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ABSTRACT 
 

 Brecciated eucrites and howardites represent samples of the regolith of asteroid 4 Vesta. 

As such, they are a valuable source of data for understanding the products of surface alteration.  

Two different processes are investigated here: impact mixing of comminuted rocks to produce 

regolith samples, and formation of glasses in the regolith. 

  Chapter 1 describes four newly discovered eucrite breccias: three presumably paired 

meteorites, all named NWA 6105, and NWA 6106. For each meteorite, major- and minor-

element compositions of minerals were determined using the electron microprobe. Pyroxene Fe-

Mn co-variations and bulk-rock oxygen isotope compositions confirm their classification as 

eucrites. Variations in mineral compositions and textures are attributed to differences in clast 

types present (i.e., basaltic or cumulate eucrite). The pyroxene compositions support the 

hypothesis that samples NWA 6105,1; 6105,2; and 6105,3 are paired polymict eucritic breccias, 

whereas sample NWA 6106 is a monomict basaltic eucritic breccia. Two-pyroxene 

geothermometry yields temperatures too low for igneous crystallization. The variation in 

temperatures among samples suggests that metamorphism occurred prior to brecciation. 

 Chapter 2 is an investigation of glasses in eight howardites, with the aim of 

distinguishing their origins as impact melt or pyroclastic. Although theoretical calculations 

predict that pyroclastic eruptions could have taken place on Vesta, the occurrence of pyroclastic 

glasses in HED meteorites has never been documented. This study involved petrographic 

examination of textures, electron microprobe analysis of major and minor elements, and LA-

ICP-MS analysis for selected trace elements. Previously documented textural and compositional 

differences between lunar impact melt and pyroclastic glasses partly guided this study. This work 

yielded no positive identification of pyroclastic glasses. The most likely explanations are that 

pyroclastic glasses never formed, either because Vesta contains insufficient volatiles to have 

powered explosive eruptions, or because eruptive conditions produced optically dense fire-

fountains which produced deposits that accumulated in lava ponds. The impact-melt glasses were 

grouped (K-rich, low-alkali, and Ca-rich) based on compositions. The K-rich group is postulated 

to result from impacts into previously unsampled, feldspar-rich lithologies, while the low-alkali 

and Ca-rich glasses are the result of impacts onto known HED lithologies though the latter 

formed from a preferential melting of plagioclase.  
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 Meteorites that can be traced to their original parent body are of particular importance, 

because geologic context allows for a more thorough understanding of formational and 

evolutionary processes. The only class of asteroidal meteorites that can presently be assigned a 

specific parent body are the howardite-eucrite-diogenite (HED) achondrites, which are thought to 

have been derived from the second most massive asteroid, 4 Vesta. 

 Vesta has a mean radius of 258±12 km, a volume of ~7.19x10
7
±0.87x10

7
 km

3
, and a 

mass of 2.59x10
20

 kg (Russell et al., 2012). Due to its large size and the fact that it has 

experienced magmatic differentiation, Vesta has been referred to as the smallest terrestrial planet 

(Keil, 2002). Links between Vesta and the HED group have been made based on similarities in 

reflected spectra (e.g., McCord et al., 1970; Drake, 1979) and the discovery of spectrally similar 

small bodies (Vestoids) orbiting between Vesta and nearby resonances that act as escape hatches 

from the main belt (Binzel and Xu, 1993). Similar oxygen isotopic compositions for the different 

lithologies that comprise the HEDs also indicate a common origin (e.g., Clayton, 2004; Scott et 

al., 2009) and support extensive melting (Greenwood et al. 2005).  

 Vesta’s differentiation yielded different suites of rock types, possibly corresponding to 

depth within the asteroid. Moving from the upper mantle or lower crust towards the surface on 

Vesta, there are diogenites, eucrites, and howardites (Takeda, 1997; Beck and McSween, 2010; 

Beck, 2011). Most diogenites are coarse-grained cumulates of orthopyroxene (orthopyroxenitic 

diogenites) (Mittlefehldt, 1994; Keil, 2002; McSween et al., 2011). A few diogenites are 

harzburgites composed of orthopyroxene and olivine (Beck and McSween, 2010), and at least 

one is a dunite (Beck et al., 2011). Most are breccias, composed either of orthopyroxenite or of 

orthopyroxenite-harzburgite mixtures. The eucrites are composed mostly of pyroxene (primarily 

pigeonite, with minor augite) and plagioclase, with minor ilmenite, troilite, chromite, silica 

phases and/or silica-rich glass, and Fe-Ni metal (Keil, 2002; Mayne et al., 2009; McSween et al., 

2011). They represent shallower lithologies and are divided into two groups based on their 

environment of crystallization. Cumulate eucrites are coarse-grained gabbros with magnesian 

pyroxenes that crystallized in plutons, and basaltic eucrites are fine-grained rocks with ferroan 

pyroxenes that erupted on their parent body’s surface or were emplaced in sills and dikes (Keil, 

2002). However, most eucrite samples are brecciated and can be distinguished as monomict 

(clasts from a single eucrite lithology) or polymict (clasts from multiple eucrite lithologies). 

Howardites are brecciated mixtures of diogenite and eucrite that formed on or near the parent 

body surface (McSween et al., 2010). The focus of this thesis involves the surficial layer of 

Vesta—its regolith.  

 The regolith of any planetary body, particularly one without an atmosphere, represents 

the boundary between the surface and the space environment. Space weathering is a term that 

collectively describes processes, both physical and chemical, operating at the surface of an 

airless body. These processes include comminution (shattering, pulverizing) by impacts as well 

as irradiation by solar-wind and galactic/cosmic particles (Anand et al., 2004). Several authors 

have noted that space weathering on Vesta is different from that seen on other bodies, such as the 

Moon (e.g., Pieters et al., 2012). By studying the products of space weathering on Vesta (i.e., 

samples of its regolith) we can better understand the mechanisms that generated its unique 

characteristics. Both brecciated eucrites and howardites represent materials from Vesta’s 

regolith. These two meteorite types are the focus of this thesis. 

 The first chapter is a multi-authored paper (other authors include A. L. Modi, B. F. 

McFerrin, E. A. Worsham, H. Y. McSween, L. A. Taylor, D. Rumble, and R. Tanaka) that deals 

with polymict and monomict eucrite breccias. My role in the paper involved a detailed petrologic 
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and geochemical study of one of the samples (NWA 6105,3), compilation of data from the other 

3 samples, geothermometry calculations, and writing the paper. The paper provides basic 

petrographic descriptions of four new finds (three, presumably paired NWA 6105 samples, and 

NWA 6106) from Northwest Africa (Morroco), all recovered in close proximity. The co-

variations of Fe and Mn in pyroxenes, as well as the bulk-rock oxygen isotopic compositions, 

confirm the classification of these samples as eucrites. The textures and compositions of the 

major minerals (i.e., pyroxene and plagioclase) suggest that samples 6105,1 and 6105,2 contain 

both basaltic and cumulate eucritic clasts, whereas sample 6105,3 contains multiple basaltic 

eucrite clasts; all three meteorites are polymict breccias. Sample 6106 contains clasts from a 

single basaltic eucrite source, so it is a monomict breccia. Equilibration temperatures calculated 

using two-pyroxene geothermometry are the result of thermal metamorphism rather than igneous 

crystallization, and these indicate metamorphism occurred prior to assembly of the breccias.  

 The second chapter is a multi-authored paper (other authors include H. Y. McSween and 

L. A. Taylor) that investigates 56 glasses in 8 different howardite thin-sections in an attempt to 

determine their mode of formation (i.e., as impact-melt clasts or as pyroclastic glasses). The 

other authors provided edits and guidance. Of the glasses analyzed, none had compositions and 

textures consistent with a pyroclastic origin. Compositionally based glass groupings of impact-

melt clasts described by other workers (Barrat et al., 2012) were also investigated, yielding 3 

groups: K-rich, low-alkali, and Ca-rich. The K-rich group is unlike any HED compositions 

known and is inferred to perhaps represent previously unsampled feldspar-rich lithologies on 

Vesta, while the low-alkali and Ca-rich groups formed from impacts onto HED-like lithologies.  
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TWO NEW EUCRITE BRECCIAS FROM NORTHWEST AFRICA 
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1. INTRODUCTION 

 

HED meteorites represent the most extensive suite of achondrite samples from a proto-

planetary body, generally accepted to be asteroid 4 Vesta based on spectroscopic similarities and 

orbital constraints (e.g., McCord et al., 1970; Drake, 1979; Binzel and Xu, 1993). Eucrites, the 

“E” in the HEDs (howardites-eucrites-diogenites), are basalts or gabbros and are believed to 

have crystallized as surficial lavas or within plutons at shallow crustal levels. Minerals present 

include pyroxenes and plagioclase as the dominant phases and smaller amounts of troilite, 

chromite, ilmenite, silica or silica-rich glass, Fe-Ni metal, and phosphate (e.g., Stolper, 1977; 

Mittlefehldt et al., 1998; Keil, 2002; McSween et al., 2011). Depending on texture and mineral 

composition, the eucrites are subdivided into basaltic and cumulate eucrites.  Basaltic eucrites 

are fine- to medium-grained with Fe-rich, exsolved pyroxenes with fine lamellae (zoned or not, 

depending on whether they have suffered later thermal metamorphism) and plagioclase of An75-

96. Cumulate eucrites are coarse-grained with Mg-rich exsolved pyroxenes with coarse lamellae  

and plagioclase of An90-96 (e.g., Delaney and Prinz, 1984; Mittlefehldt et al., 1998; McSween et 

al., 2011). Eucrites are often brecciated and occur as either monomict (having only one pyroxene 

type) or polymict (having two or more pyroxene types) rocks. Characteristics of the pyroxene 

types are outlined in detail elsewhere (i.e., Miyamoto et al., 1978; Delaney et al., 1982).  

The focus of this study involves two newly discovered eucrite breccias represented by 

four meteorites: NWA 6105,1 (~12 g), 6105,2 (~1 g), 6105,3 (~9 g), and 6106 (~302 g); all were 

recovered in near proximity in Morocco. The purpose of this study is to provide classifications 

and petrographic descriptions for all four meteorites. Previous work on these samples was only 

preliminary and reported in abstracts (McFerrin et al., 2010; Singerling et al., 2011). By 

analyzing these new eucrites, we can provide a more representative sampling of these basaltic 

lithologies on Vesta, which is essential to a better understanding of Vestan magmatic processes. 

 

2. METHODS 

 

 Polished thin-sections of the four meteorites were observed with a petrographic 

microscope to describe their mineralogy and petrography. The imaging software Infinity Analyze 

was used to construct maps of the samples in reflected light at 2.5x magnification. Areas of 

interest were also imaged in plane-polarized and cross-polarized light at higher magnifications. 

Modal abundances were established using ImageJ (free image analysis software) on BSE (back-

scattered electron) images, following the method outlined by Liu et al. (2009). Mineral 

compositions were determined using the wavelength dispersive spectrometers (WDS) of the 

CAMECA SX-100 electron microprobe (EMP) analyzer. These analyses were performed with an 

accelerating potential of 15 keV, a beam current of 20 nA (10 nA for feldspars and glass), and a 

1-5 µm beam size (10 µm for plagioclase). Peak and background counting times were 20 sec. 

Detections limits (3σ above background) were as follows: 0.03 wt% for SiO2, TiO2, Al2O3, 

Cr2O3, MgO, MnO, and CaO; 0.05 wt% for FeO, Na2O and K2O; and 0.05-0.1 wt% for Co and 

Ni in metal.  
Oxygen isotope analyses were performed with a laser-fluorination vacuum-preparatory 

line and MAT 253 mass spectrometer at ISEI. The δ
18

O measurements were calibrated against 

VSMOW, which was fluorinated in the same vacuum-preparatory line and analyzed on the same 

mass spectrometer. The δ
17

O analyses were calibrated based on the analysis of terrestrial silicate 

minerals as △17
O = 0, where △17

O = 1000 x [ln (δ
17

O/1000+1) – 0.527 x ln (δ
18

O/1000+1)] 
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(Miller, 2002). The δ
18

O of reference garnet material, UWG-2 (Valley et al., 1995), gives a value 

of 5.65 ‰ relative to VSMOW. Analytical precision (1σ, N = 6), based on replicate analysis of 

UWG-2 garnet, is ± 0.03 ‰ for δ
17

O, ± 0.05 ‰ for δ
18

O, and ± 0.024 ‰ for △17
O. 

