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ABSTRACT

This study aimed to address the potential long-teffiects of future climate change on the
Tennessee Valley Authority’s (TVA'’s) operation mylifor Norris Reservoir. The Community
Earth System Model 1.0 (CESM1.0), a general citcutamodel (GCM) accessible through the
Intergovernmental Panel on Climate Change’s (IPECwupled Model Intercomparison Project
Phase 5 (CMIP5), with the Representative Conceatr&tathway 4.5 (RCP4.5) was used to obtain
projected precipitation and temperature data f@dliuture climate scenarios, 2030’s, 2050’s, and
2070’s. Three hydrologic models were individualfilbrated on 30 years of observed runoff data
and combined utilizing linear programming to comsidhe strengths of each model. Inflow
hydrographs were simulated for the future time spasing projected precipitation and
temperature. Reservoir routing was then simulaseauthe inflow hydrographs via mass balance
and the current operation policy to determine tugagie elevation of the reservoir. Next, the
routing simulations were utilized as input for angec algorithm forced optimization model, to
minimize an elevation-based penalty value, optingzNorris Reservoir's operation policy.
Finally, the operation performance of Norris Ree@fs current operation policy versus the
policies generated by the developed optimizationdehdor each projected scenario were
evaluated. The results suggested a 20.7, 23.824B8dpercent increase in runoff for the 2030’s,
2050’s, and 2070’s, respectively, compared to tASB case (1976 ~2006). Although the current
policy was able to support this increase in runtff§ optimization model decreased operation
penalties by 23.3, 22.2, and 24.4 percent for 0®03, 2050’s and 2070’s, respectively. These
results can provide substantial insight to TVA hofldgists and decision makers that their current

policy may require re-evaluation, considering tb&eptial impacts of climate change.
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CHAPTER |

INTRODUCTION

As hydro-climatic databases have expanded and demwde in climate models have
increased, professional climatology researchersg lcansistently concluded that climate change
will impact to water resource infrastructure (Freckeand Major 1997, IPCC 2013). Furthermore,
the Intergovernmental Panel on Climate Change' € QPFifth Assessment Report (AR5) states
that the period from 1983-2012 has likely beenviaemest 30-year period in the past 1400 years,
and that there has been a linear trend of the bjolazeraged combined land and ocean
temperature increasing 0.85 °C since 1880 (IPCGRMtudies have also shown that climate
change has increased the probability of occurrémrcextreme climatic events (Allen and Ingram
2002, Bell et al. 2004, Gao et al. 2012, WMO 20P&,C 2013). The southeastern United States
has experienced increases in moderate to extremmsudroughts since the 1970’s and annual
average autumn precipitation since 1901 by 14 &npkBcent, respectively (Karl et al. 2009). Due
to these increases, major infrastructure concegarding water supply and reservoir proficiency
(flood and reservoir failure prevention, hydroet@cgeneration, transportation, etc.) have become
apparent (Christensen et al. 2004, Payne et ail, 20€lton et al. 2006, Choi 2011).

Developing new reservoir management strategies randelling tools necessary for
maintaining water resources and hydro power geioeratonsidering the possible implications of
future climate change, has become an high prisgsgarch topic (Askew 1987, Arnell 1999,
Markoff and Cullen 2007, Guegan et al. 2012). Asaté, studies on the Columbia (Hamlet and
Lettenmaier 1999, Lee et al. 2009), Colorado (Ganisen et al. 2004), and Missouri (Stone et al.
2001) river basins have been conducted which agkessulnerability and fragility of many

current operation policies when analyzed againssipte future climate scenarios. Although



studies are being performed in many of the largeribasins in the United States, assessments of
the impact that climate change for the Tennesseer Biasin have been limited (Choi 2011).

Norris Reservoir is the largest reservoir on affyutary of the Tennessee River, and is
operated by the Tennessee Valley Authority (TVAYAT2014). In 2004, TVA performed a
Reservoir Operation Study (ROS) encompassing 3thef49 reservoirs in their system, to
determine if modifications to their current polioguld increase reservoir efficiency and, “produce
greater overall public value” (TVA 2004, TVA 200&xom the ROS, TVA designed a new policy
considering multiple objectives including reservetability, hydropower generation, cooling
requirements for TVA nuclear and fossil facilitigkgod control, and navigation (TVA 2004).
TVA has simplified these objective into maintainidam elevation between two curves noted as
‘balancing guide’ and ‘flood guide’. The balanciggide line ensures that all tributary reservoirs
are drawn from equally when meeting downstreamirements, whereas the flood guide line
represents the maximum amount of storage to hdlpceeflood damage; it is TVA’s objective to
maintain reservoir elevation at the flood guideslfTVA 2004, TVA 2014). More importantly,
this policy integrates the entire TVA reservoirteys into a single network. Providing the ability
to systematically optimize all of the reservoirsan attempt to maintain individual reservoir
elevations and based upon outflow requirements éetra hierarchy of operational demands.
However, this new policy must remain adaptablehitisin environmental factors, such as future
climate and land use change.

General Circulation Models (GCM) have been usegragect future impacts of climate
change on the hydrologic cycle. IPCC’s Coupled Mokigéercomparison Project Phase 5
(CMIP5), developed in 2010, introduced four new fepntative Concentration Pathway (RCP)

scenarios (Moss et al. 2010, Wu et al. 2014). &t relying simply on greenhouse gas (GHG)



emission scenarios, RCPs account for GHGs, aerasmmically active gases, and land use/ land
cover. The advantage to the RCP scenario is thapiesents a variety of 2tentury climate
policies, whereas the Special Report on Emissioen&ios (SRES) of the Third and Fourth
Assessment Report represented no-climate poligyasices (IPCC 2013). The four RCP scenarios
include RCP2.6, RCP4.5, RCP6.0, and RCP8.5, wiegtesent one of many instances leading to
the specific radiative forcing of 2.6, 4.5, 6.0dah5 watts per square meter-(W¥¢) by the year
2100, respectively (IPCC 2013). More specifica®CP2.6 is considered a mitigation scenario
where radiative forcing peaks at a value of 3.0 ¥ amd drops to 2.5 W ¥hby 2100; RCP4.5 is
a stabilization scenario which peaks and stabilizes5 W n? by 2100; RCP6.0 is a stabilization
scenario which does not peak at 6.0 W iny 2100, but is approaching stabilization; and RGP
is a high GHG scenario which does peak a 8.5 ¥\ah2100 (Moss et al. 2010, IPCC 2013).

