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ABSTRACT 

This study aimed to address the potential long-term effects of future climate change on the 

Tennessee Valley Authority’s (TVA’s) operation policy for Norris Reservoir. The Community 

Earth System Model 1.0 (CESM1.0), a general circulation model (GCM) accessible through the 

Intergovernmental Panel on Climate Change’s (IPCC’s) Coupled Model Intercomparison Project 

Phase 5 (CMIP5), with the Representative Concentration Pathway 4.5 (RCP4.5) was used to obtain 

projected precipitation and temperature data for three future climate scenarios, 2030’s, 2050’s, and 

2070’s. Three hydrologic models were individually calibrated on 30 years of observed runoff data 

and combined utilizing linear programming to consider the strengths of each model. Inflow 

hydrographs were simulated for the future time spans using projected precipitation and 

temperature. Reservoir routing was then simulated using the inflow hydrographs via mass balance 

and the current operation policy to determine the storage elevation of the reservoir. Next, the 

routing simulations were utilized as input for a genetic algorithm forced optimization model, to 

minimize an elevation-based penalty value, optimizing Norris Reservoir’s operation policy. 

Finally, the operation performance of Norris Reservoir’s current operation policy versus the 

policies generated by the developed optimization model for each projected scenario were 

evaluated. The results suggested a 20.7, 23.8, and 24.3 percent increase in runoff for the 2030’s, 

2050’s, and 2070’s, respectively, compared to the BASE case (1976 ~2006). Although the current 

policy was able to support this increase in runoff, the optimization model decreased operation 

penalties by 23.3, 22.2, and 24.4 percent for the 2030’s, 2050’s and 2070’s, respectively. These 

results can provide substantial insight to TVA hydrologists and decision makers that their current 

policy may require re-evaluation, considering the potential impacts of climate change. 
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CHAPTER I  

INTRODUCTION 

As hydro-climatic databases have expanded and confidence in climate models have 

increased, professional climatology researchers have consistently concluded that climate change 

will impact to water resource infrastructure (Frederick and Major 1997, IPCC 2013). Furthermore, 

the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report (AR5) states 

that the period from 1983-2012 has likely been the warmest 30-year period in the past 1400 years, 

and that there has been a linear trend of the globally averaged combined land and ocean 

temperature increasing 0.85 °C since 1880 (IPCC 2013). Studies have also shown that climate 

change has increased the probability of occurrence for extreme climatic events (Allen and Ingram 

2002, Bell et al. 2004, Gao et al. 2012, WMO 2013, IPCC 2013). The southeastern United States 

has experienced increases in moderate to extreme summer droughts since the 1970’s and annual 

average autumn precipitation since 1901 by 14 and 30 percent, respectively (Karl et al. 2009). Due 

to these increases, major infrastructure concerns regarding water supply and reservoir proficiency 

(flood and reservoir failure prevention, hydroelectric generation, transportation, etc.) have become 

apparent (Christensen et al. 2004, Payne et al. 2004, Helton et al. 2006, Choi 2011). 

Developing new reservoir management strategies and modelling tools necessary for 

maintaining water resources and hydro power generation, considering the possible implications of 

future climate change, has become an high priority research topic (Askew 1987, Arnell 1999, 

Markoff and Cullen 2007, Guegan et al. 2012). As of late, studies on the Columbia (Hamlet and 

Lettenmaier 1999, Lee et al. 2009), Colorado (Christensen et al. 2004), and Missouri (Stone et al. 

2001) river basins have been conducted which assess the vulnerability and fragility of many 

current operation policies when analyzed against possible future climate scenarios. Although 
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studies are being performed in many of the large river basins in the United States, assessments of 

the impact that climate change for the Tennessee River Basin have been limited (Choi 2011). 

Norris Reservoir is the largest reservoir on any tributary of the Tennessee River, and is 

operated by the Tennessee Valley Authority (TVA) (TVA 2014). In 2004, TVA performed a 

Reservoir Operation Study (ROS) encompassing 35 of the 49 reservoirs in their system, to 

determine if modifications to their current policy could increase reservoir efficiency and, “produce 

greater overall public value” (TVA 2004, TVA 2006). From the ROS, TVA designed a new policy 

considering multiple objectives including reservoir stability, hydropower generation, cooling 

requirements for TVA nuclear and fossil facilities, flood control, and navigation (TVA 2004). 

TVA has simplified these objective into maintaining dam elevation between two curves noted as 

‘balancing guide’ and ‘flood guide’. The balancing guide line ensures that all tributary reservoirs 

are drawn from equally when meeting downstream requirements, whereas the flood guide line 

represents the maximum amount of storage to help reduce flood damage; it is TVA’s objective to 

maintain reservoir elevation at the flood guide line (TVA 2004, TVA 2014). More importantly, 

this policy integrates the entire TVA reservoir system into a single network. Providing the ability 

to systematically optimize all of the reservoirs in an attempt to maintain individual reservoir 

elevations and based upon outflow requirements to meet a hierarchy of operational demands. 

However, this new policy must remain adaptable to shifts in environmental factors, such as future 

climate and land use change.  

General Circulation Models (GCM) have been used to project future impacts of climate 

change on the hydrologic cycle. IPCC’s Coupled Model Intercomparison Project Phase 5 

(CMIP5), developed in 2010, introduced four new Representative Concentration Pathway (RCP) 

scenarios (Moss et al. 2010, Wu et al. 2014). Instead of relying simply on greenhouse gas (GHG) 
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emission scenarios, RCPs account for GHGs, aerosols, chemically active gases, and land use/ land 

cover. The advantage to the RCP scenario is that it represents a variety of 21st century climate 

policies, whereas the Special Report on Emission Scenarios (SRES) of the Third and Fourth 

Assessment Report represented no-climate policy scenarios (IPCC 2013). The four RCP scenarios 

include RCP2.6, RCP4.5, RCP6.0, and RCP8.5, which represent one of many instances leading to 

the specific radiative forcing of 2.6, 4.5, 6.0, and 8.5 watts per square meter (W.m-2) by the year 

2100, respectively (IPCC 2013). More specifically, RCP2.6 is considered a mitigation scenario 

where radiative forcing peaks at a value of 3.0 W m-2, and drops to 2.5 W m-2 by 2100; RCP4.5 is 

a stabilization scenario which peaks and stabilizes at 4.5 W m-2 by 2100; RCP6.0 is a stabilization 

scenario which does not peak at 6.0 W m-2 by 2100, but is approaching stabilization; and RCP8.5 

is a high GHG scenario which does peak a 8.5 W m-2 at 2100 (Moss et al. 2010, IPCC 2013). 