 

3. RESULTS 

 

3.1 Petrographic Descriptions 

3.1.1 NWA 6105,1 

 

 NWA 6105,1 is a breccia containing numerous eucrite clasts (Fig. 1a). The mineral 

modes (vol.%) of the sample are: pyroxene (low- and high-Ca) 56 %, plagioclase 43 %, with 

ilmenite, troilite, chromite, Fe-Ni metal, phosphate, and glass each <1 %. The pyroxenes in the 

matrix are predominately pigeonite with some grains having fine exsolution lamellae of augite. 

Shock effects are relatively common, causing fractures and undulatory extinction in plagioclase 

and pyroxene grains. Opaque minerals include angular chromite and ilmenite. Most of the minor 

minerals are enclosed by low-Ca pyroxenes; however, some grains occur as fragments within the 

matrix and as grains interstitial to pyroxene and plagioclase in clasts. The grain sizes of matrix 

minerals range from <5 µm to 4 mm.  

 Within the matrix of NWA 6105,1, there are numerous eucrite clasts (7 identified in our 

thin section), varying in size, composition, and texture. The clasts range in size from 1-5 mm and 

vary in shape from round to angular; they tend to be medium-grained and resemble cumulate 

eucrites, although their pyroxene compositions are not magnesian enough (Mittlefehldt et al., 

1998). All the clasts contain large pyroxene and plagioclase grains surrounded by a fine-grained 

clastic matrix. The clasts vary in texture from ophitic to hypidiomorphic granular and are 

predominately hypocrystalline containing crystals of pigeonite and plagioclase, within a matrix 

of pyroxene, plagioclase, opaque phases, phosphate, and in some cases, glass. Most of the 

pyroxene grains are pigeonite, with exsolution lamellae of augite ~5-15 µm thick. 

 

3.1.2 NWA 6105,2 

 

NWA 6105,2 is a breccia within a breccia, composed of two distinct lithologies, A and B, 

which make up ~75 % and ~25 % of the sample, respectively (Fig. 1b). The larger fragment A is 

coarse-grained with ophitic to subophitic clasts. The modes for the clast are: pyroxene (low- and 

high-Ca) 55 %, plagioclase 40 %, and matrix 5 %. Individual clast sizes are typically 0.5-1 mm. 

The majority of the pigeonite grains are moderately fractured. Most of the plagioclase grains are 

twinned and show undulatory extinction. Evidence of shock metamorphism includes bent twin-

lamellae, mosaicism, and pervasive fractures in plagioclase, although no maskelynite was 

observed. Ilmenite and chromite are non-uniformly distributed within fragment A, occurring as 

large (~50-100 µm) anhedral grains within the matrix or as irregular blebs or elongate rods in 

pigeonite grains.  

 The smaller lithic fragment B is fine-grained and shares many textural similarities with 

NWA 6105,1. The modes in this clast are: pyroxene (low- and high-Ca) 54 %, plagioclase 38 %, 

silica 8 %, with ilmenite, troilite, chromite, and Fe-Ni metal, each <1 %. The matrix of B  

is enriched in glass and opaque phases which cause it to appear darker.  
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Figure 1. Backscattered electron (BSE) images of thin sections (a) NWA 6105,1; (b) 6105, 2; (c) 

6105, 3; and (d) 6106. All images are at the same scale.  

 

 

3.1.3 NWA 6105,3 

 

NWA 6105,3 is a fine-grained eucrite breccia with textures indicative of shock 

metamorphism (Fig. 1c). There are 2 distinctive clasts: one brecciated and one sulfide-rich.. The 

modes of the sample are: pyroxene (low- and high-Ca) 51 %, plagioclase 30 %, silica 15 %, 

calcite 4 %, with ilmenite, troilite, chromite, and Fe-Ni metal, each <1 %. The pyroxene grains 

are subhedral to euhedral and range in size from <5-250 µm. The <5-50 µm pyroxene grains in 

the matrix are granoblastic polygonal, with exsolution. The largest (~300 µm) pyroxene clast, 

located near the center of the thin section, displays slightly different compositions from the rest 

of the pyroxenes in the sample. This is referred to as 6105,3 Clast in the figures and tables in 

later portions of the paper. Plagioclase ranges from crystalline to polycrystalline grains to 

maskeleynite. These grains range in size from 10 µm to 0.5 mm in the matrix. Ilmenite, troilite, 

chromite, and Fe-Ni metal occur as euhedral or anhedral grains that range in size from <5-130 

µm. They are dispersed throughout the sample, with the exception of the sulfide-rich clast 

characterized by anhedral troilite blebs. Silica occurs as anhedral grains that range in size from 

<5 µm to 0.2 mm. Using Ca X-ray maps, calcite was also observed as a secondary (terrestrial 

alteration) mineral present in fractures along one edge of the sample.  

 

3.1.4 NWA 6106 

 

 NWA 6106 is a breccia containing unbrecciated igneous lithic clasts (7 identified) which 

have an ophitic to subophitic texture (Fig. 1d). The modes of this sample are: pyroxene (low- and 

high-Ca) 47 %, plagioclase 48 %, silica 3 %, with calcite, ilmenite, troilite, chromite, and Fe-Ni 

metal, each <1%. The pyroxenes contain exsolution lamellae ranging in apparent thickness from 

<5-12 μm and are subhedral to anhedral. Pyroxenes range in size from <0.1-1.7 mm.  The 

chromite, ilmenite, and metal grains are anhedral, ranging from <0.1-0.3 mm. The plagioclase is 
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mostly lath-shaped with Carlsbad and albite twinning. The grain-size ranges from <0.1 mm in 

the crushed matrix to ~0.8 mm in some lithic clasts.  A vein, which was determined to be calcite 

with the EMP, cuts through the thin section and is interpreted as a product of terrestrial 

weathering. 

 

3.2 Mineral Compositions 

3.2.1 Pyroxene 

 

 NWA 6105 and 6106 are breccias, and as such it should come as no surprise that they 

have significant variations in the major-element compositions of pyroxene and plagioclase. 

Representative analyses were chosen to illustrate the ranges of compositions of pyroxene and 

plagioclase. The results for each sample are listed in Table 1. 

Variations in pyroxenes mainly occur in Ca-content and, to a lesser extent, Mg- and Fe-

content.  Fig. 2 shows pyroxene quadrilaterals for all analyzed pyroxene compositions in the four 

meteorites. Ternary diagrams of minor elements (Ti-Al-Cr) are included as well. As the 

pyroxene composition becomes more Ca-rich, it also becomes less Fe-rich. The trend observed 

here was also reported by Mayne et al. (2009) and is termed the Ca-Fe trend. Finely exsolved 

pyroxenes cause what appears to be a continuous range in composition along the Ca-Fe trend. In 

reality, the pyroxenes are either high-Ca (exsolved augite lamellae) or intermediate- to low-Ca 

(host pigeonite). The limitations of instrument resolution cause what appear to be intermediate 

compositions.  

Pyroxenes in NWA 6105,1 and 6105,2 (Fig. 2a and b) show two distinct Ca-Fe trends, 

one anchored at ~En50 and another at ~En40. These are symbolized according to the type of 

eucrite clast: cumulate (open circles) versus basaltic (closed circles). NWA 6105,1 shows more 

variation in the En50 trend, which may reflect several different cumulate compositions in this 

sample.  NWA 6105,3 also has pyroxenes with several trends, as shown in Fig. 2c and d; one 

trend is characteristic of the groundmass pyroxenes (En40), and the other represents analyses of a 

single, large (~300 µm) pyroxene clast (En46-40). NWA 6106 has only one Ca-Fe trend (En36), as 

shown in Fig. 2e. The variety of these major-element trends in pyroxenes reflect different 

formational histories (i.e., parent magmas, degree of thermal metamorphism, etc.) 

 Minor elements such as Ti, Al, and Cr equilibrate more slowly than major elements in 

pyroxenes, so one can expect a greater spread in these data even after thermal metamorphism 

(Mayne et al., 2009). Fig. 2 shows ternary diagrams of these three elements. Two trends are 

present, as described by Mayne et al. (2009): (1) constant Ti and variation in Cr-Al, as illustrated 

in Fig. 2c; (2) constant Cr and variation in Ti-Al, as illustrated in Fig. 2d. The other diagrams 

show mixtures of these two trends. There appears to be no consistent pattern among minor 

elements that distinguishes cumulate and basaltic eucrite clasts. 

 

3.2.2 Plagioclase 

 

 Plagioclase shows a range of compositions for the analyzed grains in each meteorite 

sample (Table 1). Fig. 3 shows portions of an An-Ab-Or ternary diagram, depicting the 

compositions of plagioclase. The heterogeneous compositions of the plagioclase imply that it is 

not equilibrated in terms of major-elements, unlike the pyroxenes. Plagioclase takes more time 

than pyroxene does to equilibrate in terms of major elements (Mayne et al., 2009). 
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Table 1.  Representative major- and minor-element data from electron microprobe analyses (oxides in wt. %, cations in nb ions). 

 NWA 

6105,1 

Opx† Augite† Plag† NWA 

6105,2 

Opx† Augite† Plag† 

Cum Basaltic Cum Basaltic Core Rim Cum Basaltic Cum Basaltic Core Rim 

SiO2 50.9 49.0 51.0 52.1 44.4 46.3 SiO2 51.1 49.6 51.4 50.1 44.7 49.1 

TiO2 0.28 0.10 0.39 0.18 <0.03  <0.03 TiO2 0.15 0.19 0.71 0.48 <0.03 <0.03 

Al2O3 0.33 0.41 1.02 0.60 34.8 33.8 Al2O3 0.57 0.24 1.41 0.68 35.4 32.7 

Cr2O3 <0.03 0.56 <0.03 0.15 <0.03  <0.03 Cr2O3 0.48 0.23 0.42 0.60 <0.03 <0.03 

MgO 17.9 12.3 13.7 11.3 <0.03  <0.03 MgO 17.0 12.5 13.4 11.1 <0.03 <0.03 

CaO 0.53 0.65 20.4 21.5 18.9 17.4 CaO 0.56 2.26 20.5 15.0 18.6 15.7 

MnO 0.86 1.13 0.44 0.41 <0.03  <0.03 MnO 0.98 1.08 0.44 0.72 <0.03 <0.03 

FeO 29.1 35.5 12.2 13.6 0.58 0.14 FeO 29.5 33.9 11.8 21.1 0.43 0.29 

Na2O <0.05 <0.05 <0.05 0.06 0.61 1.57 Na2O <0.05 <0.05 <0.05 <0.05 0.69 2.57 

K2O <0.05 <0.05 <0.05 <0.05 <0.05 0.14 K2O <0.05 <0.05 <0.05 <0.05 0.10 0.11 

Total 100.1 99.8 100.3 100.0 99.3 99.3 Total 100.3 100.1 100.1 99.8 99.9 100.5 

              

Ox Basis 6 6 6 6 8 8  6 6 6 6 8 8 

Si 1.966 1.970 1.942 1.985 2.069 2.144 Si 1.971 1.978 1.938 1.955 2.068 2.235 

Ti 0.008 0.003 0.011 0.005 n.d. n.d. Ti 0.004 0.006 0.020 0.014 n.d. n.d. 

Al 0.015 0.019 0.046 0.027 1.911 1.844 Al 0.026 0.011 0.063 0.031 1.929 1.757 

Cr n.d. 0.018 n.d. 0.004 n.d.  n.d. Cr 0.015 0.007 0.013 0.019 n.d. n.d. 

Mg 1.034 0.739 0.775 0.644 n.d.  n.d. Mg 0.981 0.741 0.756 0.644 n.d. n.d. 

Ca 0.022 0.028 0.830 0.879 0.943 0.866 Ca 0.023 0.096 0.829 0.629 0.92 0.766 

Mn 0.028 0.038 0.014 0.013 n.d.  n.d. Mn 0.032 0.036 0.014 0.024 n.d. n.d. 

