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Abstract 

Several fabricators have recently noted the occurrence of reheat 

cracking in the weld deposits of 2¼[ two and one fourth]Cr-1Mo-¼[one 

fourth]V (22V) during the fabrication of pressure vessels used in the 

petrochemical industry.  Due to increased oversight now required during 

fabrication of already expensive pressure vessels, studies have 

commenced worldwide in an effort to identify root causes and formulate 

mitigating actions to weld reheat cracking issues.  The Materials Joining 

Group (MJG) at the University of Tennessee at Knoxville (UTK) have 

adapted an existing reheat cracking test originally developed for use with 

alloys similar to 22V.  This original C-Ring test was used successfully, and 

as such, has set the foundation for the development of the modified C-Ring 

discussed in this report.  A modified test, the Notched C-Ring Reheat 

Cracking Test (NCRRCT) has been developed.  The NCRRCT is able to 

accurately rank 2¼ [two and one fourth]Cr-1Mo-¼[one fourth]V (22V) weld 

deposits for reheat cracking susceptibility, and in doing so identify 22V weld 

deposits susceptible to reheat cracking before issues arise during 

fabrication.  The NCRRCT meets all of the attributes of the so-called “Ideal 

Weldability Test”, in that it shows a direct correlation with actual fabrication, 

yields reproducible results, highlights small changes in testing variables, 
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clearly demonstrates the effects of welding related variables (i.e., weld 

design and heat input), is economical, and applies to all welding processes 

[1].   
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Introduction  

 Although other service applications exist, the 22V (2¼Cr-1Mo-¼V 

steel) pressure vessels are most often utilized for hydrocrackers by the 

petrochemical industry.  Hydrocrackers are pressure vessels used in the 

refining process of transforming the complex hydrocarbon chains in crude 

oil into derivative hydrocarbons under the influence of high heat, pressure, 

and a catalyst.  Hydrocarbons refined in these vessels make up the 

majority of consumable carbon fuel products.  Reliable hydrocrackers are 

tantamount to the production of essential consumable fuels such as diesel 

fuel, gasoline, and jet fuel [2].  

 Hydrocrackers are subject to extreme and often potentially harmful 

environments. Service temperatures are in the 400°C-454°C (750°F-850°F) 

range and hydrogen partial pressures can be above 10MPa (1450psi)[3].  

Standard Cr-Mo steels have been used in the production of pressure 

vessels since the 1960s.  The pressure vessels produced prior to the 

widespread use of 22V were not susceptible to weld deposit reheat 

cracking.  In these early pressure vessels the coarse-grained base metal 

heat affected zone (CG BM HAZ) was prone to reheat cracking.  However, 

the vanadium modified alloy (22V) provides superior performance over the 

earlier Cr-Mo steels due to superior mechanical properties and offers the 
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added benefit of enhanced resistance to hydrogen assisted cracking 

(HAC).  These enhanced properties are possible due to the formation of 

finely dispersed vanadium carbides which increase strength and traps 

diffusible hydrogen which can potentially lead to HAC.  Though the 

vanadium addition also makes the 22V alloy susceptible to weld deposit 

reheat cracking.  The first 22V hydrocracker was produced in 1996 and has 

since become the most widely used material for hydrocrackers in the 

petroleum industry [3]. 

Weldments in 22V pressure vessels use matching chemistry weld 

deposits and base metal.  The 22V welds have the same thermal 

expansion coefficients, creep strength and resistance to HAC as the 22V 

base metal.  This facilitates uniform thermal expansion and contraction of 

the vessel during each start-up and shut-down cycle of the refining 

process.  The 22V weld deposits will also creep at similar rates as the base 

metal prolonging the service life of the vessel.  While 22V welds require a 

higher Level of oversight to meet the welding requirements inherent to 

using this material, these matching weld deposits are necessary to 

maintain component integrity and safety during the refining process for the 

duration of the vessel’s lifetime. 
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In 2008, the occurrence of cracking in 22V submerged arc weld 

(SAW) deposits in pressure vessels was reported.  These weld deposit 

cracks were characterized by “clusters of fine transverse intergranular 

cracks within the weld deposits.”  The cracks were described as 

intergranular with the cracks propagating through the full thickness of the 

weldment [4].  Cracking, during fabrication, is a high priority issue for the 

petroleum industry as many 22V vessels are currently in production and 

many more will be produced in the foreseeable future.  Many of these 

discontinuities have been classified as reheat cracks due to the 

metallurgical and geometric characteristics.  Because of the speculation 

that harmful tramp elements become entrained in the weld deposit, and 

lead to reheat crack formation, recent studies have focused on welding 

consumables as the culprit [5, 6]. 

The recent fabrication issues in 22V have prompted the Materials 

Joining Group (MJG) at the University of Tennessee, Knoxville (UTK) to 

become involved with the study of 22V, specifically the development of a 

modified test to rank the susceptibility to reheat cracking in 22V weld 

deposits.  UTK has a long and successful history in the study of Cr-Mo 

steels used in the petroleum industry in partnership with the Department of 

Energy (DOE), The Welding Research Council (WRC), and the Materials 
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Property Council (MPC)[7-22].  The modified test, NCRRCT, will provide 

the petrochemical industry with an economical method of identifying 

welding consumables and practices that are potentially susceptible to 

reheat cracking.  

The research documented herein is divided into six parts.  

 Part I is a literature review of reheat cracking in Cr-Mo steels 

and is aimed to give the reader a background for the 

development initiatives appropriated by the UTK MJG and 

conclusions drawn in the  remainder of this report.   

 Part II covers the history, development, and use of the 

NCRRCT.   

 Part III discusses a preliminary study performed to identify 

fracture surface morphology in 22V materials.   

 Part IV outlines the experimental procedures utilized in this 

study.   

 Part V covers the results and discusses the findings.   

 Part VI provides the conclusions from the development of the 

NCRRCT.  
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 Part VII anticipates future work to further the development of 

the NCRRCT and understand the phenomena of reheat 

cracking 

I.  Literature Review 

Reheat Cracking 

Reheat cracking is also known as stress relief cracking, post weld 

heat treatment (PWHT) cracking, and stress rupture cracking.  Reheat 

cracking is a potential issue in Cr-Mo alloys, including the 22V alloy.  

Paradoxically, the same factors that enhance these alloys’ properties also 

cause susceptibility to reheat cracking.  Cr-Mo steels containing less than 

3% Cr are generally understood to be susceptible to reheat cracking [23, 

24].  Erwin and Kerr noted that “[reheat] cracking is manifested by low 

rupture ductility and intergranular fracture along prior austenite grain 

boundaries, typically occurring in the coarse grained HAZ and occasionally 

in the weld metal, after an initially sound weldment has been subjected to a 

postweld heat treatment [25].” Though reheat cracking is generally 

associated with the coarse grained base metal heat affected zone (CG BM 

HAZ), this work will focus on the study of reheat cracking in 22V weld 

deposits.  Reheat cracking occurs during a PWHT when stress relief takes 
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place due to the lowering of the yield strength and carbide formation (that 

was originally prevented due to the rapid cooling of the weldment) takes 

place and grain boundaries are weakened, allowing cracks to form [25]. 

Reheat cracking is characterized by intergranular fracture, therefore, 

it can be concluded some mechanism is present that weakens the grain 

boundaries.  The mechanism weakening the grain boundaries is a point of 

contention in the welding research community.   

The superior mechanical properties of Cr-Mo weldments are attained 

through the formation and growth of carbides, though these carbides are 

directly related to the reheat cracking potential.  The segregation of the 

carbide forming elements in the solid as the molten weld deposit rapidly 

cools can be described by the distribution coefficient, “k”  The distribution 

coefficient defines the propensity for elements to solidify either in the grain 

interiors or at the grain and dendrite interstices.  “K” is determined by 

calculating the ratio of the elemental concentration in the solid (CS) divided 

by the elemental concentration in the  liquid (CL) using an equilibrium 

phase diagram [26].   

Most elements in iron exhibit a “K” value less than 1, and thus have a 

tendency to segregate to the grain boundaries and at dendrite boundaries.  
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Those elements in iron having the smallest “K” have the greatest effect on 

segregation.  Alloying elements (i.e., chromium, molybdenum, and 

vanadium) which act to strengthen the alloy have distribution coefficients 

close to 1 and thus do not have a high tendency to segregation to grain and 

dendrite boundaries.  Tramp elements (i.e., sulfur, phosphorus, and boron) 

have distribution coefficients near zero and thus exhibit a high propensity to 

segregate to grain boundaries during solidification [27].  Solidification 

segregation of these elements results in boundary enrichment and they do 

not act to strengthen the matrix.  For example, distribution coefficients of 

some common alloying elements and common tramp elements in delta iron 

are provided in Table 1.  Delta iron is the initial phase to form during 

solidification.  Once solidification has occurred, the diffusion of 

substitutional alloying elements is minimized due to the rapid cooling of the 

weld. 



8 
 

Table 1.  Partial list of distribution coefficients in delta iron [27]. 

  

 

Upon PWHT or exposure to elevated service temperatures, carbides 

that strengthen the matrix precipitate at dislocations in the grain interiors.  

These fine, uniformly distributed carbides consisting of chromium, 

molybdenum, and vanadium strengthen the grain interiors [28].  Several 

studies have noted secondary hardening of the grain interiors [15, 21, 29-

31].  These carbides are coherent or semi-coherent with the iron matrix and 

are known to be stable for prolonged times at elevated temperatures [31-

34].  Carbides also form along grain boundaries.  However, the grain 

Element
Distribution Coefficient, k  ,                   

For given elements in delta iron

Chromium 0.95

Molybdenum 0.80

Vanadium 0.90

Aluminum 0.92

Cobalt 0.90

Tungsten 0.95

Manganese 0.84

Nickel 0.80

Copper 0.56

Hydrogen 0.32

Boron 0.05

Nitrogen 0.28

Oxygen 0.02

Phosphorus 0.13

Silicon 0.66

Sulfur 0.02

Titanium 0.14
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boundaries are enriched with tramp elements as well as the principal 

alloying elements.  Higher diffusion rates along grain boundaries enable 

carbide coarsening.  Grain boundary carbides become incoherent with the 

grain matrix because high diffusivity paths along the grain boundaries allow 

carbide evolution to occur at a greater rate than in the grain interiors.  Thus, 

strain in the weldment must be accommodated in the weakened the grain 

boundaries as opposed to the grain matrix which possesses a greater 

strength.  As this process proceeds, the ratio of grain matrix strength to 

grain boundary strength increases, and strains at the grain boundaries 

increase, especially if the grains are large (i.e., less grain boundary area).  

This strain accumulation along grain boundaries can potentially cause 

intergranular cracking [28, 35].  

In order for residual stresses to be relieved, the yield strength must 

be decreased, which naturally occurs at elevated temperatures, forcing 

plastic flow to occur along grain boundaries leading to rupture of the grain 

boundary.  Reheat cracking can thus occur when the grain boundaries 

cannot accommodate local strains.  As a precursor to grain boundary 

rupture, cavitation and voids form along the grain boundaries by particle 

decohesion which, coupled with grain boundary strain, eventually leads to 

intergranular rupture [6, 12, 32, 36-38].  Figure 1 details the microstructural 
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changes leading to reheat crack formation caused by precipitation 

strengthening and particle decohesion.  

 

Figure 1.  Microstructural changes from austenite in two adjacent 
grains leading to reheat cracking due to the precipitation 
strengthening mechanism, adapted from Nawrocki [39]. 
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In the late 1960’s, B. A. Glossop was one of the first researchers to 

note the susceptibility of Cr-Mo-V weldments to reheat cracking [40]. His 

work was predicated on the microstructure analysis of cracked Cr-Mo-V 

weldments.  Carbides along grain boundaries were found to be initiation 

sites for cavities, eventually leading to decreased ductility along weakened 

grain boundaries.  Lundin et al.’s extensive studies noted coarsened, 

incoherent M3C carbides on grain boundaries of Cr-Mo alloys susceptible 

to reheat cracking while vanadium, tungsten, and chromium carbides 

formed in the grain interior leading to matrix strengthening [15, 21, 41].  

Nawrocki’s recent studies have re-confirmed that reheat cracking is 

initiated by voids due to the incoherency of M3C carbides on prior austenite 

grain boundaries in 2 ¼Cr-1Mo alloys and in HCM2S (a ferritic alloy steel) 

[31].  

Formation of a denuded region along grain boundaries has been 

proposed in several studies.  Due to diffusion and grain boundary 

migration, these zones/regions are thought to be devoid of the alloying 

elements originally added to promote strengthening of the grain matrix.  

Hardness studies have noted that this denuded region is significantly softer 

than the carbide-rich grain boundaries and interiors [12, 35, 38, 42, 43].  

These studies further suggest that the softer regions are susceptible to 
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cavitation and rupture, as the localized strain accumulated during stress 

relief is concentrated in those regions.   

