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Abstract 
  

 A study was conducted to determine the importance of cellular surface charge on 

susceptibility of yeasts to the natural biopolymer chitosan.  The test organisms utilized 

were Saccharomyces cerevisiae, Candida krusei, and Zygosaccharomyces bailii.  Surface 

charge was determined at various culture ages and under selected environmental 

conditions.  Bovine serum albumin (BSA) was used as a protein standard to ensure an 

accurate method to measure microbial surface charge.  Yeasts cells were grown to the 

early stationary phase, washed and suspended in potassium chloride with absorbance 

value (A600nm) of 0.1 to 0.2, and charge was measured using a phase analysis light 

scattering (Zeta PALS) apparatus.  The chosen absorbance was predetermined using BSA, 

which had minimal standard deviation within surface charge measurements.   

 Surface charge of S. cerevisiae cells was measured after growth in yeast-mold 

(YM) broth for 12, 18, 24, 36, 48, and 72 hr to determine changes in charge as a function 

of growth phase. The effect of short term exposure to various pH on surface charge was 

determined by suspending S. cerevisiae cells in acetate buffer adjusted to pH 3-11 using 

0.1 N NaOH or 0.1 N HCl.  Additionally, S. cerevisiae cells were adapted over time to 

pH 3, 4, and 8 to evaluate prolonged effects of growth pH on yeast surface charge. 

 Flocculation and viability of the three yeasts were also evaluated. Cells were 

washed in sodium chloride and resuspended in acetate buffer (pH 4.0) to achieve an 

absorbance (600 nm) of 3.0.  Chitosan was added to the yeast suspensions to achieve 

concentrations of 0.00001-0.001%. The test concentrations were relatively low due to the 

increase in viscosity of suspensions with higher chitosan concentrations.  Cells were 
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observed using a phase contrast microscope to detect morphological differences between 

species, at selected pH, and when chitosan was added.   

 Surface charge data for bovine serum albumin corresponded with previously 

published literature.  Surface charge of yeasts cells was shown to be influenced by 

growth phase, species, environmental pH, and adaptation to non-optimal pH.  After 48 hr, 

the surface charge of S. cerevisiae cells showed a significant increase or decrease (p< 

0.05), and there were overall surface charge differences observed among the various pH 

values.  However, pH adapted cells developed resistance to non-optimal pH due to 

adaptation, and only showed differences in pH between pH 3 and 8 and pH 4 and 8.  This 

study showed that there were significant differences (p<0.05) in surface charge 

depending on the yeast species utilized. The average surface charge of S. cerevisiae cells 

was -19.6 mV, -12.07 mV for C. krusei and -25.82 mV for Z. bailii.  Candida krusei had 

the least negative surface charge.  This yeast was least affected by the antimicrobial 

affects of chitosan.  Z. bailii had the most negative charge, which may be the reason 

chitosan was more effective against Z. bailii.  This study demonstrated that chitosan, 

which is positively charged, may be more effective as an antimicrobial agent against 

microbial cells with more negative charges. 

Flocculation patterns of yeasts cells were altered by chitosan and lower log counts 

of some yeasts were observed when chitosan was added to suspensions.  Chitosan was 

shown to inhibit growth of yeast species differently which may be partially explained by 

the surface charge differences of the cells.  Yeasts cells were observed microscopically to 

identify changes in overall appearance and morphology when cells were exposed to 

chitosan.  When chitosan was added to S. cerevisiae cell suspensions, cells appeared less 
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dense, and more rounded, as compared to S. cerevisiae control cells.  Clustering, or 

clumping, of cells was also noticed when chitosan was present. 

The surface charge of yeasts was shown to be affected by environmental pH, age, 

and species.  These influential factors are important when determining the most desirable 

conditions for chitosan to serve as a natural food antimicrobial.  Chitosan is currently 

approved as a dietary supplement by the Food and Drug Administration, and it has the 

potential to be used as an antimicrobial agent and inhibit microbial growth in foods.   
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Chapter I 

 

Literature Review 

 

Introduction 

The environment is important when attempting to control microbial growth; 

temperature, pH, oxygen, and moisture content are attributes which are critical factors 

relative to controlling yeast growth in foods.  Although yeasts are commonly present on 

raw fruits and vegetables and many processed foods, only a few yeast species are 

recognized as pathogenic to humans, and none of them are known to cause foodborne 

illness (Hurley et al., 1987).  Nevertheless, a tremendous amount of food spoilage is 

caused by yeast growth, creating a significant economic problem.  Controlling yeast 

proliferation in foods would reduce spoilage and increase profitability.   

   Yeasts are classified as fungi at the level of family; all yeasts are non-

photosynthetic higher protists with rigid cell walls and exist as either unicellular 

organisms or mycelia (Jin et al., 1998).  A characteristic of most yeasts, such as 

Saccharomyces cerevisiae, is that they divide by budding, instead of binary fission 

observed in bacteria.  Yeasts can be differentiated from bacteria by their larger cell size 

and their oval, elongate, elliptical, or spherical cell shapes.  Typical yeast cells range 

from 5 to 11 micrometers in diameter, some cells being even larger.  Older yeast cultures 

tend to have smaller cells (Jay, 2000).  Yeast cells are surrounded by a tough, rigid cell 
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wall that surrounds the periplasmic space, spans 100-200 nm and represents 26 to 32% of 

the dry weight of the cell (Nguyen et al., 1998; Stratford, 1994).  Studies on the chemistry 

and structure of yeast cell walls have focused mainly on S. cerevisiae and Candida 

albicans.   For these species, and most other yeasts that have been examined, the cell wall 

consists of about 85 to 90% polysaccharide and 10 to 15% protein.  The cell wall of S. 

cerevisiae consists of four macromolecular classes, specifically cell wall proteins (CWPs), 

accounting for 30-50% of the dry weight of the cell. β1,6-glucan, β1,3-glucan (reserves 

more than half of the cell wall), and chitin accounts for only 1-2% in wild yeast cells 

(Kapteyn et al., 1996). 

The polysaccharide component consists of a mixture of water-soluble mannan, 

alkali-soluble glucan, alkali-insoluble glucan, and small amounts of chitin.  Constituents 

are covalently connected as determined by the resistance to extraction using hot 

detergents such as sodium dodecyl sufate (SDS) and Tween-80.  β1,3-glucan is the 

predominant structural component, and together with chitin, it is responsible for cell wall 

rigidity, in turn determining its shape and strength.  Proportions of the different fractions 

within the cell walls vary with yeast species and strain.  In S. cerevisiae for example, 

there are approximately equal proportions of mannan and glucan, and within the glucan 

fraction, approximately equal amounts of alkali-soluble glucan and alkali-insoluble 

glucan exist (Kapteyn et al., 1999; Nguyen et al., 1998).   

   Members of the genus Saccharomyces are ascosporogenous yeasts that multiply 

by multilateral budding and produce spherical spores in asci.  They are diploid and do not 

ferment lactose.  All baker’s, brewer’s, wine, and champagne yeasts are strains of S. 

cerevisiae.  They are found in Kefir grains and can be isolated from a wide range of foods, 
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such as dry-cured salami and numerous fruits, although S. cerevisiae rarely causes 

spoilage (Jay, 2000).   

