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Abstract 

The focus of this study is the prediction of trajectories of solid particles injected into 

either a cylindrically- shaped solid rocket motor (SRM) or a bidirectional vortex chamber 

(BV). The Lagrangian particle trajectory is assumed to be governed by drag, virtual mass, 

Magnus, Saffman lift, and gravity forces in a Stokes flow regime. For the conditions in a 

solid rocket motor, it is determined that either the drag or gravity forces will dominate 

depending on whether the sidewall injection velocity is high (drag) or low (gravity). 

Using a one-way coupling paradigm in a solid rocket motor, the effects of particle size, 

sidewall injection velocity, and particle-to-gas density ratio are examined. The particle 

size and sidewall injection velocity are found to have a greater impact on particle 

trajectories than the density ratio. Similarly, for conditions associated with a bidirectional 

vortex engine, it is determined that the drag force dominates.  Using a one-way particle 

tracking Lagrangian model, the effects of particle size, geometric inlet parameter, 

particle-to-gas density ratio, and initial particle velocity are examined. All but the initial 

particle velocity are found to have a significant impact on particle trajectories. The 

proposed models can assist in reducing slag retention and identifying fuel injection 
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configurations that will ensure proper confinement of combusting droplets to the inner 

vortex in solid rocket motors and bidirectional vortex engines, respectively. 
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Nomenclature 

p
m   = mass of the solid inert particle 

v   = particle velocity 

r   = position vector that is general function of space 

u   = velocity of flow 

, ,
r zθ
e e e  = cylindrical unit vectors in a curvilinear coordinate system 

P   = pressure 

D   = diameter of solid particle 

r
u   = velocity component of flow in radial direction 

u
θ

  = velocity component of flow in tangential direction 

z
u   = velocity component of flow in axial direction 

µ  = coefficient of viscosity of gas 

rr
T   = normal stress acting on the particle 

r
T
θ
  = shear stress acting on the particle  



xii 

 

D
F   = drag force 

D
C   = coefficient of drag  

Re
r

  = relative Reynolds number, /
f

D u v ρ µ−   

f   = drag factor, Re /24
D r

C  

U  = relative velocity between fluid and particle 

m
C   = coefficient of added mass 

p
V   = volume of particle 

D   = diameter of particle 

a   = chamber radius 

b   = chamber outlet radius 

i
A   = chamber outlet radius 

, r z   = normalized radial and axial coordinates, /r a , /z a  

l   =  chamber aspect ratio 

S   =  swirl number, /ab Aπ  

i
Q   =  inlet volumetric flow rate 

i
Q   = normalized volumetric flow rate, 2/ ( )

i
Q Ua  

 

Greek 

ψ  = stream function 
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Φ  = potential function 

p
ρ   = density of particle 

f
ρ   = density of flow 

σ   = modified swirl number, 1 / ( )
i

Q S πβ− =  

κ   =  inflow parameter, 1/ (2 ) (2 )
i

Q l lπ πσ −=  
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Chapter 1  

 

Introduction 

The focus of this study is to predict the trajectories of solid particles entrained in 

either a bidirectional vortex (BV) chamber [1] or a cylindrically-shaped solid rocket 

motor (SRM). This is accomplished by carefully evaluating the various forces that can 

potentially affect the motion of designated particles that simulate the secondary liquid or 

solid phase in particular configurations of liquid and solid rockets. The term particle is 

therefore used to denote either liquid droplets (fuel, oxidizer, or mixture) and/or solid 

particulates. 

The particles considered in this investigation are assumed to be chemically inert 

with a sufficiently small Stokes number to the extent of justifying the use of a one-way 

coupling paradigm. Accordingly, the effect of particle scattering on the primary fluid 

phase may be neglected [2]. Furthermore, the particle loading fraction is taken to be 

sufficiently small to mitigate the effects of particle-particle interactions [3]. With these 

assumptions at hand, a detailed analysis of the various forces [4] that may affect particle 
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trajectory will be carried out in the context of both a liquid-liquid vortex engine and a 

solid rocket motor. In this effort, the effect of initial particle velocity, position, and 

density on the forces and particle trajectory will be examined.  

One of the objectives of this study is to better understand the two-phase flow 

motion in vortex engines and cylindrical rocket motors. Generally speaking, multiphase 

flows can be classified based on the particular phase in question and its components such 

as gas-solid, gas-liquid, and solid-liquid flows [5]. As such, the characterization of 

multiphase flows has broad applications outside the area of propulsion. Examples include 

unbounded flows in meteorology and astrophysics where attention is directed to the 

prediction of weather patterns.  These include hurricanes (tropical cyclones), typhoons, 

dust devils, sand storms, water spouts, galactic pinwheels, and so on [6]. They may also 

include bounded flows such as those arising in industrial applications where Lagrangian 

 

Figure 1-1 Sketch of a cyclone separator. 
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particle tracking are needed. These encompass the modeling of fluidized beds [7], 

cyclone separators (illustrated in Figure 1-1), thermal sprays [8] (see Figure 1-2), aerosols 

[9], fire extinguishers, aluminum particle entrainment in solid rocket motors [10], and 

oxidizer/fuel droplet dispersion in liquid rocket engines [11]. Clearly, multiphase flows 

appear in almost every conceivable phenomenon encountered in industry and nature 

alike. 

In the propulsion community, the characterization of powdered aluminum fuel in 

solid rocket motors (SRMs) that contain aluminum oxides (alumina) has been an ongoing 

endeavor since the 1980s.  These studies are prompted by the need to understand the 

factors leading to the significant accumulation of slag in SRM submerged nozzles and the 

erosion of rocket nozzles caused by the impingement of alumina (e.g., ATK Thiokol’s 

SRM [12] shown in Figure 1-3). To this end, several investigations have been carried out 

with the aim of characterizing slag accumulation and nozzle erosion. By way of example, 

 

Figure 1-2 Schematic of plasma spray. 
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one may mention work by Boraas [13], Neilson [14], Haloulakos [15], and others. In 

most solid propellants, typical aluminum particle loading averages 20% by mass and 

range in size distribution from 5 to 200 µm in diameter. There are several known 

advantages to aluminum-based additives.  By embedding aluminum particles in solid 

propellants, the amount of heat release is increased by 20% [16], thereby increasing the 

specific impulse and overall rocket performance. Horton and McGie [17] and also Price 

[18] have shown that adding aluminum particles suppresses high frequency combustion 

instabilities, especially those arising in the transverse direction. However, although 

aluminum increases the performance of SRMs, the slag retention in the submerged nozzle 

can be detrimental to the performance and control of the motor. Other concerns regarding 

alumina and slag formation in SRMs include penalties in vehicle inert weight, reduction 

in total impulse because of multiphase flow interactions, drag, and uncertainties in 

thermal insulation. Even to this day, detailed studies of two-phase flows in SRMs are 

 

Figure 1-3 Alumina slag and nozzle erosion in solid rocket motors due to 

combustion of aluminum particles. 



5 

often simplified to the extent that numerous thermophysical parameters are either 

assumed or ignored in two-phase flow investigations involving particle-particle 

interactions and particle-wall interactions [19]. 

The modeling of particle motion in swirling flows has received equal attention 

because of its various applications in industry. These include oil refineries [20], cement 

processing, coal-fired gas turbine flows [21], sewage treatment, and dust collectors [22]. 

Swirling flows have also been employed in several propulsive applications including the 

so-called Vortex Combustion Cold Wall Chamber (VCCWC) by Chiaverini et al. [23] 

(see Figure 1-4). The cyclonic flow motion in this combustion device offers unique 

advantages such as the ability to reduce engine cooling requirements by utilizing the low 

temperature oxidizer stream entering the chamber as a film coolant. While former studies 

have shown that the combustion of gaseous oxidizer and fuel streams will remain 

confined to the inner vortex core [24], the conditions leading to the confinement of liquid 

droplets to the inner chamber region have not been established yet. In this vein, it is the 

purpose of this study to investigate the conditions leading to droplet entrainment and 

migration, thus helping to identify injection configurations that would ensure the proper 

confinement of droplets and the avoidance of wall impingement. Clearly, the distribution 

of combusting droplets along the walls will lead to undesirable “hot spots” that must be 

prevented. So while a Lagrangian particle trajectory study in a vortex chamber constitutes 

an important parameter in engine design, it does not appear to have been studied yet. 

Modeling of particle trajectories can be carried out using one of two 

methodologies. The first consists of a Lagrangian or trajectory tracking approach and the 
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second, of a two-fluid or Eulerian-Eulerian approach [25]. In the latter, particles are 

treated as a second fluid with suitable conservation equations, whereas, in the former, 

each particle is treated individually. When taken individually, each of the specific mass, 

velocity, and temperature of each particle is calculated separately. In a strictly multiphase 

flow environment, one must also consider the motion around the particles, the mass 

transfer between phases, particle-particle interactions, and particle-wall interactions. The 

ensuing calculations can hence become computationally intensive depending on the flow 

regime and turbulence model used.  