Utilizing TVA’s 2004 operation policy for the Norris Reservoir as a case study, this study 

aims to analyze its performance based on a defined set of optimization routine penalty weights, for 

its ability to meet the hierarchy of operational demands given the potential impacts of climate 

change. This is to be accomplished through the utilization of an IPCC CMIP5 RCP4.5 model, due 

to RCP4.5 being considered a stabilization scenario with the introduction of climate change 

mitigating policies, to develop three 30 year spans averaging to 2030, 2050, and 2070, noted as 

2030’s, 2050’s, and 2070’s, respectively. The overall goal of this study can be achieved from 

completing four primary objectives: 

1. Acquire necessary input data sets for hydrological model calibration and reservoir 

operation optimization model. This objective is achieved through a combination of 

collaborating with TVA to obtain Norris Reservoir operating constraints, accessing the 

National Oceanic and Atmospheric Administration’s (NOAA) National Climate Data 
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Center (NCDC) to procure historically observed data relevant to the study area, and 

obtaining GCM output data from IPCC’s CMIP5 database.  

2. Successfully develop and calibrate a combined hydrological model with the ability to 

simulate runoff for the study area, with high confidence.  

3. Simulate runoff for the scenario conditions using the calibrated model with temperature 

and precipitation inputs obtained from GCM simulations. 

4. Develop an optimization model which uses the combined model output as input to simulate 

reservoir routing. The routing will be evaluated using the current routing policy and then 

optimized to best meet the hierarchy of TVA defined outflow objectives. 

5. Complete an evaluation of Norris Reservoir’s current operation policy under future climate 

scenarios. This will be completed utilizing the optimization model and minimizing 

penalties (defined by Norris Reservoir’s operation constraints) to assess whether TVA’s 

operational objectives can be met under conditions of climate change.  
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CHAPTER II  

MATERIALS AND METHODS 

Study Area 

Norris Reservoir serves as the primary reservoir for the Powell (Hydrologic Unit Code 

(HUC: 06010206) and Upper Clinch (HUC: 06010205) River Basins. The coordinate range of the 

combined Upper Clinch and Powell river basins are approximately (-84.38, 37.23) to (-81.37, 

36.23), and their areas are 5124.58 and 2435.34 km2, respectively. The entire study area, including 

both basins, location of Norris Reservoir, and metrological stations used can be found in Figure 1. 

 
 

 

Figure 1. Study Area 
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Norris Dam (Appendix 1) lies about 482.80 km southwest from the head waters of the 

Upper Clinch River in Southwest Virginia, and discharges into the Lower Clinch River in   

Northeast Tennessee. It has a height and length of 80.77 and 566.93 meters, respectively (TVA 

2006, TVA 2014). Norris reservoir’s primary purposes include hydroelectric power generation, 

and flood control. It has the flood storage capacity of 1372.87 MCM (million cubic meter), and 

can generate up to 110 MW (TVA 2014). The impounded water behind the Norris Dam (Norris 

Lake) has 1301.96 km of shoreline and 13.35 hectares of water surface area, making it the largest 

reservoir on a Tennessee River tributary (TVA 2014). 

Climate and Hydrology   

 Climate and hydrologic information utilized herein was collected for the study area which, 

consisting of the Upper Clinch and Powell River Basins, encompasses in parts of northeast 

Tennessee, southeast Kentucky, and southwest Virginia. The climate for this area is described as 

humid subtropical, consisting of hot, humid summers and mild winters (Parker 2008, Choi 2011). 

NCDC observed data dating from January 1, 1976 to December 31, 2006, showed average monthly 

precipitation and temperature for the study area of 90.62 mm and 13.08°C ranging from 62.00 to 

114.60 mm and 1.38 to 23.84 °C, respectively.  

The Upper Clinch River has a flow length of 482.80 km with its headwater located just 

north of Tazwell, Virginia (TDEC 2007, USGS 2013). Further downstream, the Clinch River 

merges with the Powell River. It is then twice dammed, first by Norris Reservoir, then Melton Hill 

Reservoir before discharging into the Tennessee River in Kingston, Tennessee.  The Powell 

River’s headwater is located in Wise County, Virginia. It then flows 193.1 km, before discharging 

into the Clinch River (EPA 2002, TDEC 2007). Both the Clinch and Powell rivers flow 
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southwesterly through parallel valleys and are contained within the Cumberland (Appalachian) 

Plateau and the Valley and Ridge physiographic provinces (EPA 2002).  

Model Input 

Operation Policy 
 
 The current operation policy for Norris Reservoir was required to effectively evaluate its 

robustness, understanding that climate change is associated with the non-stationarity of hydro-

climatic variables. Since all reservoirs in the TVA system operate as a network to maintain a 

form of equilibrium, Norris Reservoir’s operational priorities are subject to change depending on 

any single event occurring throughout the system. TVA provided the current Elevation Operating 

Guide (Figure 2), the minimum flows required for the ecosystem, hydroelectric power 

generation, and Bull Run fossil plant, the maximum flow to prevent flooding, the historical 

maximum elevation and elevation which compromises dam safety, and the minimum elevation 

for reservoir maintenance and elevation required to provide flow for navigation. Therefore, as a 

case study, the criterion obtained from TVA were believed to be adequate for the development of 

the routing and optimization model with respect to the scope of this research. In Figure 2, the 

upper and lower solid turquoise lines represent the Flood Guide and Balancing Guide, 

respectively. The dashed turquoise line represents the Reservoir Operation Study Median from 

the 2004 ROS for Norris Reservoir, the black line represents the actual elevation for 2013, and 

the 80% grey range represents the expected elevation range (TVA 2014). 
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Figure 2. 2013 Norris Reservoir Elevation Guide (Communication with TVA personnel) 

 

