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ABSTRACT  

 The main objective of this research was to examine the lipolytic changes in triglyceride 

and phospholipid as well as the incidence of germinal vesicle breakdown during IVM of heat-

stressed oocytes compared to non-stressed oocytes.  To this end, cumulus-oocyte complexes 

were matured for 0, 2, 4, 6 or 24 hIVM at 38.5 or 41.0°C (first 12 h only, then transferred to 

38.5°C).  Triglyceride and phospholipid levels decreased by 2 hIVM (P = 0.0009 and P = 0.0005, 

respectively) but remained fairly constant to 24 hIVM; lipid decline was not affected by 

maturation temperature.  Elevated maturation temperature hastened meiotic progression by 4 

hIVM (P < 0.0001).  Incidence of germinal vesicle breakdown was associated, though not 

directly related, to lipolytic changes in oocyte triglyceride and phospholipid content (R2 [R-

squared] = 0.2123 and P = 0.0030; R2 = 0.2243 and P = 0.0026, respectively).  Oocyte ATP 

content was measured as an indirect indicator of lipolysis (i.e., mitochondrial fatty acid β-

oxidation [beta-oxidation] of fatty acids freed during lipolysis of triglyceride/phospholipid for 

ATP production).  The ATP content of oocytes increased during IVM and was greater in heat-

stressed oocytes at 24 hIVM compared to controls (P = 0.0082).  Levels of ATP were associated, 

though not directly related, to changes in oocyte triglyceride and phospholipid content (R2 = 

0.1086 and P = 0.0184; R2 = 0.1252 and P = 0.0096, respectively).  In summary, heat stress-

induced hastening of oocyte germinal vesicle breakdown was not directly explained by lipolytic 

changes in triglycerides and phospholipids nor the oocyte ATP content. 
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CHAPTER 1 

INTRODUCTION 

 The impact of environmental heat stress on the dairy cattle industry is both a present and 

future concern.  Economically, the US dairy cattle industry incurs losses of almost one billion 

dollars yearly due to production deficits resulting from heat stress including decreased rate of 

growth (West 2003), decreased milk production (Collier et al. 2008), and fertility (reviewed by 

Rensis & Scaramuzzi 2003; St-Pierre et al. 2003).  Heat stress-induced decreases in fertility have 

been attributed to an unstable hyperthermic maternal environment, which may indirectly increase 

embryonic loss or directly impact the oocyte (reviewed by Rensis & Scaramuzzi 2003).  

Edwards and Hansen (1996) determined that some of the decreased fertility caused by heat-

induced hyperthermia when occurring during estrus may stem from direct alterations to the 

oocyte as it undergoes meiotic maturation in preparation for fertilization.   

 Although the mechanism(s) underlying heat-induced perturbations occurring in the 

oocyte after resumption of meiosis remain largely unclear, multiple studies reported that 

exposure to a physiologically relevant heat stress hastens this process.  Specifically, heat-stressed 

oocytes mature faster than non heat-stressed oocytes.  Baumgartner and Chrisman (1981) 

reported that a greater proportion of murine oocytes were classified as bicellular (i.e., evidence 

of first polar body formation) after exposure to in vivo heat stress.  In a different study, murine 

oocytes matured at an elevated temperature for a short time period in vitro showed evidence of 

accelerated germinal vesicle breakdown (GVBD; Kim et al. 2002).  In the bovine, more heat-

stressed oocytes reached metaphase I (MI) by 8 h of in vitro maturation (hIVM) and metaphase 

II (MII) by 18 hIVM than did non-stressed oocytes (Edwards et al. 2005).  Meiotic hastening 

likely results in an aged oocyte at fertilization, which may not be without consequence, as 
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Rispoli et al. (2011) showed that fertilization of aged oocytes resulted in decreased blastocyst 

development similar to that seen in heat-stressed oocytes.  In support of this notion, insemination 

of heat-stressed oocytes 4 to 6 h earlier improved blastocyst development (Edwards et al. 2005; 

Schrock et al. 2007). 

 Although it is unclear what heat-induced mechanism(s) serve to hasten the onset of 

meiotic maturation, in other cell types mild hyperthermia exposure increases mitogen activated 

protein kinase (MAPK) activity (reviewed by Park et al. 2005).  Interestingly, when Fissore et al. 

(1996) microinjected bovine oocytes with M-mos sufficient to activate MAPK, the incidence of 

GVBD was higher.  In addition to its role in promoting meiotic maturation, MAPK is also well-

known for its role as a lipolytic driver in other cell types (Greenberg et al. 2001; Jaworski et al. 

2007).  Furthermore, lipolytic activity is increased in other cell types after exposure to elevated 

temperatures.  Specifically, upon trigger of increased body temperatures in Malignant 

Hyperthermia-susceptible patients, fatty acid concentration in muscle cell homogenates was 

increased (Fletcher & Rosenberg 1986) most likely due to elevated triglyceride catabolism 

(Fletcher et al. 1989).  Research has shown that triglyceride catabolism is actually an important 

occurrence during bovine oocyte IVM.  Triglyceride content is significantly decreased (Ferguson 

& Leese 1999; Kim et al. 2001) concurrent with increased lipase activity (Cetica et al. 2002; 

Auclair et al. 2013) when comparing mature to immature bovine oocytes.  Furthermore, when 

downstream lipid catabolism (fatty acid β-oxidation) is promoted, progression of nuclear 

maturation and embryonic development is increased (reviewed by Dunning & Robker 2012). 

 Depending upon the extent to which heat stress may be altering MAPK or other 

mechanisms to hasten GVBD, lipolysis may also be altered within the bovine oocyte.  As a first 

step, we characterized the timing of GVBD within our IVM system to determine repeatability 
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and timeline agreement with previous research.  In the second study, changes in triglyceride and 

phospholipid content were characterized during early IVM as an indirect measure of lipolysis to 

allow for direct comparison with incidence of GVBD.  Heat stress was applied in the third study 

to assess the effects of elevated temperature on triglyceride and phospholipid changes in 

association with incidence of GVBD during early IVM.  In a subset of oocytes, ATP content was 

evaluated to serve as an indirect measure of lipid catabolism in the oocyte (as mitochondria 

utilize fatty acid β-oxidation as a means to fuel ATP production).  Furthermore, when measured 

at 24 hIVM ATP concentration is greater in heat-stressed oocytes (Nagle 2011). 
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CHAPTER 2 

REVIEW OF LITERATURE 

Introduction 

 The following is a literature review covering the impact of heat stress on bovine 

reproduction, focusing mostly on the effects of heat stress on the cumulus-oocyte complex 

during meiotic maturation.  In an attempt to determine potential alterations which could induce a 

hastened nuclear maturation, this review also focuses on oocyte lipid content, lipid catabolism, 

and subsequent mitochondrial production of ATP. 

Impacts of Environmental Heat Stress on the US Dairy Cattle Industry 

 The impact of environmental heat stress on the dairy cattle industry is both a present and 

future concern.  Economically, the dairy industry incurs losses of approximately one billion 

dollars yearly due to production deficits which occur during the hot summer months experienced 

in the southern region of the country (Rensis & Scaramuzzi 2003; St-Pierre et al. 2003).  Heat 

stress effects on cattle production is also of great concern, as by year 2050 the consumption of 

dairy products is expected to increase by 150 to 200% as the world’s human population is 

predicted to expand by over three billion (McLeod 2011; U.S. Department of Agriculture 2012).   

 Cattle under the influence of heat stress experience hyperthermia, influencing multiple 

facets of production.  In dairy cows, milk production is severely affected by increased 

environmental temperatures; the average decrease in milk production is about 1,100 kg/cow/year 

across the southern US (St-Pierre et al. 2003).  Reproduction efficiency of dairy cows and heifers 

under the influence of heat stress suffers in that sexual receptivity and overall fertility 

coincidently decrease (reviewed by Hansen & Arechiga 1998; Drost et al. 1999).  The pregnancy 
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rate of cattle is inversely related to ambient temperature, as rates are reduced by almost 20% 

when environmental temperatures increase by 10°C (reviewed by Hansen & Arechiga 1998).   

