-up cost W (see Figure 3.1). The revenue function is the product of

production level and unit price. The price r is uncertain and treated as a discrete

random variable. It can be represented by a set of scenarios S with a corresponding

probability. The price in scenario s at time t is denoted by rst , where s ∈ S, t ∈ T .

During the time periods when the unit is on, beside the capacity restriction, because

of mechanical inertia, the maximum increase from a time instant to the next cannot
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exceed the maximum ramp-up rate R̂U , and the maximum decrease from a time

instant to the next cannot exceed the maximum ramp-down rate R̂D. At the time

instant when the generating unit is turned on, the maximum start-up output level is

ŜU at that time instant. At the time instant when the generating unit is turned off,

the maximum shut-down output level is ŜD at that time instant. Because mechanical

restrictions, the unit can only be turned on at least after a minimum down-time period

D̂T once it is turned off, and the unit can only be turned off at least after a minimum

up-time ÛT once it is turned on. Assume that the unit is available over the whole

planning horizon. The objective is to find an optimal schedule that maximizes the

profit of selling electricity generated by the unit. The schedule should include not

only the on/off decisions of the unit at each time instant but also the production level

of the unit at time periods when the unit is on.

Start-up Cost

C

W

Cold Start-up Moment
Down-time

Figure 3.1: Start-up Cost
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3.2 Scenario Generation

As it is mentioned in Section 3.1, the uncertainty of price is formulated by a finite

number of scenarios. Scenarios are generated based on a scenario tree with a given

initial price, where the price at the next time instant can go up or down by a certain

percentage (e.g. 10%) with the same probability. The implementation is listed below.

We first use the random number generator rand() to generate a random matrix with

entries 0 or 1. If a[i][j] is 0, the price will go down by 10%. If a[i][j] is 1, the price will

go up by 10%.

i n t a [ Scenar io ] [ Time ] ; // Dec lare random matrix

i n t r [ Scenar io ] [ Time ] ; // Dec lare p r i c e matrix

srand ( 1 ) ; // Change seed o f random number genera to r

f o r ( i n t i =0; i < Scenar io ; i++)

f o r ( i n t j =0; j < Time ; j++)

a [ i ] [ j ] = rand ( ) % 2 ; // Generate 0 or 1

f o r ( i n t i = 0 ; i < Scenar io ; i++)

r [ i ] [ 0 ] = 104 ;

f o r ( i n t i =0; i < Scenar io ; i++)

f o r ( i n t j =1; j < Time ; j++)

r [ i ] [ j ] = r [ i ] [ j −1] − 0 .1∗ r [ i ] [ j −1] + 0.2∗ a [ i ] [ j ]∗ r [ i ] [ j −1] ;

In this case, the probability of each scenario πs = 1
|S| , s ∈ S.

3.3 Mixed Integer Quadratic Programming Pro-

cedure

As known, a good formulation is indispensable for solving a problem successfully and

efficiently. Ostrowski [23] presented a tight MIP formulation for the UC problem,

which is one of the most computationally efficient formulations. It is not only used
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for UC problem but also used for self-scheduling problem. To formulate the stochastic

self-scheduling problem in this thesis, we also adopt three binary variables to model

the status of the unit same as those presented in [23].

Decision Variables Four decision variables are introduced:

pst Electricity level produced at time t in scenario s, t ∈ T, s ∈ S.

ct Start-up cost of the unit at time t, t ∈ T .

vt On/off status of the unit at time t, t ∈ T . If the unit is on at time t, vt =

1; otherwise, vt = 0.

yt Start-up status of the unit at time t, t ∈ T . If the unit is turned on at

time t, yt = 1; otherwise, yt = 0.

zt Shutdown status of the unit at time t, t ∈ T . If the unit is turned off at

time t, zt = 1; otherwise, zt = 0.

