
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

8-2015 

Conformational Dynamics of Cytochrome P450cam Upon Ligand Conformational Dynamics of Cytochrome P450cam Upon Ligand 

Binding Binding 

Ana Virginia Bernal Gomez 
University of Tennessee - Knoxville, abernalg@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Biochemistry Commons 

Recommended Citation Recommended Citation 
Bernal Gomez, Ana Virginia, "Conformational Dynamics of Cytochrome P450cam Upon Ligand Binding. " 
Master's Thesis, University of Tennessee, 2015. 
https://trace.tennessee.edu/utk_gradthes/3440 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Ana Virginia Bernal Gomez entitled "Conformational 

Dynamics of Cytochrome P450cam Upon Ligand Binding." I have examined the final electronic 

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment 

of the requirements for the degree of Master of Science, with a major in Biochemistry and 

Cellular and Molecular Biology. 

Nitin Jain, Major Professor 

We have read this thesis and recommend its acceptance: 

Engin Serpersu, Jerome Baudry 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Conformational Dynamics of Cytochrome 
P450cam Upon Ligand Binding  

 
 
 
 
 
 
 
 
 

A Thesis Presented for the 
Master of Science 

Degree 
The University of Tennessee, Knoxville 

 
 
 
 
 
 
 
 
 
 
 
 

Ana Virginia Bernal Gomez 
August 2015 

 



 

 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2015 by Ana Virginia Bernal Gomez 
All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 iii 

ACKNOWLEDGEMENTS 
 

For his guidance, I acknowledge my advisor, Dr. Nitin Jain. For his initial 

instruction, I acknowledge Nick Lopes. For the use of their neutron facilities, I 

acknowledge Oak Ridge National Labs Spallation Neutron Source and the 

National Institutes of Standards and Technology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 iv 

ABSTRACT 
 
 
Cytochrome P450s are a superfamily of metalloenzymes that are responsible for 

the monooxygenation of their hydrophobic substrates. P450’s retain the same 

general structural scaffold, however are able to bind promiscuously to substrates 

with distinct physico-chemical properties. It is believed that they possess 

considerable flexibility in the substrate binding regions as well as their active site 

to accomplish the diverse binding and catalytic chemistry with high regio- and 

stereo-specificity. In order to investigate the conformational dynamics inherent in 

these enzymes, especially in context of binding different ligands, we carried out 

amide proton exchange studies via NMR spectroscopy on a model P450 system 

of cytochrome P450cam (CYP101). These studies were performed in both 

camphor-bound and substrate-free forms of CYP101 and provide information on 

the motional properties of residues on slow timescales. Comparison of the 

exchange rates obtained from these studies for the two forms show that overall 

the substrate-free form is more dynamic than the camphor-bound form on the 

millisecond-second timescale due to its faster exchange rates, with regions being 

part of the substrate access site and active site in particular showing the largest 

differences in exchange rates. This study is the first of its kind looking at the 

residue-level changes in conformational dynamics upon ligand binding in a P450 

and identifies specific regions where slow dynamic changes occur. Results from 

these studies help provide mechanistic insights into the process of differential 

ligand recognition by P450s. 

 

 

 

 

 

 

 



 

 v 

TABLE OF CONTENTS 

CHAPTER I: DYNAMIC NATURE of ENZYMES ................................................... 1 
1.1 Enzyme Promiscuity Strategies ................................................................... 1 
1.2 Conformational Plasticity of Cytochrome P450’s ......................................... 3 

CHAPTER II: INVESTIGATION OF DYNAMICS OF A MODEL P450 ENZYME, 
CYTOCHROME 450CAM (CYP101) ................................................................... 10 

2.1 Cytochrome P450cam as a Model System ................................................ 10 
2.2 Methods for Studying Protein Dynamics .................................................... 16 
2.3 Conformational Dynamics of CYP101 ........................................................ 20 
2.4 Preliminary NMR studies on CYP101 in presence of different ligands ...... 22 

CHAPTER III: PREPARATION AND CHARACTERIZATION OF CYP101 IN 
PRESENCE OF VARIOUS LIGANDS ................................................................. 28 
CHAPTER IV: HYDROGEN-DEUTERIUM EXCHANGE NMR STUDIES ON 
CYP101 ............................................................................................................... 34 

4.1 Collection of amide exchange data for CYP101 using NMR spectroscopy34 
4.2 Comparison of amide exchange rates between substrate-free and 
camphor-bound forms of CYP101 .................................................................... 37 
4.3 Additional assignments from 15N selective labeling of CYP101 ................ 45 
4.4 Differences in exchange rates between substrate-free and camphor-bound 
CYP101 ............................................................................................................ 49 

CHAPTER V: CONCLUSIONS AND FUTURE DIRECTIONS ............................ 56 
REFERENCES .................................................................................................... 61 
VITA ..................................................................................................................... 65 

 



 

 vi 

LIST OF TABLES 
 

Table 1: H/D exchange rates measured by NMR for camphor-bound and 
substrate-free CYP101. ................................................................................ 40 

 
 
 



 

 vii 

LIST OF FIGURES 
 

Figure 1: Catalytic Cycle of Cytochrome P450. ..................................................... 4 
Figure 2: Structural Fold Similarities of cytochrome P450s. .................................. 6 
Figure 3: Substrate Recognitions Sites of CYP101.. ............................................. 8 
Figure 4: X-ray crystal structure of camphor Bound CYP101. ............................. 11 
Figure 5: X-ray crystal structure of substrate-free CYP101 ................................. 14 
Figure 7: Active site structure of Nicotine-Bound CYP101 .................................. 15 
Figure 8: Timescales of different protein motions. ............................................... 18 
Figure 9: Differential dynamics of CYP101 upon binding to different ligands. ..... 23 
Figure 10: UV Vis absorbance spectrum of purified camphor-bound CYP101. ... 30 
Figure 11: UV-Vis characterization of CYP101 in presence of different ligands. . 33 
Figure 12: Mechanism of Hydrogen/Deuterium exchange (HDX).. ..................... 35 
Figure 13: Comparison of HDX NMR data for camphor-bound and substrate-free 

CYP101. ....................................................................................................... 44 
Figure 14: NMR spectra of CYP101 selectively labeled with 15N Alanine and 

Glycine. ......................................................................................................... 47 
Figure 15: NMR spectra of CYP101 selectively labeled with 15N Phenylalanine 

and Leucine. ................................................................................................. 48 
Figure 16: Logarithmic plots of peak intensities vs time for two example residues 

in camphor-bound CYP101. ......................................................................... 38 
Figure 17: Logarithmic Plots of peak intensities vs. time for two example residues 

in substrate-free cyp101. .............................................................................. 39 
Figure 18: Exchange rates for various residues in camphor-bound CYP101 

mapped onto the structure of CYP101.. ....................................................... 51 
Figure 19: Exchange rates for various residues in substrate-free CYP101 

mapped onto the structure of CYP101. ........................................................ 52 
Figure 20:  Comparison of exchange rates for selected regions in camphor-

bound and substrate-free CYP101.. ............................................................. 57 
 

 
 



 

 1 

CHAPTER I 
DYNAMIC NATURE of ENZYMES 

 

1.1 Enzyme Promiscuity Strategies 
 

Enzymes are complex proteins that undertake specific catalytic tasks, allowing 

substrates to be catalyzed into product. Enzymes can be highly specific, catalyzing one 

or two substrates, or they can catalyze many substrates. The question of how this is 

possible has always been prevalent, and there are a few proposed hypotheses. One 

details how the overall structure and function of members of protein super-families 

catalyze completely different reactions. A prominent example of this is the α/β hydrolase 

family (1). While maintaining a catalytic triad, the different enzymes of this family can 

catalyze the breakage of carbon-carbon bonds, the hydrolysis of carbon-halogen bonds 

and ester bonds. In their work, the researchers note that there is less than 10% 

sequence homology between the members of the super-families, but their overall 

structure remains the essentially the same.  This indicates that an enzyme that can 

perform a different function (or multiple functions) can more quickly diverge from it’s 

ancestors and become more favored evolutionarily (1).  There are several examples of 

such catalytic promiscuity, where one isoform of an enzyme can perform different 

chemical reactions on different substrates, such as carbonic anhydrase III, which has 

been known to perform hydration of CO2 and hydrolysis of carbon esters and 

phosphoesters (1). However, there are also enzymes that can perform one chemical 

reaction on various different types of substrates. How these varying catalytic functions 

are accomplished is an intriguing question. 

 

A hypothesis that is rapidly emerging and being widely accepted as to how these 

enzymes can be promiscuous is that these enzymes are believed to have high 

conformational plasticity.  This is similar to the plasticity exhibited by intrinsically 

disordered proteins (IDPs) (2). The hypothesis on the promiscuity of IDPs is that their 

flexibility can change when bound to different binding partners, but is not necessarily a 

reflection of the ligand binding (3). A likely mechanism by which this promiscuity is 
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accomplished is that of conformational selection, or equilibrium dynamics. The 

conformational selection model is widely believed to operate in promiscuous substrate 

binding by enzymes, which typically are highly mobile entities. In this model, the 

enzyme does not have one structure, which fits exactly around the substrate, as per the 

lock and key model; neither does it have only one conformation, where it may slightly 

change it’s shape to accommodate a substrate, as described by the induced fit model. 

Conformational selection occurs when the enzyme itself samples multiple conformations 

at once in solution, and the substrate favorably binds to one of those. The equilibrium of 

the conformations shifts, and the most favorable conformations are the ones that 

catalyze with the greatest efficiency.  

 

Unlike IDPs, enzymes do not necessarily have to exhibit flexibility over the 

entirety of the protein. The equilibrium dynamics can be localized only to the binding or 

active sites. Parigi and colleagues observe that mutations of the binding site of the IDP, 

α-synuclein, do not affect the relaxation rates of the binding site, or any other parts of 

the protein, which is distinct from the equilibrium dynamics mechanism (3). This 

indicates that any localized perturbations are diffused over the entire protein and may 

not result in selection of certain conformations with distinct dynamic properties. It should 

be noted however that their relaxation measurements were done in the pico-

nanosecond timescale, so it is possible that this protein is differentially dynamic on other 

timescales. Another difference between IDPs and enzymes that exhibit equilibrium 

dynamics, is that there is no stable, favored conformation for catalysis (3). This implies 

that these enzymes have natural high plasticity and this is how they accommodate 

multiple substrates, due to the fact that the catalytic efficiency is not greatly affected.  