Oocyte Maturation and Early Embryo Development are Affected by Elevated Temperature 

 Some of the reproductive losses caused by heat stress (i.e. induced hyperthermia) may 

stem from the alterations occurring during estrus, which is when the oocyte resumes meiotic 

maturation in preparation for fertilization (Putney et al. 1989).  Though fertilization rate was 

unaffected, greater than 85% of embryos collected from superovulated heifers exposed to an 

elevated ambient temperature sufficient to induce hyperthermia for the first 10 hours of estrus 

(during the period of oocyte maturation) were retarded or abnormal (Putney et al. 1989).  Heat 

stress seems to be able to impact the oocyte directly as both in vivo and in vitro matured oocytes 

show incidence of decreased embryonic development when heat-stressed during meiotic 

maturation.  Specifically, Gendelman and Roth (2012) observed a 15% reduction in embryonic 

development (assessed at 42 h and 7–8 d post fertilization) from oocytes exposed to a 

hyperthermic maternal environment during the summer or to 41.2°C for the first 16 hours of in 

vitro maturation (hIVM).  Decreased blastocyst development was also evident in bovine oocytes 

exposed to 41.0°C for the first 12 hIVM, then cultured at 38.5°C thereafter compared to non-

stressed oocytes (Edwards & Hansen 1996, 1997; Lawrence et al. 2004) similar to the in vivo 

observations from Putney et al. (1989).   

 Organelle arrangement and morphology are altered in oocytes experiencing heat stress 

during this pertinent 24 h maturation period.  When bovine oocytes are incubated at 41.0°C for 

the first 12 hIVM and 38.5°C for the second 12 h, there was a significant shift in cortical granule 

type (Edwards et al. 2005).  Heat-stressed oocytes may also experience other organelle 

alterations like those found in rat fibroblast cells after experiencing heat shock for 3 hours at 42 
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to 43°C (Welch & Suhan 1985).  Specifically, heat-shocked cells contained fragmented Golgi, 

swollen mitochondria, and alternatively arranged cytoskeletal elements (Welch & Suhan 1985).   

 Transcript abundance may also be altered in oocytes matured under heat stress 

conditions, both in vivo and in vitro (Payton 2009; Gendelman & Roth 2012).  Payton (2009) 

heat stressed bovine oocytes for the first 12 hIVM at 41.0°C (transferred them to 38.5°C for the 

second 12 h), then completed a microarray analysis of the RNA present within those oocytes.  A 

multitude of transcripts significantly differed in abundance between the two treatment groups 

(control versus heat stress).  As at least 21 of these altered transcripts are important for proper 

mitochondrial function, it would seem that heat stress is capable of inducing mitochondrial 

dysfunction within the bovine oocyte.  The developmental potential of oocytes is negatively 

impacted when mitochondrial function is disrupted (Thouas et al. 2004; Takeuchi et al. 2005).  

After a mere 5 seconds of photoirradiation to induce mitochondrial dysfunction, the percentage 

of murine oocytes progressed to MII after IVM was decreased by nearly 56% (Takeuchi et al. 

2005).  Blastocyst development was also decreased (by about 20%) when mitochondrial 

dysfunction was induced in murine oocytes by application of photoirradiation for 40 seconds 

before fertilization (Thouas et al. 2004).    

 Oocytes that experience elevated temperatures during meiotic maturation show evidence 

of an accelerated progression to MII.  Approximately 30% of murine oocytes from superovulated 

mice exposed to heat stress conditions for 15.5 h after hCG injection were classified as bicellular 

(i.e. evidence of first polar body formation) compared to only 15% from the control mice 

(Baumgartner & Chrisman 1981).  In vitro, when Kim et al. (2002) heat shocked murine oocytes 

for 15 or 30 min at 43°C, greater than 20% had undergone GVBD (assessed 1 h after application 

of heat shock) compared to 10% of control oocytes.  Edwards et al. (2005) observed a greater 
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proportion of heat-stressed bovine oocytes, matured at 41°C for the first 12 hIVM (then at 

38.5°C for the second 12 h),  reach the MI stage as early as 8 hIVM compared to non-stressed 

oocytes.  Also, a greater proportion of heat-stressed oocytes had undergone GVBD compared to 

controls when assessed at 8 hIVM (Edwards et al. 2005).  Furthermore, a greater proportion of 

heat-stressed oocytes reached the MII stage by 18 hIVM than did non-stressed oocytes (Edwards 

et al. 2005).  This hastening of maturation likely results in aged oocytes at the time of 

fertilization, which is not without consequence.  Fertilization of non-stressed bovine oocytes 

(matured at 38.5°C) after 30 hIVM, effectively aging them by approximately 6 h, reduced 

blastocyst development similar to the reduction observed when heat-stressed oocytes (cultured at 

41.0°C for the first 12 hIVM, then at 38.5°C thereafter) are fertilized at the physiologically 

relevant 24 hIVM (Rispoli et al. 2011).  In support of this notion, Edwards et al. (2005) reported 

that performing IVF 5 h earlier, at 19 hIVM instead of at 24 hIVM, improved blastocyst 

development of heat-stressed oocytes (matured at 41.0°C for the first 12 h, then at 38.5°C 

thereafter) from about 17% (IVF at 24 hIVM) to 22% (IVF at 19 hIVM).   

Lipid Content in Oocytes 

 The immature bovine oocyte contains approximately 57 ng of lipid (Ferguson & Leese 

1999).  When bovine oocytes are viewed under bright field microscopy, the cytoplasm appears 

dark due to the abundance of this lipid (Jeong et al. 2009; Barcelo-Fimbres & Seidel Jr 2011).  

The amount of lipid in an oocyte is species specific; both porcine and ovine oocytes contain 

more lipid than those of the bovine, averaging 160 ng, 89 ng, and 63 ng, respectively (McEvoy et 

al. 2000).  Though, the three most abundant fatty acids which make up this lipid were the same 

in oocytes of all three species – palmitic, oleic, and stearic acids (McEvoy et al. 2000).  In 

contrast, murine oocytes contain smaller amounts of lipid such that quantification is difficult.  
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Lowenstein and Cohen (1964) reported the lipid content of murine oocytes at approximately 4 

ng. 

 Though the zona pellucida of an oocyte contains some lipid, the majority of lipid is 

housed within the oocyte’s cytoplasm in the form of lipid droplets (Kruip et al. 1983; Ferguson 

& Leese 1999; Genicot et al. 2005). These droplets are distributed throughout the cytoplasm, and 

placement can vary between oocytes.  An oocyte contained within a primordial follicle has only 

a few droplets, but numerous more develop as the follicle continues growth to the tertiary stage 

(Fair et al. 2007).  Each of the droplets is chiefly neutral in charge due to a largely triglyceride-

based composition (McEvoy et al. 2000; Genicot et al. 2005).  Kim et al. (2001) reported 

triglyceride at 57 pmol, cholesterol at 16 pmol, phospholipid at 15 pmol, and non-esterified fatty 

acids at 11 pmol as the major fractions contained within lipid droplets in the immature bovine 

oocyte.  

Composition of Oocyte Lipid 

 Lipids, such as triglyceride and phospholipid, are metabolically synthesized by cells 

using various fatty acids with other molecules made available to the cell such as glycerol or 

phosphate groups. The majority of the fatty acids present in the bovine oocyte are saturated, and 

there are four fatty acids which make up greater than 80% of the total fatty acid fraction 

(Khandoker et al. 1997; McEvoy et al. 2000).  The four most abundant fatty acids, as determined 

by gas chromatography of immature bovine oocyte lipid fractions, are palmitic, stearic, oleic, 

and linoleic acids (Khandoker et al. 1997; McEvoy et al. 2000; Lapa et al. 2011).  

 These four fatty acids are also abundant in follicular fluid of follicles present on bovine 

ovaries (Leroy et al. 2005; Aardema et al. 2013).  Concentrations of both palmitic and linoleic 

acid change during follicular growth (Homa & Brown 1992; Bender et al. 2010).  Bender et al. 
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(2010) found palmitic acid concentrations to be significantly greater in fluid from subordinate 

follicles than dominant bovine follicles.  Homa and Brown (1992) reported linoleic acid 

concentrations to be significantly greater in small bovine ovarian follicles compared to large 

follicles.  