In a study by Edwards, a low chromium, high vanadium steel 

exhibited a denuded zone prior to stress relief cracking [35].  However, this 

study focused on Cr-Mo-V alloys subjected to a solution treatment of 

1150°C and noted that Cr-Mo-V steels without the solution treatment did 

not exhibit a denuded zone.  Studies by Lundin, Meitzner, and Pense found 

no correlation between the denuded regions and reheat cracking [9, 36].  In 

Lundin’s extensive studies, reheat cracking occurred after only minimal 

amounts of time (1-30 minutes in some cases) upon reaching critical 

temperatures (567-678°C (1050-1250°F)) which would not allow the 

necessary time for a denuded region to form [12, 15, 44].  Swift elaborated 

by noting that the denuded zones only formed after a significant amount of 

time at an elevated temperature where the strains necessary to drive 

reheat cracking would have already been relieved [32].  It is important to 

note that at elevated temperatures, stresses are relieved through a 

recovery and relaxation process in which plastic deformation of grains and 

grain boundary sliding occur due to elevated temperatures lowering the 

matrix’s yield strength, allowing deformation to take place. Linnert showed 

that this recovery and relaxation process occurs quickly (within an hour of 
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reaching an elevated temperature) thus significant denuded zones do not 

have sufficient time to form (see Figure 2) [45].   

 

Figure 2.  Influence of time and temperature on relieving stress.  
Stress was greatly reduced in the first 2 hours of tempering of a mild 
carbon steel in a study by Linnert [45]. 

 

The embrittlement of grain boundaries by preferential segregation of 

tramp elements has been shown to be a precursor to reheat cracking [29, 

31, 34].  This theory was noted after differences in reheat cracking 

sensitivity were found to deviate on a heat-to-heat basis.  A wide variety of 

tramp elements are considered to promote grain boundary weakening.  

Solute rejection during solidification causes tramp elements to be enriched 
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at the grain boundaries.  Tramp elements have low distribution coefficients 

in iron or are completely immiscible in iron indicating a strong propensity for 

grain boundary segregation (see Table 1).  Interactions between tramp 

elements and other alloying elements are considered to hamper the 

formation of more coherent carbides along grain boundaries.  Hippsley 

observed the formation of micro-voids due to manganese sulfides that 

precipitated on grain boundaries [46].  In an extensive study of Cr-Mo 

steels, Lundin et al. noted that phosphorus was found on fracture surfaces 

of embrittled grain boundaries, though it was also observed that carbide 

evolution played a significant role in reheat cracking [15, 21].  A recent 

study by Heo et al. proposed a similar mechanism wherein tramp elements, 

notably phosphorus, embrittle grain boundaries by forming on incoherent 

carbide surfaces subsequently forming cracks along the carbide-grain 

boundary interface [34].  Conversely, Nawrocki et al. noted that tramp 

element segregation did not play a role in reheat cracking of a ferritic alloy 

steel (HCM2S) [31].  Thus, there is still controversy as to the reheat 

cracking mechanism in the welding research community. 

The theory of reheat cracking in steels is a complex phenomenon due 

to the many variables and unknowns.  As a result, Vinckier and Dhooge 

theorized a combination of mechanisms wherein segregation of tramp 
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elements combined with precipitation strengthening is necessary for reheat 

cracking to occur [47].  These findings are mirrored by several other studies 

noting that precipitation strengthening and impurity segregation are directly 

correlated with reheat cracking [15, 21, 34].  Though the details of reheat 

cracking are not fully understood, an extensive literature review and the 

author’s findings suggest that a mixed mode involving both precipitation 

strengthening and tramp element segregation is the most plausible 

mechanism describing this reheat cracking.   

There are other known factors that contribute to the formation of 

reheat cracks.  The presence of a stress riser is acknowledged as a 

necessary requirement for the initiation of reheat cracks.  A stress riser 

may be metallurgical or geometric in the form of a weld defect, 

discontinuity, or dislocation pile-up [12].  The stress riser magnifies residual 

stresses already present in a restrained weldment due to expansion and 

contraction of the weld region during fabrication.  The microstructure of the 

HAZ or weld deposit also plays an important role in reheat cracking.  The 

weldment must contain a susceptible microstructure to form reheat cracks.  

Bainite and/or martensite are required for the formation of reheat cracks.  

Studies have differed in the identification of which one exhibits the highest 

susceptibility.  Meitzner and Pense identified martensite and lower bainite 
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to be more prone to reheat cracking than upper bainite, while other studies 

have shown that bainitic structures are more prone than martensitic 

structures [36, 48].  Despite these differences in the uncertainties, the 

presence of a stress riser coupled with a susceptible microstructure causes 

the development of reheat cracks.  

Ito and Nakanishi have developed five simplistic requirements for the 

formation of reheat cracks [48]. 

1.  The material must have undergone a thermal cycle that results in 

     solutionization of alloying elements. 

2.  For HAZ regions, grain growth must have occurred as a result of 

     exposure to elevated temperatures induced by a welding process.  

3.  Re-exposure at an elevated temperature above 620°C (1148°F)  

4.  Grain strength and internal stresses must exceed the strength of 

     the grain boundaries 

5.  A stress riser must be present to initiate cracking. 
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Carbide Formation.  

Carbides are present in all steels and directly influence the 

mechanical properties.  Carbides form in the grain matrix as elements in 

solution diffuse and/or coalesce to discontinuities (such as dislocations and 

stacking faults) in the grain interiors and at grain boundaries.  The type, 

amount, and evolutionary cycle of carbides are dictated by several factors 

such as starting microstructure, tempering temperature, and time at 

temperature [49].  Different alloying elements react with carbon to form a 

variety of carbides, each with different properties and varying interactions in 

the matrix.  The original forms of the carbides are as follows: Fe3C, Mo2C, 

Cr7C3, V4C3 or Cr23C6, but these carbides may also contain atoms of 

different elements.  For this reason, general notations have been derived to 

designate the different carbides.  Table 2 gives the proper notation for each 

of the carbides in Cr-Mo steels [29]. Tamaki’s extensive work has identified 

the general tempering stage for these carbides to precipitate in the matrix 

(Table 3)[29].  Baker and Nutting also proposed a sequence of carbide 

formation which can be found in Figure 3 [49]. 
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Table 2.  Notation of carbides present in Cr-Mo-V steels [29]. 

   

Table 3.  Carbide changes as a function of chemical composition, 
tempering time, and tempering temperature in Cr-Mo-V steels [29]. 

  

 

Original Form of Carbide Fe3C Mo2C Cr7C3 V4C3 Cr23C6 and Fe21Mo2C6

Notation of Carbide                       

in Cr-Mo Steel
M3C M2C M7C3 M4C3 M23C6

Cr Mo V
Early                              

(<1105°F and < 1Hr)

Middle                                       

( >1105°F and >1Hr)

Final                                                

( >1105°F and >10Hr)

Low Low High M3C V4C3 V4C3

Low High Low M3C M2C M23C6

High Low Low M3C M7C3 M7C3 or M23C6

Elemental Levels Tempering Stage
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Figure 3.  Baker and Nutting illustrate the sequence of carbide 
formation in Cr-Mo steel [49].  The blue box indicated the reheat 
cracking susceptible zone.  Red lines show the approximate testing 
time (2 hrs) and temperatures (567-678°C (1050-1250°F)) of the 
Notched C-Ring Reheat Cracking Test.  

 

J.E. Indacochea and others have provided summarized descriptions 

of many of the carbides [50]:   

 -M3C is a derivative of Fe3C and is one of the most common 

carbides found in Cr-Mo steels.  This carbide has been shown in 

many studies to be the most relevant to reheat cracking [15, 16, 

21, 31]. 
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 -M7C3 is a chromium carbide (Cr7C3), though it is known to 

dissolve Fe, Mn, Mo, V and Ni.  M7C3 is known to form on 

interfaces between other carbides and the ferrite matrix.   

 -M23C6 is based on another chromium carbide, Cr23C6, and 

dissolves V and Ni.  Baker and Nutting found M23C6 throughout the 

matrix in quenched and tempered 2¼Cr-1Mo steels, but only in 

banitic regions of the tempered steels [49].  M23C6 was found to 

have grown in the interior of the bainite regions at the expense of 

Fe3C and Mo2C.   

 -M6C is a triple carbide formed from a composition varying 

between Fe4Mo2C and Fe3Mo3C.  M6C dissolves both Cr and V 

and grows rapidly on grain boundaries at the expense of 

surrounding carbides.   

 -M2C is a molybdenum rich carbide, Mo2C, and dissolves up to 

30% Cr and V.  M2C is coherent when first precipitated though 

upon growth loses some of the coherency.  

 -M4C3 is a vanadium carbide, V4C3, and dissolves Cr and Mo.  It 

grows directly from the matrix and does not depend on the 

formation of other carbides [12].  Glossop noted cavitation 

heterogeneously nucleated at V4C3 particles in Cr-Mo-V steels 
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[51]. Studies performed by Tamaki found that M4C3 was 

responsible for secondary hardening in vanadium bearing steels, 

aiding in the precipitation strengthening of grain interiors [29]. 

Cr-Mo Steels 

The same factors that make chromium-molybdenum steels 

advantageous for use in petroleum industry have a detrimental effect on 

reheat cracking susceptibility.  For this reason, the development of Cr-Mo 

steels has been evolving for the better part of the past century for high 

temperature applications where creep strength, corrosion/oxidation 

resistance, and hydrogen embrittlement are concerns [12].  Cr- Mo steels 

generally contain 0.5-9.0% Chromium and 0.5-2.0% Molybdenum [20].  

The first generation of Cr-Mo steels was developed in Germany with 2.25-

3.8% Cr and operated in the pressure range of 28-70MPa.  This alloy was 

used unchanged until the 1960’s when the first modern hydroprocessing 

reactors required the development of the second generation of the Cr-Mo 

alloys giving improved toughness (54 Joules at 10°C (40 ft-lbs at 50°F)).  

The second generation did not address temper embrittlement, so the 

1970’s saw the development of the third generation of Cr-Mo steels.  The 

third generation Cr-Mo steels addressed temper embrittlement by limiting 

the amount of tramp elements and the development of the J-factor [3].  The 
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J-Factor is a parameter designed to limit tramp elements levels to reduce 

temper embrittlement in Cr-Mo alloys [52].  In the 1980’s the J-factor was 

lowered further from 180 from the 1970’s to 100 thus yielding better 

resistance to temper embrittlement and an increase in toughness in the 4th 

generation Cr-Mo (54 Joules at -32°C (40ft-lbs at -25°C)).    

J-Factor = 104  x (P+Sn) x (Mn+Si) 

The 1980’s and 1990’s saw the development of modern alloys and 

incorporation of the newer alloys into power generation and process 

industries.  The modern alloys benefit from better processing techniques 

and better understanding of alloying elements, toughness levels are now 

reaching 54 Joules (40 ft-lbs) below -40°C (-40°F) [3].   These levels were 

obtained by the careful addition of alloying elements such as vanadium, 

niobium, titanium and boron. These alloying elements form carbides, 

resulting in an increase in creep strength, resistance to temper 

embrittlement, and greater resistance to HAC.  The addition of these 

alloying elements spawned several new alloys such as 22V, T23, and T24.  

2¼Cr-1Mo-¼V (22V) 

     2¼Cr-1Mo-¼V or 22V alloy has become an industry standard for use in 

refineries and petrochemical plants.  22V has several advantages over the 

original Cr-Mo alloys.  These improvements include: enhanced tensile 
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strength, better creep rupture strength, and improved hydrogen resistance.  

These advantages are shown in Table 3 and Figure 4 .  These improved 

properties allow fabricators to reduce the wall thickness or increase 

processing temperatures in the 22V pressure vessels resulting in economic 

benefits [52].  The 22V out performs the non-vanadium alloys due to the 

presence of finely dispersed vanadium carbides that are more stable than 

the chromium and molybdenum carbides formed in non-vanadium bearing 

Cr-Mo  steels. 
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Table 4.  22V alloy compared to similar Cr-Mo alloys used in the 
production of pressure vessels.  Note the superior performance of 
22V in all categories [52].   

  

  

Steel Grade 22V (2 ¼Cr-1Mo-¼V ) Conventional 2 ¼Cr-1Mo 3Cr-1Mo-¼V-Ti-B 3Cr-1Mo-¼V-Nb-Ca Conventional 3Cr-1Mo

Max. Allowed 

Temperature               

ASME VIII-2

482°C 482°C 454°C 454°C 454°C

Max. Allowed 

Temperature               

API 941

510°C 454°C 510°C 510°C 510°C

Minimum                   

Tensile                    

Strength

586 MPa 517 MPa 586 MPa 586 MPa 517 MPa

Minimum                   

Yield                    

Strength

414 MPa 310 MPa 414 MPa 414 MPa 310 MPa

at 454°C                                                      

169 MPa

at 454°C                                                             

150 MPa

at 454°C                                      

164 MPa

at 454°C                                      

164 MPa

at 454°C                                      

131 MPa

at 482°C                                                       

163 MPa

at 482°C                                                                

117 MPa
- - -

at 454°C                                                    

298 mm

at 454°C                                                                

338 mm

at 454°C                                         

307 mm

at 454°C                                         

307 mm

at 454°C                                         

392 mm

at 482°C                                                  

310 mm

at 482°C                                                         

442 mm
- - -

454°C Design: 

Reactor Weight 

Typical Cost

916 Metric Tons                                      

5.5 £ x106

1038 Metric Tons                                               

5.65 £ x106

944 Metric Tons                

5.61 £ x106

944 Metric Tons                

5.61 £ x106

1203 Metric Tons                

6.26 £ x106

482°C Design: 

Reactor Weight 

Typical Cost

953 Metric Tons                                               

5.72 £ x106

1359Metric Tons                                             

7.39 £ x106 - - -

Design Stress 

Intensity Value 

ASME VIII-2

Wall Thickness
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Figure 4.  Time to creep rupture verses vanadium content.  The 22V 
alloy shows superior creep rupture performance compared to 
standard 22 and other Cr-Mo alloys [53]. 