The flexibility, or dynamics of the protein, allows it to bind multiple ligands. Aharoni et al 

observe that the substrate binding region of α-lytic protease has various loops, which 

increase in flexibility upon mutation. The mutation increases the promiscuous binding 

behavior of the enzyme by 105, while only decreasing the catalytic efficiency by half (4). 

An important component of the conformational selection model is that the enzyme must 

have structural flexibility (4, 5). 
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1.2 Conformational Plasticity of Cytochrome P450’s 
 

A prominent class of enzymes that exhibit great conformational plasticity are the 

ones belonging to the family of cytochrome P450s. Cytochrome P450s are promiscuous 

heme-containing monoxygenases, present in all kingdoms of life (6) that aid in 

biosynthesis and the metabolism of many xenobiotics, including drugs in humans. A 

typical reaction carried out by these enzymes is the monooxygenation of their 

substrates, in order to make them more soluble (Eq 1).  

 

RH+ O! + 2  e! + 2  H!   → ROH+   H!O                         Eq.1 

 

This reaction requires 2 electrons and 2 protons, which are supplied by 

NAD(P)H. The electrons are carried by an electron transfer protein, which varies 

depending on which P450 it is. Another interesting thing about the electrons is that they 

are transferred one at a time. The catalytic cycle (Figure 1) is as follows: The heme iron 

is in its +3 oxidation state when the substrate binds. The first electron is transferred 

following this, converting the iron to +2 oxidation state. Molecular oxygen then binds to 

the iron and the first electron is transferred from Fe+2 to oxygen, creating a radical. At 

this point, the second electron is transferred to the system, creating an iron-oxene. 

Next, two protons come and sequester an oxygen atom, forming H2O which then 

leaves. This allows the oxygen and iron to form a complex. Rearrangement occurs, 

which makes the substrate susceptible to hydroxylation, forming the product, which then 

allows the hydroxylated product to exit the active site. 

 

Monooxygenation reactions such as those carried out by P450s are notoriously 

difficult to carry out without an enzyme due to the high amount of energy required for 

activating the C-H bond for oxygen insertion and would require heating the reactants to 

very high temperatures to facilitate the reaction. Its ability to make such a reaction 

possible under ambient conditions has earned this enzyme the name, “Nature’s 

blowtorch ” (7).  
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Figure 1: Catalytic Cycle of Cytochrome P450. The substrate RH enters and 

proceeds to be hydroxylated to the product ROH by a series of steps, including the 

transfer of two electrons by an electron carrier protein, and addition of oxygen molecule. 

(8). 
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A large percentage of pharmaceutical drugs (>90%) are metabolized by several 

isoforms of the P450 enzyme in humans using the above catalytic cycle. Although these 

enzymes can metabolize all of these drugs with very distinct physico-chemical 

properties, the efficiency of catalysis is not always optimal, leading to byproducts and 

drug toxicity. For example, the well-known non-steroid anti inflammatory drug (NSAID) 

acetaminophen, known by trade name Tylenol, is a substrate of CYP3A4. One of the 

intermediates that it produces, known as NAPQI, is a toxin known for interactions with 

other proteins, hence the high toxicity of this drug. P450’s catalyze a hydroxylation and 

a rearrangement of acetaminophen, which is one more step than the usual 

hydroxylation (9). The reason for this may be that acetaminophen is not an ideal 

substrate for P450, which is why it can have toxic intermediates, and therefore toxic 

side effects. If the precise recognition and binding of various drugs was known, 

pharmaceutical companies could avoid this to a large extent. Members of the P450 

superfamily, whether bacterial or human (Figure 2), retain remarkably similar structural 

architecture or fold, while adapting to varying needs of substrate recognition and the 

regio- and stereo- chemistry of the reactions catalyzed using a dynamic rearrangement 

of their secondary structural features depending on the substrate, cofactor or oxidation 

state. Thus, one of the main focuses recently, apart from elucidation of P450 structural 

factors, is the investigation of how this conformational flexibility of cytochrome P450 

enzymes allows for modulating of protein-substrate interactions to accommodate 

substrates of differing physico-chemical properties as well as product specificity. For 

this reason, studying the dynamics of P450s will help in the fundamental understanding 

of its substrate promiscuity. 

 
The extent of flexibility of these enzymes became apparent with the discovery by 

Scott and coworkers that a soluble version of cytochrome 2B4 from rabbit exhibits a 15 

Å separation of the components of the substrate binding regions as part of a large open 

active site, making it capable of large displacements to accommodate substrates of 

varying size (10). Normally, this open conformation to allow substrate access to the  
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Figure 2: Structural Fold Similarities of cytochrome P450s. The structures of a 

bacterial P450, CYP101 (left panel) and a human P450 isoform, CYP2C9 (right panel) 

are shown. Although some differences exist, the general structural fold is maintained, 

despite a sequence similarity of only 10-15% (11). 
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active site is marked by a cleft of 10 Å or less in any P450 structure solved previously 

(10, 11). The substrate access channels, present in membrane bound P450’s, also 

revealed openings of only 2-3 Å, which does not provide enough space to allow the 

substrate to pass through the channel (11-13). Yet, somehow they do. This allowed for 

the notion to develop that these enzymes have considerable flexibility, which could be 

exploited to bind diverse substrates, providing impetus for further dynamic studies of 

P450s by both computational and experimental methods. 

 

Crystal structures of several P450s, both bacterial and from other higher 

organisms, reveal considerable variability in regions around the active sites of these 

enzymes. While the active site comprising the heme center is buried inside the protein, 

the substrates access the active site via an access channel comprised of secondary 

structure elements collectively known as the substrate recognition sites or SRS (Figure 

3). The SRS typically include several helices such as the B’, F, G and I helices as well 

as some beta-sheets such as the β 1, 3 and 5 sheets (6, 11, 14). Other P450’s 

generally exhibit the same SRS, although in the human P450s there are additional 

identified flexible regions (11, 15). Also, the length of the flexible regions varies between 

the prokaryotic and eukaryotic P450s, with mammalian P450s having longer F-G and B-

C loops, leading to generally increased flexibility in these regions for the mammalian 

ones and with better adaptability to accommodate substrates of increasing size due to 

larger binding pockets. Essentially, there have been many studies that have determined 

that multiple loops and their adjoining helices are a part of the SRS machinery that 

allows P450s to be so dynamic (15). However, no matter the components, the 

placement of the SRS is generally in the same location. In spite of this knowledge, it is 

not entirely clear which specific residues within the various P450s undergo the greatest 

rate of dynamic change to effect substrate binding, and how that change is affecting the 

overall dynamics of those SRS.   
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Figure 3: Substrate Recognitions Sites of CYP101. The various substrate recognition 

sites (SRS’s) are structurally highlighted in cyan, and are highly dynamic regions of the 

protein, which facilitate binding of a multitude of ligands to CYP101. SRS’s are 

numbered, with each numbered SRS containing the structural element as well as 

residue numbers within that element.   
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Computational studies by Wade and coworkers have attempted to identify pathways by 

which substrates may enter into and products may exit from the active site using 

molecular dynamics simulations on several P450s (13). They found existence of many 

access channels with some common ones among all P450s that involved several 

flexible elements of the SRS such as the F-G, B-C helices and loops. These studies 

again indicate the dynamic nature of the access/egress paths and provide functional 

rationalization for the structural variability of these regions in the crystal structures 

solved for the different P450s so far. The dynamic behavior of these regions also makes 

it difficult to use computational modeling and dock compounds into the SRS or active 

site of a P450 during the process of computational drug design.   

 

The flexible nature of these enzymes have to be taken into account during the 

docking process and without sufficient knowledge of the conformational selection a 

P450 can undergo, it is difficult to simulate the docking process and know which 

conformation a compound is most likely to bind to, because it is unknown. The 

mechanism by which these conformations are selected is unknown, and how they 

switch from one to the other is also unknown. Therefore, experimental approaches to 

augment the dynamic information during the docking process can help with more 

efficient discovery of drug-like molecules and prevent unwanted levels of toxicity due to 

incomplete catalysis or weak binding when applied in practice. Experimental 

approaches incorporating NMR, EPR, IR and mass spectrometry are increasingly being 

used (15-17) to characterize the dynamic properties of P450 enzymes, however 

systematic studies involving several ligands and how the dynamic properties of these 

enzymes change in response to different ligands have not been carried out yet, which 

are essential to understand the structural-dynamic relationships in these enzymes. 

Discovering how the dynamics of various P450 regions are key in ligand recognition and 

the specific mechanism by which they accomplish differential ligand binding will be a 

key piece of knowledge in further understanding how exactly these proteins work.  
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CHAPTER II  
INVESTIGATION OF DYNAMICS OF A MODEL P450 ENZYME, 

CYTOCHROME 450CAM (CYP101) 
 

2.1 Cytochrome P450cam as a Model System 
 

Given the conformational plasticity of cytochrome P450s and variability in the 

SRS, assessing the dynamic and mechanistic factors that give rise to conformational 

selection within the individual P450s as a function of ligand (substrate or inhibitor) 

binding is an important goal among the researchers in the P450 area. A dynamic 

comparison between distinct ligand bound states could provide further evidence that 

conformational selection may be a ubiquitous mechanism within the P450 superfamily. 

The first cytochrome P450 to be structurally and mechanistically characterized in detail 

was cytochrome P450cam (CYP101) from the bacterium, Pseudomonas putida (18). 