 Supplementing in vitro maturation media with singular, or a mixture of, fatty acids 

affects bovine oocyte developmental competence.  Researchers found linoleic acid to negatively 

impact bovine oocytes when supplemented in the maturation media.  Marei et al. (2010) 

observed a significant decrease in cumulus cell expansion along with impaired oocyte maturation 

(specifically oocyte nuclear maturation to MII) when bovine oocytes were matured in maturation 

media supplemented with 50 µM, 100 µM and 200 µM linoleic acid.  When Homa and Brown 

(1992) supplemented maturation media with 50 µM linoleic acid, they observed a significantly 

decreased percentage of COCs to undergo germinal vesicle breakdown (a very important step of 

the oocyte nuclear maturation process).  Homa and Brown (1992) suggested that linoleic acid 

may be important for the maintenance of bovine oocyte meiotic arrest until the surrounding 

follicle is selected for dominance since follicular concentrations of linoleic acid decrease as the 

follicle becomes dominant (Marei et al. 2010; Renaville et al. 2010).     

 Studies researching the effects of other fatty acids on oocyte maturation have been 

performed.  When bovine oocytes were matured in media supplemented with palmitic or stearic 

acid, post-fertilization development was significantly decreased compared with oocytes matured 

in control media (Leroy et al. 2005; Aardema et al. 2011).  Though palmitic and stearic acid 

supplementation at 100, 250 or 500 µM did not seem to decrease the ability of bovine oocytes to 

mature to MII after 23 hIVM, it did decrease the amount of cumulus expansion during 

maturation (Aardema et al. 2011). Supplementing maturation media with 100, 250 or 500 µM 
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oleic acid did not affect bovine oocyte maturation to MII or cleavage of embryos 5 days post 

fertilization; however, the 500 µM concentration did increase the proportion of  blastocysts 

developed from fertilized MII-stage oocytes (Aardema et al. 2011).  When maturation media is 

supplemented with 50 µM linolenic acid, bovine oocytes contained greater concentrations of 

cAMPi after 3 hIVM and phosphorylated MAPK1/3 after 3 and 6 hIVM (Marei et al. 2009).  

Each of the aforementioned fatty acids and compounds are considered to be promoting or 

inhibiting factors for bovine oocyte maturation. 

Changes in Lipid Content of Oocytes during In Vitro Maturation 

  The profile of intracellular lipid droplets changes over bovine oocyte maturation, 

specifically these droplets are degraded during maturation (Kruip et al. 1983).  As triglyceride is 

the major constituent of these lipid droplets, Ferguson and Leese (1999) utilized a dual-reagent 

metabolic assay to measure triglyceride content in bovine oocytes (before IVM and after 24 

hIVM) and even a variety of embryonic stages.  Immature bovine oocytes contained 59 ng of 

triglyceride, which decreased significantly after 24 hIVM to 46 ng (Ferguson & Leese 1999).  

Triglyceride content significantly decreased once more when fertilized oocytes cleaved to 2-cells 

(34 ng) before plateauing throughout the rest of embryonic development to the hatched 

blastocyst stage (Ferguson & Leese 1999).  Upon utilization of a colorimetric triglyceride assay, 

Kim et al. (2001) also reported immature bovine oocytes to contain more triglyceride than 

oocytes matured for 24 hIVM (measuring 57.6 pmol and 36.6 pmol, respectively).  Though 

triglyceride levels decreased in bovine oocytes over IVM, this lipid fraction was still the most 

abundant in in vitro matured oocytes (Kim et al. 2001).   Furthermore, Auclair et al. (2013) 

observed a decrease in bovine oocyte lipid content from 0 to 24 hIVM when using a lipid-

specific fluorescent stain (Nile Red).   
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 As the triglyceride levels within bovine oocytes and early embryos decrease during 

energetically taxing developmental stages, many researchers theorize that it is being metabolized 

to produce ATP (energy).  Cetica et al. (2002) provided evidence for triglyceride metabolism in 

immature and in vitro matured bovine oocytes and their surrounding cumulus cells.  

Measurement of the rate-limiting enzymes of glycolysis, the pentose phosphate pathway, and 

lipolysis (phosphofructokinase, G6PDH and lipase, respectively) showed that while cumulus 

cells are most capable of utilizing glucose as an energy source, the oocytes themselves are most 

capable of utilizing lipid as an energy source (Cetica et al. 2002).  Not only was lipase activity 

greater in oocytes than in cumulus cells, but specific activity was significantly increased in 

oocytes matured for 22–24 h compared to immature oocytes (Cetica et al. 2002).  Though 

Cetica’s research group did not try to determine the identity of the lipase(s) present in bovine 

oocytes, Auclair et al. (2013) detected inactive hormone sensitive lipase in oocytes before and 

after IVM for 22 h.  The active (phosphorylated) form of hormone sensitive lipase was only 

detected after IVM (Auclair et al. 2013).  At this time, it is unknown whether other types of 

lipase are present within the bovine oocyte. 

Fatty Acid β-oxidation in Oocytes during In Vitro Maturation 

 In order to utilize stored lipid for energy production, the lipid must be hydrolyzed and 

processed through lipolysis followed by β-oxidation of the resultant fatty acids.  Oocytes likely 

utilize this process as other cell types do, as evidenced by the decrease in triglyceride levels and 

concomitant increase in lipase levels through oocyte maturation.  In fact, inhibition of fatty acid 

oxidation during IVM of oocytes negatively impacted their developmental competence 

(Ferguson & Leese 2006; Dunning et al. 2010; Paczkowski et al. 2013).  Paczkowski et al. 

(2013) inhibited fatty acid β-oxidation in murine, bovine, and porcine oocytes by supplementing 
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the maturation medium with 10, 25, 100 and 250 µM etomoxir (a fatty acid oxidation-specific 

inhibitor).  Meiotic maturation to MII was inhibited in murine oocytes at the 250 µM 

concentration, bovine oocytes at the 100 and 250 µM concentrations, and porcine oocytes at the 

10, 100 and 250 µM concentrations of etomoxir (Paczkowski et al. 2013).  Cleavage to the 4 to 

8-cell stage by Day 3 and blastocyst formation by Day 5 after fertilization of murine oocytes 

matured in the presence of 100 µM etomoxir was also decreased (Dunning et al. 2010).  When 

bovine oocytes were matured for 24 h in maturation media supplemented with 1.0 or 5.0 mM 

methyl palmoxirate (an inhibitor of mitochondrial beta-oxidation), development to the blastocyst 

stage after fertilization was reduced from 21.6% in controls to 14.0 and 6.75%, respectively 

(Ferguson & Leese 2006).  Furthermore, promotion of oocyte fatty acid β-oxidation by L-

carnitine supplementation of the maturation media improved embryonic development after 

fertilization (reviewed by Dunning & Robker 2012).    

Mitochondrial Translocation and ATP Production duri ng Oocyte Maturation 

 During oocyte maturation mitochondria translocate within the cytoplasm.  Between 0 and 

8 h of maturation within the follicle, mitochondrial organization within the cytoplasm of oocytes 

changed from a seemingly random distribution to aggregation around lipid droplets with close 

association to portions of smooth endoplasmic reticulum (Kruip et al. 1983).  Mitochondrial 

aggregation occurs similarly in in vitro matured bovine oocytes (Kątska-Książkiewicz et al. 

2011).   

 Mitochondrial respiration is indicative of ATP production; thus as respiratory activity 

increases, so should the production of ATP.  The respiratory activity of mitochondria was greater 

(Kątska-Książkiewicz et al. 2011), as was the concentration of ATP in bovine oocytes matured 

for 24 h (Machatkova et al. 2012) compared to immature oocytes before IVM.  These results are 
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similar to those of other studies measuring the ATP content of bovine oocytes.  When Stojkovic 

et al. (2001) measured ATP content in bovine oocytes before maturation for any length of time 

as well as after IVM, concentration increased from 1.8 pmol/oocyte to 2.4 pmol/oocyte.  Iwata et 

al. (2011) also observed greater ATP concentrations in bovine oocytes after IVM compared to 

immature oocytes (1.2 and 2.0 pmol/oocyte, respectively). 