Zygosaccharomyces bailii is a fermentative ascomycete yeast that can grow at 

low pH and in the presence of maximum permitted levels of lipophilic organic acid 

preservatives (Thomas and Davenport, 1985).  Z. bailii is a commercially important 

spoilage yeast due to its capability of surviving low pH (pH 1.8) in the presence of weak 

organic preservatives, such as benzoic acid, a common yeast inhibitory additive used in 

the food industry.  This preservative resistance causes great loses to the food and 

beverage industries due to spoilage.    

Candida is an ascomycete yeast that is the most common cause of opportunistic 

mycoses worldwide.  Candida krusei colonies are typically dry, dull, and often, a 

mycelial border is observed on Sabouraud dextrose agar.  The colonies are cream colored 

and their shape is often lenticular (Larone, 1995). 

 

Intrinsic parameters of yeasts  

Intrinsic parameters are the parameters of plant, animal, and microbial tissues that 

are inherent components of the tissue.  These parameters include pH, moisture content, 

and nutrient content, and with respect to yeasts, the most important intrinsic factors are 

water activity (Aw), nutrients, and acidity. The majority of yeasts are less sensitive to 

decreases in Aw than most bacteria, and usually are quite capable of growth at Aw values 

less than 0.90 (Deak, 1991).  The most important nutrients for yeasts are carbohydrates, 

which serve as the primary energy sources (Rose, 1987). 
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The majority of microorganisms grow best at pH around neutrality (6.6-7.5), 

whereas few grow below pH 4.0.  Bacteria tend to be more sensitive to non-optimal pH 

than molds and yeasts (Jay, 2000).  Most yeasts tolerate a wide pH range and grow easily 

at pH between 3 and 8.  Yeasts show an incredible tolerance to pH and many species are 

able to grow at pH as low as 1.3-1.7.  This tolerance strongly depends on the type of 

acidulant, such as acetic or propionic acids (Deak, 1991; Pitt, 1974).   

Fungi often exist in harsh living environments to which they must adapt in order 

to remain viable.  Yeast cells are capable of making necessary adjustments to the 

components and structure of their cell membranes and walls in response to environmental 

alterations such as pH, temperature, oxygen, and/or nutrient accessibility (Jay 2000).  

When the cell is damaged or stressed, changes may affect cell wall organization, mainly 

due to the existence of cell wall repair mechanisms that compensate for cell destruction.  

The primary function of the cell wall is to provide shape, mechanical strength and 

protection of the cell and to keep desired components inside the cell and foreign invaders 

out of the cell. 

 

Yeast adaptation  

 Single-celled microorganisms that freely reside in nature, such as yeasts, are 

challenged with large variations in their natural environments.  Rapidly activated 

mechanisms are crucial to maintaining the capacity of yeasts to proliferate.  

Environmental changes may be of a physical or chemical nature, such as osmotic 

pressure, radiation, temperature, solute concentration and water activity, toxic chemical 

agents, nutrient availability, ion presence, and pH.  As cells respond to unexpected stress, 
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they do so in different phases.  During the primary phase, known as the stress-responsive 

phase, cell changes, such as shrinkage of cells, occurs; defense processes are triggered in 

the second phase (adaptation phase), and adapted cells resume proliferation, by regaining 

there ability to reproduce.   

Microorganisms must have specifically balanced internal conditions in order to 

obtain optimal growth and function.  The internal condition of the cell is important for 

cell survival. However, alterations in the external environment can result in various 

cellular disruptions that may affect the internal milieu.  These disruptions can cause 

destabilization of cell structures (Hahmann and Mager, 2003).  Therefore, cells must be 

capable of protecting and maintaining internal homeostasis in response to changing 

external conditions.  Adverse pH affects the functioning of microbial enzymes and the 

transport of nutrients into the cell.  When microorganisms are exposed to environments 

below or above neutrality, their ability to proliferate depends on their ability to adapt or 

bring the intracellular pH to a more desirable range.  The use of chemical preservatives, 

specifically weak organic acids, as antimicrobial agents is quite common.  However, 

yeasts differ in their susceptibility to acidic environments.  Z. bailii is a food spoilage 

yeast that can tolerate high acid concentrations and low pH.  On the other hand, S. 

cerevisiae can not remain viable in such an environment (Jay, 2000).    

Oftentimes, yeast cells must contend with changes in osmotic pressure, 

temperature, long periods of nutrient deprivation, and acidity of their environment.  

When these changes suddenly occur, the cell must promptly adjust its internal 

environment to that required for physiological growth by using their defense mechanism 

systems.  Studies conducted regarding the mechanisms that S. cerevisiae uses to adapt to 
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new environments have emerged over the past years.  Yeast cells gain cross protection 

against different stressful environments. That is, when cells are exposed to a small dose 

of one stress, they may become resistant to normally lethal doses of other unfavorable 

living conditions (Hohmann et al., 2003; Lewis et al., 1995).   

One mechanism that yeasts use to protect the internal system from environmental 

changes is to initiate a common gene expression program that protects the cell during 

adverse encounters.  In a study conducted by Gasch et al. (2000), DNA microassays were 

used to identify approximately 900 genes whose expression was altered in S. cerevisiae 

responding to a variety of stressful environment changes.  (The complete list of the genes 

that participate in this response can be viewed at http://www-

genome.stanford.edu/yeast_stress).  The changes of these genes are a feature of responses 

to different environments, and initiation of this program begins when the environment 

becomes unfavorable.   

In addition, stress plays an important role in applied biotechnology areas.  

Different industries benefit from studies involving yeast and stress-related research, such 

as, ethanol tolerance of wine yeast and protection of food from spoilage.  These are a 

couple of reasons why yeast stress responses are an active research area and were utilized 

in this study.   

 

Cell surface charge  

 Determination of surface charge of microbial cells and biopolymers is of 

prominent importance for understanding their behavior and functions under various 

environmental conditions.  Surface properties have provided information about cell 
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surface composition, isoelectric point, rates of uptake of nutrients and antimicrobial drugs, 

as well as flocculation patters of organisms.  Surface charge is important because in order 

to examine adaptation mechanism(s) in yeasts to acidic environments and to investigate 

mechanism(s) of the antimicrobial action of chitosan, measuring charge at the cell surface 

is relevant.   

Most viable cells have fixed negative charges on the cell membrane surface, 

primarily due to cell wall components such as phosphates, proteins, and carboxylate 

groups (Chang et al., 2002) (Table 1, all tables are shown in the appendix). According to 

Becker et al. (1996), the bilayer assists with the membrane structure.  The hydrophobic 

tails are on the inside and the hydrophilic heads point toward the aqueous environment at 

the membrane surface.  Every biological membrane has such a lipid bilayer as its basic 

structure.  The cell membrane phospholipid bilayer plays a role in the surface charge of 

the cell.  The nature of the interface between the outer layers of the cell wall and 

microbial environment plays a considerable role in cell physiology.  The cell wall, 

combined with the cell membrane, is crucial for exchange of nutrients and waste 

molecules between the microbial cell and its surroundings.  The cell membrane consists 

of proteins and phospholipids; cell wall composition significantly differs between genera 

and species.  Nevertheless, regardless on taxonomic classification, all microbial cells 

contain carboxyl, phosphoric, and amino groups in their outer membranes.  These groups 

can easily be ionized as a function of environmental pH and contribute to the net charge 

of the cell surface.  At physiological pH, most microbial cells posses a net negative 

surface charge, due to the cell membrane phospholipid bilayer (Harkes et al., 1992).  