 

 22V has been in use in the fabrication of hydrocrackers by the 

petrochemical industry since the late 1990’s and over 200 22V  reactors 
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had been fabricated by 2006 with more having been completed since [44].  

API 934 dictates fabrication procedures using 22V and required mechanical 

properties.  The 22V alloy is designed to be used in the quenched and 

tempered condition with minimum tensile strengths of 85-105 Ksi (586 -724 

MPa) and a yield strength of 55-100 Ksi (379- 690 MPa) depending on the 

grade.  Like the 5th generation of Cr-Mo steels, the impact toughness is 

required to meet 54 Joules (40 ft-lbs) @ 0°F (-18°C) and the J-factor is also 

adopted from the Cr-Mo steels to limit the presence of tramp elements.   

 Fabrication procedures for 22V reactors are defined in API 934 [3, 

44].  A weld preheat of 177°C (350°F) is the minimum temperature allowed.  

The preheat limits the cooling rate thus affecting the microstructure of the 

base metal HAZ and the weld deposit.  The preheat must be maintained 

until the intermediate stress relief treatment (ISR) or the final PWHT is 

performed.  After welding, a dehydrogenation heat treatment (DHT) of 

350°C (660°F) is required to remove potentially harmful hydrogen from the 

weld. An ISR of 650°C (1200°F) is required after the DHT to partially relive 

stresses incorporated in the weldment so that the welded component may 

be stored before the final PWHT is performed. A PWHT of 705°C (1301°F) 

for a minimum of 8 hours is necessary to attain the required toughness and 
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remove any retained hydrogen trapped in the matrix after the initial DHT 

and ISR. 

Chemical Composition 

22V gains much of its strength through the formation of coherent 

carbides throughout the matrix.  The major alloying elements (Cr, Mo and 

V) are all strong carbide formers which act to form carbides during the 

thermal cycles experienced by the steel.  These same alloying elements 

also make the steel susceptible to reheat cracking.  Unfortunately, the 

restriction of these elements is not a viable option as they are necessary for 

the hardenability, strength, and creep resistance of the steels.  It is 

important to remember that the majority of reheat cracking studies focused 

on base metal while this current study is directed at weld deposits.  22V 

weld deposit chemistry, as it relates to reheat cracking, is a relativity new 

area of study, and the body of work is limited at this point.  The following 

section provides a basic understanding of the effects of different alloying 

and tramp elements with respect to reheat cracking in 22V weld deposits. 

Many studies have focused on the individual effects of different 

alloying elements ranging from carbon, chromium and molybdenum to 

minor elements such as lead, niobium and aluminum [30, 54-57]. Elements 

that are generally considered to be detrimental to reheat cracking 
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susceptibility are: carbon, molybdenum, chromium, and vanadium.   These 

elements are considered to be unfavorable, in that, they have been linked 

to an increase in reheat cracking susceptibility. 

The formation of mathematical relationships to correlate chemical 

composition to reheat cracking susceptibility have been theorized since the 

realization of reheat cracking in Cr-Mo steels.  The initial cracking 

susceptibility parameter by Nakamura used only Cr, Mo, and V [54].  This 

ΔG parameter places emphasis on the main alloying elements in Cr-Mo 

steels assuming precipitation strengthing was the driving force behind 

reheat cracking 

ΔG = Cr+3.3Mo+8.1V -2 

Since then other authors have attempted to refine and better predict 

reheat cracking susceptibility by adding other elements into mathematical 

equations to predict reheat cracking.  In the 80’s Boniszewski proposed the 

MCF (metal comparison factor) for 22V material to include many minor 

grain embrittling elements [55].  The higher the MCF correlates to a 

decrease in rupture ductility.  

MCF= Si+2Cu+2P+10As+15Sn+20Sb 
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Recently a study by Chauvey traced reheat cracking sensitivity to 

tramp elements Pb, Bi, and Sb.  Using those elements, a K-factor was 

developed to determine the susceptibility to reheat cracking [5].  

K-factor = Pb+Bi+0.03xSb<1.5ppm 

The K-factor was developed using Gleeble type reduction of 

area (RA) testing.  A high K-factor correlated to a low RA.  However, recent 

studies at the University of Tennessee have not encountered the same 

correlation between reheat cracking and composition. 

 Many other equations have been derived to reduce reheat cracking 

susceptibility in base metal heat affected zones.  These equations are 

similar to the above mentioned ΔG and MCF and are available in the open 

literature. 

 The following will now discuss the effect of specific elements and 

their roll in reheat cracking: 

Chromium 

 Chromium is one of the most important alloying elements in 22V.  

Alloys with less than 3% Cr are susceptible to reheat cracking.  The alloys 

containing more than 3% Cr are not susceptible because the carbides that 

form in these alloys do not cause secondary strengthening [20].  Tamaki 
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extensively studied the effect of chromium in Cr-Mo steels noting that a 

chromium level of about 1% is ideal for limiting reheat cracking, and 

susceptibility to cracking increased with higher Cr percent [30].  Chromium 

is an excellent carbide former as it can be easily removed from solution 

during the formation of carbides [58].  Carbon level plays an important role 

in the movement of chromium, since chromium associates with carbon in 

solution.  Steels with low levels of carbon see an increase in free chromium 

solute strengthening in the matrix.  Carbides formed with chromium include 

M7C3, and M23C6 which are not stable at elevated temperatures and have 

been noted to influence reheat cracking.   

Molybdenum 

 Molybdenum, one of the major alloying elements in 22V, increases 

the susceptibility to reheat cracking, but it is also the major element for the 

creep strength of 22V.   Molybdenum is a strong carbide former and is only 

limited by the amount of carbon in the surrounding matrix.  It has been 

suggested that the one of only ways to limit the Mo carbide formation is by 

lowering the carbon content and thus keeping the Mo in solution.  Adding 

other elements with a higher affinity for carbon such as vanadium, titanium, 

and niobium can also limit the formation of Mo carbides. Other elements 
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such as phosphorus and/or arsenic are responsible for forming embrittling 

carbides with molybdenum at grain boundaries [57, 58].   

Finely dispersed Mo2C is the most effective molybdenum carbide 

formed for creep strength, however, with longer times at elevated 

temperature Mo2C can grow and/or evolve to become detrimental as the 

carbides become incoherent to the matrix, and can lead to enhanced 

reheat cracking susceptibility [50].  Excess Mo has been traced to the 

formation of detrimental M2C carbides, Jin Yu and McMahon have 

suggested the Mo concentration be limited to <0.7 wt% [57]. 

Vanadium 

 Vanadium greatly increases the strength of steels though the effect is 

equally detrimental to reheat cracking susceptibility.    This is illustrated 

earlier by the ΔG factor in which vanadium has the greatest multiplier for 

reheat cracking susceptibility [54].  Vanadium aids in the resistance to 

hydrogen embrittlement as vanadium carbides trap hydrogen where it is not 

able to diffuse and coalesce into amounts necessary to form cracks.  

Vanadium has a great affinity for carbon, even greater than molybdenum 

and strengthens steel by keeping Mo in solution.  Vanadium generally 

precipitates into V4C3 in a uniform fine dispersion throughout the matrix 

[58].  V4C3 carbides give a dramatic rise to grain strength, but like the MxCy 
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carbides with enough time at temperature the vanadium carbides on grain 

boundaries can grow and embrittlement can take place.   

Carbon 

All steels gain their strength due to carbides formed from carbon, for 

this reason carbon undoubtedly plays an important role in reheat cracking.  

Carbon is the principal alloying element in steel thus has a marked 

influence on all of the properties of the steel. Though it is often over looked 

in studies that involve reheat cracking it is an integral part of any carbide 

formation.  Other elements such as molybdenum and vanadium have a 

great affinity for carbon thus carbides formed by these elements can be 

limited by the movement and amount of carbon in the matrix.  There is little 

research to show the specific effect of carbon on reheat cracking although 

Ito noted that reheat cracking was much more prevalent in welds containing 

0.05%-0.10% carbon but any further increase to 0.25 yielded no change in 

reheat cracking susceptibility [48].   

Manganese and Silicon 

Manganese and silicon are often studied together when studying 

reheat cracking.  There is some controversy as to the true effect of 

manganese and silicon on reheat cracking.  A study published in Welding 

in the World showed that a manganese to silicon ratio of 2.5 to 4 decreased 
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susceptibility to reheat cracking [59]. In another study performed by 

McMahon, manganese was found to co-precipitate with phosphorus along 

grain boundaries increasing grain boundary embrittlement [57].  Hippsley 

has noted the formation of micro-void coalescence along manganese 

sulfides in reheat cracking studies of 2¼Cr-1Mo steels [46].  Nickel bearing 

steels have shown that silicon can co-segregate with nickel on prior 

austenitic grain boundaries.  In steels with lower levels of nickel the silicon 

has also been shown to segregate with phosphorus to embrittle grain 

boundaries.  Vinckier found that silicon promoted the growth of M2C 

carbides which have been shown in many studies to be a key carbide 

affecting reheat cracking susceptibility [60].   

Titanium  

Titanium is added to steels as an alloying element, deoxidizer, and 

grain refiner.  Studies have shown that small amounts of titanium added for 

deoxidizing and grain refining purposes have little effect on reheat cracking 

and possibly even a beneficial effect [61].  In larger amounts, titanium has 

been found to be slightly detrimental to reheat cracking susceptibility.  

These studies showed that when titanium was added as an alloying 

element the matrix strengthening effect can increase the reheat cracking 

susceptibility [62]. 
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Niobium 

Niobium is known to be a strong carbide former in steels.  Niobium 

carbides are very stable at elevated temperatures making niobium 

additions attractive for grain refinement.  A study performed by the 

Kawasaki corporation showed that niobium interacted with vanadium to 

increase susceptibility to reheat cracking in the Y-groove test [63]. 

Tungsten 

Tungsten is a carbide forming element added to steels.  Tungsten’s 

affinity for carbon is less than that of Mo and V which allows tungsten to 

remain in solution where solid solution strengthening can take place.  

Tungsten has been shown to detrimentally affect reheat cracking inT23 

welds.  Park et al.  correlated reheat cracking to molybdenum and tungsten 

levels.  Welds with lower Mo levels had a higher susceptibility to reheat 

cracking as more tungsten was found on grain boundaries [6].  By 

increasing molybdenum levels the tungsten was unable to segregate and 

embrittle grain boundaries thus reducing reheat cracking susceptibility.  

Nawrocki Noted the presence of tungsten on reheat crack surfaces in Cr-

Mo steels, though no direct correlation to reheat cracking was shown [31].   

Tramp Elements 

The phenomenon of reheat cracking has been closely tied to impurity 

segregation of tramp elements.  Many studies have concluded that different 
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tramp elements have detrimental effects.  Tramp elements refer to 

elements that are unintentionally added to the Cr-Mo steel during 

production and/or welding. Phosphorus, copper, sulfur, tin, and many more 

elements have been studied in attempts to reduce reheat cracking in Cr-Mo 

steels.  The effect of tramp elements is most likely derived from the 

interaction of the tramp elements with carbide formation along grain 

boundaries 

Phosphorus 

Phosphorus is generally acknowledged as the most detrimental tramp 

element with regard to reheat cracking.  Tamaki and McMahon have noted 

that the addition of Cr and Mo to steels decreases the solubility of 

phosphorus in ferrite and austenite, this is also evident by the very low 

distribution coefficient of phosphorus, see Table 1 [30, 57].  The lack of 

solubility in iron, forces phosphorus to segregate along grain boundaries.  

Studies have postulated different ways that phosphorus segregates to brain 

boundaries such as cavity formation, phosphide precipitation, and/or 

interaction with other grain boundary carbides.  Lundin et al. found 

phosphorus present on grain boundaries of embrittled Cr-Mo steels using 

auger spectrometry, this  has been mirrored by Auger analysis in many 
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other studies that phosphorus is present along grain boundaries in Cr-Mo 

steels[15, 34, 57].  

Sulfur 

Sulfur has been shown to increase susceptibility to reheat cracking.  

