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Abstract

The purpose of the thesis was to find extremals y and constants K for a basic

problem and for several variations of the problem. The basic problem was

the third order opial inequality. We proved the existence of an extremal of

this problem and other related problems. We conjectured that the extremal

was a quintic spline with at most one knot, then found the quintic splines

and constants for the basic problem and several variations. Maple was an

important tool in finding these extremals and constants due to the complexity

of the equations. We also proved that these extremals can be approximated

by polynomials. We discussed an application involving a bound for the least

eigenvalue for y(vi) = −λρ(x)y with certain boundary conditions. Finally, we

discussed the related problem in Lp space.
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1 Introduction

We begin with the third order opial inequality

K
∫ b

a
|yy′|dx ≤

∫ b

a
|y′′′|2dx.

This inequality leads to a problem to solve:

K = inf
yεD\{0}

∫ b
a |y′′′|2dx∫ b
a |yy′|dx

Given the set D of admissible functions, we seek K and an extremal function

y that achieves the infimum. Using Maple, we will solve this equation for

various sets D. We will also examine a few more general equations of a similar

form. The extremals for which we are searching are quintic splines. Later,

we will discuss in greater detail why we can approximate these extremals

with polynomials. We will also discuss applications to a related problem, a

bound for the least eigenvalue of

y(vi) = −λρ(x)y

with certain boundary conditions. Finally, we will discuss the related equa-

tion

K0,p = inf
yεD0\{0}

(
∫ b
a |y′′′|pdx)2/p∫ b
a |yy′|dx

and solve for K using a specific set D0 and its extremal y. We define

D0 := {yεA : y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0}
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and

A := {y : y is real on [0, 1], y, y′, y′′ continuous, y′′′ piecewise continuous}.

All of this work is to explore generalizations of

K
∫ b

a
|yy′|dx ≤

∫ b

a
(y′′′)2dx,

the third order Opial inequality.

We begin in Chapter 2 with our equation

K0 = inf
yεD0\{0}

∫ b
a |y′′′|2dx∫ b
a |yy′|dx

involving a specific admissible set D0 and the constant K0, still to be found.

Also to be found is the extremal y0. Using Maple, we will solve for K0 and

y0 on the class of functions where y0y
′
0 has one change of sign. We will also

discuss the necessary conditions for the extremal y0 to exist.

In Chapter 3 we shall discuss two functionals that are more general and

the existence of solutions to the infimum problem. By solution we mean the

constant K and the extremal y. First we will examine the problem

K = inf
yεD0\{0}

Jp,w(y)

where

Jp,w =

∫ 1
0 p(x)(y′′′(x))2dx∫ 1

0 w(x)|y(x)y′(x)|dx
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and where p(x) > 0 and w(x) > 0 are continuous functions. We will show

that the solution exists and that Kp,w is positive. The other problem we will

discuss is

KG = inf
yεD0\{0}

JG(y)

where

JG =

∫ b
a [p(x)(y′′′(x))2 + r(x)(y′′(x))2 +m(x)(y′(x))2 + q(x)(y(x))2]dx∫ b

a w(x)|y(x)y′(x)|dx
.

We will find the necessary conditions for the extremal y.

Chapter 4 discusses other classes of admissible functions. Instead of using

the set D0, we will examine six other sets Di for i = 1, ..., 6. We will examine

in detail how to solve the equation

Ki = inf
yεDi\{0}

∫ 1
0 (y′′′)2dx∫ 1
0 |yy′|dx

for the i = 2 case. The other five cases are similar; therefore, the solutions

will be provided, omitting the details..

Chapter 5 will deal with one of the other classes of admissible functions.

We will examine a special aspect of the i = 4 case. Because the extremal

spline of the D4 case, found in Chapter 4, is a quintic polynomial on [a, b]

and not a quintic spline, we can examine it differently. We will show that

there always exists an extremal of the D4 case which is monotone. This will

involve working with Maple and the extremal spline that we will calculate

for Chapter 4.
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In Chapter 6 we will discuss applications to y(vi) = −λρ(x)y with bound-

ary conditions. We will show that there is a lower bound on the smallest

eigenvalue. Examples of sixth order eigenvalue problems may be found in

[2].

Chapter 7 will cover the approximation of extremals by polynomials. We

will state and prove two lemmas concerning this approximation. Lemma

1 deals with extremals in the class of admissible functions D0 which has

boundary conditions

y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0.

Lemma 2 covers the D1 case. D1 is the class of admissible functions with

boundary conditions

y(0) = y′′(0) = y(1) = y′′(1) = 0

and natural boundary conditions

y(iv)(0) = y(iv)(1) = 0.

Finally, in Chapter 8 we examine what happens if we alter our original

equation from

K0 = inf
yεD0\{0}

J(y0)

where

J(y0) =

∫ 1
0 |y′′′|2dx∫ 1
0 |yy′|dx

4



to

K0,p = inf
yεD0\{0}

Jp(y)

where

Jp(y) =
(
∫ 1

0 |y′′′(x)|pdx)2/p∫ 1
0 |y(x)y′(x)|dx

.

Both problems have the same class of admissible functions D0.

We will discuss all of these topics related to the third order Opial inequal-

ity. The discussion will begin with the basic problem involving D0, the first

class of admissible functionals. Also discussed will be necessary conditions,

other general functions, six other classes of admissible functions, applications

involving the smallest eigenvalue, and approximation of extremals by polyno-

mials. Finally we will examine an altered version of the D0 equation. All of

these topics elaborate on various aspects of the third order Opial inequality.
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2 Basic Problem

The basic problem is to find extremals yεD0(a, b) and constant

K0(a, b) := inf
yεD0(a,b)\{0}

J(y) (1)

where

J(y) :=

∫ b
a |y′′′|2dx∫ b
a |yy′|dx

, (2)

A := {y : y is real on [a, b], y, y′, y′′ continuous, y′′′ piecewise continuous},

and

D0(a, b) := {yεA : y(a) = y′(a) = y′′(a) = y(b) = y′(b) = y′′(b) = 0}.

By an extremal we mean a function yεD0(a, b) such that K0(a, b) = J(y). In

this case we are looking at a general interval [a,b]. However, we will show

that it is only necessary to examine the interval [0,1]. For Y εD0(a, b), define

y(x) = Y (a+ x(b− a)). Then yεD0(0, 1) and

J(y) :=

∫ 1
0 (y′′′)2dx∫ 1

0 |y(x)y′(x)|dx
=

∫ b
a (Y ′′′(u))2(b− a)6 du

(b−a)∫ b
a |Y (u)Y ′(u)|(b− a) du

(b−a)

= (b− a)5J(Y ).

Then

K0(a, b) =
K0(0, 1)

(b− a)5

Let K0 := K0(0, 1). Therefore, without loss of generality, it is sufficient to

work with the interval [0,1] instead of a general interval [a,b]. We now define

D0 := D0(0, 1).
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We begin with a preliminary discussion of some useful mathematics in-

formation important to the later explanations and work. Before determining

necessary conditions for an extremal, we need to investigate the differentia-

tion of |f(x)| when f is a continuously differentiable function. Define

g(x) = |f(x)|.

