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ABSTRACT 

Synthetic turf has been widely utilized in sports since 1964. Discrepancies, 

however, in injury incidence on synthetic turf and natural grass have been reported 

throughout studies. Adding a shock pad under synthetic turf carpet is claimed to aid in 

energy absorption and decrease impact loading. Although some studies have conducted 

materials tests and compared mechanical characteristics of synthetic turf with different 

shock pads, no studies have examined biomechanical characteristics of impact related 

human movements on an infilled synthetic turf system with different underlying shock 

pads. The purpose of this research was to investigate effects of an infilled synthetic turf 

with three shock pads of different energy absorption characteristics on impact attenuation 

related biomechanics of lower extremity during drop landing. Wearing running shoes, 

twelve active and healthy recreational male athletes performed five trials of drop landing 

from 60 cm with a controlled landing style (maximum knee flexion) on five surface 

conditions: a regular surface (force platform), an infilled synthetic turf, turf plus foam 

shock pad, turf plus a lower density shock pad, and turf plus a high density shock pad. A 

motion analysis system and force platform were utilized to collect kinematic and kinetic 

data. Furthermore, a mechanical test was conducted based on ASTM F355 standard. The 

turf plus shock pad systems resulted in lower 1st vertical peak ground reaction force 

(GRF) and its loading rates compared to synthetic turf without a shock pad. However, no 

differences in 2nd vertical GRF and joint kinematics and kinetics across surfaces were 

found.  These results suggest that landing from 60 cm may cause a plateau effect in 

energy attenuation for the examined turf and turf plus shock pad systems. Future studies 



 

v 

 

may be needed to explore the shock attenuation capacities of landing surfaces in landing 

activities from a lower height (< 60 cm). 

Keyword: drop landing, synthetic turf, shock pad, impact attenuation, landing styles, 

landing height 
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CHAPTER I 

INTRODUCTION  

Anterior cruciate ligament (ACL) injuries that commonly occur in sports (15, 55), are 

expensive to treat, and take a long time to heal (45, 82). Based on data from the National 

Collegiate Athletic Association (NCAA) Injury Surveillance System (ISS), Hootman et al. (36) 

documented that over 5,000 ACL injuries represented 2.6% of all injuries with an injury rate of 

0.15 per 1000 athlete-exposures. Over a period of 16 years for 15 NCAA sports, ACL injuries 

have increased by average of 1.3%. Agel et al. (2) reported 1,268 cases of ACL injuries in 

basketball and soccer over a span of 13 years. In vitro studies suggest that ACL injuries may be 

the result of high loading to the knee, and tibiofemoral displacements caused by compressive 

forces on the posterior tibial slope (10, 52, 53). Lack of attenuation of ground reaction forces 

(GRF) in lower extremities could generate these compressive forces in the knee. 

Synthetic turf has been widely utilized in sports for almost 50 years (60). For sports at all 

level (30), the use of synthetic turf has caused increased concerns regarding the safety in elite 

and recreational athletes (9). The disagreements in injury rates on synthetic turf have been 

reported in the literature. Some studies have reported that the injuries of lower extremities were 

significantly higher on synthetic turf compared to natural grass (23, 27, 59, 63, 66). On the 

contrary, other studies have documented no difference in injury incidences of acute lower 

extremities between synthetic and natural turf (11, 26, 31, 63, 77). In addition, it was reported 

that training injuries were more frequent on natural grass compared to synthetic turf (32, 62).  

Landing movements are frequently involved in various sports, such as football, soccer, 

basketball, and volleyball. The rapid movement not only requires eccentric muscle action of the 

quadriceps to counteract knee flexion during the weight acceptance phase (52, 53), but also 
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generates excessive impact force to lower extremities. Landing styles and jump techniques, 

landing and jumps heights, and landing surfaces are often considered as factors related to injuries 

and sport performances (8, 25, 33, 41, 43, 44, 54, 59, 64, 86, 88, 90).   

Landing styles are determined by the maximum knee flexion angle during landing. A soft 

landing has a greater maximum knee flexion and a stiff landing has a smaller knee flexion angle; 

while, a normal landing has a maximum knee flexion angle between the soft and stiff landing 

styles. By comparing the three landing styles, Zhang et al. (93) reported that the 1st and 2nd peak 

vertical GRFs, the peak extensor moments and powers in hip, knee and ankle, and energy 

absorption significantly increased with increased landing stiffness.  Knee and hip extensor were 

the primary sources of energy absorption in soft landing, while ankle plantarflexor played the 

major role for stiff landing. DeVita and Skelly (19) reported that the peak vertical GRFs, the 

peak ankle plantarflexor moments, and muscle work done by the hip and knee significantly 

increased in a stiff landing compared to a soft landing. As a result, the increased landing stiffness 

actually reduced the capacity of the muscles for energy absorption in loading. Similar results in 

vertical GRFs were also found in other studies (58, 65, 91).  

When landing from a higher height, greater peak vertical GRFs occur because increased 

contact velocity is generated (71). Zhang et al. (93) documented that the peak vertical GRFs, 

peak joint moments and powers, and energy absorption in ankle, knee and hip extensor 

significantly increased with increased landing heights. McNitt- Gray (50) reported similar results 

in the peak vertical GRFs, extensor moments and energy absorption in three lower extremity 

joints, and that changes in landing height could result in adjustments of landing styles. 
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Landing surfaces affected sport performance and injury (81, 85). A stiff surface can 

reduce energy loss and provide sufficient GRFs, while a more compliant surface is able to absorb 

more energy and prevent potential injuries (20). Severn et al. (74) suggested that loading during 

sport movements, footwear, playing surfaces, and environmental conditions were four primary 

factors associated with player-surface interactions or injuries. Jones et al. (37) reported that 

athletes showed larger variability in knee kinematics on synthetic turf compared to natural grass 

in single-leg landing from a jump for heading movements. Shorten and Himmelsbach (75) 

showed that peak tibial acceleration in drop landing on synthetic turf were significantly higher 

than natural grass. Brock et al. (16) found that the peak medial GRF in running shoes were 

significantly higher compared to studded shoes, and the time to reach peak vertical GRF in studs 

shoes was longer compared to running shoes on synthetic turf for cutting movements. 

To improve energy absorption and reduce the impact loading (38), some turf companies 

have begun to include a shock pad (a cushioning layer) under synthetic turf carpet to better 

mimic natural grass behaviors. Material tests have indicated that the material’s type, density, and 

thickness were important properties that directly affected mechanical performance of shock pad 

and turf systems (with a combination of turf and shock pad) (4, 29 128, 84). Wang et al. (84) 

compared two synthetic hockey turf systems with a thick shredded rubber pad and a thin 

polyurethane foam pad.  They reported that the thick rubber shock pad system showed less strain 

under the greater loading rate, and higher peak pressure compared to the thin foam shock pad, 

suggesting that the thick rubber shock pad turf system was less viscoelastic and stiffer compared 

to the ones with thin foam shock pad under the same loading rates. Alleguer et al. (4) reported 
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that stress, energy return, and cyclic loading endurance increased as shock pad density increased 

under the same impact loading.  

STATEMENT OF PROBLEM 

Although some studies have conducted material tests and compared mechanical 

characteristics of synthetic turf with different shock pads, according to the literature, a limited 

number of studies have examined landing, and cutting movements on synthetic turf. There is no 

published data for the biomechanical characteristics of impact related human movements on an 

infilled synthetic turf system with different underlying shock pads. 

Therefore, the purpose of this research was to investigate the energy absorption 

characteristics on impact attenuation related biomechanics of lower extremity during drop 

landing for three shock pads as an underlayment on an infilled synthetic turf shock pad. A third-

generation infilled synthetic turf system was used in the study with a combination of three shock 

pads: a foam shock pad (SP1), a lower density shock pad (SP2) and a higher density shock pad 

(SP3). Five surface conditions were tested: a regular surface (force platform), an infilled 

synthetic turf, turf plus SP1, turf plus SP2, and turf plus SP3. 

SIGNIFICANCE OF STUDY 

This study aimed to provide much needed information on lower extremities kinematics 

and kinetics differences during drop landing on the infilled synthetic turf surface using three 

different shock pads.  

Drop landing is one of the most common high impact and/or explosive movements in 

sports. This movement generates high loading and demonstrate rapid deceleration. Landing style, 

landing height, and footwear were controlled to provide the testing conditions and environments 
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for better understanding of surface-related factors associated with impact and energy attenuation 

as well as generation during the tested movements.  

Three shock pads with different material properties were tested with the infilled synthetic 

turf in this study. The results from the tests of the dynamic movements on these surface 

conditions would provide important information about interactions of human movements with 

different surface characteristics related to the materials and structures of the surface and related 

shock pads. These results would potentially provide valuable knowledge of surface-related 

factors associated with sport injuries and enhancements.  

HYPOTHESIS 

1. Peak vertical GRF and its loading rate, peak joints moment and power, and work 

done by lower extremities would be smaller on the turf and turf systems with shock 

pads compared to the regular surface and turf only surface during drop landing.  

2. The turf systems with higher density and thicker shock pad would have smaller GRF 

and loading rates, peak joints moment and power, work of lower extremities during 

landing compared to the turf systems with lower density and thin shock pad during 

drop landing. 

DELIMITATIONS  

1. Participants were men aged from 18 to 30 years old. 

2. Participants were healthy and free from major injuries (e.g. bone fracture, ligament 

tear, which need orthopedic surgery) of lower extremity and lower back, and free of 

injuries in past six months and free of pain on the day of testing.  
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3. Participants were playing football, soccer, basketball and/or volleyball, and were 

experienced and skilled in landing and jumping movements. 

4. Each participant performed five successful trials in each of the ten test conditions 

with enough warm-up and rest times. 

5. The testing area on top of the force platforms is large enough and covered with 

synthetic turf and/or shock pads, and the turf is infilled with the sand and rubber 

particles evenly to ensure consistent impact attenuation characteristics across the 

testing surface area. 

6. Kinematics were collected at 240 Hz utilizing a 3D motion analysis system (Vicon 

Motion Analysis Inc., UK) and GRFs were collected at 1200 Hz utilizing two force 

platforms (Advanced Mechanical Technologies, Inc., Watertown, MA). 

LIMITATIONS 

1. All the participants were recruited from a convenient sample of the students on the 

campus of The University of Tennessee, Knoxville. 

2. Participants may perform drop landing activities with different techniques in the lab 

environment compared with in real games or trainings. 

3. The accuracy of kinematics results was limited by manual placements of the 

anatomical markers. However, every effort was made to ensure that the markers were 

placed at the accurate bony landmarks and consistently. 

4. Only one type of synthetic turf and three types of shock pad were tested.  
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CHAPTER II 

LITERATURE REVIEW 

The purpose of this research is to investigate effects of infilled synthetic turf and shock 

pad on impact attenuation in lower extremity biomechanics during drop landing and drop jump. 

This chapter includes literature review in four sections: research background documenting the 

reason of conducting this study, review on mechanism of non-contact anterior cruciate ligament 

injuries, biomechanical characteristics of drop landing and drop jump, and surface-related factors 

associated with human movement studies on synthetics surfaces. 

BACKGROUND  

Anterior cruciate ligament (ACL) injuries have been considered as one of the most 

common knee injuries in sports (15). There are an estimated 80,000 to 100,000 ACL repairs in 

the United States per year (17). In U.S, the costs for ACL reconstruction in a lifetime averaged 

$38,121 to society, while rehabilitation costs averaged $88,538 (45). Long recovery and 

rehabilitation times were normally required for patients and often followed by secondary injury 

or osteoarthritis (82).  

Sports surfaces during athletic movements play an important role not only in performance 

enhancement (85) but also in injury prevention (81). As an alternative to natural grass, synthetic 

turf has been used in many sports in the past 50 years and even at the highest-level of 

international professional competitions (30). Compared to natural grass, synthetic turf requires 

lower maintenance costs, is suitable for more weather conditions, lasts longer, and has improved 

consistency in playing conditions(29). It has been demonstrated that athletes performed faster in 

sprints on synthetic turf rather than natural grass (78). In 2015, for the very first time, all of the 

games for Women’s World Cup were played on synthetic turf. However, the widespread 
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adoption of synthetic turf has caused increasing concerns in both elite and recreational athletes 

about the safety of the surface (9).  

Numerous studies have suggested that the injury rates differ in different sports on 

synthetic turf compared to natural grass (3, 7, 21, 67). Generally, it has been reported that 

incidences of severe lower extremity injuries such as knee and ankle sprains (27, 63, 68), ACL 

injury (23), and overuse injury (59) were higher on synthetic turf compared with natural grass. 