Utilizing TVA’s 2004 operation policy for the NogiReservoir as a case study, this study
aims to analyze its performance based on a defieedf optimization routine penalty weights, for
its ability to meet the hierarchy of operationah@mds given the potential impacts of climate
change. This is to be accomplished through theatibn of an IPCC CMIP5 RCP4.5 model, due
to RCP4.5 being considered a stabilization scenaitb the introduction of climate change
mitigating policies, to develop three 30 year spaveraging to 2030, 2050, and 2070, noted as
2030’s, 2050’s, and 2070’s, respectively. The oVeyaal of this study can be achieved from
completing four primary objectives:

1. Acquire necessary input data sets for hydrologitaldel calibration and reservoir
operation optimization model. This objective is i@gled through a combination of
collaborating with TVA to obtain Norris Reservoip&rating constraints, accessing the

National Oceanic and Atmospheric AdministrationOAA) National Climate Data



Center (NCDC) to procure historically observed degkevant to the study area, and
obtaining GCM output data from IPCC’s CMIP5 databas

. Successfully develop and calibrate a combined hgdical model with the ability to
simulate runoff for the study area, with high cdefice.

. Simulate runoff for the scenario conditions usihg talibrated model with temperature
and precipitation inputs obtained from GCM simuas.

. Develop an optimization model which uses the comrbimodel output as input to simulate
reservoir routing. The routing will be evaluatedngsthe current routing policy and then
optimized to best meet the hierarchy of TVA definedflow objectives.

. Complete an evaluation of Norris Reservoir’s curageration policy under future climate
scenarios. This will be completed utilizing the ioptation model and minimizing
penalties (defined by Norris Reservoir's operatonstraints) to assess whether TVA's

operational objectives can be met under conditadrdimate change.



CHAPTER I

MATERIALSAND METHODS

Study Area

Norris Reservoir serves as the primary reservairtlie Powell (Hydrologic Unit Code
(HUC: 06010206) and Upper Clinch (HUC: 06010205)eRiBasins. The coordinate range of the
combined Upper Clinch and Powell river basins gpraximately (-84.38, 37.23) to (-81.37,
36.23), and their areas are 5124.58 and 2435.34rkspectively. The entire study area, including

both basins, location of Norris Reservoir, and wiefgical stations used can be found in Figure 1.

Legend Ng
Study Area %
Elevafit:in ) WEST e »ﬁ% E
igh - 1412
KENTUCKY VIRGINIA s

—
- Low: 268

ﬁ Norris Dam

KY151080
Meteorological

@
®  Sutions VA444180
Rivers -
KY154898 N %
\ =
Y VA449215 %
d A 2
RS Lre s VIRGINIA
Y i
: VA448547

C313957

TN401094

Upper Clinch
River Basin

=

TENNESSEE Ll

0510 20 30 0
e Viles

NORTH
CAROLINA

Figure 1. Study Area



Norris Dam (Appendix 1) lies about 482.80 km sowhivfrom the head waters of the
Upper Clinch River in Southwest Virginia, and diaojes into the Lower Clinch River in
Northeast Tennessee. It has a height and leng®0.@7 and 566.93 meters, respectively (TVA
2006, TVA 2014). Norris reservoir’'s primary purpssaclude hydroelectric power generation,
and flood control. It has the flood storage capyacft1372.87 MCM (million cubic meter), and
can generate up to 110 MW (TVA 2014). The impoundeder behind the Norris Dam (Norris
Lake) has 1301.96 km of shoreline and 13.35 hex@frevater surface area, making it the largest

reservoir on a Tennessee River tributary (TVA 2014)

Climate and Hydrology

Climate and hydrologic information utilized hereias collected for the study area which,
consisting of the Upper Clinch and Powell River iBas encompasses in parts of northeast
Tennessee, southeast Kentucky, and southwest Vardihe climate for this area is described as
humid subtropical, consisting of hot, humid sumnaerd mild winters (Parker 2008, Choi 2011).
NCDC observed data dating from January 1, 1976tehber 31, 2006, showed average monthly
precipitation and temperature for the study are@0o62 mm and 13.08°C ranging from 62.00 to
114.60 mm and 1.38 to 23.84 °C, respectively.

The Upper Clinch River has a flow length of 48280 with its headwater located just
north of Tazwell, Virginia (TDEC 2007, USGS 2018urther downstream, the Clinch River
merges with the Powell River. It is then twice daeaiyfirst by Norris Reservoir, then Melton Hill
Reservoir before discharging into the Tennesse@rRiv Kingston, Tennessee. The Powell
River's headwater is located in Wise County, Virgirt then flows 193.1 km, before discharging

into the Clinch River (EPA 2002, TDEC 2007). BothetClinch and Powell rivers flow



southwesterly through parallel valleys and are @oed within the Cumberland (Appalachian)

Plateau and the Valley and Ridge physiographicipoas (EPA 2002).