Then we claim

g′(x0) =


f ′(x0) if f (x0 ) > 0

−f ′(x0) if f (x0 ) < 0.

Therefore, for |f(x0)| 6= 0,

g′(x0) = [sgn(f(x0))] · [f ′(x0)],

where sgn(·) is the signum function, giving the sign of the function as either

+1 or −1.

Now examine the case in which f(x0) = 0. If f ′(x0) = 0, then

g′(x0) = lim
h−→0

g(x0 + h)− g(x0)

h
= lim

h−→0

|f(x0 + h)| − 0

h

= lim
h−→0

|f(x0 + h)− f(x0)|
h

= 0.

Thus, g′(x0) = 0. If f ′(x0) 6= 0, say f ′(x0) > 0, then

g′(x+
0 ) = f ′(x0)

and

g′(x−0 ) = −f ′(x0).
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The function g has one-sided derivatives at x0, but they are unequal.

From real analysis we know that f is absolutely continuous on [a,b] if

for ε > 0 there exists δ > 0 such that if I1 = [a1, b1], ..., In = [an, bn] are

nonoverlapping subintervals of [a,b] with

n∑
i=1

(bi − ai) < δ,

then

n∑
i=1

|f(bi)− f(ai)| < ε.

Now,

| |f(bi)| − |f(ai)| | ≤ |f(bi)− f(ai)|

tells us that |f(x)| is absolutely continuous if f(x) is. Real analysis tells us

that absolutely continuous functions are differentiable except possibly on a

set of (Lebesgue) measure 0.

If f is continuously differentiable on [a,b], then f(x) is absolutely contin-

uous (from real analysis, but easy since |f(bi) − f(ai)| = |f ′(ci)(bi − ai)| ≤

M(bi−ai) if |f ′(x)| ≤M). Therefore, g(x) = |f(x)| is absolutely continuous,

and the set S = {x0 : f(x0) = 0 and f ′(x0 ) 6= 0} where g is not differentiable

has measure 0. Thus, g′(x) = [sgn(f(x))]f ′(x) is well-defined except in a set

involving g of measure 0 which does not affect the value of an integral.

We need to see what necessary conditions that an extremal y0εD0 of (2)

must satisfy. We are only interested in intervals where y0y
′
0 is of constant
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sign. Later we will explain specifically what kind of extremals for which we

are searching. Let y0, hεD0. We calculate

d

dε
J(y0 + εh)|ε=0 = 0.

First of all,

J(y0 + εh) =

∫ 1
0 (y′′′0 + εh′′′)2dx∫ 1

0 |y0y′0 + εhy′0 + εh′y0 + ε2hh′|dx

For simplicity, we write this as

J(y0 + εh) =
T

B
.

Then

d

dε
J(y0 + εh) =

BTε − TBε

B2

where

Tε =
∫ 1

0
2(y′′′0 + εh′′′)h′′′dx

and

Bε =
∫ 1

0
(sgn(y0y

′
0 + εhy′0 + εh′y0 + ε2hh′))(hy′0 + h′y0 + 2εhh′)dx

Then

0 =
d

dε
J(y0 + εh)|ε=0

=

∫ 1
0 |y0y

′
0|dx

∫ 1
0 2y′′′0 h

′′′dx−
∫ 1

0 (y′′′0 )2dx
∫ 1

0 (sgn(y0y
′
0))(hy0)′dx

(
∫ 1

0 |y0y′0|dx)2
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If the fraction is 0, then the numerator must be 0. This gives∫ 1

0
2y′′′0 h

′′′dx
∫ 1

0
|y0y

′
0|dx−

∫ 1

0
(y′′′0 )2dx

∫ 1

0
(sgn(y0y

′
0))(y0h)′dx = 0 (3)

Since we are only interested in necessary conditions on intervals where y0y
′
0 is

of constant sign, we do not concern ourselves with intervals where y0y
′
0 = 0.

Rearranging (2) gives ∫ 1

0
(y′′′0 )2dx = K0

∫ 1

0
|y0y

′
0|dx. (4)

We substitute (4) into (3) to get∫ 1

0
2y′′′0 h

′′′dx−K0

∫ 1

0
(sgn(y0y

′
0))(y0h)′dx = 0. (5)

On an interval (c, d) on which y0y
′
0 is of constant sign, suppose h(x) is a

smooth test function with support [c, d]. This implies that

h(c) = h′(c) = h′′(c) = h(d) = h′(d) = h′′(d) = 0.

Then ∫ d

c
2y′′′0 h

′′′dx−K0

∫ d

c
(sgn(y0y

′
0))(y0h)′dx = 0

The second term is zero on this interval, leaving∫ d

c
y′′′0 h

′′′dx = 0.

Integrating by parts three times (standard theory of calculus of variations

justifies this, i.e. [5], pg. 56) and using the boundary conditions for h gives∫ d

c
y′′′0 h

′′′dx =
∫ d

c
y

(vi)
0 hdx = 0.

10



From this we get y
(vi)
0 (x) = 0 on (c, d). Thus, y0(x) is a quintic polynomial

on (c, d).

Now, let us look for natural boundary conditions for y0. Suppose that

h(x) is a smooth test function with h(x) = 0 for x > δ, and that y0y
′
0

has constant sign on [0, δ]. Integrating (5) by parts three times and using

y
(vi)
0 (x) = 0 gives

−y′′′0 (0)h′′(0) + y
(iv)
0 (0)h′(0)− y(v)

0 (0)h(0) +
K0

2
(sgn(y0y

′
0))(0)(y0h)(0) = 0.

(6)

Similarly, for smooth test function h(x) with h(x) = 0 for x < 1− δ and y0y
′
0

with constant sign on [1− δ, 1],

y′′′0 (1)h′′(1)− y(iv)
0 (1)h′(1) + y

(v)
0 (1)h(1)− K0

2
(sgn(y0y

′
0))(1)(y0h)(1) = 0 (7)

We prove in Chapter 3 that an extremal exists for the basic problem as

well as for more general problems. The necessary conditions (6) and (7)

together with y
(vi)
0 (x) = 0 on intervals where y0y

′
0 is of constant sign will be

used to determine a candidate for y0. The proof that we have the value of

K0 and an extremal y0 remains incomplete however. We assume that there

is an extremal which is a quintic spline with a single knot. A knot in a spline

is a point, denoted here by (c,K), where two polynomial pieces meet. Thus,

we prove in general an extremal exists, but we find K0 and extremals over a

smaller class of functions, i.e., on those y where y0y
′
0 has one change of sign.