However, it was also reported that no difference was observed in acute injury incidence in games 

or training between synthetic turf and natural grass (63).  

To enhance the safety of synthetic turf, companies have started to add a cushioning layer 

called the shock pad under the turf, which is usually made from foam, composite plastics, or 

shredded rubber (4). The purpose of the shock pad is to increase shock and energy absorption to 

a synthetic turf system. Apart from improved cushioning capacity, a shock pad is also useful in 

maintaining consistent performance of synthetic turf (4).  

MECHANISMS OF NON-CONTACT ACL INJURIES 

Injuries frequently occur during landing related activities due to high vertical impact 

force applied to the human body. Particularly, ACL injuries can result from a direct contact (with 

another player or an object) or indirect contact mechanisms. McNair et al. (47) reported that 

approximately 70% of ACL injuries occurred during non-contact situations. This result was 

supported by the findings of Boden et al. (14), who found that 81% of 89 ACL injury among 100 

knee injury cases were due to non-contact mechanisms during foot strike with the knee near full 

extension. In the second part of their study, they reviewed videotapes of 27 ACL tear cases and, 

the results confirmed their findings mentioned above. They concluded that maximum eccentric 



 

9 

 

muscle actions occur when the knee in a position where the extensor muscles cause strain on the 

ACL.  

Non-contact ACL injuries are results of high loading applied to their knees. The 

mechanisms of non-contact ACL injuries include the valgus collapse of the knee (34), a rapid 

deceleration, a change of direction, and landing with a small knee flexion angle (14). Some in 

vitro studies were conducted to explore the loading on ACL by a combination of forces and 

moments. Berns et al. (10) measured strain in the ACL utilizing a load application system on 

cadaver specimens to quantify effects of both single and combined loads on ACL. They found 

that the anteromedial bundle of the ACL was mainly strained by anterior force, which up to 200 

N during early flexion phases. Higher strain also occurred with the knee joint in a position of 30 

degrees of flexion. Significantly larger strain resulted from both of valgus moment and internal 

axial moment in combination with anterior force compared to that of an anterior force alone. 

Therefore, these results suggested that the combination of anterior force with valgus or internal 

moments may result in an ACL injury when the knee joint is in a flexion angle between 15 to 30 

degrees. Furthermore, Meyer et al. (52, 53) hypothesized that excessive joint compressive loads 

could result in ACL tear. The results showed that ACL tore in 21 of 23 knee cadavers under 

repeatedly compressive loads, ranged from 2.9 kN to 7.8 kN, at flexion angles from 30 degrees 

to 120 degrees. Relative tibiofemoral displacements when the ACL ruptured ranged from 1.6 to 

9.2 mm in anteroposterior displacement, and 2.7 to 5.5 mm in mediolateral displacement. In 

addition, internal rotation was observed ranging from 0.8 to 14.8 degrees. The authors suggested 

that the ACL ruptures caused by tibiofemoral displacements due to compressive forces on 

posterior tibial slope. In reality, insufficient ground reaction forces (GRF) absorption in lower 
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extremities could generate these compressive forces on knee joints when people perform landing 

and jumping.  

BIOMECHANICS OF DROP LANDING AND DROP JUMP  

Sport involves rapid movements, such as landing and jumping movements, which require 

eccentric muscle action of the quadriceps to resist knee flexion during the weight acceptance 

phase. Many studies have been conducted to explore biomechanical factors related to injury and 

its prevention for drop landing (DL) and drop jump (DJ). For instance, landing/jumping 

techniques, landing/jump height and landing surfaces were considered to be associated with 

landing and DJ performance (8, 25, 33, 41, 44, 54, 64, 86, 90). Nigg and Ekstrand (59) suggested 

that excessive impact force could cause both acute and repetitive injuries on human collagen 

tissues, including ligaments.  

Drop Landing 

Landing is a common occurrence in many sports, such as football, basketball, soccer, and 

volleyball. Landing techniques have been examined extensively in areas of sports performance 

and injury prevention (28). Landing is regarded as a complicated movement, that requires people 

to coordinate dynamic muscle control maintain joint stability of the lower limb and absorb GRF 

(42).  

Landing Styles 

Landing style, defined as maximum knee flexion, is often associated with ACL injuries 

(43). Yu and Garrett (91) investigated how different landing styles could cause an increase of 

ACL loading. They suggested that the patella tendon-tibia shaft angle would increase with 

decreased knee flexion angle, which would lead to augmented anterior shear force at the 
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proximal end of the tibia. This in turn would generate knee internal rotation and abduction 

moments which may cause an increase of ACL loading. They also noted that by increasing 

elevation and deviation angles of ACL, which were defined as the angle between the tibial 

plateau and the ACL and the angle between the projection of the ACL on the tibial plateau and 

the anterior-posterior tibial line (39), smaller knee flexion angle resulted in increased ACL 

loading. Increased peak posterior GRFs were reported for increasing ACL loading through the 

generation of knee flexion moments. 

With regard to landing styles, a soft landing style has a greater maximal knee flexion 

angle and a normal landing has a smaller knee flexion angle. In contrast, a stiff landing has the 

smallest knee flexion angle. Zhang et al. (93) examined effects of three different landing 

techniques on lower limb joints. Nine healthy subjects performed a soft landing, normal landing, 

and stiff landing from three different heights: 32 cm, 62 cm, and 103 cm. Maximum knee flexion 

angles were monitored by an electrogoniometer. Significant differences were observed in peak 

vertical GRFs, joint moments and powers, and energy absorption among three different landing 

styles. The 1st (at forefoot contact) and 2nd (at heel contact) peak GRFs increased as landing 

stiffness increased. The results showed that knee joint extensors consistently contributed in 

energy absorption in soft, normal and stiff landing conditions while the ankle joint plantarflexors 

played a more important role in stiff landing. No difference was found in the 1st peak ankle 

plantarflexor moment, and the peak hip extensor moment in soft landing compared with normal 

landing. However, the 1st and 2nd peak ankle plantarflexor and knee extensor moment, and the 

peak hip extensor moment significantly increased with increased landing stiffness. Additionally, 

the knee and hip extensor dissipated more energy in the soft landing. 
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DeVita and Skelly (19) defined the soft landing and stiff landing as maximum knee 

flexion angles greater or less than 90 degrees, respectively. Eight healthy female athletes 

performed DL from 59 cm height with the soft and stiff landing styles. Their average maximal 

knee flexion angles were 117 and 77 degrees, respectively. They demonstrated that the stiff 

landing increased peak vertical GRFs by 2 to 3 times bodyweight (BW) compared to the soft 

landing. However, the anterior-posterior GRFs were similar for the two landing conditions. No 

differences were found in peak hip and knee extensor moments between the soft and stiff 

landings. The peak ankle plantarflexor moments were significantly greater in the stiff landing 

compared to the soft landing. Significant differences were found in muscle work performed by 

hip and knee between the soft and stiff landings. The authors also showed that more energy was 

absorbed by hip and knee muscles in the soft landing compared to the stiff landing. Therefore, 

the stiff landing leads to less knee joint work, which reduces the muscles’ ability in loading 

dissipation. Primary energy dissipation was contributed by knee and ankle (37% and 37%, 

respectively) in soft landing, whereas ankle plantarflexors absorbed the major part of the energy 

in the stiff landing (50%).  

It has been found that greater peak vertical GRFs were found to be related to more 

extended knee angle during landing (65). Myer et al. (58) hypothesized that a significant increase 

of anterior tibiofemoral translation would be generated by a stiff landing compared with a soft 

landing. In order to test their hypothesis, biplane fluoroscopy was utilized to measure 

tibiofemoral kinematics of soft and stiff landing from a 40 cm height. This test was performed by 

sixteen healthy subjects. Significantly greater peak vertical GRFs, peak knee extensor moment, 

and a smaller range of motion (ROM) were found for the stiff landing compared to the soft 
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landing. There was no significant difference in peak anterior-posterior GRFs between the two 

landing styles. The kinematics results also demonstrated that the stiff landing caused 

significantly greater average and maximum absolute internal rotation than the soft landing. 

However, the data collected by the biplane fluoroscopy failed to support the hypothesis since no 

significant differences were observed in the average and maximum anterior tibiofemoral 

translation, internal/external rotation and adduction/abduction in the knee between soft and stiff 

landing conditions.  

Landing Heights 

   Landing heights have been reported as another important factor associated with injury 

and performance during landing (25). Landing from a greater height has been shown to cause 

greater maximal vertical GRFs than landing from a lower height due to the increased contact 

velocity, which increases risks of injury (24). Drop heights were also investigated in a study 

conducted by Zhang et al. (93), where subjects performed drop-landing from 32 cm, 62 cm, and 

103 cm. A positive correlation between landing heights and the peak GRFs was found. The peak 

joint moments and powers in ankle, knee and hip also significantly increased with increases in 

landing height. The results also showed that knee ROM was significantly increased with 

increased landing heights. Furthermore, knee ROM showed significant interactions between 

landing height and style. Energy absorbed by ankle, knee and hip extensor increased with 

increases of landing heights. Knee joint muscles were the major source of energy absorption 

(over 40%) among all conditions except for the stiff landing from 103 cm height, in which hip 

extensors dissipated a majority of the energy (45.3%).   
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McNitt-Gray (49, 50) studied kinematics, and kinetics of lower extremities during drop 

landing, performed by six healthy gymnasts and six healthy recreational athletes from three 

different heights: 32 cm, 72 cm, and 128 cm. The peak vertical GRFs increased from 4 to 11 BW 

across three different landing heights. The hip and knee joint flexion significantly increased with 

increased landing heights, suggesting that landing heights may trigger adjustments and adaptions 

in landing styles. In addition, an increase in peak joint angular velocities was observed. Kinetic 

results revealed that maximum extensor moments and work achieved by the ankle plantarflexor, 

knee and hip extensor muscles increased significantly with the increased heights. Gymnasts 

demonstrated significantly greater peak extensor moments in ankle and hip joints compared to 

recreational athletes, showing a greater ability of gymnasts to adapt to the increased impact 

loading; recreational athletes flexed their hip joint more to dissipate increased impact loading as 

landing height increased (50).  

Seegmiller and McCaw (71) tested their hypothesis that gymnasts showed significantly 

greater loading at toe contact and heel contact by comparing 1st and 2nd peak vertical GRF in 

drop landing when barefoot from three different heights: 30 cm, 60 cm, and 90 cm. No 

difference was found in 1st and 2nd peak vertical GRFs from a 30 cm height between gymnasts 

and recreational athletes. Significantly higher 1st and 2nd vertical GRFs (31% and 33%, 

respectively) were found at 60 cm height in gymnasts compared to recreational athletes. At 90 

cm height, gymnasts showed higher 1st and 2nd peak vertical GRFs (27% and 34%, respectively) 

compared to recreational athletes. Additionally, both gymnasts and recreational athletes 

exhibited a significant increase in 2nd peak GRF from 2 to 6 BW as the landing height increased. 
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The lack of difference in peak GRFs between the groups at 30 cm suggested that 30 cm height 

was too low for drop landing, compared to other studies (48, 72). 

Yeow et al. (88) have examined the relationship of landing heights and GRF, knee 

flexion angles, angular velocities, and joint powers by performing landing from 7 equidistant 

heights ranging from 0.15 m to 1.05 m. The results suggest that the peak vertical GRF, peak 

GRF slope and peak GRF impulse increased exponentially as landing heights increased, while 

knee flexion angle at contact, peak GRF, and peak knee flexion velocity increased as landing 

height increased logarithmically, while joint power increased linearly with increased landing 

heights. Therefore, the knee variables increased less while GRF increased as landing heights 

increased, indicating that the impact attenuation ability of the knee joint was limited when 

landing from a higher height. In other studies (87, 89), they have also compared the effects of 

landing from 30 and 60 cm height on kinematics, kinetics and energy dissipations of lower 

extremity joints. In the sagittal plane (89), they reported that the knee flexion angles at the peak 

GRF, maximum knee flexion angle, times to maximum peak knee flexion angle, maximum knee 

flexion velocity, and knee extensor power were greater in landing from 60 cm than 30 cm. Knee 

eccentric work  at 60 cm were 1.9 times greater than 30 cm. In the frontal plane (87), greater 

peak hip internal abduction moments compared to those in the knee and ankle joints. 

Furthermore, eccentric work done by hip joint during landing increased significantly with 

increased height. The hip and knee contributed the most to the total energy absorption in landing 

while the ankle played the smallest role in absorbing energy.  
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Drop Jump 

Drop jump (DJ) is a popular exercise for plyometric training to improve jump 

performance of athletes by gaining mechanical output of knee extensors and ankle plantarflexors 

(12). Previous studies have suggested that DJ training has increased the jump height and agility 

of athletes by allowing eccentric contraction of muscles and more exertion of stored up energy 

during the concentric contraction during the movement (33, 44, 54, 86).  