Model Input

Operation Poalicy

The current operation policy for Norris Reserweas required to effectively evaluate its
robustness, understanding that climate changes@mded with the non-stationarity of hydro-
climatic variables. Since all reservoirs in the T8ystem operate as a network to maintain a
form of equilibrium, Norris Reservoir's operatior@iorities are subject to change depending on
any single event occurring throughout the systewfA provided the current Elevation Operating
Guide (Figure 2), the minimum flows required foe tacosystem, hydroelectric power
generation, and Bull Run fossil plant, the maximilow to prevent flooding, the historical
maximum elevation and elevation which compromisas dafety, and the minimum elevation
for reservoir maintenance and elevation requirgardwide flow for navigation. Therefore, as a
case study, the criterion obtained from TVA werkdved to be adequate for the development of
the routing and optimization model with respedtt® scope of this research. In Figure 2, the
upper and lower solid turquoise lines representthed Guide and Balancing Guide,
respectively. The dashed turquoise line represbet®eservoir Operation Study Median from
the 2004 ROS for Norris Reservoir, the black liepresents the actual elevation for 2013, and

the 80% grey range represents the expected elavatige (TVA 2014).
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Precipitation and Temperature Data

31 years, to account for a previous a time-steg;ooftiguous and continuous observed
precipitation and temperature data were used ibraé¢ and validate the individual hydrologic
models. Based upon this criterion, the five statigelected for precipitation were NC313957,
TN401094, VA444180, VA448547, and VA449215. Theefstations selected for temperature
included KY151080, KY154898, NC313957, TN401094d &A444180. The stations selected
were based upon a recent study that concludedssatwith similar latitude and insignificant
perturbation in hydro-climatic variables, could a@tely represent the climate for the entire study
area. (Choi 2011) (Figure 1). The stations wera trexified by obtaining NOAA data from the

National Climate Data Center (NCDC) confirming thhe required criterion of at least 31



contiguous and continuous years for calibrationewset. It was determined that the most recent
time frame acceptable for calibration was Januaryl976 to December 31, 2006. The

meteorological stations were interpolated via tHge3sen polygon method to determine a
representative composite precipitation and tempegatalue for the study area. This method
creates an areal weight for a network of meteoroldgtations by drawing polygons whose sides
are the perpendicular bisectors of lines connedtieggauges (Haan et al. 1994, Kim et al. 2008).
Buytaert et al. (2006) confirmed that this methtatl groduced good results given study areas
located in mountainous regions. The Theissen polygeere constructed utilizing ESRI's ArcGIS

10.2 software.

Streamflow Data

Observed streamflow data for the inflow to Norriss@rvoir was obtained through direct
correspondence with TVA personnel. The data werergin units of inches on a monthly time-
step dating from January 1921 to February 2013 dBlt& were converted to millimeters for model

calibration.

Potential Evapotranspiration

Potential evapotranspiration (PET) was calculated the Thornthwaite method
(Thornthwaite 1948, Palmer and Havens1958, McCaldeVeolock 1992, Lu et al. 2005). The

Thornthwaite method is a temperature-based mogehdpy:
a
PET = 1.62b (=)  + 10 )

wherePET is given in millimeters (mm)b is the sunshine hour adjustment for each month

(multiples of 12 hours)nt is the monthly mean air temperature (°C)s the annual heat index,
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anda = 6.75 « 107713 — 7.71 * 107%1%2 + 0.017911 + 0.49239 (Palmer and Havens1958, Lu et

al. 2005, Black 2007).

Hydrologic Rainfall-Runoff Models

For this study, a conceptual, linearly programmewhizined model approach was used to
construct the combined model from three individaydirologic models. The individual models
used were a multiple linear regression (MLR), difieial neural network (ANN), and the Tank
model. Through linear programming, each individualdel was assigned a single weight, which
summed to 1. This was performed by minimizing taeural log transformation of the sum square

error (LNSSE) from the combined model to the obsémdata.

Multiple Linear Regression Model (MLR)

Multiple linear regression was both as an individualrologic model, and as a means of
determining which hydro-climatic variables would $&ignificant in estimating runoff (Table 1).

The general expression for MLR is given by Kim d&aduarachchi (2008):

y= Bot+ B1X1+ B2Xz + -+ BrX, (2

where,,, is the matrix of regression coefficients of partang, andX,, is the matrix of selected

variables corresponding to the parameter. In th& 8tep, a multiple linear regression was
performed by including only the most influentiakiadle. Subsequently, a “step forward” is taken
by including the next most influential variableanthe regression. This process continues until
either all the variables have been included, ordigeession is no longer improved by the addition

of a variable (Muleta and Nicklow 2005, Parajkale005, Helton et al. 2006, Heuvelmans et al.
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2006, Wagener and Wheater 2006, Boughton and C20&#, Seelbach et al. 2011). The model

was performed utilizing the statistical toolboXMATLAB.

Table 1. Potential Variablefor Combined M odel

No. | Symbol Definition Unit
1 R Precipitation at time t mm
2 R Precipitation at time t-1 mm

3 PET Potential Evapotranspiration attimet  mm

4 PET:1 Potential Evapotranspiration at time t-tnm

Artificial Neural Networks Model (ANN)

ANNs have become a widely accepted method by &ieurologists’ for estimating
rainfall-runoff processes due to the similarities ANNs and the hydrologic process being
considered ‘black-box’ systems (Dawson and Wilb@D)0ANNs are defined as an information-
processing system consisting of many non-linear gerkely interconnected neurons or nodes
(Tokar and Johnson 1999, Dawson and Wilby 2001)NANvere developed as a means of
mimicking the biological nervous system, in thetthat they have the ability to generate an output
based on input parameters regardless of prior keayd of regularities, noisiness, distortion, or
incompleteness of the input data (Zealand et.9819). Figure 3 represents the typical structure of

an ANN consisting of three layers: input, hiddemd autput (Zealand et al. 1999).
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Input Layer Hidden Layer Output Layer

Q

\//

Figure 3. Artificial Neural Network Structurefor Hydrological System

The hidden layer, which processes a set numbeoadsdefined by the user, received its
name for the values within the layer being ‘unrtiato the inputs/outputs. This allows for more
complex functions to be modelled. The optimum nundfenodes required to receive the best
output can be derived from a number of methods asgruning algorithms, cascade correlations,
trial and error, etc. (Dawson and Wilby 2001). Néte output layer consists of the summation of
weighted input values determined by the hiddenrla@ace training is complete, the model is
validated with the remainder of the dataset ndizet for training.

The ANN is trained through forward and reverseaitiens between the output and hidden

layers in order to minimize the global error E¢iK2007), described in Eq (3).