In the case of the functional J2(y) =

∫ 1

0
(y′′)2dx∫ 1

0
|yy′|dx

, R. Brown, V. Burenkov, S.
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Clark, and D. Hinton [4] have proved that extremals exist which are cubic

splines with a single knot by using polynomial approximations. We show in

Chapter 7 that polynomial approximate extremals exist, but have not been

able to use them to give a proof that our problem has an extremal which is

a quintic spline with a single knot. C. Fitzgerald [3] claimed to have a proof,

but as noted by R. Brown, V. Burenkov, S. Clark, and D. Hinton, the proof

is incorrect. Thus it is an open problem for functionals of the form, n > 2,

Jn(y) =

∫ b
a (y(n))2dx∫ b
a |yy′|dx

if there are extremals which are splines with a single knot. In case n = 1,

this is the Opial inequality

∫ b

a
|yy′|dx ≤ b− a

4

∫ b

a
(y′)2dx (8)

for piecewise smooth functions y such that y(a) = y(b) = 0. Further, equality

holds in (8) only if y = cy0, where y0 is a nontrivial linear spline with knot

at a+b
2

.

We now compute this quintic spline for (1) on [0,1]. From the definition

of D0, we start with the conditions y0 must satisfy:

y0(0) = y′0(0) = y′′0(0) = y0(1) = y′0(1) = y′′0(1) = 0. (9)

Suppose that y0 is a quintic spline with one knot, which is at x = c. We use

Maple to solve this problem. We start by supposing that

s = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 (10)
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and

z = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5, (11)

where s is the piece to the left of the knot and z is the piece to the right of the

knot. Since together s and z make up a quintic spline, s′(c) = z′(c), s′′(c) =

z′′(c), s′′′(c) = z′′′(c), and s(iv)(c) = z(iv)(c). Also, we normalize to get s(c) =

1 and z(c) = 1. This gives us twelve equations in thirteen unknowns.

a0 = 0

a1 = 0

2a2 = 0

b0 + b1 + b2 + b3 + b4 + b5 = 0

b1 + 2b2 + 3b3 + 4b4 + 5b5 = 0

2b2 + 6b3 + 12b4 + 20b5 = 0

a0 + a1c+ a2c
2 + a3c

3 + a4c
4 + a5c

5 = 1

b0 + b1c+ b2c
2 + b3c

3 + b4c
4 + b5c

5 = 1

a1 + 2a2c+ 3a3c
2 + 4a4c

3 + 5a5c
4 = b1 + 2b2c+ 3b3c

2 + 4b4c
3 + 5b5c

4

2a2 + 6a3c+ 12a4c
2 + 20a5c

3 = 2b2 + 6b3c+ 12b4c
2 + 20b5c

3

6a3 + 24a4c+ 60a5c
2 = 6b3 + 24b4c+ 60b5c

2

24a4 + 120a5c = 24b4 + 120b5c

Solving these twelve equations in terms of c gives us

s =
5x3

3c3(c2 − 2c+ 1)
+

5(3c+ 1)x4

c4(c2 − 2c+ 1
+

(6c2 + 3c+ 1)x5

6c5(c2 − 2c+ 1)

13



and

z =
−1

6(−10c2 + 5c− 1− 5c4 + 10c3 + c5)
+

5x

6c(−10c2 + 5c− 1− 5c4 + 10c3 + c5)

− 5x2

3c2(−10c2 + 5c− 1− 5c4 + 10c3 + c5)

+
5(c2 − 3c+ 3)x3

3c2(−10c2 + 5c− 1− 5c4 + 10c3 + c5)

− (3c2 − 8c+ 6)x4

6c2(−10c2
5c− 1− 5c4 + 10c3 + c5)

+
(10− 15c+ 6c2)x5

6c2(−10c2 + 5c− 1− 5c4 + 10c3 + c5)
.

The next step is to evaluate

J(y0) =

∫ c
0 (s′′′)2dx+

∫ 1
c (z′′′)2dx∫ c

0 |ss′|dx+
∫ 1
c |zz′|dx

.

We get

J(y0) =
−20

c5(−10c2 + 5c− 1− 5c4 + 10c3 + c5)
.

We graph J(y0) with respect to c and discover that there does indeed exist

a minimum. Minimizing J(y0) gives c = 1/2 and K0 = 20, 480. A knot at

x = 1/2 gives extremal

y0 =


160x3

3
− 400x4

3
+ 256x5

3
, 0 ≤ x ≤ 1/2

16
3
− 160x

3
+ 640x2

3
− 1120x3

3
+ 880x4

3
− 256x5

3
, 1/2 ≤ x ≤ 1

Note that y0(1− x) = y0(x) for 0 ≤ x ≤ 1 as verified by Maple.
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3 More General Functionals and Existence

We examine a more general problem

K := inf
yεD0\{0}

Jp,w(y) (12)

for

Jp,w =

∫ 1
0 p(x)y′′′(x)2dx∫ 1

0 w(x)|y(x)y′(x)|dx

and where p(x) > 0 and w(x) > 0 are continuous functions. We conjectured

in Chapter 2 that for p(x) = w(x) = 1, the basic problem (2) for yεD0 \ {0}

has an extremal which is a quintic spline with at most one knot. We use

the notation L2(0, 1) for the Lebesgue measurable functions f that satisfy∫ 1
0 |f(x)|2dx <∞ and ‖f‖2 = (

∫ 1
0 |f(x)|2dx)1/2.

In order to prove an extremal exists, we must enlarge the class D0 to a

larger class D̃0. This is done in Theorem 1 below. Similar extensions are

made for the other boundary conditions considered in Chapter 4.

The quintic spline computed earlier in this chpater is actually the ex-

tremals over the class of functions where y′ has at most one sign change. It

is our conjecture, but there is an open problem, that these splines are actual

extremals for this large class of functions in which it is known an extremal

exists.

Theorem 1: The infimum K of (12) is positive and an extremal y0 exists
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in D̃0, the larger class of functions where y′′′εL2(0, 1) replaces y′′′ piecewise

continuous.

Proof: Let yn be a sequence in D̃0 such that Jp,w(yn) −→ K as n −→ ∞,

where K is the infimum in (12) over D̃0 \ {0}. Without loss of generality, we

may assume
∫ 1

0 w|yny′n|dx = 1. Then as n −→∞,

∫ 1

0
p(x)|y′′′n |2dx =

∫ 1

0
p(x)(y′′′n )2dx −→ K.

And then as n −→∞,

( ∫ 1

0
p(y′′′n )2dx

)1/2

= ‖y′′′n
√
p‖2 −→ K1/2.