Fe 0.940 1.193 0.388 0.435 0.023 0.005 Fe 0.953 1.131 0.372 0.689 0.017 0.011 

Na n.d. n.d. n.d. 0.004 0.055 0.141 Na n.d. n.d. n.d. n.d. 0.062 0.227 

K n.d. n.d. n.d. n.d. n.d. 0.009 K n.d. n.d. n.d. n.d. 0.006 0.007 

Total 4.017 4.009 4.019 3.996 5.004 5.009 Total 4.004 4.008 4.005 4.007 5.001 5.003 
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Table 1.  Continued         

NWA 

6105,3 
Opx† Augite† Plag† NWA 

6106 

Opx† Augite† Plag†     

pyx3b pyx16a Core Rim LC1 LC4 Core Rim     

SiO2 49.9 50.4 44.7 48.5 SiO2 48.9 51.3 45.2 48.0     
TiO2 0.15 0.49 <0.03 <0.03 TiO2 0.29 0.25 <0.03 <0.03     
Al2O3 0.15 0.78 35.2 32.8 Al2O3 0.33 0.57 35.1 32.5     
Cr2O3 0.08 0.39 <0.03 <0.03 Cr2O3 0.13 0.26 <0.03 <0.03     
MgO 13.1 10.9 <0.03 <0.03 MgO 11.1 11.1 <0.03 <0.03     
CaO 3.00 18.2 18.4 15.9 CaO 2.25 19.9 18.8 16.4     
MnO 1.02 0.61 <0.03 <0.03 MnO 1.10 0.53 <0.03 <0.03     
FeO 32.4 18.0 0.09 0.13 FeO 35.8 15.8 0.09 0.22     
Na2O <0.05 0.06 0.89 2.24 Na2O <0.05 <0.05 0.94 2.02     
K2O <0.05 <0.05 <0.05 0.37 K2O <0.05 <0.05 <0.05 0.21     
Total 99.8 99.9 99.2 99.9 Total 99.84 99.76 100.1 99.4     
              

Ox Basis 6 6 8 8  6 6 8 8     
Si 1.982 1.935 2.076 2.222 Si 1.974 1.957 2.082 2.215     
Ti 0.004 0.018 n.d. n.d. Ti 0.008 0.014 n.d.  n.d.     
Al 0.007 0.038 1.926 1.774 Al 0.016 0.017 1.908 1.770     
Cr 0.003 0.026 n.d. n.d. Cr 0.004 0.028  n.d.  n.d.     
Mg 0.775 0.625 n.d. n.d. Mg 0.665 0.666  n.d. n.d.      
Ca 0.128 0.751 0.915 0.779 Ca 0.097 0.088 0.927 0.811     
Mn 0.034 0.018 n.d. n.d. Mn 0.038 0.037  n.d. n.d.     
Fe 1.074 0.601 0.003 0.005 Fe 1.207 1.223 0.003 0.008     
Na n.d. 0.004 0.08 0.199 Na n.d. n.d. 0.084 0.181     
K n.d. n.d. n.d. 0.022 K n.d. n.d. n.d. 0.013     
Total 4.009 4.016 5.003 5.001 Total 4.008 4.019 5.007 4.997     
†representative analyses 

n.d. = not detected; Cum = cumulate 
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Figure 2. Pyroxene quadrilaterals and minor-element ternary diagrams for (a) NWA 6105,1; (b) 

6105,2; (c) 6105,3; (d) 6105,3Clast; and (e) 6106. Open circles=cumulate eucrite; closed 

circles=basaltic eucrite. 
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Figure 3.  An-Ab-Or ternary diagram depicting the plagioclase compositions in (a) NWA 

6105,1; (b) 6105,2; (c) 6105,3; and (d) 6106. Basaltic and cumulate envelopes labeled (Mayne et 

al., 2009; McSween et al., 2011).  
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4. DISCUSSION 

 

4.1 Classification 

 

 Data obtained from electron microprobe analysis can aid in quantitatively determining 

the classification of these samples as eucrites. A useful method involves plotting Mn versus Fe in 

pyroxenes (Fig. 4). The figure includes reference lines for Vesta, Earth, and the Moon (Papike et 

al., 2003; Lentz et al., 2007).  

Oxygen isotopes are also useful in identifying the parent body of a given meteoritic 

sample. Table 2 lists oxygen isotope data, and Fig. 5 illustrates these values for the NWA 

samples studied. All samples plot approximately along the HED mass-fractionation line.      

 

4.2 Geothermometry 

 

 The QUILF (quartz-ulvospinel-ilmenite-fayalite) two-pyroxene geothermometer 

(Andersen et al., 1993) was used to estimate the equilibration temperatures of NWA 6105 and 

6106. The exsolution lamellae of augites in host orthopyroxenes are suitable for 

geothermometry. Normally, the QUILF two-pyroxene geothermometer requires known Ca-

contents of coexisting augite-orthopyroxene and the orientation of the two-pyroxene tie-line. For 

this work, the end-members were chosen for the cumulate and basaltic pyroxene trends within 

samples containing both clast types, because the pyroxene values form discrete mixing lines for 

each trend. The QUILF program uses En and Wo values for augite-orthopyroxene pairs to 

calculate the equilibration temperatures. The data used for the calculations, as well as the 

equilibration temperatures obtained, are summarized in Table 3. 

 The determined temperatures, in all cases, are too low to reflect igneous crystallization 

which requires crystallizations from a melt; for eucrites, this occurs at ~1060°C  (Stolper, 1977). 

Instead, the calculated temperatures likely resulted from thermal metamorphism. The 

temperatures do not closely agree for the basaltic clasts in the NWA 6105 samples (6105,1 = 645 

±32; 6105,2 = 886 ±39; and 6105,3 = 814 ±46 °C) indicating that metamorphism likely occurred 

before breccia assembly. It is important to note that the temperature obtained for NWA 6105,1 is 

very low for a basaltic eucrite. In fact, it is lower than the temperature calculated for the 

cumulate clasts (652 ±52°C) in this sample. 

 Some of the equilibration temperatures are in agreement with values reported in the 

literature within standard error. The exceptions include both basaltic and cumulate clasts in 

NWA 6105,1 and cumulate clasts in NWA 6105,2. Typical basaltic eucrite equilibration 

temperatures range from 800-950°C (Delaney et al., 1984) with a more complete range of 700-

1000°C (Yamaguchi, 1996). For a comparison to other Vestan lithologies, the cumulate eucrite 

range is 765-992°C, while the diogenite range is 719-840°C (Harlow et al., 1979; Takeda et al., 

1976; Mittlefehldt, 1994). The fact that some of the NWA 6105 temperatures lie outside of 

literature values means some clasts of this sample experienced extremely slow cooling. While 

the equilibration temperatures have two values for the NWA 6105 samples (~660°C and 

~850°C), reflecting their polymict nature, the temperature for NWA 6106 is distinct (722°C).  
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Figure 4. Mn versus Fe contents of pyroxenes plot along the bold Vesta line defined by other 

HEDs (Papike et al., 2003; Lentz et al., 2007) within standard error. 

 

 

Table 2. Oxygen isotope data for NWA 6105,1; 6105,3; and 6106. The data are in good 

agreement with the HEDFL. 

Sample Δ
17

O δ
17

O δ 
18

O 

NWA 6105,1 -0.255 1.71 3.74 

 -0.237 1.77 3.80 

NWA 6105,3 -0.223 1.83 3.91 

 -0.239 1.76 3.80 

NWA 6106 -0.237 1.75 3.77 

 -0.264 1.78 3.88 

Average -0.243 1.77 3.82 

Standard Dev 0.015 0.04 0.06 

 

 

. 

Figure 5. Oxygen isotope plot illustrating that NWA 6105 and 6106 (gray x’s) are HEDs. The 

terrestrial fractionation line (TFL) is plotted for reference. Data are from Greenwood et al. 

(2005) and Franchi et al. (1999).  
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Table 3. Geothermometry data used for QUILF program and equilibration temperatures for 

NWA samples. 
  6105,1 6105,2 6105,3 6105,3Clast 6106 

  Cum Bas Cum Bas Bas Bas Bas 

Augite En (%) 36.3 32.9 38.6 32.8 32.3 33.1 29.4 

 Wo (%) 45.0 44.9 42.4 32.1 41.8 36.0 41.8 

Opx En (%) 54.8 38.2 50.2 39.8 38.8 40.5 35.6 

 Wo (%) 0.81 1.33 1.08 3.23 2.83 2.60 1.96 

T (°C)  652±52 645±32 684±32 886±39 814±46 828±40 722±30 
Cum = cumulate 

Bas = basaltic 

  

 

4.3 Pairing 

 

 The NWA 6105 and 6106 samples were all found in close proximity, which may suggest 

pairing. If paired, these samples should display similar textures and mineral compositions. We 

also might expect the temperatures of equilibration to be similar, but the brecciated nature of the 

samples makes the utility of this characteristic questionable.  

 The pyroxene compositions and textures indicate that samples NWA 6105,1; 6105,2; and 

6105,3 are polymict eucritic breccias containing either cumulate and basaltic clasts or basaltic 

clasts of differing compositions. The Ca-Fe trends of each are essentially equivalent (cumulate 

clasts with En50 and basaltic with En40) with the exception of the large pyroxene clast (En46-40) in 

6105,3 which falls in between the two trends on the pyroxene quadrilateral. Although no 

cumulate eucrite clasts were found in 6105c, it is clearly polymict and cumulate clasts may occur 

in a larger sample. Sample NWA 6106, on the other hand, is a monomict basaltic eucritic 

breccia. NWA 6106 has different textures and pyroxene compositions (Ca-Fe trend of En36) than 

any of the 6105 samples. The geothermometry results provides further evidence of pairing.The 

NWA 6105 samples have two distinct values, indicating their polymict nature, while the NWA 

6106 sample has one value that is distinct from either of the temperatures obtained for 6105.  

 A combination of the above evidence implies that the NWA 6105 samples are paired 

though only further work, such as determining cosmic-ray exposure ages, can truly determine 

whether this is indeed the case. The evidence also suggests that the NWA 6105 samples and the 

NWA 6106 sample are not paired.   

 

5. CONCLUSIONS 

 

 The following points summarize our findings related to NWA 6105 and 6106: 

 All four meteorites are breccias composed of eucrite clasts set in a finely comminuted 

matrix. 

 Classification of these meteorites as eucrites is supported by the pyroxene Mn vs. Fe plot 

and oxygen isotope data.  

 Pyroxene grains in NWA 6105,1 and 6105,2 define two Ca-Fe trends, one basaltic and 

one cumulate; 6105,3 pyroxenes also define multiple basaltic Ca-Fe trends, both basaltic; 

and those of 6106 define one basaltic Ca-Fe trend.  



 

18 

 

 We suggest that NWA 6105,1, 6105,2 and 6105,3 are paired samples of a polymict 

basaltic/cumulate eucrite breccia, and NWA 6106 is a monomict basaltic eucrite breccia. 

 Geothermometry yields temperatures of metamorphic equilibration ranging from ~652-

886°C. These temperatures indicate metamorphism before the final assembly of the 6105 

breccia. 
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CHAPTER 2 

GLASSES IN HOWARDITES: IMPACT-MELT CLASTS OR 

PYROCLASTIC GLASSES? 
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1. INTRODUCTION 

  

 Meteorite breccias, which represent near-surface lithologies on airless bodies, often 

contain glasses. Using the Moon as an analogy, these glasses could potentially be either impact-

melt clasts or pyroclastic glasses. Here, we explore the possibility that these two types of melts 

formed on asteroid 4 Vesta. The textures and compositions of glasses can be quite definitive. 

They are often minor components of regoliths primarily due to the nature of their genesis—rapid 

quenching of a melt. In a terrestrial setting, pyroclasts most often occur during fire-fountaining, 

which takes place in mildly explosive volcanic eruptions. The airborne droplets solidify before 

falling back to the surface, forming pyroclastic glasses. Another mechanism for producing 

rapidly quenched melts, not so common on Earth, is shock from hypervelocity micro-meteorite 

(<1 mm) impacts. Micro-meteorite impacts that form melts are  on airless bodies, where impact-

melt clasts can accumulate over long time-spans (e.g., Schaal and Horz, 1977; Chapman, 1997; 

Bell et al., 2002; Horz et al., 2005). 

  

1.1 Impact-Melt Clasts 
 

 The surfaces of airless bodies are prone to energetic micro-meteorite impacts on small 

scales not experienced on Earth, because its atmosphere decelerates all but the largest impactors. 