1
E = n 1il=1En (3)

wheren = total number of training patterns afigl= the error for training pattem is represented

by the equation:

E,= 1370, — T;)’ (4)
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wherem = number of nodeg); = output at nodg¢, andT; = target output at node j (§i2008).
The number of training patterns,is dependent on the magnitude of the gradiepedbrmance,;
unless the number of patterns is explicitly spedifitraining does not end until the gradient of the
performance is less than-1(Beale et al. 2014). It should also be noted ¢imy¢ one output and
target value existed for this study. There are tmining algorithms: back-propagation, conjugate
gradient, cascade correlation, and Levenberg-Mady(Kisi 2007). To begin training, data were
introduced into the network, via the input layerhieh can consist of one or more vectors
representing one to many variables (precipitationoff, etc.) (Tokar and Johnson 1999, Zealand
et al. 1999).

For this study, the ANN consisted of one hidderetayith ten nodes determined by trial
and error, the Levenberg-Marquardt training methadd the same variables determined
significant by the stepwise regression; 90 percérthe dataset ranging from 1976 to 2006 was
set aside for calibration, 5 percent for validatiand 5 percent for testing. A 10 node hidden layer
was selected based upon the trial and error methedo its common use and being considered
the best method in scientific literature (Shamse®97, Shamseldin et al. 1997, Dawson and
Wilby 2001). The Levenberg-Marquardt training aijon was selected based upon an analysis
performed by (Ksi 2007), where the Levenberg-Marquardt proved tontmwe efficient and

provided the best runoff projections when compaoeitie other three training algorithms.

Tank Mod€

The Tank model, which was initially developed hyg8wra (1967), was utilized in this
study due to its relatively simple architecturalighto simulate low flows well, and applicability

being internationally verified for multiple rivelabins (Jain 1993, Yokoo et al. 2001, Chen et al.
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2005, Kim and Kaluarachchi 2008, Choi 2011). Frdm tonclusions drawn by Kim and
Kaluarachchi (2008), it was decided that six patansewould be sufficient for representing the
dynamics of the study area due to the non-lineafityydro-climatic variables. A two layer tank
model was used, where the first layer representtaci flow, and second layer represents
groundwater flow, and infiltration from the secdagler represents deeper groundwater flow that
does not contribute to runoff for the study bagirschematic for the two-layer model is shown in

Figure 4, along with a description of the paranseter

P
ET
it
1Y
3
© | S — K1
4 |5 -
HI
! —>0
KIl
prldl]
~ T .........
@
— K2
E ':;‘ -3 02
“ H2

Figure4. Two-Layer Tank Model Schematic (Kim and Kaluarachchi 2008)

The total runoffQ(t) in mm, at timet is calculated as:
Q) = Xit10: (® ®)
wheren is the number of layers, aigi(t), the runoff for theét" layer at timet, is computed as:

Q:(t) = K; = (SM;(t) — H}) (6)
for H; < SM;(t), otherwise zero
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wherekK; is the coefficient of runoff for laydr andH; is the height of the runoff orifice for layer
i, andSM;(t) represents the soil moisture in mm at titrfer layeri computed as:
SM;(t) = SM;(t — 1) + I;_1 () + {P(®) — ET;(©)} — I;(¥) — Q;(®) ()
WhereI; =0, fori <1; and P(t) =0, fori>1

wherel; (t) represents the infiltration of thi&* layer in mm at time, and is computed as:

whereK]I; is the coefficient of infiltration/percolation, d§M;(t — 1) is the soil moisture at the
previous time step for layér Due to increased performance in simulating olesehwdrographs
when compared to other methods (Kim et al. 2008)petranspiration at timg) for theit" layer,
ET;(t) in mm, was approximated via (Dingman 2002):

P(t)

1+(75rg)

ET,(t) = 9)

2

whereP(t) is the precipitation in mm at timg andPET (t) is potential evapotranspiration in mm
at timet. After Q; and all parameters are calculaté; (t) is updated at each time step by
calculating the net of layér The Tank model was calibrated and validatedzinij a 30 year span
of continuous and contiguous precipitatid?) &nd potential evapotranspiratiaPET") data from
1977 to 2006, where the first 20 years were useddiibration, and the remaining 10 were used
for validation. The coefficients of runoff{), infiltration/percolation KI;), and height of the
orifices (H;) were calibrated using genetic algorithms (GA),ickhare a renowned form of
numerical optimization algorithms used in previbydrologic studies (Chen et al. 2005, Kim and

Kaluarachchi 2008 and 2009, Choi 2011).
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Projected Climate Data

Representative Concentration Pathway Scenarios

The Intergovernmental Panel on Climate Change ()R€léased their Working Group |,
Fifth Assessment Report (AR5) in the fall of 20T8is report describes the updates from the
previous CMIP versions, with the primary updateedads the use of a new set of scenarios titled
Representative Concentration Pathways (RCP). CMtPsists of four RCP scenarios, RCP2.6,
RCP4.5, RCP6.0, and RCP8.5; where the numericagsatorrespond with the radiative forcing
by the year 2100 (IPCC 2013). For this study, RE6Rfslthe scenario being used due to being a
stabilization scenario, assuming that emissiongaitbn policies will be set in place during the
215tcentury (Moss et al. 2010, Thomson et al. 201¥lorat al. 2012, IPCC 2013, Lee and Wang

2014).