Then {‖y′′′n
√
p‖2} is a bounded sequence. Therefore, [1] {y′′′n

√
p} has a weakly

convergent subsequence in L2(0, 1), say y′′′n
√
p ⇀ m as n −→ ∞. Then

y′′′n ⇀ m√
p

as n −→ ∞. From y′′n(t) =
∫ t

0 y
′′′
n dx, we have, since {‖y′′′n ‖2} is also

bounded,

|y′′n(t)− y′′n(s)|2 =
∣∣∣∣ ∫ t

s
y′′′n dx

∣∣∣∣2 ≤ |t− s| ∫ 1

0
(y′′′n )2dx. (13)

Equation (13) implies that {y′′n} is equicontinuous and uniformly bounded

(set s = 0). Then the Ascoli-Arzela Theorem tells us that {y′′n} has a uni-

formly convergent subsequence. Without loss of generality, assume y′′n −→ g

uniformly as n −→ ∞. Letting n −→ ∞ in y′′n(t) =
∫ t

0 y
′′′
n dx, we have

that g(t) =
∫ t

0
m√
p
dx. Since y′′n −→ g uniformly as n −→ ∞, and y′n(x) =∫ x

0 y
′′
n(t)dt, we have that y′n −→ h uniformly as n −→ ∞ where h(x) =∫ x

0 g(t)dt. Set y(t) =
∫ t

0(t−s)g(s)ds. Then y(0) = 0. And y′(t) =
∫ t

0 g(s)ds =
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h(t) implies y′(0) = h(0) = 0. We have

y′(1) = h(1) =
∫ 1

0
g(t)dt = lim

n−→∞

∫ 1

0
y′′n(t)dt = lim

n−→∞
[y′n(1)− y′n(0)] = 0

since ynεD̃0. Similarly,

y(1) =
∫ 1

0
hdx = lim

n−→∞

∫ 1

0
y′ndx = lim

n−→∞
[yn(1)− yn(0)] = 0

because ynεD̃0. Also, y′(t) =
∫ t

0 g(x)dx gives y′′(t) = d
dt

∫ t
0 g(x)dx = g(t).

Then y′′(0) = g(0) = limn−→∞ y
′′
n(0) = 0 since ynεD̃0. Similarly,

y′′(1) = g(1) = lim
n−→∞

y′′n(1) = 0.

Thus, yεD̃0 with y′′′ = h′′ = g′ = m√
p
. The uniform convergence of y′n to h

implies {yn} converges uniformly to y(x); hence,

∫ 1

0
w|yy′|dx = lim

n−→∞

∫ 1

0
w|yny′n|dx = 1.

The convergence y′′′n ⇀ m√
p

= y′′′ implies y′′′n
√
p ⇀ m = y′′′

√
p. Therefore,

since y′′′n
√
p ⇀ m [1], we obtain

‖m‖2
2 = ‖y′′′√p‖2

2 =
∫ 1

0
p(y′′′)2dx ≤ lim inf

n−→∞

∫ 1

0
p(y′′′n )2dx = K.

On the other hand,

‖y′′′√p‖2
2 =

∫ 1

0
p(y′′′)2dx ≥ K

since yεD̃0 \ {0}. Therefore,
∫ 1

0 p(y
′′′)2dx = K and y is an extremal for (12).

Finally, since
∫ 1

0 w|yy′|dx = 1, y is nonzero on a set of positive measure. The
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initial conditions are y(0) = y′(0) = y′′(0) = 0. To show K > 0, suppose that

y′′′ ≡ 0 so that y is a nontrivial quadratic function, say y = mx2 + bx + c.

Then y′ = 2mx + b and y′′ = 2m. But y(0) = 0 = c, y′(0) = 0 = b, and

y′′(0) = 0 = 2m implies that y ≡ 0, the trivial quadratic solution. This

contradiction shows y′′′ 6≡ 0. Thus,
∫ 1

0 p(y
′′′)2dx 6= 0. Therefore, K > 0, and

we are done.

The polynomial approximations in Chapter 7 show that

inf
yεD0\{0}

J(y) = inf
yεD̃0\{0}

J(y)

so that the infimum is the same over the smaller set of functions D0 \ {0}.

Now, let us examine a very general case. Let

JG(y) =

∫ b
a [p(x)y′′′(x)2 + r(x)y′′(x)2 +m(x)y′(x)2 + q(x)y(x)2]dx∫ b

a w(x)|y(x)y′(x)|dx
(14)

and look for KG = infyεD0\{0} JG(y). What are the necessary conditions?

Suppose y0 is an extremal and hεD0. With calculations similar to those used

to obtain (13), d
dε
JG(y0 + εh)|ε=0 = 0 reduces to

2
∫ 1

0
w|y0y

′
0|dx

∫ 1

0
[py′′′0 h

′′′ + ry′′0h
′′ +my′0h

′ + qy0h]dx

−
∫ 1

0
[p(y′′′0 )2 + r(y′′0)2 +m(y′0)2 + qy2

0]dx
∫ 1

0
w(sgn(y0y

′
0))(y0h)′dx = 0. (15)

Rearranging (14) and (15) gives

∫ 1

0
[p(y′′′0 )2 + r(y′′0)2 +m(y′0)2 + qy2

0]dx = KG

∫ 1

0
w|y0y

′
0|dx, (16)
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where KG = infyεD0\{0} JG(y). Substituting (16) into (15) gives

2
∫ 1

0
[py′′′0 h

′′′ + ry′′oh
′′ +my′0h

′ + qy0h]dx−KG

∫ 1

0
w(sgn(y0y

′
0))(y0h)′dx = 0.

(17)

Suppose y0y
′
0 is of constant sign on (c, d) and h is a smooth test function

with support [c, d]. Thus,

h(c) = h′(c) = h′′(c) = h(d) = h′(d) = h′′(d) = 0.

Then the second term of (17) is zero. This leaves

∫ 1

0
[py′′′0 h

′′′ + ry′′0h
′′ +my′0h

′ + qy0h]dx = 0.

Then after integration by parts,

∫ d

c
[py′′′0 h

′′′ + ry′′0h
′′ +my′0h

′ + qy0h]dx =

∫ d

c
[(py′′′0 )′′′ − (ry′′0)′′ + (my′0)′ − qy0]hdx = 0.

Since this holds for all smooth h, we conclude that

0 = (py′′′0 )′′′ − (ry′′0)′′ + (my′0)′ − qy0

almost everywhere on (c, d). Thus, y0(x) is a quintic polynomial on (c, d) if

p is a real number, and r = 0, m = 0, and q = 0. Suppose y0y
′
0 is of constant

sign on (0, δ) and h(x) is a smooth test function with h(0) = 0 for x > δ.

Then integrating by parts three times, (17) becomes

−p(0)y′′′0 (0)h′′(0) + (py′′′0 )′h′(0)− (py′′′0 )′′(0)h(0)− r(0)y′′0(0)h′(0)
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+(ry′′0)′(0)h(0)−m(0)y′0(0)h(0)− KG

2

∫ δ

0
w(sgn(y0y

′
0))(y0h)′dx = 0. (18)

Similarly, if y0y
′
0 is of constant sign on some (1− δ, 1) and h is a smooth test

function with h(x) = 0 for x < 1− δ, then

p(1)y′′′0 (1)h′′(1)− (py′′′0 )′(1)h′(1) + (py′′′0 )′′(1)h(1) + r(1)y′′0(1)h′(1)

−(ry′′0)(1)h(1) +m(1)y′0(1)h(1)− KG

2

∫ 1

1−δ
w(sgn(y0y

′
0))(y0h)′dx = 0.
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4 Other Classes of Admissible Functions

Up until now, we have only allowed one set of boundary conditions. Recall

that

D0 = {yεA : y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0}

and

A := {y : y is real, y , y ′, y ′′ continuous, y ′′′ piecewise continuous}.

Let us now consider other classes of admissible functions.