Microbes are also negatively charged due to the presence of polysaccharides within the 
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wall and cell membrane macromolecules, such as, peptidoglycans and phospholipids.  

The degree of this charge can be determined based on electrostatic mobility of cells in an 

electric field, similar to electrophoresis of proteins. 

Net cell surface charge can be assessed on the basis of “zeta potential,” which is 

the electrical potential of the interfacial region between the cellular surface and the 

aqueous region.  In other words, for a charged particle or cell, moving with respect to the 

solution phase, the potential at the shear surface, with respect to the bulk solution, is 

commonly referred to as the zeta potential (Miller et al., 1990).  The zeta potential is 

measured because it is an indicator of changes of the cell wall components. Zeta potential 

can be estimated by measuring cellular velocity, or electrophoretic mobility, in an electric 

field.  The velocity of particles or cells moving in an electric field can be directly 

measured by determining the frequency change of the laser light they scatter and is 

dependent on various factors such as temperature, ionic strength, pH of the medium, 

electric field strength, and the net surface charge of the particle (Wilson et al., 2001).  

Direction of the movement is affected by the charge of the particle, e.g., negatively 

charged particles are attracted to the positive electrode, while positively charged particles 

are attracted to the negative electrode.  Measurements of zeta potential have been made in 

the past by several researchers, but on a relatively restricted range of samples.  Collins 

and Stotzky (1992) made zeta potential measurements using a Zeta-Meter apparatus 

(Zeta-Meter, Inc., Long Island City, N.Y.). Ware and Flygare (1971, 1972), used a 

Coherent Radiation Model apparatus, an electrophoretic light scattering method to 

measure zeta potential. 
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 The zeta potential of a single chitosan molecule in a solution has not yet been 

measured because of the relatively small size of the molecule.  However, chitosan 

clusters in solutions have been evaluated and surface charge of 43 mV has been recorded 

(Calvo et al., 1997).  This makes chitosan attractive as a potential antimicrobial agent, 

since most living cells possess net negative charges; therefore, chitosan would bind to the 

negatively charged microorganisms (Table 1). 

 Zeta potential is influenced by environmental factors such as pH, temperature, 

ionic strength, heavy metals and culture age.  Environmental pH can permanently alter 

cell wall composition and microbial virulence (Montville, 1997).  The net surface charge 

of some yeasts and bacteria can be altered due to the presence of heavy metals at elevated 

pH.  The ability of a metal to cause charge alterations appears to be related to the 

speciation of the metal that occurs at various pH and to the ability of some speciation 

forms to be specifically adsorbed on the cell surface (Collins and Stotzky, 1992).  Collins 

and Stotzky (1992) concluded that species differences played a role in electrophoretic 

mobility. However, the differences between the speciation forms of the metals were more 

noticeable than the type of cell or particle analyzed.   

 According to Lytle et al. (1999), ionic strength and pH impacts surface charge of 

microbes, and increasing ionic strength impacts the electrostatic properties of E. coli 

O157:H7 strains.  This observation was explained by the electrostatic attraction of cations 

(Na+) in the phosphate buffer to the anionic bacterial surface.  
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 Primary existing methods (surface charge) 

Various analytical methods have been used in the past to analyze electrostatic 

properties of microbial cell surfaces.  Micro electrophoresis involves the placement of a 

cell suspension in an electrophoresis cell, applying voltage across the cell, microscopic 

observation of the microbial movement over a given distance, and velocity is used to 

calculate electrophoretic mobility (Moyer, 1936).  Instruments that function using this 

technique (electrophoresis) include Zeta Meter (Zeta Meter, New York, NY, USA), 

FACE Zeta-Potential Meter ZPOM (Kyowa Interface Science, Tokyo, Japan) and Lazer 

Zee Meter 501 (PenKem, Bedford Hills, NY, USA). Electrostatic interaction 

chromatography (ESIC) is a less laborious method for characterization of cell surface 

charge.  ESIC originally was employed as a method for isolation of microorganisms 

(Wood, 1980), but has also been used to study microbial physiology (Pederson, 1981).  

Electrophoretic light scattering (ELS) involves the velocity of particles moving in an 

electric field directly being measured by determining the frequency change of the laser 

light they scatter, yielding their electrophoretic mobility (Blake et al., 1994).  The ELS 

method has shown to be of substantial value regarding a variety of physiological 

applications.  ELS has proven to be a relatively easy and rapid method for estimating zeta 

potential.  

 

 

 

 



 11

Chitosan and mode(s) of action 

Chitin, poly-β-(1→4)-N-acetyl-D-glucosamine, is a cellulose-like biopolymer 

distributed in marine invertebrates, insects, and fungal cell walls.  It is commercially 

produced from shellfish wastes (Roller, Covill, 1999).  Chitin and chitosan have attracted 

interest in scientific areas, such as the biomedical, food, and chemical industries (Peter, 

1995). According to Cabib et al. (1988), chitin is the first structural polysaccharide of the 

fungal cell wall whose mechanism of synthesis was discovered, and it remains the most 

extensively studied.  Chitosan, the deacylated derivative of chitin, is a naturally versatile 

biopolymer with numerous food applications (Shahidi et al., 1999). Chitosan acts as a 

metal chelator, binding metals such as lead, iron, copper, cadmium, and magnesium.  

Among the earliest applications of chitosan was to remove harmful metal ions from 

industrial waste waters and removing suspended solids from food processing wastes 

(Knorr, 1984).  Chitosan possess numerous functional properties. It can be used as a 

thickening agent in beverages and semi solid foods, clarifying agent in wine and juice 

processing (Li et al., 1997), a mineral and lipid binder, as a flavor and color carrier, and 

for production of coatings and edible films (Ravi Kumar, 2000).  It has been 

demonstrated that chitosan inhibits growth of foodborne fungi, yeasts and bacteria.  It 

appears, however, that chitosan has stronger bactericidal effect against Gram-positive 

than against Gram-negative bacteria (No et al., 2002).  This is probably due to the 

lipopolysaccharide layer (LPS) distinction amongst Gram-negative and Gram-positive 

organisms as well as differences in the net electronegativity of the cell wall between 

Gram-positive and Gram-negative bacteria, which ultimately affect the degree of binding 

of polycationic chitosan to bacterial surfaces.  Since chitosans exhibit antimicrobial 
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properties, they have received attention for their potential as natural food preservatives 

(Gooday, 1994; Helander et al., 2001).   