CYP101 is a hydroxylase for its natural substrate camphor, which the bacterium uses as 

carbon and energy source. It utilizes two electrons to catalyze its reaction that are 

transferred to it by its redox partner, putidaredoxin (Pdx), a [2Fe-2S] ferredoxin from the 

same organism. Since its structural characterization by X-ray crystallography, it has 

served as model system for further mechanistic investigation, such as elucidation of 

catalytic mechanism of P450s, ligand entry and binding to active site as well as redox 

partner binding and electron transfer. CYP101 is thus a well-studied cytochrome and 

there is much information available on it. It is soluble and the methods of growth and 

expression have been well optimized. It is also becoming increasingly evident that it is a 

fairly promiscuous enzyme with ability to bind to many ligands (vide infra) and exhibiting 

conformational flexibility rivaling other P450 enzymes, due to large structural differences 

(~ 10 Å) between its camphor-bound (Figure 4) and its wide open substrate-free 

conformation (Figure 5) (19). Therefore, it forms an ideal system to initiate dynamic 

studies since the knowledge gained by studying this model system will provide insights 

into how other P450s are also likely to utilize their flexibility in effecting ligand binding 

due to their structural similarities.   
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Figure 4: X-ray crystal structure of camphor Bound CYP101. SRS is highlighted in 

gold. As shown, the various SRS elements are enclosed over the active site, allowing 

the substrate to remain within the active site. PDB ID: 3L63 (19) 

 



 

 12 

 
Figure 5: X-ray crystal structure of substrate-free CYP101. The various SRS 

elements (shown in gold) have moved away from the active site, taking on a more open 

conformation. PDB ID: 3L62 (19) 
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CYP101 is roughly triangular in shape with the heme active site embedded deep 

inside the protein across from the I helix (Figure 4). The substrate camphor accesses 

the active site via a water-filled access channel lined by the various SRS elements such 

as the B’, F and G helices, β3 and β5 sheets as well as the B-C and F-G loops (Figure 

3). Upon entry, camphor is anchored in the active site by hydrogen bonding to side-

chain of Tyr 96 and hydrophobic interactions with the surrounding aromatic and aliphatic 

residues in the active site pocket (Figure 6). The occupancy of camphor in the active 

site displaces the water coordinating the iron at the 6th coordination site, converting the 

substrate-free form of CYP101 to the substrate-bound form. This type of conversion 

upon substrate binding is common to all P450s with their respective substrates. 

Inhibitors of CYP101 enter and bind via similar mechanism, although they may be 

directly coordinated to the heme at the 6th coordination site unlike camphor, which sits in 

close proximity to this site. The 6th site in the camphor-bound form is then coordinated 

with oxygen, necessary for the hydroxylation reaction, which distinguishes the 

catalytically competent substrate binding form from the inhibitor binding form (Figure 7). 

 

While it is generally accepted that the SRS facilitate binding of various ligands via 

a dynamic mechanism, it is not clear how dynamically different the various SRS 

elements are in the presence of different ligands. It is unknown which specific residues 

undergo the greatest rate of dynamic change, and how their changes affect the overall 

dynamics of the various SRS elements. Also, can we discover in which timescale these 

residues are dynamic and what mechanism controls their motions to allow binding of 

multiple ligands? Detailed experimental investigations on these questions have not 

been carried out. If the protein dynamics of CYP101 can be investigated in absence and 

presence of various ligands, then it would be interesting to know if the conformational 

selection model is used in CYP101 and generally as a mechanism for all of P450 

binding and catalytic events. 
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Figure 6: Active Site structure of Camphor-Bound CYP101. The coordination of the 

5th heme site is shown with the thiolate ligand formed by cysteine 357 (behind the heme 

plane) which causes a slight puckering of the heme. The substrate camphor occupies 

the region near the 6th coordination site. Tyrosine 96 forms a hydrogen bond with 

camphor and positions it with the 5th carbon available for hydroxylation. PDB ID: 2CPP 

(18). 
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Figure 7: Active site structure of Nicotine-Bound CYP101. The coordination of 

thiolate ligand, Cys357 to the 5th coordination site is shown. A coordination bond is 

formed between nicotine and the heme iron at the 6th coordination site, removing the 

puckering of the heme plane. Tyr96 side-chain also hydrogen bonds to another 

nitrogen, further holding the nicotine in place. PDB ID: 1P2Y (20) 
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2.2 Methods for Studying Protein Dynamics 
  

Proteins exist as an ensemble of conformations that are perpetually switching, 

rather than a static entity. All structures, whether determined by crystallography, NMR 

or neuron scattering, represent an average of all the conformations a protein can adopt. 

Proteins use dynamics to facilitate their function. Here, dynamics is defined in the words 

of Henzler-Wildman and Kern as “any time dependent change in atomic 

coordinates”(21). There are equilibrium and non-equilibrium dynamic effects, but those 

at equilibrium are the most relevant to protein function as a result of dynamics.  

 

Dynamics is defined as a time dependent reversible process, and different types 

of motions occur at different timescales. Very fast motions include bond vibration, which 

occurs at the femtosecond timescale. Bond rotations and side chain rotamerization 

occur 10-100 fold slower, at the pico to nanosecond timescale. Loop motions span the 

nano to microsecond timescales. The millisecond and longer timescales include all 

other large domain motions, including helical shifts and overall protein breathing (Figure 

8). All of these timescales can be studied using different techniques, and there are 

optimal techniques for each timescale (21). Molecular dynamics simulations are 

appropriate for the faster timescales, due to the optimization of parameters and 

providing accurate atomic level description of experimental data. Slower timescale data 

produced by MD is less accurate when compared to experimental methods. MD 

simulations have been used with experimental techniques such as neutron scattering to 

allow visualization of protein dynamic motions on a multitude of timescales, from 

femtoseconds to microseconds, by selection of trajectories that best fit experimental 

neutron scattering measurements on these different timescales (22). Although this 

requires considerable amounts of protein samples to obtain good quality neutron 

scattering data, in favorable cases neutron scattering methods can be used to contrast 

amplitude of dynamic motions between various forms of the protein, such as complexed 

or non-complexed forms and study proteins without the influence of solvent (23).   
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Forster resonance energy transfer (FRET) is another popular technique used to 

study protein dynamics. It utilizes two energy transferring fluorophores of differing 

wavelengths of light. If the two tags come in contact with one another, the emitted 

photon is of a certain energy, the spectrum of which can be interpreted both in structural 

and dynamic terms (24). FRET is utilized to determine nano to microsecond dynamics, 

however does not give high-resolution atomic-level dynamic information (24). Also, 

since FRET requires the addition of the fluorophore tags on the protein, the protein may 

not be folded appropriately, depending on the placement and size of the tags. The 

dynamics may also be affected by the placement of the tags.  

 

Another technique to study protein dynamics is X-ray crystallography, which has 

the potential to provide information on distinctive dynamic motions at the nanosecond 

timescale by interpretation of electron density maps as shown in a recent study by 

Fenwick and colleagues on the enzyme dihydrofolate reductase (25). X-ray 

crystallography however requires the formation of crystals, which may not necessarily 

reflect the natural environment of the protein. In order to form the crystals, proteins must 

pack in a certain way, which may trap the protein in a particular conformation or freeze 

out a subset of motions observed in solution. Screening techniques for crystal formation 

also requires a large amount of protein. In spite of these inherent limitations, newer 

methods in X-ray crystallography such as Laue diffraction methods or femtosecond 

serial resolution crystallography allow atomic-level resolution of dynamic events by 

taking snapshots of the proteins in crystals as they perform their function (26). However, 

these techniques suffer from technical limitations in terms of the kind of systems they 

can be applied to obtain dynamic information. 

 

NMR spectroscopy is one of the more versatile spectroscopic techniques to 

study protein dynamics, as it is able to probe picosecond to minute timescales. NMR is 

also non destructive to the sample and requires relatively low concentrations and 

volume of protein. There are different NMR methods to probe time-dependent 

fluctuations in structure on different timescales. 
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Figure 8: Timescales of different protein motions. Dynamics is a time dependent 

process, as different motions can be seen on different timescales. 
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Nuclear spin relaxation rates T1 and T2 can be used in a site-specific manner to probe 

motions in the ps-ns timescale across the protein such as bond vibrations, loop motions, 

sidechain rotations and backbone motions (27). Lineshape analysis of exchange-

broadened resonances and more recently CPMG relaxation dispersion methods have 

been used to quantify exchange processes in the us-ms timeframe such as secondary 

structure reorientations, slower loop motions and large-scale domain movements (28, 

29). Dynamic processes on the ms-min timescale can be detected by monitoring NMR 

signal intensities as a function of time that give information about slower motions 

occurring in dynamic events such as protein folding, conformational disorder and overall 

protein breathing motions that may affect binding and catalytic rates. A common way of 

measuring these types of dynamic behavior is to use hydrogen-deuterium exchange 

(HDX), whereby the exchange of hydrogen atoms between protein and the solvent is 

monitored over a period of time. The HDX technique can be used in conjunction with 

either NMR or mass spectrometry, and has been used for many years to observe 

protein folding and dynamics. One of the first measures of protein dynamics was on the 

CD2 domain of immunoglobulin, which determined that the domain has an intermediate 

which forms after global opening, which has highly protected amides, while the native 

state has non protected amides, which is relevant for the function of this domain (30). 

Recently, HDX has been used to determine the dynamics of membrane proteins using 

solid state NMR (30). In the early days of matrix assisted laser desorption/ionization 

time of flight (MALDI-TOF) mass spectrometry  (MS), Mandell and coworkers used the 

catalytic domain of PKA in order to determine how much the instrument could 

distinguish between fragments, and deuterated and hydrogenated samples (31). After 

this time, amide exchange has been a prominent tool in the determination of slow 

protein dynamics by mass spectrometry. 

 

 In HDX NMR, typically the exchange of backbone amide protons with deuterium 

is monitored after being placed in a completely deuterated solvent such as D2O. Since 

deuterium is not detectable in the 1H-15N HSQC experiment, the exchange process can 

be monitored as a drop in signal intensity in the HSQC spectrum due to loss of protons. 
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The protons exchange differentially based on their relative exposure to the solvent 

which depends on the “breathing” motions of the protein, dictated by the equilibrium 

between the open and closed states of the protein. As such, this type of dynamic motion 

can give information on the relative accessibility of different regions in the protein to the 

solvent and is indicative of the nature of conformational dynamics i.e. fast or slow 

between various forms of the protein. The comparative nature of the HDX data gives a 

good starting point to characterize the global dynamic properties of proteins and see 

where more quantitative site-specific dynamic studies on other timescales can be 

focused in the future. 

 

2.3 Conformational Dynamics of CYP101 
 
 The X-ray crystal structures of CYP101 have been solved in both substrate-free 

and various ligand-bound forms (19). Comparison of the structures reveals that 

substrate-free CYP101 samples a distinct open conformation marked by retraction of 

the F and G helices and disordering of the B’ helix (Figure 5), while the camphor-bound 

form exhibits a closed conformation with the same elements highly ordered due to 

ligand association (Figure 4). The open conformation is similar to those seen in the 

structures of CYP101 with tethered substrates (19), suggesting that CYP101 is 

dynamically capable of undergoing substantial structural changes and visit different 

conformations sampled by substrate-bound forms, indicative of a conformational 

selection model operating in ligand binding. Subsequent double electron-electron 

resonance (DEER) experiments also show existence of this open conformation in 

solution which converts to a closed conformation upon binding camphor, similar to that 

observed in the crystal structures (32). Accelerated MD studies on substrate-free 

CYP101 further reveal existence of a cluster of partially open conformation in addition to 

the open conformation observed in the crystal structures, suggesting that CYP101 is 

capable of populating different conformational ensembles (33). 
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Another experimental study to investigate conformational dynamics of CYP101 

was performed by the Ortiz de Montellano group, which looked at how exactly a large 

substrate such as ketoconazole, a potent antifungal, is able to bind its target P450s (34, 

35). Ketoconazole was designed as a target for human CYP3A4, however is able to 

bind to bacterial P450s such as CYP101. In performing the mutation L244A, they found 

interesting implications on the binding of inhibitors, where the mutation was able to 

enhance the conformational plasticity of the active site. Even though the mutation 

involved replacing a larger amino acid with a smaller amino acid in the active site, the 

binding of a small inhibitor imidazole showed much lower affinity than the wild-type 

protein, although the binding of larger inhibitors such as ketoconazole was not affected. 

