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Abstract

In this thesis we present the proof of a theorem by Nikolai Nikolski. This theorem
leads to a more general theorem by Nikolski regarding zero free regions of the Rie-
mann ζ-function. This theorem is an improvement on the theorems that Nyman
and Beurling proved in the nineteen fifties. Nikolski’s approach uses, in addition to
step function approximations introduced by Nyman, distance functions to give more
flexibility, including possible numerical experiments. The introduction discusses the
Riemann Hypothesis, which always surrounds any study of the Riemann ζ-function.

The background material discussed in this thesis gives all the necessary prerequi-
sites for an understanding of the proof of the main theorem. Topics include infinite
products, the Gamma function, the Riemann ζ-function, Fourier series and trans-
forms, the Hardy spaces, reproducing kernels, and Blaschke factors. The focus will
be on the Hardy spaces of the upper and right half-planes, whose properties are de-
duced using the Hardy space of the unit disk via the unitary mapping of Chapter 4.
The Mellin transform is also introduced and plays a vital role in the main theorem
proven in chapter 6.
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Notation

N positive integers

R real numbers

R+ positive real numbers

Z integers

C complex numbers

T complex numbers with modulus 1

D complex numbers with modulus less than 1

R complex numbers with positive real part

U complex numbers with positive imaginary part

P the set of prime numbers

∼ asymptotically similar

F Fourier transform

F−1 inverse Fourier transform

F∗ Mellin transform

J represents the change of variable x = e−t

χA characteristic function on the set A

\ set minus

⊂ set containment (possibly equality)

log the logarithm function with base e

[x] the greatest integer less than or equal to x

z̄ complex conjugate of z

z∗ defined by z∗ = −z̄

v



Chapter 1

Introduction

1.1 Background

The Riemann Hypothesis, which states that the nontrivial zeros of the Riemann
Zeta-function all have real part 1/2, has been studied for about a century and a
half, still without a fully supported proof being completed. The Clay Mathematics
Institute has a 1 million dollar reward available for anyone who can provide rigorous
proof of the Riemann Hypothesis. Moreover, the result has to be published in a
refereed journal that is respected world-wide, and two years after publication, the
Scientific Advisory Board of the Institute must decide whether the proof deserves
the prize [Sab03, p. 30]. Clearly, the desire to discover a proof exists within the
mathematical community; however, the question is whether any of us will see one
presented in our lifetime.

David Hilbert (1862-1943) has been quoted as saying “If I were to awaken after
having slept for a thousand years, my first question would be: Has the Riemann
hypothesis been proven?” The Riemann Hypothesis was one of the 23 problems
posed by Hilbert in 1900. The Riemann hypothesis is the only problem from Hilbert’s
speech to become one of the Clay Institute “millennium” problems. Many of these
problems have been solved; however, the Riemann Hypothesis stands as one of a few
remaining that lacks unquestionable proof.

The significance of the truth of the Riemann hypothesis stems from its connec-
tion to number theory, namely, the prime numbers. The prime number theorem is
a notable example of this connection. The prime number theorem gives an approx-
imation of the number of primes less than x (called the pie function π). It states
that

π(x) ∼ x

log x
,

and it was proved independently by Hadamard and de la Vallée Poussin in 1896. In
fact, the proof of this theorem uses the fact that the line Re z = 1 contains no zeros
of the Riemann Zeta-function. The Riemann hypothesis, if true, would give an exact
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formulation of the distribution of primes. That is, we could write

π(x) = li(x) + O(x1/2 log(x)),

where the function li is defined by li(x) =
∫ x

0
(log t)−1 dt. The most recent “proposed”

proof of the Riemann hypothesis is due to Louis de Branges. An electronic version can
be found on his Purdue website. However, many mathematicians dismiss any chance
of de Branges having a correct proof, despite de Branges’ proof of the Bieberbach
conjecture. Some claim that his proofs are always riddled with errors, and others
claim that de Branges’ approach is incorrect [Sab03, p. 118].

1.2 Purpose

The goal of this thesis is to present a theorem by Nikolski that first appeared in
[Nik95], which leads to a generalization of the theorems given by Beurling and Nyman
that relate to zero free regions of the Riemann ζ-function. This theorem is proven
in Chapter 6. For x ∈ R, we use [x] to denote the greatest integer less than or equal
to x. Also, if s ∈ C, then s∗ = −s̄ is the reflection of s with respect to the imaginary
axis. Throughout the rest of this thesis, the right half-plane of C will be denoted by
R, that is, R = {z ∈ C : Re z > 0}.
Theorem 1.1. (Nikolski) Let s ∈ R, and let γ > 0. Also, let

Eα,γ(x) = xγ

([α

x

]
− α

[
1

x

])
, 0 < x < 1,

where 0 6 α 6 1, and

d2
γ(s) = inf

∫ 1

0

∣∣∣∣∣x
s −

∑
α

aαEα,γ(x)

∣∣∣∣∣

2
dx

x
,

the inf being taken over all finite linear combinations of Eα,γ, 0 6 α 6 1. Then the
disk

Ds,γ = γ + Ds = γ +

{
z :

∣∣∣∣
z − s

z − s∗

∣∣∣∣
2

< 1− 2d2
γ(s) Re s

}

is free of zeros of the Riemann ζ-function.

A more all-encompassing theorem is the following:

Theorem 1.2. (Nikolski) Given γ > 0, the following are equivalent.

(1) The Riemann ζ-function has no zeros in the half-plane {z ∈ C : Re z > γ}.
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(2) There exists a point s with Re s > 0 such that dγ(s) = 0.

(3) dγ(s) = 0 for every s with Re s > 0.

The proof of this theorem is beyond the scope of this paper, but can be found
in [Nik02, p. 169]. Beurling and Nyman were the first to suggest using greatest
integer function approximations to study the Riemann ζ-function. Nyman’s thesis
at Uppsala [Nym50] proved the following theorem:

Theorem 1.3. (Nyman, 1950) The Riemann hypothesis is equivalent to d1/2(1/2) =
0, that is

d2
1/2

(
1

2

)
= inf

∫ 1

0

∣∣∣∣∣1−
∑

α

aα

([α

x

]
− α

[
1

x

])∣∣∣∣∣

2

dx = 0, (1.1)

the inf being taken over all finite linear combinations for 0 < α < 1.

In other words, the Riemann ζ-function is free of zeros in the half-plane Re
z > 1/2 if the functions

[
α
x

] − α
[

1
x

]
, 0 < α < 1, span the space L2((0, 1), dx).

Beurling’s paper [Beu55] extends this result to the Lp spaces; namely, the Riemann
ζ-function is free of zeros in the half-plane Re z > 1/p if the functions

[
α
x

] − α
[

1
x

]
,

0 < α < 1, span the space Lp((0, 1), dx).
Further endeavors have been pursued using similar techniques. In [Vas95], V.

Vasyunin performs some numerical experiments using Nikolski’s results. From his
work, Balazard and Saias deduce further questions in [BS00, pp. 135–137]. This
motivates related numerical experiments based on their work. They are shown in
[LR02].
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Chapter 2

The Riemann ζ-function

2.1 Infinite Products

We open this section with the basic definition.