Projectiles impact at significant speeds, though these speeds are a function of heliocentric 

distance (Dohnanyi, 1975; Grun et al., 1977). Micro-meteorite impact events that occur on the 

Moon have an average velocity of 14 km/s, while those that occur between objects in the asteroid 

belt average 5 km/s (Hartmann, 1977). This difference in velocity causes less melt to be 

produced from impacts on asteroids than on the Moon (Keil et al. 1997). Following the impact 

event, the impactor and target material (roughly equivalent in volume to the impactor) are 

compressed to high pressures resulting in the formation of a shock wave (Pierazzo et al., 1997). 

The energy released from this compression and subsequent relaxation produces the heat 

necessary to form impact melt (Melosh and Vickery, 1991). This only occurs in impacts that 

reach a certain energy threshold. For lower energy impacts, melting primarily occurs at grain 

boundaries (Schaal et al., 1979). The amount of melt produced depends on multiple factors such 

as ambient temperature and pressure, gravity, impact velocity, projectile mass, target porosity, 

target material, shape of the impactor, etc. (Schaal et al., 1979; Vickery and Melosh, 1991; 

Pierazzo et al., 1997).      

 When impact melts form, they are often heated to their boiling points, and cooled rapidly 

enough to form glasses (Fig. 1). Not all minerals have the same impact-melting temperature, so 

relict grains (if partially melted, they appear to have been “resorbed”) are often present in the 

resulting impact melts, along with a general lack of compositional homogeneity of the glass. At 

lower energy impacts (20 to 40 GPa presures), feldspar-rich glasses result because feldspar is 

among the first phases to melt under shock conditions (Schaal et al., 1979; Stoffler et al., 1991), 

meaning impact melts are often enriched in SiO2 and Al2O3 compared to the bulk compositions 

of the target material (Horz et al., 2005). For higher energy impacts, the glass composition 

approaches that of the bulk rock (Schaal et al., 1979; Horz et al., 2005).  



 

23 

 

 
Figure 1. Photomicrographs (plane polarized light) of impact-melt clasts in howardite samples. 

Note the presence of partly resorbed mineral grains and the irregular shapes of both (a) and (b). 

Quench textures are displayed in (c) and (d). 

  

  

 Other common characteristics of impact-melt glasses include fine-grained textures, 

formed by rapid crystallization, and high concentrations of siderophile elements (Beck et al., 

2011). The latter are due to the nature of the impactor, which is usually chondritic in composition 

with a significant abundance of metals and sulfides. Impact-metamorphosed breccia clasts share 

many physical similarities with crystallized impact-melt clasts. This, together with the same 

environment of formation, make distinguishing between the two rather difficult. Ryder and 

Spudis (1987) outlined several characteristics common only to impact-melt clasts in lunar 

breccias that help to differentiate them. These include euhedral/skeletal olivine, bladed ilmenites 

and ilmenite chains, plagioclase laths, interstitial glass, rounded clasts, vesicles, and 

heterogeneous mineral compositions. The value of impact-melt clasts lies in their ability to tell 

us about the geochemistry of the original target materials which, in turn, adds to the lithologic 

inventory of a planetary body (Delano, 1991).  

 

1.2 Pyroclastic Glasses 

  

 Pyroclasts are the “individual crystals, crystal fragments, glass fragments, and rock 

fragments generated by disruption as a direct result of volcanic action” (Schmid, 1981). The 

formation of pyroclasts is driven by density contrasts which initiate motion of the gases in a 

magma (Wilson and Head, 1981). The first material erupted at the surface of a body tends to be 

volatile-rich. As a consequence, it erupts explosively forming features called fire- or lava-

fountains. These fire-fountains allow droplets of lava to form, which cool in flight producing 

glass beads or pyroclastic glasses. The formation of pyroclastic glasses is limited to silicate 
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planetary bodies which experienced magmatic activity sometime in their past. The Moon is the 

only body, other than Earth, from which we have documented pyroclastic glass samples. Large 

asteroids, those big enough to experience differentiation, also had the potential to form 

pyroclastic glasses.   

 Asteroid 4 Vesta appears to meet the size qualification for pyroclastic glass retention 

(Wilson et al., 2010), but pyroclastic material has not yet been definitively identified (Keil, 

2002). Pyroclastic glass formation requires magmas containing sufficient volatiles, and it is 

unlikely that Vesta’s magmas were completely volatile-free (Grady et al., 1997a & b; Sarafian et 

al., 2012). Vesta is an excellent case study due to its large size and abundance of near-surface 

samples (howardites) that contain glasses.  

 

1.3 Howardites 

 

 If Vesta experienced violent volcanic eruptions that produced pyroclastic glasses, we 

could best hope to find such material in howardites. “Regolithic” howardites were on the surface 

of Vesta. They exhibit enrichment in solar-wind noble gases, higher siderophile (Ni) abundances, 

and greater proportions of glasses and impactor-chondritic clasts (Warren et al., 2009a, 2009b). 

The presence of carbonaceous chondrite xenoliths in these breccias cause howardites to exhibit a 

greater spread about the eucrite-diogenite compositional mixing line than other groups 

(Wilkening, 1973; Mittlefehldt et al., 1998; Keil, 2002). Glasses in regolithic howardites include 

impact-glass beads and impact-melt clasts (e.g., Labotka and Papike, 1980; Mittlefehldt and 

Lindstrom, 1997). The vast majority of howardites are actually “fragmental” rather than 

“regolithic” (Warren et al, 2009a, 2009b). Members of this group lack the diagnostic 

characteristics cited above but still represent near-surface samples.  

 The difficulty of recognizing pyroclastic glasses lies in distinguishing them from the 

common impact-melt clasts. Here we evaluate chemical and physical characteristics particular to 

the two glass types in howardites. Extensive work attempting to distinguish impact-melt glasses 

from pyroclastic glasses has been performed on lunar samples (e.g., Heiken and McKay, 1974, 

Butler, 1978; Stone et al., 1982; Delano, 1986; Shearer and Papike, 1993; Taylor et al., 2006). In 

this study, we explore whether the lunar glasses can be used as an analogue for Vestan glasses. 

Both are small, rocky, airless bodies with low fO2, an abundance of basaltic surficial 

compositions, and similar depletions of volatile elements (Papike et al. 1998; Taylor et al., 2006; 

McSween et al., 2011).  

 The purpose of this work is a study of glasses in howardites with an attempt at addressing 

two primary questions: 

 

 1. Are impact-melt clasts and pyroclastic glasses both present in howardites?  

 This portion of the chapter is termed “The Search for Pyroclastic Glasses”. The value of 

discovering Vestan pyroclastic glasses lies in the information they might yield on volatile 

inventory and eruptive conditions.  

 

 2. Are there compositional groupings of impact-melt glasses in howardites? 

Compositionally unique groups of howardite glasses have been identified by other authors 

(i.e., Warren et al., 2009b; Barrat et al., 2009a, 2009b, 2012). If these groupings are real, 

they might represent some lithologies not yet seen on Vesta, adding to its lithologic 

diversity. 
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2. METHODS 

 

 The first stage in this research involved obtaining appropriate meteorite samples. We 

began by examining several howardite samples recovered from Antarctica that were suggested to 

possibly contain pyroclastic glasses based on textural features (D. W. Mittlefehldt, personal 

communication). To this list we added other howardites with high glass contents, as determined 

by petrographic inspection of the Antarctic howardite collection at the NASA Johnson Space 

Center.  The studied samples are listed in Table 1. Thin sections of these were allocated by the 

Meteorite Working Group and obtained from NASA’s Astromaterials Acquisition and Curation 

Office. Basic petrographic analyses of glasses were performed with a petrographic microscope. 

The imaging software Infinity Analyze was used to construct sample maps in transmitted and 

reflected light at 2.5x magnification. Glasses of interest were also imaged in plane-polarized and 

reflected light at higher magnifications. 

 Glasses were analyzed for major- and minor-element compositions using the CAMECA 

SX-100 electron microprobe (EMP) analyzer at the University of Tennessee. Only glasses with 

minimal crystalline phases were studied. For the glass-grouping portion of this work, each 

individual probe point was treated as an individual analysis due to heterogeneities within glass 

clasts. These analyses were performed with wavelength dispersive spectrometers using an 

accelerating potential of 15 keV, a beam current of 10 nA, and a 5-10 µm diameter beam.  

 A test for volatilization/mobilization during EMP analyses was performed on a K-rich 

glass in which we compared values obtained for Na2O and K2O at different currents and different 

beam sizes (test 1 = constant current of 10 nA and variable beam sizes of 10 and 1 µm; test 2 = 

constant beam size of 10 µm and variable beam currents of 10 and 20 nA). No volatilization was 

observed, supporting our use of the aforementioned beam currents and sizes (10 nA, and a 5-10 

µm). Peak and background counting times were 20s (30s for K and Na). Detection limits (3σ 

above background) were as follows: 0.02 wt% for Al2O3; 0.03 wt% for SiO2; 0.04 wt% for MgO, 

K2O, CaO; 0.05 wt% TiO2; 0.06 wt% for Na2O; 0.07 wt% for FeO; 0.08 wt% Cr2O3. The 

number of analyses per glass varied from 5 to 23 depending on its size. Only analyses with wt% 

totals of 98.5–101 were used. 

      

 

Table 1. Howardite samples used in this study. The glasses studied column includes those 

imaged for their textures and those analyzed with the electron microprobe. The analyses column 

refers to the total individual microprobe points measured for the crystalline-free glasses. 

Sample Glasses Studied Analyses 

EET 87532,13 9 25 

EET 87509,68 7 0 

EET 87518,12 6 0 

QUE 94200,16 12 65 

PCA 02014,6 3 0 

LAP 04838,19 11 0 

MIL 05085,11 7 39 

MIL 05085,2 1 23 
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 As with major elements, each individual analysis was treated as its own glass sample for 

trace elements. Trace-element compositions were determined using an Agilent 7500ce ICP-MS 

combined with an Excimer 193 nm ArF GeoLasPro LA system at Virginia Polytechnic Institute 

and State University. Depending on the sizes of the glass samples, beam sizes ranged from 16-32 

µm and dwell times from 30-40 sec. For an external standard, NIST 610 glass was used a total of 

four times before and after each analysis. For an internal standard, all elements were summed to 

100%. Analysis Management System (AMS) software was used for data reduction with a 3σ 

LOD (Mutchler et al., 2008). The accuracy and precision of the analyses were 2-5 % relative 

(Norman et al., 1996).  

 

3. THE SEARCH FOR PYROCLASTIC GLASSES 

 

3.1 Criteria for Discriminating Between Lunar Glass Origins 

  

 Considerable study of lunar glasses has resulted in several criteria, both physical and 

chemical, that can be used in tandem to determine the likelihood of a particular glass being of  

pyroclastic origin. Delano (1986) identified these as follows:  

 

 1. Absence of partly resorbed clasts and schlieren (swirly texture, Fig. 2).  

  Both these textures are indicative of impact melts and represent pre-existing 

 heterogeneities in the target material. 

 2. Intra-sample chemical homogeneity for the nonvolatile elements (e.g., Ti, Al, Cr, Fe,      

 Mn, Mg, Ca, and REEs). These element abundances should be relatively 

 consistent in a  pyroclastic glass. 

 3. Inter-sample chemical homogeneity and/or fractionation trends.  

  This constraint applies to multiple pyroclastic glasses.  

 4. High Mg/Al ratio compared to the lunar regolith.  

  This constraint is due to the former existence of a global magma ocean. The 

 source material of the  pyroclastic glasses is Al-depleted due to the formation of 

 the anorthositic highlands.  

 5. Mg-correlated Ni abundances.  

  Ni acts as a compatible element in olivine, and so Mg and Ni show a correlation.  

The previous five criteria apply to glasses in thin section and/or grain mounts. The following two 

criteria only apply to whole grains; consequently, they are not useful as a proxy for Vestan 

glasses since our study was limited to in situ techniques. 

 6. Surface coatings of volatile elements. 

 7. Ferromagnetic resonance intensity. 
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Figure 2. Textures typical of impact-melt clasts: (a) schlieren, (b) Fe or sulfide “dust” in the 

center of the glass, and (c) partly resorbed clasts. (a) from Apollo 11 10084 courtesy of Yang 

Liu, (b) from QUE 94200,16, and (c) from EET 87509,68. 