Jumping Techniques 

By utilizing DJ as a training intervention program, Hewett et al. (35) evaluated effects of 

plyometric training on jump techniques of 11 female volleyball athletes for six weeks. The goal 

of the training program was to decrease landing forces and improve jump height. The athletes 

who showed higher peak adduction moments during landing were grouped as the adduction-

dominant group, otherwise they were in the abduction-dominant group. The results showed that 

after plyometric training, 91% of the athletes deceased their peak GRF in landing by about 

23.5%. Seven adduction-dominant athletes had a 62% decrease in peak knee adduction moment 

and four abduction-dominant athletes showed 110% decrease in peak knee abduction moments, 

which were highly correlated to the peak GRF during landing. The vertical jump height was 

significantly increased by about 10% after the training.  

Bobbert et al. (12) examined effects of jumping techniques on lower extremity joints by 

utilizing DJ and countermovement drop jump from 20 cm height. Instead of bouncing upward as 

quick as possible after initial ground contact, countermovement drop jump allows subjects to 

land softly and gradually toe-to-heel with knee flexion before taking off. By monitoring 

displacement of the center of mass (COM) from the upright standing to its highest position, the 
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jump heights for DJ was about 4 cm lower than countermovement drop jump, with smaller ROM 

of hip and knee joints in DJ compared to countermovement drop jump. The peak vertical GRF 

for DJ were 40% higher than countermovement drop jump during takeoff. No significant 

differences were observed in the vertical velocity of COM at the moment of takeoff between two 

jump techniques. However, during the take-off phase, average vertical acceleration in DJ was 

higher than in countermovement drop jump due to a shorter time in DJ. This resulted from higher 

joint moments generated in DJ compared with countermovement drop jump. In both jump 

techniques, the peak net joint moments occurred around take-off. The peak extensor moments of 

hip, knee, and ankle in DJ were all significantly higher than in countermovement drop jump. At 

take-off, the peak knee extensor moment and ankle plantarflexor moment in DJ were 

significantly higher than those in countermovement drop jump. Furthermore, the peak knee and 

ankle powers in DJ were significantly larger compared with countermovement drop jump. 

Hence, the authors suggested that DJ training may efficiently improve performance of knee 

extensors and ankle plantarflexors of athletes.  

Drop Heights 

Bobbert et al. (13) conducted a study to explore the effect of three different drop heights 

on kinematics and kinetics of lower extremities in DJ. They hypothesized that maximum velocity 

of eccentric muscle contractions would increase as the drop height increased. Six healthy athletes 

dropped with barefoot from 20 cm, 40 cm and 60 cm heights. The net vertical impulse and 

takeoff time significantly increased as drop height increased.  Eccentric work is achieved during 

the downward movement of the body and increased with increased drop height.  The peak 

vertical GRF increased as drop height increased and was 31% greater at 40 cm compared to 20 
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cm, and 28% larger at 60cm compared to 40 cm. During the landing phase, no differences were 

found in the peak hip joint moments among three conditions. However, the peak knee extensor 

moments were significantly higher at 40 cm compared to 20cm, and the peak ankle plantarflexor 

moments were significantly higher in 60 cm compared to 20 cm. The peak hip power at 60 cm 

was significantly higher than 20 cm and 40 cm, and the peak knee and ankle powers were 

significantly increased at 40 cm compared 20 cm, and also at 60 compared with 40 cm. Eccentric 

knee joint work was larger in 60 cm compared to 20 cm and 40 cm. Ankle eccentric work 

significantly increased at 40 cm compared to 20 cm, and also at 60 cm compared to 40 cm. 

During the takeoff phase, the knee takeoff angle, peak ankle plantarflexor moment and peak 

power were significantly larger at 60 cm compared with the two lower heights. The data obtained 

failed to support their hypothesis due to no differences observed in vertical jumping performance 

among different drop heights. However, at 60cm height, a sharp peak of net joint reaction force 

occurred at the moment when the heel touched the ground, which again suggests that drop height 

needs to be limited when investigating DJ.  

In the study conducted by Walsh et al. (83), different combinations of drop heights and 

duration of initial ground contact were examined. Fifteen male decathletes performed five trials 

of DJ from 20, 40 and 60 cm heights. At each height, the athletes performed a maximum jump in 

the 1st DJ trial, and then four DJ trials with progressively shorter contact time than the previous 

one. Therefore, the contact time of the 1st trials of all subjects were the longest, and the contact 

time of the 5th trials of all subjects were the shortest. The athletes with the moderate contact time 

(3rd trials) achieved the largest peak and mean mechanical power of COM regardless of drop 

heights. Moreover, the maximum vertical GRF increased with a shorter contact time and greater 



 

19 

 

drop height. No difference was found in vertical take-off velocity of COM for the first three 

longest contact time groups (1st, 2nd and 3rd trials of all subjects) at all three drop heights. 

Additionally, the vertical velocity of the three groups was significantly greater than the ones in 

last two shortest contact time groups (4th and 5th trials of all subjects). The maximum knee 

extensor moments increased with increased drop heights, in all contact time conditions. The 

positive work by the knee joint with moderate and 4th shorter contact time was significantly 

larger at 20 cm compared with the other two height conditions. The authors concluded that 

landing strategy preceding the takeoff played a more important role in the effect of jump rather 

than drop height in DJ performance. 

SURFACE-RELATED FACTORS 

Injury Incidence on Synthetic and Natural Turfs 

Numerous studies have focused on the comparison of lower extremity injury incidence 

playing on synthetic turf and natural grass. An earlier study showed that the injury rate of knee 

sprains on synthetic turf was significantly higher compared then with natural grass in American 

football (68). An epidemiology study (23) based on NCAA injury surveillance system data (ISS) 

showed that in football seasons from 2004-2005 to 2008-2009, 46.23% of 318 ACL injuries 

occurred on synthetic turf, whereas the ACL injury incidence per 10,000 athlete-exposures on 

synthetic turf were 1.4 times greater than natural grass (23). Further research has shown that the 

incidences of overuse injury and foot and ankle sprains were higher on synthetic turf (27, 59, 

63). In contrast, conflicting results have been reported that there is no significant difference in 

acute injuries between the third generation synthetic turf and natural turf (11, 26, 31, 63, 77). 

However, it has also been reported that training injuries increased on natural grass (32, 62). 
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Higher injury rates are also perceived by athletes, as one study on soccer injury rates using 

subjective evaluation showed that athletes felt that the likelihood of injury on synthetic turf is 

greater than on natural grass (66).  

With regard to injury types, injury incidences for soccer athletes during games (31) and 

training (32) have been compared between synthetic turf and natural grass. Based on the NCAA 

ISS results from 2005-2006 to 2006-2007 seasons, it was found that during games (31), lower 

extremity injuries were most commonly reported on synthetic turf and natural grass for both 

male (67.2% vs. 67.5%) and female (70.2% vs. 67.7%) athletes (31). Among lower extremities 

injuries occurring on synthetic turf compared to natural turf, male athletes reported that thigh 

(27.7% and 24.3%, respectively) and ankle (26.8% and 28.4%, respectively) as the most 

common injury locations, whereas the most common injury sites for females were knee (36.2% 

and 33.5%, respectively) and ankle (22.3% and 28.5%, respectively). The injury rates of lower 

extremities on synthetic turf were not significantly higher than those on natural grass for male or 

female athletes. In training (32), a similar pattern of overall injury incidences in the lower 

extremities were observed. The most common injury locations reported by male athletes 

remained in thigh and ankle, while female athletes reported that thigh and ankle were the most 

common injured sites on synthetic turf, and the thigh and knee were mostly injured on natural 

grass. Similarly, Ekstrand et al. (27) found that there is no significant difference in soccer injury 

incidence between synthetic turf and natural grass.  

Effects of Materials, Stiffness and Thickness of Landing Surfaces 

Landing surface is another extrinsic factor related to injury incidence in lower limbs 

during sports performance of athletes (21, 25). Synthetic surfaces have been used in many sports 



 

21 

 

(60). The mechanical properties were determined by the structure properties of the landing 

surfaces.  

It has been demonstrated that playing on synthetic turf is one of the risk factors that has 

resulted in an increase in the incidence of lower extremity injuries (22, 23, 56). Steele et al. (79) 

tested vertical GRF of netball athletes of landing on 12 different synthetic surfaces (bitumen, 

concrete, 3 types of synthetic turf and 7 types of rubber surfaces). The results showed that 

athletes needed significantly longer time to reach the initial peak vertical GRF on synthetic turf 

compared with other surface conditions, which indicated that synthetic turf increased time 

duration to dampen impact forces to the body. They also reported that, on synthetic turf, nine of 

10 athletes showed different foot contact strategies in each trial of heel-strike, flatfoot to 

forefoot-strike, while only one subject consistently used forefoot-strike landing style. This 

variation suggested that subjects tended to change their landing styles in response to alteration in 

landing surfaces. The authors noted that these changes in landing strategies may cause changes 

in loading to the body during landing, which may potentially increase risk of injuries.  

A stiff surface helps improve performance by minimizing energy loss. In contrast, a 

compliant surface plays a role in energy absorption (20) and subjects tend to change their 

movement patterns on different sport surfaces (60). McNitt-Gray et al. (51) examined gymnasts’ 

adjustments of landing strategies under three different surface conditions: a regular surface (force 

platform), a soft mat, and a stiff mat. The contact velocity was controlled by landing from a 69 

cm height. All subjects showed significantly greater hip and knee flexion on mat surfaces than 

the regualr surface. On the soft mat, significantly smaller maximum knee flexion angles were 

observed in 10 of the 14 subjects as compared to the stiff mat. Additionally, smaller peak knee 
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angular velocities on the soft mat were found compared to the stiff mat and regular surface. 

Subjects showed shorter time to reach the peak knee angular velocity on the regular surface and 

stiff mat compared to the soft mat. In addition, less vertical GRFs were noted on the regular 

surface than the soft and stiff mats. Subjects demonstrated longer time to reach the peak vertical 

GRF on the soft mat than the other mats. The results showed subjects adjusted their landing 

strategies and body stiffness to cope with various surfaces. Less joint flexions were observed 

when landing on mats. This may allow them to adapt to unexpected situations more effictively.  

In addition to the stiffness of mat, the thickness of mat was considered to be related to 

landing performance. Skelly et al. (76) compared physiological, biomechanical and perceptive 

responses of step aerobics on three different surfaces: force platform, force platform covered 

with a thin pad, and force platform covered with a thick pad. A subjective survey was also 

conducted. It has been hypothesized that landing on the compliant surface would decrease the 

impact loading whereas insufficiently stiff surface would have increased energetic cost to 

achieve performance. The results of the physiological test showed that there was no significant 

difference in energy cost among the three surface conditions. From the biomechanical aspects, 

no significant differences were observed in the peak vertical GRF, joint ROMs, or time of foot 

contact on three surfaces. Nevertheless, the results of the subjective survey demonstrated that the 

subjects felt mostly unsafe to land on the surface covered with a thin pad and felt most stress on 

their lower extremity under force platform only condition. On the thick pad surface, subjects 

reported that they felt more stable compared to the other conditions. 
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Human Movements on Synthetic Turf and Natural Grass 

Synthetic turf is a common synthetic surface. A qualified synthetic turf system for soccer 

normally consists of several layers: a concentrate or asphalt base, or a crushed stone/gravel base, 

and synthetic turf with sand/rubber infill (29). The third generation of synthetic turf has gained 

popularity in recent years, and its fibers normally range from 40 to 70 mm in length made from 

nylon, polyethylene or polypropylene. The two most common fiber construction types are 

monofilament and slit-film (73).  

It has been reported that the loading during sport movements, footwear, playing surfaces 

and environmental conditions were major factors related to play-surface interaction (74). Jones et 

al. (37) examined effects of natural grass and synthetic turf on knee kinematics during single-leg 

landing from a jump of a heading movement. They reported that by comparing percentage of 

root mean squared differences during landing phase on synthetic turf with those on natural grass, 

the knee angle difference in frontal plane (13%) was the greatest compared to those in transverse 

plane (11%) and sagittal plane (5%) angles of knee. No differences were observed in knee ROM 

in all three planes. The difference of standard deviation of knee angles in frontal plane (37%), 

sagittal plane (34%) and transverse plane (53%) were larger on synthetic turf than on natural 

grass. The results suggested that medial-lateral movements (e.g. cutting movement, etc.) may 

have potential effects on injury and performance on synthetic turf due to large differences 

observed in knee adduction/abduction angles. 