Definition 2.1. Let {zk} be an infinite sequence of complex numbers. If

z = lim
n→∞

n∏

k=1

zk

exists, we define z to be the infinite product of the sequence of numbers. We
denote this product by

z =
∞∏

k=1

zk. (2.1)

We would like for

∞∏

k=1

ak = 0 ⇐⇒ ak = 0 for some k.

So we require
∏∞

k=1 ak → s 6= 0 as n →∞, if ak 6= 0 for all k ∈ N. Then, under this
requirement,

an =

∏n
k=1 ak∏n−1
k=1 ak

→ s

s
= 1.

This gives us an analogous theorem to a common one with infinite series, namely,

Theorem 2.2. If
∏∞

k=1 ak converges to a nonzero number, and if ak 6= 0 for all
k ∈ N, then ak → 1 as k →∞.

Recall the definition for the principal branch of the complex logarithm

log(z) = ln |z|+ iarg(z) (−π < arg(z) < π),
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where ln is the real-valued logarithm function defined on R+. We will need to use
this function to be able to get a sufficient condition for which

∏∞
k=1 ak will converge.

Note that if
∏n

k=1 ak → s 6= 0, then the partial factors, denoted an for n > 1, will
lie in the right half-plane of C for sufficiently large n. So the following results with
assume that Re zk > 0 for all k ∈ N.

Definition 2.3. If Re zn > 0 for all n, then the infinite product
∏

zn is said to
converge absolutely if the series

∑
log zn converges absolutely.

Proofs of these theorems appear in [Con78, pp. 165–166].

Theorem 2.4. If Re zn > 0, then the product
∏

zn converges absolutely if and only
if the series

∑
(zn − 1) converges absolutely.

For a sequence of holomorphic functions in a region, we have the following important
theorem about products.

Theorem 2.5. Let Ω be a region in C and let {fn} be a sequence in Hol(Ω) such that
no fn is identically zero. If

∑ |fn(z)− 1| converges uniformly on compact subsets of
Ω, then

∏∞
n=1 fn(z) converges in Hol(Ω) to an analytic function f(z). If a is a zero

of f , then a is a zero of only a finite number of the functions fn, and the multiplicity
of the zero of f at a is the sum of the multiplicities of the zeros of the functions fn

at a.

2.2 The Gamma Function

Definition 2.6. The Gamma function on {z ∈ C : z 6= 0,−1,−2, . . . } is defined
by

Γ(z) =
e−γz

z
· 1∏∞

n=1(1 + z
n
)e−z/n

, (2.2)

where γ is called Euler’s constant and is chosen so that Γ(1) = 1. The Gamma
function has simple poles at all of the points where it is not defined.

It is clear by definition that for all z ∈ C, Γ(z) 6= 0. The following formulation of
the Gamma function will be useful. It is proved in [Con78, pp. 177–178].

Lemma 2.7. For z 6= 0,−1,−2, . . . , we have

Γ(z) = lim
n→∞

n! nz

z(z + 1) · · · (z + n)
. (2.3)

Using this Lemma, we can easily prove an important functional equation of the
Gamma function.

5



Theorem 2.8. For z 6= 0, we have

Γ(z + 1) = zΓ(z) (2.4)

Proof. We will prove (2.4) by evaluating Γ(z + 1)/z with Lemma 2.7. We write

Γ(z + 1)

z
= lim

n→∞
n! nz+1

z(z + 1)(z + 2) · · · (z + 1 + n)

= lim
n→∞

n

z + 1 + n
· lim

n→∞
n! nz

z(z + 1)(z + 2) · · · (z + n)

= 1 · Γ(z)

= Γ(z).

Theorem 2.9 provides an integral representation for the Gamma function in the
right half-plane. It will be used to obtain an integral representation for the Riemann
Zeta-function.

Theorem 2.9. If Re z > 0, then

Γ(z) =

∫ ∞

0

e−ttz−1 dt.

2.3 Riemann’s Functional Equation

Definition 2.10. The Riemann Zeta-function is the function defined by the in-
finite series

ζ(z) =
∞∑

n=1

n−z, Re z > 1. (2.5)

The above defined Riemann ζ-function is defined only when Re z > 1. We will use
analytic continuation to extend the function to the domain C−{1}. Our first Lemma
uses Theorem 2.9 to derive an integral representation for the Riemann ζ-function.

Lemma 2.11.

ζ(z)Γ(z) =

∫ ∞

0

tz−1

et − 1
dt, Re z > 1. (2.6)

It can then be shown that since

fn(z) =

∫ 1

1/n

(
1

et − 1
− 1

t

)
tz−1 dt

6



converges uniformly on compact subsets of the right half-plane, setting f = limn→∞ fn

gives a holomorphic function in the right half-plane. We can then write for Re z > 1

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt +

1

z − 1
+

∫ ∞

1

tz−1

et − 1
dt. (2.7)

Note that since
1

Γ(z)(z − 1)
=

1

Γ(z + 1)− Γ(z)
has a pole at 1, (2.7) defines ζ(z) as

a meromorphic function in R with a simple pole at 1.
Now restrict z to the domain 0 < Re z < 1. We can modify (2.7) using the fact

1

z − 1
= −

∫ ∞

1

tz−2 dt

to get

ζ(z)Γ(z) =

∫ ∞

0

(
1

et − 1
− 1

t

)
tz−1 dt, 0 < Re z < 1. (2.8)

The two integrals

∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt and

∫ ∞

1

(
1

et − 1
− 1

t

)
tz−1 dt

converge uniformly on compact subsets of {z : Re z > −1} and {z : Re z < 1},
respectively. Hence, using (2.8) and these 2 integrals we can write

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2z
+

∫ ∞

1

(
1

et − 1
− 1

t

)
tz−1 dt, (2.9)

which gives ζ(z) analytic for −1 < Re z < 1. However, for this to be true, it must
be analytic at z = 0. Indeed,

1

2zΓ(z)
=

1

2Γ(z + 1)

is analytic at z = 0. So we have effectively defined ζ(z) for Re z > −1 with a simple
pole at z = 1 using the combination of equations (2.6) and (2.9).

If we restrict z to the domain −1 < Re z < 0, then we can collapse (2.9) to

ζ(z)Γ(z) =

∫ ∞

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt, (2.10)

since ∫ ∞

1

tz−1 dt = −1

z
.
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It can be shown that

(
1

et − 1
− 1

t
+

1

2

)
1

t
= 2

∞∑
n=1

1

t2 + 4n2π2
;

hence, we can compute the following:

ζ(z)Γ(z) = 2

∫ ∞

0

( ∞∑
n=1

1

t2 + 4n2π2

)
tz dt

= 2

∫ ∞

0

( ∞∑
n=1

tz

t2 + 4n2π2

)
dt

= 2
∞∑

n=1

(2πn)z−1

∫ ∞

0

tz

t2 + 1
dt

= 2(2π)z−1ζ(1− z)

∫ ∞

0

tz

t2 + 1
dt, (2.11)

for −1 < Re z < 0. Using [Con78, pp. 114, 192], for z = x + iy, −1 < x < 0, and

c =
1

2
(1− x) < 1, we have

∫ ∞

0

tx

t2 + 1
dt =

1

2

∫ ∞

0

s
1
2
(x−1)

s + 1
ds

=
1

2
π csc(π(1− x)/2)

=
1

2
π sec(πx/2). (2.12)

Using Theorem 2.8, we see that

Γ(x)Γ(1− x) = −xΓ(x)Γ(−x)