Attempts to explain the antimicrobial mode of action of chitosan have been 

focused in two directions.  One hypothesis is that positively charged chitosan interacts 

with the negatively charged cell surface, interrupting cellular metabolic activity and 

eventually resulting in inhibition of cell growth and division, leading to cell death 

(Helander et al, 2001; Tsai and Su, 1999).  However, Hadwiger et al. (1986) 

hypothesized that chitosan oligomers penetrate into the cell nucleus, interfering with 

DNA transcription, mRNA function, and protein synthesis.  This mechanism is limited to 

eukaryotic cells and does not explain antibacterial effects.  Although strong evidence of 

chitosan antimicrobial properties exists, both hypotheses lack direct confirmation and 

validation of a mechanism of chitosan activity. Chitosan currently is only approved by 

the Food and Drug Administration (FDA) for use in dietary supplements. 

   

Yeast flocculation 

Yeast flocculation has been defined as the phenomenon wherein yeast cells 

adhere in clumps and sediment rapidly from the medium in which they are suspended 

(Stewart et al., 1976).  The mechanism of initiation of flocculation is not known.  Initially, 

flocculation was reported to be a process predominately based on ionic interactions, with 

Ca2+ ions acting as bridges between yeast cells (Mill, 1964).  A requirement for Ca2+ in 

flocculation of yeast cells is commonly cited, but magnesium and manganese ions may 

act as substitutes (Miki et al., 1982).  Some researchers suggest that the yeast cell wall 

composition is a significant indicator of the rate and extent of cell wall flocculation 
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(Calleja, 1987).  Sratford and Keenan (1987, 1988) showed evidence that agitation is 

required to initiate cell flocculation.  This indicates that physiochemical cell surface 

interactions may be involved in flocculation.  A correlation between flocculation and 

electrophoretic mobility of yeast cells under specific conditions was reported by Beavan 

and Belk (1979).  Smit et al. (1992) reported a correlation between nutrient limitation, 

hydrophobicity, and flocculation for some S. cerevisiae strains.  Their study demonstrated 

that magnesium-limited S. cerevisiae cells are strongly affected in surface hydrophobicity 

and their ability to flocculate.  A proteinaceous cell surface factor(s) was identified as a 

flocculin.  This component appears to be involved in both cell surface hydrophobicity and 

flocculation capability of yeast cells. Therefore, nutrient limitation ultimately appeared to 

trigger an increase in cell hydrophobicity and flocculation. Wilcock and Smart (1995) 

state that yeast cell surface influences flocculation, and it is strain dependant.  It is also 

suggested that surface charge and the non-separation of progeny from mother cells rather 

than hydrophobicity influences flocculation of yeasts.  The basis of flocculation is still 

insufficiently understood, although researchers realize the significance of this process in 

industrial processes.   

 The surface charge (zeta potential) and flocculation patterns of yeasts were 

observed in this study because the yeast cell wall is an important indicator of the rate and 

extent of cell flocculation; therefore, surface charge influences flocculation (Calleja, 

1987).  
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 Research objectives  

The overall goal of this research was to determine correlations between microbial 

surface charge and susceptibility of microorganisms to the antimicrobial biopolymer 

chitosan. Specific objectives of this study were:  to develop methodology using bovine 

serum albumin; to determine the surface charge of S. cerevisiae cells as affected by 

environmental pH and culture age; to determine the surface charge of three yeast species; 

and to measure the susceptibility of these yeasts to chitosan.  One of the possible 

mechanisms of chitosan antimicrobial activity is its interaction with the yeast cell wall, 

causing disruption of normal transfer of nutrients and flocculation of the cells.  Therefore, 

we investigated flocculation kinetics of S.cerevisiae, C. krusei, and Z. bailii as influenced 

by medium molecular weight chitosan at concentrations ranging from 0.00001 to 0.001%, 

and conducted plate counts to determine cell viability after exposure to chitosan.     
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Chapter II 

 

Materials and Methods 

 

Bovine serum albumin solution 

 Protein bovine serum albumin (BSA) was utilized in this study as a model to 

develop an accurate methodology procedure.  Few if any scientific studies have been 

published regarding consistent zeta potential measurements of yeast cells.  However, an 

abundance of articles exist concerning BSA and zeta potential measurements.  Therefore, 

zeta potential readings were first performed using BSA, ultimately to optimize conditions 

of the analysis.  To determine the effects of particle concentration, sample conductance, 

and pH of the solvent on zeta potential of measured particles, several preliminary 

experiments were conducted with BSA.   

The protein concentration of BSA ranged from 1 to 5%, and conductance was 

altered with 1 and 10 mM potassium chloride (KCl).  Optimum conditions were found to 

be 5% BSA in 1 mM KCl, and this BSA solution was utilized because it gave less 

standard deviation within zeta potential measurements.  The solution pH was adjusted 

using 0.01 N HCl and 0.1 N NaOH. To validate the conditions, we measured the BSA 

surface charge at pH ranging from 2 to 11, using a zeta potential analyzer (Zeta PALS), 

calibrated with Zeta PLUS software (Brookhaven Instruments Corporation, Holtsville, 

New York).  Ten measurements were taken per sample.   
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BSA solution consisted of 5g BSA crystals (Sigma Aldrich co., St. Louis, 

Missouri) and 100 ml of 1 mM KCl (Fisher Scientific co., Fair Lawn, New Jersey).  Five 

grams of BSA were weighed in a 100 ml volumetric flask and brought to volume with 

100 mM KCl.  This solution was mixed for one hour.  Potassium chloride was prepared 

using HPLC grade water (18.0 F.W., Fisher Scientific, Fair Lawn, New Jersey). 

 

Yeast strains and cultivation  

Saccharomyces cerevisiae (KE 162), Zygosaccharomyces bailii (NRRL 7256) 

and Candida krusei (NRRL 7179) held in the University of Tennessee, Knoxville food 

microbiology laboratory culture collections were utilized in this study.   

Inoculation of media: One loopful of yeast cells were inoculated into 40 ml 

sterilize yeast and mold (YM) broth (Difco Becton Dickinson Microbiology Systems, 

Sparks, MD) and incubated for 48 hr at 25ºC under continuous orbital shaking (100 rpm 

Controlled Environmental Incubator Shaker, New Brunswick Scientific Co., Inc., Edison, 

NJ).  After 48 hr, 0.1 ml of yeast suspension was transferred to 350 ml of sterile YM 

broth and incubated under the same conditions for 24 hr (early stationary phase).  Cells 

were harvested by centrifugation for 10 minutes at 8000 rpm at 4ºC (Biofuge 17R, Baxter 

Scientific Products, McGaw Park, IL) and washed with deionized water, mixed, and 

centrifuged again. The cells were consequently washed and centrifuged two times in 1 

mM KCl, mixed, and centrifuged. Surface charge of the yeast cells was determined in a 

suspension of cells in 1 mM KCl with absorbance values (A600nm) of 0.1 to 0.2, zero set 

against KCl buffer.  Absorbance was measured using a UV Scanning Spectrophotometer 

(UV-2101PC) (Shimadzu Scientific Instruments, Inc., Columbia, MD).    
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Determination of effects of species on zeta potential of yeast cells 

The cell wall composition of microorganisms varies depending on components 

within the cell membrane; different species contain different cell wall materials, which 

influence zeta potential readings.  Gram-positive bacteria posses a thick peptidoglycan 

layer while, Gram-negative bacteria do not, and this difference affects the charge of these 

organisms.  Aware of cell composition differences, three different yeast species were 

utilized in this study to observe differences in zeta potential measurements among 

different yeast species. 
S. cerevisiae, Z. bailii and C.  krusei were utilized in this study to detect zeta 

potential differences influenced by species.  One loopful of cells were inoculated into 40 

ml sterilized YM broth and incubated for 48 hrs. at 25ºC under orbital shaking.  After 48 

hrs., 0.1 ml of yeast suspension was transferred to 350 ml of sterile YM broth and 

incubated under the same conditions for 24 hrs. (early stationary phase).  Cells were 

harvested by centrifugation for 10 minutes at 8000 rpm at 4ºC and washed with deionized 

water, mixed, and centrifuged again. The cells were consequently washed and centrifuged 

two times in 1 mM KCl, mixed, and centrifuged. Surface charge of yeast cells was 

determined in a suspension of cells in 1 mM KCl with absorbance (A600nm) of 0.1 to 0.2.   