Precipitation and Temperature Data 

31 years, to account for a previous a time-step, of contiguous and continuous observed 

precipitation and temperature data were used to calibrate and validate the individual hydrologic 

models. Based upon this criterion, the five stations selected for precipitation were NC313957, 

TN401094, VA444180, VA448547, and VA449215. The five stations selected for temperature 

included KY151080, KY154898, NC313957, TN401094, and VA444180. The stations selected 

were based upon a recent study that concluded stations with similar latitude and insignificant 

perturbation in hydro-climatic variables, could accurately represent the climate for the entire study 

area. (Choi 2011) (Figure 1). The stations were then verified by obtaining NOAA data from the 

National Climate Data Center (NCDC) confirming that the required criterion of at least 31 
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contiguous and continuous years for calibration were met. It was determined that the most recent 

time frame acceptable for calibration was January 1, 1976 to December 31, 2006. The 

meteorological stations were interpolated via the Thiessen polygon method to determine a 

representative composite precipitation and temperature value for the study area.  This method 

creates an areal weight for a network of meteorological stations by drawing polygons whose sides 

are the perpendicular bisectors of lines connecting the gauges (Haan et al. 1994, Kim et al. 2008). 

Buytaert et al. (2006) confirmed that this method still produced good results given study areas 

located in mountainous regions. The Theissen polygons were constructed utilizing ESRI’s ArcGIS 

10.2 software. 

Streamflow Data 

Observed streamflow data for the inflow to Norris Reservoir was obtained through direct 

correspondence with TVA personnel. The data were given in units of inches on a monthly time-

step dating from January 1921 to February 2013. The data were converted to millimeters for model 

calibration. 

Potential Evapotranspiration 

Potential evapotranspiration (PET) was calculated via the Thornthwaite method 

(Thornthwaite 1948, Palmer and Havens1958, McCabe and Wolock 1992, Lu et al. 2005). The 

Thornthwaite method is a temperature-based model given by: 

��� = �. ��	 
���
� �� ∗ ��                                                    (1) 

where ���  is given in millimeters (mm), �  is the sunshine hour adjustment for each month 

(multiples of 12 hours), �� is the monthly mean air temperature (°C),  � is the annual heat index, 
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and � = 6.75 ∗ 10� �! − 7.71 ∗ 10�#�$ + 0.01791� + 0.49239 (Palmer and Havens1958, Lu et 

al. 2005, Black 2007). 

Hydrologic Rainfall-Runoff Models 

For this study, a conceptual, linearly programmed combined model approach was used to 

construct the combined model from three individual hydrologic models. The individual models 

used were a multiple linear regression (MLR), an artificial neural network (ANN), and the Tank 

model. Through linear programming, each individual model was assigned a single weight, which 

summed to 1. This was performed by minimizing the natural log transformation of the sum square 

error (LNSSE) from the combined model to the observed data. 

Multiple Linear Regression Model (MLR) 

Multiple linear regression was both as an individual hydrologic model, and as a means of 

determining which hydro-climatic variables would be significant in estimating runoff (Table 1). 

The general expression for MLR is given by Kim and Kaluarachchi (2008): 

* = 	,� +	,�-� +	,�-� +⋯+ ,/-/	                                            (2) 

where, 01 is the matrix of regression coefficients of parameter 2, and 31 is the matrix of selected 

variables corresponding to the parameter. In the first step, a multiple linear regression was 

performed by including only the most influential variable. Subsequently, a “step forward” is taken 

by including the next most influential variable into the regression. This process continues until 

either all the variables have been included, or the regression is no longer improved by the addition 

of a variable (Muleta and Nicklow 2005, Parajka et al. 2005, Helton et al. 2006, Heuvelmans et al. 
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2006, Wagener and Wheater 2006, Boughton and Chiew 2007, Seelbach et al. 2011). The model 

was performed utilizing the statistical toolbox in MATLAB. 

 

Table 1. Potential Variable for Combined Model 

No. Symbol Definition Unit 

1 Pt Precipitation at time t mm 

2 Pt-1 Precipitation at time t-1 mm 

3 PETt Potential Evapotranspiration at time t mm 

4 PETt-1 Potential Evapotranspiration at time t-1 mm 

 
 

Artificial Neural Networks Model (ANN) 

 ANNs have become a widely accepted method by ‘neurohydrologists’ for estimating 

rainfall-runoff processes due to the similarities in ANNs and the hydrologic process being 

considered ‘black-box’ systems (Dawson and Wilby 2001). ANNs are defined as an information-

processing system consisting of many non-linear and densely interconnected neurons or nodes 

(Tokar and Johnson 1999, Dawson and Wilby 2001). ANNs were developed as a means of 

mimicking the biological nervous system, in the fact that they have the ability to generate an output 

based on input parameters regardless of prior knowledge of regularities, noisiness, distortion, or 

incompleteness of the input data (Zealand et. al, 1999). Figure 3 represents the typical structure of 

an ANN consisting of three layers: input, hidden, and output (Zealand et al. 1999).  
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Figure 3. Artificial Neural Network Structure for Hydrological System 

 

The hidden layer, which processes a set number of nodes defined by the user, received its 

name for the values within the layer being ‘unrelated’ to the inputs/outputs. This allows for more 

complex functions to be modelled. The optimum number of nodes required to receive the best 

output can be derived from a number of methods such as pruning algorithms, cascade correlations, 

trial and error, etc. (Dawson and Wilby 2001). Next, the output layer consists of the summation of 

weighted input values determined by the hidden layer. Once training is complete, the model is 

validated with the remainder of the dataset not utilized for training. 

The ANN is trained through forward and reverse iterations between the output and hidden 

layers in order to minimize the global error E (Kişi 2007), described in Eq (3). 

� = 	 �/∑ �//56�                                                                     (3) 

where 7 = total number of training patterns and �1 = the error for training pattern 7, is represented 

by the equation: 

�/ = 	 ��∑ 89: −	�:;��:6�                                                            (4) 
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where � = number of nodes, <= = output at node >, and �= = target output at node j (Kişi 2008). 