= −x · e−γx

x
· 1
∏∞

n=1

(
1 +

x

n

)
e−x/n

· eγx

−x
· 1
∏∞

n=1

(
1− x

n

)
ex/n

=
1

x
· 1

∏∞
n=1

(
1− x2

n2

)

=
π

sin(πx)
. (2.13)
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The last equation comes from the factorization of the sine function [Con78, p. 175].
Using this result and the addition formula for sine, we obtain

1

Γ(x)
=

Γ(1− x)

π
sin(πx) =

Γ(1− x)

π
[2 sin(πx/2) cos(πx/2)]. (2.14)

Multiplying the right-hand side of (2.11) by the right-hand side of (2.14), we get
via (2.12)

ζ(x) = 2(2π)x−1ζ(1− x)Γ(1− x) sin(πx/2),

for x ∈ (−1, 0), which has a limit point in {z = x+ iy : x ∈ (−1, 1)}. So the equation
holds on the set {z = x + iy : x ∈ (−1, 1)} by the Identity Theorem [Rud87, p. 209],
since both sides of the equation are holomorphic in {z = x + iy : x ∈ (−1, 1)}.
Furthermore, the right-hand side is holomorphic in {z = x+ iy : x ∈ (−∞, 0)}, so we
use the same theorem to give ζ(z) an analytic continuation to this set. Finally, since
ζ(z) is holomorphic in {z = x + iy : x ∈ (−1,∞)} \ {1}, and the right-hand side is
holomorphic there except for possible poles at the positive integers, we get that the
equation must hold in C \ {1} since ζ(z) is continuous at z = 2, 3, 4 . . . . Now we can
state Riemann’s functional equation as a theorem.

Theorem 2.12. If z ∈ C and z 6= 1, then

ζ(z) = 2(2π)z−1ζ(1− z)Γ(1− z) sin(πz/2). (2.15)

2.4 Trivial Zeros and the Riemann Hypothesis

We can determine certain zeros easily using Riemann’s functional equation for the
ζ-function

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin(πz/2).

We do this by noticing that since ζ(z) is analytic at z = 2, 3, 4 . . . and Γ(1− z) has
poles at z = 1, 2, 3, . . . , we must have that ζ(1 − z) sin(πz/2) = 0 at z = 2, 3, . . . .
Moreover, each zero must be simple since all the poles of Γ are simple. We know
exactly when sin(πz/2) is zero, that is, when z = 2, 4, 6, . . . . Hence, ζ(1 − z) has
zeros when z = 3, 5, 7, . . . . We then conclude that ζ(z) has zeros for z = −2n, n ∈ N.
These zeros are termed the trivial zeros of the Riemann ζ-function.

Furthermore, we can deduce that excluding the trivial zeros, ζ(z) has no other
zeros outside of {z : 0 6 Re z 6 1}. For if there exists such a nontrivial zero z0,
where Re z0 < 0, then ζ(1− z0) = 0 by the functional equation with Re (1− z0) > 1.
However,

ζ(z) =
∑
n>1

1

nz
=

∏
p∈P

1

1− p−z
6= 0, Re z > 1,

by (2.16) below. This contradicts that ζ(1− z0) = 0.
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At this point, we know that all of the nontrivial zeros of the Riemann ζ-function
must lie in the strip 0 6 Re z 6 1. It is known that no zeros lie on the line Re z = 1,
hence no zeros occur on the line Re z = 0 by the functional equation [Con78, p. 193].
Riemann first stated the Riemann Hypothesis in his now famous paper “Über die
Anzahl der Primzahlen unter einer gegebenen Grösse,” which says that all of the
nontrivial zeros of the ζ-function occur when z = 1/2 + it, t ∈ R. To this day, no
one has found a counterexample to this hypothesis.

2.5 Further Representations of the ζ-function

The Riemann ζ-function is intimately tied to number theory. This can readily be
seen by the following theorem:

Theorem 2.13. If Re(s) > 1, then

ζ(s) =
∏
p∈P

1

1− p−s
, (2.16)

where P is the set of all prime numbers.

Proof. Since p−s < 1 for each p ∈ P , we can write each factor (1 − p−s)−1 as a
convergent geometric series:

1

1− p−s
=

∞∑

k=0

p−ks. (2.17)

We then compute
∏

p∈P
1

1−p−s by multiplying each sum in (2.17). Using the distribu-
tive property of multiplication, the resulting sum is of the form

∑
(2α13α25α3 · · · pαj

j )−s.

The fundamental theorem of arithmetic tells us that for any integer n > 1, there
exist unique α1, α2, . . . , αj such that n can be written as one of the terms above.
This type of sum is precisely what occurs in

∑
n>1 n−s.

Lemma 2.14. If Re s > 1, we have

ζ(s)

s
=

∫ ∞

1

[t]t−s−1 dt =

∫ ∞

1

([t]− t)t−s−1 dt +
1

s− 1
.

The second integral is analytic in {s : Re s > 0}.
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Proof. For n > 1, we can split up the interval [1, n + 1] into subintervals [k, k + 1],
k = 1, 2, . . . , n, on which [t] is constant. From this we have

s

∫ n+1

1

[t]t−s−1 dt = s

n∑

k=1

k

∫ k+1

k

t−s−1 dt

= s

n∑

k=1

k

(
t−s

−s

)∣∣∣∣
k+1

k

=
n∑

k=1

k(k−s − (k + 1)−s)

=
n∑

k=1

kk−s −
n∑

k=1

k(k + 1)−s

=
n∑

k=1

kk−s −
n+1∑

k=2

(k − 1)k−s

=
n∑

k=1

k−s − n(n + 1)−s

→ ζ(s),

as n →∞ for Re s > 1.
To obtain the second integral, we do a simple modification of the first integral:

∫ ∞

1

[t]t−s−1 dt =

∫ ∞

1

([t] + t− t)t−s−1 dt

=

∫ ∞

1

([t]− t)t−s−1 dt +

∫ ∞

1

t−s dt

=

∫ ∞

1

([t]− t)t−s−1 dt +

(
t−s+1

−s + 1

)∣∣∣∣
∞

1

=

∫ ∞

1

([t]− t)t−s−1 dt +
1

s− 1
.

The last equality holds since Re s > 1.

The last Lemma extends the Riemann ζ-function to an analytic function in the
right half-plane; this is since [t]− t is bounded for t > 1. The first integral represen-
tation did not have this property.
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Chapter 3

Hardy Spaces and The Fourier
Transform

3.1 Fourier Series

We start this chapter with the definition of the Lp-space of the unit circle: Lp(T).
This definition, as well as the ones following it, will describe the general case 0 <
p < ∞, while the results focus mainly on the case p = 2.

Definition 3.1. If T = {z ∈ C : |z| = 1} is the unit circle, then for p > 0 define

‖f‖p =

(∫ 2π

0

|f(eit)|p dt

2π

)1/p

.

We define Lp(T) to be the space of all measurable functions f such that

‖f‖p < ∞.