Sulfur segregates to dislocation tangles along boundaries generated by 

impurity penetration.  Sulfur may be detrimental due to cavity formation 

along the grain boundaries penetrated by impurities. Like phosphorus, 

sulfur has been noted on grain boundaries by auger analysis and by low 

distribution coefficients [57].  Studies have shown that an excess of free 

sulfur can increase reheat cracking susceptibility[63].  In a study of impurity 

effects on 2¼Cr-1Mo steels Lewandowski and Hippsley found sulfur to be 

responsible for the reheat cracking using a three point bend type of test 

[64].   

Antimony 

In the past, antimony has discussed in studies by Bruscato, and 

Hunter involving temper embrittlement and reheat cracking [42, 56].  These 

studies note that high antimony levels can lead to an increase in 

embrittlement.  In more recent work by Chauvy, Gleeble testing of 22V 

weld deposits concluded that antimony increases reheat cracking potential 

[5].  The effect of antimony on reheat cracking can be correlated by the 
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K-factor that was introduced by this work.  The true effect of antimony in 

22V weld deposits may not yet be truly understood, recent work by the 

author has found that 22V weldments doped with antimony alone 

performed better than undoped weldments with respect to reheat cracking 

susceptibility.  

Lead and Bismuth 

Lead and bismuth have historically not been associated with reheat 

cracking in Cr-Mo steels.  These early studies would have overlooked lead 

involvement due to the lack of lead in base metals, though lead and 

bismuth are tramp elements found in weld deposits.  Lead and bismuth are 

both practically insoluble in iron and undoubtedly segregate to grain 

boundaries [27].  Chauvy noted the presence of lead, bismuth, and 

antimony to be detrimental to reheat cracking in 22V weld deposits [5].  

Ongoing research by the author suggests that indeed lead and bismuth are 

detrimental to reheat cracking in 22V weldments.  Continued study based 

on the proposed work is anticipated to shed further light on the role of lead 

and bismuth in reheat cracking in 22V alloys. 

Nickel 

Nickel has been shown to have little to no effect on reheat cracking in 

Cr-Mo steels.  In the many studies relating chemical composition to reheat 
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cracking, nickel is not normally included.  This effect could be due to 

nickel’s inability to form carbides.  Any effect on carbide formation is most 

likely related to nickel affecting the kinetics of carbide precipitation [12, 20].  

Calcium 

Calcium has been shown to reduce the susceptibility for reheat 

cracking in steels.  Lundin et. al. found calcium treated 2 ¼Cr-1Mo-V steels 

show a low susceptibility to reheat cracking [15].  Shinya et al. added 

calcium to a low sulfur 22V steel and saw a dramatic increase in elongation 

and RA, though the results did not hold true in commercial grade 22V 

steels[65].   

Aluminum 

Aluminum is a deoxidizer and grain refiner in Cr-Mo steels, but is 

detrimental to reheat cracking [6, 35, 38].  Studies by Park using Gleeble 

analysis of T23 weld deposits found that aluminum segregation led to grain 

embrittlement as well as formation of a denuded zone adjacent to grain 

boundaries [6].  Aluminum is thought to prevent grain boundary mobility by 

the presence of Al-N precipitate clusters.  Studies have correlated an 

increase in V4C3 and Mo2C carbides to an increase in aluminum content.  

These carbides have been shown to be egregious for reheat cracking 

susceptibility[38].  



39 
 

Mitigation of Reheat Cracking 

 Many researchers have proposed measures to reduce/mitigate 

reheat cracking in Cr-Mo weldments, though after extensive research it is 

apparent that the issue of reheat cracking is a combination of several 

complex factors [12, 20, 48, 50].  These factors include: 

 Composition 

 Tramp element levels 

 Weld fabrication parameters 

 Joint design 

There is no single way to completely alleviate the problem of reheat 

cracking.  Though, it is possible to manipulate several variables to greatly 

reduce the potential for reheat cracking. 

 The obvious solution involves material selection.  By choosing an 

alloy that is not susceptible to reheat cracking the issue is easily avoided.  

For example, choosing steel with greater than 3% chromium would offer an 

understandable solution.  Other options include choosing Cr-Mo steels with 

less susceptibility to reheat cracking such as 22 alloy rather than the 

vanadium containing version 22V.  This practice is not applicable for many 



40 
 

situations where required properties are only obtainable through the use of 

specific alloys, therefore more involved measures are often observed. 

 As discussed earlier in this review, tramp elements can be very 

detrimental to reheat cracking susceptibility.  Tight control of these tramp 

elements notably phosphorus and lead may limit the development of reheat 

cracks in weldments.  This may be accomplished by following one of the 

many mathematical equations put forth that limits the amount of offending 

tramp elements such as the MCF.   

 Altering welding parameters may help to prevent reheat cracking in a 

weldment [12, 20].  The rationale behind these changes lies in reducing the 

presence of susceptible microstructure such as those found in the coarse-

grained base metal HAZ and/or preventing the formation of detrimental 

carbides.  By altering the heat input, preheat temperatures, and/or travel 

speed reheat cracking susceptibility may be reduced.  There is some 

debate as to these parameters and it is quite possible that each alloy and 

weld design may react differently when changes are made in the welding 

procedure.  In any case, fabricators are often bound to the parameters set 

forth by different codes such as API 934 for 22V weldments [3, 44]. 
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 A stress riser is almost always the initiation point of any reheat crack.  

By reducing the presence of any stress concentrators, weld discontinuities, 

and any other anomalies in the weld reheat cracks would not have an 

initiation point to develop.  Stress concentrators may be avoided through 

the use of a properly designed weld joint.  Weld discontinuities and other 

anomalies may be prevented through tight quality control during fabrication 

of the weldment.  Further, the careful use of nondestructive inspection after 

a weldment has been produced and before any PWHT may also identify 

potential problem sites to be repaired.  The removal of stress risers will 

provide a significant reduction in reheat crack formation. 

 Though reheat cracking is a complex issue in many Cr-Mo steels, 

tight control of weld design, proper consumable selection, and close 

attention to weld fabrication detail may mitigate the issues relating to reheat 

cracking.  It is recommended that weld joint be carefully designed to reduce 

stress risers.  Consumables should be selected to limit levels of detrimental 

tramp elements. Weld fabrication should be carried out to closely follow API 

934. 

Reheat Cracking Testing Techniques. 

Reheat cracking test have aimed to give the welding industry a tool to 

avoid the problem of reheat cracking in welds. The development of different 
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reheat cracking tests have progressed since the reheat cracking 

phenomenon was first discovered over 50 years ago.  Though the type and 

variety of testing methodology is vast the goal is generally the same, to 

provide results useful to the mitigation and reduction of reheat cracking in 

weldments.  Kammer et al.  was the first to define the requirements of an 

ideal weld cracking test [1]. 

1.  Ability to show a direct correlation with actual fabrication and  

     service behavior. 

2. Reproducibility of results with freedom from variation due to the 

    human element. 

3. Sensitivity to small changes in a test variable. 

4. Ability to show the effects of several welding variables. 

5. Economical preparation of specimens and running of test. 

6. Applicability to all welding processes 

Baker later enumerated on the ideal weld test to better suit reheat 

cracking [66].  Bakers requirements focused on reheat cracking taking 
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place in the base metal HAZ though the same requirements are applicable 

to the weld deposit. 

1.  The specimen should have some defect or notch in the 

      microstructure representative of the actual weld 

2.  The weld should be strained in a fashion similar to an actual weld. 

3.  The weld should be exposed to stress relaxation similar to what an 

      actual weld experiences. 

The multitude and variety of reheat cracking tests make a complete 

study difficult and confusing.  As of 1974, Vinckier and Pense sited and 

reviewed 15 different tests to determine the susceptibility to reheat cracking 

[33].    This study discusses reheat cracking test in a manner as to better 

describe the current test practices.  This is necessary due to the current 

need to study reheat cracking in matching 22V weld deposits rather than 

the base metal HAZ which is the region addressed in the earlier tests.  

Three different forms of reheat cracking test will be discussed. The first are 

tests involving the use of a welded specimen.  These tests are 

advantageous because they are directly related to the weld and PWHT.  

The drawback to complete welds lies in the reproducibility of the test and 
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the scale of the strain associated to a small test specimen compared to the 

high strain associated with large industrial welds.  The second type of 

reheat cracking test involves a simulated weld specimen.  These tests are 

excellent for reproducibility, predictable stress levels, and microstructure 

control.  The simulated weld reheat cracking test fall short in that only one 

region of the weld may be tested and actual stresses created by a weld are 

not duplicated. The third type of test utilizes specimens incorporating a 

section of an actual weld.  These tests are most closely able to duplicated 

actual weld conditions.  The stress levels are accurate, and the entire 

weldment (or just a specific region) may be selected depending on the test.   

Many of the welded specimen type of testing described above were 

first developed to study the effect of hydrogen attack on a weldment.  

These tests were altered to study the susceptibility of different alloys to 

reheat cracking.  The modified implant test and Y-Groove restraint cracking 

test have been widely used [67].  These tests rely on a welded specimen 

subjected to a typical heat treatment. These past reheat cracking test were 

designed to test the base metal HAZ for reheat cracking susceptibility.  

Current issues have shown the need to develop new practices to rank the 

reheat cracking susceptibility of in 22V weld deposits.   
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 The most popular RHC tests are some form of tensile or stress 

rupture test.  Many different tests fall into this category and a majority of 

them incorporate a thermally simulated HAZ.  Often these tests are run 

using a Gleeble and depend on the calculation of reduction of area (RA) to 

rank reheat cracking susceptibility.  This type of stress rupture test can be 

altered to test simulated welds, actual base metal HAZ, or actual weld 

deposits.  Simulated base metal HAZs were the focus of many early 

studies due to the increased susceptibility to reheat cracking.  Vinckier and 

Pense developed a widely accepted test for simulating base metal HAZs.  

The test utilized 4 Levels of reheat cracking susceptibility to rank the 

weldments [33].  

1. >15% RA – Not susceptible to RHC 

2. <15% RA – Slightly susceptible 

3. <10% RA –Highly susceptible 

4. <5% RA - Extremely susceptible 

This stress rupture test showed the ability to provide a basis for 

ranking the reheat cracking susceptibility of different materials.  

 Recently two tests have been proposed specifically to test 22V weld 

deposits for reheat cracking potential.  The following paragraphs will focus 
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attention to two recently proposed reheat cracking test before proposing a 

modified reheat cracking test currently being developed at the University of 

Tennessee. 

 Chauvy has developed a test involving slow strain rate testing of 

samples machined from 22V weld deposits which eventually lead to sample 

rupture [5].  The test is carried out by extracting 120mm (4.7 in) cylindrical 

samples from a weld deposit in the longitudinal weld direction.  The 

specimens are placed in a Gleeble and rapidly heated (within 3 min) to the 

desired test temperature and held for 30 min before the slow strain rate 

portion of the test is initiated and the specimen elongates and eventually 

ruptures.  This uniaxial test relies on the calculation of %RA to characterize 

the reheat cracking potential of the weld deposit.  Four samples are 

required to conclusively rank each consumable lot. The weld deposit 

chemistry from several weld deposits was determined and the relationship 

between ductility and chemistry were defined.  The reproducibility of this 

test has been called into question by others including Chauvy [68]. 

The second test methodology published and patented by a Cr-Mo-V 

Fabricator [69], is a stress relaxation type of test but the entire evaluation 

procedure is difficult to interpret from the published document due to vague 
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and incomplete instructions.  This Fabricator sponsored test employs a 

long sample that is uniaxially loaded in a proprietary testing apparatus by 

employing a hydraulic loading device and exposed to a simulated ISR.  It is 

assumed that the sample is fractured using the hydraulic assembly after 

removal from the furnace.  The specimen fracture surface is analyzed using 

an SEM method to determine the area percent of intergranular fracture and 

then the samples are sectioned for a metallurgical analysis of the weld 

region.  In conjunction with the testing results, statistical software is used to 

rank the welding consumables.   

II.  Development of the Notched C-Ring Reheat Cracking Test 

(NCRRCT) for use with 22V SAW Weld Deposits 
 

Overview of Past Work Performed by UT MJG Related to Reheat 

Cracking in Cr-Mo Alloys 

     The Materials Joining Group at the University of Tennessee has been 

involved with both pragmatic and in-depth metallurgical studies of the reheat 

cracking sensitivity of a wide variety of steels since the 1970’s.  These 

studies have involved, among others, SA 517, A 514, SA 533, SA 508, A 

710, SA 736, 1-1/4Cr, 2-1/4Cr, 3Cr, 9Cr, together with the vanadium 

modifications of the 3Cr-Mo, 9Cr-Mo-V-Nb and 2-¼Cr-1Mo-V (22V) [7-22].  

As was the case for other early investigations, the reheat cracking 
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sensitivity in the coarse-grained base metal HAZ was of the most interest.  

This emphasis resulted from the fact that many of the weld metals were not 

generally selected to match the base metal composition.  However, in the 

current concerns for 22V SAW weld deposits, the filler metal, was selected 

to closely match the base metal so that the creep strength, thermal 

expansion, and hydrogen resistance are comparable.  