 In this study the particle loading will be assumed to be sufficiently low to justify 

the use of a Lagrangian approach in modeling flow trajectories.  This will be applied to 

fuel inlet

fuel

manifold

outer vortex

of cool

oxidizer

combustion

products

oxidizer

inlet

oxidizer

injection
manifold

regenerative
cooling

sleeve

 

Figure 1-4 Vortex Combustion Cold Wall Chamber (VCCWC) [26]. 
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both an idealized model of the VCCWC and a cylindrically-shaped SRM.  To set the 

stage, a brief introduction to the Lagrangian and Eulerian approaches will be given in 

Sections 1.1 and 1.2. 

1.1 Lagrangian Approach or Trajectory Method 

 The Lagrangian approach is based on Newton’s second law where the particle 

mass, initial velocity and forces acting on a particle are known. A detailed description of 

this method is presented in Chapter 2. The basic equation of motion follows, as usual, 

from Equation 1.1, where the variables are defined in the Nomenclature section. 

 
d

dp
m

t
= ∑
v

F  (1.1) 

where the symbols are defined in the Nomenclature. 

1.2 Two-Fluid Modeling 

In a two-fluid model, the dispersed phase is treated as a continuum subject to its 

own conservation equations. Consequently, it is imperative to take into account the mass, 

momentum and energy transfer between any two phases in order to solve the 

conservation equations either theoretically or numerically. The detailed derivation of the 

conservation equations for a carrier phase and a dispersed phase problem are given in 

Crowe et al. [3]; a summary of these equations is furnished below: 
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1.2.1 Equations for Carrier or Continuous Phase 

Continuity equation: 

 ( ) ( )c c c c i

i

u nm
t x
α ρ α ρ

∂ ∂
+ =−

∂ ∂
ɺ  (1.2) 

Momentum equation: 

 
( ) ( )

( )

ij

c c i c c j i c c

i i i

c c i V i i i

P
u u u

t x x x

g u v nmv

τ
α ρ α ρ α α

α ρ β

∂∂ ∂ ∂
+ =− +

∂ ∂ ∂ ∂
+ − − − ɺ

 (1.3) 

Thermal energy equation: 

 

( ) ( ) ( )

( ) ( ) ( )2

2
1
2

c

c c c c c i c e d i c i

i i i i

ij d i c i c c i V i i T d c

i

s i i d s

T
i u i k P v u

t x x x x

v u g u v T T
x

nm h v u nV P

α ρ α ρ α α

τ α α α ρ β β

∂∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂ ∂
∂

+ + + − − + −
∂
 − + − +  

ɺɺ

 (1.4) 

 

1.2.2 Equations for Dispersed Phase 

Continuity equation: 

 ( ) ( ) d

d d d d i d

i i i

v D nm
t x x x

ρ
α ρ α ρ

 ∂∂ ∂ ∂  + = − + ∂ ∂ ∂ ∂ 
ɺ  (1.5) 

Momentum equation: 

 
( ) ( )

( )

ij

d d i d d j i d d

i i j

d d i V i i i

P
v v v

t x x x

g u v nmv

τ
α ρ α ρ α α

α ρ β

∂∂ ∂ ∂
+ =− +

∂ ∂ ∂ ∂

+ − − − ɺ

 (1.6) 

Thermal energy equation: 
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( ) ( )
( )
d d d d d i d r s

i

T c d d s

i v i nE nQ nmh
t x

T T nV P

σ
α ρ α ρ

β

∂ ∂
+ = − + +

∂ ∂
+ − −

ɺ ɺ ɺ

ɺ

 (1.7)  

In the above, n denotes the number density that defines the number of particles per unit 

volume, αc represents the volume fraction of the continous phase, αd represents the 

volume fraction of the dispersed phase, and 
d
ρ  is the bulk density, which is defined as the 

mass of the dispersed phase per unit volume of mixture. As mentioned earlier, only the 

Lagrangian approach was used in this study. 
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Chapter 2  

Problem Formulation 

2.1 Particle Velocity and Acceleration 

For a solid, passive particle entrained in a gaseous flowfield, Newton’s second law 

can be called upon. In general the motion of an injected particle may be described using 

 
d

dp
m

t
= ∑
v

F  (2.1) 

In cylindrical coordinates, the position vector may be defined as shown in Figure 2-1 

[27], namely, 

 
r z

r z= +r e e  (2.2) 

Subsequently, the particle velocity may be calculated from 

 
d

d r r z z
r r z z

t
= = + + +
r

v e e e eɺ ɺɺ ɺ  (2.3) 

 

Then noting that 
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  ;  ; 0
r r zθ θ
θ θ= =− =e e e e eɺ ɺɺ ɺ ɺ  (2.4) 

one obtains 

 
r z

r r z
θ
θ= + +v e e eɺɺ ɺ  (2.5)  

Using similar differentiation, the acceleration may be derived using 

 
d

 
d r r z z

r r r r r z z
t θ θ θ

θ θ θ= + + + + + +
v

e e e e e e eɺ ɺɺ ɺɺ ɺ ɺɺɺ ɺ ɺ ɺɺ ɺ  (2.6) 

 
2

  
r r z

r r r r r z
θ θ θ
θ θ θ θ= + + + − +e e e e e eɺ ɺ ɺɺ ɺɺɺ ɺ ɺ ɺɺ  (2.7) 

Thus by collecting terms in the same spatial direction, we retrieve: 

 ( ) ( )2d
2

d r z
r r r r z

t θ
θ θ θ= − + + +

v
e e eɺ ɺ ɺɺɺɺ ɺ ɺɺ  (2.8) 

 

Figure 2-1 Polar cylindrical coordinate system used in this study. 
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The term 
2

r θɺ  is sometimes referred to as the centrifugal term, and the term 2rθɺɺ  as the 

Coriolis term [28]. 

2.1.1 Particle Drag Force 

The steady-state drag represents the drag force that acts on the solid particle or the 

liquid droplet in a uniform pressure field in the absence of relative acceleration between 

the particle and the conveying fluid. Given the size of the particles, one may assume a 

Stokes flow regime in which inertia may be ignored in the Navier-Stokes equations [29].  

Under such conditions, the momentum equation reduces to 

 2P µ∇ = ∇ u  (2.9) 

The solution of Eq. (2.9) leads to the Stokes stream function [29] for a sphere of radius a

that is moving with relative velocity U. The result is 

 
3

2 23
sin

2 2 2

U a ar
r

r
ψ θ

  = + −   
 (2.10) 

At the outset, velocity components of the fluid become 

 
3

3

3
1 cos

22
r

a a
u U

rr
θ

  = + −   
 (2.11) 

 
3

3

3
1 sin

44

a a
u U

rr
θ

θ
  = − − −   

 (2.12) 

Having determined the velocity, the pressure may be deduced from the radial component 

of the momentum equation.  One gets  

 
3

3
cos

2

Ua
P P

r

µ
θ∞= −  (2.13) 
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where P∞  represents the free stream pressure. Similarly, the normal stress acting on the 

particle in the radial direction may be estimated from 

 ;
rr rr
T P σ=− + r

rr

u

r
σ

∂
=

∂
 (2.14) 

In our case, 0
rr
σ =  along r a= , and so the normal stress becomes 

 
3

3
cos

2
rr

Ua
T P

r

µ
θ∞= − +  (2.15) 

Similarly, the shear stress on the particle may be calculated from 

 
r r
T
θ θ
σ=  (2.16) 

 

Figure 2-2 Stresses acting on a spherical particle in crossflow.  
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where 

 
1 3

sin
2

r

r

u u U
T r

r r r a

θ

θ

µ
µ θ

θ

   ∂∂  = + =−  ∂ ∂   
 (2.17) 

As shown in Figure 2-2, the resultant stress on the particle in the z -direction may be used 

to calculate the Stokes drag on the particle, specifically 

 ( ) 2

0
cos sin 2 sin d

rr r
T T a

π

θ
θ θ π θ θ= −∫D

F  (2.18)

 

and so 

 3
D

DUπµ=F  (2.19) 

Taking relative velocities into account, the Stokes drag for steady flow past a spherical 

particle reduces to 

 3 ( )
D

Dfπµ= −F u v  (2.20) 

where f  is the drag factor given by 

 
Re

24
D r

C
f =  (2.21) 

In the above, the relative Reynolds number is based on the absolute relative velocity 

between fluid and particle. It is written as 

 Re
f

r

D ρ

µ

−
=

u v
 (2.22) 

For Reynolds numbers up to 800, a suitable correlation for the drag factor [30] may be 

used, namely, 

 0.687(1 0.15Re )
r

f = +  (2.23) 
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It should be noted that the analysis so far assumes uniform flow.  For non-uniform flow, 

the drag force must be augmented by the Faxen force [31]. In general vector form, this 

can be expressed as 

 
3 213 ( )

8

Faxen force

D
Df Dπµ µπ= − + ∇F u v u

�������������
 (2.24) 