General Circulation Model

GCMs are mathematical models which have become lyidsed and accepted for
simulating future global climate (Elshamy et al020Choi 2011, Gao et al. 2012, Lee and Wang
2014). CMIP5 has over 60,000 combinations of GCMd their varying ensembles. A more
detailed description for the ensemble membersigengn Taylor (2012) and IPCC’s AR5 (IPCC
2013). The National Center for Atmospheric Reseéa®iCAR) Community Earth System Model
version 1.0 (CESM1.0) was the GCM chosen for thidysdue to its use in other research efforts
(Gao et al. 2012, Wu et al. 2014). The arithmetamof the three ensembles for this models were
utilized to minimize the possibility of biases ihet results. The GCM has a latitudinal and
longitudinal resolution of 0.94 by 1.25 degreese §nid chosen to represent the study area and its

selected meteorological stations is a 3 by 2 mdfigure 5). The centroids of the GCM grids
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were interpolated via the inverse distance weightffDW) method to develop composite

projected values for each of the meteorologicdimsta as performed in similar studies as Li et al

(2012) and Guo et al. (2009).
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Figure5. GCM Grid of CESM 1.0

Optimization M odel

Norris Reservoir's operation policy’s flood andld®ing guide lines were optimized
through simulating the reservoir's hydrologic rawgti The routing results were used as input into
a conceptualized penalty function (or benefit fimt), yielding a penalty value defined in the

Penalty Function and Optimization. Finally, an opt#ied reservoir operation policy was

developed using the optimization model to minintlze penalty function.
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Reservoir Routing Simulation

The hydrologic routing of Norris Reservoir was slated using the runoff values
generated by the combined model and an operatipaty with the flow and elevation
requirements acquired from TVA. Determination cfeevoir elevation at a given time-step was
performed utilizing the generated inflow hydrograplthe allowable outflow, and a Norris
Reservoir stage-storage chart obtained from TVAWF& 6). Initial storage was set at the current
routing policy’s balancing guide line, and storages added monthly, based on the hydrologic
mass balance of the reservoir that can be compotedmonthly time stepas:

S =Si1+1;— X0, — W, (10)
for Opmin < 0t < Opax and Spin < St < Smax

whereS is the storage of the reservoir in MCMs monthly inflow in MCM,0 is the monthly
outflow in MCM, andW is the monthly withdrawal from the dam in MCM. Tiwghdrawal (W)
was assumed to be zero since there is no significater withdrawal reported. Outflow were set
per minimum requirements set by TVA; in which givespecific storage, the minimum outflow
necessary to provide all available outflow requieats was used (Appendix 5). The final output
for any time-step is the reservoir elevation imfihich was obtained using the TVA acquired 1970

stage-storage-surface area diagram to convertreservoir storage to dam elevation (Figure 6).
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Figure 6. Stage-Stor age-Surface Area Diagram from Norris Reservoir

Penalty Function and Optimization

and three outflow penalties. The values to meetiBpeaequirements were obtained through
consultation with TVA, based on their hierarchynetds. A penalty was applied for any time step

for which the penalty was broken. The five infloenalties in order from least to highest penalty

19

The penalty function which the optimization mo@eminimizing, consists of five inflow

weight include:

1.

2.

3.

Reservoir elevation above the flood guide (Figyrte 2
Reservoir elevation below balancing guide (Figure 2

Reservoir elevation above 1030 feet (historicahhgy1030.38).

Reservoir elevation below 955 feet (unable to ptevlow for navigation).

Reservoir elevation above 1034 feet (top of gate).
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Figure 7 represents the weights of the varying alem penalties, which presents that the
penalty between the flood and balancing guide guadratic continuous function; while the
remaining penalties are expressed as step functidmsh increase logarithmically at every
threshold elevation (1000 for Penalty 3 and 4 &0@D0 for Penalty 5).

The three outflow penalties in order from leashighest penalty weight include:

6. Inability to provide cooling requirement flows f8ull Run fossil plant (Appendix 5). A

penalty value is incurred as 1000 per violation.

7. Inability to provide flows for ecosystem and hydow@r generation requirements

(Appendix 5). A penalty value is incurred as 100@0 violation.
8. Flow exceed maximum outflow to prevent flood inutiaia (1028 MCM). A penalty value

is incurred as 10000 per violation.

Each set of inflow hydrograph will yield eight pétyavalues and they are summed to represent
total penalty for each inflow. The operation polwas optimized by minimizing the average
penalty value using 100 sets of inflow hydrogra@itadderived from Monte-Carlo simulations.
This study compares the penalty values yieldechbycurrent and revised policy (i.e., flood and
balancing guide lines). This study used genetiorétlyns (GAs), which are generally used to find
a near global solution in complex error surfacethwnultiple decision variables. GAs are
fundamentally search algorithms which use a Daawvimatural selection approach to perform a
series of generations (iterations) consisting ¢édmns, reproductions, and mutations to obtain
an optimal solution (Wardlaw and Sharif 1999, CR603, Cheng et al. 2008). A more in depth
description of GAs, and its applications are awddan Holland (1975) and Ross and Corne

(1994). An example of a possible scenario for theglty function is shown in Figure 7.
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CHAPTER |1

RESULTSAND DISCUSSION

Generation of Composite Climate Data

Organization and Calculation of Composite GCM Data

The IDW interpolated composite GCM values for eawteorological station were used
to develop composite projected values for the saudg. This was completed by utilizing the same
Thiessen weights used to interpolate the obseratal dppendix 2 and 3 visually present the
change in temperature (°C) and precipitation (mrajnfthe GCM data to the observed data,
respectively. It was noticed that the most sigalificvariances in temperature laid in the winter
months for all three GCM time spans, which showedwerage annual change from the observed
dataset of -0.42°C, 0.34°C, and 0.89°C for the spens 2030’s, 2050’s, and 2070’s, respectively.
Also, historically the hottest month of the yeailyJshowed a decrease in temperature for all three
scenarios. Finally, the GCM data indicating thae 2030’s time span has an annual mean
temperature 0.4°C lower than the observed dataskt the possible conclusion that this decrease
in temperature is caused by increased precipitaihcloud cover during the summer months.