Based on the problem statement in Section 3.1, we come up with the following

mathematical model. The illustration of this model is also presented as follows.

max
pst ,ct,vt,yt,zt

∑
s∈S

πs
∑
t∈T

[rstp
s
t − ct − c(pst)] (3.1)

s.t. (3.2)

ct ≥ Cyt −
∑

t
i=t−T̂C+1,i≥1(C −W )zi, ∀t ∈ T (3.3)∑

t
i=t−UT+1,i≥1yi ≤ vt, ∀t ∈ T (3.4)

vt +
∑

t
i=t−DT+1,i≥1zi ≤ 1, ∀t ∈ T (3.5)

Pvt ≤ pst ≤ P̂ vt, ∀t ∈ T ∀s ∈ S (3.6)

pst+1 ≤ pst + R̂Uvt + ŜUyt+1, t ∈ [1, |T | − 1] ∀s ∈ S (3.7)

pst ≤ pst+1 + R̂Dvt+1 + ŜDzt+1, t ∈ [1, |T | − 1] ∀s ∈ S (3.8)

vt − vt+1 + yt+1 − zt+1 = 0, t ∈ [1, |T | − 1] (3.9)

B(s1, t) = B(s2, t)⇒ ps1t = ps2t , ∀(s1, s2) ∈ S2 ∀t ∈ T (3.10)
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Objective Function The revenue is denoted by rstp
s
t . When the unit is turned on, it

causes start-up cost ct, which is constrained in 3.3. As long as the unit is in the

committed status, it generates a generating cost c(pst). The generation cost in

the objective is the expected value of all scenarios since the price is formulated

by a finite number of scenarios. The objective is to maximize the profit.

Start-up Cost Constraint Constraint 3.3 models the start-up cost presented in

Figure 3.1. If the down-time surpass T̂C, the start-up cost is cold start-up cost

C when the unit is turned on; otherwise, the start-up cost is warm start-up cost

W .

Minimum up- and down-time Constraints Constraint 3.4 models minimum up-

time. If the the unit is turned on at time instant t, it must remain committed

until t + ÛT − 1. Constraint 3.5 model minimum down-time. If the unit is

turned off at time instant t, it must remain uncommitted until t + D̂T − 1.

Note that these constraints must be restricted by the logical constraint 3.9.

Capacity Constraint Constraint 3.6 expresses the maximum and minimum output

the unit can generate when it is committed.

Ramping Constraints Constraint 3.7 and 3.8 illustrate maximum ramp-up rate,

maximum ramp-down rate, maximum start-up rate, and maximum shut-down

rate. If the unit is committed at time instant t and t+1 and the the production

level at time t is p, then the production level at time t + 1 should fall in [p +

R̂U, p − R̂D]. If the unit is uncommitted at time t and eligibly turned on at

time t + 1, the production level at time t + 1 should be no more than ŜU . If

the unit is committed at time t and eligibly turned down at time t + 1, the

production level at time t should be no more than ŜD.

Logical Constraint Constraint 3.9 formulates the relationship among three binary

variables. This ensures yt and zt to take appropriate values when the unit

changes its status, either turned on or turned off.
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Nonanticipativity Constraint Since the uncertainty of price is represented by a

set of scenarios, constraint 3.10 is included to make scenarios applicable. If

two scenarios s1 and s2 are indistinguishiable at time t, then the decision made

for these two scenarios must be the same at time t, namely ps1t = ps2t in this

problem, where t ∈ T and s1, s2 ∈ S.

3.4 Dynamic Programming Procedure

The basic idea of DP method is to construct nodes and arcs of a network based on

minimum up-time UT and minimum down-time DT and add costs and profits as

weights of nodes or arcs. Every path from the source to the sink will be a feasible

solution to the problem, the objective is to minimize the cost. After the network

is constructed, this problem is reduced to compute the shortest path on a directed

acyclic network. The detailed procedure is presented below with a flow chart of the

extended algorithm in Figure 3.2.