Based on the above, the drag components in the radial, tangential and axial directions 

may be evaluated to be 

 3 2

,
13 ( )
8D r r r

F Df u r D uπµ µπ= − + ∇ɺ  (2.25) 

 3 2

,
13 ( )
8D

F Df u r D u
θ θ θ

πµ θ µπ= − + ∇ɺ  (2.26) 

 3 2

,
13 ( )
8D z z z

F Df u z D uπµ µπ= − + ∇ɺ  (2.27) 

 

2.1.2 Virtual or Apparent Mass Effect 

Generally, when an object is accelerated through a fluid medium, the surrounding 

fluid, such as a trailing wake, must be accelerated as well. The energy needed to drive the 

surrounding fluid increases the energy required to accelerate the object, which can be a 

submerged spherical particle. The energy needed to drive the particle must also drive the 

wake forming behind it. The inertial force needed to drive the motion of the surrounding 

fluid is referred to as apparent or virtual mass force. The additional force needed to 

accelerate the particle can be determined by assuming a virtual particle mass that is larger 

than the actual mass. In this context, the apparent force needed to accelerate the particle 
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(and its wake) may be calculated based on the increased virtual or added particle mass 

[32]. The magnitude of the added mass is usually determined from the change in kinetic 

energy of the fluid surrounding an accelerating particle. To see how this calculation may 

be performed, we first evaluate the total kinetic energy surrounding the particle, 

 
21

KE d
2 f

V

Vρ= ∫ u  (2.28) 

where the integral is taken over the entire fluid domain. 

 The potential function for a sphere of radius a  and moving with relative velocity 

U is simply 

 

3

2
cos

2

a
U

r
θΦ =−  (2.29) 

Its corresponding velocity components are 

 

3

3
cos

r

a
u U

r
θ=  (2.30) 

 

3

3
sin

2

a
u U

r
θ

θ=  (2.31) 

As shown in Figure 2-2, one can take an element of volume 

 V a r rφ θ∆ = ∆ ∆ ∆  (2.32) 

which, in differential form, becomes 

 2d sin d d dV r rθ θ φ=  (2.33) 

Then given 

 2 2 2

r
u u u

θ
= +  (2.34) 
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we can substitute into Eq. (2.28) to get 

 ( )2
2 2 2 2

0 0

1 1
KE d sin d d d

2 2f f ra
V

V u u r r
π π

θ
ρ ρ θ θ φ

∞
= = +∫ ∫ ∫ ∫u  (2.35) 

 

2 6 2 22

4 40 0

cos sin
sin d d d

2 4

f

a

U a
r

r r

π πρ θ θ
θ θ φ

∞  = +   
∫ ∫ ∫   

 

2 6 2 22

3 30 0

cos sin
sin d d

2 3 12

f
U a

a a

π πρ θ θ
θ θ φ

  = +   
∫ ∫   

 ( )
2 3

2
2 2 3 2

0 0

1 1
cos sin 1 cos sin  d d

6 4 3

f

f

U a
a U

π πρ
θ θ θ θ θ φ ρ π

 
 = + − =  

∫ ∫  (2.36) 

The work required to change the kinetic energy of the fluid is therefore, 

 F U
dKE

d vmt
= ⋅  (2.37) 

where, for a spherical particle, 

 
U

F
32 d

3 dvm f
a U

t
ρ π=  (2.38) 

and in general 

 
U

F
d

dvm m f p
C V

t
ρ=  (2.39) 

where 
m

C  is the added mass coefficient and 
p
V  represents the volume of the particle. 

 The relative acceleration of the fluid with respect to the entrained particle may be 

expressed as 

 
U u r vd d ( , ) d ( )

d d d

t t

t t t
= −  (2.40) 
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The virtual mass force acting on a particle becomes 

 
u r v

F
d ( , ) d ( )

d dvm m f p

t t
C V

t t
ρ

 
 = −  

 (2.41) 

The components of force in the radial, tangential and axial directions must be carefully 

evaluated and expressed as: 

 ( )2
2

,
r r r r

vm r m f p r z

u u u u u u
F C V u u r r

t r r z r

θ θρ θ
θ

  ∂ ∂ ∂ ∂  = + + + − − −   ∂ ∂ ∂ ∂    

ɺɺɺ  (2.42) 

 ( ),
2r

vm m f p r z

u u u u u u u
F C V u u r r

t r r z r

θ θ θ θ θ θ

θ
ρ θ θ

θ

  ∂ ∂ ∂ ∂  = + + + + − +   ∂ ∂ ∂ ∂   

ɺɺ ɺɺ  (2.43) 

 
,

z z z z

vm z m f p r z

u u u u u
F C V u u z

t r r z
θρ
θ

  ∂ ∂ ∂ ∂  = + + + −    ∂ ∂ ∂ ∂   
ɺɺ  (2.44) 

 

2.1.3 Lift Forces 

 The lift force acting on particles is mainly caused by two mechanisms.  The first 

is known as the Magnus force and may be attributed to particle rotation [33]. The second 

mechanism is a fluid shearing effect known as the Saffman lift force [34]. 

2.1.3.1 Magnus Force 

 The Magnus force was first explained by Heinrich Gustav Magnus [33] in 1853.   

The corresponding lift developed due to the rotation of the particle. Because of the 

rotation of the particle, higher velocity is induced on one side and lower velocity on the 

opposite side as shown in Figure 2-3.  The resulting asymmetrical pressure distribution 
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around the particle induces a lift force that tends to move the particle toward the region of 

higher velocity (or lower pressure). This mechanism is known as the Magnus effect. 

 In the case of small Reynolds numbers of (1)O , Rubinow et al. [35] provide a 

useful expression for the lift force that can be written as 

 
( )
( )Magn 1

2

1

2

r

L

d

C A
ρ
ρ

 − × = −  − ∇×  

u v
F u v

u

Ω

Ω

 (2.45) 

where 
r
Ω  denotes the relative rotation of the particle with respect to the fluid, 

d
Ω  

represents the rotation of the particle, and A refers to the projected area of the particle.  

The interdependencies comprise: 

 1
2r d

= − ∇×uΩ Ω  (2.46) 

and 

 d

L

D
C =

−u v

Ω
 (2.47) 

Because of insufficient detail on particle rotation inside rocket motors, we do not 

 

Figure 2-3 Generation of the Magnus force due to particle rotation. 
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incorporate the Magnus force in our analysis lest an impractical problem is created; 

however, the Saffman lift force will be accounted for as described in next section. 

 

2.1.3.2 Saffman Lift Force 

 Figure 2-4 depicts how, for particle motion in sheared flow or near a solid 

boundary, the velocity gradients in the field produce a lift force known as the Saffman lift  

force.  Saffman analyzed this force [34] for low relative Reynolds numbers Re
r

, and 

small shear Reynolds numbers 
shear

Re .  He found 

 

( ) ( )F u u v u2

Saff
1.61 /

f
D µρ  = ∇ × − × ∇ ×  

 (2.48) 

where the shear and relative Reynolds numbers are defined as: 

 

2

shear

d
Re

d

f
D u

y

ρ

µ
=  (2.49) 

 

 (2.50) 

 

Figure 2-4 Generation of the Saffman lift force in sheared motion. 
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Here D  denotes the particle diameter and y , the direction perpendicular to the flow 

velocity.   In most gas–solid particle flows, the relative Reynolds number does not exceed 

unity and so the lift force approximation derived by Saffman may be used. Its scalar 

components in the radial, tangential and axial directions are  

 

1/4
2 2 2

2

,

( )1 1 1
1.61 z r z r

L r f

u u u u ru u
F D

r r z r r r r

θ θµρ
θ θ

−        ∂ ∂ ∂ ∂ ∂ ∂          = − + − + −            ∂ ∂ ∂ ∂ ∂ ∂        
 

 

( ) ( )( )1 r r z

z

ru u u u
u r u z

r r z r

θ

θ
θ

θ

    ∂ ∂ ∂ ∂     × − − − − −      ∂ ∂ ∂ ∂     

ɺ ɺ  (2.51) 

 

1/4
2 2 2

2

,

( )1 1 1
1.61 z r z r

L f

u u u u ru u
F D

r r z r r r r

θ θ

θ
µρ

θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         = − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

 
 ( ) ( ) ( )1 1z r

z r

u u ru u
u z u r

r z r r
θ θ

θ θ

    ∂ ∂ ∂ ∂    × − − − − −       ∂ ∂ ∂ ∂     
ɺ ɺ  (2.52) 

 

1/4
2 2 2

2

,

( )1 1 1
1.61 z r z

L z f

u u u u ru u
F D

r r z r r r r

θ θ θµρ
θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         = − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

  

 ( ) ( ) 1
u u u u
r z zu r u r

r z r r rθ

θθ
θ

    ∂ ∂ ∂ ∂      × − − − − −      ∂ ∂ ∂ ∂         

ɺɺ  (2.53) 