A majority of the early studies involved the Gleeble and the simulation of 

the HAZ followed by a constant load test of the simulated coarse-grained 

HAZ region, with the test temperature selected to fall within the reheat 

cracking range of 1050°F-1250°F (567°C-678°C) [7-13].  These studies 

proved very useful and a comparative ranking could be obtained which 

placed the subject steels on a simple sensitivity scale [7-15].  However, to 

more adequately study the mechanisms involved with a materials sensitivity 

to reheat cracking other test methods needed to be employed which more 

closely duplicated actual weldment behavior with regard to a quantified 

assessment of all weld deposit and HAZ regions and their change in 

sensitivity with postweld heat treatments.  Further, it was axiomatic that both 

stress relaxation and notch effects should be considered.  The 

effect/necessity of a weld discontinuity, resulting in a notch (physical or 
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metallurgical) in the most sensitive region of a weld, became a clear factor 

in many of the full-scale fabrications that were subjected to PWHT.   

Several test methods evolved for the full range of considerations that 

needed to be considered.  A spiral notch method with the test sample 

oriented across the weld deposit, base metal HAZ and base metal was 

conceived and utilized effectively to isolate the most sensitive weld region 

[9].  The notch was of the type employed with the Implant Test and the 

temperature-time-stress exposure paralleled the Gleeble test methodology.  

In a major study involving 20 heats of 1-¼Cr-½Mo material a larger scale 

test method uses the deposition of a weld with welding parameters 

appropriate to actual weld fabrications conditions was conceived and 

effectively used to develop a chemistry related factor for reheat cracking 

potential [15].  This test, called the PREVEW method (Petroleum Refinery 

Vessel Evaluation of Weldability), allowed for natural stress relaxation 

during a PWHT exposure and thus duplicated more closely the behavior of 

actual weldments.  The results of the PREVEW method of assessment 

closely paralleled the standard Gleeble method and other test methods [15].   

In the evaluation of the Cr-Mo-V steels a notched C-Ring testing 

methodology (based on the ASTM Stress Corrosion Cracking Standard G-
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38) was developed for the prediction of reheat cracking in the weld HAZ in 

the mid-to-late 1980’s, in conjunction with US Department of Energy efforts 

to consider alloys which optimized the creep properties of vessels and 

tubing for advanced steam power applications [8, 9].  This notched C-Ring 

reheat cracking evaluation method was also extended to the Cr-Mo-V (22V) 

materials that were under development for pressure vessels in hydrogen 

service.  

 The concept behind the adoption of a notched C-Ring geometry for 

reheat cracking assessment was to utilize a proven methodology, wherein 

the effect of stress and material characteristics could be evaluated as to 

potential cracking incidents in welded fabrication.  The extensive foregoing 

studies clearly showed the need for a discontinuity (physical or 

metallurgical) or defect in a weld, acting as a stress raiser to initiate a crack 

in the base metal HAZ.  Thus, a notch could be incorporated with a stressed 

C-Ring to mimic the requirement of a stress raiser (amplifier).  A notched 

and stressed C-Ring could be heat treated to duplicate weld PWHT 

conditions.  Further, by employing a stressing bolt, which was of matching 

composition to the material being tested, the relaxation of stresses (stress 

reduction), accompanying PWHT also could be accommodated.   
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 Initially, the notched C-Ring was employed to determine base metal 

HAZ reheat cracking sensitivity of structural steels because the filler metals 

generally were not the same composition as the base metal and yet 

achieved the same strength (thus only the base metal would be sensitive to 

reheat cracking).  Figures 5 and 6 present the methodology for utilization of 

a notched C-Ring to characterize the coarse-grained base metal HAZ 

sensitivity to reheat cracking.  The results of notched C-Ring testing of the 

weld HAZ exactly paralleled the response that was achieved using the 

Gleeble Test Simulated HAZ Method introduced by Vinckier and Pense 

[33]. 

 

 



52 
 

 

Figure 5.  Successive steps for production of base metal HAZ C-Ring 
specimens. (a) square bar with weld filled groove, (b) tube machined 
from square bar stock, (c) portion of the tube notched in the heat 
affected zone with holes drilled through the ring 
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Figure 6. Cr-Mo-V base metal HAZ notched C-Ring.  1150°F (621°C) 
100Ksi (690 MPa).  A) OLM 100X, B) SEM 200X, Noren’s Reagent. 
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However, with the considerations for elevated temperature-time 

dependent (creep) use in hydrogen environments the filler metals (weld 

deposits) were tailored to closely match the composition of the base 

material and thus the weld deposit would be expected to behave in a 

manner which would reflect a similar sensitivity to reheat cracking in the 

coarse-grained regions.  Therefore, it was relatively straightforward to adapt 

the notched C-Ring methodology to 22V SAW weld deposits, which closely 

matched the base metal chemistry as far as the major and minor alloying 

elements are considered. 

III.  Preliminary Study of Fracture Surface Morphology in 22V.  

 A study was undertaken in response to several incidents that have 

been reported for SAW weld deposit cracking in 2-¼Cr-1Mo-V (22V) 

pressure vessels [4].  This study specifically involves the characterization of 

the crack surface morphology, by Scanning Electron Microscopy (SEM); of 

reheat cracks and hydrogen assisted cracks so that the crack type can be 

clearly differentiated.  The study utilized the Notched C-Ring Reheat 

Cracking Test (NCRRCT) that is currently in development as well as a 

Modified Hydrogen Sensitivity Cracking Method which was developed in 

the Materials Joining Group at The University of Tennessee.  The results 

clearly show distinct differences in crack surface morphologies for the two 
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types of cracking and these unique features permit the unequivocal 

differentiation of the cracking mode.  Thus, researchers will be able to 

bench mark their findings with the crack surface images presented in this 

work.  The research will also enable investigators to positively classify weld 

deposit cracking in the 22V alloy system and aid in the further development 

of the Notched C-Ring Reheat Cracking Test.  

Reheat cracking theory has been discussed previously in this work.  

The following will provide a brief description of hydrogen assisted cracking 

(HAC) to aid in understanding the results of this preliminary study.  

Hydrogen within the weld deposit can result in crack formation only 

after the weld has cooled, sometimes after a significant amount of time.  

Hydrogen assisted cracking has been known to take place in Cr-Mo-V 

steels and is very similar in macroscopic appearance to reheat cracking. 

Though the appearance is similar, HAC results from different factors and 

must be mitigated in different ways.  

HAC are caused, very simply, by the incorporation of hydrogen into a 

weld deposit.  There are a number of ways this can happen. Hydrogen may 

be present in the atmosphere, produced in the arc by a wet or damp flux, or 

present due to operating conditions [9].  When a weld is exposed to 

hydrogen, the liquid weld pool absorbs the hydrogen.  The solid solubility of 
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hydrogen decreases sharply at the freezing point and again at the 

austenite/bainite/martensite/ferrite transformation temperature.  These 

processes allow diffusible hydrogen to coalesce, eventually leading to 

crack formation if positive steps are not taken. 

As a rule, the possibility of HAC increases with the amount of 

bainite/martensite present in the HAZ or weld deposit.  The 

bainite/martensite amount, in a rapidly cooled weld, is dependent on 

composition, maximum temperature reached, and cooling rates.  These 

several factors result in four main considerations many of which are 

identical to reheat cracking [70]: 

i. The composition of the steel. 

ii. The welding conditions that influence hydrogen presence. 

iii The weld cooling rates that govern the formation of transformation 

products. 

iv. Residual stresses created upon welding. 

Hydrogen facilitates crack formation as it attempts to diffuse out of 

the weld fusion zone.  As a function of time, hydrogen diffuses through the 

weld until it finds a favorable trapping site.  The time factor is related to the 

hydrogen diffusion rate on the material. As more hydrogen collects at a 
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suitable site (such as an interface) it may lower grain boundary separation 

energy and thus facilitate crack formation [9]. 

22V weld deposits were subject to potential hydrogen cracking by 

autogenously GTA welding a small coupon extracted from a SAW weld 

deposit, using 5% hydrogen 95% argon shielding gas.  This procedure 

saturates the GTA welded deposit with hydrogen on the order of 5-10 ppm.  

Within 5 minutes, subsequent to weld deposition, the sample is strained in 

the fixture shown at the right in Figure 7.  For this study 6% strain was 

utilized (however, the strain can be varied simply by changing the radius of 

the die block).  The samples developed delayed hydrogen cracks in the 

autogenously GTA weld region within 1 hour after straining.  The sample is 

then Cryo-Cracked in liquid nitrogen to expose the hydrogen induced crack 

surfaces for SEM examination. 

 
Figure 7.  UT- Modified hydrogen sensitivity test specimen is shown 
at the left and test fixture at right 
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 Two narrow groove 22V SAW were used in the evaluation of Notched 

C-Ring Reheat Cracking Test and modified hydrogen sensitivity cracking 

(UTMHST) in terms of the crack surface morphology. A weld cross-section 

of a representative narrow groove SAW weld is shown macro-graphically 

from one of the weldments evaluated in Figure 8.  

 

Figure 8.  Weld cross-section of narrow grove SAW weld used in This 
study, Noren’s Reagent submerge for 8 sec, 6X [71]. 

 

Reheat Cracking in 22V Weld Deposit 

It has been previously pointed out that, for the C-Ring, the notch 

traverses several weld layers.  Thus, the cracking can occur in all regions 

of the weld deposit (coarse-grained and fine grained regions).  Figure 9 

shows reheat crack surface morphology in the coarse-grained region of a 

22V Weld at magnifications from 500X to 7500X.  At the lower 
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magnifications of 500 and 1000X it is clear that the reheat crack 

morphology is intergranular in nature, while at the 4000X to 7500X 

magnification the occurrence of shallow dimples (~¼um in depth and ~2um 

wide) containing particulates is evident. 

 

Figure 9.  SEM of the reheat crack surfaces of the coarse grained 
region of the 22V SAW weld 1 deposit.  Note the Intergranular macro-
morphology and the occurrence of shallow dimples with particles in 
the dimple craters. 
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Figure 11 presents the surface morphology in the fine-grained region 

of a weld deposit over the same range of magnifications.  It is clear that, 

macroscopically, the crack morphology is intergranular.  However, the 

higher magnification images of the grain surfaces show a different micro-

morphology as compared to the coarse-grained region with the general 

absence of the shallow dimples revealed in the coarse-grained region.  In 

the case of the fine-grained region, the shallow dimples are a minor 

feature.  This suggests that a slightly different mechanism exists for the 

fine-grained region and it may be that of a propagation mode in the fine-

grained region rather than the initiation mode of reheat crack formation in 

the coarse-grained region, with shallow dimples, which are a definitive 

characteristic of the cracks in the coarse-grained region. 
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Figure 10.  SEM of the reheat crack surfaces of the fine grained region 
of the 22V SAW weld 1 deposit.  note the intergranular macro-
morphology. 

 

To further characterize the nature of the reheat cracks in both the 

weld deposits, metallographic samples excised perpendicular to the crack 

and transverse to the notch, were polished and etched with 10% 

Ammonium Persulfate.  These samples were examined using the SEM.  

The respective series weld deposits are shown in Figures 11 and 12 at 

magnifications of 500 to 1000X.  Clear evidence for cavitation/void 

RHC Weld 1 

FG, 500X 

RHC Weld 1 

FG, 1000X 

RHC Weld 1 

FG, 4000X 

RHC Weld 1 

FG, 7500X 
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formation precedes the full opening of the crack surfaces as defined in 

Figures 11 and 12.  Evidence for this cavitation/voiding was also noted in 

the SEM imaging of the crack surfaces (see particularly Figures 9 and 10).  

This type of cavitation/voiding indicates that a creep mechanism might be a 

part of the mode of reheat crack formation. 

 

 
Figure 11.  SEM micrographs of the polished and etched surface 
perpendicular to the 22V SAW weld 1 deposit.  note the 
cavitation/voids just ahead of the crack tip 
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Figure 12.    SEM micrographs of the RHC polished and etched 
surface perpendicular to the notch in the 22V SAW weld 2 deposit.  
Note the cavitation/voids just ahead of the tip. 
 

 

Hydrogen Assisted Cracking in 22V Weld Deposits 

Hydrogen assisted cracking was produced in an Autogeneous GTA 

weld in the 22V SAW deposit for 2 weld series by means of the University 

of Tennessee Modified Hydrogen Sensitivity Test (UTMHST) as previously 

described.  The delayed hydrogen assisted cracks generally formed in and 

transverse to the GTA weld deposits.  The full extent of cracking was 
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complete after an hour delay period subsequent to straining.  Figures 13 

and 14 show the results for the Weld 1 and Weld 2 series SAW deposits 

that were hydrogen cracked in the autogeneous GTA weld fusion zone over 

the magnification range of 500 to 10,000X.  Both materials show identical 

crack surface morphologies, principally with a macroscopic intergranular 

crack nature. The grain faces produced by hydrogen assisted cracking are 

generally featureless, smooth and void free, with a few tongues.  When the 

crack progresses across a grain a quasi-cleavage mode of separation is 

observed.  
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Figure 13.  SEM of the HAC surfaces in GTAW weld deposit of the 22V 
SAW weld 1 deposit.  Note the Intergranular macro-morphology with 
transgranular crack propagation revealing a quasi-cleavage 
morphology. 
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Figure 14.  SEM of the HAC surfaces in the GTAW weld deposit of the 
22V SAW weld 2 deposit. Note the intergranular macro-morphology 
with the transgranular crack propagation revealing a quasi cleavage 
morphology. 