D1 := {yεA : y(0) = y′′(0) = y(1) = y′′(1) = 0},

D2 := {yεA : y(0) = y′(0) = y′′(0) = y(1) = y′′(1) = 0},

D3 := {yεA : y(0) = y′(0) = y′′(0) = y′(1) = y′′(1) = 0},

D4 := {yεA : y(0) = y′(0) = y′′(0) = y′′(1) = 0},

D5 := {yεA : y(0) = y′(0) = y(1) = y′′(1) = 0},

D6 := {yεA : y(0) = y′(0) = y(1) = y′(1) = 0}.

For i = 1, ..., 6, let

Ki := inf
yεDi\{0}

J(y). (19)

where J is as in (2).

Theorem 2: For i = 1, ..., 6, the infimum Ki of (19) is positive and an ex-

tremal y0 exists in the larger class of functions with y′′′εL2(0, 1) replacing y′′′

piecewise continuous.
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The proof is similar to that of Theorem 1. We include one case, i = 2,

for illustration.

First we need to consider the boundary conditions:

y(0) = y′(0) = y′′(0) = y(1) = y′′(1) = 0.

We want to find any natural boundary conditions for this case. Suppose that

h(x) is a smooth test function with h(x) = 0 for x > δ and that y0y
′
0 has

constant sign on [1− δ, 1]. We begin with

d

dε
J(y0 + εh)|ε=0 = 0

where

J(y0 + εh) =

∫ 1
0 (y′′′0 + εh′′′)2dx∫ 1

0 |y0y′0 + εhy′0 + εh′y0 + ε2hh′|dx
.

In Chapter 2 we evaluated this same expression and got the equation

∫ 1

0
2y′′′0 h

′′′dx
∫ 1

0
|y0y

′
0|dx−

∫ 1

0
(y′′′0 )2dx

∫ 1

0
[sgn(y0y

′
0)](y0h)′dx = 0.

Integration by parts three times gives us

−y′′′0 (1)h′′(1) + y
(iv)
0 (1)h′(1)− y(v)

0 (1)h(1)+

K2

2
[sgn(y0y

′
0)(1)](y0h)(1) = 0.

But h′′(1) = 0 and h(1) = 0 since h is a smooth test function. Thus we are

left with

y
(iv)
0 (1)h′(1) = 0.
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Because h′(1) is not restricted to be 0 and h is a smooth test function, we

are left with the natural boundary condition y
(iv)
0 (1) = 0.

We want to find extremal y2 and constant K2 for yεD2. We suppose that

y2 is a quintic spline with at most one knot. We let s represent the quintic

polynomial to the left of the knot and z the quintic polynomial to the right of

the knot. Because y2 is a quintic spline, s′(c) = z′(c), s′′(c) = z′′(c), s′′′(c) =

z′′′(c), and s(iv)(c) = z(iv)(c). We normalize s(c) = 1 and z(c) = 1. The

boundary conditions for this case are y(0) = y′(0) = y′′(0) = y(1) = y′′(1) =

0. There is also the natural boundary condition y(iv)(1) = 0. Altogether this

gives us twelve equations in thirteen unknowns.

a0 = 0

a1 = 0

2a2 = 0

b0 + b1 + b2 + b+ 3 + b4 + b5 = 0

2b2 + 6b3 + 12b4 + 20b5 = 0

24b4 + 120b5 = 0

a0 + a1c+ a2c
2 + a3c

3 + a4c
4 + a5c

5 = 1

b0 + b1c+ b2c
2 + b3c

3 + b4c
4 + b5c

5 = 1

a1 + 2a2c+ 3a3c
2 + 4a4c

3 + 5a5c
4 = b1 + 2b2c+ 3b3c

2 + 4b4c
3 + 5b5c

4

2a2 + 6a3c+ 12a4c
2 + 20a5c

3 = 2b2 + 6b3c+ 12b4c
2 + 20b5c

3

6a3 + 24a4c+ 60a5c
2 = 6b3 + 24b4c+ 60b5c

2
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24a4 + 120a5c = 24b4 + 120b5c

Solving these twelve equations in terms of c gives us

s =
20(c2 − 4c+ 4)x3

c3(3c4 − 27c3 + 88c2 − 112c+ 48

− 5(3c3 − 12c2 + 8c+ 8)x4

c4(3c4 − 27c3 + 88c2 − 112c+ 48)

+
3c4 − 12c3 + 8c2 + 8c+ 8)x5

c5(3c4 − 27c3 + 88c2 − 112c+ 48)

and

z =
−8

115c3 − 30c4 + 160c− 200c2 + 3c5 − 48

+
40x

c(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)

− 80x2

c2(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)

+
20(c2 − 5c+ 8)x3

c2(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)

− 5(20− 15c+ 3c2)x4

c2(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)

+
(20− 15c+ 3c2)x5

c2(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)
.

Note that in this case, we do not have symmetric boundary conditions at the

two endpoints; thus, we do not expect to have z(1− x) = s(x) nor c = 1/2.

It can be verified with Maple that z(1− x) 6= s(x).

Next we evaluate

J(y2) =

∫ c
0 (s′′′)2dx+

∫ 1
c (z′′′)2dx∫ c

0 |ss′|dx+
∫ 1
c |zz′|dx

.
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Evaluating these integrals gives

J(y2) =
−960

c5(115c3 − 30c4 + 160c− 200c2 + 3c5 − 48)
.

Graphing J(y2) as a function of c shows that the function has a minimum.

Minimizing J(y2) gives constant K2 = 4289.04905 and c = 0.6386479177. A

knot at x = 0.6386479177 gives quintic spline

y2 =



24.4069919708x3 − 46.3778220168x4

+22.1910377838x5, 0 ≤ x ≤ c

3.79740807422− 29.7300591529x

+93.1031271815x2 − 121.374626666x3

+67.7551882043x4 − 13.5510376409x5, c ≤ x ≤ 1.

Assuming again that an extremal exists which is a quintic spline with at

most one knot, we have computed the constants Ki together with the corre-

sponding spline yi and all boundary conditions, including natural boundary

conditions, for problems Di; these are given below.

D1 : K1 = 480, y1(0) = y′′1(0) = y1(1) = y′′1(1) = 0, y1(c) = 1, y
(iv)
1 (0) =

y
(iv)
1 (1) = 0, c = 1/2.

y1 =


3.125x− 5x3 + 2x5, 0 ≤ x ≤ 1/2

0.125 + 1.875x+ 5x2 − 15x3 + 10x4 − 2x5, 1/2 ≤ x ≤ 1.

D2 : K2 = 4289.04905, y2(0) = y′2(0) = y′′2(0) = y2(1) = y′′2(1) = 0, y2(c) =

1, y
(iv)
2 (1) = 0, c = 0.6386479177.
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y2 =



24.4069919708x3 − 46.3778220168x4

+22.1910377838x5, 0 ≤ x ≤ c

3.79740807422− 29.7300591529x

+93.1031271815x2 − 121.374626666x3

+67.7551882043x4 − 13.5510376409x5, c ≤ x ≤ 1.

D3 : K3 = 20750.4, y3(0) = y′3(0) = y′′3(0) = y3(1) = y′′3(1) = 0, y3(c) =

1, y
(v)
3 (1) = 0, c = 0.5427288488.

y3 =


34.41731142x3 − 73.57528469x4 + 39.95681333x5, 0 ≤ x ≤ c

1.881505015− 17.33374797x+ 63.87627266x2

−83.27732149x3 + 34.85329178x4, c ≤ x ≤ 1.