Shortern and Himmelsbach (75) have compared 1.0 m drop landing on synthetic turf and 

natural grass. A single peak tibial acceleration was observed during landing. Peak acceleration 

on synthetic turf (-30.1 ± 8.5 g) were significantly greater compared to natural grass (-25.7 ± 6.6 
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g). Mean acceleration power was dissipated significantly more on natural turf compared to 

synthetic turf. The results suggested that landing strategies adaptations may not always play the 

primary role in shock dissipation of lower extremities on different surfaces, and surface effects 

were also important.  

Brock et al. (16) have investigated single-leg 90° land-cut and 180° cutting movements 

on synthetic turf with wearing running shoes and football cleats with natural turf or synthetic turf 

studs. The results showed that time to reach peak vertical GRF in the running shoes were shorter 

than other stud conditions. No difference in peak vertical GRF and its loading rates were found 

among shoe conditions. Peak medial GRF in running shoes was significantly higher compared to 

natural turf and synthetic turf studs in 180° cut.  

Thoms et al. (80) have developed the Tennessee Athletic Field Tester (TAFT) to mimic 

athlete response to surface on synthetic turf compared to natural turf. The TAFT was designed to 

apply foot strike with compression and shear force. The test results showed that the peak vertical 

reaction forces measured by TAFT seemed to be consistent with what were reported for running 

of human, suggesting that it is possible to compare the results of vertical impact loading 

generated by athletes and those measured by this mobile materials test system.  

By using a game-simulator to test different shoe and surface combinations, it has been 

shown that natural grass induced lowest peak torques while synthetic turf developed the highest 

peak torques under same loading (40). The results of this study might, to a certain extent, explain 

the reason why non-contact knee injuries frequently occurred among athletes on synthetic turf 

since high peak torque increased risk of injury.  
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Synthetic Turf with Shock pad 

As mentioned earlier, to make synthetic turf surfaces to behave more like natural grass, 

some turf companies have begun to add a shock pad under synthetic turf to improve energy 

absorption and decrease the impact loading (38). Shock pads are made from different materials 

with different properties. Material test results indicated that a turf system with a shock pad made 

from shredded rubber showed stiffer properties than a shock pad made from foam under 

compression loading (84). Density and thickness are two important parameters to be considered 

for the shock pad (4, 29). FIFA has a minimum requirement of density and thickness in addition 

to the synthetic turf in order to maintain consistent mechanical performance accounting for infill 

deformations caused by athlete-turf interactions (29). 

Wang et al. (84) have conducted materials tests to examine the synthetic hockey turf 

system with different thickness shock pad made of different materials. A 12 mm thin shock pad 

made of polyurethane foam, and a 15 mm thick shock pad was made of shredded polyurethane 

rubber. To mimic walking and running, controlled cyclic compression loading with two loading 

rates (0.9 Hz for walking and 3.3 Hz for running) were applied to the turf systems, respectively. 

By manipulating loading rates, the results of stress-strain relationships indicated that the 

increased loading rates caused increased stiffness response on both of turf systems. For the thick 

rubber shock pad system, less strain was generated by the greater loading rate. The thick rubber 

shock pad system showed higher peak pressure than the thin foam shock pad system. These 

results illustrated that a thick rubber shock pad turf system demonstrated less viscoelastic 

properties and was stiffer than the thin shock pad turf under the same loading rate. 
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Allgeuer et al. (4) studied effects of a series of shock pads with different density and 

thickness on energy absorption. The FIFA Quality Concept Test Methods were utilized in this 

study. A 20 kg mass was dropped vertically from a 55 mm height to the testing turfs. The results 

showed that stress increased with the shock pads with increased density, as well as energy return 

and cyclic loading endurance, suggesting the importance of the density of shock pad in energy 

absorption. They also concluded that low density of shock pad did not meet the requirement 

according to FIFA Quality Concept. 

McGhie and Ettema (46) reported that while performing sprint stop, the maximum impact 

force was lower on the turf with an underlying shock pad. Furthermore, a synthetic turf coupled 

with a cushioning layer is perceived to be more pleasant to play on a hard and rigid surface by 

athletes (69). 
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CHAPTER III 

METHODS 

PARTICIPANTS 

Ten to twelve healthy and active male recreational athletes between the ages of 18 to 30 

years who had a minimum of three years playing football, soccer, basketball or volleyball and 

played these sports two to three times per week, were recruited to participate in the study from 

the University campus. The inclusion criteria include that the participants had never had 

orthopedic surgery and did not have injuries of lower extremities or the back within the previous 

6 months, they were supposed to be free from pain on the test day, and they answered “No” to all 

the questions on the Physical Activity Readiness Questionnaire (PAR-Q – see appendices). 

Flyers were posted in the buildings on UT campus, and announcements were made in Physical 

Education Activity Program classes to recruit participants.  Participants were asked to provide a 

written informed consent and the experimental protocol was approved by the University Review 

Board prior to data collection.  

INSTRUMENTATION 

Shoe 

Participants wore a pair of standard lab running shoes (Noveto, Adidas). 

Synthetic Turf Carpets and Shock Pads 

A monofilament synthetic turf (Astro Turf® Gameday 360, AstroTurf, Dalton, GA) and 

three types of shock pad were used in this study. The first type of shock pad (PB2000YSR, 

Brock International, CO) was made from expanded polypropylene, its thickness is 23 mm and 

density is 56.1 kg/ cubic m. The second and third types of shock pad (Recticel Flexible Foams, 

Belgium) were mainly made of open-cell flexible polyurethane trim foam boned with isocyanate 
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binder, the thicknesses were 10 mm and 12 mm, the densities were 200 kg/cubic m and 250 

kg/cubic m, respectively. 

A total of five surface conditions were tested in this study: force platform only, a 

monofilament synthetic turf, and three turf systems including turf plus foam shock pad 

(PB2000YSR, Brock International), turf plus lower density shock pad (Recticel Flexible Foams, 

Belgium ), and turf plus higher density shock pad (Recticel Flexible Foams, Belgium ). The turf 

and shock pad pieces were all cut as 60 cm ×60 cm square pieces to match the dimensions of the 

force platforms. For the turf only condition, the turf pieces were mounted directly to the force 

platform with double-sided tape (Model 442063, Duck Brand In.). For the other turf related 

surface conditions, each type of shock pads was mounted to the force platform firstly with the 

double-sided tape, then the turf piece was mounted on the top of the shock pad layer with the 

double-sided tape. The sand and rubber were infilled into the turf piece according to the 

manufacturer specifications. Specifically, each turf piece was infilled with sand (2 lbs.), then 

crumb rubber (3.6 lbs.). The sand and rubber were then brushed into the synthetic turf canopy 

using a stiff brush. Consistency and height of infilling distributions of the turf surface were 

measured at   a minimum of nine locations (Figure 1) using a 3-prong surface depth gauge 

(Canadian Playground Advisory Inc., Canada).  If infill height at any of the testing locations was 

not in range of 30 to 32 mm, the infills were brushed again using the same procedure described 

above.   
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Overhead Bar 

A Motorized over-head bar was used to raise the subject to the desired landing height, 

which is 60 cm in this study (19, 89, 93), measured from the mid-heel to the landing surfaces and 

initiate the drop landing (DL) activities. The height of the bar can be controlled by an electrical 

hoist.  

Three-Dimensional High-speed Motion Capture System 

A 12-camera motion capture system (240 Hz, Vicon Motion Analysis Inc., Oxford, UK) 

was utilized to collect kinematics data. Reflective anatomical markers were bilaterally placed on 

the acromion processes, iliac crests, greater trochanters, anterior and posterior superior iliac 

spines medial and lateral epicondyles, medial and lateral malleoli, 1st and 5th metatarsal heads, 

and 2nd toes. A set of four tracking markers mounted on a thermoplastic shell was attached on the 

trunk, pelvis, thigh, and shank. Three discrete tracking markers were placed on the posterior and 

lateral heel counter of the shoes. All the anatomical markers were removed after a static trail.   

  

Figure 1. Locations for infill height measurements of the testing turf piece. 
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Force Platforms 

Two force platforms (1200 Hz, Advanced Mechanical Technologies, Inc., Watertown, 

MA) were used to measure the GRF data.  

EXPERIMENTAL PROTOCOL 

 Participants were asked to attend one testing session in the Biomechanics/Sport 

Medicine Lab at the University of Tennessee, Knoxville. At beginning of the test session, 

participants were asked to fill out an information sheet, including subject demographic 

information, sport and physical activity history and level, and injury history.  

Participants first warmed up by running for five minutes on the treadmill and two minutes 

self-stretching of major muscle groups.  Then participants were asked to perform five trails in 

each of 5 testing conditions. These testing conditions included DL from a 60 cm height (19, 89, 

93) for each of the five surfaces conditions: force platform only, turf, and three turf systems 

include turf plus foam shock pad, turf plus low density shock pad, and turf plus high density 

shock pad. Participants were asked to perform in a normal landing style, with the maximum knee 

flexion angle between 91 to 109 degrees, which was monitored by real-time streaming function 

in Nexus software, and land symmetrically in a balance fashion. All participants had 

opportunities to practice till they became familiar with the testing protocols. To minimize 

systematic errors, the testing conditions were firstly randomized between the force platform only 

and turf conditions. The testing order of the turf only and turf systems was then randomized. The 

three turf systems were further randomized. A successful trial for the DL was a trial in which 

participants landed symmetrically, within the knee flexion range, and were able to maintain 

balance after landing. 



 

31 

 

A mechanical test was conducted on the turf surface, and the three turf plus shock pad 

surfaces following the Standard Test Method for Impact Attenuation of Playing Surface Systems 

and Material (6). A standard mass (9.1 ± 0.050 kg) was dropped from 60 cm height for 3 trials on 

five different spots (Figure 2) on each surface. The maximum decelerations in the time-

deceleration history were recorded for further analyses.  

 

DATA AND STATISTICAL ANALYSIS 

 Marker trajectories and GRF data were smoothed using a 4th order Butterworth low-pass 

filter at cutoff frequencies of 12 Hz (8), respectively, for joint kinematics and moment 

calculations. The GRF data were filtered separately using a 4th order Butterworth low-pass filter 

at a cutoff frequency of 100 Hz (8) for GRF related calculations. The GRF, kinematic and kinetic 

data were analyzed during the landing phase, which is defined as the time from initial ground 

contact to the maximum knee flexion. 

Figure 2. Locations for mechanical test. 
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All GRF, kinematics and kinetics variables were processed and computed in Visual3D 

biomechanics software suite (5.0, C-Motion, Inc., Germantown, MD). An X-y-z (X-axis: 

anteroposterior direction; y-axis: medial-lateral direction; z-axis: vertical direction) Cardan 

sequence was used in three-dimensional kinematics computations and a right-handed rule was 

used to determine positive and negative signs for angular kinematic and kinetic variables. GRFs 

were normalized to body weight (BW) and joint moments and powers were normalized to body 

mass (Nm/kg and W/kg, respectively). The dependent variables included peak vertical GRFs, 

vertical GRF loading rate, flexion ROMs of hip, knee and ankle, peak extensor moments of hip, 

knee and ankle, and only negative work during the landing phase of hip, knee and ankle.  

A one-way (Surface) repeated measures analysis of variance (ANOVA) was performed to 

determine effects of five surface conditions on the variables of interest for each of the two 

movements separately (23, IBM SPSS Statistics, Chicago, IL). An alpha level was set at 0.05 a 

priori. When a main effect was significant, post hoc comparisons using a paired-sample t-test 

with Bonferroni adjustments were conducted to determine differences across surface conditions 

at different movements or across surface conditions. Therefore, the significance level for the 

paired-sample t-test was set at 0.005. 
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CHAPTER IV 

EFFECTS OF SYNTHETIC TURF AND SHOCKPADS ON IMPACT ATTENUATION 

RELATED BIOMECHANICS DURING DROP LANDING  

 

ABSTRACT 

Synthetic turf has been widely utilized in sports since 1964. Discrepancies, however, in 

injury incidence on synthetic turf and natural grass have been reported throughout studies. 

Adding a shock pad under synthetic turf carpet is claimed to aid in energy absorption and 

decrease impact loading. Although some studies have conducted materials tests and compared 

mechanical characteristics of synthetic turf with different shock pads, no studies have examined 

biomechanical characteristics of impact related human movements on an infilled synthetic turf 

system with different underlying shock pads. The purpose of this research was to investigate 

effects of an infilled synthetic turf with three shock pads of different energy absorption 

characteristics on impact attenuation related biomechanics of lower extremity during drop 

landing. Wearing running shoes, twelve active and healthy recreational male athletes performed 

five trials of drop landing from 60 cm with a controlled landing style (maximum knee flexion) on 

five surface conditions: a regular surface (force platform), an infilled synthetic turf, turf plus 

foam shock pad, turf plus a lower density shock pad, and turf plus a high density shock pad. A 

motion analysis system and force platform were utilized to collect kinematic and kinetic data. 