1. Node Construction

(a) Find all time intervals that satisfy the minimum up-time constraint and

represent them by nodes. So each qualified on-time interval is denoted

by a node. Moreover, add a source node s and a sink node d. The time

interval [a, b] denoted by each node means that the unit is turned on at

time instant a, and turned off at time instant b. Note that the unit is

uncommitted at time instant a− 1 and b+ 1, where a, b ∈ T, a ≤ b.

(b) Find time instances t satisfying t + UT > T and represent time

intervals [t, T ] as nodes. For example, given T = 24, UT , time intervals

[14, 24], [15, 24], [16, 24], [17, 24], [18, 24], [19, 24], [20, 24], [21, 24], [22, 24], [23, 24]

are also eligible.

(c) Add corresponding weights to nodes. For each node denoting time interval

[a, b], its weight represents the minimal cost generated by the unit in that
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Number of planning 
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interval and assign its optimal 

value to node’s weight

Add arcs satisfying minimum 

down-time and assign 

corresponding start-up cost to 

arc’s weight 

Add arcs from every other node 

to source node and to sink node 

and their corresponding weight

Topological sort

Search for the shortest path

Shortest path and its 

value

End

Figure 3.2: Flow Chart of Dynamic Programming Procedure
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time interval, which can be obtained by solving the economic dispatch

(ED) problem. The ED problem for time interval [a, b] is formulated as

follows.

min
∑
s∈S

πs
∑
t∈T

[c(pst)− rstpst ] (3.11)

s.t. (3.12)

P ≤ pst ≤ P̂ , t ∈ [a, b] ∀s ∈ S (3.13)

pst+1 ≤ pst + R̂U, t ∈ [a, b− 1] ∀s ∈ S (3.14)

pst ≤ pst+1 + R̂D, t ∈ [a, b− 1] ∀s ∈ S (3.15)

psa ≤ ŜU, ∀s ∈ S (3.16)

psb ≤ ŜD, ∀s ∈ S (3.17)

B(s1, t) = B(s2, t)⇒ ps1t = ps2t , t ∈ [a, b] ∀(s1, s2) ∈ S2 (3.18)

Notice the difference between ED and UC problem. ED problem only

decides the production level given a time interval when the unit is known

for sure to be committed. UC problem not only decides the production

level but also the on/off status of the unit at each time instance over a

planning horizon.

2. Arc Construction

(a) Add arcs between nodes where the minimum down-time is satisfied. For

example, an arc is added from node [a, b] to node [c, d], if c− b+ 1 ≥ D̂T .

(b) Add corresponding weight to arcs added above. Each arc is associated

with start-up cost caused by turning on the unit at time instant t. The

start-up cost depends on how long it has been uncommitted before it is

turned on. For example, the unit is turned off at time instant b before it

is turned on at time t, the start-up cost is C when t− b ≥ T̂C; otherwise,

the start-up cost is W .
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(c) Add arcs from the source node s to every other node and arcs’ correspond-

ing weights, either corresponding time-dependent start-up cost or zero cost,

depending on the time periods when the unit has been uncommitted before

it is turned on. Take the arc from s to [a, b] as the example. The start-up

cost is C when a ≥ T̂C; otherwise, the start-up cost is W .

(d) Add arcs from every other node to the sink node d with zero weight.

(e) Transform the weights of nodes to their adjacent arcs.

3. Shortest-path Computation

Every s− d path in the network represents a feasible solution. And the cost of

the path is the negative objective value of 3.1. Note that the minimal cost is

equal to the maximal profit. The network is traversed in its topological order

when searching the shortest path. The shortest path algorithm for directed

acyclic graph is adopted in the code.

4. A Concrete Example of Network Construction

Assume T = 6, UT = 3, DT = 1, T̂C = 3. The resulting graph is in Figure

3.3.

(a) Node Construction

Based on UT , we represent valid up-time intervals as nodes. Notice that

[4,5] doesn’t satisfy the minimum up-time but is also eligible. And then we

add a source and sink node. The weights of these nodes can be obtained

by solving corresponding ED problems.