The number of training patterns,7, is dependent on the magnitude of the gradient of performance; 

unless the number of patterns is explicitly specified, training does not end until the gradient of the 

performance is less than 10-5 (Beale et al. 2014). It should also be noted that only one output and 

target value existed for this study. There are four training algorithms: back-propagation, conjugate 

gradient, cascade correlation, and Levenberg-Marquardt (Kişi 2007). To begin training, data were 

introduced into the network, via the input layer, which can consist of one or more vectors 

representing one to many variables (precipitation, runoff, etc.)  (Tokar and Johnson 1999, Zealand 

et al. 1999).  

For this study, the ANN consisted of one hidden layer with ten nodes determined by trial 

and error, the Levenberg-Marquardt training method, and the same variables determined 

significant by the stepwise regression; 90 percent of the dataset ranging from 1976 to 2006 was 

set aside for calibration, 5 percent for validation, and 5 percent for testing. A 10 node hidden layer 

was selected based upon the trial and error method due to its common use and being considered 

the best method in scientific literature (Shamseldin 1997, Shamseldin et al. 1997, Dawson and 

Wilby 2001). The Levenberg-Marquardt training algorithm was selected based upon an analysis 

performed by (Kişi 2007), where the Levenberg-Marquardt proved to be more efficient and 

provided the best runoff projections when compared to the other three training algorithms.  

Tank Model 
 
 The Tank model, which was initially developed by Sugawra (1967), was utilized in this 

study due to its relatively simple architecture, ability to simulate low flows well, and applicability 

being internationally verified for multiple river basins (Jain 1993, Yokoo et al. 2001, Chen et al. 
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2005, Kim and Kaluarachchi 2008, Choi 2011). From the conclusions drawn by Kim and 

Kaluarachchi (2008), it was decided that six parameters would be sufficient for representing the 

dynamics of the study area due to the non-linearity of hydro-climatic variables. A two layer tank 

model was used, where the first layer represents surface flow, and second layer represents 

groundwater flow, and infiltration from the second layer represents deeper groundwater flow that 

does not contribute to runoff for the study basin. A schematic for the two-layer model is shown in 

Figure 4, along with a description of the parameters. 

 

Figure 4. Two-Layer Tank Model Schematic (Kim and Kaluarachchi 2008) 

 

The total runoff, ?@�A in mm, at time � is calculated as: 

B@
A = 	∑ B5/56� @
A                                                        (5) 

where 7 is the number of layers, and ?C@�A, the runoff for the DEF layer at time �, is computed as: 

B5@
A = 	G5 ∗ @HI5@
A "	J5A	                                               (6) 

KLM	NC O	PQC@�A, L�STMUDVT	WTML 
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where XC is the coefficient of runoff for layer D, and NC is the height of the runoff orifice for layer 

D, and PQC@�A represents the soil moisture in mm at time � for layer D computed as: 

HI5@
A = HI5@
 − �A + �5��@
A + Y�@
A − ��5@
AZ − �5@
A − B5@
A                (7) [ℎTMT	�C = 0, KLM	D ≤ 1; 	�7^	�@�A = 0, KLM	D > 1 

where �C@�A represents the infiltration of the DEF layer in mm at time �, and is computed as: 

�5@
A = G�5 ∗ 	HI5@
 − �A                                                  (8) 

where X�C is the coefficient of infiltration/percolation, and PQC@� − 1A is the soil moisture at the 

previous time step for layer D. Due to increased performance in simulating observed hydrographs 

when compared to other methods (Kim et al. 2008), evapotranspiration at time @�A for the DEF layer, 

��C@�A in mm, was approximated via (Dingman 2002): 

��5@
A = �@
A
`�a
 �@
A���@
A��

                                                      (9) 

where �@�A is the precipitation in mm at time �, and ���@�A is potential evapotranspiration in mm 

at time � . After ?C  and all parameters are calculated, PQC@�A is updated at each time step by 

calculating the net of layer D. The Tank model was calibrated and validated utilizing a 30 year span 

of continuous and contiguous precipitation (�) and potential evapotranspiration (���A data from 

1977 to 2006, where the first 20 years were used for calibration, and the remaining 10 were used 

for validation. The coefficients of runoff (XC), infiltration/percolation (X�C), and height of the 

orifices (NC ) were calibrated using genetic algorithms (GA), which are a renowned form of 

numerical optimization algorithms used in previous hydrologic studies (Chen et al. 2005, Kim and 

Kaluarachchi 2008 and 2009, Choi 2011). 
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Projected Climate Data 

Representative Concentration Pathway Scenarios 

The Intergovernmental Panel on Climate Change (IPCC) released their Working Group I, 

Fifth Assessment Report (AR5) in the fall of 2013. This report describes the updates from the 

previous CMIP versions, with the primary update noted as the use of a new set of scenarios titled 

Representative Concentration Pathways (RCP). CMIP5 consists of four RCP scenarios, RCP2.6, 

RCP4.5, RCP6.0, and RCP8.5; where the numerical values correspond with the radiative forcing 

by the year 2100 (IPCC 2013). For this study, RCP4.5 is the scenario being used due to being a 

stabilization scenario, assuming that emission mitigation policies will be set in place during the 

21st century (Moss et al. 2010, Thomson et al. 2011, Taylor et al. 2012, IPCC 2013, Lee and Wang 

2014). 

General Circulation Model 

GCMs are mathematical models which have become widely used and accepted for 

simulating future global climate (Elshamy et al. 2009, Choi 2011, Gao et al. 2012, Lee and Wang 

2014). CMIP5 has over 60,000 combinations of GCMs and their varying ensembles. A more 

detailed description for the ensemble members are given in Taylor (2012) and IPCC’s AR5 (IPCC 

2013). The National Center for Atmospheric Research’s (NCAR) Community Earth System Model 

version 1.0 (CESM1.0) was the GCM chosen for this study due to its use in other research efforts 

(Gao et al. 2012, Wu et al. 2014). The arithmetic mean of the three ensembles for this models were 

utilized to minimize the possibility of biases in the results. The GCM has a latitudinal and 

longitudinal resolution of 0.94 by 1.25 degrees. The grid chosen to represent the study area and its 

selected meteorological stations is a 3 by 2 matrix (Figure 5). The centroids of the GCM grids 
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were interpolated via the inverse distance weighting (IDW) method to develop composite 

projected values for each of the meteorological stations as performed in similar studies as Li et al. 