Impact of Elevated Temperature on Oocyte Energy Production  

  The concentration of ATP in bovine oocytes is increased even more so if oocytes are 

matured at an elevated temperature (Nagle 2011).  After maturation at 41.0°C during the first 12 

hIVM and 38.5°C for the remaining 12 h, heat-stressed oocytes contained 2.01 pmol ATP/oocyte 

as compared to the 1.65 pmol/oocyte in oocytes matured at 38.5°C for the entire 24 h maturation 

period (Nagle 2011).   

 Though no previous research has been conducted on the effects of elevated temperature 

on fatty acid β-oxidation or lipolytic activity in oocytes, heat stress has been observed to alter 

lipolysis in other cell types.  Lipolytic activity is increased in skeletal muscle cell homogenates 

of patients with Malignant Hyperthermia, a genetic disease causing a rapid increase in body 

temperature (fever) when administered any sort of general anesthetic (Fletcher & Rosenberg 

1986).  The increased release of fatty acids in the muscle cells of these patients is likely resultant 

of enhanced triglyceride turnover (Fletcher et al. 1989).  In adipocytes, lipolysis is increased 

through procedures such as Laser Body Sculpting; a technique that claims to “melt away fat” 

where a laser is applied to a fatty area of the body in order to increase adipocyte temperature to 

approximately 41.0°C (Weiss 1996).  Thus, it is possible that heat stress may also increase the 

rate of lipolysis in oocytes. 
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CHAPTER 3 

MATERIALS AND METHODS 

 Unless otherwise stipulated, all chemicals were purchased from Sigma Chemical 

Company (St. Louis, MO, USA).   

Collection and In Vitro Maturation of Oocytes 

 In general, the methods used to collect and mature bovine oocytes in vitro were as  

described previously by Edwards et al. (2005).  Oocyte collection medium was prepared using 

M199 with Hank’s salts (Mediatech; Manassas, VA, USA) containing 12.5 mM HEPES, and 4.2 

mM sodium bicarbonate, 1 – 2% standard fetal bovine serum (Atlanta Biologicals; Lawrence, 

GA, USA), 1% L-glutamine, and 0.5% Penicillin/Streptomycin.  Depending on study, 

approximately 35 to 50 cumulus-oocyte complexes (COCs) were randomly grouped for 

maturation at 38.5°C and/or 41.0°C (heat-stressed COCs were transferred to 38.5°C after the first 

12 hIVM) for up to 24 h.  Oocyte maturation medium was prepared using M199 with Earle’s 

salts (Gibco, Life Technologies; Grand Island, NY, USA) with 26.2 mM sodium bicarbonate, 

and supplemented to contain 10% premium fetal bovine serum (Biowhittaker; Walkersville, MD, 

USA), 50 µg/mL gentamicin (Biowhittaker), 5 µg/mL FSH (Bioniche; Belleville, Ontario, 

Canada), 0.2 mM sodium pyruvate, and 2 mM L-glutamine (Schrock et al. 2007). 

 Either immediately before placement into maturation media (0 hours), or some time 

thereafter, a subset of COCs was removed from culture and denuded completely of cumulus.  For 

the 0 to 12 h groups, oocytes were denuded by vortexing in HEPES-TALP (Sirard et al. 1988); 

whereas COCs from the 24 h groups were vortexed in HEPES-TALP containing 0.3 mg/mL of 

hyaluronidase.  Successfully denuded oocytes were fixed in 3% paraformaldehyde-Dulbecco’s 
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Phosphate Buffered Saline (DPBS, without CaCl2 or MgCl2) for 1 h at room temperature, 

protected from light. 

Study One: Timing of Germinal Vesicle Breakdown in Bovine Oocytes Undergoing In Vitro 

Maturation at 38.5°C 

 The timing of GVBD was assessed by evaluating oocytes every 2 h during the first 12 

hIVM.  Oocytes were determined to have undergone GVBD if the germinal vesicle (GV) was no 

longer detectable and the nuclear material was in a condensed chromatin (CC) configuration or at 

MI.  Fixed oocytes were stained with Hoechst 33342 before mounting to a slide under a 

coverslip.  Nuclear stage of individual oocytes was determined using fluorescence (excitation 

330 – 380/emission ≥ 420) on a Nikon TE300 Inverted Fluorescent microscope.  Study One was 

conducted over seven days of oocyte collection using 1,325 oocytes in total (131 to 389 oocytes 

per each time period examined). 

Study Two: Timing of Lipolytic Changes and GVBD in Bovine Oocytes Undergoing In Vitro 

Maturation at 38.5°C 

 Lipolysis was evaluated by examining triglyceride and phospholipid content in COCs 

cultured for 0, 2, 4, 6 or 24 hIVM as modified from Genicot et al. (2005) and Auclair et al. 

(2013).  Fixed oocytes were washed in HEPES-TALP before incubation in 0.2 µg/mL Nile Red 

fluorescent lipophilic stain in 1% PVP-DPBS for 2 h at room temperature, protected from light.  

Stained oocytes were washed in 1% PVP-DPBS and then transferred in groups of ten per 100 µL 

DPBS-PVP into separate wells of a 96-well black microplate with a transparent bottom (Thermo 

Scientific Nunc – Thermo Fisher Scientific; Rochester, NY, USA).  Fluorescent readings were 

obtained using a Synergy H1 microplate reader (BioTek Instruments, Inc., VT, USA) at two 

fluorescent settings: excitation 485/emission 588 (triglyceride) and excitation 549/emission 628 
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(phospholipid; Greenspan et al. 1985; Kimura et al. 2004).  Once measurements were obtained, 

background fluorescence was subtracted and the corrected value from each well was divided by 

the number of oocytes in said well to determine the arbitrary fluorescent units (A.F.U.) per 

oocyte.  After fluorescence was recorded, oocytes were removed from the 96-well microplate 

and Hoechst stained to determine nuclear stage as previously described.  Study Two was 

replicated over six oocyte collection days using 1,237 oocytes in total (the total number of pools 

per each of the five treatment groups ranged from 17 to 25). 

Study Three: Lipolytic Changes, GVBD and ATP Content during In Vitro Maturation of 

Bovine Oocytes at 38.5 and 41.0°C 

 Triglyceride and phospholipid content of control and heat-stressed oocytes was assessed 

at 0, 2, 4, 6 and 24 hIVM as previously described.  Each plate was read ten times instead of once, 

and these values were averaged separately for each well to better control for variability.  After 

the average fluorescence was recorded, oocytes were transferred from the 96-well microplate and 

prepared for nuclear stage assessment using Hoechst 33342.   

 Concurrent with efforts described above, ATP content was measured in a small subset of 

oocytes taken before fixation from each treatment group at five different time points (0, 2, 4, 6 

and 24 and cultured at 38.5°C and 41.0°C).  First, oocytes were denuded of surrounding cumulus 

cells and the zona pellucida was removed using 0.5% pronase.  Oocytes were then transferred 

individually to microcentrifuge tubes, lysed in sterile water, and stored at -80°C.  Oocyte lysates 

were assessed for ATP content using the ATP determination kit from Invitrogen (Division of 

Life Technologies; Carlsbad, CA, USA) and a tube-based luminometer (Berthold, Huntsville, 

AL, USA) set to read the sample for ten seconds after a three second hold-time.  The total 

amount of ATP in each oocyte lysate was determined using a standard curve ranging from 0 to 



17 
 

10 pmol.  Study Three was replicated over six oocyte collection days using 2,680 oocytes for 

lipid analysis (14 to 16 pools per each of nine treatment groups) and 270 for ATP analysis (21 to 

39 oocytes per treatment group).  

Statistical Analyses 

 Nuclear maturation data from Study One is presented as raw values to show variability 

among different batches of bovine oocytes collected on different days.  Data from Studies Two 

and Three were analyzed as a randomized block design using the GLIMMIX procedure of SAS 

9.4 (SAS Institute, Inc., Cary, NC, USA), blocking on date of oocyte collection.  The Study Two 

dependent variables were lipid data (triglyceride, phospholipid, or the triglyceride to 

phospholipid ratio) and nuclear maturation data (GVBD).  Maturation time (0, 2, 4, 6 and 24 

hIVM) was the fixed effect for Study Two.  Study Three dependent variables included lipid data 

(triglyceride, phospholipid, or the triglyceride to phospholipid ratio), nuclear maturation data 

(GV, CC, MI, Anaphase I (AI), Telophase I (TI), MII or GVBD), and ATP data.  Maturation 

time (0, 2, 4, 6 and 24 hIVM) and maturation temperature (38.5°C and 41.0°C) were the fixed 

effects for Study Three.  The experimental unit for all data analyses was the 4-well Nunc plate in 

which the oocytes were housed during IVM, as treatments were applied to a “plate” rather than 

individual oocytes.  Treatment differences from all analyses were determined using F-protected 

least significant differences and reported as least squares means ± standard error of the mean 

(SEM). 