Visual representation of the results show incre@s@recipitation for most months
(Appendix 3). Perturbations of 14.0, 18.27, an®J®ercent for the time spans 2030’s, 2050’s,
and 2070’s were viewed from the observed data,emsely. It can also be seen that the
perturbation in precipitation follows a temporadiywuous pattern. Therefore it was noted that the
GCM predicts extreme flood and drought occurreacego greatly increase in the future. Finally,
there is an increase in average yearly precipitataf 13.0 mm, 17.2 mm, and 18.5 mm for time

spans 2030’s, 2050’s, and 2070’s, respectively.
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To mitigate possible issues in projecting runofég@a by the variance from the observed
to GCM data, the Conditional Generation Method (QGMveloped by Kim et al. (2008) was
utilized to generate 100 instances of a 31-yeae weries, noted as “BASE” case (representing
1976~2006), from the observed hydro-climatic d&@M was chosen due to its use in previous
and relevant studies, and its ability to addresgrdvglimatic variability between successive
months (Kim et al. 2008, Choi 2011). Once BASE wegeloped, 100 instances of 31-year time
series for the 2030’s, 2050’s, and 2070’s were ldpesl based upon the perturbation and °C
change from the observed data and raw GCM time datan Precipitation and temperature results
for comparison between the generated CGM data bsereed data can be seen in Figure 8. From
this table, it can be seen that the CGM generatediptation and temperature data were very
comparable to the historical data in both monthams and standard deviation. This is due to
CGM’s ability to address both historical and tengbodata by considering the conditional
probability associated with the transition from gegsive months, and randomly selecting values

for precipitation and temperature within the rangstate for the month of concern.
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Figure 8. Comparison between the Observed and the Generated by CGM (A: Precipitation
and B: Temperature)
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Hydrologic Moddl Calibration

Variable Selection for MLR and ANN

The significant variables were selected via a fodastepwise regression, defined in the
methods. Variables were chosen based on a p-vaaethe stepwise regression, which showed
the statistical significance of how well the vafl@loorrelates with the output being predicted
(Table 2). From Table 2 it can be seen th&T; was rejected due to having a p-value of 0.81.
From the test performed, any variable with a p-@@teater than 0.05 is considered not significant.
The variables which were not thrown out are to sedufor the MLR and ANN models for the
combined model construction. The Tank model usgsfmnd PET, because the model accounts
for real-time soil moisture that is carried oveorfr the previous time step as discussed in the

Methods section.

Table 2. Results from Stepwise Regression
Variable Coefficient  p-val

PET -0-:010 6867

PET:1 -0.440 4.08e-64
P 0.474 1.24e-50
Pr1 0.155 2.74e-08

Statistical Performance of the Selected Models

The weight given to each statistical model for¢bebined model is directly correlated to
the ability of each model to predict the observiedasnflow. The MLR was performed using a
square root transformation to obtain better coti@ia The results of the MLR analysis can be

given in the equation below:
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Q=(0.78 —0.049 « \/PET,_; + 0.64 /P, +0.27 * ,/Pt_l)z (11)

Where Q is the monthly runoff in millimeters (mm)PET,_; is the input potential
evapotranspiration from a previous time-step (inlhm, P, is the input precipitation at time t in
mm , andP;_, is the precipitation at a previous time-step (t-Ihe use of the square root
transformation produced much more desired reswits,an R of 0.77.

The TANK model was calibrated and validated ushegobserved data which covered a
30 year span from 1977-2006. The 20 year span 11@n7 to 1996 was used for calibration, and
the remaining 10 years from 1997-2006 were usesdidation. This resulted in a?Rf 0.73.

The ANN model was performed using the same varsabktermined significant by the
stepwise regression. The percent of observed ddia tised for training, validation, and testing,
were 90, 5, and 5 percent, respectively. Theseeptages were derived from multiple iterations
of various subsample sizes to obtain the best dyerdormance. The Ror the ANN model was
0.81.

Proceeding the calibration and validation of hiee models, eight-post processing tests
were performed to determine the strengths of eamteinThe tests included evaluation of strength
in model fitting via R, seasonality, annual runoff, high runoff seasom tunoff season, low
runoff events (observed runoff less thari" p@rcentile), high runoff events (observed runoff
greater than 90percentile), and median runoff (in between thé &&d 7% quartiles) via absolute
error (Table 3).

From the analysis presented in Table 3, it casda® that the MLR model more strongly
predicted the annual runoff and low runoff evefitse tank model’s strength laid in predicting the

low runoff season and high runoff events. Finallye ANN model performed best at predicting
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overall seasonality (total error), high runoff seasand runoff in between the ®&nd 7%

quartiles of the distribution.

Table 3. Strength Testing of Individual Models

Test Equation MLR TANK ANN C‘I’wmoﬂged
R? . (OBS; — Modelled;)?
(Overall Prediction)| —  (0BS; — 0BS)? .77 073 N 0.80
To(t:'Bi”grrrgr‘,‘m) — ZlOBSt — Model,| 4545 5082 | 4093 | 4131
Annual Runoff Errol
(mm) = |0BS snnuat — Model gpnyail 1949 37.16 28.54 17.68
(Full 30 yr Time Span)
High Runoff Seasor Ma _
Error — Z g OBStOTISWOdelt 1.17 1.09 | 0.93 0.99
(Dec - May) Dec t
Low Runoff Seasor Nov|0BS, — Model,
Error - Z e 410 | 376 4.11| 4.07
(Jun - Nov) Jun BS¢
Low Runoff ABS
Error (mm) -
clomoss > 10BS, — Model, | o, 170 203  208| 156
Distribution)
High Runoff ABS
Error (mm) -
(> 90% OBS = Z|OBSt — Model, |OBS>90% 1330 | 1044 1057 1142
Distribution)
25-75 Quartile ABS
Error (mm) -
Govope = D.0BS —Model |, o . 1928 2574 [1685| 1734
Distribution)

Combined M od€

The combined model was composed through linearranoigg (LP) coupling the three
individual models with the objective function tceld the lowest prediction error (i.e., superior

model performance than individual models), andabgerved data utilizing the entire timespan.
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The combined model produced afd & 0.80, and adequately accounted for seasonaitity
extreme runoff. Appendix 4 represents a 5 yearlayeplot of the observed data, individual
models, and combined model output. Table 3 comparestrength test results of the combined
model to the individual models. Although the condgsimmodel did not outperform every test, it
can be seen that on average, the combined modélijaer performance in all predictions tested

except predicting flows above the'™percentile.