D4 : K4 = 90, y4(0) = y′4(0) = y′′4(0) = y′′4(1) = 0, y4(c) = 1, y
(iv)
4 (1) =

y
(v)
4 (1) = 0, c = 1.

y4 =
5x3

2
− 15x4

8
+

3x5

8
.

D5 : K5 = 2296.483317, y5(0) = y′5(0) = y5(1) = y′′5(1) = 0, y5(c) =

1, y′′′5 (0) = y
(iv)
5 (1) = 0, c = 0.6013056920.

y5 =



6.746341828x2 − 17.72938718x4

+11.17583433x5, 0 ≤ x ≤ c

1.504383705− 12.50930870x+ 48.35349392x2

−69.19467531x3 + 39.80763301x4 − 7.961526601x5, c ≤ x ≤ 1.
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D6 : K6 = 7680, y6(0) = y′6(0) = y6(1) = y′6(1) = 0, y6(c) = 1, y′′′6 (0) =

y′′′6 (1) = 0, c = 1/2.

y6 =


10x2 − 40x4 + 32x5, 0 ≤ x ≤ 1/2,

2− 20x+ 90x2 − 160x3 + 120x4 − 32x5, 1/2 ≤ x ≤ 1.

27



5 The i = 4 Case

The i = 4 case is special because the knot is at x = 1. This means that y4

is not a quintic spline on the interval (0,1). The extremal y4 is actually a

quintic polynomial with minimum at x = 1 on interval (0,1).

We show that if y is an extremal for the i = 4 case, then there is an

extremal ỹ which is nondecreasing on [0,1]. Since then ỹ′ has no change

of sign on [0,1], from Chapter 2 we have ỹ(vi) ≡ 0 and thus ỹ is a quintic

polynomial. Set

ỹ′(x) =
∫ x

0
|y′′(s)|ds, ỹ(0) = ỹ′(0) = 0

so that

ỹ(x) =
∫ x

0
ỹ′(s)ds.

Then ỹ′′(x) = |y′′(x)| so that ỹ′′′(x) = [sgn(y′′′(x))]y′′′(x) almost everywhere,

and almost everywhere,

|ỹ′′′(x)| = |y′′′(x)|. (20)

On the interval (0,1),

|y′(x)| =
∣∣∣∣ ∫ x

0
y′′(x)dx

∣∣∣∣ ≤ ∫ x

0
|y′′(x)|dx = ỹ′(x)

so that ∫ 1

0
|ỹ(x)ỹ′(x)|dx ≥

∫ 1

0
|y(x)y′(x)|dx (21)
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and ∫ 1

0
(ỹ′′′(x))2dx =

∫ 1

0
(y′′′(x))2dx. (22)

This gives J(ỹ) ≤ J(y). Since y is an extremal, we have J(ỹ) = J(y). Thus

we have ỹ is a multiple of

y4 =
5x3

2
− 15x4

8
+

3x5

8

which we found in Chapter 4.
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6 Applications to y(vi) = −λρ(x)y With Bound-

ary Conditions

Let us examine the sixth order ordinary differential equation

y(vi) = −λρ(x)y, 0 ≤ x ≤ 1, (23)

with the boundary conditions of D0 imposed, i.e.,

y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0. (24)

Suppose that the smallest eigenvalue of (23) and (24) is λ0. We further

assume that the first derivative of the eigenfunction has only one change of

sign (of its first derivative) in (0,1) so that the inequalities derived earlier

apply. Then multiplying by y gives

yy(vi) = −λ0ρ(x)y2. (25)

Rearranging, we get

yy(vi) + λ0ρ(x)y2 = 0. (26)

Now we integrate. This gives us

∫ 1

0
(yy(vi) + λ0ρ(x)y2)dx = 0

and

∫ 1

0
yy(vi)dx+ λ0

∫ 1

0
ρ(x)y2dx = 0.
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Integrating by parts three times and using the boundary conditions listed in

(24) gives us ∫ 1

0
(y′′′)2dx = λ0

∫ 1

0
ρ(x)y2dx. (27)

Set P (x) =
∫ x

0 ρ(u)du− 1
2

∫ 1
0 ρ(u)du. Then we obtain

∫ 1

0
(y′′′)2dx = λ0

∫ 1

0
P ′(x)y2dx. (28)

Integrating by parts gives

∫ 1

0
(y′′′)2dx = −2λ0

∫ 1

0
P (x)yy′dx

≤ 2λ0

∫ 1

0
|P (x)yy′|dx

≤ 2λ0

∫ 1

0
|P (x)||yy′|dx.

Note that |P (x)| ≤ 1
2

∫ 1
0 ρ(x)dx as ρ(x) > 0. Then this implies

2λ0

∫ 1

0
|P (x)||yy′|dx ≤ 2λ0

∫ 1

0

(
1

2

∫ 1

0
ρ(x)dx

)
|yy′|dx.

Thus, combining the above two inequalities yields

∫ 1

0
(y′′′)2dx ≤ 2λ0

∫ 1

0

(
1

2

∫ 1

0
ρ(x)dx

)
|yy′|dx

= λ0

∫ 1

0
ρ(x)dx

∫ 1

0
|yy′|dx.

Then we have

∫ 1

0
(y′′′)2dx ≤ λ0

∫ 1

0
ρ(x)dx

∫ 1

0
|yy′|dx.
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But (over the functions in D0 such that y′ has at most one sign change)

K0 = 20, 480 = inf
D0\{0}

∫ 1
0 (y′′′)2dx∫ 1
0 |yy′|dx

or ∫ 1

0
(y′′′)2dx ≥ 20, 480

∫ 1

0
|yy′|dx. (29)

Then (28) and (29) tell us that

λ0 ≥
∫ 1

0 (y′′′)2dx∫ 1
0 ρ(x)dx

∫ 1
0 |yy′|dx

≥ 20, 480∫ 1
0 ρ(x)dx

. (30)

Now we want to show why (30) is the best possible. Let M ≡
∫ 1

0 ρ(x)dx

and for ε small, set

ρε(x) =


ε, x /∈ [1

2
− ε, 1

2
+ ε]

M
2ε
− (1

2
− ε), xε[1

2
− ε, 1

2
+ ε].

Then
∫ 1

0 ρε(x)dx = M . Let λ0,ε be the smallest eigenvalue of

y(vi) = −λ0,ερ(ε)y,

y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0.

By the Rayleigh quotient characterization of λ0,ε,

λ0,ε = inf
yεD0\{0}

∫ 1
0 (y′′′)2dx∫ 1

0 ρε(x)y2dx
.

In particular, for y(x) given by the quintic spline

y(x) =


160x3

3
− 400x4

3
+ 256x5

3
, 0 ≤ x ≤ 1/2

16
3
− 160x

3
+ 640x2

3
− 1120x3

3
+ 880x4

3
− 256x5

3
, 1/2 ≤ x ≤ 1,
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λ0,ε ≤
∫ 1

0 (y′′′)2dx∫ 1
0 ρε(x)y2dx

.