For a function f ∈ L1(T), we define the function f̂ on Z by

f̂(n) =

∫ 2π

0

f(eit)e−int dt

2π
. (3.1)

For each n, the complex numbers f̂(n) are called the Fourier coefficients of f . They
are obtained as the inner product of a function with an element of the orthonormal
set {eint}n. Since L2(T) ⊂ L1(T), we can define the Fourier coefficients of an L2

function as in (3.1). For a function f ∈ L2(T), we can write it as a series indexed by
Z as

f(eit) =
∑

n∈Z
f̂(n)eint, (3.2)

12



where the convergence of the sum in (3.2) occurs in L2(T). This is called the Fourier
Series of f . The Fourier coefficients {f̂(n)} satisfy

∑

n∈Z
|f̂(n)|2 = ‖f‖2

2 =

∫ 2π

0

|f(eit)|2 dt

2π
. (3.3)

3.2 The Hardy Spaces H2(T) and H2(D)

We now define the space H2(T).

Definition 3.2. For p > 1, define the Hardy space of the unit circle by

Hp(T) = {f ∈ Lp(T) : f̂(n) = 0 for all n < 0}. (3.4)

According to the previous definition, any function in H2(T) has a Fourier series
of the form

∑∞
n=0 f̂(n)eint. Thus, for each f ∈ H2(T), we can define a function

f̃ ∈ Hol(D) by f̃(z) =
∑∞

n=0 f̂(n)zn, where |z| < 1.

Definition 3.3. If D = {z ∈ C : |z| < 1} is the unit disk, then for p > 1 define the
Hardy space of the unit disk by

Hp(D) =

{
f̃ ∈ Hol(D) : sup

06r<1

∫ 2π

0

|f̃(reit)|p dt

2π
< ∞

}
. (3.5)

The space Hp(D) is a normed linear space with its norm defined on any f ∈ Hp(D)

by ‖f̃‖p
Hp(D) = sup06r<1

∫ 2π

0
|f̃(reit)|p dt

2π
. If f̃(z) =

∑∞
n=0 anzn, |z| < 1, then we can

write

‖f̃‖2
H2(D) = sup

06r<1

∫ 2π

0

|f̃(reit)|2 dt

2π
= sup

06r<1

∞∑
n=0

|an|2r2n

=
∞∑

n=0

|an|2, (3.6)

where the second equality holds by Theorem 10.22 in [Rud87, p. 211]. So if we take
a function f ∈ H2(T), then we can define f̃(z) =

∑∞
n=0 f̂(n)zn, |z| < 1, and using

(3.3) and (3.6), we obtain

‖f‖2
2 =

∞∑
n=0

|f̂(n)|2 = ‖f̃‖2
H2(D).

Hence, the map f 7→ f̃ is an isometric isomorphism between H2(T) and H2(D).
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3.3 The Fourier Transform L2(R) → L2(R)

Definition 3.4. The Fourier Transform of a function f ∈ L1(R) is defined for
t ∈ R by

Ff(t) =
1√
2π

∫ ∞

−∞
f(x)e−ixt dx. (3.7)

Indeed, if f ∈ L1(R), we have

∣∣∣∣
1√
2π

∫ ∞

−∞
f(x)e−ixt dx

∣∣∣∣ 6 1√
2π

∫ ∞

−∞
|f(x)| |e−ixt| dx

=
1√
2π

∫ ∞

−∞
|f(x)| dx < ∞.

The formula given in (3.7) defines the Fourier transform of a function f ∈ L1(R).
However, we want to find a function Ff ∈ L2(R) such that the map f 7→ Ff is an
isometry, where f ∈ L2(R). This result comes from the Plancherel Theorem:

Theorem 3.5. For a function f ∈ L2(R), there is a unique Ff ∈ L2(R) such that

(a) If f ∈ L1(R) ∩ L2(R), then Ff is defined as in (3.7).

(b) For every f ∈ L2(R), ‖Ff‖2 = ‖f‖2.

(c) The mapping f 7→ Ff is a Hilbert space isomorphism of L2(R) onto L2(R).

(d) We have the following relationships between f and Ff : If

ϕA(t) =
1√
2π

∫ A

−A

f(x)e−ixt dx and ψA(x) =
1√
2π

∫ A

−A

Ff(t)eixt dt,

then ‖ϕA −Ff‖2 → 0 and ‖ψA − f‖2 → 0 as A →∞.

(For a proof, see [Rud87, pp. 186–187].) The function ψA can be used to calculate
the inverse Fourier transform, which we’ll denote by F−1.
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Chapter 4

The Unitary Mapping Ũ2

4.1 The Hardy space H2(U)

Definition 4.1. If U = {z ∈ C : Im z > 0} is the upper half-plane, then for p > 0
define the Hardy space of the upper half-plane by

Hp(U) =

{
f ∈ Hol(U) : sup

y>0

∫ ∞

−∞
|f(x + iy)|p dx < ∞

}
. (4.1)

The norm of this space is defined by ‖f‖p
Hp(U) = supy>0

∫∞
−∞ |f(x + iy)|p dx.

This section will discuss the unitary mapping Ũ2 and how it is used to describe
functions in H2(U) using what we know about functions in H2(D). First we let ω be
the usual conformal mapping from D to U :

ω(z) = i
1 + z

1− z
, z ∈ D. (4.2)

If we think of ω as being defined on the boundary of D, that is T \ {1}, then the
range of the transformation is R, and the simple change of variable

ω−1(x) =
x− i

x + i

defines the operator Up : Lp(T) → Lp(R) as

Upf(x) =

(
1

π(x + i)2

)1/p

· f
(

x− i

x + i

)
, x ∈ R. (4.3)

Hence, Up is an isometric isomorphism from Lp(T) onto Lp(R). In the case p = 2, the
mapping U2 is unitary, meaning it preserves inner products [Nik02, p. 143]. Notice
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that we can also define an operator

Ũpf(z) =

(
1

π(z + i)2

)1/p

· f
(

z − i

z + i

)
, z ∈ U , (4.4)

which defines an analytic function Ũpf in U given a function f ∈ Hp(D). We would

like to know that Ũpf ∈ Hp(U). This comes as a result of the following theorem:

Theorem 4.2. Let 1 6 p < ∞. Then UpH
p(D) = Hp(U).

A proof is located in [Nik02].
Before moving on to the next section, we need to define the Hardy space H∞(D)

and explicitly state the operator Ũ∞. The last section in this chapter will make use
of these definitions.

Definition 4.3. The set of bounded holomorphic functions in the unit disk D will
be denoted by H∞(D). The norm

‖f‖∞ = sup{|f(z)| : z ∈ D} (4.5)

makes H∞(D) a Banach space.

Definition 4.4. For p = ∞ we define the operator Ũ∞ by

Ũ∞f(z) = f

(
z − i

z + i

)
, z ∈ U . (4.6)

It is clear that Ũ∞ is an isometric isomorphism of H∞(D) onto H∞(U).

4.2 The Reproducing Kernel of H2(U)

Definition 4.5. Let H be a Hilbert space of complex-valued analytic functions on
a subset Ω ⊂ C with inner product (· , ·).

(a) Let ϕλ : H → C be the point evaluation functional, that is, the continuous
linear map defined by ϕλ(f) = f(λ).

(b) The function kλ, which we will call the reproducing kernel ofH, is the unique
function in H such that

ϕλ(f) = (f, kλ).

The existence of this function comes from applying the Riesz Representation
Theorem to ϕλ.