 When analyzing the association of nuclear maturation to lipolytic changes during IVM, 

GVBD served as the dependent variable.  The fixed effect for Study Two was lipid fluorescence, 

and the fixed effects for Study Three were lipid fluorescence and maturation temperature.  When 
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analyzing the association of ATP content in oocytes to lipolytic changes during IVM, ATP was 

the dependent variable.  The fixed effects were lipid fluorescence and maturation temperature.     
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CHAPTER 4 

RESULTS 

Study One: Timing of Germinal Vesicle Breakdown in Bovine Oocytes Undergoing In Vitro 

Maturation at 38.5°C 

 Either immediately before placement into maturation media or after 2 hIVM, the GV was 

present in 100% of oocytes (Table 4.1).  The proportion of oocytes with an intact GV decreased 

progressively thereafter.  Condensed chromatin was noticeable after 4 hIVM.  Progression to MI 

was observed by 6 hIVM in a small subset of oocytes, and by 12 hIVM the majority of oocytes 

were at this nuclear stage. 

Study Two: Timing of Lipolytic Changes and GVBD in Bovine Oocytes Undergoing In Vitro 

Maturation at 38.5°C 

 Triglyceride content per oocyte was greatest at 0 hIVM (P < 0.0001; Figure 4.1, panel A).  

By 2 hIVM, triglyceride levels decreased and levels were even lower at 24 hIVM (P < 0.0001; 

Figure 4.1, panel A).  Similar to the triglyceride content, phospholipid content per oocyte was 

greatest at 0 hIVM, decreased by approximately half after 2 hIVM, and then decreased further by 

6 hIVM (P < 0.0001; Figure 4.1, panel B).  Independent of IVM time, triglyceride levels were 

almost double that of phospholipid (283.14 vs 156.56; SEM = 21.35) resulting in a ratio of 1.81 

to 1 (P = 0.4201). 

 All oocytes at 0 hIVM had an intact GV, and the percentage of oocytes having an intact 

GV decreased by 4 hIVM (P = 0.0500; Figure 4.1, panel C).  Chromatin condensation was 

evident in almost all of the oocytes without an intact GV at 4 hIVM.  Prevalence of GVBD in 

oocytes increased again after 6 hVIM (P = 0.0500; Figure 4.1, panel C); less than 1% had 

reached the MI stage and the remainder had condensing chromatin.  Oocytes after 24 hIVM were  
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Table 4.1. Timing of GVBD in bovine oocytes undergoing IVM at 38.5°C and the proportion at MI. 

                                                                                         
hIVM Germinal Vesicle Breakdown (%) Metaphase I (%) 

0    0    0   0   0   0    0    0   0   0   0   0    0    0    0 
2    0    0   0   0   0 - -   0   0   0   0    0    0    0 
4   8.0   3.2   0   0   0 - -   0   0   0   0    0 - - 
6 21.2   6.3 16.7 11.9 13.8 - - 3.0  3.1  4.8  1.7    0 - - 
8 - 63.3 64.5 71.4 74.1 75.0 93.2 - 20.0 19.4 30.1 37.0 42.9 43.2 
10 - - - - 93.8 100 92.9 - - - - 65.5 93.0 64.3 
12 - - - - 93.1 100 100 - - - - 81.3 100 95.6 

Rep. No. 1 2 3 4 5 6 7 1 2 3 4 5 6 7 
GVBD = Germinal Vesicle Breakdown 
MI = Metaphase I 
hIVM = hours of in vitro maturation 

Images: A. Oocyte with intact germinal vesicle (GV), B. oocyte with condensing chromatin (CC), and C. oocyte 
at MI; scale bar = 25 µm 
– = did not record for these time periods for a given replicate 
Rep. No. = each number represents a different date of oocyte collection 

  

A B C 

25 µm 25 µm 25 µm 
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Figure 4.1. Triglyceride (Panel A) and Phospholipid content (Panel B) (average fluorescence 

units (A.F.U.) ± SEM) in bovine oocytes matured in vitro to 0, 2, 4, 6 or 24 hIVM.  Panel C: 

Percentage of bovine oocytes at 0, 2, 4, 6 or 24 hIVM in which the germinal vesicle was no 

longer intact.  A – DLetters within a panel are indicative of differing means at P < 0.05.   
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predominantly at the MII stage (> 85%).   

 Lipolytic changes in triglyceride (R2 = 0.2477; P = 0.0095) and phospholipid (R2 = 

0.2335; P = 0.0121) were associated with GVBD in bovine oocytes undergoing meiotic 

maturation (Figure 4.2).  For example, when lipid content was typically high at 0 hIVM there 

was no evidence of GVBD; however, when lipid content was low at 24 hIVM incidence of 

GVBD was high (Figure 4.2).   

Study Three: Lipolytic Changes, GVBD and ATP Content during In Vitro Maturation of 

Bovine Oocytes at 38.5 and 41.0°C 

 Triglyceride content decreased by 2 hIVM in control and heat-stressed oocytes (P = 

0.0009; SEM = 40.23).  Independent of IVM temperature, triglyceride levels did not change from 

2 to 6 hIVM; however, content was decreased by 24 hIVM (P = 0.0003; Figure 4.3, panel A).  

Application of heat stress did not alter triglyceride content during IVM (P = 0.9198; Figure 4.3, 

panel A).   

 Phospholipid content also decreased by 2 hIVM in control and heat-stressed oocytes (P = 

0.0005; SEM = 21.54).  Independent of IVM temperature, phospholipid levels did not change 

from 2 to 6 hIVM; however, content was decreased by 24 hIVM (P < 0.0001; Figure 4.3, panel 

B).  Heat stress exposure did not alter phospholipid content during IVM (P = 0.7861; Figure 4.3, 

panel B).   

 Triglyceride levels were almost double that of phospholipid (184.82 vs 93.33; SEM = 

17.42) resulting in a ratio of 1.98 to 1 (P = 0.1841).  Neither IVM time nor temperature affected 

this ratio (P = 0.3927). 

 There was a significant interaction of IVM temperature X time when evaluating the 

ability of oocytes to undergo GVBD (P < 0.0001; Table 4.2).  The proportion of oocytes without  
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Figure 4.2. Relationship of triglyceride (Panel A) and phospholipid content (Panel B) (average 

fluorescence units (A.F.U.) ± SEM) to GVBD (%) in bovine oocytes matured in vitro at 38.5°C 

(R2 = 0.2477 and P = 0.0095 for  triglyceride; R2 = 0.2335 and P = 0.0121 for phospholipid).  

Symbols correspond to different time points of IVM: □ = 0, ∆ = 2, + = 4, ○ = 6 and x = 24. 
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Figure 4.3.: Triglyceride (Panel A) and phospholipid content (Panel B) (average fluorescence 

units (A.F.U.) ± SEM) in bovine oocytes matured in vitro to 2, 4, 6 or 24 h at 38.5 or 41.0°C 

(heat stress exposure during the first 12 h of in vitro maturation only).  A – DLetters within a panel 

are indicative of differing means at P < 0.05.  0 h time point provided for visual comparison, but 

was not included in factorial treatment arrangement. 
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an intact GV was not different between control and heat stress treatments at 2 hIVM (Table 4.2).  

At 4 hIVM, fewer heat-stressed oocytes had an intact GV than did control oocytes (Table 4.2).  

A greater proportion of heat-stressed oocytes had undergone GVBD at 6 hIVM than had control 

oocytes as well (Table 4.2).  However, by 24 hIVM there was again no difference in the 

proportion of heat-stressed and control oocytes to undergo GVBD (Table 4.2). 