Therefore, we conclude

lim
ε−→0

supλ0,ε ≤
∫ 1

0 (y′′′)2dx

M(y(1/2))2
=

20, 480

M
,

which shows the constant 20,480 in (30) cannot be increased. Similarly, it

can be shown that for each set Di, there is a lower bound on the smallest

eigenvalue λi, where λi is the smallest eigenvalue of (23) with the boundary

conditions of Di imposed. Again, we further suppose the first derivative of

the corresponding eigenfunction has at most one change of sign (of its first

derivative). The lower bounds are listed here: D1 : λ1 ≥ 480∫ 1

0
ρ(x)dx

, D2 : λ2 ≥
4289.04905∫ 1

0
ρ(x)dx

, D3 : λ3 ≥ 20,750.4∫ 1

0
ρ(x)dx

, D4 : λ4 ≥ 90∫ 1

0
ρ(x)dx

, D5 : λ5 ≥ 2296.483317∫ 1

0
ρ(x)dx

, and

D6 : λ6 ≥ 7680∫ 1

0
ρ(x)dx

.
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7 Approximation of Extremals by Polynomi-

als

It is possible to use polynomials to approximate extremals. Let us examine

two cases: D0 and D1. We recall that the polynomials are dense in L2(0, 1)

[1].

Lemma 1: Let yεD0 (or D̃0) and let {dn} be a sequence of polynomials such

that ‖y′′′ − dn‖2 → 0 as n −→∞. Define

qn(x) :=
1

2

∫ x

0
(x− s)2dn(s)ds+ anx

3 + bnx
4 + cnx

5 (31)

where an, bn, and cn are determined by the requirement

qn(1) = q′n(1) = q′′n(1) = 0.

Then qnεD0, qn → y, q′n → y′, and q′′n → y′′ uniformly as n → ∞, and

‖y′′′ − qn‖2 → 0 as n→∞.

Proof: Since yεD0, we know that

y(x) =
1

2

∫ x

0
(x− s)2y′′′(s)ds.

Then we can calculate y(1), y′(1), and y′′(1). First we find that

y′(x) =
∫ x

0
(x− s)y′′′(s)ds
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and

y′′(x) =
∫ x

0
y′′′(s)ds.

Then we obtain

y(1) =
1

2

∫ 1

0
(1− s)2y′′′(s)ds = 0,

y′(1) =
∫ 1

0
(1− s)y′′′(s)ds = 0,

and

y′′(1) =
∫ 1

0
y′′′(s)ds = 0.

Therefore, an, bn, and cn satisfy these equations:

qn(1) =
1

2

∫ 1

0
(1− s)2[dn(s)− y′′′(s)]ds+ an + bn + cn = 0, (32)

q′n(1) =
∫ 1

0
(1− s)[dn(s)− y′′′(s)]ds+ 3an + 4bn + 5cn = 0, (33)

q′′n(1) =
∫ 1

0
[dn(s)− y′′′(s)]ds+ 6an + 12bn + 20cn = 0. (34)

Note that the determinant of the coefficients an, bn, and cn is∣∣∣∣∣∣∣∣∣∣∣
1 1 1

3 4 5

6 12 20

∣∣∣∣∣∣∣∣∣∣∣
= 2 6= 0.

Because ‖dn − y′′′‖2 → 0 as n → ∞, equations (32), (33), and (34) and

Kramer’s rule imply that an → 0, bn → 0, and cn → 0 as n → ∞. The uni-

form convergence of qn to y, q′n to y′, and q′′n to y′′ follow from the equations,

qn(x)− y(x) =
1

2

∫ x

0
(x− s)2[dn(s)− y′′′(s)]ds+ anx

3 + bnx
4 + cnx

5,
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q′n(x)− y′(x) =
∫ x

0
(x− s)[dn(s)− y′′′(s)]ds+ 3anx

2 + 4bnx
3 + 5cnx

4,

q′′n(x)− y′′(x) =
∫ x

0
[dn(s)− y′′′(s)]ds+ 6anx+ 12bnx

2 + 20cnx
3.

We are now done.

Now we need to examine D1. Recall that

D1 = {yεA : y(0) = y′′(0) = y(1) = y′′(1) = 0}.

The natural boundary conditions for D1 are y(iv)(0) = y(iv)(1) = 0.

Lemma 2: Let yεD1 and {dn} be a sequence of polynomials such that ‖y′′′−

dn‖2 → 0 as n→∞. Define

qn(x) :=
1

2

∫ x

0
(x− s)2dn(s)ds+ anx+ bnx

3 + cnx
5, (35)

where an, bn, and cn are determined by the requirement that qn(1) = q′′n(1) =

q(iv)
n (1) = 0. Then qnεD1, qn → y, q′n → y′, and q′′n → y′′ uniformly as

n→∞, and ‖y′′′ − q′′′n ‖2 → 0 as n→∞.

Proof: Since yεD1, we have that

y(x) =
1

2

∫ x

0
(x− s)2y′′′(s)ds,

y(1) =
1

2

∫ 1

0
(1− s)2y′′′(s)ds = 0,

y′(1) =
∫ 1

0
(1− s)2y′′′(s)ds = 0,
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and

y′′(1) =
∫ 1

0
y′′′(s)ds = 0.

Thus, an, bn, and cn satisfy the equations

qn(1) = 0 =
1

2

∫ 1

0
(1− s)2[dn(s)− y′′′(s)]ds+ an + bn + cn, (36)

q′n(1) = 0 =
∫ 1

0
(1− s)[dn(s)− y′′′(s)]ds+ an + 3bn + 5cn, (37)

q′′n(1) = 0 =
∫ 1

0
[dn(s)− y′′′(s)]ds+ 6bn + 20cn, (38)

Note that the determinant of the coefficients an, bn, and cn is∣∣∣∣∣∣∣∣∣∣∣
1 1 1

1 3 5

0 6 20

∣∣∣∣∣∣∣∣∣∣∣
= 16 6= 0.

From ‖dn − y′′′‖2 −→ 0 as n −→∞, it is clear from (36), (37), and (38) and

Kramer’s rule that an, bn,cn −→ 0 as n −→∞. The uniform convergence of

qn to y, q′n to y′, and q′′n to y′′ now follows from the equations:

qn(x)− y(x) =
1

2

∫ x

0
(x− s)2[dn(s)− y′′′(s)]ds+ anx+ bnx

3 + cnx
5,

q′n(x) = y′(x) =
∫ x

0
(x− s)[dn(s)− y′′′(s)]ds+ an + 3bnx

2 + 5cnx
4,

q′′n(x)− y′′(x) =
∫ x

0
[dn(s)− y′′′(s)]ds+ 6bnx+ 20cnx

3.