 

Comparison of Reheat and Hydrogen Assisted Crack Morphologies 

In order to more easily compare the crack surface morphology for the 

reheat cracks and hydrogen assisted cracks in the 22V deposits, 

companion SEM crack surface images are presented in a series of figures 

(Figures 15-20) at magnifications of 100 to 7500X.  The intergranular 

nature of the cracks is clearly revealed at the low magnifications.  However, 

definitive differences in appearance become evident at magnifications 
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above 1000X.   These comparison SEM crack surface images were 

discussed in detail earlier but it should be pointed out again that the reheat 

cracks clearly show evidence of shallow dimples with carbides present 

within the dimples and voiding/cavitation whereas the hydrogen assisted 

cracks show none of this type of morphological evidence of the higher 

temperature crack formation.  

 
Figure 15.  SEM comparison of the HAC and RHC surfaces in the weld 
fusion zone of the 22V SAW weld 1 deposit.  Note the intergranular 
macro-morphology for both crack types.  HAC shows smooth grain 
faces, while reheat cracks show shallow dimples with particles in the 
dimple craters.  
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Figure 16.  SEM comparison of the HAC and RHC surfaces in the weld 
fusion zone of the 22V SAW weld 1 deposit.  Note the intergranular 
macro-morphology for both crack types.  HAC show smooth grain 
faces, while reheat cracks show shallow dimples with particles in the 
dimple craters. 

 
 



69 
 

 
Figure 17.    SEM comparison of the HAC and RHC surfaces in the 
weld fusion zone of the 22V SAW weld 1 deposit.  HAC shows smooth 
grain faces, while reheat cracks show shallow dimples with particles 
in the dimple craters. 
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Figure 18.  SEM comparison of the HAC and RHC surfaces in the weld 
fusion zone of the 22V SAW weld 2 deposit.  note the intergranular 
macro-morphology in both modes.  HAC shows smooth grain faces, 
while reheat cracks show shallow dimples with particles in the dimple 
craters. 
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Figure 19.  SEM comparison of the HAC and RHC surfaces in the weld 
fusion zone of the 22V SAW weld 2 deposit.  Note the intergranular 
macro-morphology in both fracture modes.  HAC shows smooth grain 
faces, while reheat cracks show shallow dimples with particles in the 
dimple craters. 
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Figure 20 SEM comparison of the HAC and RHC surfaces in the weld 
fusion zone of the 22V SAW weld 2 deposit.  HAC show smooth grain 
faces, while reheat cracks show shallow dimples with particles in the 
dimple craters. 

 

Conclusions From the 22V Fractography Morphology Study 

From the foregoing crack surface morphology discussions and 

illustrations it is evident that the reheat cracks and hydrogen assisted 

cracks are significantly different in appearance in 22V weld deposits.  

These appearance differences do not become evident until the crack 

surfaces are imaged at magnifications greater than 1000X.  The 

importance of this lies in the fact that the type of cracking must be defined 

before any attempts to solve a particular “cracking problem” are 

undertaken.  Furthermore, both types of cracks may be present in a 22V 

weldment wherein a hydrogen micro-crack may be a precursor to reheat 

cracking during PWHT.  It is to be noted that previous studies have 
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revealed that a “trigger”, in the form of a preexisting weld discontinuity, 

whether it be internal or externally generated, usually precedes the 

initiation of a reheat crack.  The presence of a residual stress, in and of 

itself, is generally not necessarily a sufficient cause for reheat crack 

formation. 

IV.  Experimental Procedures 

Welds used in Study 

18 submerged arc weld deposits were utilized in the development of the 

NCRRCT, each selected to highlight different combinations of wire and 

flux, weld bead placement, and chemical composition.  A typical test weld 

produced in the laboratory is shown in Figure 21.  Two commercially 

produced welds are also provided for comparison in Figure 22. 
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Figure 21.  Typical 22V SAW weld produced for use in the 
development of the NCRRCT.  Ammonium Persulfate etch, 2X. 
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Figure 22.  Commercially fabricated welds used in the development of 
the NCRRCT.  The weld on the left (C-22V-1) was extracted from a 
pressure vessel.  The weld on the right (C-22V-2) was obtained from a 
fabricators procedure qualification coupon. 
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Sample Extraction  

Using the work previously conducted at the University of Tennessee, 

a modified “C-Ring” test has been developed to satisfy the needs of 

industry for economically diagnosing reheat cracking sensitive materials 

before issues arise during the fabrication of heavy walled pressure 

vessels.   

The original C-Ring test was developed to evaluate reheat cracking 

susceptibility in the coarse-grained base metal heat affected zone, and 

has been modified to allow testing of the reheat cracking susceptibility of 

22V weld deposits (fusion zone).  A modified C-Ring is shown in Figure 

23.  Figure 24 shows the extraction of the C-Ring from two different weld 

deposit geometries currently in use.  After extraction from the weld, a 

notch is machined in to the ring in the proper location.  In the case of the 

22V weld deposits, the notch must traverse several weld beads and thus 

evaluate the fine-grained as well as the coarse-grained regions of the weld 

deposit for reheat cracking potential.  The proper location of a notch in the 

weld deposit in the modified C-Ring is clearly shown in Figure 23. 
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Figure 23.  A notched C-Ring reheat cracking test specimen showing 
the correct placement of the notch traversing several overlapping 
weld bead passes in a narrow gap weld deposit, ~4X. 
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Figure 24.  Schematic extraction of C-Ring samples from a narrow gap 
SAW butt weld and a general “Vee” groove butt weld geometry. 

 

Sample Production and Preparation 

 The following illustrations for extraction of a C-Ring for testing are 

based on both a narrow gap weld geometry with 2 SAW beads per layer, 

and also the more typical “Vee” groove weld geometry.  A macrograph of a 

typical narrow gap weld cross-section is presented in Figure 25.   
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Figure 25.  Weld cross-section of narrow gap SAW in the as welded 
condition, Noren’s reagent, 6X [71]. 

The cylindrical slug centered on the SAW narrow gap weld is extracted 

with its axis perpendicular to the weld surface whereas the “Vee” groove 

weldment provides greater latitude of placement within the weld deposit.  

Normal machining methods or EDM may be used to extract the cylindrical 

slug leading to the fabrication of the C-Ring.  The slug is sized and bored 

into a cylindrical tube with the dimensions as shown in Figure 26:1” (2.54 

cm) OD and ¾” (1.90 cm) ID with a length of 3/4” (1.90 cm).  The length of 

the notched C-Ring is ¾” (1.9 cm) and thus it will provide evaluation over a 

significant depth of weld deposit.  For example, using a welding procedure 

that uses a 2 bead per layer sequence in narrow gap geometry, the notch 

will traverse at least 5 overlapping beads (see Figure 23).  The etching of 

the C-Ring, as described above, reveals the weld bead sequence and 
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permits optimum determination of the notch position.  For such a weld, the 

notch location will traverse both fine and coarse grained regions.  This will 

allow concurrent reheat sensitivity analysis of both fine and coarse-grained 

weld deposit regions.   

 

Figure 26.  Schematic of a C-Ring with dimensions.  The notch is the 
same that is used in the standard impact test sample, but is limited to 
0.030” (0.076 cm) in contrast to the 0.080” (0.2 cm) in the standard 
impact test specimen 
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The Charpy notch geometry employed uses a depth of 0.030” 

(0.076 cm) as opposed to the 0.080” (0.20 cm) for the standard Charpy bar 

used for toughness testing.  The deflection bolts (stressing bolts) are made 

from material with the same nominal composition as the test C-Ring.  The 

C-Ring shown in Figure 23 has been etched with (10% Ammonium 

Persulfate) and shows the notch placed in the center of one of the weld 

bead stacks thus  traversing several weld beads and overlapped regions.  

This notch location and its orientation ensures that all microstructures will 

be evaluated in a single sample.  This etching technique can also be used 

after machining to verify the proper notch placement (traversing both fine 

and coarse-grained regions).  Holes are drilled 90° to the notch location 

after the notching is complete and the back of the notched C-Ring is cut 

away to allow for deflection (stressing).  The deflection needed to stress the 

notched C-Ring to a given Level is calculated from the equation given in 

ASTM G-38.           
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The stressed, notched C-Ring is thoroughly cleaned in acetone using 

ultrasonic agitation, and heat-treated (tested) in a manner similar to a vessel 

PWHT.  The heating conditions for the current testing procedure are 

designed to reach 1150°F (621°C) within 2-4 hours, followed by a 2 hour 

hold at 1150°F (621C).  After exposure at 1150°F (621°C) for 2 hours the 

C-Ring is removed from the furnace and air cooled.  The test stress Levels 

are chosen to provide a crack-no-crack response.  Testing can be 

conducted in air as well as in an inert atmosphere created by placing the 

notched C-Ring in a quartz tube and sealing after triple pumping and back 

filling with argon.  The notched C-Ring is then cleaned and the root of the 

notch is examined for cracks. Sections can be cut for cross-sectional 

metallography if desired.  The crack surface can be exposed for 

fractographic studies by fracturing the notched C-Ring through the notch at 

liquid nitrogen temperature. 

Equipment 

The NCRRCT was designed to be a very simple test and thus it 

requires no special fixtures, stressing apparatus, or other proprietary 

instruments. The notched C-Ring sample is the stressing fixture onto-itself 

and thus requires no other (special) equipment.  A furnace is required that is 

capable of reaching 1150°F (621°C) in 2-4 hours.  It is also suggested that 
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the sample be wrapped in stainless steel foil to provide a cleaner surface for 

post-test analysis.  Once the notched C-Ring has been heated and held for 

2 hours, the only required instrumentation is a simple binocular stereo-zoom 

microscope (40X-50X) to examine and confirm the location, at the root of 

the notch, of any reheat cracks.  Further evaluation may include 

cryo-cracking at liquid nitrogen temperature to open the cracked, notched 

C-Ring to more closely assess the degree of cracking, but this is not 

necessary in order to rank the sensitivity to reheat cracking. 

Using the NCRRCT to test for Reheat Cracking Susceptibility 

The notched and drilled C-Ring is loaded by hand with a stressing bolt 

(machined from the same material) to a known deflection which 

corresponds to a given stress.  The suggested stress magnitudes are: 55Ksi 

(380MPa), 70Ksi (480MPa), 85Ksi 590(MPa) and 100Ksi (690MPa) and the 

corresponding deflection for each of these stresses, as calculated using 

ASTM G-38, is presented in Table 5.  It is recommend that the 85Ksi 

(590MPa) stress be the first test Level allowing subsequent tests to be 

conducted at a higher or lower stress Level based on the response at 85Ksi 

(590Mpa).  Testing is conducted according to the detailed protocol 

described in Appendix I.  These test methods facilitate the correct sensitivity 

assessment of reheat cracking in the notched C-Ring 22V weld deposits.   
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Table 5.  Calculated notched C-Ring reheat cracking 

sample test deflections calculated using (ASTM G-38) and 

a wall thickness at the root of the notch  

Stress Magnitude Deflection (inches) Deflection (mm) 

55Ksi (380MPa) 0.014 0.37 

70Ksi (480MPa) 0.018 0.47 

85Ksi (590MPa) 0.022 0.57 

100Ksi (690MPa) 0.026 0.67 

 

After exposure to the elevated temperatures an oxide will have formed 

on the notched C-Ring sample during elevated temperature, and it must be 

removed to facilitate cracking assessment.  The tested C-Ring should be 

placed in a 50/50 Hydrochloric acid/water solution (with an organic inhibitor 

to prevent attack on the metal surface) to allow for removal of the oxidation 

that develops during thermal exposure.  The HCl bath will quickly remove 

the oxidation left as a result of exposure in the furnace.  A plastic bristle 

brush is recommended to assist in removing any excess scale/oxidation 

from the root of the notch.  A binocular stereomicroscope, or similar device 

capable of magnifications 40-50X, is used to examine the root of the notch 

for the presence of reheat-cracks.  Cracking at the root of a C-Ring notch is 

illustrated in Figure 25. 
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Figure 27.  A tested C-Ring after cleaning in a 50/50 hydrochloric 
acid/water solution showing a typical cracking at the root of the 
notch,6X and 50X. 

 

The NCRRCT is intended to be a pass/fail (Go-No Go) test as a 

function of test stress.  The presence of a crack indicates a “fail” while no 

cracking is a “pass” at a given stress Level.  The four stress levels are level 
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“1”-100Ksi (690MPa), Level “2”-85Ksi (590MPa), Level “3”-70Ksi (480MPa) 

and level “4”-55Ksi (380MPa). 