(c) When the point evaluation functional ϕλ is continuous, the Hilbert space H is
called a reproducing kernel Hilbert space.
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See [Aro50] for a thorough treatment of reproducing kernels.
The reproducing kernel for H2(D) is easily calculated (via the correspondence

between H2(T) and H2(D)) using Definition 4.5. It is called the Szegö kernel and
is defined by kλ(z) = (1 − λ̄z)−1. To find the reproducing kernel for H2(U), which

we’ll call kν , we apply the operator Ũ2 to kλ and the function ω to the point λ. Set
g = Ũ2f . We want

g(ν) = (g, kν)L2(R)

for each g ∈ H2(U), where ω(λ) = ν. Since Ũ2 is a Hilbert space isomorphism, we
can write

g(ν) = (Ũ2

−1
g, Ũ2

−1
kν)L2(T).

This gives that

Ũ2f(ν) = (f, Ũ2

−1
kν)L2(T),

or

f

(
ν − i

ν + i

)
1√
π

1

ν + i
=

1

2π

∫ 2π

0

f(eit)U−1
2 kν(eit) dt.

This implies that

f

(
ν − i

ν + i

)
=

(ν + i)
√

π

2π

∫ 2π

0

f(eit)U−1
2 kν(eit) dt.

But since ω(λ) = ν, we have ν−i
ν+i

= λ, so since f(λ) = (f, kλ), we get the equality

U−1
2 kν(eit)(ν + i)

√
π =

(
1

1− λ̄eit

)
,

or

U−1
2 kν(e

it) =
1

(ν + i)
√

π
· 1

1− λ̄eit
.
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We can now calculate the reproducing kernel for H2(U) by operating on each side
with U2 and letting eit = (x− i)(x + i)−1:

kν(x) =
1

(ν − i)
√

π
U2kλ(x)

=
1

(ν − i)
√

π
· 1√

π(x + i)
· 1

1− λ̄
(

x−i
x+i

)

=
1

(ν − i)(x + i)π
· 1

1− (
ν̄+i
ν̄−i

) (
x−i
x+i

)

=
(ν̄ − i)(x + i)

π(ν − i)(x + i)[(ν − i)(x + i)− (ν + i)(x− i)]

=
1

π(−2ix + 2iν̄)

=
1

2πi
· 1

ν̄ − x
.

4.3 Blaschke Products in H2(U)

Definition 4.6. The function B : D→ C defined by

B(z) =
∞∏

n=1

αn − z

1− αnz

|αn|
αn

(4.7)

is called a Blaschke product. It defines an analytic function in D if the sequence
{αn} ⊂ D satisfies

∞∑
n=1

(1− |αn|) < ∞. (4.8)

This condition is called the Blaschke condition. A standard proof of this fact is
located in [Rud87, p. 310].

Using our definition of Blaschke Products for functions in H2(D), we can derive
a Blaschke condition and a Blaschke product for functions in H2(U).

Theorem 4.7. If f ∈ H2(U), and f is not identically equal to zero, then

∑
n

Im λn

1 + |λn|2 < ∞,

where λn are the zeros of f in U (counting multiplicities). The corresponding Blaschke
product is

B(z) =
∏
n

εn
z − λn

z − λn

, z ∈ U ,
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where εn = |λ2
n + 1|(λ2

n + 1)−1 if λn 6= i, and εn = 1 otherwise.

Proof. To derive the Blaschke condition, let λn be the ω-image of zn, where zn is one

of the zeros of Ũ2

−1
f ∈ H2(D). Then we see that for all n

Im λn

1 + |λn|2 =
Im i

1 + zn

1− zn

1 +

∣∣∣∣i
1 + zn

1− zn

∣∣∣∣
2

=

(
i
1 + zn

1− zn

+ i
1 + zn

1− zn

)
|1− zn|2

2i(|1− zn|2 + |1 + zn|2)
=

((1 + zn)(1− zn) + (1 + zn)(1− zn))|1− zn|2
4(1 + |zn|2)(1− zn)(1− zn)

=
2(1− |zn|2)
4(1 + |zn|2)

< 1− |zn|2.

Hence, if
∑

n 1− |zn|2 < ∞, the comparison test yields that

∑
n

Im λn

1 + |λn|2 < ∞.

Let f ∈ H2(D). We will apply the operator Ũ∞ to the Blaschke product corre-

sponding to f to obtain a Blaschke product corresponding to the function Ũ∞f . This
application is possible since |B(z)| < 1 for all z ∈ D [Rud87, p. 310]. We see that

Ũ∞B(z) = B

(
z − i

z + i

)

=
∏
n

|zn|
zn

· zn − z−i
z+i

1− zn( z−i
z+i

)

=
∏
n

|zn|
zn

· (z + i)zn − (z − i)

(z + i)− zn(z − i)
.

Since zn ∈ D, we get the corresponding zero of Ũ∞f , which we’ll call λn, by applying
ω to zn for all n. So we have for each n

zn =
λn − i

λn + i
and zn =

λn + i

λn − i
.
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Under these substitutions we obtain

Ũ∞B(z) =
∏
n

∣∣∣λn−i
λn+i

∣∣∣
λn−i
λn+i

· (z + i)λn−i
λn+i

− (z − i)

z + i− λn+i
λn−i

(z − i)

=
∏
n

|λn − i|(λn + i)(λn − i)

|λn + i|(λn − i)(λn + i)
· (z + i)(λn − i)− (z − i)(λn + i)

(z + i)(λn − i)− (λn + i)(z − i)

=
∏
n

|λn − i|(λn − i)

|λn + i|(λn − i)
· z − λn

z − λn

=
∏
n

((λn − i)(λn + i)(λn − i)2)1/2

((λn + i)(λn − i)(λn − i)2)1/2
· z − λn

z − λn

=
∏
n

√
(λ

2

n + 1)

(λ2
n + 1)

· z − λn

z − λn

=
∏
n

|λ2
n + 1|

λ2
n + 1

· z − λn

z − λn

.
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Chapter 5

The function g = f/bν

Let F be a subspace of H2(U). The goal of this chapter is to find a function g = f/bν

such that ‖g‖H2(U) = ‖f‖H2(U), whenever f ∈ F , ν is zero of the subspace F , and bν

is the corresponding nonnormalized Blaschke factor:

bν(z) = (z − ν)(z − ν̄)−1.

The Blaschke factor bν comes from Theorem 4.7, and we note that |bν(x)| = 1 for all
x ∈ R by symmetry. We start by introducing the Poisson formula for H2(U).

Lemma 5.1. If F ∈ H2(U), then for y > 0 we have

F (x + iy) =

∫ ∞

−∞

y

(x− t)2 + y2
F ∗(t)

dt

π
, (5.1)

where F ∗(t) = limε→0+ F (t + iε), which exists for a.e. x ∈ R.

Proof. Let F ∈ H2(U), and let G(z) = F (z)/(z + i). Then G ∈ Hol(U), and

sup
ε>0

∫ ∞

−∞
|G(x + iε)|2 dx = sup

ε>0

∫ ∞

−∞

∣∣∣∣
F (x + iε)

x + i(ε + 1)

∣∣∣∣
2

dx

= sup
ε>0

∫ ∞

−∞

|F (x + iε)|2
x2 + (ε + 1)2

dx

6 sup
ε>0

∫ ∞

−∞

|F (x + iε)|2
x2 + 1

dx

6 sup
ε>0

∫ ∞

−∞
|F (x + iε)|2 dx < ∞.