This finishes the proof of Lemma 2.
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8 In Lp Space ([a, b] = [0, 1])

Let us examine a very general case. Define

Jp(y) :=
(
∫ 1

0 |y′′′(x)|pdx)2/p∫ 1
0 |y(x)y′(x)|dx

(39)

and

K0,p := inf
yεD0\{0}

Jp(y) (40)

for 1 < p < ∞. First we need to derive the necessary conditions. Let

y0, hεD0. We calculate

d

dε
J(y0 + εh)|ε=0 = 0

where

J(y0 + εh) =
(
∫ 1

0 (y′′′0 + εh′′′)pdx)2/p∫ 1
0 |y0y′0 + εhy′0 + εh′y0 + ε2hh′|dx

.

Using the quotient rule for derivatives and some algebra, we get

0 =
N

D
,

where

N = 2
∫ 1

0
|y0y

′
0|dx(

∫ 1

0
|y′′′0 |pdx)2/p−1

∫ 1

0
h′′′(y′′′0 )p−1[sgn(y′′′0 )]dx

−
( ∫ 1

0
|y′′′0 |pdx

)2/p ∫ 1

0
[sgn(y0y

′
0)](y0h)′dx

and

D =
∫ 1

0
|y0y

′
0|dx.
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A fraction can only be 0 if the numerator is 0. Thus, our equation becomes

0 = 2
∫ 1

0
|y0y

′
0|dx

∫ 1

0
h′′′(y′′′0 )p−1[sgn(y′′′0 )]dx

−
( ∫ 1

0
|y′′′0 |pdx

)2/p ∫ 1

0
[sgn(y0y

′
0)](y0h)′dx. (41)

Definitions (39) and (40) give us the fact that( ∫ 1

0
|y′′′0 |pdx

)2/p

= K0,p

∫ 1

0
|y0y

′
0|dx. (42)

We substitute (42) into (41) to get

0 = 2
∫ 1

0
|y0y

′
0|dx

( ∫ 1

0
|y′′′0 |pdx)2/p−1

) ∫ 1

0
h′′′(y′′′0 )p−1[sgn)(y′′′0 )]dx

−K0,p

∫ 1

0
|y0y

′
0|dx

∫ 1

0
[sgn(y0y

′
0)](y0h)′dx.

Because division by zero is not allowed, (39) gives us that
∫ 1

0 |y0y
′
0|dx 6= 0.

This tell us

0 = 2
∫ 1

0
h′′′(y′′′0 )p−1[sgn(y′′′0 )]dx−K0,p

∫ 1

0
[sgn(y0y

′
0)](y0h)′dx. (43)

On an interval where y0y
′
0 and y′′′0 have constant sign, integration by parts

shows that (|y′′′0 |p−1[sgn(y′′′0 )])′′′ = 0, i.e., |y′′′0 |p−1[sgn(y′′′0 )] is a quadratic poly-

nomial.

We now show the existence proof of Chapter 3 carries over to the case

p 6= 2. Let yn be a sequence in D0 such that Jp(yn) −→ K0,p as n −→ ∞,

where K0,p is the infimum in (40) over D̂0 \ {0},

D̂0 = {yεB : y(0) = y′(0) = y′′(0) = y(1) = y′(1) = y′′(1) = 0} (44)
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and

B = {y : y is real on [a, b], y, y′, y′′ continuous, y ′′′εLp(0 , 1 )}. (45)

Without loss of generality, we may assume
∫ 1

0 |yny′n|dx = 1. Then we obtain

( ∫ 1

0
|y′′′n |pdx

)2/p

−→ K0,p

or

( ∫ 1

0
|y′′′n |pdx

)1/p

−→ (K0,p)
1/2.

Then {‖y′′′n ‖p} is a bounded sequence. Therefore [1] {y′′′n } has a weakly

convergent subsequence in Lp(0, 1), say y′′′n ⇀ m as n −→ ∞. From y′′n(t) =∫ t
0 y
′′′
n dx, we obtain

|y′′n(t)− y′′n(s)|2 = |
∫ t

s
y′′′n dx|2 ≤ |t− s|

∫ 1

0
|y′′′n |pdx. (46)

Equation (43) implies that {y′′n} is equicontinuous and uniformly bounded

(set s = 0). Then the Ascoli-Arzela Theorem tells us that {y′′n} has a uni-

formly convergent subsequence. Without loss of generality, assume y′′n −→ g

uniformly as n −→ ∞. Letting n −→ ∞ in y′′n(t) =
∫ t

0 y
′′′
n dx, we have

g(t) =
∫ t

0 mdx. Since y′′n −→ g uniformly as n −→∞, and y′n(x) =
∫ x

0 y
′′
n(t)dt,

we know that y′n −→ h uniformly as n −→ ∞ where h(x) =
∫ x

0 g(t)dt. Set

y(t) =
∫ t

0(t− s)g(s)ds. Then y(0) = 0. And y′(t) =
∫ t

0 g(s)ds = h(t) tells us

that y′(0) = h(0) = 0. This implies

y′(1) = h(1) =
∫ 1

0
g(t)dt = lim

n−→∞

∫ 1

0
y′′n(t)dt = lim

n−→∞
[y′n(1)− y′n(0)] = 0
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since ynεD̂0. Similarly, we have

y(1) =
∫ 1

0
hdx = lim

n−→∞

∫ 1

0
y′ndx = lim

n−→∞
[yn(1)− yn(0)] = 0

since ynεD̃0. Also, y′(t) =
∫ t

0 g(x)dx gives y′′(t) = d
dt

∫ t
0 g(x)dx = g(t). Then

y′′(0) = g(0) = limn−→∞ y
′′
n(0) = 0 since ynεD̂0. Similarly,

y′′(1) = g(1) = lim
n−→∞

y′′n(1) = 0.

Thus, yεD̂0 with y′′′ = h′′ = g′ = m. The uniform convergence of y′n to h

implies {yn} converges uniformly to y(x); thus,∫ 1

0
|yy′|dx = lim

n−→∞

∫ 1

0
|yny′n|dx = 1.

y′′′n ⇀ m = y′′′. Therefore, since y′′′n ⇀ m [1],

‖m‖2
p = ‖y′′′‖2

p =
( ∫ 1

0
|y′′′|pdx

)2/p

≤ lim inf
n−→∞

( ∫ 1

0
|y′′′n |pdx

)2/p

= K0,p.

On the other hand, we have

‖y′′′‖2
p =

( ∫ 1

0
|y′′′|pdx

)2/p

≥ K0,p

since yεD̂0 \ {0}. Therefore,
( ∫ 1

0 |y′′′|p
)2/p

= K0,p and y is an extremal

for (39) and (40). Finally, since
∫ 1

0 |yy′|dx = 1, y is nonzero on a set of

positive measure. The initial conditions are y(0) = y′(0) = y′′(0) = 0. To

show K0,p > 0, we suppose that y′′′ ≡ 0 so that y is a nontrivial quadratic

function, say y = mx2 + bx + c. Then y′ = 2mx + b and y′′ = 2m. But

y(0) = 0 = c, y′(0) = 0 = b, and y′′(0) = 0 = 2m implies that y ≡ 0, the

trivial quadratic solution. Thus, y′′′ 6≡ 0. Thus,
( ∫ 1

0 |y′′′|pdx
)2/p

6= 0. Thus,

K0,p > 0 and we are finished.
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