2.1.4 Pressure Gradient and Shear Stress in the Conveying Fluid 

 According to the Archimedes Principle, the pressure force produced by the 

hydrostatic pressure is equal to the weight per unit volume of the displaced fluid: 
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 ( )Arch
;

p f p z df z f z
V P gV m g P gρ ρ= ∇ = − = − ∇ = −F e e e  (2.54) 

where 
df
m g  represents the weight of the displaced fluid (i.e. volume of the particle filled 

by the surrounding fluid).  Furthermore, the force on the particle due to the shear stress in 

the conveying fluid is due to the product of the stress gradient and the volume of the 

particle, 

 
p

V
τ

τ=∇F  (2.55) 

The sum of these two forces, normal and tangential, leads to 

 ( )F
ext p

V Pτ= ∇ −∇  (2.56) 

By considering the equation of motion for an isolated particle, the Navier-Stokes 

equations for the conveying fluid yield: 

 
u

g g e
d

;
df f z

P g
t

ρ τ ρ= ∇ −∇ + = −  (2.57) 

Note that gravity is taken in the vertical direction. The components of this equation are 

 

2

,

1r r r

ext r f p r z

u u u u
F V u u u

r r z r

θ

θ
ρ

θ

 ∂ ∂ ∂  = + + −   ∂ ∂ ∂  
 (2.58) 

 
,

1 r

ext f p r z

u u u u u
F V u u u

r r z r

θ θ θ θ

θ θ
ρ

θ

 ∂ ∂ ∂  = + + +   ∂ ∂ ∂ 
 (2.59) 

 
,

1
z z z

ext z f p r z z

u u u
F V u u u g

r r zθ
ρ

θ

 ∂ ∂ ∂  = + + −  ∂ ∂ ∂  
 (2.60) 
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2.2 Simplified Equations of Motion for a Single Particle 

 In obtaining the simplified equations of motion for a single particle we take into 

account the drag force, lift force, virtual mass effect, pressure gradient and shear stress in 

the conveying fluid. The total contribution of these forces is summarized below. 

By summing up individual contributions, the following equation of motion is 

arrived at: 

( )
3

23 ( ) ( )
8

drag term Faxen term

p p r r

D
V r r Df u rρ θ πµ µπ

− = − + ∇

uɺɺɺ ɺ
���������������

�������������

 

 

( )2
2

1

virtual mass term

r r r
m f p r z

u u u u
C V u u u r r

r r z r
θ

θ
ρ θ

θ

  ∂ ∂ ∂  + + + − − −   ∂ ∂ ∂    

ɺɺɺ

�����������������������������������������������������

 

 

2
1

pressure and shear term

r r r

f p r z

u u u u
V u u u

r r z r

θ

θ
ρ

θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  
���������������������������������������

 

 

1/4
2 2 2

2 ( )1 1 1
1.61 z r z r

f

u u u u ru u
D

r r z r r r r

θ θµρ
θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

 

 

( ) ( )( )1

Saffman force term

r r z

z

ru u u u
u r u z

r r z r

θ

θ
θ

θ

    ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     

ɺ ɺ

���������������������������������������������������

 (2.61) 
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This can be rearranged to the extent of separating the highest, second order derivative viz. 

( )
2

3
21

3 ( ) ( )
8r r

p p m f p

D
r r Df u r

V C V
uθ πµ µπ

ρ ρ

= + − + ∇+ 

ɺɺɺ ɺ  

 

2
1r r r

m f p r z

u u u u
C V u u u

r r z r

θ

θ
ρ

θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  
 

 

2
1r r r

p r z

u u u u
V u u u

r r z r

θ

θ θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  
 

 

1/4
2 2 2

2 ( )1 1 1
1.61 z r z r

f

u u u u ru u
D

r r z r r r r

θ θµρ
θ θ
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 ( ) ( )( )1 r r z

z

ru u u u
u r u z

r r z r

θ

θ
θ

θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     

ɺ ɺ  (2.62) 

 

 Similarly the rearrangement of forces in the tangential direction leads to 

( )
3

22 1
3 ( ) ( )
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p p m f p

r D
Df u r

r r V C V
u

θ θ

θ
θ πµ θ µπ

ρ ρ
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(2.63) 

 Finally, in the axial direction, we get 

( )
3

21
3 ( ) ( )

8z z

p p m f p

D
z Df u z

V C V
uπµ µπ

ρ ρ

= − + ∇+ 
ɺɺ ɺ

 

 

1z z z

m f p r z

u u u
C V u u u

r r zθ
ρ

θ

 ∂ ∂ ∂  + + +   ∂ ∂ ∂ 

 

 

1z z z

p f r z

u u u
V u u u

r r zθ
ρ

θ

 ∂ ∂ ∂  + + +   ∂ ∂ ∂ 

 

 

1/4
2 2 2

2 ( )1 1 1
1.61 z r z

f

u u u u ru u
D

r r z r r r r

θ θ θµρ
θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

 

 ( ) ( ) 1r z z

r

u u u u
u r u r

z r r r

θ

θ
θ

θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     

ɺɺ  (2.64) 

2.3 Fourth Order Runge–Kutta Integration 

 The set of ODEs established in the previous section may be solved using Runge-

Kutta integration of fourth order [36]; to do so, the equations are first expressed as a set 

of first order ODEs of the form 

 ( ) ( )0 0

d
, ,    

d

y
f t y y t y

t
= =  (2.65) 
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This classic technique was developed by C. Runge (1856-1927) and M.W. Kutta (1867-

1944). Because only first order differential equations of the type given by Eq. (2.65) can 

be solved, Runge-Kutta integration can be extended to higher order ODEs after 

converting them into first order systems.  The integration scheme associated with Runge-

Kutta integration follows simple, familiar steps. To solve Eq. (2.65), one can write 

 ( )1 1 2 3 4
2 2

6n n

h
y y k k k k+ = + + + +  (2.66) 

 
1n

t t h+ = +  (2.67) 

 

( )

( )

1

2 1

3 2

4 3

,

1 1
,

2 2

1 1
,

2 2

,

n n

n n

n n

n n

k f t y

k f t h y hk

k f t h y hk

k f t h y hk

=
  = + +   
  = + +   

= + +

 (2.68) 

where h  is the size of time interval and 
1
k ,

2
k ,

3
k , and 

4
k  denote the slopes at the 

beginning, two midpoints, and end of each time interval 
n
t .  

2.4 Numerical Integration of the Coupled ODEs 

 In order to carefully track particle motion in a gaseous medium characterized by a 

velocity field vector U , the coupled nonlinear ODEs (2.62)–(2.64) must be solved using 

the Runge-Kutta method described above. Before solving the three coupled second-order 

ODEs, they must be converted into six first-order equations [37].  To this end, we first 

express Eqs.(2.62)–(2.64) as 
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Table 2-1  Set of coupled nonlinear ODEs (2.62)–(2.64) 

 

Variable  Components of forces in three directions 

rɺɺ  

= 
( )

2
3

21
3 ( ) ( )

8r r

p p m f p

D
r Df u r

V C V
θ πµ µπ

ρ ρ

+ − + ∇+ 
uɺ ɺ

2
1r r r

m f p r z

u u u u
C V u u u

r r z r

θ

θ
ρ

θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  
 

  

2
1r r r

p r z

u u u u
V u u u

r r z r

θ

θ θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  

1/4
2 2 2

2 ( )1 1 1
1.61 z r z r

f

u u u u ru u
D

r r z r r r r

θ θµρ
θ θ

−        ∂ ∂ ∂ ∂ ∂ ∂          + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂        
 

  

( ) ( )( )1 r r z

z

ru u u u
u r u z

r r z r

θ

θ
θ

θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     

ɺ ɺ

 

 

θɺɺ  
( )

3
22 1

3 ( ) ( )
8

p p m f p

r D
Df u r

r r V C V
θ θ

θ
πµ θ µπ

ρ ρ

= − + − + ∇+ 
u

ɺɺ ɺ 1 r

m f p r z

u u u u u
C V u u u

r r z r

θ θ θ θ

θ
ρ

θ

 ∂ ∂ ∂  + + + +   ∂ ∂ ∂   
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Table 2-1  Continued 

Variable Components of forces in three directions 
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1.61 z r z r
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u u u u ru u
D

r r z r r r r

θ θµρ
θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

1 r

f p r z

u u u u u
V u u u
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θ θ θ θ
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θ
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      ( ) ( ) ( )1 1z r

z r

u u ru u
u z u r

r z r r

θ θ

θ θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     
ɺ ɺ  

zɺɺ  
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Df u z

V C V
πµ µπ

ρ ρ
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 ∂ ∂ ∂  + + +   ∂ ∂ ∂ 
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u u u u ru u
D
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θ θ θµρ
θ θ

−      ∂ ∂ ∂ ∂ ∂ ∂         + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       

             

( ) ( ) 1r z z

r

u u u u
u r u r

z r r r

θ

θ
θ

θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     

ɺɺ  



29 

 ( ), , , , , ,r f t r r z zθ θ= ɺɺɺ ɺ ɺ  (2.69) 