(b) Arc Construction

Based on DT , we can add an arc from [0,2] to [4,5]. We also need to add

an arc from the source to every other node, and from every other node to

the sink. Because T̂C = 3, the weight on the arc from the source to [4,5]

is the cold start-up cost, and the weights on the arcs from the source to
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Figure 3.3: A Concrete Example of Network Construction

other nodes are the warm start-up cost. And the weight on the arcs from

every other node to the sink are 0s. .

3.5 Computational Experiments

To test the solution time and solution quality of the proposed method, we design two

experiments. The design of experiments and analysis of results of experiments are

presented below. All experiments are solved with Gurobi 5.6.0 on a server with 2

octacore xeon processors with 256gb of ram. The code is compiled with g++ version

4.7.2.

To test the time efficiency of proposed DP method, we do the following experiment.
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• Solve 10-scenario, 100-scenario, and 1000-scenario problems each under 24, 48,

72 time periods, using two methods presented in the thesis. Compute each

instance 10 times by changing initial price and seed. The initial price for each

instance is given in Appendix. Given an initial price, the instance is computed

two times using seed 1 and 2. The parameter values set-up is listed in Table

3.1. The initial price for each instance is listed in Table 3.2.

Table 3.1: Parameter Values

DT Minimum down-time 6
UT Minimum up-time 12

P̂ Maximum power output of a unit 250
P Minimum power output of a unit 100

R̂D Maximum ramp-down rate of a unit 15

R̂U Maximum ramp-up rate of a unit 15

ŜU Maximum shutdown rate of a unit 100

ŜD Maximum startup rate of a unit 100
C Cold start-up cost 40
W Warm start-up cost 20

T̂C Cold start hours 3

Table 3.2: Initial Price

Periods Scenarios Initial Price

24 10 90, 100, 110, 150, 200

24 100 90, 100, 113, 115, 150

24 1000 90, 100, 113, 150, 200

48 10 90, 100, 110, 150, 200

48 100 90, 100, 110, 150, 200

48 1000 90, 100, 110, 150, 200

72 10 90, 100, 110, 150, 200

72 100 90, 100, 110, 150, 200

72 1000 90, 118, 120, 150, 200
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The comparison of computational results of those two methods is presented in

Table 3.3(in seconds).

Table 3.3: Computational Results of the DP vs. Gurobi solver

Instance DP Gurobi
Periods Scenarios time std. dev. Gap(%) time std.dev. Gap(%)

24 10 0.92 0.05 0 0.67 0.25 0
100 4.92 0.08 0 6.78 1.23 0
1000 156.654 2.22 0 1424.86 159.76 0

48 10 5.32 0.11 0 2.38 0.74 0
100 42.53 1.91 0 41.98 34.52 0
1000 1185.993 20.82 0 4200 [0,1253.94]

72 10 20.74 1.81 0 9.758 10.52 0
100 155.45 8.77 0 529.387 384.12 0
1000 3818.05 19.23 0 4200 [3.75,1194.40]

From Table 3.3, we can see that for 1000-scenario problems, DP method is more

efficient than Gurobi MIQP solver both in solution time and solution quality, because

Gurobi MIQP solver cannot always give an optimal solution within time limit, as

shown in the column gap, representing the gap from the current solution to the

optimal solution. We can also notice that for 10-scenario problems, the average

solution time of the Gurobi MIQP solver is smaller than that of DP method, while

for 100-scenario problems, the average solution time of DP method is mostly better

than that of Gurobi MIQP solver. However, the standard deviation of solution

time of Gurobi MIQP solver is rather large, as well as the gap range when using

Gurobi MIQP solver to solve 1000-scenario problems under 48 and 72 hours. That

means Gurobi MIQP solver solves some instances relatively quickly, while it solves

other instances rather slowly, mainly depending on optimal solution situations of

the problem. Gurobi solves the problems with the optimal solution that keeps the

generating unit committed over the whole planning horizon much faster than solving

problems with other optimal solution situations and also solves the problems with the