 

 

 
Figure 3. Skeletal texture of a glass in EET 87532,13 in (a) plane polarized light and (b) as a 

backscatter electron image.  
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 The most important criterion is intra-sample chemical homogeneity of the glass. If a glass 

does not meet this criterion, we can automatically assume that it is not pyroclastic in origin. Still, 

other criteria have some merit as well. Analyzing the textures of impact-melt clasts and 

pyroclastic glasses is a qualitative method for distinguishing the origin of a given sample. Both 

represent materials formed by rapid quenching which produces vitric (glassy), vitrophyric 

(glassy with small phenocrysts), dendritic (tree-like crystal growth), or skeletal (Fig. 3) textures. 

Impact melts often contain incompletely melted clasts (relict grains/partly resorbed clasts) and 

metal/sulfide dust grains (Fig. 2c), whereas pyroclastic glasses may contain phenocrysts but are 

most often just glass. Still, impact-melt clasts can also be entirely devoid of crystalline phases, 

making the textural distinction between pyroclastic glasses and impact-melt clasts difficult. 

Therefore, chemical homogeneity of the glass is paramount.   

 The primary cause of textural differences between pyroclastic glasses and impact-melt 

clasts involves the different mechanisms of formation. Impact-melt clasts form as a result of 

shock, and so one would expect relict minerals to exhibit indicators of shock. These might be (i) 

dislocations, planar microstructures (PFs and PDFs), mechanical twins, kink bands, and 

mosaicism; (ii) high-pressure phase transformations; (iii) decomposition into two or more 

phases; and (iv) partial melting and vaporization (Langenhorst, 2002). Shapes typical of 

pyroclastic glasses include spheres, oblate and prolate spheroids, teardrops, shards, and irregular 

shapes (Stone et al., 1982). Impact-melt clasts are often angular or amoeboidal and can form very 

large clasts, relative to pyroclastic glasses.  

 Differences in texture between the two glass types are less diagnostic than differences in 

composition and so the two should, ideally, be used in conjunction. A shock origin causes lunar 

impact-melt clasts to lose alkalis and other volatile elements (Ivanov and Florensky, 1975; 

Jeanloz and Ahrens, 1976; Naney et al., 1976; Delano et al., 1981; Fudali et al., 1984; Vaniman, 

1990; Keller and McKay, 1991, 1992; Papike et al. 1997). Chemical characteristics common to 

lunar pyroclastic glasses are higher MgO and lower Al2O3 and CaO abundances in comparison to 

most fine-grained non-cumulate mare basalts (Shearer and Papike, 1993), volatile concentrations 

equal to or less than those of mare basalts (Papike et al. 1998), and enrichment in the following 

elements in comparison to mare basalts: Br, Zn, Tl, Ag, Pb, Sb, Bi, Au, and Cu (Chou et al., 

1975; Wasson et al., 1976; Delano, 1986; Taylor et al., 2006).  

 

3.2 Criteria for Discriminating Between Vestan Glass Origins 

  

 Textural features of each lunar glass type are expected to hold for Vestan samples, but 

this is not the case for compositional features. The most important criteria for pyroclastic glasses, 

intra-sample homogeneity, holds for Vesta, but not all chemical differences between lunar 

impact-melt clasts and pyroclastic glasses apply to Vestan samples. This is due to fundamental 

differences between the two bodies (e.g., different internal pressures, lithologies, formational 

histories, etc). For example, the low Mg/Al ratios of impact-melt clasts as compared to mare 

basalts and pyroclastic glasses on the Moon can be explained by the presence of the anorthositic 

highlands. The mantle source for pyroclastic glasses on the Moon is Al-depleted because it is 

complementary to the anorthositic crust. This is not the case on Vesta, where the crust has a 

basaltic, rather than anorthositic composition. Table 2 summarizes the pivotal characteristics that 

ought to hold for samples from Vesta.   
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Table 2. Textural and chemical differences between impact-melt clasts and pyroclastic glasses 

on Vesta.  

 Impact-Melt Clasts Pyroclastic Glasses 

Texture - vitric/vitrophyric 

- dendritic/skeletal 

- vesicles 

- partly resorbed clasts 

- schlieren 

- metals/sulfide “dust” 

- vitric/vitrophyric 

- dendritic/skeletal 

- vesicles 

 

Composition - intra-sample heterogeneity - intra-sample homogeneity 

 

 

3.3 Results 

 

 A pyroclastic glass should have intra-sample chemical homogeneity. If a sample is truly  

homogeneous, any chemical variations will be solely due to analytical uncertainties. That is, if a 

glass displays intra-sample homogeneity, the standard deviation of individual EMP points should 

be less than the average uncertainty of the microprobe measurements. A homogeneous glass is 

one without quench phases or any other textural feature and that has a standard deviation which 

is less than the microprobe uncertainty for the non-volatile elements (Ti, Al, Cr, Fe, Mn, Mg, and 

Ca). Table 3 shows an example of the data for one of these glasses in sample QUE 94200,16. 

The standard deviation is also listed, but relative standard deviation is a more useful 

representation of the intra-sample heterogeneity of this glass since it factors out the difference in 

abundances between elements. A high relative standard deviation implies a large degree of 

heterogeneity. In terms of comparing the standard deviation of the analyses to the uncertainty of 

the microprobe, all elements show a greater standard deviation than microprobe uncertainties, 

meaning these variations cannot be explained by analytical uncertainties and, consequently, are 

real. Fig. 4 graphically displays the intra-sample heterogeneity of 4 glasses. The crosses 

represent the average microprobe uncertainty (they have different sizes because the scales in the 

figures differ), while the data points are actual analyses of glasses. The glasses depicted in (a), 

(b), and (c) are the most chemically homogeneous glasses involved in this study, while the glass 

in (d) displayed the most pristine texture of all the clasts. The fact that the data show greater 

variance than the microprobe uncertainty means that these glasses are not homogeneous for the 

elements involved in these plots (i.e., Mg and Fe). Of the 13 glasses analyzed, none of those 

without quench phases were chemically homogeneous for all the non-volatile elements listed. 
Using the essential criteria of intra-sample homogeneity, none of the glasses without quench 

phases appear to be pyroclastic glasses. Those with quench phases display textures (see Table 2) 

consistent with being impact-melt clasts (Fig. 5). Consequently, this study yielded no positive 

identification of pyroclastic glasses. 
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Table 3. Intra-sample heterogeneity of the non-volatile elements (wt %) of glass 15 in sample 

QUE 94200,16. Notice the variation in wt % of Cr and Ca in particular from analysis to analysis. 

For all elements, SD > uncertainty which means the glass is heterogeneous. 

Analysis TiO2 Al2O3 Cr2O3 MgO CaO MnO FeO 

15i 0.95 11.97 1.04 12.54 13.81 0.38 11.12 

15ii 0.74 12.46 0.35 12.51 14.14 0.37 10.63 

15iii 0.71 12.35 0.87 12.89 13.22 0.40 11.33 

15iv 0.74 12.58 0.25 12.98 13.09 0.34 11.22 

15v 0.59 12.51 0.18 13.04 12.73 0.37 11.33 

15vi 0.64 12.63 0.16 13.23 12.04 0.38 11.88 

15vii 0.61 12.76 0.14 13.75 10.31 0.40 12.88 

15viii 0.81 12.20 0.61 12.87 13.38 0.37 11.24 

15ix 0.71 12.43 0.45 12.89 12.68 0.34 11.33 

15x 0.74 12.61 0.12 13.03 11.78 0.36 11.72 

std dev (SD) 0.10 0.23 0.33 0.35 1.11 0.02 0.60 

uncertainty 0.098 0.158 0.063 0.194 0.415 0.048 0.285 

rel. SD (%) 14.39 1.85 77.96 2.70 8.76 5.60 5.22 

 

 

 
Figure 4. Variation diagrams illustrating the intra-sample heterogeneity of 4 glasses. The crosses 

represent the microprobe uncertainty. If the actual analyses of the glasses show more spread than 

the microprobe uncertainty, then they are heterogeneous. 
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. 

Figure 5. Howardite glasses with quench phases displaying textures consistent with an impact 

melt origin. (a) from MIL 05085,11; (b) from EET 87532,13; (c) from LAP 04838,19; (d) from 

EET 87509,68; (e) from LAP 04838,19; and (f) from EET 87509,68.   
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3.4 Discussion 

 

 The failure to identify any pyroclastic glasses in the howardite samples analyzed in this 

study may imply that pyroclastic glasses did not form on Vesta. There are a number of possible 

explanations for why pyroclastic material may not have been found in the howardites and, by 

extension, on Vesta.  

 (1) Pyroclastic glasses exist on Vesta but were not present in the 8 howardites analyzed. 

Given the number of glasses analyzed and the fact that the howardites studied were chosen to 

maximize the possibility of finding unusual glasses, this explanation is not the most realistic.

 (2) Pyroclastic glasses formed but were not retained on the surface. This scenario would 

only occur if all pyroclastic material, regardless of size, was ejected from Vesta with a velocity 

greater than or equal to the Vestan escape velocity (~390 m/s). For this speed to be achieved, the 

erupting magma would have needed a gas content of at least 6 % by mass (Wilson and Keil, 

1991; 1997; Wilson et al., 2010). In reality, ejecta have a range of speeds, so even at the highest 

gas contents we would expect some material to have ejection velocities less than the escape 

velocity. This explanation is also unlikely due to the extremely high volatile contents required, 

especially since Vesta is believed to be volatile-poor (e.g., Mittlefehldt, 1987; Grady et al., 1997a 

& b).  

 (3) Pyroclastic glasses exist on Vesta but were covered by blankets of ejecta. Vesta has 

been largely resurfaced by several massive impacts such as those that created the Veneneia and 

Rheasilvia basins at the South Pole (Schenk et al., 2012). The relatively young formation ages of 

Veneneia at ~2.1 Ga and Rheasilvia at ~1.0 Ga (Marchi et al., 2012), relative to the ancient ages 

of Vestan magmatism inferred from radiometric ages of HEDs (e.g., McSween et al., 2011), 

makes this mechanism plausible. Still, researchers expect that most HEDs were liberated from 

Vesta by one of these massive impact events. If they were ejected as a result of the Rheasilvia 

impact, then any consequent resurfacing from that impact would not affect the HED meteorites, 

and therefore, not explain the absence of pyroclastic glasses. Only an impact event (e.g., 

Veneneia) preceding Rheasilvia’s formation could cause the resurfacing necessary to bury 

pyroclastic deposits under blankets of ejecta. An additional factor in this line of reasoning 

involves the depth of ejecta from the initial impact and the excavation depth from Rheasilvia. 

The blanket of ejecta that hypothetically buried pyroclastic material would need to be deeper 

than the excavation depth, otherwise the buried pyroclastic glasses would have been ejected from 

Vesta and be present in the HED collection. The Rheasilvia impact reached lower crustal/upper 

mantle levels as evidenced by the presence of exposed diogenite material at the Vestan South 

Pole (De Sanctis et al., 2012), and it is highly unlikely that pyroclastic material could have been 

buried to these depths.  

 (4) Pyroclastic glasses formed but were thermally metamorphosed. It is possible that fire-

fountaining occurred on Vesta with all the necessary conditions to form discrete pyroclastic 

glasses, which were subsequently thermally metamorphosed causing them to recrystallize and 

appear texturally similar to impact-melt clasts. Most eucrites have experienced thermal 

metamorphism (Nyquist et al., 1986; Takeda and Graham, 1991; Bogard et al., 1993; Yamaguchi 

et al., 1994). However, due to the possibility of concurrent magmatism (forming the pyroclastic 

glasses) and thermal metamorphism from impacts or blanketing of lava flows (McSween et al., 

2010), we might still expect to see some pristine pyroclasts. In addition, any thermal 

metamorphism would not explain the large degrees of intra-sample heterogeneity observed in 

glasses without crystalline phases.  
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 (5) Pyroclastic glasses never erupted. This would occur if the conditions necessary for 

the formation of fire-fountaining were not met, and so lava was never erupted explosively. The 

volatile inventory of Vesta is thought to be very low (Drake et al., 1989; Papike, 1998), but there 

is evidence for at least some magmatic volatiles in eucrites in the form of OH-bearing apatites 

(Sarafian et al., 2012) though these could have formed from processes unrelated to original 

volatile-contents in the Vestan mantle (i.e., fractional crystallization). 