Successive test are run to uniquely define the reheat crack sensitivity 

based on the crack/no-crack result.  The 85Ksi stress (Level 2 ranking) is 

the recommended starting stress.  If no crack is found at this stress Level, 

the next test would be run at 100Ksi (Level 1 ranking).  Extensive testing 

showed that the 100Ksi stress should produce a crack in 22V weld deposits 

and a Level 1 ranking would be given to the weld deposit.  If a crack is 

found at the 85Ksi stress Level, a new test would be run at the 70Ksi (Level 

3 ranking).  If no cracking occurred during testing at Level 3 the 22V weld 

deposit would receive a Level 2 ranking.  If the weld deposit continues 

exhibit cracks at the 70Ksi stress, a new C-Ring would follow loaded to the 

55Ksi stress (Level 4 ranking) and tested.  If no cracking is noted at the 

55Ksi stress a Level 3 (70Ksi) ranking would be given to the weld deposit.  

Only welds exhibiting cracks at the 55Ksi Level would be given a Level 4 

ranking.  

Cracking noted at the 70Ksi (480MPa) or55Ksi (380MPa) stresses 

(Levels 3 & 4 respectively) indicates a significant sensitivity to reheat 

cracking.  If the test indicates a crack at 85ksi (590MPa), level 2, the weld 
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deposit has only a minor sensitivity to reheat cracking and normal welding 

procedures will generally suffice.  If cracking is only found at or above the 

100ksi (690MPa) stress (level 1) virtually no sensitivity to reheat cracking 

exists in the weld deposit and all normal welding procedures will be 

satisfactory.   

If it is desired to further analyze the degree of cracking at any Level, 

the notched C-Ring may be cooled to liquid nitrogen temperature and a 

hammer blow used to fracture the cold notched C-Ring revealing the reheat-

crack surfaces.  The fractured notched C-Ring pieces should be placed in 

methanol to warm them to room temperature followed by hot air drying in 

order to prevent condensation and possible oxidation of the fracture 

surface.  Binocular stereo-zoom microscopy may then be used to confirm 

reheat cracking and the extent of the cracking.  The presence of a reheat-

crack in an air tested sample is readily indicated by a dark intergranular 

crack surface morphology in contrast to the shiny metallic transgranular 

cleavage of low temperature cryo-crack fracture. The extent of the cracking 

can also be noted in terms of depth and length (continuous or intermittent).  

This information may be used later to more clearly define the susceptibly of 

different microstructural regions in the weld deposit. 
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V.  Results and Discussion 

As part of the determination of the utility of the NCRRCT for assessing 

reheat cracking sensitivity of Cr-Mo-V SAW weld deposits, a study has been 

completed using a total of 18 welds.  All of The 18 welds were evaluated 

using the Notched C-Ring Cracking Test protocol described in Appendix I.  

All tests were conducted in the as-welded condition.  The designation for 

the 16 laboratory-fabricated test welds begins with a “T”, while for the 

commercial fabrication welds a “C” designation is utilized.  Seven welds 

evaluated were intentionally doped with lead, bismuth, antimony, or a 

combination of the three.  These welds are identified by a “D” in the weld 

deposit designation.  The reheat cracking sensitivity ranking for the 18 

different weld deposits as determined by the NCRRCT is shown in Table 6.  
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A full chemical analysis encompassing 50 elements was conducted by 

our industry partner.  A selected chemistry compilation for the 18 welds is 

provided in Table 7 .  Low-level element analyses was conducted using the 

inductively coupled plasma mass spectrometry (ICP-MS) method and the 

normal level elements utilized the Optical Emission Spectroscopy (OES) 

method.  Table 7 allows assessment of the potential effect of chemistry on 

the sensitivity Levels assigned to each weldment as shown in Table 6.  
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The SAW weld deposits that revealed reheat cracking at 55Ksi 

(380MPa) and 70Ksi (480MPa) for 2-hour exposure times reflect cause for 

concern of deposit cracking under normal welding conditions.  Welding 

consumables which reveal weld deposit cracking at 55Ksi should be 

substituted for alternative consumable lots or consumables from a different 

consumable manufacture.  Special precautions can and should be used 

with any weld that exhibit deposit cracking at a level of 3, 70Ksi (480MPa), 

so as to produce a weld deposit less susceptible to reheat cracking.  This 

would include welding procedures that minimize the extent of the coarse-

grained regions, taking steps to reduce residual stress in the weld, and 

removing/eliminating any stress concentrators that could serve as initiation 

sites for reheat-cracks.  

Welds revealing deposit cracking at a stress of 85Ksi (590MPa) or 

100Ksi (690MPa), levels 2 and 1 respectively, are considered to have a low 

sensitivity to reheat cracking and the consumables are acceptable if proper 

welding practices are followed.  Weld deposits revealing cracks only at 

100Ksi (690MPa), level 1, are considered virtually immune to reheat 

cracking. 
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The four welds produced with commercial wire-flux combinations (T-

22V-39, T-22V-40, T-22V-41, and T-22V-42) showed a wide range of reheat 

cracking sensitivity depending on manufacturer.  The T-22V-39 weld deposit 

cracked at Level 3, while the T-22V-41 and T-22V-42 deposits showed a 

ranking of 2, and the T-22V-40 weld deposit was virtually immune to reheat 

cracking at a ranking of 1.  The T-22V-40 weld deposit contains a higher 

level of vanadium (0.34 compared to ~0.26) though this is counter intuitive 

as vanadium has been shown to correlate with a higher sensitivity to reheat 

cracking.  The T-22V-39 weld deposit had a high sensitivity to reheat 

cracking (Level 3) and also had the highest lead level of 1.1 ppm compared 

to the other weld deposits made with different commercial wire and flux 

combinations which contained lead levels below 0.6ppm.  The T-22V-41 

and T-22V-42 weld deposits were both made with the same consumables 

but have different weld heat inputs. Thus, it can be surmised that a limited 

change in heat input will have a minimal effect on weld deposit reheat 

cracking as both weld deposits are ranked at Level 2.  

A standard 2¼Cr-1Mo (P22) alloy weld deposit designated as 

T-STD (P22)-13 was added to the study to determine if the NCRRCT could 

be adopted for use with other alloys, as well as to act as a control datum in 

this study.  Standard P22 deposit is known to be minimally susceptible to 
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reheat cracking compared to the vanadium bearing version (22V).  The 

NCRRCT confirmed this as the T-STD(P22)-13 weld deposit achieved a 

reheat cracking sensitivity Level of 1, indicating that the weld deposit was 

virtually immune to reheat cracking. 

Seven of the weld deposits evaluated in this study contained some 

form of elemental doping to define the effect of tramp elements on weld 

deposit reheat cracking.  These welds were intentionally doped by adding 

the tramp element dopant to the flux in known quantities in be incorporated 

into the weld deposit.  These seven welds(highlighted in yellow) along with 

the other 11 weld deposits are shown below in Table 6 with their 

corresponding lead, bismuth and antimony levels, reheat cracking factor 

“K”, and NCRRCT sensitivity ranking.  
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Table 8.  Chemical analysis, reheat cracking factor “K”, and NCRRCT sensitivity 
ranking for the 18 weld deposits used in development of the NCRRCT.  Welds 

intentionally doped are highlighted in yellow.  

 

 

The results of the evaluation show a clear pattern.  Small amounts of 

lead and bismuth are highly detrimental to the reheat cracking sensitivity of 

22V, therefore these elemental species should be carefully controlled as to 

their introduction into the weld deposit.   

The only 22V weld deposits to score a ranking of Level 1 contained 

lead levels less than 0.4ppm.  The welds produced by commercial 

fabricators(C-22V-1 and C-22V-2) were given a Level 1 ranking.  Test welds 

T-22V-41-D-Sb (43ppm), T-22V-40 weld, and the P22 welds also receive a 

Pb (ppm) Bi (ppm) Sb (ppm)
Reheat Cracking 

Factor "K"

NCRRCT Sensitivity 

Level

0.4 <0.2 43 1.9 1

<0.2 <0.2 4 0.5 1

<0.2 <0.2 3 0.5 1

<0.2 <0.2 6 0.6 1

1.1 <0.2 11 1.6 1

4.8 <0.2 10 5.3 1

0.6 <0.2 9 1.1 2

0.6 <0.2 9 1.1 2

0.8 <0.2 6 1.2 2

0.9 <0.2 5 1.3 2

2.3 <0.2 6 2.7 2

1.2 <0.2 3 1.5 2

1.1 <0.2 7 1.5 3

2.2 0.7 41 4.1 3

3.7 <0.2 6 4.1 3

9.5 <0.2 5 9.9 3

3 <0.2 10 3.5 4

0.5 2.2 11 3.0 4

Weld Deposit Designation 

T-22V-41-D-Sb (43ppm)

T-22V-40

C-22V-1

T-22V-41-D-Bi (2.2ppm)

T-22V-72

T-22V-73

T-22V-47

T-22V-48

C-22V-2

T-STD(P22)-13

T-STD(P22)-13-D-Pb (4.8ppm)

T-22V-41

T-22V-42

T-22V-39

T-22V-41-D-Pb (2.2ppm)+Sb(0.7ppm)+Bi(41ppm)

T-22V-47-D-Pb (3.5ppm)

T-22V-47-D-Pb (9.5ppm)

T-22V-41-D-Pb (3.0ppm)
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Level 1 ranking.  Weld deposits with a sensitivity ranking of 2 all had lead 

Levels ranging from 0.5-2.3ppm Pb.  The weld deposits receiving a Level 2 

ranking were all test welds with no intentional doping though the T-22V-47 

weld deposit contained a high lead content for a un-doped weld.  The only 

weld deposit with lead doping that did not show a high sensitivity (Level 3 or 

Level 4) to reheat cracking is the standard P22 alloy deposit.  This is 

predictable as P22 weld deposits have a low sensitivity to reheat cracking 

due to the low levels of vanadium which is known to increase sensitivity to 

reheat cracking.   

Weld doping with bismuth exacerbated reheat cracking in 22V weld 

deposits though; experience has shown that the occurrence of bismuth at 

concentrations greater than 0.2ppm is generally unlikely in normal 22V weld 

deposits than for lead which can more readily exceed a critical level.  This is 

clearly seen as no un-doped welds in this study contained more than 

0.2ppm bismuth.   

Antimony appears to have the opposite effect on reheat cracking 

sensitivity.  The sample doped only with antimony (T-22V-41-D-43ppm Sb) 

showed the least susceptibility to reheat cracking of any of the 18 welds 

used in this study.  The effect of antimony may also be seen in the triple 
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doped specimen as this weld deposit did not result in the highest 

susceptibility, level 4, but rather Level 3, suggesting that antimony partially 

offset the negative effect of the lead and bismuth in the deposit.  For these 

reasons, antimony could even be deemed as ameliorating or beneficial in 

mitigating reheat cracking. 

The reheat cracking factor “K” proposed in a recent study of 22V 

welds was examined in the development of the NCRRCT [5].  The Pb, Bi, 

and Sb levels and calculated “K” factors for the 18 weld deposits are 

provided in Table 6. 

K=Pb+Bi+0.03*Sb <1.5 

Where Pb, Bi, and Sb are chemical contents in ppm 

 

It was found that lead and bismuth were indeed detrimental to reheat 

cracking, though antimony appeared to reduce reheat cracking susceptibility 

in 22V weld deposits.  This is not in agreement with the “K” factor.  Though 

22V weld deposits performing the best in the NCRRCT did have low “K” 

factors, a smooth trend was not confirmed throughout the body of work.  

Therefore, it may be concluded that while the “K” factor has some relevance 

in identifying weld deposits susceptible to reheat cracking, a different reheat 
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cracking factor must be developed to better identify susceptible weld 

deposits before wide spread acceptance of the “K” factor takes place.  

Precisely how these low level elemental additions affect the reheat 

cracking susceptibility in 22V weld deposit is still unknown.  Nevertheless, 

these elements are present at exceedingly low concentrations, yet still have 

a marked effect on the reheat cracking susceptibility.  Lead and bismuth are 

practically insoluble in solid and liquid iron while antimony is completely 

soluble in solid and liquid iron.  Auger spectroscopy proved ineffective in 

quantifying amounts of the tramp elements on fracture surfaces due to the 

low levels.  For these reasons it is difficult to understand basic phenomena 

that make lead and bismuth so detrimental to reheat cracking susceptibility.   

  The four welds with different welding parameters and bead stack 

patterns all earned the same reheat cracking sensitivity ranking of Level 2.  

Therefore it may be concluded that while the coarse grained regions will 

always be the first to crack, they do significantly change the overall reheat 

cracking potential.   

The two commercial 22V submerged arc welds examined in this study 

were extracted from a pressure vessel and a fabricator’s process 

qualification (PQ) coupon test plate.  C-22V-1 has a “Vee” groove geometry 
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which is common in the pressure vessel industry, see Figure 22.  C-22V-2 

has a narrow gap geometry which is another geometry used to save 

material and reduce welding time, see Figure 22.  Both of these weld 

deposits proved to be virtually immune to reheat cracking by earning a 

Level 1 ranking.  These weld deposits contained low levels of lead and 

bismuth (<0.2ppm) which might account for the low sensitivity to reheat 

cracking.  It is important to note that the C-22V-1 weld deposit chemistry 

was very similar to the T-22V-40 suggesting that the same welding 

consumables were used, meaning that the NCRRCT successfully ranked 

both weld deposits at Level 1.  