(2012) and Guo et al. (2009). 

 

 

Figure 5. GCM Grid of CESM1.0 

Optimization Model 

 Norris Reservoir’s operation policy’s flood and balancing guide lines were optimized 

through simulating the reservoir’s hydrologic routing. The routing results were used as input into 

a conceptualized penalty function (or benefit function), yielding a penalty value defined in the 

Penalty Function and Optimization. Finally, an optimized reservoir operation policy was 

developed using the optimization model to minimize the penalty function. 
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Reservoir Routing Simulation 

The hydrologic routing of Norris Reservoir was simulated using the runoff values 

generated by the combined model and an operational policy with the flow and elevation 

requirements acquired from TVA. Determination of reservoir elevation at a given time-step was 

performed utilizing the generated inflow hydrographs, the allowable outflow, and a Norris 

Reservoir stage-storage chart obtained from TVA (Figure 6). Initial storage was set at the current 

routing policy’s balancing guide line, and storage was added monthly, based on the hydrologic 

mass balance of the reservoir that can be computed for a monthly time step t as: 

H@
A = H
�� + �
 −	∑95,
 −b
                                                           (10) 

KLM	<cC1 	≤ <E ≤ <cde	�7^	PcC1 ≤ PE ≤ Pcde 

where P is the storage of the reservoir in MCM, � is monthly inflow in MCM, < is the monthly 

outflow in MCM, and [ is the monthly withdrawal from the dam in MCM. The withdrawal (W) 

was assumed to be zero since there is no significant water withdrawal reported. Outflow were set 

per minimum requirements set by TVA; in which given a specific storage, the minimum outflow 

necessary to provide all available outflow requirements was used (Appendix 5). The final output 

for any time-step is the reservoir elevation in ft, which was obtained using the TVA acquired 1970 

stage-storage-surface area diagram to convert from reservoir storage to dam elevation (Figure 6). 
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Figure 6. Stage-Storage-Surface Area Diagram from Norris Reservoir 

 

Penalty Function and Optimization 

 The penalty function which the optimization model is minimizing, consists of five inflow 

and three outflow penalties. The values to meet specific requirements were obtained through 

consultation with TVA, based on their hierarchy of needs. A penalty was applied for any time step 

for which the penalty was broken. The five inflow penalties in order from least to highest penalty 

weight include: 

1. Reservoir elevation above the flood guide (Figure 2). 

2. Reservoir elevation below balancing guide (Figure 2). 

3. Reservoir elevation above 1030 feet (historical high is 1030.38). 

4. Reservoir elevation below 955 feet (unable to provide flow for navigation). 

5. Reservoir elevation above 1034 feet (top of gate). 
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Figure 7 represents the weights of the varying elevation penalties, which presents that the 

penalty between the flood and balancing guide is a quadratic continuous function; while the 

remaining penalties are expressed as step functions which increase logarithmically at every 

threshold elevation (1000 for Penalty 3 and 4 and 10000 for Penalty 5). 

The three outflow penalties in order from least to highest penalty weight include: 

6. Inability to provide cooling requirement flows for Bull Run fossil plant (Appendix 5). A 

penalty value is incurred as 1000 per violation. 

7. Inability to provide flows for ecosystem and hydropower generation requirements 

(Appendix 5). A penalty value is incurred as 10000 per violation. 

8. Flow exceed maximum outflow to prevent flood inundation (1028 MCM). A penalty value 

is incurred as 10000 per violation. 

Each set of inflow hydrograph will yield eight penalty values and they are summed to represent 

total penalty for each inflow. The operation policy was optimized by minimizing the average 

penalty value using 100 sets of inflow hydrograph data derived from Monte-Carlo simulations. 

This study compares the penalty values yielded by the current and revised policy (i.e., flood and 

balancing guide lines). This study used genetic algorithms (GAs), which are generally used to find 

a near global solution in complex error surface, with multiple decision variables. GAs are 

fundamentally search algorithms which use a Darwinian natural selection approach to perform a 

series of generations (iterations) consisting of selections, reproductions, and mutations to obtain 

an optimal solution (Wardlaw and Sharif 1999, Chen 2003, Cheng et al. 2008). A more in depth 

description of GAs, and its applications are available in Holland (1975) and Ross and Corne 

(1994). An example of a possible scenario for the penalty function is shown in Figure 7. 
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Figure 7. Conceptual Penalty Function of Reservoir Elevation for Optimization Model 
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CHAPTER III 

RESULTS AND DISCUSSION 

Generation of Composite Climate Data 

Organization and Calculation of Composite GCM Data 

 The IDW interpolated composite GCM values for each meteorological station were used 

to develop composite projected values for the study area. This was completed by utilizing the same 

Thiessen weights used to interpolate the observed data. Appendix 2 and 3 visually present the 

change in temperature (°C) and precipitation (mm) from the GCM data to the observed data, 

respectively. It was noticed that the most significant variances in temperature laid in the winter 

months for all three GCM time spans, which showed an average annual change from the observed 

dataset of -0.42°C, 0.34°C, and 0.89°C for the time spans 2030’s, 2050’s, and 2070’s, respectively. 

Also, historically the hottest month of the year, July, showed a decrease in temperature for all three 

scenarios. Finally, the GCM data indicating that the 2030’s time span has an annual mean 

temperature 0.4°C lower than the observed dataset, led to the possible conclusion that this decrease 

in temperature is caused by increased precipitation and cloud cover during the summer months.  