 ( ), , , , , ,f t r r z zθ θ θ=ɺɺ ɺɺ ɺ  (2.70) 

 ( ), , , , , ,z f t r r z zθ θ= ɺɺɺ ɺ ɺ  (2.71) 

with six suitably posed initial conditions: 

 

( ) ( )
( ) ( )
( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

  ;  

  ;  

  ;   

r t r r t r

t t

z t z z t z

θ θ θ θ

= =

= =

= =

ɺ ɺ

ɺ ɺ

ɺ

 (2.72) 

where the subscript “0” denotes initial conditions.  Conversion of Eqs. (2.69)–(2.71) into 

an equivalent first-order system can be achieved by introducing the auxiliary variables: 

 
1 2
  ; r y r y= =ɺ  (2.73) 

 
3 4
 ; y yθ θ= =ɺ  (2.74) 

 
5 6

   ; z y z y= =ɺ  (2.75) 

Substituting these variables into Eqs. (2.69)–(2.71) leads to a system of first-order 

differential equations, specifically 

  
1 2
y y=ɺ

 
 (2.76) 

  ( )2 1 2 3 4 5 6
, , , , , ,   y f t y y y y y y=ɺ   (2.77) 

  
3 4
y y=ɺ   (2.78) 

  ( )4 1 2 3 4 5 6
, , , , , ,y f t y y y y y y=ɺ

 
 (2.79) 

  
5 6
y y=ɺ   (2.80) 
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  ( )6 1 2 3 4 5 6
, , , , , ,y f t y y y y y y=ɺ   (2.81) 

with the same six initial conditions: 

 

( ) ( )
( ) ( )
( ) ( )

1 0 0 2 0 0

3 0 0 4 0 0

5 0 0 6 0 0

;  

;  

;   

y t r y t r

y t y t

y t z y t z

θ θ

 = = = = = =

ɺ

ɺ

ɺ

 (2.82) 

By substituting Eqs. (2.76)-(2.81) in Table 2-1, we obtain a system of first order 

differential equations that are presented in Table 2-2.  This set of equations can then be 

programmed using any numerical software program (such as Mathematica, Fortran, 

Matlab, Mathcad, or Maple).  Its solution and physical interpretation will be explored in 

the following chapter. 
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Table 2-2  Set of first order differential equations. 

Variable Components of forces in three directions 

1
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D
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θ θ

 ∂ ∂ ∂  + + + −   ∂ ∂ ∂  
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f

u u u u ru u
D

y r z r y r y

θ θµρ
θ θ

−        ∂ ∂ ∂ ∂ ∂ ∂          + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂        
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ru u u u
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θ θ

     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂       

 

3
yɺ  

4
y=  
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Table 2-2  Continued 

Variable Components of forces in three directions 

4
yɺ  

( )
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22 4
1 4

1 1

2 1
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p p m f p

y y D
Df u y y

y y V C V
θ θ

πµ µπ
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1 1 1
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u u u u ru u
D
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θ θµρ
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−      ∂ ∂ ∂ ∂ ∂ ∂         + − + − + −            ∂ ∂ ∂ ∂ ∂ ∂       
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 ∂ ∂ ∂  + + + +   ∂ ∂ ∂ 
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( )1 1z r
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     ∂ ∂ ∂ ∂       × − − − − −        ∂ ∂ ∂ ∂     
 

5
yɺ

 6
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z z z

z z f p m r z f
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u u uD
Df u y V C u u u D
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8 θ
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θρ ρ

   ∂ ∂ ∂  = − + ∇ + + + + +    ∂ ∂ ∂+  

   

( ) ( )z r z r z z
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u u u u ru u u u u u
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1/4
2 22

2 1 4
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( )1 1 1 1θ θ θ θ
θθ θ θ

−           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           × − + − + − − − − − −                     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            
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Chapter 3  

Mean Flow Models for Primary Phase 

3.1 Solid Rocket Motor 

F.E.C. Culick first presented the steady-state flow solution for a solid rocket 

motor [38]. His model was obtained by assuming the flow to be inviscid, axisymmetric, 

incompressible, and steady. To incorporate viscosity, Majdalani and Akiki [39] presented 

a mean flow solution that mimics the bulk gas motion in a solid rocket engine of chamber 

length L and radius a. A sketch of the chamber is given in Figure 3-1 where r  and z  are 

used to denote the radial and axial coordinates. Downstream of the base, the flow is 

accelerated after expanding through a nozzle whose treatment is not required here. The 

sidewall injection velocity Uw is used to represent the solid fuel regression rate. 

3.1.1 Equations 

The bulk gas flow is considered to be non-reactive, and furthermore, the basic 

flow may be assumed to be (i) steady, (ii) incompressible, (iii) rotational, (iv) 
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axisymmetric, and (v) viscous. Based on these assumptions, the Navier-Stokes equations 

become  

 
( )1

0
r z

ru u

r r z

∂ ∂
+ =

∂ ∂
 (3.1) 

 
2

2

( )1 1
 r r r r

r z

u u u rup
u u

r z r r r rz
ν

ρ

  ∂ ∂ ∂ ∂∂ ∂  + = − + +   ∂ ∂ ∂ ∂ ∂∂   
 (3.2)  

 
2

2

1 1z z z z

r z

u u u up
u u r

r z z r r rz
ν

ρ

  ∂ ∂ ∂ ∂∂ ∂  + = − + +   ∂ ∂ ∂ ∂ ∂∂   
 (3.3) 

 

Figure 3-1 Sketch of a full-length solid rocket model depicting mass addition 

along the sidewall. 
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3.1.2 Boundary Conditions 

 The boundary conditions are due to symmetry and the no-slip requirement at the 

sidewall. Specifically, one can assume 

  (a) uniform injection along the cylindrical sidewall, 

  (b) no slip boundary condition at the sidewall, 

  (d) vanishing radial velocity along the centerline.  

These particular conditions can be written as 

 

,  0 ,   (sidewall injection)

,  0 ,  0 (no slip at the wall) 

0,  ,  0 (no flow across centerline)

r w

z

r

r a z L u U

r a z L u

r z u

 = ≤ < =− = ≤ < = = ∀ =

 (3.4) 

3.1.3 Normalization 

All of the variables and operators are normalized according to 

 
2

;  ;  ;
w

z r p
z r a p

a a Uρ
= = ∇ = ∇ =  (3.5) 

 ;  r z

r z

w w

u u
u u

U U
= =  (3.6) 

Here ( , )
w r

U u a z=−  represents the uniform wall injection velocity at the sidewall. The 

corresponding boundary conditions reduce to 

 

(1, ) 1

(1, ) 0

(0, ) 0  

r

z

r

u z

u z

u z

 =− = =

 (3.7) 



36 

3.1.4 Viscous Rotational Solution 

In the reduced Navier-Stokes equation, in which viscous effects and wall 

regression are incorporated, one can set α = 0 to achieve the case corresponding to a 

stationary wall. One gets: 

 

4 3 3 2

4 3 3 2

d d d d d
2 2 0

dd d d d

F F F F F
Fε θ

θθ θ θ θ

   + + − =  
 (3.8) 

where  
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The corresponding boundary conditions are given : 
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 (3.10) 

It is noted that ε ≡ ν/(a Uw) is the inverted Reynolds number based on the wall injection 

velocity. Equation (3.8) may be solved asymptotically by first setting 

2

0 1
( )F F F Oε ε= + +  and then inserting the expanded form back into Eq. (3.8). The 

analysis is explained in detail by Majdalani and Akiki [39]. Here, we present the final 

viscous solution that is used in the present work, specifically, 

( 1
2

sin 3 3 ( ) ( ) sin
2r

u S S
π

θ ε π θ θ
θ

  = − + − + + −   
 

 { })1 1 21 1
1 12 2

cos ( ) 3 1 6 ( ) ( ) 2 ( ) ( )S S S S Oθ θ θ π π θ π π ε− −  − − + + + − − +   
 (3.11) 
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cos 2 1 2 ( ) cos
z

z
u S

a
π θ ε θ π π π θ− −
     = + − + − +       

 

 { } )1 1 21 1
1 12 2

+ ( ) 3 1 6 ( ) ( ) 2 ( ) sin ( )S S S S Oθ θ π π θ π π θ ε− −  − + + + − − +   
 (3.12) 

where 
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+
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Table 3-1  Range of important parameters for simulated SRMs 

Variable Definition Values Reference value 

w
U  Gas velocity at the burning surface 0.01-10 m/s 1 m/s 

a  Combustion chamber radius 0.025-3 m 0.1 m 

L /a  Length of combustion chamber 1-50 20 

/( )
w

aUε υ≡  Inverted Reynolds number 0.01-0.0001 0.001 

/
p f
ρ ρ  Relative density 100-1000 500 

µ
 

Chamber gas dynamic velocity 

5 4

2

3 10  3 10

         Ns/m

− −× − ×
 5 23 10  Ns/m−×  

D  Diameter of particle 10-500 µm 100 µm 
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θ θ θ
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−∞ ∞
− +

= =

−  = +    + 
∑∑  (3.15) 

3.1.5 Typical Parameters for Solid Rocket Motors  

Important parameters in SRMs are supplied in Table 3.1 over the entire range 

of interest For our study of particle trajectories, the reference values given in the last 

column have been used. 