Runoff Generation for GCM Data

CGM simulations perturbed by the GCM projectionsevgsed as input into the combined
model to obtain runoff for each of the 30 year secms (BASE, 2030’s, 2050’s, and 2070’s). To
perform a visual assessment of the combined magdplig the monthly arithmetic mean of 100
CGM simulations were taken, followed by the montatthmetic mean of 30 year time spans.
Figure 9 presents the monthly arithmetic meansffuh@ange of the projected scenarios to BASE.
Average runoff was projected to increase throughbatentire year except for a decrease in
February. All three scenarios showed increasdgigpring and summer seasons of approximately

35 and 100 percent, respectively.
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Figure 9. Mean Runoff for BASE and Projected Time Spans

It can be observed from Table 4 that in March angdy¥nber the 2030’s have the highest
maximum runoff, and that the runoff for March whe highest runoff value for all three projected
datasets. These results may be explained by Appéndind 3, where these two time steps were
located at points where the 2030’s have a higheease in precipitation or a greater decrease in
temperature compared to the 2050’s and 2070’s. ddnide explained by the extreme decrease in
temperature, which greatly reduces the impact téng@l evapotranspiration on the 2030’s at that
time step. The annual percent increase from BASEW®2030’s, 2050’s and 2070’s were 20.71,
23.78, and 24.33, respectively. This trend showatldlthough runoff had significantly increased

by the 2030’s, that by the 2070’s the increaseinoff was beginning to level out.
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Table 4. Statistics of Runoff Simulated for BASE and Future Time Spans

Unit: MCM

Month | Statistic BASE 2030 2050 2070 MonthStatistic BASE 2030 2050 2070
Mean 528.17 564.84 620.10 615.18 Mean 142.24 24791 286.13 273.88

1 Min 143.25 120.10 180.42 169.84 ; Min 2252 36.93 280. 38.57
Max 1116.02 1219.36 1306.41 1299.83 Max 397.43 834.27 959.48 917.18
Std Dev 197.08 204.01 22450 229.01 Std De%7.32 152.34 183.31 173.21
Mean 499.28 456.10 474.71 495.40 Mean 122.34 221.17 236.04 229.06

5 Min 106.50 95.64 100.77 99.69 3 Min 2492  36.97 38.5238.00
Max 1209.59 1104.06 1173.76 1203.27 Max 378.56 773.32 829.23 821.93
Std Dev 196.60 181.02 191.81 198.97 Std De61.56 133.63 140.14 135.28
Mean 41196 508.72 481.12 460.14 Mean 141.25 146.62 152.88 162.22

3 Min 83.72 116.71 103.87 106.14 9 Min 37.92 37.74 39.8 38.71
Max 1149.66 1348.93 1316.59 1277.08 Max 475.71 432.04 470.02 509.42

Std Dev 205.81 26155 251.35 239.35 Std De84.60  73.38 79.09 85.27
Mean 283.44 370.47 384.09 386.68 Mean 177.33 204.72 198.03 215.24

4 Min 39.44 47.34 51.00 41.16 10 Min 34.60 31.36 34.12 6.23
Max 741.97 959.22 971.74 975.27 Max 551.1666.97 639.49 701.58
Std Dev 149.08 197.83 211.17 215.17 Std Ded00.12 119.87 114.83 123.74
Mean 205.06 219.89 229.60 239.01 Mean 337.54 415.19 389.69 400.09

5 Min 53.70 54.92 56.88 55.13 11 Min 42.88 48.78 47.61 2.06
Max 576.03 612.92 650.04 711.94 Max 845.8968.99 943.61 952.15
Std Dev 103.85 107.22 116.29 122.41 Std Ded88.12 217.72 212.25 214.55
Mean 14799 19150 197.58 201.27 Mean 462.69 628.62 632.01 62291
6 Min 25.31 35.95 31.19 32.17 12 Min 107.09130.37 161.20 152.81
Max 409.24 614.06 670.63 660.94 Max 940.0248.39 1267.42 1244.98
Std Dev 76.87 117.38 12259 125.13 Std Deli70.47 226.25 235.58 231.47
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Reservoir Routing and Optimization

Weighted penalty values were given in increasingmtades for deviation from the flood
guide (Figure 2), this was performed to imitate oh&@VA’s primary objectives of maintaining
reservoir elevation at the flood guide. Resenaiting, using the combined model output as input,
was calculated for each time-span using the cupelnty. Following, optimized policies altering
the flood and balancing guide line elevations, wgeerated for each time-span using a genetic
algorithm to minimize the average of the 100 Mo@Gtglo realizations summed penalty values.
Performance of the optimization model was deterthiog comparing three scenarios, which are
performance using 1) the current operation poligigdg lines (Current), 2) the optimal operation
policy determined from BASE (BASE_Opt), and 3) th@timized operation policy determined
with respect to each future scenario (TS_Opt). Arsary of the optimization and individualized
penalty results are given in Tables 7 and 8, rdasjty.

BASE_Opt and TS_Opt policies both showed largeabs®s in penalties compared to the
current policy (Table 5). The BASE_Opt scenarioveda penalty decreases ranging from 22.2 to

24.4 percent, while the TS_Opt scenario showedamfrgm 22.4 to 37.0.

Table 5. Optimization M odel Results

APenalty from Current  APenalty from Current
year to BASE_Opt (%) to TS Opt (%)
BASE -22.4 -22.4
2030 -23.3 -35.4
2050 -22.2 -34.6
2070 -24.4 -37.0
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Columns in Table 6 represent the individualizedgttees assessed in this study. From
Table 6, it is obvious that the routing penaltiesidoth the BASE_Opt scenario and the relative
TS_Opt scenarios showed significant decreasedlimidtualized penalties when compared to the
penalty produced by the current policy, especifithe third optimization method.