Visual representation of the results show increase in precipitation for most months 

(Appendix 3). Perturbations of 14.0, 18.27, and 19.9 percent for the time spans 2030’s, 2050’s, 

and 2070’s were viewed from the observed data, respectively. It can also be seen that the 

perturbation in precipitation follows a temporally sinuous pattern. Therefore it was noted that the 

GCM predicts extreme flood and drought occurrences are to greatly increase in the future. Finally, 

there is an increase in average yearly precipitations of 13.0 mm, 17.2 mm, and 18.5 mm for time 

spans 2030’s, 2050’s, and 2070’s, respectively.  
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To mitigate possible issues in projecting runoff posed by the variance from the observed 

to GCM data, the Conditional Generation Method (CGM) developed by Kim et al. (2008) was 

utilized to generate 100 instances of a 31-year time series, noted as “BASE” case (representing 

1976~2006), from the observed hydro-climatic data. CGM was chosen due to its use in previous 

and relevant studies, and its ability to address hydro-climatic variability between successive 

months (Kim et al. 2008, Choi 2011). Once BASE was developed, 100 instances of 31-year time 

series for the 2030’s, 2050’s, and 2070’s were developed based upon the perturbation and °C 

change from the observed data and raw GCM time span data. Precipitation and temperature results 

for comparison between the generated CGM data and observed data can be seen in Figure 8. From 

this table, it can be seen that the CGM generated precipitation and temperature data were very 

comparable to the historical data in both monthly means and standard deviation. This is due to 

CGM’s ability to address both historical and temporal data by considering the conditional 

probability associated with the transition from successive months, and randomly selecting values 

for precipitation and temperature within the range of state for the month of concern. 

 

 

Figure 8. Comparison between the Observed and the Generated by CGM (A: Precipitation 
and B: Temperature) 
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Hydrologic Model Calibration 

Variable Selection for MLR and ANN 

The significant variables were selected via a forward stepwise regression, defined in the 

methods. Variables were chosen based on a p-value from the stepwise regression, which showed 

the statistical significance of how well the variable correlates with the output being predicted 

(Table 2). From Table 2 it can be seen that ���E was rejected due to having a p-value of 0.81. 

From the test performed, any variable with a p-value greater than 0.05 is considered not significant. 

The variables which were not thrown out are to be used for the MLR and ANN models for the 

combined model construction. The Tank model uses only Pt and PETt, because the model accounts 

for real-time soil moisture that is carried over from the previous time step as discussed in the 

Methods section. 

 

Table 2. Results from Stepwise Regression 

Variable Coefficient p-val 
PETt -0.010 0.807 
PETt-1 -0.440 4.08e-64 
Pt 0.474 1.24e-50 
Pt-1 0.155 2.74e-08 

 

Statistical Performance of the Selected Models 

 The weight given to each statistical model for the combined model is directly correlated to 

the ability of each model to predict the observed streamflow. The MLR was performed using a 

square root transformation to obtain better correlation. The results of the MLR analysis can be 

given in the equation below: 
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B = 8�. fg	 − �. �hi ∗ j���
�� + 	�. �h ∗ j�
 + �. �f ∗ j�
��;�                 (11) 

Where ?  is the monthly runoff in millimeters (mm), ���E�k  is the input potential 

evapotranspiration from a previous time-step (t-1) in mm, �E is the input precipitation at time t in 

mm , and �E�k  is the precipitation at a previous time-step (t-1). The use of the square root 

transformation produced much more desired results, with an R2 of 0.77.  

 The TANK model was calibrated and validated using the observed data which covered a 

30 year span from 1977-2006. The 20 year span from 1977 to 1996 was used for calibration, and 

the remaining 10 years from 1997-2006 were used for validation. This resulted in a R2 of 0.73. 

The ANN model was performed using the same variables determined significant by the 

stepwise regression. The percent of observed data to be used for training, validation, and testing, 

were 90, 5, and 5 percent, respectively. These percentages were derived from multiple iterations 

of various subsample sizes to obtain the best overall performance. The R2 for the ANN model was 

0.81. 

 Proceeding the calibration and validation of all three models, eight-post processing tests 

were performed to determine the strengths of each model. The tests included evaluation of strength 

in model fitting via R2, seasonality, annual runoff, high runoff season, low runoff season, low 

runoff events (observed runoff less than 10th percentile), high runoff events (observed runoff 

greater than 90th percentile), and median runoff (in between the 25th and 75th quartiles) via absolute 

error (Table 3). 

 From the analysis presented in Table 3, it can be seen that the MLR model more strongly 

predicted the annual runoff and low runoff events. The tank model’s strength laid in predicting the 

low runoff season and high runoff events. Finally, the ANN model performed best at predicting 
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overall seasonality (total error), high runoff season, and runoff in between the 25th and 75th 

quartiles of the distribution. 

 

Table 3. Strength Testing of Individual Models 

Test Equation MLR TANK ANN 
Combined 

Model 
R2 = 1 −l@<mPC −QL^TnnT^CA$@<mPC −	<mPooooooA$C

 0.77 0.73 0.81 0.80 
(Overall Prediction) 

Total Error (mm) =l|<mPE −QL^TnE| 4545 5082 4093 4131 
(ABS Error) 

Annual Runoff Error 
(mm) = |<mPd11qdr −QL^Tnd11qdr| 19.49 37.16 28.54 17.68 

(Full 30 yr Time Span) 
High Runoff Season 

Error = 	l s<mPE −QL^TnE<mPE stdu
vwx  1.17 1.09 0.93 0.99 

(Dec - May) 
Low Runoff Season 

Error = 	l s<mPE −QL^TnE<mPE syz{
|q1  4.10 3.76 4.11 4.07 

(Jun - Nov) 
Low Runoff ABS 

Error (mm) = 	l}<mPE −QL^TnE 	}~���k�% 170 203 208 156 (< 10% OBS 
Distribution) 

High Runoff ABS 
Error (mm) = 	l}<mPE −QL^TnE 	}~�����% 1330 1044 1057 1142 (> 90% OBS 

Distribution) 
25-75 Quartile ABS 

Error (mm) = 	l}<mPE −QL^TnE 	}$�%�~��� �% 1928 2574 1655 1734 (50% OBS 
Distribution) 

 

Combined Model 

The combined model was composed through linear programing (LP) coupling the three 

individual models with the objective function to yield the lowest prediction error (i.e., superior 

model performance than individual models), and the observed data utilizing the entire timespan. 
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The combined model produced an R2 of 0.80, and adequately accounted for seasonality and 

extreme runoff. Appendix 4 represents a 5 year overlay plot of the observed data, individual 

models, and combined model output. Table 3 compares the strength test results of the combined 

model to the individual models. Although the combined model did not outperform every test, it 

can be seen that on average, the combined model had higher performance in all predictions tested 

except predicting flows above the 90th percentile. 