 (6) Pyroclastic glasses never formed. If optically dense fire-fountains ejected material 

that did not cool quickly enough to form pyroclastic glasses, it could instead have accumulated in 

lava ponds and lakes (Wilson and Keil, 1997; Keil, 2002; Wilson et al., 2010). Over 99 % of the 

material ejected from an optically dense fire fountain on Vesta would be molten upon landing on 

the surface (Wilson and Keil, 1997) explaining the absence of pyroclastic glasses in howardites. 

A low volatile-content leads to optically dense fountains (Wilson and Keil, 1997), and Vesta is a 

volatile-poor body. This explanation does not contradict any existing information pertaining to 

Vesta, making it one of the more realistic approaches.    

 Of the six explanations presented, the most plausible scenarios are 5 and 6. It is difficult 

to rule out either of these options based on our existing understanding of Vesta. 

 

4. GLASS GROUPS  

 

 Previous work delineating compositional glass groupings in howardites is limited. Barrat 

et al. (2012) identified two main glass groups: low Fe/Mg (FeO/MgO<5) and high Fe/Mg 

(FeO/MgO >>10). The 152 howardite glass analyses in the current study all had FeO/MgO < 5. 

Barrat et al. (2012) further divided the low Fe/Mg group into three subgroups: (1) low-alkali, (2) 

K-rich (K2O > 0.2 wt%), and (3) Na-rich (Na2O > 0.6 wt%). No Na-rich glasses were found in 

the current study, but an additional group, called Ca-rich, was identified. Of the 152 glass 

analyses in this study, 61 are K-rich, 16 are low-alkali, and 90 are Ca-rich. 

  

4.1 Results 

 

 Variation diagrams illustrate the compositional differences between these glass groups. 

Figs. 6 and 7 show examples of such plots. Data were also obtained on the Na, Ti, and Cr 

abundances for these glasses, but these elements did not show any patterns or trends between 

groups. As noted by Barrat et al. (2012), the bulk compositions of the HEDs, represented by gray 

envelopes in Figs. 6 and 7, can only describe the bulk composition of the low-alkali glasses.   

The Ca-rich glasses are labeled as such since all the outliers are enriched in CaO in 

comparison to HED values, although a particular cut-off value cannot be assigned to this group 

as Barrat et al. (2012) did for the K- and Na-rich groups (Fig. 7). This is due to the fact that while 

Na and K are present in low amounts (nearly detection limits) in the low-alkali glasses, Ca is 

abundant in all glass groups. The Ca-enrichment for the Ca-rich glasses is also accompanied by 

Al- and Si-enrichments relative to HEDs (Figs. 6a & d). Perplexing splotchy textures were noted 

for 5 of these Ca-rich impact melt clasts (Fig. 8). They appear to occur near the edges of the 

glass grains and are bright in backscatter, which may indicate that they are enriched in Fe. This 

would be consistent with an apparent Fe-depletion in the non-splotchy portions of the glasses 

indicating migration of Fe. The K-rich glasses also do not fall within the HED envelope but only 

with regard to K (Fig 6b). They agree with compositions found in other studies as the K-rich 

envelope of Barrat et al. (2009a) shows. This failure to plot within HED literature envelopes 
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means that these Ca-rich and K-rich glasses must have unique origins (e.g., different than typical 

impact melts from HED lithologies).  

 It is useful to see whether the REEs and other trace elements show similar patterns within 

a given group. Fig. 9 displays spider diagrams of trace elements for two of the three glass groups. 

The only glasses analyzed for trace elements belong to either the Ca-rich or K-rich groups 

because microprobe analyses were performed after the trace element data was obtained. Glasses 

within a given group show consistencies, but with the exception of Rb, K, and Na, the two 

groups shows similar patterns (e.g., REEs and Ni are enriched and Co is depleted); consequently, 

the major and minor elements are the distinguishing features for each glass group.   

 It is worthwhile to ask whether classification of glasses into distinct compositional groups 

is a useful or even valid investigational technique. For example, this technique only works for 

glasses without crystalline phases. A further complication arises when a single vitric clast 

contains different compositional groupings. Fig. 10 shows an example of a single glass 

containing multiple compositional domains. The chemically distinct portion is indicated with a 

white arrow. It is only apparent in plane-polarized light and in the Ca, K, and Na X-ray maps. 

The presence of multiple glass groups within a single seemingly crystal-free clast could be a 

common occurrence that goes unnoticed if analyses from a glass are averaged. It is not the 

existence of compositionally distinct glasses in the HED suite that is being called into question 

but rather the means that researchers use to analyze these glasses. This is further support for the 

technique used in this study in which we treated every analysis separately rather than averaging 

all analyses from a glass.   
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Figure 6. Variation diagrams of the 152 howardite glass analyses. Note that the K-rich glasses fall outside of the HED envelope but 

within the K-rich envelope in (b), while the Ca-rich glasses fall outside the HED envelope in (a), (c), and (d). Literature data from 

Usui et al. (2010) and references therein, Warren et al. (2009b), and Barrat et al. (2009a). 
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Figure 7. Additional variation diagrams of howardite glass groups focusing on the behavior of 

the Ca-rich glasses. Notice that the Ca-rich glasses consistently plot outside of the HED envelope 

in terms of Ca. Literature data from Usui et al. (2010) and references therein and Warren et al. 

(2009b). 
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Figure 8. Perplexing splotchy textures seen in 5 of the Ca-rich glasses. This splotchy texture 

appears concentrated near the edges of the grains. All glasses from QUE 94200,16. 
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Figure 9. Trace-element spider diagrams of the (a) Ca-rich, and (b) K-rich howardite glass 

groups. Note the patterns only differ in terms of Rb, K, and Na. CI data from Anders and 

Grevesse (1989). 

 

  

 
Figure 10. Backscattered electron (a), plane-polarized light (b), and X-ray map images (c)-(f) of 

glass 1a in sample MIL 05085,2. The presence of a compositionally distinct portion of the glass 

is obvious in (b), (d), and (e) and is designated by the white arrows.  
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4.2 Discussion 

 

 The discovery of K-rich and Ca-rich glasses in this study is particularly interesting. 

Previous authors such as Barrat et al. (2009a, 2009b) and Warren et al. (2009b) have identified 

and characterized members of the K-rich group. The glasses range in shape from spheres to 

angular fragments and in texture from vitric to vesicular to crystal-rich. The Ca-rich glasses, on 

the other hand, have not been previously identified in howardites. 

 It is worthwhile to ask whether the K-rich glasses could be pyroclastic in origin. Some 

exhibit shapes, textures, and chemical features (i.e., enrichment in volatile elements such as K) 

consistent with this. Still, there are factors that strongly imply a non-pyroclastic genesis such as 

the absence of alkali-element coatings on the spherical glasses as seen in lunar volcanic glasses 

(Meyer et al., 1975; Barrat et al., 2009b), and the presence of Fe-Ni metal and troilite grains or 

dust (Barrat et al., 2009a). Also, the enrichments in K are so extreme as to suggest that these 

glasses could not have formed from any previously recognized lithology on Vesta as seen in the 

HEDs (Barrat et al., 2009b). Chemical similarities among any group of glasses, even with vastly 

differing textures, indicate a common source (Hewins and Klein, 1978). K-rich glasses seen in 

howardites share such compositional similarities, and so it is more logical to suspect that each 

group might derive from impacts onto a shared heterogeneous lithology rather than being 

pyroclastic glasses that were erupted from the same magma source. 

 The chemical characteristics of the K-rich glasses point to a non-HED composition of 

their protolith. It is important to note that the bulk compositions of impact melts are not 

necessarily equivalent to the original composition of the material impacted, especially in small 

impacts (Reid et al., 1972). This is largely due to fractionations that occur as a result of glass 

formation and mostly affects the alkali elements (Gibson and Hubbard, 1972). Still, the K-

enrichments seen here are rather extreme. Felsic compositions are a rarity on planetary bodies 

other than Earth, but they do exist as small, localized samples such as the lunar “granites” (e.g., 

Drake et al., 1970; Meyer, 1972; Ryder et al., 1975; Glass 1976).  

 A possible scenario for the formation of K-rich melts on Vesta involves a global magma 

ocean producing KREEP-like melts much like what we see on the Moon. KREEP melts form 

from the highly fractionated last dregs of a global magma ocean (e.g., Meyer, 1977; Warren and 

Wasson, 1979b; Warren, 1989). Lunar KREEP components usually occur in brecciated samples 

much like the K-rich glasses occurring in howardites (Papike et al., 1998). This scenario is 

unlikely since the K-rich glasses do not show REE-enrichments in comparison to basaltic eucrite 

compositions, and there is still debate on whether Vesta had a global magma ocean (e.g., Ikeda 

and Takeda, 1985; Righter and Drake 1997; Ruzicka et al., 1997; Takeda, 1997; Warren, 1997; 

Greenwood et al., 2005; Barrat et al., 2008). But in cases of extreme fractional crystallization, 

the K-portion of the KREEP melt can separate from the REEP-portion through liquid 

immiscibility. It is has been experimentally shown by Powell et al. (1980) that eucritic liquids 

can produce K-rich compositions through liquid immiscibility. This may be the mechanism that 

generated the K-rich glasses in howardites, although the silica contents of the glasses are not 

especially high (~50 wt %). Also, the REEP-melt (Fe-rich) that should be complimentary to the 

K-melt (K- and Si-rich) has not yet been indentified in any HED sample. Instead, these glasses 

may be the result of impact onto a feldspar-rich lithology formed by partial melting of the 

eucritic crust (J. A. Barrat, personal communication).  

 The origin of the Ca-rich glasses is less conjectural since there are not extreme 

enrichments of alkali elements. In terms of all elements but Ca, Al and Si, these glasses are 
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similar to HED bulk compositions. Since Ca-enrichments are usually associated with Al- and Si-

enrichments, these glasses likely represent impact onto HED lithologies with a preferential 

melting of plagioclase. This explanation is reasonable since feldspars are the first phase to melt 

from shock metamorphism (Schaal et al., 1979; Stoffler et al., 1991). Strangely, a positive Eu 

anomaly is not seen with these Ca-rich glasses (Fig. 9a) as would be expected for plagioclase-

derived melts. 

           

5. CONCLUSIONS 

  

 This work characterizes the textures and compositions of 56 glasses in 8 howardites using 

petrography and electron microprobe and LA-ICP-MS analyses. Impact-melt clasts and 

pyroclastic glasses from lunar samples were used to determine textural and compositional 

differences between the two glass types. Distinct chemical differences between the two types 

were found, but not all the lunar criteria are useful for Vestan samples due to distinct differences 

between the two bodies. Glass groupings reported in other work (Barrat et al., 2012) were 

explored for the glasses of this study.  A summary of the more significant findings of this study 

are listed below: 

 

 The Vestan criteria yielded no positive identification of putative pyroclastic glasses. 

 Six explanations for the absence of pyroclastic material in the HEDs were considered.  

The most plausible are that (1) pyroclastic eruptions did not occur because of low 

volatile contents in magmas, or (2) optically dense fire-fountaining prevented the 

formation of pyroclastic deposits. 

 The analyzed howardite glasses can be divided into 3 groups based on composition: K-

rich, Ca-rich, and low-alkali. The K-rich and Ca-rich groups plot outside the range of 

known HEDs. Previous work identified the K-rich and low-alkali glasses, whereas this 

work is the first to identify the Ca-rich glasses. 

 The K-rich glasses are likely the result of impacts onto previously unrecognized 

feldspar-rich lithologies, perhaps originating from partial melting of crustal material. 

 The low-alkali and Ca-rich glasses represent impact onto HED lithologies, but the Ca-

rich have characteristics indicative of preferential melting of plagioclase.  
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APPENDIX A. 