optimal solution that keeps the generating unit uncommitted over the whole planning
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horizon faster in some situations (Gurobi converges very slowly in some problems with

the latter kind of optimal solution), which results in the big standard deviation and

large gap range. The solution time of DP method and Gurobi for 100-scenarios

problems under 72 hours is presented in Table 3.4 in seconds. And the solution time

and gap range of DP method and Gurobi for 1000-scenario problems under 48 and

72 hours are presented in Table 3.5 in seconds. In these two tables, Null means the

unit will be off over the whole planning horizon, All means the unit will be on over

the whole planning horizon, and the Solution means optimal on-time intervals.

Table 3.4: Solution Time of 100-scenario Problems under 72 Hours

Periods Initial Price DP Time Gurobi Time Solution

72 90 158.87 409 Null
169.17 407.5 Null

118 164.22 657.12 [0.43]
164.11 679.92 [0,27]

120 154.32 1137.44 [0,49]
141.66 1135.31 [0,28]

150 146.72 404.36 All
147.47 392.88 All

200 153.62 32.77 All
159.41 37.57 All

Table 3.5: Solution Time and Gap Range of 1000-scenario Problems

Periods Initial Price DP Time Gurobi Time Gurobi Gap (%) Solution

48 110 1167.4 4200 1253.9 [0, 15]
200 1215.8 4200 0 All

72 118 3800.6 4200 1194.40 [0,45]
200 3811.4 4200 3.75 All

Based on the analysis of results in Table 3.3, we can conclude that DP has great

advantage when solving a large-scale stochastic self-scheduling problem with a large

number of scenarios. A simulation experiment is conduction to show that the solution
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based on the model with more scenarios can yield better objective value, which is

revenue, in average.

• Solve 10-scenario and 100-scenario problems, substitute their optimal first-

stage solutions to 1000-scenarios problems, and solve 1000-scenario problems,

respectively. Use the same seed and all the same parameters for 10-scenario

problem, 100-scenario problem, and 1000-scenario problem in each run. Run

the experiment 100 times by using the seed 1, 2, · · · , 100, respectively. Compare

the expectations of objective values of 1000-scenario problems based on optimal

solutions of 10-scenario and 100-scenario problems.

Of these 100 replications, the expectation (E1) of objective values of 1000-scenario

problems based on optimal first-stage solutions of 10-scenario problems is -1883.45,

while the expectation (E2) of objective values of 1000-scenario problems based on

optimal first-stage solutions of 100-scenario problems is -622.38. We also observe

that 76% of objective values of 1000-scenario problems based on optimal first-stage

solutions of 100-scenario problems are larger than or the same as objective values of

1000-scenario problems based on optimal first-stage solutions of 10-scenario problems.

Back to the meaning of objective value, which is revenue, we can conclude that

decisions based on 100-scenario problems can bring more profit or less loss than

decisions based on 10-scenario problems in average.

Besides the above main results, we also find that the computational time of DP

procedure is greatly dependent on the time spent on solving the economic dispatch

problems of time intervals in the network, in other words, the weights of nodes during

the network construction. The computational time of shortest path in a network

is closely associated with the number of nodes and paths. And in this problem,

the number of nodes depends on the minimum up-time and down-time rate of the

generating unit, because the minimum up-time rate decides the number of nodes and

the minimum down-time rate decide the number of arcs. So the computational time

of DP procedure is very problem-specific.
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Chapter 4

Conclusions and Future Work

The self-scheduling UC problem is a typical application of optimization in the area

of power generation. The problem is to find an optimal schedule of generating units

in the planning horizon in order to maximize the profit of GENCO subject to a series

of operation restrictions. The uncertainty parameters such as price and demand have

become critical, because of the deregulation of energy market and incorporation of

renewable energy resources.

A stochastic model for the self-scheduling UC problem is presented in this thesis.

The model considers a single thermal generating unit with certain characteristics.