Due to the mutation, the I helix shifts inwards preventing imidazole from taking an 

orientation to bind favorably to the heme, On the other hand, the mutant active site is 

able to conformationally adjust to accommodate larger substrates such as 

ketoconazole, demonstrating the high conformational plasticity of the active site. 

Whether the same conformation is sampled also in the wild-type protein or in the open 

substrate-free conformation remains to be seen, as the crystal structure of CYP101 with 

ketoconazole has not been solved yet.   

 

The conformational plasticity of the P450 active site can also be seen from NMR 

studies on substrate behavior in the active site using paramagnetically-induced spin 

relaxation of water and substrate in CYP102, which indicated dynamic movement of the 

substrate in the active site (36). Similar reorientation of substrate has been observed for 

camphor and a related substrate, norcamphor, in the active site of CYP101 using NMR 

and fluorescence anisotropy measurements (37). In addition, NMR studies on CYP101 

complexation with Pdx showed that binding of Pdx on the proximal side of heme 

perturbed resonances on the distal side, especially in the substrate binding regions, 

which was hypothesized to occur as a result of Pdx-enforced selection of a subset of 

conformations that prevented loss of substrate before catalysis (38). Furthermore, from 

NMR T1/T2 relaxation experiments on oxidized and reduced forms of CYP101, it has 

been found that the oxidized form of the enzyme is more dynamic than the reduced 
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form and analysis of amide exchange rates as well as backbone dynamics of the protein 

from relaxation data indicated that the dynamic differences while delocalized over the 

entire protein were more pronounced in the SRS regions, providing strong evidence that 

CYP101 may sample different subsets of conformations in the oxidized and reduced 

forms (15). 

 

2.4 Preliminary NMR studies on CYP101 in presence of different ligands 
 

The abundance of data from the various crystal structures in ligand-free and 

ligand-bound forms of CYP101 as well as the numerous spectroscopic studies carried 

out on CYP101 in different forms strongly suggests that CYP101 makes use of its 

inherent flexibility in binding ligands of differing physico-chemical properties. However, it 

is not clear from these studies what specific mechanism is utilized by CYP101 to select 

for the appropriate conformation(s) from the multitude of conformations available to it. A 

systematic study investigating the changes in conformational dynamics in the absence 

and presence of different substrates and inhibitors to delineate specific binding 

mechanisms has not been performed so far. We therefore carried out preliminary NMR 

studies using 15N labeled samples of CYP101 in absence and presence of different 

ligands to obtain insights into the type of structural and dynamic differences apparent 

with these binding events, since NMR spectra are sensitive to both these parameters. 
15N-1H HSQC-TROSY spectra of 15N labeled oxidized CYP101 bound to camphor, 

nicotine and ketoconazole were collected in presence of saturating amounts of ligands. 

The resulting spectra were compared with each other and also the 15N-1H HSQC-

TROSY spectrum of ligand-free CYP101 (Figure 9). Comparison of the various spectra 

produced striking observations. Overall, the chemical shifts between the spectra exhibit 

only small changes, so much so that it is possible to relate the peaks in each form on a 

one on one basis for most part. The chemical shifts in the spectra are also well  

dispersed indicating that the protein is similarly and correctly folded in each form.  
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Figure 9: Differential dynamics of CYP101 upon binding to different ligands. 
Portions of 2D 1H-15N HSQC-TROSY NMR spectra of 15N-labeled CYP101 are 

compared with and without various ligands. Dynamic differences in terms of linewidths 

and peak characteristics are clearly observed amongst all spectra. The relevant 

affinities for all ligands (KD values) to CYP101 are listed next to each spectrum and the 

structure of each ligand shown as well. 
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However, the spectrum of ligand-free CYP101 exhibited relatively more conformational 

heterogenity for the protein across much of the spectrum as evidenced by excessive 

line-broadening and splitting of single peaks into multiple peaks for several resonances 

in the spectrum. More than 80% of the peaks show line-broadening, with almost 40% of 

the peaks showing presence of multiple peaks. This is in contrast to the spectrum 

observed for the camphor-bound and nicotine-bound forms, which exhibited 

progressively less of these characteristics. The spectrum of nicotine-bound form 

contains peaks with the narrowest linewidths (almost half linewidth relative to the 

substrate-free form). This is observed for almost all the resonances in the spectrum. 

Interestingly, the spectrum of ketoconazole-bound form of CYP101 exhibits 

conformational heterogeneity similar to that of the substrate-free form with almost 80% 

of the peaks affected. This provides direct evidence that the various ligand-bound forms 

of CYP101 are experiencing conformational exchange on different timescales. This 

differential dynamics likely arises from the conformational selection of a different subset 

of conformations of each form of CYP101, in response to the ligand it binds. Such direct 

observation of differential dynamics in presence of various ligands has not been 

observed previously for a P450 by any experimental method. 

 

It is interesting to note that the affinity of each ligand is very similar and within an 

order of magnitude of each other (Figure 9). Ketoconazole binds with the highest 

affinity, followed by camphor and then nicotine with the lowest affinity. Based on the 

affinity differences, it would be expected that the protein should lose most of its 

conformational mobility upon binding to a large ligand such as ketoconazole with such 

high affinity, presumably due to a multitude of potential binding contacts with the active 

site residues of CYP101. It is therefore surprising that the spectrum of ketoconazole-

bound form exhibits similar, if not more, conformational heterogeneity compared to the 

substrate-free form. On the other hand, conformational heterogeneity and mobility 

seems to be lost upon weaker binding to the nicotine ligand, as indicated by the much 

narrower resonances in the nicotine-bound CYP101 spectrum. The binding of the 
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natural substrate camphor exhibits dynamic characteristics intermediate between that of 

ketoconazole and nicotine in line with its intermediate binding affinity.  

 

A likely explanation for this surprising observation may come from the 

thermodynamic aspects of ligand binding, specifically a phenomenon known as entropy- 

enthalpy compensation. Entropy-enthalpy compensation in terms of ligand binding is 

defined as a change in enthalpy (ΔH), which is offset by a change in entropy (ΔS), 

resulting in no significant change to the overall free energy of binding (39). It is plausible 

that there is an additional entropic contribution in the binding of ketoconazole due to the 

increased conformational dynamics in the protein that is not present in the binding of 

nicotine. Crystal structure of CYP101 with nicotine in the active site shows that apart 

from direct ligation with the heme, nicotine makes only a few specific interactions with 

residues in the active site such as hydrogen bonding withTyr96 (20). The residue 

environment around nicotine in the active site is fairly ordered as evidenced by low B-

factors for most of the residues in that region. Thus, binding of nicotine is very likely an 

enthalpically driven event. On the other hand, the increased conformational 

heterogeneity for substrate binding region residues upon binding ketoconazole indicates 

that the active site has not adjusted to fit the shape of ketoconazole entirely and 

therefore ketoconazole may retain considerable mobility in the active site, similar to the 

protein residues. This may preclude forming a multitude of contacts of CYP101 with 

ketoconazole, making a solely enthalpy-driven binding unlikely. A recent crystal 

structure of CYP3A4 with ketoconazole in the active site supports this premise, since 

very few contacts are observed between the protein and ketoconazole ligand in the 

active site, allowing much more freedom of movement for the ligand in the active site as 

well as higher B-factors for the surrounding residues (40). It is possible that this 

additional freedom may allow ketoconazole to adopt different orientations in the active 

site of CYP101 or bind to other sites on the surface of the protein, giving rise to the 

observed conformational heterogeneity. However, in CYP3A4, even though the active 

site is much larger than CYP101 and access to multiple orientations around the heme in 

3A4 is more likely, ketoconazole is not observed to take multiple orientations (41). The 
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CYP101 active site is even smaller and may not allow the ketoconazole to adopt 

multiple orientations. We cannot rule out alternate binding modes for ketoconazole, 

however based on observations of single ligand binding in CYP3A4, this seems unlikely.  

 

To account for the high observed affinity, one can propose that the loss in 

enthalpic interactions is compensated by an increase in the entropic contribution from 

the increased dynamics in the protein and ligand. It is possible that the increased 

entropy may also result from the release of disordered solvent molecules upon binding 

of ligands or may result from desolvation effects. However, our observation that the 

dynamic changes are propagated throughout the protein and not restricted only to the 

binding sites indicates that it is largely a protein-centric event as the protein adjusts its 

mobility differentially in response to the ligand binding. Further desolvation studies for 

the various ligands or osmotic stress experiments to monitor the release of solvent 

molecules however are clearly needed to test this hypothesis and rule out solvent-

based contributions (43-47).  