Runoff Generation for GCM Data 

CGM simulations perturbed by the GCM projections were used as input into the combined 

model to obtain runoff for each of the 30 year scenarios (BASE, 2030’s, 2050’s, and 2070’s). To 

perform a visual assessment of the combined model output, the monthly arithmetic mean of 100 

CGM simulations were taken, followed by the monthly arithmetic mean of 30 year time spans. 

Figure 9 presents the monthly arithmetic means runoff change of the projected scenarios to BASE. 

Average runoff was projected to increase throughout the entire year except for a decrease in 

February. All three scenarios showed increases in the spring and summer seasons of approximately 

35 and 100 percent, respectively. 
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Figure 9. Mean Runoff for BASE and Projected Time Spans 

 

It can be observed from Table 4 that in March and November the 2030’s have the highest 

maximum runoff, and that the runoff for March was the highest runoff value for all three projected 

datasets. These results may be explained by Appendix 2 and 3, where these two time steps were 

located at points where the 2030’s have a higher increase in precipitation or a greater decrease in 

temperature compared to the 2050’s and 2070’s. This can be explained by the extreme decrease in 

temperature, which greatly reduces the impact of potential evapotranspiration on the 2030’s at that 

time step. The annual percent increase from BASE for the 2030’s, 2050’s and 2070’s were 20.71, 

23.78, and 24.33, respectively. This trend showed that although runoff had significantly increased 

by the 2030’s, that by the 2070’s the increase in runoff was beginning to level out. 
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Table 4. Statistics of Runoff Simulated for BASE and Future Time Spans 

                    Unit: MCM 

Month Statistic BASE 2030 2050 2070 Month Statistic BASE 2030 2050 2070 

1 

Mean 528.17 564.84 620.10 615.18 

7 

Mean 142.24 247.91 286.13 273.88 
Min 143.25 120.10 180.42 169.84 Min 22.52 36.93 40.28 38.57 
Max 1116.02 1219.36 1306.41 1299.83 Max 397.43 834.27 959.48 917.18 
Std Dev 197.08 204.01 224.50 229.01 Std Dev 67.32 152.34 183.31 173.21 

2 

Mean 499.28 456.10 474.71 495.40 

8 

Mean 122.34 221.17 236.04 229.06 
Min 106.50 95.64 100.77 99.69 Min 24.92 36.97 38.52 38.00 
Max 1209.59 1104.06 1173.76 1203.27 Max 378.56 773.32 829.23 821.93 
Std Dev 196.60 181.02 191.81 198.97 Std Dev 61.56 133.63 140.14 135.28 

3 

Mean 411.96 508.72 481.12 460.14 

9 

Mean 141.25 146.62 152.88 162.22 
Min 83.72 116.71 103.87 106.14 Min 37.92 37.74 39.84 38.71 
Max 1149.66 1348.93 1316.59 1277.08 Max 475.71 432.04 470.02 509.42 
Std Dev 205.81 261.55 251.35 239.35 Std Dev 84.60 73.38 79.09 85.27 

4 

Mean 283.44 370.47 384.09 386.68 

10 

Mean 177.33 204.72 198.03 215.24 
Min 39.44 47.34 51.00 41.16 Min 34.60 31.36 34.12 36.27 
Max 741.97 959.22 971.74 975.27 Max 551.17 666.97 639.49 701.58 
Std Dev 149.08 197.83 211.17 215.17 Std Dev 100.12 119.87 114.83 123.74 

5 

Mean 205.06 219.89 229.60 239.01 

11 

Mean 337.54 415.19 389.69 400.09 
Min 53.70 54.92 56.88 55.13 Min 42.88 48.78 47.61 52.06 
Max 576.03 612.92 650.04 711.94 Max 845.87 968.99 943.61 952.15 
Std Dev 103.85 107.22 116.29 122.41 Std Dev 188.12 217.72 212.25 214.55 

6 

Mean 147.99 191.50 197.58 201.27 

12 

Mean 462.69 628.62 632.01 622.91 
Min 25.31 35.95 31.19 32.17 Min 107.09 130.37 161.20 152.81 
Max 409.24 614.06 670.63 660.94 Max 940.07 1248.39 1267.42 1244.98 
Std Dev 76.87 117.38 122.59 125.13 Std Dev 170.47 226.25 235.58 231.47 
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Reservoir Routing and Optimization 

Weighted penalty values were given in increasing magnitudes for deviation from the flood 

guide (Figure 2), this was performed to imitate one of TVA’s primary objectives of maintaining 

reservoir elevation at the flood guide. Reservoir routing, using the combined model output as input, 

was calculated for each time-span using the current policy. Following, optimized policies altering 

the flood and balancing guide line elevations, were generated for each time-span using a genetic 

algorithm to minimize the average of the 100 Monte Carlo realizations summed penalty values. 

Performance of the optimization model was determined by comparing three scenarios, which are 

performance using 1) the current operation policy guide lines (Current), 2) the optimal operation 

policy determined from BASE (BASE_Opt), and 3) the optimized operation policy determined 

with respect to each future scenario (TS_Opt). A summary of the optimization and individualized 

penalty results are given in Tables 7 and 8, respectively. 

BASE_Opt and TS_Opt policies both showed large decreases in penalties compared to the 

current policy (Table 5). The BASE_Opt scenario showed penalty decreases ranging from 22.2 to 

24.4 percent, while the TS_Opt scenario showed ranges from 22.4 to 37.0. 

 

Table 5. Optimization Model Results 

year ∆Penalty from Current 
to BASE_Opt (%) 

∆Penalty from Current 
to TS_Opt (%) 

BASE -22.4 -22.4 
2030 -23.3 -35.4 
2050 -22.2 -34.6 
2070 -24.4 -37.0 
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Columns in Table 6 represent the individualized penalties assessed in this study. From 

Table 6, it is obvious that the routing penalties for both the BASE_Opt scenario and the relative 

TS_Opt scenarios showed significant decreases in individualized penalties when compared to the 

penalty produced by the current policy, especially for the third optimization method.  