The price uncertainty is represented by a finite number of scenarios. The objective is

to maximize the revenue over a planning horizon. The production cost is formulated

as a quadratic function. Typical constraints of thermal generating units such as

capacity, minimum up- and down-time, maximum ramp up- and down-rate, and time

dependent start-up cost, are considered into the model.

An efficient dynamic programming algorithm presented by Frangioni for solving

nonlinear single-unit commitment problems with ramping constraints is extended to

solve the self-scheduling problem. Computational results show that this algorithm is

more efficient than Gurobi MIQP solver 5.6.0 when there are a large number of

scenarios and time periods in the planning horizon. Furthermore, the results of
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the simulation experiment show that decisions based on more scenarios can yield

more average profit or less average loss. Hence the work in this thesis caters to the

deregulation of energy market and has significant economic significance for GENCO.

The proposed approach can also be used to solve the subproblem of a multiple

unit commitment problem with uncertain demand, which can be decomposed into

subproblems for each generating unit after Lagrangian relaxation. We can update

the dual multiplier by updating the price. The resulting model will help reduce the

total production cost and ultimately the consumption of natural resources in a whole,

which have been demonstrated by many references, such as [38], [39], [35], and [34].

Self-scheduling or UC problem is a very complex problem, even not well-defined,

because of complexities of electricity operations. We only considered a simplified case

of stochastic self-scheduling problem in this thesis. In the future, the model can be

improved in the following aspects. And the DP algorithm presented in this thesis

should be able to be adapted to improved models correspondingly.

• Optimize the code. The performance of an algorithm doesn’t only depend on

on the design of algorithm itself, but also the data structures used to implement

that algorithm. The computation time varies with the usages of different data

structures.

• Revoke some assumptions and adapt the model to more real operation context.

We have made following assumptions for simplifying the model.

– The company is the price taker, so the price will not be influenced by the

market.

– The generating unit has been off long enough, so it can be turned on at

the very beginning of planning horizon.

• Incorporate multiple generating units into the model.

• Integrate renewable resources such as hydro units and wind into the model.
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• More research are needed to construct scenarios that reflects real price.
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Operation, and Control. John Wiley & Sons, Inc. 16

[45] Wu, L. (2013). An improved decomposition framework for accelerating lsf and

bd based methods for network-constrained uc problems. Power Systems, IEEE

Transactions on, 28(4):3977–3986. 19

[46] Wu, L., Shahidehpour, M., and Li, T. (2007). Stochastic security-constrained

unit commitment. Power Systems, IEEE Transactions on, 22(2):800–811. 15, 16

47



[47] Yamin, H. (2004). Review on methods of generation scheduling in electric power

systems. Electric Power Systems Research, 69(2):227–248. 19

48



Vita

Lili Zhang was born in Shandong province, China. She graduated from Central

South University in 2011 with bachelor degree in Electronic Information Science

and Technology. After that, Lili found her passion in Operations Research. She

officially started her graduate study in the Department of Industrial and Systems

Engineering at the University of Tennessee, Knoxville in 2013 spring. Because of

excellent academic performance, Lili is invited to be a member of the honor society

of Phi Kappa Phi.

49


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2014

	A Stochastic Model for Self-scheduling Problem
	Lili Zhang
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Mathematical Preliminaries
	1.2.1 Integer Programming
	1.2.2 Stochastic Programming
	1.2.3 Graph Theory
	1.2.4 Dynamic Programming

	1.3 Contribution

	2 Literature Review of Unit Commitment Problem
	2.1 Unit Commitment Problem
	2.1.1 Fomulations
	2.1.2 Solution Methods

	2.2 Stochastic Unit Commitment Problem
	2.3 Stochastic Self-scheduling Problem
	2.4 Review Summary

	3 Problem Solving
	3.1 Problem Formulation
	3.2 Scenario Generation
	3.3 Mixed Integer Quadratic Programming Procedure
	3.4 Dynamic Programming Procedure
	3.5 Computational Experiments

	4 Conclusions and Future Work
	Bibliography
	Vita