 

Determination of effects of culture age on zeta potential of yeast cells  

 The cell wall composition of microorganisms changes during various stages of 

growth.  For instance, phospholipid or protein contents may increase or decrease due to 

age of the organism.  According to Jay (2000), some cells become smaller as they age.  
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This suggests that a change in composition of cell wall material may occur during the 

various growth stages due to cell shrinkage.   For this reason, zeta potential was measured 

at various growth stages using S. cerevisiae to determine if cell culture age impacts zeta 

potential. 

In order to determine the growth cycle of S. cerevisiae, a growth curve was 

constructed using YM broth  and plate counts were determined on YM agar after 48 hr 

incubation (25ºC).  Zeta potential of yeast cells at various stages of growth was measured.  

Yeast cells were cultured as indicated above, except, once cells were transferred to 500 

ml flask containing 350 ml of sterile YM broth, samples were collected over time, 

adjusted to appropriate absorbance (A600nm, ,0.1-0.2), and zeta potential was measured 

using the Zeta PALS instrument.  Measurements of S. cerevisiae (KE 162) were taken at 

12, 18, 24, 36, 48 and 72 hour culture ages; zeta potential, therefore, was determined in 

the log phase, and at the beginning and during the stationary phase.   

 

Effect of pH on surface charge of Saccharomyces cerevisiae  
 

Cell wall composition changes differently depending on a range of environmental 

circumstances.  Organisms come into contact with unfavorable living conditions 

frequently, and they must adapt to these stressful environments. Such changes may be 

made possible due to the complexity of the cell structure.  The exchange of nutrients and 

ions from the inside of the cell to the exterior all impact the overall composition of the 

cell.  The environment plays a major role in microbial survival and the behavior of the 

organism upon exposure to antimicrobial agents such as chitosan.  Yeasts are capable of 

developing acid resistance under acidic growth conditions, but how this affects the 
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surface charge of the cell is not known.  To determine this, S. cerevisiae was briefly 

exposed to various pH, and zeta potential was measured.   

To evaluate short term effects of environmental pH on yeast surface charge, pH of 

1 mM KCl solution was adjusted with 0.1 N NaOH or 0.1 N HCl to obtain solutions with 

pH ranging from 3 to 11. Cells were grown and harvested as described previously, and 1 

mM KCl of the appropriate pH was used for washing the cells and as a medium for cell 

suspension.  This was done to determine whether cell charge would be affected by short 

term exposure to suspensions with different pH.  Zeta potential was determined in cell 

suspensions adjusted to the appropriate absorbance (A600nm, value 0.1-0.2).  

 

Effect of pH on surface charge of pH adapted Saccharomyces cerevisiae  
 

Cell wall composition changes differently depending on various environmental 

factors.  For instance, the microbial adaptation process occurs over time by allowing the 

organism to develop key defense mechanisms. Organisms are able to adapt to stressful 

environments by initiating specific genes to activate specific resistance responses, such as 

defense responses to adverse pH and heat.  These changes may be made possible due to 

the alteration of the components within the cell wall. 

To evaluate prolonged effects of environmental pH on yeast surface charge, cells 

were adapted to various pH environments using 1 N NaOH and 1 N HCl (adapted to pH 3, 

4, 8).  To determine whether yeast surface charge is altered by extended culturing at non-

optimal pH, cultures were adapted to pH after being inoculated into 100 ml of pH 

adjusted YM broth and transferred to sterile YM broth (with appropriate pH) every 3-5 

days; pH adapted S. cerevisiae cells were maintained on pH adjusted YM agar slants at 
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4ºC.  Cells were grown and harvested by centrifugation, as described, and 1 mM KCl of 

the appropriate pH was used for washing the cells and as a medium for cell suspension.  

Zeta potential was determined in cell suspension with appropriate absorbance.  

 

Yeast cell flocculation and plate counts 

Since flocculation of cells is known to be influenced by charge due to the 

components within the cell wall, flocculation was observed in this study.  During the 

early stationary phase, cells were centrifuged (8000 rpm, 10 minutes, 4ºC), washed twice 

in 0.1 M sodium chloride solution (NaCl) (Fisher Scientific co., Fair Lawn, New Jersey), 

and resuspended in 0.1 M acetate buffer (pH 4.0) (Anhydrous sodium acetate, Sigma-

Aldrich co., St. Louis, MO).  A target absorbance of 3.0, corresponding to about 8 log 

cfu/ml was desired (A600nm).  Next, 9 ml of the yeast suspension, including cells and 

acetate buffer solution, was added to 1 ml of chitosan suspension (see below).  The 

mixture was gently shaken for 10 minutes, and absorbance and plate count measurements 

were determined (0-8, 24 hrs).  Flocculation of yeast cells during 24 hr incubation at 25ºC 

was measured as a decrease in absorbance at 600 nm using a UV-VIS spectrophotometer.  

Along with absorbance readings, YM agar plate counts (incubated at 25ºC) were 

performed to determine yeast viability and how they were impacted by various chitosan 

concentrations as compared to the control.  Specifically, three yeast species 

 (S. cerevisiae, C. krusei, and Z. bailii) were incubated in YM broth at 25ºC overnight 

with orbital agitation until the early stationary phase was reached.  The cultures were 

subsequently serially diluted (with buffer as the blank) to about 4 log cfu/ml, and 

chitosan was added to the cell suspension to obtain various concentrations of chitosan.  
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Yeasts and buffer solution without chitosan served as the control.  Samples were plated 

onto YM agar over time.  Plates were incubated at 25ºC for 48 hrs., and  plate counts 

were determined.   

 

Chitosan stock solution  

One percent medium molecular weight chitosan (Sigma-Aldrich, St. Louis, MO) 

in 1 % acetic acid was added to cell suspensions to achieve concentrations of 0.1, 1.0, and 

10 ppm (0.00001, 0.0001, and 0.001 %) and volume was adjusted with acid solution.  

Cell suspensions with addition of the same volume of acetic acid, with no chitosan, 

served as the control.   

 

Phase contrast microscopy 

Phase contrast microscopy was utilized to observe changes in cell appearance and 

morphology of yeasts adapted to various pH environments and exposed to chitosan.  S. 

cerevisiae cells were revived from YM agar slants, inoculated into 40 ml of sterile YM 

broth, incubated at 25ºC under agitation for 48 hr, and then transferred to YM broth for 

24 hr and observed under phase contrast microscopy (Olympus Optical Co., New York, 

NY).  S. cerevisiae pH adapted cells were adjusted to pH as described previously and 

observed under phase contrast at each pH and after chitosan was added. 