Hence, G ∈ H2(U). So there exists a function g ∈ H2(D) such that Ũ2g = G. Thus,

G(z) =
1√

π(z + i)
· g

(
z − i

z + i

)
. (5.2)
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Since g ∈ H2(D), it has a Poisson integral representation there [Rud87, pp. 244, 247]:

g

(
z − i

z + i

)
=

∫ 2π

0

1−
∣∣ z−i
z+i

∣∣2
∣∣eiθ − z−i

z+i

∣∣2 g∗(eiθ)
dθ

2π
, (5.3)

where g∗(eiθ) = limr→1 g(reiθ) for a.e. θ ∈ [0, 2π]. Let t = i
1 + eiθ

1− eiθ
. Then eiθ =

t− i

t + i
,

which allows one to easily see that dt =
2

t2 + 1
dθ. Also,

√
π (t + i) G∗(t) = lim

ε→0+
G(t + iε)

√
π(t + i(ε + 1))

= lim
ε→0+

g
(

t+i(ε+1)
t+i(ε−1)

)
√

π(t + i(ε + 1))

√
π(t + i(ε + 1))

= lim
ε→0+

g

(
t + i(ε + 1)

t + i(ε− 1)

)

= g∗
(

t + i

t− i

)

= g∗(eiθ).

Under these substitutions, (5.2) becomes

G(z) =

√
π√

π(z + i)

∫ ∞

−∞

1−
∣∣∣∣
z − i

z + i

∣∣∣∣
2

∣∣∣∣
t− i

t + i
− z − i

z + i

∣∣∣∣
2 G∗(t) · 2(t + i)

(t2 + 1)

dt

2π

=
1

z + i

∫ ∞

−∞

|t + i|2(|z + i|2 − |z − i|2)
|(t− i)(z + i)− (z − i)(t + i)|2 G∗(t) · (t + i)

t2 + 1

dt

π

=
1

z + i

∫ ∞

−∞

|z + i|2 − |z − i|2
|(t− i)(z + i)− (z − i)(t + i)|2 G∗(t)(t + i)

dt

π

=
1

z + i

∫ ∞

−∞

|z + i|2 − |z − i|2
|−2iz + 2it|2 G∗(t)(t + i)

dt

π

=
1

z + i

∫ ∞

−∞

|z + i|2 − |z − i|2
4 |t− z|2 G∗(t)(t + i)

dt

π
.
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Let z = x + iy to get

G(z) =
1

z + i

∫ ∞

−∞

|x + i(y + 1)|2 − |x− i(1− y)|2
4 |t− x− iy|2 G∗(t)(t + i)

dt

π

=
1

z + i

∫ ∞

−∞

x2 + (y + 1)2 − x2 − (1− y)2

4((t− x)2 + y2)
G∗(t)(t + i)

dt

π

=
1

z + i

∫ ∞

−∞

y

(t− x)2 + y2
G∗(t)(t + i)

dt

π
.

To complete the proof, we see that

(t + i)G∗(t) = (t + i) lim
ε→0+

G(t + iε)

= (t + i) lim
ε→0+

F (t + iε)

t + i(ε + 1)

= (t + i)
F ∗(t)
t + i

= F ∗(t).

Therefore, (5.1) follows.

We now use Lemma 5.1 to prove the next Lemma.

Lemma 5.2. If f ∈ H2(U), then

sup
y>0

∫ ∞

−∞
|f(x + iy)|2 dx = lim

y→0+

∫ ∞

−∞
|f(x + iy)|2 dx. (5.4)

Proof. For all x ∈ R and y > 0, we have that

1 =
1

π

∫ ∞

−∞

y

(x− t)2 + y2
dt. (5.5)

This equation is proven using a simple change of variable: u = (x−t)/y, which yields
an integral involving the derivative of tan−1. Define a measure dµx,y = 1

π
y

(x−t)2+y2 dt.
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Then using (5.1), we have

|f(x + iy)| =

∣∣∣∣
∫ ∞

−∞
1 · f ∗(t) dµx,y

∣∣∣∣

6
∫ ∞

−∞
1 · |f ∗(t)| dµx,y

6
√∫ ∞

−∞
12 dµx,y

√∫ ∞

−∞
|f ∗(t)|2 dµx,y

=

√∫ ∞

−∞
|f ∗(t)|2 dµx,y.

Hence,

|f(x + iy)|2 6
∫ ∞

−∞
|f ∗(t)|2 dµx,y

=
1

π

∫ ∞

−∞

y

(x− t)2 + y2
|f ∗(t)|2 dt.

Then ∫ ∞

−∞
|f(x + iy)|2 dx 6 1

π

∫ ∞

−∞

∫ ∞

−∞

y

(x− t)2 + y2
|f ∗(t)|2 dt dx. (5.6)

Using Fubini’s Theorem and (5.5), we obtain

∫ ∞

−∞
|f(x + iy)|2 dx 6

∫ ∞

−∞
|f ∗(t)|2 dt. (5.7)

Now suppose y2 > y1 > 0. Set ε = y2 − y1, and set g(x + iε) = f(x + i(y1 + ε)).
Then g ∈ H2(U), and

g∗(x) = lim
ε→0+

g(x + iε)

= lim
ε→0+

f(x + i(y1 + ε))

= f(x + iy1),
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since f is continuous on U . Applying (5.7) to g we have

∫ ∞

−∞
|f(x + iy2)|2 dx 6

∫ ∞

−∞
|f(x + i(y1 + ε))|2 dx

=

∫ ∞

−∞
|g(x + iε)|2 dx

6
∫ ∞

−∞
|g∗(x)|2 dx

=

∫ ∞

−∞
|f(x + iy1)|2 dx.

Hence, the H2-norm of U decreases monotonically as y increases; therefore, the
supremum occurs when y → 0+, and (5.4) follows.

We would like to apply (5.4) to the function g = f/bν . However, we need to know
that g ∈ H2(U). This is done in the following Lemma:

Lemma 5.3. If f ∈ H2(U), ν ∈ U , f(ν) = 0, then g = f/bν ∈ H2(U) and ‖g‖H2(U) =
‖f‖H2(U).

Proof. It is clear that g ∈ Hol(U), since bν = 0 precisely when z = ν, which is a zero
of f ∈ Hol(U) by hypothesis. To show that g ∈ H2(U), we need to show that

sup
y>0

∫ ∞

−∞
|g(x + iy)|2 dx < ∞. (5.8)

First we see that 1/bν is bounded outside a neighborhood of ν. It is clear geometrically
that bν = 0 if and only if z = ν, and that outside of a neighborhood W of ν, |bν |
is bounded below by some positive constant for all z ∈ U \W . This is because as
the denominator of |bν | grows large, so does the numerator at the same rate. Hence,
there exists an M ∈ R such that |1/bν(z)| 6 M for all z ∈ U \ W̄ .

To describe an open square in the complex plane with center ξ and side length
2l, we’ll use the notation C(ξ, l), where

C(ξ, l) = {z ∈ C : Re z ∈ (Re ξ − l, Re ξ + l) and Im z ∈ (Im ξ − l, Im ξ + l)}.