 

Such increased entropic effects upon binding have been observed previously in 

other protein systems. In a study done by Wand et al on calmodulin, it was observed 

that there was a significant change in the conformational entropy of the amino acids of 

the protein that bound to different target peptides (21). This indicates the possibility that 

in order to accommodate different substrates, parts of CYP101 may change their 

conformational dynamics. It is important to know the identity of these regions and the 

timescales of motions that are affected the most. In this project, we therefore seek to 

elucidate specific residues that undergo a change in their dynamics and their rate of 

dynamic motion using hydrogen-deuterium exchange (HDX) detected by NMR 

spectroscopy. We propose that CYP101 utilizes a dynamic change mechanism as a 

means to effect differential binding of ligands as part of an overall strategy involving 

entropy/enthalpy compensation. HDX experiments will allow us to characterize these 

dynamic changes on a global scale and provide insights into the types of slower 

motions that facilitate the changes observed in the NMR spectra of the various ligand-
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bound forms. Furthermore, these experiments will set the stage for investigation of the 

full spectrum of dynamics on all timescales using CPMG exchange and NMR spin 

relaxation methods.  
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CHAPTER III 
PREPARATION AND CHARACTERIZATION OF CYP101 IN PRESENCE 

OF VARIOUS LIGANDS 
 

Cell Growth and Protein Expression: Competent BL-21 (DE3) E.Coli cells were 

transformed with a plasmid that encodes CYP101 with a fused His6 tag. A single colony 

of BL-21 cells was used to inoculate 50 mL of sterile LB medium containing 50 µL of 

both kanamycin and chloramphenicol antibiotics, each at a stock concentration of 50 

mg/mL. After the cells reached a certain optical density (OD600 ~ 0.6), they were 

transferred to sterile centrifuge tubes and centrifuged for 15 minutes at 6000 RPM and 

4°C. The cell pellet was then resuspended in 1 liter of defined M9 media (M9) consisting 

of the following ingredients: 7.0g sodium phosphate dibasic anhydrous, 3.5g of 

potassium phosphate monobasic and 0.5g of sodium chloride/L, 1mL each of 

kanamycin and chloramphenicol antibiotics, 1g of ammonium chloride (N15 ammonium 

chloride can be used here in order to isotopically label the protein. Unless noted, N14 is 

used), 4g of dextrose, 70µL of 0.5 M iron(III) chloride, 100 µL of 1M calcium chloride, 

1mL of trace metals (contents in g/L: 5 Na2EDTA; 0.5 FeCl3; 0.05 ZnCL2; 0.01 CuCl2; 

0.01 CoCl2.6H2O; 0.01 H3BO3; 1.6 MnCl2.6H2O), 1mL of 1M magnesium sulfate and 25 

µL of 2% thiamine.  

 The cells were grown in the defined media until they reached an optical density 

of 1 as measured at 600 nm, and then induced with 1 mL of 1M isopropyl β-D-

thiogalactopyranoside (IPTG) solution for protein expression. Also, 35mg/L of delta-

amino levulinic acid hydrochloride was added as heme precursor at the time of 

induction. Cells were harvested 4-6 hours after induction via centrifugation at 5000rpm, 

weighed and stored at -80°C until further use. 

 

CYP101 Purification: Frozen cells were thawed and resuspended in 50mL of 

buffer A (2mM camphor, 50mM KPO4, 50mM KCl) per 10g of cells. The resuspended 

solution was then cooled and sonicated for three cycles of 20 seconds each with one 

minute pauses between cycles on a Branson sonifier 250. This is done in order to lyse 

the cells and extract the protein from the cells. The cell lysate was centrifuged for 15 
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minutes at 10,000 RPM and 4°C in a SS-34 rotor, and the supernate was removed from 

the cell debris. The supernate was then run through a Co2+ metal affinity (Talon Metal 

Affinity Resin, Clontech Laboratories) column, which binds CYP101 due to the His6 tag 

present on the protein. The bound protein was then washed with 20 times the column 

volume of buffer A and eluted with buffer A containing 125 mM imidazole solution. The 

eluted protein solution was then passed next through an anion exchange Q Sepharose 

fast flow column (GE Healthcare Life Sciences) and eluted with buffer A containing 250 

mM KCl. The protein was then concentrated using a Millipore 10,000 MW cutoff 

centrifugal filter. Finally, the protein underwent another purification step involving size 

exclusion chromatography on a Amersham FPLC system. Confirmation of purity of 

individual fractions from the size exclusion chromatography was carried out using UV- 

Vis spectroscopy using an absorbance ratio of A391nm/A280nm where this absorbance ratio 

value of >1.4 was deemed to have protein with >95% purity. Concentration of the pure 

protein fractions was determined by following formula (Eq.2): 

A391= εbc       Eq. 2 

A391 represents the absorbance value at 391nm, where the heme absorbs in the 

presence of camphor, ε is the extinction coefficient, which is 100 M−1 cm−1 for CYP101, 

b represents the path length of 1cm of the UV vis cuvette and c is the molar 

concentration of the protein. A characteristic UV-Vis scan (wavelength range 250-

450nm) of the purified CYP101 protein bound to camphor is shown in Figure 10. The 

camphor bound CYP101 protein exhibits two major peaks in the UV vis spectrum in the 

selected wavelength range, The peak at about 280 nm arises from the aromatic 

residues present in the protein, while the 391 nm peak represents the absorbance of the 

heme group in the protein affected by the presence of camphor. This peak will shift 

depending on which ligand, if any, is bound in vicinity of the heme group. 

 

Ligand Exchange: Since CYP101 is purified in buffer containing camphor, all 

purified protein samples are in camphor-bound form. In order to prepare CYP101 in a 

form to another ligand (substrate or inhibitor), the camphor-bound protein underwent a  
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Figure 10: UV Vis absorbance spectrum of purified camphor-bound CYP101. The 

camphor-bound form shows a characteristic UV-Vis peak at 391 nm.  
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ligand exchange process. ~1mL of concentrated, purified camphor-bound protein was 

diluted with ~15mL of buffer without camphor and re-concentrated back to ~1mL to 

remove substrate via dialysis.This process was repeated 5 times to ensure maximum 

substrate removal, which is indicated by the color change from camphor bound (brown) 

to substrate-free form (red). Then in the final step, camphor-free buffer A containing 

either 2mM of nicotine solution or 2 mM of ketoconazole solution was added to the 

protein to allow for ligand binding. The protein was then re-concentrated to ~0.2 mM, 

and was used further for UV-Vis characterization and NMR studies. 

 

Preparation of samples for NMR spectroscopy: The final NMR samples used for 

amide exchange experiments consisted of 0.2 mM of 15N CYP101 in 50 mM potassium 

phosphate, 50 mM KCl, pH 7.4 buffer. The camphor-bound NMR samples used for 

amide exchange studies additionally contained 2 mM camphor. Ketoconazole and 

nicotine bound NMR samples similarly contained 2 mM ketoconazole and 2 mM nicotine 

respectively for acquisition of 1H-15N correlation spectra. 

 

UV-Vis characterization of substrate-free and ligand-bound forms of CYP101: 

UV-Vis scans of substrate-free, nicotine-bound and ketoconazole-bound forms of 

CYP101 were obtained in a fashion similar to the camphor-bound form described above 

(Figure 11). Binding of the ligand was monitored by small shifts in wavelength of the 

absorbance peak at 391 nm observed in the camphor-bound form. In the substrate-free 

form, this peak shifts to 417 nm due to removal of camphor. Upon binding of the 

nicotine ligand, the wavelength of this peak shifts to approximately 420 nm, indicating 

the characteristic presence of CYP101 bound to an inhibitor. Upon binding of the 

inhibitor ketoconazole, however, the peak does not change its position relative to the 

substrate-free form but just gets broader. This is similar to what has been characterized 

previously in UV-Vis studies with these inhibitors (42). The substrate-free and various 

ligand-bound forms of 15N labeled CYP101 were then prepared in a similar manner and 

used further for NMR studies. 
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15N selective labeling of CYP101 by amino acid type: In order to facilitate further 

sequence-specific assignments for CYP101, protein samples selectively labeled with 
15N at backbone amides for the amino acid types Ala, Gly, Glu, Asp, Leu and Phe were 

prepared in the following manner – Cell growths and CYP101 protein expression were 

carried out exactly as described above except that each15N labeled amino acid was 

added along with 19 unlabeled amino acids in the following amounts (g/L) one hour 

prior to the time of induction: 1.0 S, 0.5 E, 0.4 D, 0.25 A, 0.25 G, 0.25 Q, 0.25 V, 0.25 L, 

0.25 M, 0.25 T, 0.2 I, 0.2 N, 0.15 F, 0.15 Y, 0.15 K, 0.15 H, 0.15 R 0.125 C, 0.1 W, 0.0 

P.   The unlabeled equivalent was excluded for each individual labeled growth. The 

induction procedure was the same as described above. CYP101 expressing cells were 

harvested and the selectively labeled protein purified similar to the unlabeled or15N 

uniformly labeled protein. All samples were prepared in the camphor-bound form. Each 

purified selectively labeled protein sample was used further for NMR analysis. 
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Figure 11: UV-Vis characterization of CYP101 in presence of different ligands. 
Characteristic UV-Vis peaks in the spectra for substrate-free CYP101 (red) and bound 

to various ligands [camphor-bound (blue), nicotine-bound (green) and ketoconazole-

bound (purple) are shown. 
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CHAPTER IV 
HYDROGEN-DEUTERIUM EXCHANGE NMR STUDIES ON CYP101 

 

4.1 Collection of amide exchange data for CYP101 using NMR spectroscopy 
 

Multiple techniques should be used in order to gain the most complete dynamic 

picture of an enzymatic system, since different processes occur on different timescales.  

The distinct motions at different timescales explain how the dynamics of the protein can 

influence differential binding. Essentially, all dynamic motions are responsible for protein 

dynamics. The fast bond vibrations build in to the slower motions, like a domino effect. 

These slower motions that facilitate differential substrate binding are the focus of this 

study. Hydrogen-deuterium exchange, amide exchange or HDX is a technique used to 

observe slower timescale dynamic motions, from millisecond-second, which provides an 

excellent way to observe larger domain motions and structural changes. The technique 

takes a hydrogenated protein devoid of all water, and replaces the exchangeable 

protons with deuterons by placing it in deuterated water (D2O). The exchange of protons 

with the deuterons occurs in a time dependent manner, according to the accessibility of 

the exchangeable protons. The surface ones will exchange first, while those more 

buried will take a certain amount of time (Figure 12). 

 

This exchange process can be monitored by 2D NMR spectroscopy, and the 

peaks corresponding to each protein residue can be seen to decrease in intensity if they 

are exchanging with the deuterons. There will come a point, when a peak is completely 

exchanged, it will disappear from the spectrum, since deuterium is not a spin half 

nucleus and cannot be detected by traditional NMR methods. Since HDX is a slow 

timescale technique, much information can be gained from this methodology. The rate 

of exchange can be calculated from the peak intensity (Equation 3) which can also give 

the dynamic timescale of the residues being investigated. 
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Figure 12: Mechanism of Hydrogen/Deuterium exchange (HDX). Exchangable 

hydrogens of proteins are exposed to D2O, and over time the deuterons will take the 

place of the protons. This process can be detected through NMR and Mass 

spectrometry. Modified from (43). 
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                                                    ln I = lnIo-Rext                                         Eqn.    3     

                                    

where I is peak intensity, I0 is the initial intensity, Rex is the exchange rate and t is time 

period of the exchange (44). In addition, often the peak environment can be determined 

from this technique. For example, if the hydrogen being exchanged is a part of a 

hydrogen bond, the chemical shifts will be different than those hydrogens not involved in 

any interactions. The data can be analyzed from that perspective, and used to identify 

the presence of hydrogen bonds.  