Cell harvesting was done as previously mentioned, after 24 hr incubation and 

yeast cells were adjusted to an absorbance of 3.0 (A600nm).  Yeast and chitosan suspension 

was prepared as follows: 9 ml of yeast cells and 0.1 M acetate buffer solution were added 



 22

to 1 ml chitosan solution (0.001 %), and held for four hours.  Next, 10 µl werecarefully 

removed from the sedimentation, placed into 1 mL of HPLC grade water, and held for 2 

minutes.  A loopful from the bottom area of the tube was applied to a microscope slide 

and observed under 100x magnification using phase contrast. 

 

Data analysis 

The statistical model consisted of a repeated measures and a completely 

randomized block design (CRD).  Statistical analysis was conducted using the mixed 

model procedure (PROC MIXED) of SAS® 8.2 (Statistical Analysis Systems Institute, 

Cary, North Carolina) and significance factors set at P>0.05.  Analysis of variance 

(ANOVA) was used to determine statistical differences in zeta potential as influenced by 

treatment conditions (species, age, and pH).   
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Chapter III 

 

Results and Discussion 

 

Surface charge of bovine serum albumin 

BSA was utilized in this study as a standard.  Few, if any, studies have been 

published regarding measuring zeta potential of yeast cells.  However, several studies 

have demonstrated measurement of the surface charge of BSA.  Therefore, this protein 

was used to ensure accurate zeta potential measurements before measuring surface charge 

of yeast cells.  The BSA results from this study indicated that BSA has a negative charge 

at neutral pH, and a more negative charge at basic pH.  In other words, the higher the pH, 

BSA is more negatively charged (Figure 1; all figures are displayed in the appendix).  

These results are confirmed by Vilker et al. (1980); in their study, as pH increased, the 

BSA surface charge became more negative.  The isoelectric point (pI) is the pH at which 

the net surface charge or zeta potential is 0.  The pI of BSA was determined in this study 

to be at pH 4.6 - 4.8, corresponding to pI data for BSA.   

 According to Kitano et al. (1998), results of their study indicated that the protein 

phase had an important role in the determination of the physiological zeta potential.  We 

also believe that the constituents present in the yeast cell wall (i.e. protein and 

polysaccharides) will affect zeta potential measurements.  We have developed a sufficient 

method for measuring the zeta potential of proteins, and the results are more consistent 
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and accurate than the results yielded by the more commonly used method involving the 

formation of a protein emulsion.   

 

Yeast species zeta potential comparison  

 Yeast species play a significant role in cell wall properties such as surface charge 

and flocculation rates, even within species, there may be differences in the components in 

the cell that affect the properties mentioned.  Therefore, yeast strain is important when 

investigating cellular properties and components that affect zeta potential or 

electrophoretic mobility of cells.  Table 1 (see appendix) demonstrates how different 

genera and species posses different electrophoretic mobility measurements.  For these 

reasons, three yeast species were utilized to determine zeta potential differences. 

 Zeta potential measurements were performed using S. cerevisiae, C. krusei and Z. 

bailii cells.  Statistical analysis indicates that there are significant differences in zeta 

potential values depending on the yeast species utilized (4 replications).  Results obtained 

reveal that the average zeta potential of S. cerevisiae cells was -19.6 mV, -12.07 mV for 

C. krusei, and -25.82 mV for Z. bailii.  C. krusei, with the greatest (least negative) surface 

charge, was the least affected by the antimicrobial effects of chitosan.  Z. bailii had the 

most negative charge, which may be the reason chitosan was effective against Z. bailii. 

This study demonstrates the possibility that chitosan acts more effectively as an 

antimicrobial agent against microbial cells with a more negative charge, since chitosan is 

a positively charged macromolecule (Table 2). 
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Effect of culture age  

 According to Jay (2000), older yeasts are typically smaller than young cells.  This 

indicates that yeast physiological properties may be affected by culture age.  As a 

consequence of yeast cell aging, they undergo constant modifications in morphology, 

gene expression, and physiology.  The rate at which cells flocculate or sediment may vary 

depending on their age, and it has been shown that flocculation usually develops during 

the stationary growth phase (Powell et al., 2003).   

Results obtained in this study demonstrate that S. cerevisiae cultured in YM broth 

at 25ºC reached the late log phase in 18 hr and the early stationary phase at 24 hr.  The 

cell surface charge became slightly less negative as cultures aged.  The difference was 

significant after 48 hr, as the cultures entered the later stationary phase (Figure 2).  Data 

analysis revealed that there are significant differences in yeast surface charge due to 

culture age.  Therefore, the effectiveness of antimicrobial agents such as chitosan, may be 

impacted by the phase of microbial growth.   

 

Environmental conditions  

Saccharomyces cerevisiae not adapted to adverse pH environments 

Results indicate that S. cerevisiae surface charge was affected by pH (Figure 3).  

When microorganisms are placed in acidic environments, the cells must either keep 

hydrogen ions (H+) from entering or release H+ ions rapidly as they enter.  This is 

important because cellular components such as ATP and DNA require neutrality (Jay, 

2000).   
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This study demonstrates that there were differences in charge in pH adjusted  

S. cerevisiae cells.  Below pH 6, significant differences in surface charge were observed 

at different pH.  However, at pH 6 and above, no significant differences were observed. 

Saccharomyces cerevisiae pH adapted cells  

Surface charge of S. cerevisiae cells adapted to pH 3, 4, and 8 was measured (3 

replications).  For the first replication, results indicate a surface charge trend (more 

negative trend).  However, during the first replication, cells were adapted to pH during a 

longer period than the last two replications; the cells harvested during the first replication 

were transferred (every 4 days) over a month-long period before the adapted cells were 

measured for zeta potential.  For the second and third replications, pH adapted cells were 

transferred only twice over a week-long period and measurements were taken.  This 

difference in adaptation time may account for the surface charge pattern difference 

observed between replications (Figure 4).  Adaptation time thus affected surface charge 

of yeast cells.  However, a trend is more prominent when cells are adapted to pH for 

longer exposure periods. 

Transfer times affect pH adaptability, which was shown in this study.  The longer 

the cells were allowed to adapt to their environment, they likely became more pH 

resistant due to the longer exposure.  Adaptation of yeast cells may result in cell 

alterations in cell membrane composition (e.g., phospholipids), which could affect the 

surface charge due to the adaptability of cells and their ability to adapt to the pH of the 

environment.  Factors such as transfer times, acidulant utilized, and temperature all 

impact the adaptation process of microorganisms and determine their successfulness at 

surviving stressful environments (Hohmann & Mager 2003). 
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Results indicate that pH adapted S. cerevisiae cells show differences in zeta 

potential values among the pH levels evaluated.  However, pH 3 and 4 adapted cells 

showed no differences in surface charge, while the zeta potential for cells adapted to pH 8 

was significantly different from the other adapted cells (Figure 4).   