Furthermore, a mechanical test was conducted based on ASTM F355 standard. The turf plus 

shock pad systems resulted in lower 1st vertical peak ground reaction force (GRF) and its loading 

rates compared to synthetic turf without a shock pad. However, no differences in 2nd vertical 

GRF and joint kinematics and kinetics across surfaces were found.  These results suggest that 
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landing from 60 cm may cause a plateau effect in energy attenuation for the examined turf and 

turf plus shock pad systems. Future studies may be needed to explore the shock attenuation 

capacities of landing surfaces in landing activities from a lower height (< 60 cm). 

Keyword: drop landing, synthetic turf, shock pad, impact attenuation, landing styles, landing 

height 
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INTRODUCTION 

Synthetic turf has been widely utilized in sports since 1964 (38, 60). For sports at all level 

(30), the use of synthetic turf has caused increased concerns regarding the safety in elite and 

recreational athletes (9). However, disagreements in injury rates on synthetic turf and natural 

grass have been reported in the literature. Some studies have reported that injuries of lower 

extremities were significantly higher on synthetic turf compared to natural grass (23, 27, 59, 63, 

66). On the contrary, other studies have documented no difference in acute lower extremity 

injury incidences between synthetic and natural turfs (11, 26, 31, 63, 77). In addition, it was 

reported that injuries in practice were more frequent on natural grass compared to synthetic turf 

(32, 62).   

To improve energy absorption and reduce the impact loading, some turf companies have 

begun to add a shock pad (a cushioning layer) under synthetic turf carpet (38). Materials tests 

have indicated that material type, density and thickness directly affected mechanical performance 

of shock pads and turf systems (with a combination of turf and shock pad) (4, 29, 84).  Previous 

studies reported that a thick rubber shock pad turf system was less viscoelastic and stiffer 

compared to those with thin foam shock pad under the same loading rates (84), and stress and 

energy return increased as shock pad density increased under the same impact loading condition 

(4).  

Landing movements are frequently involved in various sports, such as football, soccer, 

basketball, and volleyball. This rapid movement not only requires eccentric quadriceps muscle 

action to counteract knee flexion during the weight acceptance phase (52, 53), but also generates 

excessive impact force to lower extremities.   Landing styles, as a related factor, are determined 
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by the maximum knee flexion angle during landing (19, 93). Landing with small knee flexion 

angle may cause increased anterior cruciate ligament (ACL) loading by increasing the patella 

tendon-tibia shaft angle, which leads to augmented anterior shear force at the proximal end of the 

tibia and generates knee internal rotation and abduction moments (91). When landing from a 

higher height, greater peak vertical GRFs occur due to an increased contact velocity (71). With 

an increased landing height, GRF increased more rapidly and the knee variables, including knee 

flexion angles, angular velocities, and joint power, increased less, indicating that the impact 

attenuation ability of knee joint was limited, when landing height increased (88). Similarly, peak 

vertical GRF, as well as hip, knee and ankle extensor moments and energy absorption 

significantly increased with increased landing heights (50, 93), suggesting that changes in 

landing height could result in adjustments of landing styles.   

Aiming to provide adequate impact attenuation properties, landing surfaces affected sport 

performance and impact shock attenuation of athletes (81, 85). A stiff surface can reduce energy 

loss and provide sufficient GRFs, while a more compliant surface may absorb more energy and 

reduce impact related injuries (20). Steele and Mulburne (79) reported that synthetic turf 

generated lower 1st peak vertical GRF compared to other synthetic surfaces (bitumen, concrete, 

and rubber surfaces) when landing from a typical netball attacking movements. However, no 

difference was observed in 2nd peak vertical GRF. Jones et al. (37) reported that athletes 

exhibited greater knee kinematic variability on synthetic turf compared to natural grass when 

performing single-leg landings from a jump heading movement. Shorten and Himmelsbach (75) 

showed that peak tibial accelerations in drop landing on synthetic turf were significantly higher 

than natural grass. Brock et al. (16) found that peak medial GRF in running shoes was higher 
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compared to football cleats, and time to reach peak vertical GRF in football cleats was longer 

compared to running shoes in cutting movements on a 3rd generation infilled synthetic turf. 

However, a regression study suggested that surface stiffness did not affect the peak vertical GRF 

of double-leg landing from controlled heights (61). 

Although a limited number of studies have examined landing movements on synthetic 

turf, no studies have examined biomechanical characteristics of impact related biomechanics on 

an infilled synthetic turf system with different underlying shock pads. Therefore, the purpose of 

this research was to investigate effects of an infilled synthetic turf with a combination of three 

shock pads on impact attenuation related biomechanics characteristics of lower extremity during 

drop landing.  Five surface conditions were tested: a regular surface (force platform), an infilled 

third-generation synthetic turf, the turf plus a foam shock pad, turf plus a lower density shock 

pad, and turf plus a higher density shock pad. We hypothesized that 1) the peak vertical GRFs 

and their loading rates, peak joints moment and power, and work done by lower extremities 

would be reduced on the turf plus shock pad systems compared to the regular surface and turf 

only surface; 2) these variables would be reduced during landing on the turf systems with higher 

density and thicker shock pad, compared to the turf system with lower density and thin shock 

pad. 

METHODS 

Participants 

Twelve healthy and recreationally active male athletes (mean ± SD age: 24.33 ± 4.08 

years, height: 1.78 ± 0.05 m, mass: 76.33 ± 7.04 kg, BMI: 24.02 ± 1.56) who had a minimum of 

three years playing football, soccer, basketball or volleyball and played these sports two to three 
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times per week, were recruited to participate in the study from the University campus. The 

inclusion criteria include that the participants had never had orthopedic surgery and did not have 

lower extremities or back injuries within the previous 6 months, they were free from pain on the 

test day, and they answered “No” to all the questions on the Physical Activity Readiness 

Questionnaire (PAR-Q – see appendices). Flyers were posted in the buildings on UT campus, 

and announcements were made in Physical Education Activity Program classes to recruit 

participants.  Participants were asked to provide a written informed consent and the experimental 

protocol was approved by the University Review Board prior to data collection. 

Instrumentation 

Participants wore a pair of standard lab running shoes (Noveto, Adidas). A monofilament 

synthetic turf (Astro Turf○R Gameday 3D 60, Astro Turf, Dalton, GA) and three types of shock 

pad were used in this study. The first shock pad (PB2000YSR, Brock International, CO) was 

made from expanded polypropylene with a thickness of 23 mm and density of 56.1 kg/m3. The 

second (uni F 81.84, Recticel Flexible Foams, Belgium) and third shock pad (uni 82.16, Recticel 

Flexible Foams, Belgium) were mainly made of open-cell flexible polyurethane trim foam boned 

with isocyanate binder. Their thicknesses were 10 mm and 12 mm and the densities were 200 

kg/m3 and 250 kg/m3, respectively. A total of five surface conditions were tested in this study: 

regular surface (force platform), a monofilament synthetic turf, and three turf systems including 

turf plus foam shock pad, turf plus lower density shock pad, and turf plus higher density shock 

pad. The turf and shock pad pieces were all cut into two 60 cm × 60 cm square pieces to match 

the dimensions of the two force platforms. For the turf only condition, the turf pieces were 

mounted directly to the force platform with double-sided tape (Model 442063, Duck Brand In.). 
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For the other turf related surface conditions, shock pad was first mounted to the force platform 

and the turf piece was mounted on the shock pad layer with the double-sided tape. The sand and 

rubber were infilled into the turf piece according to the specifications of the manufacturer. 

Specifically, each turf piece was infilled first with sand (2 lbs.) and then rubber (3.6 lbs.). The 

sand and rubber were then brushed evenly using a stiff brush. Consistency and height of infilling 

distributions of the turf surface were measured at   a minimum of nine locations (Figure 1) using 

a 3-prong surface depth gauge (Canadian Playground Advisory Inc., Canada).  If infill height at 

any of the testing locations was not in range of 30 to 32 mm, the infills were brushed again using 

the same procedure described above.  

A 12-camera motion capture system (240 Hz, Vicon Motion Analysis Inc., Oxford, UK) 

was utilized to collect three-dimensional kinematic data. Reflective anatomical markers were 

bilaterally placed on the acromion processes, iliac crests, greater trochanters, anterior and 

posterior superior iliac spines medial and lateral epicondyles, medial and lateral malleoli, 1st and 

5th metatarsal heads, and 2nd toes. A set of four tracking markers mounted on a thermoplastic 

shell was attached on the trunk, pelvis, thigh, and shank. Three discrete tracking markers were 

placed on the posterior and lateral heel counter of the shoes. All the anatomical markers were 

removed after a static trail. In addition, two force platforms (1200 Hz, Advanced Mechanical 

Technologies, Inc., Watertown, MA) were used to measure the GRF data. The force data were 

collected simultaneously using Nexus of the Vicon system. 

Experimental Protocol 

Participants first warmed up by running for five minutes on the treadmill and two minutes 

self-stretching of major muscle groups. Then participants were asked to perform five trails in 
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each of 5 testing conditions. These testing conditions included drop landing from a 60 cm height 

(19, 89, 93) for each of the five surfaces conditions: force platform only, turf, and three turf 

systems include turf plus foam shock pad, turf plus low density shock pad, and turf plus high 

density shock pad. Participants were asked to perform the drop landing from a height of 60 cm 

on a motorized over-head bar (19, 89, 93), measured from the mid-heel to the landing in a 

normal landing style, with the maximum knee flexion angle between 91 to 109 degrees. The 

maximum knee flexion was checked using Visual3D software for each trial. All participants had 

opportunities to practice till they became familiar with the testing protocols. To minimize 

systematic errors, the testing conditions were firstly randomized between the force platform only 

and turf conditions. The testing order of the turf only and turf systems was then randomized. The 

three turf systems were further randomized. A successful trial for the DL was a trial in which 

participants landed symmetrically, within the knee flexion range, and were able to maintain 

balance after landing. 

A mechanical test was conducted on the turf surface, and the three turf plus shock pad 

surfaces following the Standard Test Method for Impact Attenuation of Playing Surface Systems 

and Material (6). A standard mass (9.1 ± 0.050 kg) was dropped from 60 cm height for 3 trials on 

five different spots (Figure 2) on each surface. The maximum decelerations in the time-

deceleration history were recorded for further analyses. 

Data and Statistical Analysis 

Marker trajectories and GRF data were smoothed using a 4th order Butterworth low-pass 

filter at cutoff frequencies of 12 Hz (8), respectively, for joint kinematics and moment 

calculations. The GRF data were filtered separately using a 4th order Butterworth low-pass filter 
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at a cutoff frequency of 100 Hz (8) for GRF related calculations. The GRF, kinematic and kinetic 

data were analyzed during the landing phase, which was defined as the time from initial ground 

contact to the maximum knee flexion. 

All GRF, kinematics and kinetics variables were processed and computed in Visual3D 

biomechanics software suite (5.0, C-Motion, Inc., Germantown, MD). An X-y-z (X-axis: 

anteroposterior direction; y-axis: medial-lateral direction; z-axis: vertical direction) Cardan 

sequence was used in three-dimensional kinematics computations and a right-handed rule was 

used to determine positive and negative signs for angular kinematic and kinetic variables. 

Internal moment was utilized for joint moment calculation. In addition, GRFs were normalized 

to body weight (BW) and joint moments and powers were normalized to body mass (Nm/kg and 

W/kg, respectively). The dependent variables included 1st and 2nd vertical GRF peaks and 

loading rates, time to 1st peak vertical GRF, flexion ROMs of trunk, hip, knee and ankle, peak 

extensor moments of trunk, hip, knee and ankle, and only negative work during the landing 

phase of hip, knee and ankle.  