 

Amide exchange studies were carried out on CYP101 to compare the exchange 

rates between substrate-free and camphor-bound forms of CYP101 and characterize 

the regions experiencing slower timescale motions in CYP101. In order to carry out the 

exchange studies, CYP101 NMR samples were lyophilized overnight. Then, samples 

were hydrated with D2O and immediately placed in a Varian 600 MHz spectrometer 

equipped with cold probe. Data collection started within the first 5 minutes of the D2O 

addition to allow for detection of fast exchanging resonances. 1H-15N 2D correlation 

spectra were collected with a traditional TROSY pulse sequence at 35° C. Each 

experiment consisted of 8 scans acquired with 1024 complex points in the direct 

dimension and 64 increments in the indirect dimension. The total acquisition time for 

each spectrum was approximately 28 minutes. A series of such spectra for substrate-

free and camphor-bound forms of CYP101 were collected over a period of 39 hrs. The 

spectral acquisition was stopped at this time to prevent spurious data collection since 

CYP101 tends to become unstable and denature at 350 C after approximately 40 hours 

based on prior experience with other NMR experiments on CYP101. The resulting 

spectral data was processed using NMRPipe and SPARKY software (45, 46) to extract 

peak intensities from each dataset. Only simple exponential window functions were 

used during data processing with no baseline corrections. Peak intensities were 

measured only for peaks for which assignments were available and fitted to Equation 3 

as a function of time to obtain amide exchange rates (Rex) for corresponding peaks 
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(Figures 13 and 14). Available amide exchange rates for both substrate-free and 

camphor-bound forms are listed in Table 1.   

 

4.2 Comparison of amide exchange rates between substrate-free and camphor-
bound forms of CYP101 

 

Analysis of amide exchange data for substrate-free and camphor-bound forms 

reveals that only about 40% of resonances remain in the spectrum for each form after 

collection of the first spectrum corresponding to about 33 minutes of exposure to D2O 

(Figure 15). The camphor-bound form retains a few more peaks in the spectrum 

compared to the substrate-free form, but not by much. This indicates that the surface-

exposed residues exchange fast with the solvent in a similar fashion for both forms, 

which is expected from the overall similar structures for both forms of the protein. The 

differences in the exchange preference for a few residues more in the substrate-free 

form may reflect the exposure of more residues to the solvent due to the relatively open 

conformation sampled by the substrate-free form compared to the closed camphor-

bound form.  It is also observed that the camphor bound form has nicely defined peaks 

while the substrate free looks a little bit more disordered due to presence of additional 

line broadening relative to the camphor-bound form (Figure 13). While the faster 

exchange processes are similar for both forms, considerable differences are observed 

for the slower exchanging peaks. Over the various time points of data collection 

following the first time point, the peak intensities for both forms continue to decrease 

steadily in an exponential manner until after approximately 16 hrs, only about 20% of 

the peaks initially observed for camphor-bound form remain protected from the solvent, 

while less than 10% remain for the substrate-free form. These remaining peaks do not 

lose much intensity for the remainder of exchange time in the experiment. On this basis, 

we can classify the exchange process into 3 categories – 1) fast exchange (less than 33 

min), 2) intermediate exchange (33 min to 16 hrs) and 3) slow exchange (16 hrs to 39 

hrs). The differences in exchange rates for the peaks in these 3 categories will be 

discussed after the next section. 
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Figure 13: Logarithmic plots of peak intensities vs time for two example residues 
in camphor-bound CYP101.  
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Figure 14: Logarithmic Plots of peak intensities vs. time for two example residues 
in substrate-free cyp101. 
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Table 1: H/D exchange rates measured by NMR for camphor-bound and 
substrate-free CYP101.  Bold secondary structures are indicative of substrate binding 
regions. A (-) indicates no rates were measured for that residue. Error values were 
calculated from the fitting error to the logarithmic plots. 
 

Camphor Bound Substrate Free 

Residue K(s-1) Error K(s-1) Error 
Secondary 
Structure 

12-NH Fast   fast   
18-NH 5.5 x 10-5 3.3 x 10-6 6.9 x 10-5 1.3 x 10-6 turn 1 
24-NH 2.3 x 10-7 0.8 x 10-7 4.3 x 10-6 2.8 x 10-7   
36-NH --   5.5 x 10-6  1.2 x 10-6 turn 3 
37-NH Fast   fast   turn 3 
40-NH 8.7 x 10-6 2.8 x 10-6 fast     
42-NH 1.1 x 10-6 4.6 x 10-7 --   A Helix 
47-NH 2.8 x 10-6 1.1 x 10-6 --   turn 4 
50-NH 3.4 x 10-5 1.4 x 10-6 5.8 x 10-5 3.4 x 10-6 turn 4 
52-NH 4.6 x 10-6 1.7 x 10-6 --     
54-NH 4.6 x 10-6 1.7 x 10-6 6.2 x 10-6 2.4 x 10-6   
55-NH 3.8 x 10-6 1.2 x 10-6 3.4 x 10-6 1.4 x 10-6 β1 
59-NH 4.1 x 10-6 1.6 x 10-6 2 x 10-7 4.5 x 10-6 turn 5 
60-NH Fast   fast   turn 5 
62-NH 2.8 x 10-7 0.7 x 10-7 --     
63-NH --   7.8 x 10-5 2.5 x 10-6 β1 
64-NH 4.3 x 10-6 2.5 x 10-6 5.9 x 10-6 1.6 x 10-6 β1 
65-NH 6.7 x 10-7 2.5 x 10-7 --   β1 
67-NH 5.3 x 10-7 1.2 x 10-7 6.2 x 10-6 2.5 x 10-6 B Helix 
68-NH Fast   fast   B Helix 
70-NH Fast   fast   B Helix 
80-NH 6.4 x 10-7 1.8 x 10-7 5.1 x 10-5 4.5 x 10-6   
81-NH 4.8 x 10-7 1.3 x 10-7 2.5 x 10-6 6.5 x 10-7   
82-NH 5.6 x 10-6 5.5 x 10-7 fast     
83-NH Fast   fast   B' helix 
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Continuation Table 1 

 
Camphor Bound Substrate Free 

Residue K(s-1) Error K(s-1) Error 

 
Secondary 
Structure 

87-NH Fast   Fast   B' helix 
88-NH Fast   Fast     
90-NH Fast   Fast     
91-NH Fast   Fast   B' helix 
92-NH Fast   Fast   B' helix 
93-NH Fast   Fast   B' helix 
94-NH Fast   Fast   B' helix 
95-NH Fast   Fast   B' helix 
96-NH Fast   Fast   B' helix 
98-NH Fast   Fast   B' helix 
101-NH Fast   Fast   B' helix 
102-NH Fast   Fast   B' helix 
104-NH Fast   Fast   B' helix 
107-NH Fast   Fast   C helix 
119-NH 3.3 x 10-5 1.8 x 10-6 Fast   C helix 
123-NH Fast   7.7 x 10-5 2.2 x 10-6 C helix 
124-NH Fast   Fast   C Helix 
129-NH Fast   2.3 x 10-7 1.4 x 10-7   
145-NH --   --   β1 
146-NH 6.7 x 10-5 4.9 x 10-6 7.3 x 10-5 3.5 x 10-6 β1 
147-NH --   0.9 x 10-7 5.5 x 10-8 β1 
148-NH 3.2 x 10-7 0.6 x 10-7 1.5 x 10-7 0.5 x 10-7 β1 
149-NH Fast   6.2 x 10-7 1.8 x 10-7 β1 
150-NH 6.7 x 10-6 5.6 x 10-7 6.4 x 10-6 1.9 x 10-6 β1 
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Continuation Table 1 

  
Camphor Bound Substrate Free 

Residue K(s-1) Error K(s-1) Error 
Secondary 
Structure 

151-NH Fast   fast   E Helix 
152-NH Fast   5.6 x 10-6 2.4 x 10-6 E Helix 
154-NH Fast   fast   E Helix 
161-NH Fast   1.2 x 10-6 5.6 x 10-7   
164-NH Fast   fast     
168-NH 8.9 x 10-5 6.5 x 10-6 8.1 x 10-5 6.5 x 10-6   
169-NH 4.8 x 10-5 5.5 x 10-6 --     
171-NH Fast   fast   turn 8 
172-NH Fast   fast     
185-NH 6.4 x 10-6 2.4 x 10-6 5.2 x 10-6 2.5 x 10-6 F Helix 
186-NH 3.8 x 10-7 1.2 x 10-7 4.6 x 10-6 2.7 x 10-6   
188-NH Fast   fast   FG Loop 
189-NH Fast   fast   FG Loop 
190-NH Fast   fast   FG Loop 
191-NH --   --   FG Loop 
192-NH --   fast   FG Loop 
193-NH Fast   fast   G Helix 
207-NH 4.6 x 10-6 7.7 x 10-7 --   G Helix 
216-NH Fast   fast   H Helix 
217-NH 1.9 x 10-7 0.4 x 10-7 7.8 x 10-7 2.2 x 10-7 H Helix 
226-NH Fast   fast   H Helix 
230-NH Fast   fast   β2 
243-NH 5.6 x 10-5 6.5 x 10-6 fast   I Helix 
245-NH 6.3 x 10-6 2.4 x 10-6 --   I Helix 
279-NH Fast   fast     
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Continuation Table 1 