 

Yeast flocculation  

 Yeast flocculation provides a natural mechanism for yeast removal in 

fermentation processes.  Flocculation is mediated by the properties of the cell wall, which 

ultimately are genetically determined and influenced by environmental factors (Eddy, 

1955; Miki et al., 1982; Powell et al., 2003).  Recording flocculation rates of yeast cells 

allows the ability to determine if chitosan induces the rate and magnitude of flocculation.  

If so, chitosan may possess binding and inhibitory capabilities.   

Flocculation kinetics of S. cerevisiae, C. krusei, and Z. bailii in medium 

molecular weight chitosan solutions were performed to determine flocculation patterns of 

the yeasts and to assist in determining the binding and clarifying properties of chitosan.  

Chitosan was observed at low concentrations due to the increase in viscosity when higher 

concentrations were used which caused a delay in flocculation. 

 Flocculation can be easily quantified by observing the decrease in turbidity or 

optical density (A600) of an undisturbed yeast cell suspension in acetate buffer overtime. 

According to the flocculation results (~8 log cfu/ml), the highest rate of flocculation of  

S. cerevisiae and Z. bailii cells was achieved with 0.001 % medium molecular weight 

chitosan (Figures 5, 7).  However, this was not the case for C. krusei cells.  This may be 

due to the morphology of C. krusei, which forms mycelia that could reduce flocculation.  
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After 2 hr incubation, absorbance (A600) of S. cerevisiae suspensions decreased by 3, 6, 

14, and 56% for control, 0.00001, 0.0001, and 0.001% chitosan, respectively.  After 8 hr 

incubation, absorbance of S. cerevisiae suspensions decreased by 93, 92, 84, and 89% for 

control, 0.00001, 0.0001, and 0.001% chitosan, respectively (Figure 5).   

 Absorbance of C. krusei suspensions decreased by 0, 0, 1, and 1% for control, 

0.00001, 0.0001, and 0.001% chitosan, respectively, after 2 hr incubation, and by 95, 95, 

96, and 56% respectively, after 8 hr.  Delay in flocculation with the highest tested 

concentration of chitosan and C. krusei might have been due to stability of the suspension 

due to the presence of mycelia (Figure 6). 

 After 2 hr incubation, absorbance of Z. bailii suspensions decreased by 23, 38, 25, 

80% for control, 0.00001, 0.0001, and 0.001% chitosan, respectively, and absorbance 

decreased by 98, 96, 97, and 94% for control, 0.00001, 0.0001, and 0.001% chitosan, 

respectively, after 8 hr incubation (Figure 7).  While there were flocculation pattern 

changes of the yeast cells when chitosan was applied at higher concentrations (0.001%), 

at lower concentrations of chitosan, absorbance did not change significantly.   

 The cationic nature of chitosan makes it significantly valuable for use as a 

flocculation agent of negatively charged particles, such as yeasts and other 

microorganisms.  Adsorption and flocculation caused by cationic biopolymers have been 

intensely studied.  However, there are a few theories regarding the mechanism of 

polymer induced aggregation or flocculation.  One theory is by way of charge 

neutralization, another is flocculation caused predominately by bridging, a third 

suggested mechanism is patch flocculation due to attraction between oppositely charged 

particles covered with absorbed polymer, and the last theory suggests that flocculation is 
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highly dependent on the relative rates of polymer adsorption, polymer chain 

rearrangements, and particle collision, which are affected by mixing conditions and 

concentration of particles (Strand et al., 2001). 

 

Plate counts 

 The first set of plate counts (YM agar, 25 ºC) were done using high inocula (~8 

log cfu/ml) of S. cerevisiae, C. krusei and Z. bailii in chitosan suspensions (control, 

0.00001, 0.0001, 0.001 %).  Corresponding absorbance for the high inoculum was 

therefore determined to be 3.0 (A600).  Chitosan did not cause a reduction in cell numbers 

during incubation (Figure 8).  These results are similar to those corresponding to Hoon et 

al. (2001) who reported that chitosan can be used as a food preservative to inhibit growth 

of spoilage organisms in mayonnaise.    

Next, plate counts were performed using a low inoculum (~4 log cfu/ml) of yeast 

cells in chitosan suspensions (Figure 9).  With low inocula, yeast counts decreased 

slightly over time, suggesting that inactivation may be influenced by the ability of 

chitosan to bind to cells.  As such, high cell numbers may serve to “quench” chitosan at 

the concentrations tested. 

  

 Yeast cell observation  

A possible mechanism of the antimicrobial activity of chitosan is its interaction 

with the microbial cell wall, causing disruption of normal nutrient transfer.  For this 

reason, yeast cells were observed microscopically to identify microbial changes in cell 



 30

appearance and morphology when exposed to various environmental conditions such as 

pH change and chitosan. 

Yeast cells were observed under phase contrast microscopy.  S. cerevisiae pH 

adapted cells, in particular cells adapted to pH 3, manifested changes in morphology and 

physical appearance compared to control cells.  For pH 3 adapted cells, the interior 

structures visible under phase contrast seemed deformed and less structured compared to 

control cells (Illustration 1, 2; all illustrations are in the appendix).  The pH adapted cells 

changed their morphology, that is, they became more rounded and less elliptical.  An 

interaction between hydrogen ions and enzymes in the cytoplasmic membrane occurs 

when microorganisms are adapted to adverse pH ranges.  Therefore, the morphology of 

some organisms may be affected by pH (Jay, 2000). 

Exposing S. cerevisiae to 0.001% chitosan suspension resulted in an in increase in 

cell aggregation or clumping (Illustration 5).  Only the 0.001% chitosan suspension was 

evaluated since it was the most effective concentration, as determined from our studies.  S. 

cerevisiae cells in chitosan suspension appeared less dense, as indicated by having a 

darker appearance (i.e., more light transmitted), and cells were more rounded than control 

cells.  The clumping or clustering of cells caused by the application of chitosan may 

indicate a change in the surface charge of yeast cells.  
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Chapter IV 

 

Conclusion  

 

Food spoilage is an economic concern in the United States.  Because of this, 

various additives (such as benzoic and sorbic acids) are used to prevent or control 

microbial growth in foods.  Many additives have become less effective against some 

spoilage organisms that have adapted and developed a resistance to additives.  

Alternative yeast and bacterial inhibitors, such as the natural biopolymer, chitosan, 

should be investigated to compensate for these resistance issues. 

Results of this study demonstrate that when microorganisms are adapted to non-

optimal environmental pH, their surface charge can be affected.  The length of the 

adaptation time used affected surface charge of yeast cells, with longer exposure to 

environmental pH, leading to greater changes in surface charge.   

There are many factors that affect flocculation rates of microbial cells.  These include 

species, strain, surface charge, pH, and nutrient limitation.  Surface charge appears to be 

a major determinant in yeast flocculation.  It has been suggested that age, environmental 

pH, species, yeast structure, and flocculation patterns all influence zeta potential of 

fungal cells. Our results confirm that yeasts exhibit negatively charged surfaces.  This 

demonstrates that microbial surface charge is dependent on species and strain and 

environmental factors such as culture age and pH.  Environmental conditions such as a 
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pH or the application of chitosan to yeast cell suspensions resulted in changes in yeast 

morphology and cell flocculation rates.   