 Lipolytic changes in triglyceride (R2 = 0.2123; P = 0.0030) and phospholipid (R2 = 

0.2243; P = 0.0026) levels were associated with incidence of GVBD in bovine oocytes 

undergoing meiotic maturation (Figure 4.4).  For instance, when lipid content was typically high 

at 0 hIVM, there was no evidence of GVBD; however, when lipid content was low at 24 hIVM, 

GVBD was high.  The relationship of lipolytic change to GVBD was not influenced by IVM 

temperature (P = 0.5925 for triglyceride and P = 0.5041 for phospholipid; Figure 4.4). 

 There was a significant IVM temperature X time effect on oocyte ATP content (P = 

0.0082; Figure 4.5).  Oocyte ATP content was not different in control and heat-stressed oocytes 

matured for 2 to 6 h after placement in maturation media.  At 24 hIVM, ATP content was 

increased, with heat-stressed oocytes containing more ATP than controls (P = 0.0500; Figure 

4.5).  

 Lipolytic changes in triglyceride (R2 = 0.1086; P = 0.0184) and phospholipid (R2 = 

0.1252; P = 0.0096) were associated with ATP content in bovine oocytes undergoing meiotic 

maturation.  For example, when lipid content was typically high at 0 hIVM, ATP content was 

low; however, when lipid content was low at 24 hIVM, ATP content was high.  This association 

was not influenced by IVM temperature (P = 0.2589 for triglyceride and P = 0.2069 for 

phospholipid). 
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Table 4.2. Meiotic progression of bovine oocytes undergoing IVM at 38.5 or 41.0°C 
Treatment 

Combinations 
Nuclear Stage (%) 

hIVM1 
Temperature 

(°C) GV2 CC3 MI4 GVBD5 AI6 TI7 MII 8 

2 38.5   99.26a  0.73d   0b   0.74d  -   -   -  
2 41.0 100.00a    0d   0b    0d  -    -   -  
         
4 38.5   95.40a    4.63cd   0b   4.59d  -   -   -  
4 41.0   88.76b 11.27b   0b 11.24c  -   -   -  
         
6 38.5   88.76b    9.94bc 1.27b 11.24c  -   -   -  
6 41.0   58.76c 36.60a 4.60a 41.24b  -   -   -  
         

24 38.5      0.14d    0d 4.75a 99.85a 2.07a 2.09a 91.06a 

24 41.0      0.65d    0d 5.18a 98.07a 0.65a 0.64a 91.59a 

a – d means differ within a column (P < 0.05).  
1hIVM = hours of in vitro maturation 
2GV = Germinal Vesicle stage  
3CC = Condensed Chromatin 
4MI = Metaphase I stage  
5GVBD = Germinal Vesicle Breakdown 
6AI = Anaphase I stage  
7TI = Telophase I stage 
8MII = Metaphase II stage 
– = nuclear stage not present at these time periods 
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Figure 4.4. Relationship of triglyceride (Panel A) and phospholipid content (Panel B) (average 

fluorescence units (A.F.U.) ± SEM) to GVBD (%) in bovine oocytes matured in vitro at 38.5 or 

41.0°C (heat stress exposure during the first 12 h of in vitro maturation only) (R2 = 0.2123 and P 

= 0.0030  for triglyceride; R2 = 0.2243 and P = 0.0026 for phospholipid).  Symbols correspond to 

different IVM temperatures: + = 38.5°C and ○ = 41.0°C. 
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Figure 4.5. ATP content (pmol ± SEM) in bovine oocytes matured in vitro to 2, 4, 6 or 24 h at 

38.5 or 41.0°C (heat stress exposure during the first 12 h of in vitro maturation only).  In vitro 

maturation temperature X time interaction; P = 0.0082; SEM = 0.10.  A – DLetters within a panel 

are indicative of differing means.  0 h time point provided for visual comparison, but was not 

included in factorial treatment arrangement.  
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CHAPTER 5 

DISCUSSION 

 This study confirmed that exposure of bovine oocytes to heat stress hastens meiotic 

maturation, as incidence of GVBD was higher in heat-stressed oocytes by 4 and 6 hIVM 

compared to controls.  We also observed a marked decrease in oocyte triglyceride and 

phospholipid levels by 2 hIVM, after which lipid levels decreased again at 24 hIVM.  Maturation 

at an elevated temperature did not alter this lipolytic pattern.  Both prevalence of GVBD and 

oocyte ATP content were associated with lipolytic changes of triglyceride and phospholipid 

regardless of maturation temperature.  Application of heat stress during the first 12 hIVM, 

however, increased ATP content of oocytes at 24 hIVM.     

 Heat-stressed oocytes undergo GVBD earlier than control oocytes; this effect was first 

evident at 4 hIVM and was even more pronounced at 6 hIVM.  Our findings extend beyond what 

has been previously reported for heat stress-induced hastening of bovine oocyte meiotic 

maturation; Edwards et al. (2005) did not observe differences in the proportion of oocytes with 

an intact GV between control and heat-stress treatments at 4 hIVM.  The results herein further 

support the notion that heat-stressed oocytes may be aged at the time of fertilization due to an 

accelerated rate of meiotic maturation, thus explaining some of the reduction in developmental 

competence of heat-stressed oocytes (Edwards et al. 2005; Schrock et al. 2007; Rispoli et al. 

2011). 

 Heat stress-induced hastening of GVBD was not related to lipolytic changes of 

triglyceride and phospholipid as measured herein.  However, this does not preclude lipolysis 

from being a prerequisite for GVBD given that stimulation of downstream fatty acid β-oxidation 

(fatty acids derived from lipolysis of triglyceride are converted by mitochondria into ATP) 
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promotes progression to MII (reviewed by Dunning & Robker 2012).  Furthermore, inhibition of 

fatty acid β-oxidation during IVM in bovine, porcine, and murine oocytes decreased the 

proportion that progressed to MII (Paczkowski et al. 2013).   

 The marked decline in triglyceride and phospholipid levels by 2 hIVM was unexpected.  

Previous researchers measured lipid at 0 hIVM and after 22 to 24 hIVM and theorized that the 

decline was gradual (Ferguson & Leese 1999; Kim et al. 2001; Auclair et al. 2013).  Similar to 

those studies, the triglyceride content of oocytes matured for 24 h herein was significantly 

decreased compared to immature oocytes.  The significance for the bovine oocyte to decrease 

lipid content by almost half within the first 2 hIVM is unknown.  However, during maturation 

the oocyte is tasked with quickly undergoing important nuclear and cytoplasmic changes in 

preparation of becoming a zygote after fertilization.  This may include a decrease in lipid content 

such that the oocyte would more closely resemble the functionality of a zygote, as triglyceride 

content significantly decreases after fertilization when the zygote begins cleaving (Ferguson & 

Leese 1999).  Another possible role of rapid lipid breakdown during the first 2 hIVM may be to 

release important proteins or histones required for oocyte meiotic maturation.  Bovine cumulus 

oocyte-complexes require a 1 to 2 h transcriptional phase once maturation is initiated to 

synthesize necessary proteins for driving meiosis (reviewed by Hyttel et al. 1997), and greater 

than 60% of total oocyte/embryonic histones were detected in association with oocyte lipid 

droplets in Drosophila (Cermelli et al. 2006).  Further evaluation has determined that associated 

histones are capable of translocation to the nucleus for packaging and regulation of DNA 

transcription, and these became unavailable for use in transcriptional regulation if lipid droplets 

did not properly redistribute during oocyte and early embryonic development (Cermelli et al. 

2006). 
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 Although our study and others have reported that oocyte triglyceride and phospholipid 

levels decreased during IVM, it is unknown where or how the fatty acids released from the 

breakdown of these lipids are utilized.  As ATP content did not differ within the first 6 hIVM, it 

does not appear that the oocyte itself is oxidizing the fatty acids during early maturation.  