Camphor Bound 
 

Substrate Free 

Residue K(s-1) Error K(s-1) Error 
Secondary 
Structure 

297-NH --   --   β3 Sheet 
305-NH 2.2 x 10-7 7.6 x 10-8 5.1 x 10-6 1.4 x 10-6   
306-NH fast   fast   β4 
307-NH 4.5 x 10-7 6.5 x 10-8 3.8 x 10-6 7.6 x 10-7 turn 11 
308-NH 1.5 x 10-7 2.2 x 10-8 6.6 x 10-6 2.4 x 10-6 turn 11 
309-NH fast   9.1 x 10-5 1.5 x 10-6 turn 11 
312-NH 1.8 x 10-7 3.8 x 10-8 7.3 x 10-6 2.3 x 10-6 β4 
325-NH fast   fast     
326-NH 3.8 x 10-6 1.6 x 10-6 fast     
329-NH fast   fast   turn 12 
330-NH fast   fast   turn 12 
334-NH fast   fast   turn 13 
338-NH fast   fast     
339-NH --   8.6 x 10-5 7.6 x 10-6   
340-NH fast   fast     
376-NH fast   fast     
384-NH 2 x 10-5 4.2 x 10-6 9.2 x 10-5 6.5 x 10-6 turn 16 
389-NH fast   fast   β5 
390-NH fast   fast   β5 
391-NH fast   6.8 x 10-6 2.2 x 10-6 β5 
392-NH 3.7 x 10-7 1.1 x 10-7 fast   β5 Sheet 
393-NH fast   fast   β5 Sheet 
394-NH 3.3 x 10-7 0.5 x 10-7 --   β5 Sheet 
398-NH 4.4 x 10-7 1.5 x 10-7 fast   β5 Sheet 
400-NH fast   fast     
410-NH fast   fast     
414-NH fast   fast     
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Figure 15: Comparison of HDX NMR data for camphor-bound and Substrate-free 
CYP101. Decrease in peak intensities of camphor bound and substrate free HDX 

CYP101 in 2D 1H-15N HSQC-TROSY NMR spectra collected at 35°C is shown over a 

period of time marked over each spectrum. The first panel shows a non-HDX TROSY 

NMR spectrum for 15N CYP101 in the same conditions as the HDX spectra and was 

used as reference to identify residues undergoing exchange. 
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4.3 Additional assignments from 15N selective labeling of CYP101  
 

CYP101 has a total of 414 amino acids in its sequence, however assignments 

are available only for 107 residues in the oxidized form of the protein. Considerably 

more number of assignments are available for the reduced form of the protein (~290 

residues). There are several reasons for this. The main reason is that oxidized CYP101 

with its Fe+3 oxidation state of the heme iron is paramagnetic around room temperature, 

while reduced CYP101 with Fe+2 oxidation state of the heme iron is diamagnetic. This 

entails paramagnetic broadening of resonances up to a distance of 8 Å from the heme 

center in the oxidized form, which causes loss of resonances in the oxidized CYP101 

TROSY spectrum and makes assignment of resonances even more difficult due to loss 

of sequential connectivities. 

 

The traditional experiments used for protein backbone assignments are the 

three-dimensional multinuclear experiments such as HNCA, HNCO and HNCACB. 

These experiments rely on proteins that have been isotopically labeled with 15N, 13C and 
2H for detection. HNCO allows direct correlation of the N-H chemical shifts with the 

backbone carbonyl C=O chemical shifts of the previous residue. HNCA experiments not 

only detect the transfer of magnetization from the N-H bond of the residue of interest (i), 

to its own Cα,(i), but also the Cα of the previous residue (i-1). This allows sequential 

connectivity to be built between the residues, and allows walk-through of assignments 

through the protein sequence. However, HNCA and HNCO experiments by themselves 

are insufficient to provide unambiguous sequential assignments. HNCACB is also used 

to resolve ambiguities and obtain a more complete set of assignments, including partial 

side-chain assignments. This experiment correlates the Cα and Cβ chemical shifts of 

residues i and i-1, with the N-H (i) chemical shift.  Subsequently, the chemical shift 

analysis of the residues allows them to be matched up and the connectivities formed 

between various residues. The chemical shifts between oxidized and reduced forms are 

distinct enough to prevent direct transfer of most assignments from reduced to oxidized 

CYP101. In addition, oxidized CYP101 resonances tend to be generally broader than 
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the reduced form and thus magnetization transfer does not occur very efficiently in 3D 

NMR experiments used for assignment. Thus, traditional 3D NMR experiments have 

been less effective in obtaining assignments for more than 107 in oxidized CYP101. 

During the assignment process using 3D NMR experiments such as HNCA and 

HNCACB, there are several small stretches of sequential connectivities observed in 

oxidized CYP101, but definite assignments cannot be made due to ambiguity.  A way to 

overcome some of this ambiguity will be to identify the amino acids forming sequential 

connectivities by amino acid type and hope to find unique pairs in the amino acid 

sequence connecting two of the amino acid types, which will allow us to place them 

sequence-specifically in combination with other sequential connectivities and thus 

assign them. Selective labeling of amino acids within the protein is a simple way to 

accomplish the marking of resonances by amino acid type and therefore selective 

labeling of several amino acid types was undertaken in CYP101. 

     

 NMR samples of CYP101 selectively labeled with 15N at the backbone amides 

were prepared for the following amino acid types – Ala, Gly, Leu, Phe, Asp and Glu 

using methods described in Chapter 3. The specific amino acid types were selected as 

a preliminary set for labeling based on the following criteria - their higher prevalence in 

the amino acid sequence of CYP101, their likely involvement in stretches of sequential 

connectivities in 3D experiments, easy identification due to their somewhat unique 

chemical shifts and their propensity to scramble the 15N label to other amino acids (47). 
1H-15N TROSY spectra for these selectively labeled samples were collected and 

matched up with a uniformly labeled spectrum to identify assigned and unassigned 

peaks in the uniformly labeled spectrum by amino acid type (Figures 16 and 17). The 

unassigned peaks now identified by amino acid type are now being reassessed in the 

3D NMR data in the hopes that additional assignments can be made available for these 

residues in oxidized CYP101 in the short term. 
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Figure 16: NMR spectra of CYP101 selectively labeled with 15N Alanine and 
Glycine. Portions of NMR spectra of selectively labeled (burgundy for alanine, teal for 

glycine) and uniformly labeled (black) CYP101 are shown for comparison. Boxes in red 

highlight the corresponding peaks identified by amino acid type. 
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Figure 17: NMR spectra of CYP101 selectively labeled with 15N Phenylalanine and 
Leucine. Portions of NMR spectra of selectively labeled (magenta for leuine, gold for 

phenylalanine) and uniformly labeled (black) CYP101 are shown for comparison. Boxes 

in red highlight the corresponding peaks identified by amino acid type. 
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The selective labeling of the preliminary set of amino acids was reasonably 

successful. For amino acids such as Phe and Ala, there was very minor scrambling of 

the 15N label to other amino acids and thus the expected number of resonances 

(excluding the ones not observed due to paramagnetic broadening) were observed for 

these amino acids. Minor scrambling was observed for the Gly label to other amino 

acids such as Ser and Cys. On the other hand, major scrambling was noticed in the 

spectra for the Leu and Glu labels. Due to the inter-conversion of these amino acids 

with other amino acids as part of the metabolic pathways, some of the labeled nitrogens 

were incorporated in other amino acids, such as Ile and Val for Leu, while Glu 

scrambled to Gln and other unknown amino acids. The Asp labeled protein did not 

express in sufficient quantity to obtain a good quality NMR spectrum and ascertain its 

scrambling. Although scrambling posed a problem for unambiguous identification of 

amino acid type for several of the resonances in Leu and Glu selectively labeled 

samples as the number of peaks in the spectra did not correspond to the number of 

amino acids in the sequence, the peak intensities of the original label were generally 

higher and helped identify most of the possible peaks for that amino acid type.  

 

The use of this methodology of using the higher intensity peaks for amino acid 

type identification is however not foolproof and the identities of these peaks need to be 

confirmed in subsequent analysis of 3D NMR data. However, the good matching of 

some of the higher intensity peaks with the previously assigned resonances of that 

amino acid type lends credence to this method and these peaks may serve as a good 

starting point for further 3D data analysis.  Additional selective labeling of other amino 

acids will be conducted in future if these labels are unable to resolve ambiguities and 

provide more assignments for oxidized CYP101. 

 

4.4 Differences in exchange rates between substrate-free and camphor-bound 
CYP101 
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Local dynamics in CYP101 were monitored using amide proton exchange rates 

for both substrate-free and camphor-bound forms. Overall, the H/D exchange in the 

substrate-free form was much faster than the camphor-bound form, almost by an order 

of magnitude in the majority of residues that could be analyzed. Significant differences 

are observed at the beginning of the B’ helix, portions of the C helix as well as the I helix 

and the β5 sheet (Figures 18 and 19).  

 

The B’ helix and β5 sheet form part of the SRS, while the I helix is a key region in 

the active site. A large difference in exchange rates was seen for residue 243, which is 

on the N-terminal side of the I helix “kink”, a region that is distorted and is known to 

change its conformation to provide a binding pocket for oxygen molecule in the reduced 

form. Residue 243 is still visible in the first few camphor-bound spectra acquired after 

D2O addition, however is exchanged out completely even in the first acquired substrate-

free spectrum. We have not been able to monitor exchange rates for other residues in 

the I helix as most of this helix is close to the paramagnetic heme center and its 

resonances are likely broadened out in oxidized CYP101 spectra. However, given the 

fact that this particular helix is known to respond to binding of substrates in almost all 

P450 structures by changing its conformation using the I helix “kink” to fill up the active 

site with the side-chains of several residues depending on the size and type of 

substrate, it is not surprising that we see a larger change in dynamics for this region 

between the substrate-free and camphor bound forms. It is likely that in the substrate-

free form, the solvent has better access to portions of the helix, both due to lack of 

substrate and also due to increased dynamics of the substrate-free form. Our results 

indicate that the active site region may be in general more dynamic in the substrate-free 

form. 

 

Another significant region that shows differential exchange rates in CYP101 is 

the loop between the B and B’ helix, where residues 80-85 show considerably faster 

exchange rates in the substrate-free form compared to the camphor-bound form. This 

region is at the beginning of the B’ helix, which is an important component of the SRS  
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Figure 18: Exchange rates for various residues in camphor-bound CYP101 
mapped onto the structure of CYP101. Residues with fast exchange rates (< 33 min) 

are shown in red, and intermediate and slow exchange rates (> 33 min) in yellow. 

Residues for which exchange rates could not be measured are colored blue. 
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Figure 19: Exchange rates for various residues in substrate-free CYP101 mapped 
onto the structure of CYP101. Residues with fast exchange rates (< 33 min) are 

shown in red, and intermediate and slow exchange rates (> 33 min) in yellow. Residues 

for which exchange rates could not be measured are colored blue.  
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and undergoes a large conformational change between the substrate-free and 

camphor-bound forms as evidenced from the crystal structures. The B’ helix is largely 

disordered in the substrate-free form and is likely sampling multiple conformations, 

which upon camphor binding becomes ordered due to formation of H-bond between 

Tyr96 side-chain and camphor. The B’ helix exhibits fast exchange in both camphor-

bound and substrate-free forms, most likely due to its surface location on CYP101, so it 

is not possible to figure out whether there are significant differences in the exchange 

rates for this helix in our experiments. However, the region leading upto the B’ helix 

(residues 80-85) is more protected from the solvent and thus made it possible to 

measure the exchange rates in both forms. The much faster exchange rates in the 

substrate-free form for this region strongly suggests the more dynamic nature of this 

region and by inference also of the B’ helix. 