A one-way (Surface) repeated measures analysis of variance (ANOVA) was performed to 

determine effects of five surface conditions on the variables of interest for each of the two 

movements separately (23, IBM SPSS Statistics, Chicago, IL). An alpha level was set at 0.05 a 

priori. When a main effect was significant, post hoc comparisons using a paired-sample t-test 

with Bonferroni adjustments were conducted to determine differences across surface conditions 

at different movements or across surface conditions. Therefore, the adjusted significance level 

was 0.005. 
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RESULTS 

All participants utilized forefoot to rearfoot landing strategies. The 1st peak vertical GRF 

was higher on regular surface compared with the conditions of turf plus foam shock pad 

(p=0.003), turf plus low density shock pad (p=0.002), and turf plus high density shock pad 

(p=0.022, Table 1). Time to 1st peak vertical GRF occurred earlier on regular surface than on the 

conditions of turf only (p=0.032, table 1), and turf plus low density shock pad (p=0.022). The 

loading rate for 1st peak GRF was higher in regular surface compared to the conditions of turf 

only (p=0.004, table 1), turf plus foam shock pad (p=0.001), turf plus low density shock pad 

(p=0.001), and turf plus high density shock pad (p=0.002). No differences were found in 2nd 

GRF and its loading rate across the surface conditions. 

For joint kinematic variables, no differences were found in the contact angle of ankle, 

knee and hip (Table 2). No differences were found in ankle dorsiflexion ROM, knee flexion 

ROM, and Trunk flexion ROM. However, hip flexion ROM during the impact phase was greater 

on regular surface than on turf surface (p=0.041, Table 2).   

No differences were noticed in the peak ankle plantarflexion moment and knee extension 

moment across surfaces (Table 3). Nevertheless, the pairwise comparison results showed that the 

peak hip extension moment was higher on turf plus low density shock pad compared with regular 

surface (p=0.05) and turf plus foam shock pad (p=0.05). Meanwhile, the peak trunk extension 

moment was greater on the turf plus low density shock pad compared with the regular surface 

(p=0.04) and turf surface (p=0.007). Furthermore, no differences were found in the peak ankle 

plantarflexion power, knee extension power, and hip extension power across surfaces. The 
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eccentric work performed by ankle, knee and hip joints showed no differences across surfaces 

(Table 3). 

The mean Gmax, the maximum deceleration in the time-deceleration history, was 187.5 g 

for the synthetic turf surface only, 90.5 g for the turf plus foam shock pad, 124.9 g for the turf 

plus low density shock pad, and 119.0 G for turf plus high density shock pad, respectively 

(Figure 3).  The 187.5 g for the synthetic turf only treatment exceeds the acceptable 165 Gmax 

level recommended by the Synthetic Turf Council (1). These results suggest the shock pads can 

reduce Gmax for synthetic turf. 

 

DISCUSSION 

The purpose of this research was to investigate effects of an infilled synthetic turf with 

three shock pads on impact attenuation related biomechanics characteristics of lower extremity 

during drop landing. The hypothesis that the turf and turf systems would result in lower peak 
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vertical GRFs and their loading rate, peak joints moment and power, and work done by lower 

extremities compared to the regular surface was only partially supported.  

A lower 1st peak vertical GRF and its loading rate were observed for the turf and three 

turf plus shock pad systems compared to the regular surface. The loading rates for 1st and 2nd 

peak GRFs on regular surface were similar compared to previous studies (18, 71). The 1st peak 

vertical GRF loading rates were also lower on the three turf plus shock pad conditions and turf 

surface compared to regular surface. However, no difference was noticed between regular 

surface and turf only surface. Additionally, no differences were noticed in the 2nd peak vertical 

GRF and its loading rates across surfaces. Our results are supported by findings by Steele et al. 

(79), who tested vertical GRFs of netball athletes of landing from a typical netball attacking 

movement on 12 different synthetic surface conditions (bitumen, concrete, 3 types of synthetic 

turf with sand and rubber granuale fillings and 7 types of rubber surfaces). The authors reported 

no differences in 1st peak vertical GRF across surfaces. Other studies documented that, by 

comparing landing on a soft and a stiff mat, surface stiffness was not a crutial factor related to 

the 1st peak vertical GRF (5, 61). Arampatzis et al. (5) conducted a simulation study, in which 

they reported the 1st peak vertical GRF in landing from 80 cm were  1.51, 1.61, and 1.62 BW on 

soft, medium, and hard mats, respectively. The synthetic surfaces used in these studies (5, 61, 

79), whether synthetic turf or mats with different stiffnesses, were all single layer with a single 

type surface. In our study, three different types of shock pad and one type of synthetic turf carpet 

were used. While we did not find any difference between regular surface and turf only surface 

conditions., reductions in 1st peak vertical GRF of 13.3%, 12.7% and 12.7% on the three turf 

shock pad systems compared to regular surface were observed. Although no differences were 
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noted in the 1st peak vertical GRF between regualr surface and turf only surface, the longer time 

to the 1st peak vertical GRF on turf surface resulted in lower loading rate compared to regular 

surface. We found that the loading rates for the 1st peak vertical GRF on turf with either shock 

padshock pad treatment and theturf only surface were reduced compared to regular surface by 

20.5%, 20.4%, 25.4%, and 21.1% respectively. Lower loading rate could decrease the risks of 

injury. Due to the time to 1st peak vertical GRF occurred only about 11 ms after the initial 

ground contact, human body was not quick enough to be actively  involved in impact 

dissapation. These results indicate that adding shock pad to a synthetic turf system had effects on 

attenuating more impact forces.  

Our results showed that the 2nd peak vertical GRFs, the greater peak compared to the 1st 

peak GRFs and associated with heel-contact, were not different across the tested surface 

conditionss. This result is supported by previous studies (references?). Niu et al. (61) developed 

a regression model based upon 26 selected studies to evaluate the relashionship between the 2nd 

peak GRF and surface stiffness and other influential factors during double-leg landing from 

specific landing heights, and found that surfaces stiffness did not affect the 2nd peak vertical 

GRF. However, McGhie and Ettema (46) reported that while performing sprint stop, the 

maximum impact force was lower on the turf with an underlying shock pad. The sprint stop was 

a straight sprint with a rapid deceleration, primarily an anteroposterior movement. On the other 

hand, the landing movements in the current study was a pure vertical task, hence the vertical 

impact in our study was much higher than the sprint stop.  McNitt-Gray et al. (51), who 

examined gymnasts’ adjustments of landing strategies under three different surface conditions (a 

regular surface (force platform), a soft mat, and a stiff mat) from a 69 cm height, found lower 
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peak vertical GRFs on the regular surface than the soft and stiff mats. While these results are 

contrary to the results of the current study, it is important to note that McNitt-Gray et al. (50) did 

not control landing strategy and that participants varied their landing strategies as compensation 

for the regular surface. However, in the current study, landing strategy was controlled which may 

explain the lack of differences in 2nd peak vertical GRF. The lack of differences in 2nd peak 

vertical GRF across the surfaces may also be a result of the 60 cm landing height (18, 19, 70, 71, 

89, 92). Since we have controlled the landing stiffness (strategy) by limiting the maximum knee 

flexion to fall within (100 ± 9 º), the landing height may play an important role in affecting the 

peak vertical GRFs’ results. The results suggest that the turf systems may be “bottomed out” and 

insufficient to attenuate the heel contact impact force during landing. . Therefore, the impact 

force generated from landing of 60 cm may be too high for any of the turf surfaces to show any 

additional attenuation effects. In addition, the previous surface related landing studies (5, 61, 79) 

allowed their participants to land with a self-selected landing strategy and these authors all 

pointed out those participants adjusted their landing strategies and body stiffness to cope with 

impacts on the difference surface conditions. 

The joint kinetic results showed no differences in peak ankle plantarflexion and knee 

extension moments across the surfaces. Both occurred after the 2nd peak GRF (50 ms after the 

initial ground contact), at around 65 ms and 87 ms, respectively. The lack of difference in 2nd 

peak GRF explains the non-significant differences in joint moments.  These kinetic results are 

also supported by the lack of difference in ankle and knee ROM. However, hip extension 

moment on turf plus low density shock pad was greater compared to regular surface (16.9%) and 

turf plus foam shock pad (15.6%), and occurred before the 2nd peak GRF (42 ms). The peak 
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trunk extension moment on turf plus low density shock pad was greater compared to the turf only 

surface (21.2%) and turf plus foam shock pad (13.0%), occurring even earlier (32 ms).  The 

trunk extension moments seemed to contribute the greatest impact attenuation compared to lower 

extremity joints across surfaces yielding higher peaks; while, the hip extension moments the was 

the lowest across surfaces. No differences were observed in peak extensor power and eccentric 

work done by the ankle, knee, and hip across surfaces. Surprisingly, the peak hip extensor power 

was the lowest across all surfaces, while the eccentric ankle work contributed the least among 

three joints. Even though the results seemed to suggest that no adjustments were made in ankle 

and knee joints in landing across different surfaces, the participants may have accommodated the 

surface conditions by increasing hip and trunk peak extension moments to maintain overall body 

posture and stiffness across the surfaces. Our second hypothesis was partially confirmed by 

greater hip extension moment and trunk extension moment occurred on turf plus low density 

shock pad compared to turf plus foam shock pad. 

Adding a shock pad under synthetic turf is aimed at improving energy absorption and 

decreasing impact loading (38). The material test results indicated that turf system with 

underlying shock pad made from shredded rubber showed stiffer properties than shock pad made 

from foam under compression loading (84). Density and thickness are two important parameters 

to be considered for the shock pad (4, 29). FIFA has a minimum requirement of density and 

thickness, in addition to the synthetic turf, in order to maintain consistent mechanical 

performance accounting for infill deformations caused by athlete-turf interactions (29). The “on-

field” material test results from this study suggested that the foam shock pad, the thickest and 

made of a denser material compared to the two flexible shock pads, has the best impact 
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attenuation capacity compared with the other two shock pads. The turf plus foam shock pad 

showed the highest impact acceleration attenuation with 51.7% reduction of the peak impact 

acceleration while the turfs plus low and high density shock pad showed lower attenuation with 

33.4% and 36.5% reductions of the peak acceleration, respectively compared to the turf only 

surface. These test results were in agreement with results previously reported (4, 29, 84). 

However, these results were contrary on some performance of the results in current human test.  

In order to minimize potential effects of variability in landing styles on impact related 

variables, we controlled maximum knee flexion and landing height. Not surprisingly, there were 

no differences in the ankle, knee and hip contact angles, or ankle and knee ROM across the 

surfaces.  Multiple studies have demonstrated that landing with decreased maximum knee 

flexion angles (i.e. increased landing stiffness) caused increases in the 1st and 2nd peak vertical 

GRFs, the peak extensor moments and powers of hip, knee and ankle, and reduced energy 

attenuation by these joints (19, 57, 65, 93). Participants tended to flex knees more when landed 

on stiffer surface, and generated less GRF compared to a compliant surface (51). 

The limitations for this study included, participants may perform drop landings in athletic 

participation with different techniques than within the lab environment. Additionally, we only 

tested one type of synthetic turf and three types of shock pad. Finally, the 60 cm landing height 

may have yielded plateau effects on the vertical GRF. Future studies should identify a more 

suitable and lower landing height. 

CONCLUSION 

The results from this study suggest that the three turf plus shock pad systems reduced the 

initial vertical GRF and its loading rate compared to the regular surface during vertical drop 
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landing. However, no differences were detected in the 2nd peak vertical GRF and its loading 

rates. No differences were found in joint ROM, extensor moments, and peak extension power of 

ankle and knee, nor in work done by the lower extremity joints. On the other hand, turf plus low 

density shock pad resulted in greater hip extension moments compared to regular surface and turf 

plus foam shock pad, and greater trunk extension moments compared to turf surface and turf plus 

foam shock pad. Overall, the turf plus shock pad systems seem to provide improved impact 

attenuation for landing activities from heights of 60 cm or lower. 
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APPENDIX A: TABLE IN CHAPTER IV 

 

Table 1: Peak vertical ground reaction forces and related loading rates: mean ± SD. 

 Regular 

surface 

Turf Turf + Foam 

shock pad 

Turf + Low 

density shock 

pad 

Turf + High 

density shock 

pad 

F Test 

1st peak vertical GRF (BW) 1.58±0.30 1.44±0.24 1.37±0.25a 1.37±0.27a 1.38±0.27a F=8.3, p=0.006 

Time_1st peak vertical GRF (s) 0.011±0.002 0.013±0.002a 0.012±0.002 0.013±0.002a 0.012±0.002 F=3.7, 9=0.046 

Loading rate_1st vertical GRF 

(BW/s) 
146.4±34.9 116.4±28.1a 116.5±26.9 a 109.2±22.4a 115.5±23.5a F=20.1, p<0.001 

2nd peak vertical GRF (BW) 3.05±0.96 2.89±0.77 2.88±0.72 2.89±0.89 2.91±0.71 F=0.3, p=0.850 

Loading rate_2nd vertical GRF 

(BW/s) 
67.2±31.5 61.0±27.5 62.7±25.2 61.6±28.6 63.0±22.0 F=0.5, p=0.737 

 

a: Significantly different from regular surface. 

b: Significantly different from turf surface.  

c: Significantly different from turf + foam shock pad.  

d: Significantly different from turf + low density shock pad. 
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Table 2: Joint kinematic variables: mean ± SD. 