The decreases in penalties from Tables 5 and ®eaxplained by having higher runoff
volumes, helping maintain the reservoir elevatibtha Flood Guide. However, by emphasizing
the reservoir elevation to be maintained at thedlguide, the penalty for not providing enough
outflow for Bull Run slightly increased, and thenpéty for preventing flooding downstream
significantly increased for all scenarios excep?Z@8. This is best explained through the
discussion of the occurrence of runoff events ssipg 90 and 9% percentile, this shoed that
the 2070’s scenario had less events surpassing thasentiles than the 2030’s and 2050's.
Moreover, this can be explained by the relativedaad deviation of the 2070’s scenario being
less than the other two scenarios.

The results of the optimization model showed aek=se in the overall range between the
flood and balancing guide elevations for all opsed scenarios except 2070’s, which has a percent
increase of 0.7 percent. It is also noted thatderease in range was decreasing from one scenario
to its chronologically successive scenario, and this decrease was primarily caused through
increasing the flood guide elevation. This cany@aned by the fact that the results were derived
from optimizing the projected scenarios based emofitimized BASE scenario. Therefore, since
more runoff was being projected chronologicallyisitogical that the range for each successive
scenario’s policy be increased. Figure 10 visuadlyresents the differences in the current to the

BASE optimized flood and balancing guide.
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Table 6. Optimization Model Valuesfor Individual Penalties

Year Policy Penalty 1 Penalty 2 Penalty 3 Penalty 4Pena|ty_5 Penalt_y6 Penalty 7 Penalty 8
Test fld~bal >1030 >1034 <bal navi cooling eco/hydrfid_down
Current 12451.62 0.00 0.00 35670.00 0.00 5460.00 0.00 0.00 53581.62
BASE | BASE_Opt 6496.51 0.00 0.00 29610.00 0.00 5460.00 0.00 0.00 41566.51
TS Opt 6496.51 0.00 0.00 29610.00 0.00 5460.00 0.00 0.00 41566.51
Current 10512.41 0.00 0.00 22120.00 0.00 6450.00 0.00 6700.00  45782.41
2030 | BASE_Opt 5046.78 0.00 0.00 16940.00 0.00 6450.00 0.00 6700.00 35136.78
TS _Opt 4348.93 0.00 0.00 12060.00 0.00 6450.00 0.00 6700.00 29558.93
Current 10279.64 0.00 0.00 20880.00 0.00 7150.00 0.00 7000.00  45309.64
2050 | BASE_Opt 4961.07 0.00 0.00 16130.00 0.00 7150.00 0.00 7000.00  35241.07
TS _Opt 3661.93 0.00 0.00 11810.00 0.00 7150.00 0.00 7000.00 29621.93
Current 10095.41 0.00 0.00 19770.00 0.00 6220.00 0.00 3400.00  39485.41
2070 | BASE_Opt 4863.48 0.00 0.00 15350.00 0.00 6220.00 0.00 3400.00 29833.48
TS Opt 3756.85 0.00 0.00 11500.00 0.00 6220.00 0.00 3400.00 24876.85

Note: The penalties are defined as follows: 1) Reselgvation being below the flood guide, but abthebalancing guide; 2) Reservroi elevation
being above 1030 ft; 3) Reservoir elevation beingva 1034 ft; 4) Reservoir elevation being below lalancing guide; 5) Inability for reservoir
to provide minimum outflow required for navigatioBl Inability for reservoir to provide minimum olafv required for Bull Run Fossil Plant
cooling; 7) Inability for reservoir to provide mimum outflow required for hydropower generation andsystem 8)Inability for reservoir to prevent
flooding down stream.



33

1035

1025

[EEY
o
=
a1

1005

995

985

Reservoir Elevation (ft)

975

965

955

Current Policy

----Base Opt

3 4 5 6
Month

7

9 10 11

12

Figure 10. BASE Optimized Policy Overlaying Current Policy



34

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

This study aimed to assess the potential impactdimfite change on the performance
Norris Reservoir for three timespans, 2030’'s, 2658hd 2070’s, and optimize their current policy
flood and balancing guide lines to be better eqedpfor handling these impacts.

The key findings of this study include:

1. The GCM data used, revealing increases in annealptation with warmer winters and
cooler summers, resulted in increased runoff biout®.3% for Norris Reservoir by 2070.

2. The use of alinearly programmed combined hydralagbdel proved to be more sufficient
in estimating a wider range of runoff values thag af the individual hydrologic models
could independently, regardless of the combinedahiaaving a slightly lower Rthan the
ANN model.

3. Although the current policy was able to handle ltigher inflow, the generated penalties
were greatly decreased through the use of a geaslgtcithm driven optimization model.
The results could be attributed to the increasédwnfor Norris Reservoir, enabling the
maintenance of reservoir elevation at the floodlguine to be more easily accomplished;

although, this increased the risk for flooding detweam.

In conclusion, for a reservoir that works withinetwork, an increase of runoff in the entire
system may pose many threats unexplored by thady sitherefore, it is recommended that

future studies consider encompassing the entire $y¥&em, and that temporal resolution be
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increased to a daily time-step, instead of monttdyaccount for extreme events. This will
allow the ability to work more closely with TVA, peng to better define the penalty function,
more accurately account for the reservoir networicgss, and compare the combined
hydrologic model with the TVA SAC-SMA model. Moreay the results produced could also
be attributed to the GCM used. Due to the uncestand variance from one GCM to the next,
it is recommended that a wide variety of GCMs, &@Ps scenarios, be taken into

consideration.
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Appendix 1: Norris Dam (http://www.tva.gov/sites/norris.ntm)
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Appendix 2: Mean Temperature for Observed and Projected Time Spans
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Appendix 3: Mean Precipitation for Observed and Projected Time Spans
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Appendix 4: Runoff Simulation Accuracy from All Modelsto Observed Data



Appendix 5: Minimum Outflow Constraintsfor Norris Reservoir (MCM per month)

Cooling Hydro-power
Month e and Ecosystem
minimum -
minimum
1 45.51 18.96
2 54.8 18.96
3 60.68 18.96
4 73.4 18.96
5 75.84 18.96
6 88.08 18.96
7 113.77 18.96
8 113.77 18.96
9 110.1 18.96
10 151.69 18.96
11 44.04 18.96
12 45.51 18.96
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