3.2 Bidirectional Vortex Engine 

Majdalani [40] presented a uniformly valid solution for the chamber of a 

bidirectional vortex engine. Their model provides the gas motion in a cylindrical chamber 

of length L and radius a, with a closed headwall (defined at 0z = ). Here spatial 

coordinates r  and z  are normalized by the chamber radius a. The ratio of open flow in 

the exit plane is defined as β = b/a, and the chamber aspect ratio is defined as l = L/a (see 

Figure 3-2).  The oxidizer gas is injected at high velocity at the base of the cylinder to 

induce a swirling annular stream that clings to the wall and traverses the length of the 

chamber in what is known as the outer vortex region. At the headwall, the flow turns and 

forms the core vortex that exits at the base of the chamber. 

3.2.1 Normalization 

            It is helpful in asymptotic treatments to normalize all key  equations.  The choices 

for normalization are given in Eqs. (3.16)–(3.18), where 
i
Q  and 

o
Q  represent the 
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volumetric flow rates at the chamber inlet and outlet, respectively. Here U represents the 

average fluid injection velocity. The normalization of all variables follows from : 

 ; ;
z r

z r a
a a

= = ∇ = ∇  (3.16) 

 ; ;r z

r z

u u u
u u u

U U U

θ

θ
= = =  (3.17)  

 
2 2 2
; ;i o

i o

Q Qp
p Q Q

U Ua Uaρ
= = =  (3.18) 

3.2.2 Equations 

After entering the chamber, fluid particles follow a helical trajectory by spirally 

around the entire length of the chamber twice before exiting at the base. Here too the 

basic flow can be assumed to be (i) steady, (ii) incompressible, (iii) viscous, and (iv) 

axisymmetric. The swirl velocity is assumed to be axially independent. Upon application 

r

z
β = b/a

Qi

l =L/a
 

Figure 3-2 Bidirectional vortex engine diagram [40]. 
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of the new non-dimensionalized variables, the governing equations can be expressed in a 

more suitable form and the Navier-Stokes equations become: 
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0
r z
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r r z
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 (3.19) 
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 z z

r z

u u p
u u

r z z

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (3.22) 

3.2.3 Boundary Conditions 

 The first set of boundary conditions are due to symmetry and the infinite 

impedance of the walls. The second set is due to the inlet configuration and bulk mass 

conservation. Physically, these consist of the following: 

   (a) a fully tangential inflow,  

   (b) a zero axial flow at the headwall,  

   (c) symmetry about the centerline,  

   (d) a zero radial flow at the sidewalls, and  

   (e) an inflow that matches the outflow  

These can be written as 
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 (3.23) 

 

According to Hoekstra, Derksen and Van den Akker [41], the relation between the 

normalized volumetric flow rate, Qi, and the swirl number, S, used in the literature may 

be written as  

 
2

i i i

ab a
S

A A Q

π πβ πβ
≡ = =  (3.24) 

Accordingly, the geometric inflow parameter may be defined as 

 
2 2 2 2

i i i
Q A A

l al Sl
κ

π π
≡ = =  (3.25) 

3.2.4 Solution 

Using matched asymptotic expansions (MAE), a uniformly valid analysis is 

obtained by Majdalani [40], namely, 

 ( ) ( ){ }2sin 1 exp (1 )
r
u r r V r

r

κ
π

 = − − − −  
 (3.26) 

 ( ) ( )24

1
1 exp exp (1 )Vu r r V r

rθ

  = − − − − −    
 (3.27)

 

 ( ) ( ){ }2, 2 cos 1 exp (1 )
z
u r z z r V rπκ π

 = − − −  
 (3.28) 
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The above represents the uniformly valid asymptotic solution that is used in the present 

work, where the vortex Reynolds number is given by 

 2
Re a

V Re
S L

π β
πκ= =  (3.29) 

3.2.5 Axial, Radial and Azimuthal Velocity Profiles 

 Understanding the velocity profiles is important when analyzing the particle 
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Figure 3-3  Velocity plot illustrating: a) axial velocity, b) azimuthal velocity, and c) 

radial velocity profiles in a simulated bidirectional vortex engine. 
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trajectories in the bidirectional vortex engine. The radial velocity is zero along the 

sidewall as there is no gas injection normal to the wall. The radial velocity peaks in the 

vicinity of the mantle as shown in part (a) of Figure 3-3. The radial velocity remains 

independent of z and therefore invariant at any axial location. The azimuthal velocity, uθ , 

as shown in part (b) of Figure 3-3, depends on the radial coordinate only. Based on Eq. 

(3.27), it peaks near the axis, within the inner vortex, and decreases near the wall, within 

the outer vortex. The axial velocity distribution, captured by Eq. (3.28), is a linear 

function of the axial distance from the chamber headwall. Note that linearly uz decreases 

as the fluid approaches z=0. Here, the radial distribution of ur is shown at a chamber 

length of 0.1 in part (c) of Figure 3-3. Clearly, the axial profile shows that the flow 

changes directions at the radial point r=0.707.  

3.2.6 Typical Parameters for Bidirectional Vortex Engine 

 The range of parameters used in the BDVE over the entire range of interest is 

given in Table 3-2. For our study of particle trajectories, the reference values tabulated in 

the right-most column are used. 
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Table 3-2  Range of important parameters for the bidirectional vortex engine 

simulation 

Variable Definition Values Reference value 

U  Oxidizer injection velocity 10-100 m/s 50 m/s 

a  Radius of combustion chamber 0.001-0.1 m 0.1 m 

L /a  Length of combustion chamber 1-10 5 

κ  Geometric inlet parameter 0.01-0. 1 0.05 

V  Vortex Reynolds number 100-500 250 

/
p f
ρ ρ  Relative density 10-500 100 

D  Diameter of particle 1-50 µm 25 µm 
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Chapter 4  

Solid Rocket Motor Simulation Results 

4.1 Reynolds Number and Magnitude Analysis of Forces 

In our study we use a Lagrangian approach where inert aluminum particles ranging 

in diameter from 10 to 500 µm and from 10 to 1000 in relative density, ρp / ρf , are 

injected at different axial positions of the propellant burning surface and then tracked 

along the length of the chamber. The detailed analysis of forces that act on a particle is 

given in Chapter 2. In deriving the drag force, we take the relative Reynolds number to be 

less than unity, which is consistent with the Stokes flow assumption. Generally, the 

relative Reynolds number in two phase flows will be small if a particle moves in the 

direction of the flow, as it turns out to be the case in solid rocket motors. In addition to 

particle velocity and direction in the flowfield, the particle size and density ratio are 

important parameters affecting the relative Reynolds number. The relative Reynolds 

numbers acting on a 100 µm particle with different density ratios and on a particle with 
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different radii are shown in parts (a) and (b) of Figure 4.1, respectively. We can see in 

part (a) that the relative Reynolds number is very low for low density ratios. However, a 

significant increase in the Reynolds number can be seen when the density ratio is 
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Figure 4-1  Variation of the relative Reynolds number along the non-dimensional 

length of the simulated SRM chamber for: a) 100 µm particles with varying density 

ratios, and b) particles with different radii at fixed δ = 500. 
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increased to 1000.  Because the density of an aluminum particle is constant, the relative 

density can only be decreased by increasing the density of the gas phase, which in turn 

increases the Reynolds number (refer to Eq. 3.30). Part (b) of Figure 4.1 shows that the 

relative Reynolds number increases as it should, when the size of the particle increases. 
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  surface force
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  virtual mass force 

 

Figure 4-2 Comparison of forces acting on a 100 µm particle in a simulated SRM 

taken along the non-dimensional length of the chamber axis z for a sidewall 

injection velocity of Uw = 10 m/s and δ = 500. 
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Figure 4-3 Comparison of forces acting on a 100 µm particle in a simulated solid 

rocket motor along the non-dimensional length of the combustion chamber axis z for 

sidewall injection velocities of: a) Uw = 1 m/s and b) Uw = 0.1 m/s at fixed δ = 500. 
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In most of the studies conducted on nozzle erosion, all but the drag force are 

neglected in order to simplify an otherwise complex multiphase flow problem, so to 

validate and examine the magnitude of forces acting on particles, a magnitude analysis of 

forces is performed by predicting the forces experienced by a 100 µm particle injected at 

the headwall as it traverses the length of the combustion chamber (shown in Figure 4-2 

and Figure 4-3) for different sidewall injection velocities. In our study the forces are non-

dimensionalized by ρf Uw
2
 D

2
, where reference values of ρf , Uw and D are taken from 

Table 3-1. 