 

Exchange rates for the β5 sheet, which is also part of the SRS, similarly are 

different in the substrate-free and camphor-bound forms. The β5 sheet region is part of 

the conformational change that leads to the closed conformation from the open 

conformation upon binding of camphor, trapping the substrate inside the active site. 

Residues 392, 394 and 398 are part of the short β-turn that connects the two strands of 

the β5 sheet exchange very slowly in the camphor-bound form and increase their 

exchange rates by almost two orders of magnitude in the substrate-free form. This 

region makes several H-bonding, van der Waals and electrostatic contacts to both the 

C-terminal side of the I helix as well as the N-terminal region in the camphor-bound 

form. Both the N-terminal region of CYP101 and I helix are known to be fairly flexible 

regions. It is therefore possible that movement of the I helix region is coordinated with 

the movement of the β5 sheet to effect binding of camphor. In the substrate-free form, 

since there is no camphor present, the I helix is more dynamic as evidenced by the 

faster exchange rates for residue 243 and this motion disrupts some of its contacts with 

the β5 sheet, leading to the increased dynamics observed for β5 sheet in the substrate-

free form as part of the open conformation. Increased B-factors have been observed for 

most regions in the SRS of substrate-free form (19), including the B’ helix and β5 sheet 
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supporting the observation of increased dynamics in these regions in our experiments 

as well.     

 

Other regions that show increased exchange rates in substrate-free form include 

residues in the C helix region and the β4 turn. The C helix is part of the proximal binding 

site for Pdx and mediates changes from the proximal binding site to the distal binding 

site. It is known from previous NMR studies with the Pdx-CYP101 complex that binding 

of Pdx on the proximal site causes large chemical shift perturbations and dynamic 

changes on the distal site, especially in the SRS regions. It was postulated that Pdx 

serves as an effector by changing the subset of conformations of the substrate access 

channel to prevent loss of substrate to unproductive monooxygenation. The involvement 

of C helix in this mechanism is critical as it likely transmits any dynamic changes to the 

distal site by using the modulation of its own dynamics. Thus it is sensitive to any 

substrate-related dynamic changes and is therefore not surprising that it shows a 

significant dynamic difference between the substrate-free and camphor-bound forms of 

CYP101. The β4 turn region acts like a hinge that connects parts of the proximal site 

region, namely the Cys binding loop and L helix. Thus, dynamic changes in the β4 turn 

residues are likely to mirror other regions in the proximal site.  

 

There are also some local regions that follow a reverse trend of the camphor-

bound form exchanging faster than the substrate-free form. For example, residues in 

the β1 sheet (148-150) and E helix (152 and 161) show much faster exchange rates in 

the camphor-bound form than the substrate form. Increases in exchange rates upon 

binding of camphor are also seen for residues 54 and 59 in the β1 turn region. However, 

the increase in exchange rates are not as high in magnitude compared to the normal 

trend of faster exchange rates in substrate-free form. It is not clear what the purpose of 

these increased exchange rates in the camphor-bound form is, other than they may just 

represent localized increase in fluctuations as a response to picking up the “slack” for 

decrease in dynamics elsewhere in the protein. 
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It is interesting to note that the regions showing the faster exchange rates in the 

substrate-free form versus the camphor-bound forms are similar to the regions showing 

the largest redox-dependent dynamic differences in oxidized versus reduced CYP101 

(44). Parts of the B-B’ helix loop show a decrease in dynamics upon reduction, just as it 

shows a decease in dynamics upon substrate binding. Regions including the β5 sheet 

also show similar trends between both forms. This raises the possibility that there are 

canonical regions in CYP101 that have inbuilt dynamic change capability. This may 

allow these regions to sample multiple conformations and allow selection of different 

subsets of conformation as a function of oxidation state and ligand binding. This notion 

can be tested via design of mutants targeting these regions, which would affect both 

binding and redox-dependent effects that can be monitored via NMR spectroscopy 

experiments sensitive to local dynamic fluctuations.   
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CHAPTER V 
CONCLUSIONS AND FUTURE DIRECTIONS 

 
The dynamics of a protein, particularly an enzyme, are an important determinant 

in its functionality. An enzyme uses its dynamic character, often as a means to facilitate 

promiscuity in binding substrates and control catalysis rates. A likely mechanism by 

which this promiscuity is accomplished is that of conformational selection or equilibrium 

dynamics. Cytochrome P450s are widely believed to employ this mechanism, where 

they use their conformational flexibility to modulate protein-substrate interactions to 

accommodate substrates of differing physic-chemical properties and product specificity. 

An in-depth study of conformational dynamics of P450s is therefore critical to fully 

understand the basis of substrate promiscuity in these enzymes, which will allow better 

design of drugs targeted against them in humans. In this work, the millisecond-second 

dynamic changes that occur upon binding of a substrate to a cytochrome P450 have 

been described. The model system of cytochrome P450cam or CYP101 was chosen for 

this purpose, as preliminary NMR studies showed that it exhibits differential dynamics 

throughout the protein upon binding of distinct ligands.  

 

Hydrogen/deuterium exchange studies using NMR spectroscopy were carried out 

on CYP101 in presence and absence of a substrate to provide a residue-level picture of 

slow dynamic changes taking place in this protein upon binding of a substrate. Although 

previous NMR studies involving H/D exchange have looked at redox-dependent 

changes in CYP101 dynamics, this is the first study that looks at the effect of substrate 

binding on the slow timescale dynamics of this protein. Overall, it is found from this 

study that the substrate-free form of CYP101 exhibits more rapid amide proton 

exchange than the corresponding residues in camphor-bound form of CYP101. Specific 

residues in the substrate recognition sites and active site are found in particular to 

exhibit large differences in exchange rates between the two forms, pointing to the high 

conformational plasticity available to these regions in this protein. The dynamics of 

regions such as the β5 sheet and B’ helix that are part of the substrate recognition sites 

(Figure 20) are sensitive to the presence of a substrate and motional differences on the  
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Figure 20:  Comparison of exchange rates for selected regions in camphor-bound 
and substrate-free CYP101. Regions showing the largest differences between the two 

forms (Panel A: camphor-bound and Panel B: substrate-free) are highlighted by arrows. 
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millisecond timescale of several residues in this region suggest that they may be not 

only part of a gating mechanism allowing access to the active site, but also play an 

important role in the protein adapting to the differing requirements of substrate binding 

specificity. 

 

It would be interesting to follow up on the studies here on the slower timescales 

with ones looking at motions on faster timescales in CYP101. Again, NMR spectroscopy 

is going to be a valuable technique in this regard due to its ability to characterize us-ms 

motions using CPMG relaxation dispersion experiments and on the ps-ns timescale 

using T1/T2 relaxation rate measurements. If similar regions are involved in modulating 

dynamic changes on the faster timescales, that would provide a mechanistic pathway 

for the origin of the slower motions and explain the high conformational plasticity of 

these regions. Such studies on the faster timescales are currently being undertaken for 

CYP101 in complex with various ligands. Our preliminary NMR studies with ligands 

such as nicotine and ketoconazole indicated even more dramatic dynamic differences in 

the proteins than observed in the presence of camphor. An entropy-enthalpy 

compensation mechanism was proposed to account for these dynamic differences as a 

function of ligand binding. This hypothesis certainly needs to be tested further with 

detailed thermodynamic and NMR studies on complexes of CYP101 with these ligands. 

 

Neutron scattering is yet another technique that can be used to gain dynamic 

information on proteins on faster timescales. Neutron beams scattering off from proteins 

can undergo change in momentum and energy of the scattered neutrons relative to the 

incident neutrons leading to elastic or inelastic scattering. Traditionally, this technique 

has been used to study the properties of materials and the behavior of solutes in water 

(48).  Neutron scattering, unlike neutron diffraction, does not gather information at 

atomic level resolution, but on a much larger scale and this information can be utilized 

for larger scale observations, such as global dynamic motions of a protein using 

inelastic or quasielastic measurements. Such measurements are typically carried out on 

hydrogenated proteins that are hydrated powders and can be used to track overall 
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mean-square displacements in the protein as a function of temperature, giving an 

overall picture of the internal dynamics of the protein. One can interpret this global 

picture in terms of individual local-level atomic motions by interpreting the scattering 

parameters in conjunction with molecular dynamics simulations, giving a comprehensive 

picture of the types of motions happening within a protein as it transitions through 

various conformational changes as part of its flexibility. Such methods have been 

applied previously to study global motions in CYP101 (49).  Quasielastic neutron 

scattering was used to compare the global dynamics of substrate-free and camphor-

bound forms of CYP101, where it was determined that substrate-free CYP101 exhibited 

larger amplitude motions than the camphor bound form, although their relaxation times 

were similar. Analysis of relevant MD trajectories identified similar regions exhibiting 

dynamic differences between substrate-free and camphor-bound forms and also on 

much faster timescales. However, the studies could not confirm the presence of any 

correlated motions between these regions. 

 

The information about correlated motions can be garnered via another property 

of neutrons that involves coherent scattering, which occurs when the neutrons within the 

beam are in phase with one another and contribute to the signal, unlike incoherent 

scattering that is used to determine atomic level motions as a result of dephasing of 

neutrons due to their spin. Coherent dynamic neutron scattering, which arises from 

time-correlations in interatomic positions, can be used to derive detailed information on 

large scale collective motions. We have recently performed preliminary coherent 

neutron scattering experiments on CYP101 (50) that reveal the presence of in-phase 

collective dynamic modes running through the entire protein molecule on the ps-ns 

timescale and have found that these collective modes may be involved in the 

conformational gating mechanism in CYP101 to allow substrate access by involving 

similar regions in the substrate recognition sites as identified in this study. Since these 

studies were performed in the camphor-bound form, it will be intriguing to see whether 

the collective modes are also present in the substrate-free form and if so, whether the 

timescales are similar or different to that of the camphor-bound form. Such studies are 
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planned to be undertaken in the future and if successful have the potential to provide 

great insight into the mechanistic basis of the origin of conformational dynamics in 

flexible systems such as P450s. 
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