However, when lipolytic changes are most pronounced bovine oocytes are intimately associated 

with the surrounding cumulus cells (Hyttel et al. 1986).  Intimate associations via gap junction-

complexes allows for a bidirectional flow of signals and metabolites between the oocyte and the 

cumulus (reviewed by Eppig 1991).  Though cumulus cells were not evaluated as a part of our 

study, we cannot preclude the potential for these cells to receive, and possibly utilize, the by-

products released from lipolytic breakdown occurring in the oocyte.  Auclair et al. (2013) 

reported that lipid droplet breakdown was greater in bovine oocytes matured with intact cumulus 

cells compared to those matured without surrounding cumulus.  Furthermore, fatty acids are 

commonly packaged into vesicles to allow for transportation to membrane surfaces in other cell 

types (Winawer 2006), and Kruip et al. (1983) observed small vesicles surrounding many of the 

cumulus cell processes in bovine oocytes during early maturation.   

 Nonetheless, fatty acid β-oxidation is important for oocyte maturation and embryo 

development after fertilization (Ferguson & Leese 2006; Dunning et al. 2010; Paczkowski et al. 

2013).  Depending upon the extent to which the fatty acids are utilized by the mitochondria 

present within the oocyte, subsequent production of ATP could be increased.  In fact, we 

observed greater ATP content in oocytes matured for 24 hIVM than at 0 hIVM, which agreed 

with other studies (Stojkovic et al. 2001; Iwata et al. 2011).   

 Interestingly, ATP content in bovine oocytes exposed to heat stress during the first 12 

hIVM was greater at 24 hIVM when compared to non-stressed controls.  This finding is similar 
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to results previously reported by our laboratory (Nagle 2011).  Elevated ATP content has been 

observed in other cell types after application of elevated temperatures, and some researchers 

theorize that this greater ATP availability may be a marker of cellular stress (reviewed by 

Streffer 1985).  Specifically, it may indicate a certain level of mitochondrial dysfunction, which 

is further supported by the observed alteration of mitochondrial transcript abundance in heat-

stressed oocytes (Payton 2009).  Reasons for altered mitochondrial ATP production in stressed 

cells include a potentially greater energy (ATP) requirement as they must combat stress-related 

apoptosis (reviewed by Streffer 1985) or possible alteration of metabolic pathways resulting in a 

surplus of unused ATP (reviewed by Welch 1992). 

 
  



36 
 

LIST OF REFERENCES 
  



37 
 

Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, 

Roelen BA, Vos PL, Helms JB & Gadella BM 2013 Bovine cumulus cells protect 

maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. 

Biology of Reproduction 88 164. 

Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB & 

Gadella BM 2011 Oleic acid prevents detrimental effects of saturated fatty acids on 

bovine oocyte developmental competence. Biology of Reproduction 85 62-69. 

Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R & Uzbekova S 

2013 Absence of cumulus cells during in vitro maturation affects lipid metabolism in 

bovine oocytes. American Journal of Physiology-Endocrinology and Metabolism 304 

E599-E613. 

Barcelo-Fimbres M & Seidel Jr G 2011 Cross-validation of techniques for measuring lipid 

content of bovine oocytes and blastocysts. Theriogenology 75 434-444. 

Baumgartner A & Chrisman C  1981 Ovum morphology after hyperthermic stress during 

meiotic maturation and ovulation in the mouse. Journal of Reproduction and Fertility 61 

91-96. 

Bender K, Walsh S, Evans AC, Fair T & Brennan L 2010 Metabolite concentrations in 

follicular fluid may explain differences in fertility between heifers and lactating cows. 

Reproduction 139 1047-1055. 

Cermelli S, Guo Y, Gross SP & Welte MA 2006 The lipid-droplet proteome reveals that 

droplets are a protein-storage depot. Current Biology 16 1783-1795. 



38 
 

Cetica P, Pintos L, Dalvit G & Beconi M 2002 Activity of key enzymes involved in glucose 

and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124 

675-681. 

Collier RJ, Collier JL, Rhoads RP & Baumgard LH 2008 Invited Review: Genes involved in 

the bovine heat stress response. Journal of Dairy Science 91 445-454. 

Drost M, Ambrose J, Thatcher M, Cantrell C, Wolfsdorf K, Hasler J & Thatcher W  1999 

Conception rates after artificial insemination or embryo transfer in lactating dairy cows 

during summer in Florida. Theriogenology 52 1161-1167. 

Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ & Robker RL  2010 

Beta-oxidation is essential for mouse oocyte developmental competence and early 

embryo development. Biology of Reproduction 83 909-918. 

Dunning KR & Robker RL  2012 Promoting lipid utilization with L-carnitine to improve 

oocyte quality. Animal Reproduction Science 134 69-75. 

Edwards J, Saxton A, Lawrence J, Payton R & Dunlap J 2005 Exposure to a physiologically 

relevant elevated temperature hastens in vitro maturation in bovine oocytes. Journal of 

Dairy Science 88 4326-4333. 

Edwards JL & Hansen PJ 1996 Elevated temperature increases heat shock protein 70 synthesis 

in bovine two-cell embryos and compromises function of maturing oocytes. Biology of 

Reproduction 55 340-346. 

Eppig JJ 1991 Intercommunication between mammalian oocytes and companion somatic cells. 

Bioessays 13 569-574. 

Fair T, Carter F, Park S, Evans ACO & Lonergan P 2007 Global gene expression analysis 

during bovine oocyte in vitro maturation. Theriogenology 68, Supplement 1 S91-S97. 



39 
 

Ferguson E & Leese H 1999 Triglyceride content of bovine oocytes and early embryos. Journal 

of Reproduction and Fertility 116 373-378. 

Ferguson EM & Leese HJ 2006 A potential role for triglyceride as an energy source during 

bovine oocyte maturation and early embryo development. Molecular Reproduction and 

Development 73 1195-1201. 

Fissore RA, He CL & Woude GV 1996 Potential role of mitogen-activated protein kinase 

during meiosis resumption in bovine oocytes. Biology of Reproduction 55 1261-1270. 

Fletcher J & Rosenberg H 1986 In vitro muscle contractures induced by halothane and 

suxamethonium II: Human skeletal muscle from normal and malignant hyperthermia 

susceptible patients. British Journal of Anaesthesia 58 1433-1439. 

Fletcher J, Rosenberg H, Michaux K, Tripolitis L & Lizzo F 1989 Triglycerides, not 

phospholipids, are the source of elevated free fatty acids in muscle from patients 

susceptible to malignant hyperthermia. European Journal of Anaesthesiology 6 355-362. 

Gendelman M & Roth Z 2012 In vivo vs. in vitro models for studying the effects of elevated 

temperature on the GV-stage oocyte, subsequent developmental competence and gene 

expression. Animal Reproduction Science 134 125-134. 

Genicot G, Leroy J, Soom AV & Donnay I 2005 The use of a fluorescent dye, Nile red, to 

evaluate the lipid content of single mammalian oocytes. Theriogenology 63 1181-1194. 

Greenberg AS, Shen W-J, Muliro K, Patel S, Souza SC, Roth RA & Kraemer FB 2001 

Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-

regulated kinase pathway. Journal of Biological Chemistry 276 45456-45461. 

Greenspan P, Mayer EP & Fowler SD 1985 Nile red: a selective fluorescent stain for 

intracellular lipid droplets. The Journal of Cell Biology 100 965-973. 



40 
 

Hansen P & Arechiga C 1998 Strategies for managing reproduction in the heat-stressed dairy 

cow. Journal of Dairy Science 82 36-50. 

Homa S & Brown C 1992 Changes in linoleic acid during follicular development and inhibition 

of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. Journal 

of Reproduction and Fertility 94 153-160. 

Hyttel P, Fair T, Callesen H & Greve T 1997 Oocyte growth, capacitation and final maturation 

in cattle. Theriogenology 47 23-32. 

Hyttel P, Xu K, Smith S & Greve T 1986 Ultrastructure of in-vitro oocyte maturation in cattle. 

Journal of Reproduction and Fertility 78 615-625. 

Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T & Monji Y  2011 Effect 

of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of 

bovine oocytes. Reproduction, Fertility and Development 23 424-432. 

Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M & Sul HS 2007 Regulation of 

triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. American 

Journal of Physiology-Gastrointestinal and Liver Physiology 293 G1-G4. 

Jeong W, Cho S, Lee H, Deb G, Lee Y, Kwon T & Kong I  2009 Effect of cytoplasmic lipid 

content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 72 

584-589. 