It is sufficient to let W = C(ν, 1
2
Im ν). Let W1 = {y > 0 : y < 1

2
Im ν or y > 3

2
Im ν}.

Then since {x+iW1 : x ∈ R}∩W̄ = ∅, we have that |1/bν(z)| 6 M when Im z ∈ W1.
Thus,

sup
y∈W1

∫ ∞

−∞
|g(x + iy)|2 dx 6 M2 sup

y∈W1

∫ ∞

−∞
|f(x + iy)|2 dx < ∞. (5.9)
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Let W2 = {y > 0 | 1
2
Im ν 6 y 6 3

2
Im ν}. We still need that

sup
y∈W2

∫ ∞

−∞
|g(x + iy)|2 dx < ∞.

This follows by writing R = Re ν + 1
2
Im ν and

∫ ∞

−∞
|g(x + iy)|2 dx =

∫ −R

−∞
|g(x + iy)|2 dx +

∫ R

−R

|g(x + iy)|2 dx +

∫ ∞

R

|g(x + iy)|2 dx

and observing that the supremum of the middle integral is finite, say it equals C,
since the continuous function g is bounded on the compact set K = {x + iy : x ∈
[−R, R], y ∈ W2}. Also, the first and last integrals are the same when |g| is replaced
with |f/bν | 6 M |f |, since z /∈ W . Thus,

sup
y∈W2

∫ ∞

−∞
|g(x + iy)|2 dx 6 sup

y∈W2

∫ −R

−∞
|g(x + iy)|2 dx + sup

y∈W2

∫ R

−R

|g(x + iy)|2 dx

+ sup
y∈W2

∫ ∞

R

|g(x + iy)|2 dx

6 M2 sup
y∈W2

∫ −R

−∞
|f(x + iy)|2 dx + C

+ M2 sup
y∈W2

∫ ∞

R

|f(x + iy)|2 dx

< ∞.

Therefore, (5.8) follows since {x + iW1 : x ∈ R} ∪ {x + iW2 : x ∈ R} = U , and hence
g ∈ H2(U).

The equation (5.4) is now applicable for g, so we can write

sup
y>0

∫ ∞

−∞
|g(x + iy)|2 dx = lim

y→0+

∫ ∞

−∞
|g(x + iy)|2 dx

= lim
y→0+

∫ ∞

−∞

∣∣∣∣
f(x + iy)

bν

∣∣∣∣
2

dx

= lim
y→0+

∫ ∞

−∞
|f(x + iy)|2 dx

= sup
y>0

∫ ∞

−∞
|f(x + iy)|2 dx.

26



Chapter 6

Nikolski’s Theorem

6.1 The Mellin Transform

Definition 6.1. For p > 1 define the Hardy space of the right half-plane by

Hp(R) =

{
f ∈ Hol(R) : sup

x>0

∫ ∞

−∞
|f(x + iy)|p dy < ∞

}
. (6.1)

This space is obtained directly from Hp(U) by the change of variable w = iz. The
norm of this space is defined by ‖f‖p

Hp(R) = supx>0

∫∞
−∞ |f(x + iy)|p dy.

The change of variable x = e−t gives that dx = −e−tdt. So if g ∈ L2(R+, dx/x),
we have ∫ ∞

0

|g(x)|2 dx

x
=

∫ ∞

−∞
|g(e−t)|2 dt.

Then by applying the inverse Fourier transform to g(e−t) and rotating by a factor of
i, we obtain a function that is in L2(iR). The map that achieves all three of these
transformations is called the Mellin Transform.

Definition 6.2. The Mellin Transform is a unitary mapping from L2(R+, dx/x)
onto L2(iR) defined by

F∗g(z) =
1√
2π

∫ ∞

0

g(x)xz dx

x
, z ∈ iR. (6.2)

Consider F∗L2((0, 1), dx/x). The change of variable x = e−t above gives the space
L2(R+, x). Applying the inverse Fourier transform gives the space H2(U), which
results by combining Theorem 4.2 with Lemma 6.2.2 in [Nik02, p. 144]. Finally, the
change of variable w = iz rotates this space to give that

F∗L2((0, 1), dx/x) = H2(R). (6.3)
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6.2 Nikolski’s Theorem

In Nikolski’s paper [Nik95], he introduces the distance function dE, which is defined
below. This idea of using a distance function is what differentiates his approach
to the zeros of the Riemann ζ-function from Nyman and Beurling’s approach. As
mentioned in the introduction, Nyman gives a equivalent statement to the Riemann
hypothesis in [Nym50], and in fact, this turns out to be a special case of Theorem
8.4.1 in [Nik02]. The flexibility that arises from using a distance function allows
Nikolski to prove more general results. The theorem proved in this section (Theorem
6.6) leads to the most general result, that is, the aforementioned Theorem 8.4.1
in [Nik02]. Next we define the distance function dE.

Definition 6.3. Let H be a Hilbert space and suppose E ⊂ H is a closed subspace.
Define the distance function of E by dE(λ) = dist(kλ, E) = infe∈E ‖kλ − e‖ =
‖P⊥

E kλ‖, where P⊥
E kλ is the projection of kλ onto the orthogonal complement of E,

denoted E⊥.

The fact that dE(λ) = ‖P⊥
E kλ‖ comes from Hilbert space theory (see [Rud87,

pp. 80–81]). In addition, we know that

d2
E(λ) + ‖PEkλ‖2 = ‖kλ‖2,

or equivalently,
‖PEkλ‖2‖kλ‖−2 = 1− d2

E(λ)‖kλ‖−2. (6.4)

Before we can prove the main theorem of this thesis, we need to prove a Lemma
and a preliminary Theorem regarding the space H2(R).

Lemma 6.4. Let F be a subspace of H2(R), s ∈ R, and

ε2
F (s) = 1− d2

F (s)‖ks‖−2
H2(R),

where ks is the reproducing kernel of H2(R). Let further ν ∈ R be a zero of F (i.e.
f(ν) = 0 whenever f ∈ F ). Then

εF (s) 6 |bν(s)|,

where bν = (z − ν)(z − ν∗)−1 stands for a Blaschke factor. The complex number ν∗
is the reflection of ν in the imaginary axis.

Proof. If f ∈ F , the main result of that last chapter applied to H2(R) allows us to
write f = bνg, where ‖g‖H2(R) = ‖f‖H2(R), and hence

|f(s)| = |bν(s)||g(s)| = |bν(s)|(g, ks) 6 |bν(s)|‖g‖H2(R)‖ks‖H2(R)
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for all s ∈ R. We then deduce that

|bν(s)| > |f(s)|
‖f‖H2(R)‖ks‖H2(R)

,

or equivalently,

|bν(s)| > sup
f∈F

|f(s)|
‖f‖H2(R)‖ks‖H2(R)

.

We can now write

|bν(s)| > sup
g∈F
‖g‖=1

|g(s)|‖ks‖−1
H2(R) = ‖ϕs|F‖‖ks‖−1

H2(R) = ‖PEks‖‖ks‖−1
H2(R) = εF (s),

where the first equality comes from a corollary to the Hahn-Banach Theorem (see
[Rud87, p. 108]), the second equality holds by Lemma 8.1.2 in [Nik02], and the third
inequality holds by (6.4).

Corollary 6.5. Let F be a subspace of H2(R) and let s ∈ R. Then the disk

{z ∈ R : |bs(z)| < εF (s)},

where ε2
F (s) = 1− d2

F (s)‖ks‖−2
H2(R), is free of zeros of the subspace F .