These changes are suggestive that physiological changes also occurred, thereby resulting 

in a change in surface charge.  This study is important in order to determine favorable 

conditions for chitosan to be approved as a natural food antimicrobial or clarifying agent 

by the Food and Drug Administration. 
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Table 1.  Electrophoretic mobilities of some yeasts, Gram-postive, and 
Gram-negative bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microorganism Electrophoretic 
Mobility (units) 

Reference 

 
Saccharomyces  
cerevisiae 
 

-1.2 
(µm sec-1v-1cm -1) 

Collins and Stotzky (1992) 

C.andida albicans -3.1 
(µm sec-1v-1cm -1) 

Collins and Stotzky (1992) 

Listeria innocua 
 

-3 x10-4 (cm2/Vs) Chang et al. (2002)  

Escherichia coli 
O157:H7 
 

-0.1 
(µm cm V -1 s-1) 

Lytle et al. (1999) 

Pseudomonas 
aeruginosa  

-2.8 
(µm sec-1v-1cm -1) 

Collins and Stotzky (1992) 
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Table 2.  Variation in zeta potential among Saccharomyces cerevisiae, 
Candida krusei and Zygosaccharomyces baili (n=4). 

Yeast Species Mean Standard 
Deviation 

Standard 
 Error  

Saccharomyces 
cerevisiae  

-19.57 3.11 0.31 

 
Candida krusei 

 

-12.07 5.58 0.62 

Zygosaccharomyces 
bailii 

-25.82 9.48 1.06 
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Figure 1.  Zeta potential of 5% BSA solutions adjusted to pH 2-11.  
Isoelectric point was determined to be at pH 4.7. 
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Figure 2.  Effect of culture age on zeta potential of S. cerevisiae (n=5). 
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Figure 3.  Effect of buffer pH on zeta potential of S. cerevisiae. 

Significant differences represented by different letters (p<.05) (n=5). 
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Figure 4. Effect of pH adaptation and duration of adaptation on the zeta  

potential of S. cerevisiae. 
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Figure 5.  Effect of chitosan concentration in acetate buffer (pH 4) on 

flocculation of S. cerevisiae.  
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Figure 6.  Effect of chitosan concentration in acetate buffer (pH 4) on 

flocculation of Candida krusei. 
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Figure 7.  Effect of chitosan concentration in acetate buffer (pH 4) on 

flocculation of Zygosaccharomyces bailii. 
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Figure 8.  Effect of chitosan concentration in acetate buffer (pH 4)  

on survival of Saccharomyces cerevisiae (A), Candida krusei (B), and 

Zygosaccharomyces bailii (C) at high inoculum populations. 
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Figure 8.  Continued. 
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Figure 9.  Effect of chitosan concentration in acetate buffer (pH 4)  

on survival of Saccharomyces cerevisiae (A), Candida krusei (B), and 

Zygosaccharomyces bailii (C) at low inoculum populations. 
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Figure 9.  Continued. 
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Illustrations 

 

Illustration 1. Phase contrast micrograph (100x) of Saccharomyces 

cerevisiae control cells grown in YM broth (pH 6.8) and harvested 

during the stationary growth phase. 

 

 
 
Illustration 2. Phase contrast micrograph (100x) of Saccharomyces 

cerevisiae adapted to pH 3 in YM broth and harvested during the 

stationary growth phase.   
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Illustration 3. Phase contrast micrograph (100x) of Saccharomyces 

cerevisiae adapted to pH 4 in YM broth and harvested during the 

stationary growth phase.   

 

 
 
Illustration 4. Phase contrast micrograph (100x) of Saccharomyces 

cerevisiae adapted to pH 8 in YM broth and harvested during the 

stationary growth phase.   

 

 



 55

 

 
 
Illustration 5. Phase contrast micrograph (100x) of Saccharomyces 

cerevisiae control cells grown in YM broth (pH 6.8), harvested during 

stationary phase, and then exposed to 0.001% chitosan for 10 minutes.   
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SAS Programming: Impact of yeast species on zeta potential 

proc mixed data=species; 
class species measure; 
model surf_chrg=species|measure/ outp=rrr ddfm=kr; 
repeated measure; 
lsmeans species/pdiff; 
title 'Repeated Measures ANOVA: species and surface charge'; 
run; 
 
 
proc univariate data=rrr normal; 
var resid; 
title2 'Test of residual normality'; 
run; 
 
 
proc means mean std stderr maxdec=2 data=species; 
class species; 
var surf_chrg; 
types species; 
title 'Descriptive Stats'; 
run; 
 
 
 
SAS Programming: Impact of culture age on the zeta potential  

proc mixed data=age; 
class hour measure; 
model surf_chrg=hour|measure/ outp=rrr ddfm=kr; 
repeated measure; 
lsmeans hour/pdiff; 
title 'Repeated Measures ANOVA: culture age and surface 
charge'; 
run; 
 
 
proc univariate data=rrr normal; 
var resid; 
title2 'Test of residual normality'; 
run; 
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proc means mean std stderr maxdec=2 data=age; 
class hour measure; 
var surf_chrg; 
types hour measure; 
title 'Descriptive Stats'; 
run; 
 
 
 
SAS Programming: Impact of adjusted pH on the zeta potential 

proc mixed data=adjusted_ph; 
class ph measure; 
model surf_chrg=ph |measure/ outp=rrr ddfm=kr; 
repeated measure; 
lsmeans ph/pdiff; 
title 'Repeated Measures ANOVA: adjusted ph  and surface 
charge'; 
run; 
 
 
proc univariate data=rrr normal; 
var resid; 
title2 'Test of residual normality'; 
run; 
 
 
proc means mean std stderr maxdec=2 data=adjusted_ph; 
class ph; 
var surf_chrg; 
types ph; 
title 'Descriptive Stats'; 
run; 
 
 
 
SAS Programming: Impact of adapted pH on the zeta potential  

proc mixed data=adapted_ph; 
class tperiod ph measure rep; 
model surf_chrg=tperiod|ph|measure/ outp=rrr; 
random rep(ph tperiod measure); 
lsmeans tperiod*ph/pdiff; 
title 'Repeated Measures ANOVA: adapted ph and surface 
charge'; 
run; 
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proc univariate data=rrr normal; 
var resid; 
title2 'Test of residual normality'; 
run; 
 
 
proc means mean std stderr maxdec=2 data=adapted_ph; 
class tperiod ph; 
var surf_chrg; 
types tperiod ph tperiod*ph; 
title 'Descriptive Stats'; 
run; 
 
 
 

SAS Programming: Impact of chitosan on cell viability  

proc mixed data=use; 
where rep=2; 
class species_num concent;* rep; 
model platecntlog_=species_num|concent/outp=rrr; 
*repeated time; 
lsmeans species_num*concent/pdiff; 
title 'Repeated Measures ANOVA: platecntlog'; 
run; 
 
 
proc univariate data=rrr normal; 
var resid; 
run; 
 
 
proc means data=use mean std stderr maxdec=2; 
class species concent; 
var platecntlog_; 
types species concent species*concent; 
run; 
 
 
proc means data=use mean std stderr maxdec=2; 
class species concent time; 
var abs; 
types species*concent*time; 
run; 
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