Electron Microprobe analyses of glasses – Weight percent (wt%) 

 

 

 

EET87532,13 
 glass             

Point 4ii 4v 4vi 4vii 4i_2 4ii_2 4iii_2 4iv_2 4v_2 4vi_2 4vii_2 4viii 4ix 

SiO2 47.5 48.2 48.2 47.8 47.7 47.8 47.5 48.1 47.9 48.0 47.5 48.0 47.4 

TiO2 0.10 0.11 0.16 0.27 0.21 0.21 0.22 0.18 0.14 0.17 0.20 0.20 0.17 

Al2O3 14.4 14.7 12.3 11.9 13.2 13.2 13.0 12.9 13.4 12.3 12.8 12.8 14.0 

Cr2O3 0.10 0.22 0.51 1.28 0.83 0.73 0.81 0.49 0.53 0.87 0.72 0.44 0.64 

MgO 9.32 9.48 10.4 10.4 9.83 9.61 10.1 10.3 10.0 10.4 10.2 10.1 9.59 

CaO 11.7 11.3 10.4 9.33 11.7 12.4 10.3 10.5 10.8 11.2 9.8 11.7 10.7 

MnO 0.46 0.45 0.59 0.60 0.47 0.48 0.54 0.53 0.50 0.52 0.57 0.49 0.48 

FeO 15.4 15.5 18.0 19.0 15.9 15.6 17.4 17.5 16.7 16.9 17.8 16.6 16.8 

Na2O 0.11 0.13 0.13 0.08 0.11 0.11 0.10 0.09 0.10 0.10 <0.06 0.09 0.12 

K2O <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

Total 99.5 100.4 100.9 101.0 99.9 100.1 99.9 100.5 100.0 100.4 99.6 100.3 99.9 

              

 glass             

Point 4x 4xi 8aiii 8aiv 8avi 8ai_2 8aii_2 8aiii_2 8aiv_2 8av_2 8avi_2 8avii  

SiO2 48.0 48.0 47.5 47.0 46.9 47.4 47.3 47.2 47.4 47.2 46.8 47.4  

TiO2 0.16 0.14 0.81 0.81 0.90 0.75 0.85 0.87 0.85 0.85 0.85 1.01  

Al2O3 12.7 13.7 10.8 11.6 11.5 11.8 11.6 11.5 12.2 11.7 11.6 11.9  

Cr2O3 0.74 0.35 0.73 0.46 0.68 0.50 0.49 0.66 0.63 0.60 0.80 0.50  

MgO 10.1 9.83 8.39 8.28 8.12 8.22 8.36 8.36 7.81 8.55 8.23 8.19  

CaO 11.4 11.0 16.5 14.2 15.4 15.9 16.4 16.0 15.2 15.7 15.8 16.4  

MnO 0.48 0.49 0.43 0.47 0.49 0.44 0.47 0.48 0.43 0.51 0.46 0.43  

FeO 16.6 16.7 15.1 15.3 15.5 14.6 14.5 14.8 14.6 15.2 14.9 14.3  

Na2O 0.11 0.11 0.17 0.19 0.14 0.17 0.15 0.13 0.17 0.15 0.17 0.14  

K2O <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04  

Total 100.2 100.3 100.9 98.8 100.2 99.8 100.1 100.0 99.3 100.4 99.6 100.3  
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APPENDIX A. Continued            

QUE94200,16 
 glass             

Point 5ci 5cii 5ciii 5civ 5cv 5cvi 5cvii 5cviii 6i 6ii 6iii 6iv 6v 

SiO2 48.3 48.8 49.2 49.5 48.8 49.0 48.9 48.6 49.4 49.3 49.0 49.1 48.7 

TiO2 0.73 0.68 0.67 0.62 0.69 0.72 0.66 0.73 0.57 0.56 0.68 0.59 0.48 

Al2O3 12.4 12.2 12.2 12.0 11.9 12.2 12.6 12.0 12.0 12.2 12.0 12.4 11.4 

Cr2O3 0.40 0.28 0.20 0.19 0.21 0.25 0.23 0.31 0.12 0.13 0.61 0.58 0.18 

MgO 13.0 12.8 12.5 13.4 12.9 13.1 13.0 12.9 13.7 13.6 13.0 12.7 13.4 

CaO 14.8 14.4 14.6 13.6 14.5 14.6 14.3 15.2 11.2 11.6 12.7 13.2 12.2 

MnO 0.34 0.33 0.34 0.32 0.34 0.31 0.36 0.32 0.38 0.41 0.38 0.32 0.40 

FeO 9.90 10.1 9.16 10.3 10.1 9.68 9.81 9.25 12.1 11.9 11.3 11.1 12.4 

Na2O 0.18 0.08 0.11 0.13 0.12 0.13 0.11 0.07 0.10 0.12 0.13 0.17 0.16 

K2O <0.04 0.05 <0.04 <0.04 <0.04 0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

Total 100.5 100.1 99.4 100.5 100.0 100.4 99.9 99.3 100.0 100.2 100.3 100.7 99.7 

              

 glass             

Point 6vi 6vii 6i_2 6ii_2 6iii_2 6vi_2 6vii_2 6viii 6ix 6x 6xi 6xii 6xiii 

SiO2 49.2 49.3 49.1 49.3 49.1 48.5 49.3 49.5 49.3 49.2 49.2 48.6 49.3 

TiO2 0.44 0.65 0.55 0.52 0.61 0.73 0.63 0.52 0.55 0.51 0.56 0.69 0.53 

Al2O3 12.2 12.1 12.1 11.8 12.0 12.3 12.5 12.2 12.2 12.1 12.2 12.0 12.1 

Cr2O3 0.24 0.16 0.40 0.17 0.45 0.32 0.38 0.18 0.18 0.26 0.25 0.71 0.20 

MgO 13.9 13.8 13.7 14.2 13.3 13.6 13.6 13.9 13.9 13.8 13.7 13.0 14.0 

CaO 10.6 11.5 11.9 10.5 12.6 12.2 11.5 11.4 11.1 11.0 11.6 12.9 11.0 

MnO 0.41 0.41 0.36 0.39 0.34 0.39 0.39 0.39 0.40 0.36 0.40 0.34 0.37 

FeO 13.3 12.2 12.1 13.1 11.4 11.7 12.2 12.3 12.5 12.5 12.2 11.5 12.4 

Na2O 0.15 0.12 0.12 0.12 0.11 <0.06 0.13 0.11 0.13 0.13 0.13 0.15 0.12 

K2O <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

Total 100.8 100.7 100.4 100.1 99.9 99.8 100.6 100.5 100.2 100.0 100.2 99.8 100.1 
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APPENDIX A. Continued            

 glass             

Point 7ci 7cii 7ciii 7civ 7cv 7cvi 7cvii 15i 15ii 15iii 15iv 15v 15vi 

SiO2 48.7 48.7 48.6 49.1 49.0 49.1 48.9 47.0 47.9 47.3 48.0 48.1 47.9 

TiO2 0.43 0.59 0.62 0.62 0.63 0.73 0.56 0.95 0.74 0.71 0.74 0.59 0.64 

Al2O3 12.2 12.3 11.9 11.7 12.4 11.0 12.6 11.97 12.46 12.4 12.6 12.5 12.6 

Cr2O3 0.47 0.70 0.32 0.28 0.25 0.53 0.36 1.04 0.35 0.87 0.25 0.18 0.16 

MgO 14.2 13.2 13.2 13.5 13.2 13.7 13.1 12.5 12.5 12.9 13.0 13.0 13.2 

CaO 11.1 13.4 14.3 14.2 14.3 14.9 13.5 13.8 14.1 13.2 13.1 12.7 12.0 

MnO 0.39 0.36 0.36 0.34 0.33 0.31 0.36 0.38 0.37 0.40 0.34 0.37 0.38 

FeO 11.2 11.1 10.4 10.6 10.5 10.3 10.9 11.1 10.6 11.3 11.2 11.3 11.9 

Na2O 0.10 0.10 0.12 0.10 0.08 <0.06 0.09 0.19 0.08 0.17 0.18 0.15 0.17 

K2O <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 0.04 <0.04 <0.04 0.05 

Total 99.0 100.7 100.1 100.7 100.8 100.8 100.6 99.3 99.4 99.5 99.6 99.2 99.3 

              

 glass             

Point 15vii 15viii 15ix 15x 15i_2 15ii_2 15iii_2 15viii_2 15ix_2 15x_2 15xi 15xii 15xiii 

SiO2 48.1 47.6 47.7 47.9 48.0 48.1 47.9 48.4 48.1 48.1 48.1 47.6 48.0 

TiO2 0.61 0.81 0.71 0.74 0.78 0.93 0.79 0.64 0.99 0.73 0.70 0.76 0.77 

Al2O3 12.8 12.2 12.4 12.6 12.6 12.4 12.4 12.5 12.2 12.2 12.4 12.5 12.4 

Cr2O3 0.14 0.61 0.45 0.12 0.40 0.40 0.57 0.15 0.29 0.42 0.36 0.47 0.49 

MgO 13.8 12.9 13.0 13.0 12.8 12.7 12.9 13.0 13.2 13.1 12.7 13.0 12.8 

CaO 10.3 13.4 12.7 11.8 13.5 13.8 12.6 12.7 12.2 12.5 13.6 12.2 13.3 

MnO 0.40 0.37 0.34 0.36 0.32 0.39 0.36 0.36 0.40 0.38 0.33 0.37 0.35 

FeO 13.0 11.2 11.3 11.7 10.9 10.8 11.6 11.4 11.9 11.9 10.6 11.9 11.2 

Na2O 0.12 0.20 0.15 0.20 0.15 0.18 0.14 0.17 0.17 0.15 0.16 0.16 0.17 

K2O <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

Total 99.2 99.5 99.0 98.7 99.4 99.7 99.3 99.4 99.5 99.5 98.9 98.9 99.4 
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APPENDIX A. Continued            

 glass             

Point 15xiv 15xv 15xvi 15xvii 19di 19dii 19diii 19div 19dv 19dvi 19dvii 19di_2 19diii_2 

SiO2 48.3 47.9 48.1 48.5 48.5 48.4 48.4 47.7 48.3 48.8 48.7 48.3 48.6 

TiO2 0.73 0.73 0.82 0.64 0.61 0.60 0.50 0.55 0.51 0.47 0.59 0.56 0.58 

Al2O3 12.8 12.4 12.3 12.5 10.7 10.4 10.8 11.0 10.8 11.0 10.8 10.5 10.7 

Cr2O3 0.17 0.35 0.31 0.14 0.37 0.51 0.30 0.25 0.41 0.22 0.26 0.32 0.31 

MgO 12.8 12.6 12.6 13.5 15.2 15.3 15.2 15.3 15.1 15.6 15.0 15.4 15.1 

CaO 13.1 13.9 13.7 11.8 11.2 11.0 11.2 10.4 11.1 9.5 11.1 10.8 11.2 

MnO 0.34 0.34 0.36 0.39 0.38 0.35 0.38 0.40 0.38 0.44 0.41 0.39 0.37 

FeO 11.1 10.7 10.7 12.1 11.8 12.1 11.9 12.6 12.2 12.7 12.0 12.1 11.9 

Na2O 0.15 0.12 0.17 0.13 0.08 0.10 0.11 0.15 0.14 0.12 0.10 0.11 0.11 

K2O <0.04 0.05 <0.04 <0.04 <0.04 <0.04 0.04 <0.04 0.04 <0.04 <0.04 <0.04 <0.04 

Total 99.6 99.0 99.1 99.7 99.0 99.0 98.9 98.5 99.3 99.0 99.2 98.6 98.9 

              

MIL05805,2 
 glass             

Point 1ai 1aii 1aiv 1av 1avi 1avii 1aii_2 1aiii_2 1aiv_2 1av_2 1avi_2 1aviii 1aix 