 Regular 

surface 

Turf Turf + Foam 

shock pad 

Turf + Low 

density 

shock pad 

Turf + High 

density 

shock pad 

F Test 

Ankle Contact Angle (º) -27.0±5.4 -27.1±3.8 -26.6±4.6 -26.7±4.9 -26.3±5.0 F=0.2, p=0.922 

Ankle Dorsiflexion ROM (º) 51.1±6.0 51.9±6.1 50.5±6.1 50.0±6.8 50.7±6.2 F=1.3, p=0.273 

Knee Contact Angle (º) -19.7±4.0 -21.4±4.4 -20.5±5.3 -21.0±5.3 -20.7±5.2 F=1.6, p=0.261 

Knee Flexion ROM (º) -80.6±4.2 -80.2±6.2 -79.9±5.9 -79.2±5.7 -80.5±3.6 F=0.3, p=0.841 

Hip Contact Angle (º) 20.1±7.2 20.3±7.2 19.7±7.1 20.0±5.6 19.5±7.0 F=0.2, p=0.922 

Hip Flexion ROM (º) 70.9±12.6 66.6±10.9 a 68.2±14.0 67.5±13.0 67.7±14.3 F=4.3, p=0.038 

Trunk Flexion ROM (º) -31.5±10.0 -27.8±9.6 -28.3±7.7 -28.5±9.1 -30.0±6.9 F=2.8, p=0.094 

 

a: Significantly different from regular surface.  

b: Significantly different from turf surface.  

c: Significantly different from turf + foam shock pad surface. 

d: Significantly different from turf + low density shock pad surface.  

Negative values indicate plantarflexion, knee flexion, and trunk flexion.  
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Table 3: Peak joint moment and power, and work: mean ± SD. 

 Regular 

surface 

Turf Turf + 

Foam 

shock pad 

Turf + Low 

density shock 

pad 

Turf + High 

density shock 

pad 

F Test 

Ankle plantarflexion moment (Nm/Kg) -1.23±0.19 -1.25±0.21 -1.25±0.24 -1.25±0.22 -1.26±0.21 F=0.1, p=0.971 

Knee extension moment (Nm/Kg) 2.59±0.34 2.59±0.35 2.58±0.34 2.61±0.41 2.65±0.39 F=1.0, p=0.472 

Hip extension moment (Nm/Kg) 0.89±0.29 0.96±0.23 0.90±0.26 1.04±0.24 a, c 0.99±0.26 F=2.8, p=0.098 

Trunk extension moment (Nm/Kg)  5.73±1.41 5.15±1.25 5.57±1.36 6.24±1.47 b, c 5.96±1.60 F=5.6, p=0.008 

Ankle plantarflexion power (W/Kg) -17.2±8.0 -17.3±3.4 -17.1±3.7 -16.5±3.8 -17.9±3.9 F=0.6, p=0.682 

Knee extension power (W/Kg) -32.1±8.0 -31.4±8.2 -32.0±6.4 -31.9±8.9 -32.9±7.2 F=0.6, p=0.656 

Hip extension power (W/Kg) -15.6±6.4 -15.3±6.5 -15.5±5.3 -16.3. ±6.4 -15.1±4.1 F=0.5, p=0.734 

Ankle eccentric work (J/Kg) -0.71±0.17 -0.77±0.16 -0.75±0.18 -0.75±0.18 -0.77±0.19 F=0.4, p=0.782 

Knee eccentric work (J/Kg) -2.52±0.33 -2.47±0.41 -2.42±0.37 -2.45±0.40 -2.54±0.40 F=1.8, p=0.215 

Hip eccentric work(J/Kg) -1.51±0.55 -1.35±0.37 -1.40±0.44 -1.45±0.37 -1.48±0.43 F=1.5, p=0.297 

 

a: Significantly different from regular surface. 

b: Significantly different from turf surface.  

c: Significantly different from turf + foam shock pad surface. 

d: Significantly different from turf + low density shock pad surface.  

Negative values indicate extension moment and power, and eccentric work performed.
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APPENDIX B: INDIVIDUAL PARTICIPANT CHARATERISTICS 

 

Table 4: Individual participant characteristics. 

Subject 
Age 

(Years) 
Gender 

Height 

(m) 

Weight 

(Kg) 

BMI 

(Kg/m2) 

Sports 

involvement 

(≥ 3 years) 

Exercise 

frequency 

(Times/Week) 

1 21 Male 1.80 73.6 22.7 Basketball 5 

2 20 Male 1.85 87.8 25.7 Football 3 

3 19 Male 1.78 66.6 21.0 Soccer 7 

4 26 Male 1.71 73.2 25.0 
Soccer, 

volleyball 
3 

5 24 Male 1.78 69.8 22.0 Basketball 5 

6 25 Male 1.86 83.4 24.1 
Football, 

basketball 
5 

7 25 Male 1.80 86.1 26.6 Soccer 5 

8 30 Male 1.86 83.9 24.3 Soccer 7 

9 30 Male 1.74 70.9 23.4 Basketball 5 

10 20 Male 1.76 73.7 23.8 
Basketball, 

soccer 
4 

11 22 Male 1.73 74.9 25.0 
Basketball, 

volleyball 
5 

12 30 Male 1.71 72.1 24.7 Basketball 5 

Mean±SD 24.3±4.1 - 1.78±0.05 76.3±7.0 24.0±1.6 - 4.9±1.2 
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APPENDIX C: INFORMED CONSENT FORM 

INFORMED CONSENT FORM  
Effects of synthetic turf and shock pads on impact attenuation related biomechanics during drop 

landing and drop jump  

Principal Investigator: Hang Qu, B.S.            Faculty Advisor: Songning Zhang, PhD  

Address:               144 HPER              Address:             340 HPER                             

                             1914 Andy Holt Avenue                                    1914 Andy Holt Avenue 

                             Knoxville, TN 37996                                       Knoxville, TN 37996 

                             Phone: (865) 974-8768       Phone: (865) 974-2091 

 

Introduction 

You are invited to participate in this research study because you are an adult between 18 

and 30 years old. This research investigates the force absorption in lower limbs of drop landing 

and drop jump on an artificial turf and shock pads. Please ask the study staff to explain any 

words or information that you do not clearly understand. Before agreeing to participate in this 

study, it is important that you read and understand the following explanation of the procedures, 

risks, and benefits.  

 

Testing Protocol  
If you agree to participate, you will attend one study session at the Biomechanics/Sports 

Medicine Lab on the UT campus. You will need to complete the demographic questionnaire and 

Physical Activity Readiness Questionnaire (PAR-Q), which will be used for this study. The 

study visit will take approximately 2½ – 3 hours. You will need to wear clothing appropriate for 

exercise which includes spandex shorts and t-shirt. If you do not have spandex type of clothing, 

spandex short or laboratory paper short will be provided. 

We will measure your weight and height. We will place reflective markers on your feet, 

ankles, legs, knees, thighs, pelvis and trunk. This will allow motion cameras to capture your 

body movements when performing the exercises. The motion cameras will not record images of 

you. If you have any questions, interests, or concerns about any equipment to be used in this test, 

please feel free to ask the investigator or other research personnel. 

You will perform the following movements. 

 Perform maximum vertical jump 3 times. 

 Perform drop landing from a height of 23.6 inches 5 times on floor. 

 Perform drop landing from a height of 23.6 inches 5 times on artificial turf. 

 Perform drop landing from a height of 23.6 inches 5 times on artificial turf with 

one type of shock pad. 

 Perform drop landing from a height of 23.6 inches 5 times on artificial turf with 

second type shock pad. 

 Perform drop landing from a height of 23.6 inches 5 times on artificial turf with 

third type of shock pad.  

 Perform drop jump from a height of 15.7 inches 5 times on floor. 

 Perform drop jump from a height of 15.7 inches 5 times on artificial turf. 
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 Perform drop jump from a height of 15.7 inches 5 times on turf with one type 

shock pad. 

 Perform drop jump from a height of 15.7 inches 5 times on turf with second type 

shock pad. 

 Perform drop jump from a height of 15.7 inches 5 times on turf with third type 

shock pad.  

Trials need to be completed with a normal landing style, with the maximum knee flexion 

between 81 to 99 degrees only on the drop landing trials. If you are within 81 to 99 degrees, you 

will be asked to repeat the trial. You will have opportunity to practice trials to become familiar 

with the testing procedures. It is anticipated that you will not be required to perform more than 

eight trials of each test condition. You can take breaks as needed. You can end any exercise early 

and do not have to complete the study visit.  

 

Potential Risks 
Risks associated with this study are minimal. There is a small risk of an ankle sprain but 

it is no greater than the risk you would experience when playing your sports. In order to prevent 

potential muscle strains and ligament sprains, you will be asked to perform a standardized warm-

up and stretching prior to the actual testing. The turf surface is infilled with the sand and rubber 

particles evenly to prevent any possibility of ankle sprains. You are asked to practice the 

movements before the testing and take breaks as needed. In the unlikely event you are injured 

during the study, we will provide standard first aid. However, the University of Tennessee does 

not automatically provide reimbursement for medical care or other compensation and you will be 

responsible for any medical expenses. If you are injured, please notify Hang Qu or her advisor, 

Dr. Songning Zhang (974-2091).   

 Every research study involves some risk to your confidentiality.  It is possible that other 

people could find out you were in the study or see your study information.  But we will do our 

best to keep your information confidential to minimize this risk. 

 

Benefits of Participation 
You may not benefit from participation in this study directly.  However, the potential 

benefits for you include the knowledge of jump height and control of landing techniques and 

experience of landing on the different surfaces. You can receive an individual report of your 

landing and jumping biomechanics to share with your athletic trainer and coaches in case it 

might be helpful to your sport performance and injury prevention. Results from this study may 

help society to better understand which turf and shock pad combination is the best option in force 

absorption for human jump and landing performance. 

 

Confidentiality 
Your information will be kept confidential. Your research data and records will be stored 

securely and will be made available only to researchers who work on this study. The motion 

cameras will not record images of you. Your name will not be in any research data. Instead, a 

code number will replace your name on your data. Your name will not appear with the study 

results that will be presented at conferences and published in journals. Your data will be stored 

using password protected hard drives. Your data may be used for future research purposes after 
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the completion of this study. If you decide to withdraw from the study, data collected up to that 

point may be used for research purposes, unless you request that it be destroyed.   

 

Contact Information 
If you have any questions about the study at any time or if you experience any problems 

as a result of participating in this study you can contact Hang Qu or Dr. Songning Zhang at 1914 

Andy Holt Ave. 136 HPER Bldg., the University of Tennessee and/or (865) 974-2091. Questions 

about your rights as a participant can be addressed to Compliance Officer in the Office of 

Research at the University of Tennessee at (865) 974-7697.  

 

Voluntary Participation and Withdrawal 
Your participation is entirely voluntary and your refusal to participate will involve no 

penalty or loss of benefits to which you are otherwise entitled. You may withdraw from the study 

at any time without penalty or loss of benefits to which you are otherwise entitled. Your 

participation in this study may be stopped by if you fail to follow the study procedures or if the 

principal investigator believes it is in your best interest to stop participation.  

 

Consent Statement 
I have read the above information. I agree to participate in this study. I have received a copy of 

this form. 