 Inspection of Figure 4-2 and Figure 4-3 reveals that the virtual, lift and gravity are 
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Figure 4-4 Comparison of forces acting on a 100 µm particle in a simulated solid 

rocket motor at non dimensional axial distance of z=10 and an injection Reynolds 

number ranging from 10 to100. 
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the least dominant forces for sidewall injection velocities of 10 and 1 m/s. At such high 

velocities, drag and surface forces are the most appreciable. However, for a sidewall 

injection velocity of 0.1 m/s (low end), the role of the surface force is taken by the 

gravitational force. Thus, for low sidewall injection velocities, the weight of the particle 

must be included in flow simulation. 

4.1.1 Effect of Injection Reynolds Number Reinj on Forces 

The effect of injection velocity on various forces is discussed in the previous 

sections. To capture the effect of injection velocity on various forces, a magnitude 

analysis is carried out at a chamber length of 10, which is halfway along the combustion 

chamber. This is accomplished by varying the injection Reynolds number, Reinj=(aUw)/ ν, 

from 10 to 100 as shown in Figure 4-4. From Figure 4-4 it can be seen that for Reinj < 

17.7 the gravitational force is the largest; however, for Reinj>17.7, the drag force 

dominates and the magnitude of forces increase as the injection Reynolds number is 

increased. Thus at large injection velocities, all the forces considered here may be 

included in our analysis but their effects will be smaller than that of the drag force. 

4.1.2 Effect of Particle Size and Sidewall Injection Velocity at Burning 

Surface  

The steady-state flow solution in solid rocket motors is dependent on the sidewall 

injection velocity, Uw. In general, the sidewall injection velocity values range from 0.01 

to 10 m/s under normal operating conditions, with 1 being the most common. To examine 

the effect of the sidewall injection velocity, particle trajectories and radial distributions of 
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particles at the exit of the combustion chamber are shown in Figure 4-5 for a velocity of 1 

m/s and, in Figure 4-6, for a sidewall injection velocity of 0.01 m/s. The particle 

movement in the radial direction is reduced in Figure 4-6 because of the lower radial 

velocity. Comparison of Figure 4-5 and Figure 4-6 also shows that particles with radii 

between 10 and 100 µm exit the combustion chamber at a radial distance varying from  
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Figure 4-5 Part (a) depicts the trajectories of particles with different sizes that 

enter the chamber at a non-dimensional axial distance of z = 0.1 (here both drag and 

weight are considered). In part (b), the radial distribution of particles is shown at a 

downstream position corresponding to a non-dimensional axial distance of z = 20 

and a fixed sidewall velocity of Uw = 1 m/s. 
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0.1 to 0.2 in both cases. 

It should be noted that everywhere the particles with larger diameters tend to 

move closer to the wall. Furthermore, the resulting particle concentration will shift 

towards the wall as Uw is reduced. This can partially explain the cause of nozzle  
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Figure 4-6 Part (a) depicts the trajectories of particles with different sizes that 

enter the chamber at a non-dimensional axial distance of z = 0.1 (here both drag and 

weight are considered). In part (b), the radial distribution of particles is shown at a 

downstream position corresponding to a non-dimensional axial distance of z = 20 

and a fixed sidewall velocity of Uw = 0.01 m/s. 
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impingement and aluminum slag deposition in solid rocket motors.   

4.1.3 Effect of Density Ratio. 

The particle-to-gas density ratio in SRMs is another important parameter affecting  

particle trajectories. The most common ratios in SRMs range from 100 to 1000. Hence,  
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Figure 4-7 Part (a) depicts the trajectories of particles with different sizes that 

enter the chamber at a position corresponding to a non-dimensional axial distance 

of z =0.1 (here both drag and weight are considered). In part (b), the radial 

distribution of particles is shown at a downstream position corresponding to a non-

dimensional axial distance of z = 20 and a fixed sidewall velocity of Uw = 0.01 m/s 

using density ratios of 100 and 1000. 
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simulations are run for these conditions.  Part (a) in Figure 4-7 illustrates the trajectories 

of different size particles given these ratios.  Most of the particles with different density 

ratios follow the same trajectories except for the 500 µm particles. The larger particles 

turn quickly towards the nozzle because, as their relative density increases, their inertia 

increases as well. This causes them to move away from their corresponding fluid flow 

streamlines. It can therefore be seen that the density ratio plays an important role for large 

agglomerates, but does not significantly affect the trajectories of smaller, single particles.  

The radial distribution of different size particles is shown in part (b) of Figure 4.6.  Here, 

only a very small difference in distribution for different density ratios is observed.  

Therefore, it can be concluded that the density ratio has a weaker influence on particle 

trajectory for small-size particles with radii between 10 and 100 µm but can play an 

important role when considering particles with radii greater than 100 µm. 
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Chapter 5  

Bidirectional Vortex Engine Simulation 

Results 

Tracking particle motion in a bidirectional vortex (BV) engine is important to 

develop an understanding of the entrainment characteristics of fuel droplets injected into 

the chamber often near the headwall section, radially or axially.  To this end, several 

particles with different radii and relative densities will be injected near the headend of the 

chamber to the extent that their trajectories may be examined. The various forces acting 

on the particles are presented in Chapter 2.  In what follows, the significance of each 

force in determining the trajectory of a particle in a bidirectional vortex engine will be 

presented and discussed. 

5.1 Reynolds Number and Magnitude Analysis of Forces 

To start, a 25 µm particle is injected at a radial position of r = 0.1 with a relative 
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density of , ρp / ρf  = 100. The forces are non-dimensionalized by ρf U
2
D

2
 where reference 

values of ρf , U, and D are taken from Table 3.2. From Figure 5-1, it is clear that the drag 

force is dominant in determining the trajectory of a particle, whereas the lift, surface, and 

virtual mass forces are less important. In this case, gravity appears to be the least 

significant. Since the forces other than drag are too small to affect particle trajectory, we 

will only consider drag in subsequent analysis. 

To better characterize the Reynolds number effect, the relative Reynolds number 

is plotted versus axial location for varying density ratios and particle sizes, as shown in 

Figure 5-2. It can be seen that the relative Reynolds number decreases as the particle size 
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Figure 5-1 Comparison of forces acting on a 25 µm particle in a simulated 

bidirectional vortex engine taken along the non-dimensional length of the chamber 

axis z at fixed δ = 100. 
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decreases, as shown in Figure 5-2a, which is consistent with Eq. (2.22). The converse is 

of course true as the relative Reynolds number increases with successive increases in  

observed from Figure 5-2 concerning the Stokes regime. We recall that in Chapter 2, the 
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Figure 5-2 Variation of the relative Reynolds number along the non-dimensional 

length of the simulated bidirectional vortex engine chamber for: a) particles with 

different radii at fixed δ = 100, and b) 25 µm particles with varying density ratios. 
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particle density, as shown in Figure 5-2b. Thus, particles with larger densities give rise to 

larger Reynolds numbers. Another important result can be drag force on a spherical 

particle is derived assuming creeping flow (Re < 1) by neglecting the inertial terms in the 

Navier-Stokes equation. Figure 5-2 confirms that the relative Reynolds number in a 

bidirectional vortex engine is generally less than unity, thus justifying the Stokes flow 

approximation. 
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Figure 5-3 Comparison of centrifugal, Coriolis and gravitational forces acting on 

a 25 µm particle in a bidirectional vortex engine along the non-dimensional length of 

the combustion chamber axis z. 
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5.2 Effect of Particle Size  

A particle trajectory is a function of different parameters such as size, density 

ratio, geometric inlet parameter, and particle axial velocity. The effects of these variables 

are studied parametrically. Particles with radii of 1 µm, 25 µm and 50 µm are injected at 

different dimensionless radial positions of 0.1, 0.5, and 0.9. Their respective trajectories 

are plotted in Figure 5-4.  A graphic inspection reveals that small particles with radii of 1 

µm and 25 µm, when injected near the centerline, initially move away from the core 

because of the centrifugal force and then get entrained in the inner vortex. When particles 

are injected near the wall, they move towards the wall. Unlike the smaller particles, from 

Figure 5-4 we see that larger particles, when injected near the centerline, move away  

0

120

240    1

    1

    0

1µm

a)
    δ -100

r

   

0

120

240

    1

    0

    1

25µm

b)     δ -100

r

   

0

120

240    1

    0

    1 50µm

c)     δ -100

r

0.005 0.05 0.5 5
0.01

0.1

1

        δ -100

z

r

d)

A

1 µm

   
0.005 0.05 0.5 5

0.01

0.1

1

25 µm

        δ -100

z

r

e)    
0.005 0.05 0.5 5

0.01

0.1

1

 

50 µm

        δ -100

z

r

f)  

Figure 5-4 Trajectories of different size particles of same density originating 

from equidistant points taken along the radius of the combustion chamber. 
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Figure 5-5 Maximum radial and axial distance travelled by particles in a BDVE. 
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from inner vortex because of the proportionately high centrifugal force acting on them 

and, as a result, migrate towards the sidewall. 