SiO2 51.3 52.5 51.9 51.9 52.7 52.5 52.3 52.3 52.2 51.9 52.5 52.1 52.1 

TiO2 0.24 0.18 0.21 0.32 0.21 0.20 0.32 0.32 0.29 0.34 0.35 0.34 0.31 

Al2O3 5.18 5.48 5.64 5.60 5.89 5.79 5.56 5.48 5.80 5.61 5.66 5.51 5.74 

Cr2O3 0.44 0.82 0.76 0.56 0.70 0.96 0.76 0.70 0.76 0.52 0.68 0.64 0.78 

MgO 20.6 20.4 20.4 19.0 19.0 18.5 20.7 19.8 20.2 19.0 19.4 19.3 19.9 

CaO 3.00 5.36 3.21 3.04 3.03 3.17 4.98 3.33 3.10 3.08 3.09 2.99 3.23 

MnO 0.37 0.50 0.35 0.34 0.25 0.26 0.46 0.35 0.37 0.34 0.30 0.35 0.33 

FeO 17.5 14.5 16.3 18.0 16.5 17.1 14.6 16.7 15.6 18.1 16.9 17.7 16.1 

Na2O 0.16 0.07 0.17 0.11 0.18 0.17 0.06 0.16 0.18 0.16 0.16 0.19 0.19 

K2O 0.88 <0.04 0.83 1.36 1.01 1.03 0.23 1.08 1.13 1.12 1.20 1.12 1.16 

Total 99.9 100.2 100.3 100.9 99.5 100.1 100.0 100.2 99.7 100.1 100.3 100.3 99.9 
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APPENDIX A. Continued            

 glass             

Point 1ax 1axi 1axii 1axiii 1axiv 1axv 1axvi 1axvii 1axviii     

SiO2 52.5 52.3 52.8 52.3 52.7 52.2 52.2 52.6 52.5     

TiO2 0.33 0.29 0.35 0.36 0.31 0.30 0.32 0.33 0.34     

Al2O3 5.76 5.62 5.90 5.58 5.81 5.48 5.64 5.55 5.55     

Cr2O3 0.84 0.70 0.76 0.79 0.66 0.75 0.76 0.77 0.81     

MgO 20.1 20.6 19.8 19.6 18.8 20.4 20.0 20.4 20.1     

CaO 3.19 3.19 3.38 3.15 3.16 3.12 5.49 5.07 5.35     

MnO 0.37 0.39 0.34 0.34 0.33 0.39 0.48 0.49 0.44     

FeO 15.4 16.0 15.8 16.2 17.1 16.3 14.6 14.5 14.4     

Na2O 0.15 0.15 0.16 0.17 0.20 0.14 0.09 0.07 0.08     

K2O 1.14 1.08 1.14 1.17 1.24 1.12 0.23 0.30 0.28     

Total 99.8 100.3 100.5 99.8 100.3 100.3 99.8 100.0 99.8     

              

MIL05805,11 
 glass             

Point 1i 1ii 1iii 1iv 1v 1vi 1vii 1ii_2 1iii_2 1iv_2 1v_2 1viii 1ix 

SiO2 50.3 50.0 50.6 49.9 50.1 50.5 50.4 49.7 49.6 49.6 49.7 50.0 49.4 

TiO2 0.52 0.53 0.59 0.57 0.59 0.56 0.58 0.53 0.56 0.53 0.53 0.49 0.51 

Al2O3 9.49 9.48 9.49 9.38 9.49 9.42 9.47 9.26 9.26 9.34 9.34 9.27 9.25 

Cr2O3 0.73 0.68 0.70 0.60 0.63 0.71 0.70 0.68 0.66 0.65 0.64 0.68 0.62 

MgO 12.2 12.3 12.1 12.0 11.7 12.0 12.2 12.6 12.5 12.2 12.1 12.4 12.5 

CaO 7.55 7.29 6.32 7.04 7.70 7.69 7.72 7.49 6.47 7.43 7.50 7.55 7.36 

MnO 0.53 0.61 0.64 0.62 0.58 0.52 0.54 0.56 0.58 0.55 0.57 0.53 0.63 

FeO 17.7 18.5 18.6 18.3 18.3 18.1 18.0 17.2 18.5 17.9 18.0 17.5 18.0 

Na2O 0.16 0.14 0.13 0.16 0.15 0.13 0.14 0.15 0.20 0.19 0.11 0.17 0.11 

K2O 0.83 0.72 0.84 0.78 0.86 0.80 0.89 0.78 0.86 0.86 0.78 0.75 0.80 

Total 100.0 100.2 100.0 99.4 100.1 100.5 100.6 99.0 99.2 99.3 99.3 99.2 99.1 
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APPENDIX A. Continued 

 glass             

Point 1x 1xi 1xii 1xiii 2i 2ii 2iii 2iv 2v 7i 7ii 7iii 7iv 

SiO2 50.1 49.6 49.5 49.1 49.1 48.4 48.7 48.7 48.2 50.2 50.0 50.3 50.5 

TiO2 0.56 0.55 0.52 0.52 0.68 0.63 0.70 0.60 0.63 0.86 0.82 0.81 0.88 

Al2O3 9.21 9.29 9.24 9.27 11.9 11.7 11.6 11.6 11.5 11.0 11.6 10.4 11.0 

Cr2O3 0.66 0.66 0.61 0.63 0.37 0.47 0.45 0.40 0.44 0.34 0.37 0.36 0.35 

MgO 12.5 12.3 12.3 12.1 8.54 8.74 8.95 8.53 8.82 8.03 7.50 8.45 8.18 

CaO 7.26 7.35 7.49 7.88 7.68 9.81 7.94 9.36 11.82 9.01 10.19 8.99 8.46 

MnO 0.58 0.57 0.57 0.58 0.52 0.55 0.56 0.57 0.59 0.56 0.52 0.58 0.65 

FeO 17.9 17.8 18.0 18.2 19.4 19.2 19.9 18.9 18.0 18.7 17.6 18.9 19.1 

Na2O 0.17 0.13 0.12 0.14 0.21 0.22 0.20 0.22 0.14 0.24 0.23 0.21 0.24 

K2O 0.86 0.76 0.80 0.74 1.15 1.00 0.99 1.14 0.47 1.20 1.43 1.16 1.18 

Total 99.7 99.0 99.1 99.2 99.6 100.7 100.1 100.1 100.6 100.1 100.3 100.1 100.6 

              

 glass             

Point 7v 7vi 7i_2 7iv_2 7v_2 7vi_2 7xi 7xii 7xiii 7xiv 7xv 7xvi 7xvii 

SiO2 50.0 49.0 49.9 49.5 49.4 50.1 49.8 48.0 49.3 49.5 50.0 49.4 49.0 

TiO2 0.83 0.92 0.76 0.70 0.78 0.72 0.74 0.69 0.81 0.71 0.76 0.77 0.77 

Al2O3 11.4 11.7 11.0 10.3 11.4 11.9 11.5 12.9 11.2 12.2 11.5 11.2 11.3 

Cr2O3 0.35 0.37 0.35 0.39 0.36 0.37 0.36 0.38 0.39 0.39 0.36 0.39 0.38 

MgO 7.86 7.97 8.02 8.33 8.16 7.70 7.87 7.73 8.09 7.57 7.80 7.99 8.12 

CaO 9.88 10.78 8.72 9.51 9.43 9.62 9.21 10.61 9.07 8.67 9.11 9.53 9.85 

MnO 0.54 0.54 0.56 0.58 0.55 0.49 0.56 0.53 0.58 0.57 0.56 0.52 0.54 

FeO 17.6 17.6 18.5 18.1 17.8 16.8 17.5 16.9 18.0 17.7 17.2 17.6 17.6 

Na2O 0.28 0.21 0.27 0.18 0.25 0.27 0.25 0.22 0.23 0.27 0.32 0.22 0.22 

K2O 1.33 1.07 1.17 1.16 1.18 1.39 1.26 1.14 1.20 1.25 1.40 1.19 1.18 

Total 100.1 100.2 99.2 98.7 99.3 99.3 99.1 99.1 98.8 98.8 99.0 98.8 98.9 
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APPENDIX B.   

LA-ICP-MS analyses of glasses – Parts per million (ppm) 

   

             

 

QUE94200,16 
Point 5c 6 7c 15_1 15_2 15_3 15_4 19d     

Na  862.7 1,430.2 617.6 2003.1 2097.1 1203.8 1111.6 842.2     

K  138.2 74,193.5 129.3 283.9 312.2 200.8 188.8 145.7     

Co n.d. 43.733 n.d. 185.541 311.622 n.d. n.d. n.d.     

Ni  n.d. 184.09 12.456 752.47 1,239.18 n.d. n.d. 17.093     

Zn  2.688 n.d. n.d. 3.012 n.d. n.d. n.d. n.d.     

Rb  9.294 n.d. 0.963 8.062 7.481 4.244 1.929 2.783     

Y  15.751 14.029 16.53 11.493 13.183 15.279 14.943 14.412     

Cd  n.d. 0.797 n.d. n.d. n.d. n.d. n.d. n.d.     

La  3.082 2.971 3.494 2.858 2.951 3.304 3.506 2.828     

Nd  6.188 5.344 7.757 4.820 6.834 6.587 6.736 5.074     

Sm  2.042 1.320 2.113 1.109 2.159 2.014 1.923 1.537     

Eu  0.679 0.705 0.619 0.633 0.600 0.744 0.672 0.583     

Gd  2.771 2.423 2.611 1.537 1.457 3.371 2.873 2.261     

Dy  2.914 2.428 2.953 2.198 2.335 2.888 3.085 2.416     

Ho  0.659 0.590 0.628 0.407 0.524 0.44 0.566 0.429     

Tm  0.204 0.268 0.310 0.167 0.161 0.259 0.216 0.175     

Lu  n.d. n.d. 0.225 n.d. n.d. n.d. n.d. n.d.     

Hf  1.017 1.150 0.993 1.054 1.719 1.16 0.857 1.085     

Ta  0.160 0.153 0.171 0.126 0.151 0.157 0.213 0.136     

Pb  0.427 0.240 0.376 0.389 0.385 0.413 0.428 0.304     

Th  0.364 0.388 0.382 0.444 0.327 0.376 0.246 0.377     

U 0.086 0.081 0.071 0.080 0.110 0.077 0.056 0.077     
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APPENDIX B. Continued           

MIL05805,2 MIL05805,11 
Point 1a_1 1a_2 1a_3  Point 1_1 1_2 2 7_1 7_2 7_3  

Na  1,139.2 1,169.5 1,132.0  Na  1174.0 1177.8 1728.0 1862.6 1738.0 1762.7  

K  10,046.9 10,262.6 10,116.1  K  7285.2 7275.3 10284.5 11114.8 10317.1 10512.8  

Co  n.d. 2.548 2.891  Co  4.225 7.512 26.682 2.888 n.d. n.d.  

Ni  n.d. 15.618 95.735  Ni  20.222 29.503 119.149 28.076 13.388 17.424  

Zn  1.885 2.433 3.177  Zn  n.d. 3.894 6.598 5.998 4.464 5.471  

Rb  12.838 13.105 13.265  Rb  8.204 8.091 10.266 12.065 11.404 11.204  

Y  8.578 8.446 8.539  Y  13.122 12.606 15.51 16.308 15.865 16.068  

Cd  n.d. n.d. n.d.  Cd  0.743 0.682 n.d. 1.447 1.208 0.688  

La  1.494 1.516 1.564  La  2.722 2.547 3.016 2.986 3.014 3.205  

Nd  3.454 3.145 2.610  Nd  5.772 4.462 6.103 6.486 5.842 5.835  

Sm  0.934 1.303 0.695  Sm  1.116 1.957 1.782 2.096 1.869 1.906  

Eu  0.36 0.336 0.464  Eu  0.680 0.657 0.940 0.659 0.653 0.663  

Gd 1.143 1.627 1.222  Gd  1.362 2.189 2.642 2.135 2.416 1.845  

Dy  1.377 1.456 1.428  Dy  2.320 2.132 2.775 2.865 2.488 2.806  

Ho  0.340 0.310 0.342  Ho  0.517 0.443 0.560 0.608 0.593 0.549  

Tm  0.084 0.204 0.139  Tm  0.239 0.219 0.236 0.282 0.294 0.200  

Lu  n.d. n.d. 0.177  Lu 0.251 0.269 0.394 0.286 0.259 0.293  

Hf  0.729 1.032 0.554  Hf  1.422 0.939 1.220 1.172 1.044 1.132  

Ta  0.132 0.119 0.083  Ta  0.178 0.169 0.159 0.128 0.126 0.156  

Pb  1.097 0.912 0.313  Pb  0.324 0.31 0.417 0.399 0.478 0.488  

Th  0.208 0.228 0.205  Th  0.366 0.313 0.429 0.327 0.358 0.405  

U 0.064 0.059 0.050  U 0.071 0.089 0.103 0.112 0.080 0.104  
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