The decreases in penalties from Tables 5 and 6 can be explained by having higher runoff 

volumes, helping maintain the reservoir elevation at the Flood Guide. However, by emphasizing 

the reservoir elevation to be maintained at the flood guide, the penalty for not providing enough 

outflow for Bull Run slightly increased, and the penalty for preventing flooding downstream 

significantly increased for all scenarios except 2070’s. This is best explained through the 

discussion of the occurrence of runoff events surpassing 90th and 95th percentile, this shoed that 

the 2070’s scenario had less events surpassing these percentiles than the 2030’s and 2050’s. 

Moreover, this can be explained by the relative standard deviation of the 2070’s scenario being 

less than the other two scenarios. 

 The results of the optimization model showed a decrease in the overall range between the 

flood and balancing guide elevations for all optimized scenarios except 2070’s, which has a percent 

increase of 0.7 percent. It is also noted that the decrease in range was decreasing from one scenario 

to its chronologically successive scenario, and that this decrease was primarily caused through 

increasing the flood guide elevation. This can be explained by the fact that the results were derived 

from optimizing the projected scenarios based on the optimized BASE scenario. Therefore, since 

more runoff was being projected chronologically, it is logical that the range for each successive 

scenario’s policy be increased. Figure 10 visually represents the differences in the current to the 

BASE optimized flood and balancing guide. 
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Table 6. Optimization Model Values for Individual Penalties 

Year 
Policy  
Test 

Penalty 1 Penalty 2 Penalty 3 Penalty 4 Penalty 5 Penalty 6 Penalty 7 Penalty 8 
sum 

fld~bal >1030 >1034 <bal navi cooling eco/hydro fld_down 

BASE 

Current 12451.62 0.00 0.00 35670.00 0.00 5460.00 0.00 0.00 53581.62 

BASE_Opt 6496.51 0.00 0.00 29610.00 0.00 5460.00 0.00 0.00 41566.51 

TS_Opt 6496.51 0.00 0.00 29610.00 0.00 5460.00 0.00 0.00 41566.51 

2030 

Current 10512.41 0.00 0.00 22120.00 0.00 6450.00 0.00 6700.00 45782.41 

BASE_Opt 5046.78 0.00 0.00 16940.00 0.00 6450.00 0.00 6700.00 35136.78 

TS_Opt 4348.93 0.00 0.00 12060.00 0.00 6450.00 0.00 6700.00 29558.93 

2050 

Current 10279.64 0.00 0.00 20880.00 0.00 7150.00 0.00 7000.00 45309.64 

BASE_Opt 4961.07 0.00 0.00 16130.00 0.00 7150.00 0.00 7000.00 35241.07 

TS_Opt 3661.93 0.00 0.00 11810.00 0.00 7150.00 0.00 7000.00 29621.93 

2070 

Current 10095.41 0.00 0.00 19770.00 0.00 6220.00 0.00 3400.00 39485.41 

BASE_Opt 4863.48 0.00 0.00 15350.00 0.00 6220.00 0.00 3400.00 29833.48 

TS_Opt 3756.85 0.00 0.00 11500.00 0.00 6220.00 0.00 3400.00 24876.85 

Note: The penalties are defined as follows: 1) Reservoir Elevation being below the flood guide, but above the balancing guide; 2) Reservroi elevation 
being above 1030 ft; 3) Reservoir elevation being above 1034 ft; 4) Reservoir elevation being below the balancing guide; 5) Inability for reservoir 
to provide minimum outflow required for navigation; 6) Inability for reservoir to provide minimum outflow required for Bull Run Fossil Plant 
cooling; 7) Inability for reservoir to provide minimum outflow required for hydropower generation and ecosystem 8)Inability for reservoir to prevent 
flooding down stream. 
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Figure 10. BASE Optimized Policy Overlaying Current Policy 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

This study aimed to assess the potential impacts of climate change on the performance 

Norris Reservoir for three timespans, 2030’s, 2050’s, and 2070’s, and optimize their current policy 

flood and balancing guide lines to be better equipped for handling these impacts.  

The key findings of this study include: 

 

1. The GCM data used, revealing increases in annual precipitation with warmer winters and 

cooler summers, resulted in increased runoff by up to 24.3% for Norris Reservoir by 2070.  

2. The use of a linearly programmed combined hydrologic model proved to be more sufficient 

in estimating a wider range of runoff values than any of the individual hydrologic models 

could independently, regardless of the combined model having a slightly lower R2 than the 

ANN model. 

3. Although the current policy was able to handle the higher inflow, the generated penalties 

were greatly decreased through the use of a genetic algorithm driven optimization model. 

The results could be attributed to the increased inflow for Norris Reservoir, enabling the 

maintenance of reservoir elevation at the flood guide line to be more easily accomplished; 

although, this increased the risk for flooding downstream.  

 

In conclusion, for a reservoir that works within a network, an increase of runoff in the entire 

system may pose many threats unexplored by this study. Therefore, it is recommended that 

future studies consider encompassing the entire TVA system, and that temporal resolution be 
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increased to a daily time-step, instead of monthly, to account for extreme events. This will 

allow the ability to work more closely with TVA, helping to better define the penalty function, 

more accurately account for the reservoir network process, and compare the combined 

hydrologic model with the TVA SAC-SMA model. Moreover, the results produced could also 

be attributed to the GCM used. Due to the uncertainty and variance from one GCM to the next, 

it is recommended that a wide variety of GCMs, and RCPs scenarios, be taken into 

consideration. 
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Appendix 1: Norris Dam (http://www.tva.gov/sites/norris.htm) 

 
 
 

 

Appendix 2: Mean Temperature for Observed and Projected Time Spans 

 
 



47  
 

 

 

Appendix 3: Mean Precipitation for Observed and Projected Time Spans 

 
 
 

 

Appendix 4: Runoff Simulation Accuracy from All Models to Observed Data 
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Appendix 5: Minimum Outflow Constraints for Norris Reservoir (MCM per month) 

Month 
Cooling 

minimum 

Hydro-power 
and Ecosystem 

minimum 
1 45.51 18.96 
2 54.8 18.96 
3 60.68 18.96 
4 73.4 18.96 
5 75.84 18.96 
6 88.08 18.96 
7 113.77 18.96 
8 113.77 18.96 
9 110.1 18.96 
10 151.69 18.96 
11 44.04 18.96 
12 45.51 18.96 
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