Kątska-Książkiewicz L, Alm H, Torner H, Heleil B, Tuchscherer A & Ryńska B 2011 

Mitochondrial aggregation patterns and activity in in vitro cultured bovine oocytes 

recovered from early antral ovarian follicles. Theriogenology 75 662-670. 

Khandoker M, Tsujii H & Karasawa D  1997 Fatty acid compositions of oocytes, follicular, 

oviductal and uterine fluids of pig and cow. Journal of Animal Science 10 523-527. 



41 
 

Kim J, Kinoshita M, Ohnishi M & Fukui Y  2001 Lipid and fatty acid analysis of fresh and 

frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122 131-

138. 

Kim M, Geum D, Khang I, Park YM, Kang BM, Lee KA & Kim K  2002 Expression pattern 

of HSP25 in mouse preimplantation embryo: heat shock responses during oocyte 

maturation. Molecular Reproduction and Development 61 3-13. 

Kimura K, Yamaoka M & Kamisaka Y  2004 Rapid estimation of lipids in oleaginous fungi 

and yeasts using Nile red fluorescence. Journal of Microbiological Methods 56 331-338. 

Kruip TA, Cran D, Van Beneden TH & Dieleman S 1983 Structural changes in bovine 

oocytes during final maturation in vivo. Gamete Research 8 29-47. 

Lapa M, Marques CC, Alves SP, Vasques MI, Baptista MC, Carvalhais I, Silva Pereira M, 

Horta AEM, Bessa RJB & Pereira RM 2011 Effect of trans-10 cis-12 conjugated 

linoleic acid on bovine oocyte competence and fatty acid composition. Reproduction in 

Domestic Animals 46 904-910. 

Lawrence JL, Payton RR, Godkin JD, Saxton AM, Schrick FN & Edwards JL  2004 Retinol 

improves development of bovine oocytes compromised by heat stress during maturation. 

Journal of Dairy Science 87 2449-2454. 

Leroy J, Genicot G, Donnay I & Van Soom A 2005 Evaluation of the lipid content in bovine 

oocytes and embryos with Nile red: a practical approach. Reproduction in Domestic 

Animals 40 76-78. 

Loewenstein JE & Cohen AI 1964 Dry mass, lipid content and protein content of the intact and 

zona-free mouse ovum. Journal of Embryology and Experimental Morphology 12 113-

121. 



42 
 

Machatkova M, Jeseta M, Hulinska P, Knitlova D, Nemcova L & Kanka J 2012 

Characteristics of bovine oocytes with different meiotic competence in terms of their 

mitochondrial status and expression of nuclear-encoded factors. Reproduction in 

Domestic Animals 47 806-814. 

Marei WF, Wathes DC & Fouladi-Nashta AA 2009 The effect of linolenic acid on bovine 

oocyte maturation and development. Biology of Reproduction 81 1064-1072. 

Marei WF, Wathes DC & Fouladi-Nashta AA 2010 Impact of linoleic acid on bovine oocyte 

maturation and embryo development. Reproduction 139 979-988. 

McEvoy T, Coull G, Broadbent P, Hutchinson J & Speake B 2000 Fatty acid composition of 

lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of 

Reproduction and Fertility 118 163-170. 

McLeod A 2011 World livestock 2011-livestock in food security: Food and Agriculture 

Organization of the United Nations (FAO). 

Nagle KA. 2011. Assessing mitochondrial activity in embryos from heat-stressed ova. Master's 

Thesis, University of Tennessee, 2011. http://trace.tennessee.edu/utk_gradthes/1088, pp. 

96. 

Paczkowski M, Silva E, Schoolcraft WB & Krisher RL 2013 Comparative importance of fatty 

acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in 

mouse, bovine, and porcine cumulus oocyte complexes. Biology of Reproduction 

113.108548. 

Park H, Han S, Oh S & Kang H 2005 Cellular responses to mild heat stress. Cellular and 

Molecular Life Sciences 62 10-23. 



43 
 

Payton RR. 2009. Direct effects of heat stress during meiotic maturation on bovine oocyte and 

cumulus RNA.  PhD diss., University of Tennessee, 2009. 

http://trace.tennessee.edu/utk_graddiss/628, pp. 222. 

Putney D, Mullins S, Thatcher W, Drost M & Gross T 1989 Embryonic development in 

superovulated dairy cattle exposed to elevated ambient temperatures between the onset of 

estrus and insemination. Animal Reproduction Science 19 37-51. 

Renaville B, Bacciu N, Comin A, Motta M, Poli I, Vanini G & Prandi A  2010 Plasma and 

follicular fluid fatty acid profiles in dairy cows. Reproduction in Domestic Animals 45 

118-121. 

Rensis FD & Scaramuzzi RJ 2003 Heat stress and seasonal effects on reproduction in the dairy 

cow—a review. Theriogenology 60 1139-1151. 

Rispoli LA, Lawrence JL, Payton RR, Saxton AM, Schrock GE, Schrick FN, Middlebrooks 

BW, Dunlap JR, Parrish JJ & Edwards JL 2011 Disparate consequences of heat stress 

exposure during meiotic maturation: embryo development after chemical activation vs 

fertilization of bovine oocytes. Reproduction 142 831-843. 

Schrock G, Saxton A, Schrick F & Edwards J 2007 Early in vitro fertilization improves 

development of bovine ova heat stressed during in vitro maturation. Journal of Dairy 

Science 90 4297-4303. 

Sirard M, Parrish J, Ware C, Leibfried-Rutledge M &  First N 1988 The culture of bovine 

oocytes to obtain developmentally competent embryos. Biology of Reproduction 39 546-

552. 

St-Pierre N, Cobanov B & Schnitkey G 2003 Economic losses from heat stress by US 

livestock industries. Journal of Dairy Science 86 E52-E77. 



44 
 

Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB & 

Wolf E  2001 Mitochondrial distribution and adenosine triphosphate content of bovine 

oocytes before and after in vitro maturation: correlation with morphological criteria and 

developmental capacity after in vitro fertilization and culture. Biology of Reproduction 64 

904-909. 

Streffer C 1985 Review: metabolic changes during and after hyperthermia. International 

Journal of Hyperthermia 1 305-319. 

Takeuchi T, Neri QV, Katagiri Y, Rosenwaks Z & Palermo GD 2005 Effect of treating 

induced mitochondrial damage on embryonic development and epigenesis. Biology of 

Reproduction 72 584-592. 

Thouas GA, Trounson AO, Wolvetang EJ & Jones GM 2004 Mitochondrial dysfunction in 

mouse oocytes results in preimplantation embryo arrest in vitro. Biology of Reproduction 

71 1936-1942. 

U.S. Department of Agriculture NASS. 2012. 2012 Census of Agriculture 10-9-14. 

Weiss WV. 1996. Method of non-invasive reduction of human site-specific subcutaneous fat 

tissue deposits by accelerated lipolysis metabolism. United States patent US 5,507,790. 

Welch WJ 1992 Mammalian stress response: cell physiology, structure/function of stress 

proteins, and implications for medicine and disease. Physiological Reviews 72 1063-

1081. 

Welch WJ & Suhan JP 1985 Morphological study of the mammalian stress response: 

characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and 

appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. 

The Journal of Cell Biology 101 1198-1211. 



45 
 

West JW 2003 Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 86 

2131-2144. 

Winawer SJ 2006. Lipids, sterols, and their metabolites. In Modern Nutrition in Health and 

Disease (10th edition), Philadelphia: Lippincott Williams & Wilkins: 92-122. 

 

 

  



46 
 

VITA  

 Leah Marie Hooper was born in Atlanta, Georgia.  She graduated from Riverdale High 

School in Murfreesboro, TN in 2008.  She attended the University of Tennessee at Knoxville, 

from which she graduated with a B.S. in Animal Science and Biology minor in May of 2012.  

She began her M.S. with Dr. Lannett Edwards the following semester after having worked in her 

laboratory for a little over two years as an undergraduate student.  In December of 2014, Leah 

graduated with a M.S. degree in Animal Science with a concentration in reproductive physiology 

and embryology.    

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2014

	Impact of Heat Stress on Germinal Vesicle Breakdown and Lipolytic Changes during In Vitro Maturation of Bovine Oocytes
	Leah Marie Hooper
	Recommended Citation


	