Theorem 6.6. (Nikolski)
Let s ∈ R and let γ > 0. Also, let

Eα,γ(x) = xγ

([α

x

]
− α

[
1

x

])
, 0 < x < 1, (6.5)

where 0 6 α 6 1, and

d2
γ(s) = inf

∫ 1

0

∣∣∣∣∣x
s −

∑
α

aαEα,γ(x)

∣∣∣∣∣

2
dx

x
, (6.6)

the inf being taken over all finite linear combinations of Eα,γ, 0 6 α 6 1. Then the
disk

Ds,γ = γ + Ds = γ +

{
z :

∣∣∣∣
z − s

z − s∗

∣∣∣∣
2

< 1− 2d2
γ(s) Re s

}
(6.7)

is free of zeros of the Riemann ζ-function.

Proof. We want to apply Corollary 6.5. Using the notation from the corollary, set
F = F∗Kγ, where

Kγ = spanL2((0,1),dx/x)(Eα,γ : 0 < α < 1).
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Note that dγ(s) = dist(xs, Kγ). Since F∗L2((0, 1), dx/x) = H2(R), Corollary 6.5
implies that the disk {z : |bs(z)| < εF (s)} is free of zeros of the subspace F . If
we rotate a Blaschke factor in the previous chapter by −i, we get that |bs(z)| =
|z − s||z − s∗|−1.

We want to compute the Mellin transform F∗Kγ. To do this we need to compute
the following:

F∗Eα,γ(z) =
1√
2π

∫ 1

0

xz+γ−1([α/x]− α[1/x]) dx

=
1√
2π

∫ ∞

1

u−z−γ+1([αu]− α[u])
du

u2

=
1√
2π

∫ ∞

1

[αu]u−z−γ−1 du− 1√
2π

∫ ∞

1

α[u]u−z−γ−1 du

=
1√
2π

∫ ∞

α

[t]

(
t

α

)−z−γ−1
dt

α
− 1√

2π

∫ ∞

1

α[t]t−z−γ−1 dt

=
1√
2π

∫ ∞

1

αz+γ[t]t−z−γ−1 dt− 1√
2π

∫ ∞

1

α[t]t−z−γ−1 dt

=
1√
2π

(αz+γ − α)

∫ ∞

1

[t]t−z−γ−1 dt

=
1√
2π

(αz+γ − α)
ζ(z + γ)

z + γ
. (6.8)

The last equality holds using Lemma 2.14.
We want to know the zeros of the subspace F = F∗Kγ of H2(R), that is, the

common zeros of the family of functions F∗Eα,γ, 0 < α < 1, where α is our index.
Using (6.8), this occurs if ζ(z + γ) = 0 or αz+γ − α = 0. But

αz+γ − α = 0 ⇐⇒ (z + γ) log(α) = log(α) + 2πik

⇐⇒ (z + γ − 1) log(α) = 2πik.

If for α ∈ (0, 1), k = 0, then z + γ = 1. So the zero is cancelled out by the pole of
ζ(z + γ). So we need only to solve

(z + γ − 1) log(α) = 2πik (6.9)

for k ∈ Z \ {0}. But, for example, α1 = 1/2
√

2 and α2 = 1/2 gives that log(α1)
log(α2)

=
√

2.

This implies that the solution set of (6.9) is empty. For if z0 was a zero of F , then
(6.9) must hold for all α, in particular for α1 and α2. This gives

1− γ +
2πik1

log(α1)
= 1− γ +

2πik2

log(α2)
,
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or
k1

k2

=
log(α1)

log(α2)
,

which cannot hold since log(α1)/ log(α2) =
√

2. Hence the common zeros of the
family F∗Eα,γ, 0 < α < 1, are {z : Re z > 0, ζ(z + γ) = 0}.

Let χ stand for the characteristic function, and let J represent the change of
variable x = e−t. We then derive

kλ = F−1J
(
(2π)−1/2xsχ(0,1)(x)

)
, (6.10)

since for x = e−t and s = iλ

F−1
(
(2π)−1/2e−tλiχ(0,∞)(x)

)
=

(
1√
2π

)2 ∫ ∞

0

e−λixeitx dx

=
1

2π

∫ ∞

0

eix(t−λ) dx

=
1

2πi(t− λ)

(
eix(t−λ)

)∣∣∣
x=∞

x=0

=
1

2πi(t− λ)
(0− 1)

=
1

2πi(λ− t)
.

Also,

‖kλ‖ =
√

kλ(λ) = (2πi)−1/2(λ̄− λ)−1/2

= (2πi)−1/2(−2i Im λ)−1/2

= (4π Im λ)−1/2

= (4π Re s)−1/2.

Therefore, ‖kλ‖−2 = 4π Re s. Since F∗ is an isometry, (6.10) yields

ε2
F (s) = 1− d2

F (s)4π Re s = 1− ‖PF⊥
√

2πkλ‖2

2π
4π Re s

= 1− (dist(Kγ, x
s))

2π

2

4π Re s

= 1− d2
γ(s)

2π
4π Re s

= 1− 2d2
γ(s) Re s,
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and we have

Ds,γ = γ + Ds = γ +

{
z :

∣∣∣∣
z − s

z − s∗

∣∣∣∣
2

< 1− 2d2
γ(s) Re s

}

is free of zeros of ζ(s) by Corollary 6.5.

The following corollary allows one to more easily conduct numerical experiments
by selecting a subspace F of Kγ that is not necessarily invariant, which means that
multiplication of a function in F by z need not produced a function in F . The
subspace could even be one-dimensional. For an example, see [Nik95, p. 156].

Corollary 6.7. Let F be any subspace of Kγ. Then the disk

γ +

{
z :

∣∣∣∣
z − s

z − s∗

∣∣∣∣
2

< 1− 2d2
F (s) Re s

}

is free of zeros of the ζ-function.

Along this same vein, V. I. Vasyunin performs some sophisticated numerical ex-
periments in [Vas95] using the function en, which relates to the above Eα,γ. It is
defined on (0,∞) by en(x) = [1/(nx)]− (1/n)[1/x]. Using these functions, he man-
ages to prove that

∑∞
n=1 µ(n)en(x) = 1, where the convergence is pointwise and µ is

the Möbius function. If this convergence can be shown to occur in L2(0,∞), then the
Riemann Hypothesis would be true. However, Vasyunin’s results indicate that this
may not be true. Also in [BS00, p. 135], the authors Balazard and Saias describe the
“feeling” that this would be true as a “mirage.” However, they proceed to deduce
many questions related to this necessary and sufficient condition for the Riemann
Hypothesis. Some numerical experiments related to these questions can be found
in [LR02].

32



Bibliography

33



Bibliography

[Aro50] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc.,
68:337–404, 1950.

[Beu55] Arne Beurling. A closure problem related to the Riemann zeta-function.
Proc. Nat. Acad. Sci. U.S.A., 41:312–314, 1955.

[BS00] Michel Balazard and Eric Saias. The Nyman-Beurling equivalent form for
the Riemann hypothesis. Expo. Math., 18(2):131–138, 2000.

[Con78] John B. Conway. Functions of one complex variable, volume 11 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1978.

[LR02] Bernard Landreau and Florent Richard. Le critère de Beurling et Nyman
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