One of the universal observations is that reheat cracking always 

initiated in the coarse grained regions of a weld deposit (not refined by 

subsequent passes).  This observation is highlighted in the macrograph in 

Figure 28, which shows the polished and etched macrostructure adjacent to 

the notch juxtaposed with the corresponding cryo-cracked fracture surface.  

The correspondence between the reheat-cracked areas (oxidized) and the 

coarse grained microstructure is further defined by the lines separating the 

coarse grained regions from the fine grained cryo-crack fractured regions at 

the root of the notch for each weld bead.  A one to one correspondence is 

clearly revealed. 
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Figure 28.  Relationship between cryo-cracked specimen fracture 
surface appearance and microstructure at the root of the notch. ~10X, 
10% ammonium persulfate etch. 

 

The NCRRCT is designed to evaluate weld deposits starting in the 

as-welded condition (no prior exposure to any postweld heat treatments 

DHT, ISR, or PWHT).  However, to examine the reheat cracking 

susceptibility of weld depoits after exposure to a series of heat treatments, 

C-Rings were exposed to a series of postweld heat treatments including 
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DHT, ISR, and a PWHT of 8 hours at 705°C (1301°F) before being loaded 

with the stressing bolt and tested.  The C-Rings loaded after the post weld 

heat treatments showed no susceptibly to reheat cracking.  This shows 

that a PWHT can immunize a 22V weld deposit to reheat cracking if the 

weld is able to endure the treatment. This is due to the stress relief that 

naturally occurs as the yield stresses are lowered at the elevated 

temperatures and microstructural changes that take place as carbides 

grow, thus strengthening the matrix.   

Stress risers have proven to be a virtual necessity to initiate a reheat 

crack.  This was confirmed during the development of the NCRRCT.  C-

Rings tested without a notch showed no susceptibility to reheat cracking.  

Again this shows that a weld fabricated without stress risers is significantly 

less likely to experience reheat cracking.  
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VI.  Conclusions 

The purpose of this study was to develop a test (the NCRRCT) that could 

accurately identify 22V submerged arc weld deposits that are susceptible to 

reheat cracking. The conclusions derived from the study may be 

summarized as follows. 

1. The NCRRCT meets all requirements of the Ideal weldability test[1]. 

 Simple 

 Cost effective 

 Shows direct correlation with actual fabrication 

 Reproducible 

 Amenable to a wide variety of welding variables 

2.  The NCRRCT test can accurately rank the reheat cracking 

susceptibility of welding processes and consumables on a 

Go/No-Go basis. 

3. 22V weld deposits are more susceptible to reheat cracking than the 

non-vanadium bearing P22 alloy. 

4. Lead and bismuth significantly increase susceptibility to reheat 

cracking in 22V weld deposits. 
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5. Antimony has a beneficial effect in regard to reheat cracking in 22V 

weld deposits. 

6. The coarse grained regions in weld deposits are more susceptible 

to reheat cracking than the fine grained regions. 

7. Weld bead placement does not have a significant effect on the 

reheat cracking susceptibility in 22V weld deposits. 

8. The NCRRCT is born out of a successful historical development 

dating to 1985. 

9. The NCRRCT can be conducted by anyone with access to a 

machining facility and a small furnace. 

10. The test can be used to study the basic mechanisms of reheat 

cracking. 

11. The test can be employed for evaluating all welding processes and 

associated consumables. 
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VII.  Future Work 

1. Conduct “round-robin” testing to assure the validity of the test. 

2. Proposed test for inclusion into API 934. 

3. Obtain samples from problem welds dating back to 2008 for bench 

marking against commercially fabricated cracked weld deposits. 

4. Utilize the NCRRCT to improve understanding of the basic 

mechanisms behind reheat cracking 

5. A carbide study to identify the carbide evolution in 22V weld deposits. 

6. Perform a more definitive surface analysis to better understand the 

role of tramp elements such as lead, bismuth, and antimony in regard 

to reheat cracking 
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The protocol for employing the notched C-Ring reheat cracking test to 

determine reheat cracking sensitivity of SAW Cr-Mo-V   weld deposits 

1.  Extract a cylindrical slug from the weld deposit of a production weld or 

from the weld in a procedure qualification coupon according to Figure 24. 

2.  Bore/machine the C-Ring cylindrical slug into a tube with a 1.0” (2.54 

cm) diameter and a wall thickness of 0.125” (0.3 cm).  

3.  Cut/machine the C-Ring to a length of 0.75” (1.9 cm). 

4.  Polish the OD of the C-Ring to a 600 grit surface finish (minimum) and 

etch with 10% Ammonium Persufate or other suitable etch which reveals 

the solidification macro-structure of the weld deposit (see Figure 23). 

5.  Select location of the notch based on the weld macrostructure (notch 

should traverse several weld overlapped deposit regions). 

6.  Machine, broach or grind a notch into the OD surface to a depth 0.030” 

(0.075 cm) using the Charpy “Vee” notch geometry given in ASTM E 23. 

(Note the reduction in the notch depth as compared to the standard Charpy 

sample used for toughness testing). 

7.  Drill holes through the notched C-Ring, 90° to the notch, with clearance 

for a 1/4” (0.63cm) threaded rod (bolt).  The threaded rod (bolt) should 
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have 1/4-28 threads or nearest SI thread dimensions.  The threaded rod 

(bolt) must made be from 2¼Cr-1Mo-¼V material. 

8.  Stress the notched C-Ring according to ASTM G 38 using the 

calculation therein for a particular nominal stress.  Deflection of the notched 

C-Ring for any nominal stress assumes that the diameter of the notched C-

Ring is measured at the root of the notch (0.94” 2.39 cm).   Table 5 can be 

referenced for deflections pre-calculated using ASTM G-38. The calculated 

deflection necessary for any “nominal” stress is the reduction in outside 

diameter at the location of the stressing bolts (the effect of the notch as a 

stress raiser must be taken into account to obtain the effective stress at the 

root of the notch). 

9.  As a starting point, stress a notched C-Ring to 85Ksi (590MPa) nominal 

stress.  Heat the stressed C-Ring in a furnace to 1150°F (621°C) at an 

approximate rate of 10 F°/min (6 C°/min).  When the notched C-Ring 

reaches 1150°F (621°C) hold for 2 hours.  Remove the oxide formed during 

thermal exposure by placing the notched C-Ring in a 50% HCl and water 

solution (at ambient temperature) to which several drops of an organic 

inhibitor is added (such as Halliburton HAI-OS) for 5 minutes.  Rinse and 

scrub with a nylon brush.  Rinse again with alcohol and hot air dry.  
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Examine the notched C-Ring sample at the root of the notch at 40-50X 

magnification with a binocular stereo microscope for evidence of cracking.  

If there is cracking note the locations.  This observational procedure is 

followed after each test.  If no cracking is present at the 85Ksi (590MPa), 

stress a new notched C-Ring to 100Ksi (690MPa) and repeat the test.  

After the 100Ksi (690MPa) test, cracking will denote a sensitivity ranking of 

Level 1.   

If there is cracking at the nominal 85Ksi (590MPa) stress after the 2 

hour exposure.  Expose a new notched C-Ring nominally stressed to 70Ksi 

(480MPa) and repeat the entire evaluation process by heating the notched 

C-Ring to 1150°F (621°C) and hold for a time of 2 hours.  If cracking has 

not occurred, the C-Ring will be given a Level 2 ranking.  If cracking takes 

place at the 70Ksi (480MPa) stress Level, a new notched C-Ring should be 

tested at 55Ksi (380MPa).  A no-crack result at the 55Ksi (380MPa) will 

denote a Level 3 sensitivity ranking.  If cracks are found after testing at the 

55Ksi (380MPa) stress the weld deposit will be assigned a Level 4 

sensitivity ranking.  This procedure will define 22V weld deposits with the 

appropriate reheat cracking sensitivity “Level”. 
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The above procedure will result in the assignment of the weld deposit 

to one of 4 Levels of cracking behavior.  The 4 Levels of assessment allow 

for the definitive ranking of weld deposit cracking. 

10.  Evaluation criteria for 2¼Cr-1Mo-¼V SAW weld deposit sensitivity to 

reheat cracking are suggested as follows:  Based on testing to date the 

experimental evidence has shown that, most notched Cr-Mo-V SAW 

deposit notched C-Rings, stressed to a nominal stress of 100Ksi (690MPa) 

and tested at 1150°F (621°C) will crack within a time of 2 hours. Thus, the 

evaluation criteria for the 2¼Cr-1Mo-¼V SAW deposits is that if a notched 

C-Ring exhibits cracking at a nominal stress of 100Ksi (690MPa) with a 

thermal exposure at 1150°F (621°C) for 2 hours, the material is considered 

virtually immune to reheat cracking under normal weld deposition 

techniques and methods.  
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Commentary on Notched C-Ring Reheat Cracking Test Protocol 

This commentary amplifies and/or explains the protocol for 22V SAW 

weld deposit testing using the Notched C-Ring Reheat Cracking Test.  The 

numbering in this commentary is identical to the numbering in the above 

protocol 

1,2,3. The extraction of the cylindrical slug from a weldment can be done 

by sawing and conventional machining.  However, EDM can be effectively 

employed to minimized final machining.  

4.  The polishing of the C-Ring to 600 grit and etching with an aqueous 

10% Ammonium Persulfate solution works very well on the 22V alloy weld 

deposits as it produces significant contrast between weld beads and the 

overlapped regions.  However, other etchants may be employed and 

different levels of polishing used to suit the material being evaluated. 

5.  The location of the notch (as shown in Figure 23) is significantly 

important, in that, it must traverse the overlapped and un-overlapped 

regions of the welds bead in the through thickness direction and should not 

be selected to reside solely in a completely refined region, such as in the 

central overlapped region of the side by side weld beads.  The reasons for 

this positioning of the notch are that all of the weld regions must be 
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included in the Notched C-Ring reheat cracking assessment and the fact 

that certain portions of the overlapped region (fine-grained) may be much 

less sensitive than other regions of the weld.  Thus, to arrive at a proper 

assessment all regions must be subjected to the stresses at the root of the 

notch of the C-Ring. 

6.  The notch may be created by any means which will produce the desired 

geometry (as per ASTM E 23) and required depth. 

7.  Fine threading of the bolts is considered important so that the proper 

deflection can be obtained during bolt tightening.  The bolt material must 

match the material being tested so as to match the expansion coefficients 

and to provide for a more realistic stress relaxation. 

8.  The nominal stress is imposed by deflecting the notched C-Ring (by 

tightening the bolt) should be calculated using the 0.94” (2.39 cm) notched 

C-Ring diameter at the root of the notch.  The effective stress at the notch 

root is to be considered as the nominal stress.  A notch is employed in the 

C-Ring testing as it has been found that in virtually all of the occurrences of 

reheat cracking in actual weldments a stress amplifying discontinuity exists 

in the particular weld region, a necessary condition for the initiation of 

reheat cracking. 
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9.  The heating rate to the ISR/PWHT test temperature is relatively 

unimportant but it should not be significantly faster that that indicated in the 

protocol and may be considered to be somewhat similar to the actual heat 

treatment of a vessel.  The 1150°F (621°C) test temperature is considered 

similar to a typical ISR temperature and further, it is also considered as the 

temperature at which the minimum time for reheat cracking to occur (reheat 

cracking response is a typical C-curve phenomenon with the nose of the C-

curve at approximately 1150°F (621°C).  A hold at 1150°F (621°C)) is 

introduced to insure that the nose of the C-curve is intersected and thus 

provides for initiation of reheat cracking.  If heat treatment in air is 

conducted, the surface of reheat cracks at the root of the notch will be 

oxidized.  The light grey coloration of the oxidized surfaces provides for 

easy assessment of a crack-no-crack condition.  However, if the test is 

conducted in an inert atmosphere one must rely on the fracture morphology 

to assess if cracking has occurred during the test.  The benefits of testing a 

notched C-Ring in an inert atmosphere is that it provides for a clean (non-

oxidized) reheat crack surface most suitable for SEM examination and 

evaluation. 

10.  The NCRRCT sensitivity protocol indicates that at a nominal stress of 

85Ksi (590MPa) with clean (low tramp elements in the deposit) material 
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the deposit is significantly resistant to reheat cracking and at 100Ksi 

(690MPa) the material should show virtually no sensitivity to reheat 

cracking if good welding procedures are closely adhered to.  However, for 

test condition cracking at 70Ksi (480MPa) the fabrication must adhere 

closely to optimum welding conditions to avoid reheat cracking.  Cracking 

of a C-Ring at 55Ksi (380MPa) should reflect cause for concern even with 

the optimum welding procedures. 
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