The movement of heavier particles towards the wall is caused by the strong 

centrifugal force, which can be seen in Figure 5-3, where a comparison of the centrifugal 

Coriolis and gravitational forces is given.  This is accomplished by injecting a 25 µm 

particle axially at dimensionless radial position of 0.1 and chamber length of z=0.001. It 

can be seen from Figure 5-3 that the influence of centrifugal forces are higher than 

Coriolis forces on particles.  As expected, the magnitude of both forces decreases as the 

particle moves along the combustion chamber.  For example, the trajectory of a particle 

injected at a radial position of 0.1 in Figure 5-4b follows that of a ball traveling along a 

curved path on a rotating disc and subject to both Coriolis and centrifugal forces [28].  

Part (f) of Figure 5-4 reveals an interesting phenomenon. The 50 µm particles, because of 

the higher centrifugal force acting on them, initially move towards the wall while 

migrating in the positive z-direction. However after crossing the BV mantle into the outer 

vortex, they reverse axial direction and drift towards the headwall. 

It should be borne in mind that Figure 5-4 is only qualitative to the extent that a 

conclusion cannot be made about the limiting size of a particle that may be impacting the 

wall. To better understand the particle behavior in the BDVE, the loci of the maximum 

radial and axial distances travelled by particles are calculated and provided in Figure 5-5. 

Here, particles are injected at dimensionless radial positions of 0.1, 0.5 and 0.9 with 

diameters ranging from 1 to 50 µm near the headend at z=0.001. When a 1 µm particle is 

injected at a dimensionless radial position 0.1, we see in part (a) of Figure 5-5 that the  
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Figure 5-6 Trajectories of different size particles of identical density with varying 

geometric inlet parameter.  All particles are injected at a radial distance of r = 0.1. 
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particle will not reach the wall but instead will exit the chamber. However, when a 50 µm 

particle is injected at the same radial position of 0.1, it will reach the wall at 

approximately z = 0.00378 while moving axially. Figure 5-5 gives an overall idea about 

the particle trajectory history in the BDVE when injected at different radial positions. 

This can be useful in designing fuel injectors with the objective of confining the 

combusting fuel droplets to the inner vortex region. 

5.3 Geometric Inlet Parameter ( κ ) 

 One of the most important parameters that can significantly change the 

trajectories of particles is the geometric inflow parameter, κ as previously described in 

Eq. (3.25). This parameter is important because it combines the volumetric flow rate of 

oxidizer injected tangentially into the combustion chamber and the swirl number.  To 

capture the effect of κ, particle trajectories are calculated by varying the parameter from 

0.01 to 0.1. It is noted here that lower values of κ correspond to higher tangential 

injection velocities at entry.  

In part (a) of Figure 5-6, the maximum radial distance travelled by particles 

injected at a radial distance of 0.1 is shown for the purpose of illustrating particle 

movement along the combustion chamber. Similarly, part (b) captures the maximum 

axial distance travelled by the same particles. Particles injected at a radial distance of 0.9 

from the center are shown in Figure 5-7. From Figure 5-6 and Figure 5-7, it is clear that 

for κ = 0.1, particles with radii less than 50 µm injected at a radius of 0.1 and 0.9 remain  
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Figure 5-7 Trajectories of different size particles of identical density with varying 

geometric inlet parameter.  All particles are injected at a radial distance of r = 0.9. 
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confined to the inner vortex tube before exiting the combustion chamber. When κ = 0.05, 

particles with radii greater than 34 µm impact the chamber wall, thus creating hot spots. 

As the geometric inlet parameter is decreased to κ = 0.01, particles with smaller radii 

move away from the inner vortex and impact the wall.  

The results presented in Figure 5-6 and Figure 5-7 suggest that the larger particles 

entering the chamber move into the outer vortex and contact the chamber wall instead of 

remaining confined to the inner vortex. This behavior can be explained as follows.  

Because the swirl intensity of the flowfield in the bidirectional vortex engine is inversely 

proportional to κ, decreasing the value of κ is tantamount to a scenario in which the swirl  

velocity is increased.  Evidently, higher tangential velocities throughout the flowfield 

lead to larger centrifugal forces, and these, in turn, act on the particles in the outward 

radial direction.  Given sufficiently small values of κ, particles are dragged toward the 

sidewall irrespective of their radius. One can therefore conclude that particle trajectories 

strongly depend on the inlet flow parameter κ. 

5.4 Effect of Density Ratio (δ) 

To study the effect of the density ratio on particle trajectory, particles with 

different radii are injected at a radial distance of r = 0.1 near the headwall center, with 

varying density ratios (see Figure 5-8).  

From Figure 5-8, it can be seen that for δ = 10, particles with radii less than 50 

µm injected at a radius of 0.1 remain confined to the inner vortex tube before exiting the 

combustion chamber and from part (a) in Figure 5-8, it can be seen that when the density  
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Figure 5-8 Maximum radial and axial distances travelled by particles in a BDVE 

for different density ratios. 
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ratio is increased to 100, particles with radii greater than 32 µm start to move away from 

the inner vortex and impact the sidewall. However, when the density ratio is increased to 

500 (see part (b) of Figure 5-8), particles with radii as low as 15 µm will contact the wall, 

and at the same time, cross a shorter axial distance when compared to lighter particles 

with density ratios of 10 and 100. Clearly, when the density ratio is increased, particles 

will have a higher moment of inertia that will compel them to gravitate towards the wall 

more rapidly. This explains why particles with a density ratio of 500 cross a shorter 

distance before striking the wall. One can therefore conclude that particle trajectories 

strongly depend on density ratio δ. 

5.5 Effect of Initial Velocity (v ) 

The effect of varying the initial axial velocity of particles, v  is studied by 

injecting a 25 µm particle at different dimensionless radial distances with axial velocities 

of 1, 10, and 100 m/s.  Figure 5-9 shows that increasing the axial velocity does not have a 

noticeable effect on the maximum distance travelled by particles in the radial and axial 

directions.  Moreover, as shown in part (b), when the initial velocity is increased, radius 

greater than 32 µm will initially move in the z-direction because of the higher particles 

with a velocity in the axial direction. However, they will eventually follow the same path 

as that of the particles injected with a lesser velocity. Therefore, because of the high 

tangential and axial velocities in a bidirectional vortex engine, the axial component of 

velocity of injected particles seems to have a minimal impact on particle trajectories. 
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Figure 5-9 Trajectories of different size particles of identical density originating 

at equidistant points taken along the radius of the combustion chamber with 

different initial axial velocities. 
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Chapter 6  

Conclusion 

 In this study the various parameters that affect particle trajectories in solid rocket 

motors and bidirectional vortex engines are examined. In deriving the drag force, Stokes 

flow conditions are assumed and validated by calculating the relative Reynolds number 

for particles ranging in size from 10 to 500 µm in an idealized solid rocket simulation and 

10 to 50 µm in a bidirectional vortex chamber. In the numerical simulations, drag, virtual 

mass, surface, lift and gravity forces are initially considered and, by performing an order 

of magnitude force analysis on a typical 100 µm and 25 µm particle in solid rocket motor 

and bidirectional vortex engine, respectively, the important forces affecting the particle 

trajectory are found to be almost exclusively drag and gravity in a solid rocket motor and 

drag only in a bidirectional vortex chamber. When particle distributions are plotted at a 

downstream axial distance of z = 20  in a solid rocket motor, smaller particles are shown 

to exit the combustion chamber near the axis of the motor, whereas larger particles are 

shown to exit near the combustion chamber sidewall. In a simulated solid rocket motor 
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the effect of the density ratio is seen to be negligible on trajectories followed by small-

size particles with radii between 10 and 100 µm but important in the case of larger 

particles with radii greater than 100 µm. 

In the bidirectional vortex engine, we study the effect of particle size, density 

ratio of particles with respect to the conveying medium, geometric inlet parameter, and 

initial injection velocity on particle trajectories. When injected at different radial 

positions, we find that smaller particles remain confined to the inner vortex, but heavier 

particles cross into the outer vortex before impacting the sidewall. The maximum radial 

and axial distances travelled by the particles is predicted as function of input parameters.  

Overall, we find that particles with higher density ratios travel a shorter axial distance 

before crossing into the outer vortex. They hence reach the sidewall more quickly.  The 

parameter affecting particle motion most significantly are found to be the geometric 

inflow parameter, κ, particle size, and density ratio, δ. Decreasing the value of κ leads to 

a high local swirl velocity that causes, by virtue of centrifugal action, even the smallest of 

particles to gravitate away from the inner vortex, outwardly in the radial direction. The 

initial injection velocity seems to have a negligible effect on the radial and axial 

movement of particles so long as it remains small with respect to the tangential speed. 

We conclude that particle size, geometric inflow parameter and density ratio represent the 

three most important quantities affecting particle trajectory in a bidirectional vortex 

chamber. 
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