   

 

Subject’s Name: _______________ Subject’s Signature: _______________ Date: ___________         

   

Investigator’s Signature: ____________________________   Date: _______________________      
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APPENDIX D: FLYER 
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APPENDIX E: PHYSICAL ACTIVITY READINESS QUESTIONNAIRE (PAR-Q) 
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APPENDIX F: INDIVIDUAL RESULTS FOR SELECTED VARIABLE 
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Table 5: 1st Peak Vertical GRF (BW) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 2.092±0.072 1.920±0.221 1.691±0.008 1.828±0.159 1.767±0.198 

2 1.159±0.087 1.327±0.094 0.935±0.074 0.893±0.058 0.970±0.156 

3 1.591±0.054 1.570±0.070 1.437±0.063 1.415±0.073 1.397±0.114 

4 1.482±0.067 1.616±0.134 1.509±0.039 1.340±0.040 1.408±0.082 

5 1.285±0.068 1.124±0.102 1.071±0.101 1.112±0.079 1.039±0.019 

6 1.584±0.099 1.389±0.161 1.358±0.138 1.329±0.070 1.269±0.159 

7 1.410±0.061 1.463±0.137 1.283±0.048 1.251±0.066 1.257±0.088 

8 1.370±0.063 1.208±0.061 1.242±0.064 1.303±0.087 1.296±0.063 

9 2.016±0.128 1.802±0.141 1.833±0.148 1.801±0.076 1.915±0.106 

10 1.737±0.103 1.291±0.197 1.358±0.034 1.198±0.197 1.353±0.113 

11 1.892±0.146 1.308±0.067 1.479±0.153 1.643±0.095 1.468±0.091 

12 1.283±0.031 1.314±0.122 1.219±0.114 1.293±0.135 1.470±0.123 

Mean±SD 1.575±0.303 1.444±0.240 1.368±0.249 1.367±0.274 1.384±0.265 
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Table 6: 2nd Peak Vertical GRF (BW) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 3.698±0.331 2.804±0.074 2.770±0.170 2.778±0.102 3.451±0.218 

2 2.632±0.169 2.374±0.173 2.635±0.062 2.680±0.112 2.704±0.247 

3 2.097±0.295 2.316±0.232 2.476±0.187 2.215±0.139 2.421±0.241 

4 2.280±0.161 2.422±0.175 2.496±0.228 2.376±0.152 2.833±0.050 

5 3.639±0.099 2.875±0.239 2.814±0.248 2.821±0.257 2.823±0.230 

6 1.934±0.200 2.554±0.073 2.077±0.144 2.115±0.068 2.168±0.115 

7 2.478±0.218 2.211±0.204 2.217±0.215 2.012±0.154 2.221±0.081 

8 4.066±0.254 4.252±0.156 4.210±0.117 4.221±0.065 3.993±0.229 

9 4.603±0.114 4.196±0.298 4.363±0.196 4.347±0.189 4.367±0.084 

10 2.892±0.289 2.500±0.366 2.848±0.226 2.332±0.295 2.646±0.164 

11 4.285±0.279 3.870±0.341 3.224±0.209 4.318±0.175 3.178±0.186 

12 1.964±0.267 2.252±0.278 2.454±0.165 2.408±0.164 2.161±0.196 

Mean±SD 3.047±0.962 2.885±0.767 2.882±0.722 2.885±0.886 2.914±0.714 
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Table 7: Time to 1st Peak Vertical GRF (BW) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 0.012±0.001 0.015±0.002 0.013±0.000 0.015±0.001 0.015±0.001 

2 0.011±0.001 0.013±0.001 0.010±0.001 0.009±0.002 0.010±0.003 

3 0.013±0.001 0.014±0.001 0.012±0.001 0.015±0.001 0.012±0.001 

4 0.011±0.001 0.013±0.001 0.013±0.000 0.014±0.002 0.012±0.001 

5 0.008±0.000 0.011±0.002 0.010±0.001 0.011±0.001 0.009±0.002 

6 0.013±0.000 0.012±0.000 0.014±0.001 0.014±0.001 0.015±0.002 

7 0.009±0.001 0.012±0.001 0.011±0.001 0.012±0.002 0.012±0.002 

8 0.010±0.001 0.010±0.003 0.010±0.002 0.010±0.001 0.010±0.001 

9 0.009±0.001 0.009±0.000 0.010±0.000 0.011±0.001 0.011±0.001 

10 0.013±0.001 0.014±0.001 0.014±0.001 0.014±0.002 0.013±0.002 

11 0.010±0.001 0.011±0.000 0.012±0.001 0.014±0.001 0.012±0.001 

12 0.013±0.001 0.016±0.002 0.013±0.000 0.016±0.002 0.016±0.002 

Mean±SD 0.011±0.002 0.013±0.002 0.012±0.002 0.013±0.002 0.012±0.002 
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Table 8: Time to 2nd Peak Vertical GRF (BW) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 0.044±0.002 0.050±0.003 0.047±0.002 0.051±0.003 0.049±0.004 

2 0.050±0.002 0.058±0.003 0.045±0.004 0.040±0.002 0.046±0.005 

3 0.057±0.003 0.054±0.003 0.048±0.002 0.053±0.003 0.049±0.002 

4 0.063±0.005 0.059±0.003 0.059±0.003 0.061±0.004 0.051±0.002 

5 0.039±0.001 0.047±0.004 0.048±0.003 0.046±0.002 0.042±0.003 

6 0.059±0.005 0.048±0.001 0.056±0.004 0.054±0.001 0.056±0.004 

7 0.050±0.003 0.055±0.006 0.054±0.002 0.058±0.006 0.054±0.006 

8 0.038±0.002 0.038±0.002 0.038±0.002 0.036±0.000 0.038±0.003 

9 0.038±0.002 0.039±0.002 0.038±0.000 0.039±0.001 0.042±0.002 

10 0.053±0.003 0.059±0.004 0.054±0.003 0.058±0.001 0.054±0.005 

11 0.044±0.003 0.044±0.002 0.049±0.001 0.050±0.001 0.050±0.003 

12 0.054±0.002 0.054±0.001 0.048±0.001 0.053±0.004 0.057±0.009 

Mean±SD 0.049±0.008 0.050±0.007 0.049±0.007 0.050±0.008 0.049±0.006 
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Table 9: Ankle Contact Angle (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -27.323±2.282 -27.662±2.739 -25.657±3.210 -28.134±1.503 -28.369±3.235 

2 -20.270±4.475 -24.924±2.045 -20.850±1.549 -20.166±4.165 -21.439±3.787 

3 -28.162±0.540 -27.816±0.933 -25.161±1.115 -26.295±2.106 -24.519±0.850 

4 -32.195±1.067 -32.855±1.491 -31.970±2.443 -32.565±1.453 -26.828±0.805 

5 -20.774±2.265 -21.743±3.254 -20.579±2.373 -20.227±2.845 -16.060±2.955 

6 -29.199±2.737 -28.194±2.169 -28.737±1.742 -29.932±1.017 -29.238±1.131 

7 -27.705±1.529 -26.152±0.781 -26.148±1.250 -27.186±2.184 -27.007±1.455 

8 -20.030±1.059 -20.532±1.510 -21.230±0.572 -20.418±0.330 -21.134±0.709 

9 -26.863±2.235 -28.159±2.336 -26.470±1.275 -26.729±1.178 -28.432±1.100 

10 -35.587±1.310 -31.965±1.222 -33.893±0.563 -30.837±1.044 -33.551±0.831 

11 -33.913±1.221 -30.687±1.754 -33.457±1.205 -34.868±1.775 -33.391±0.553 

12 -21.661±2.437 -24.161±1.396 -25.559±2.611 -23.587±1.831 -25.327±0.931 

Mean±SD -26.974±5.364 -27.071±3.801 -26.643±4.632 -26.745±4.907 -26.275±5.049 
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Table 10: Ankle Dorsiflexion ROM (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 52.457±2.696 53.718±1.973 52.459±3.209 53.956±2.677 55.378±3.283 

2 44.684±2.770 49.159±3.226 42.967±1.650 37.705±1.442 43.857±5.490 

3 54.496±2.493 53.647±1.163 48.406±0.917 48.703±2.101 48.151±2.356 

4 60.441±1.932 65.009±1.270 62.735±1.663 61.411±2.552 57.424±1.615 

5 42.176±1.880 45.173±2.258 45.076±2.431 45.269±4.053 41.239±3.778 

6 52.431±1.724 50.592±3.161 50.672±1.405 49.925±0.622 52.134±1.251 

7 49.295±1.486 47.023±2.360 48.038±1.228 49.258±2.898 47.789±2.205 

8 41.391±1.323 41.922±1.757 41.367±2.196 41.381±1.481 41.918±3.069 

9 48.210±3.336 50.442±4.753 47.927±3.245 46.791±3.349 49.444±2.186 

10 55.729±2.058 57.754±2.183 55.867±2.558 52.266±2.790 55.526±3.053 

11 55.978±2.274 51.771±2.956 53.937±2.009 57.722±1.921 56.848±3.081 

12 55.988±1.692 56.570±1.447 55.973±3.024 55.994±3.555 58.471±3.999 

Mean±SD 51.107±6.017 51.898±6.137 50.452±6.111 50.032±6.788 50.682±6.184 
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Table 11: Knee Contact Angle (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -19.422±0.898 -19.617±2.024 -18.642±3.428 -19.098±2.293 -20.301±3.062 

2 -24.302±2.178 -24.648±2.424 -24.563±3.242 -26.216±4.553 -25.200±1.047 

3 -14.331±2.136 -14.439±1.648 -14.086±0.572 -12.948±3.195 -13.808±1.169 

4 -24.202±1.167 -24.635±1.718 -22.932±1.082 -22.938±1.365 -22.290±2.003 

5 -25.060±4.025 -29.639±3.462 -29.741±3.889 -30.488±1.951 -30.795±3.526 

6 -19.980±3.116 -22.281±1.664 -23.017±2.096 -20.497±1.137 -22.697±2.631 

7 -21.014±3.965 -25.448±2.277 -26.714±1.415 -27.463±2.507 -24.590±1.360 

8 -23.486±0.664 -22.814±1.090 -23.573±0.702 -24.151±2.181 -24.185±2.475 

9 -15.868±1.579 -15.060±0.809 -13.266±2.086 -15.612±1.541 -13.082±0.750 

10 -14.885±2.067 -20.753±2.605 -16.480±1.259 -17.473±1.434 -16.714±2.626 

11 -18.351±1.346 -18.439±2.262 -17.210±0.911 -17.397±0.802 -17.669±0.910 

12 -15.058±2.835 -18.540±1.926 -15.602±3.418 -17.221±3.319 -16.849±3.108 

Mean±SD -19.663±4.005 -21.359±4.444 -20.485±5.310 -20.958±5.310 -20.681±5.236 

 

 

  



 

76 

 

Table 12: Knee Flexion ROM (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -80.165±4.465 -82.073±3.264 -79.712±0.883 -86.882±3.218 -79.162±2.714 

2 -73.235±3.667 -72.611±2.660 -74.431±2.349 -72.237±2.964 -76.896±2.142 

3 -82.791±3.868 -84.041±2.214 -83.622±3.665 -86.649±4.675 -82.178±4.640 

4 -74.986±2.915 -80.809±3.380 -73.267±2.900 -73.343±1.550 -80.508±4.732 

5 -77.374±2.896 -71.672±3.450 -76.870±1.784 -71.557±4.405 -74.060±3.740 

6 -81.069±4.455 -78.593±3.640 -77.588±2.531 -78.532±2.254 -77.791±5.195 

7 -78.209±3.176 -70.813±7.144 -73.298±6.321 -74.222±2.164 -77.645±4.760 

8 -79.678±4.213 -78.756±5.349 -75.175±0.821 -79.025±1.504 -79.625±4.886 

9 -81.620±1.868 -91.498±0.244 -91.411±2.720 -79.857±0.814 -84.152±3.127 

10 -86.176±4.135 -81.060±4.602 -85.146±1.246 -85.772±3.588 -84.213±2.691 

11 -85.306±3.134 -85.020±3.611 -80.541±1.543 -77.898±1.539 -83.940±6.271 

12 -86.451±5.653 -85.250±1.754 -87.397±2.702 -84.249±4.370 -85.755±1.654 

Mean±SD -80.588±4.226 -80.183±6.171 -79.871±5.915 -79.185±5.655 -80.494±3.592 
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Table 13: Hip Contact Angle (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 25.764±1.582 23.731±2.518 22.745±3.415 24.260±1.862 25.670±5.295 

2 12.511±1.286 9.601±6.606 13.481±2.623 15.931±4.180 12.480±1.260 

3 9.802±1.795 10.826±0.822 9.538±1.300 14.203±2.172 12.015±3.288 

4 24.670±3.466 23.522±1.674 19.154±1.942 22.533±1.637 18.154±1.669 

5 26.506±3.398 28.761±2.606 27.757±4.342 28.365±2.175 28.000±3.468 

6 28.646±4.177 30.237±2.273 33.264±2.679 26.742±2.513 32.324±2.765 

7 12.627±7.275 15.317±2.221 14.669±2.117 13.118±3.902 13.981±3.372 

8 15.331±0.806 15.209±1.002 12.498±0.830 15.755±1.317 13.167±2.251 

9 28.778±2.045 26.827±1.680 26.229±1.352 26.692±1.887 26.657±0.757 

10 16.282±3.787 16.440±3.337 16.530±2.644 14.860±2.623 16.392±2.074 

11 25.957±4.388 26.996±7.068 23.549±4.686 21.011±3.937 20.060±4.923 

12 14.441±5.227 16.206±3.710 17.325±4.094 16.251±2.589 14.609±3.003 

Mean±SD 20.110±7.170 20.306±7.177 19.728±7.076 19.977±5.574 19.459±6.991 
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Table 14: Hip Flexion ROM (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 59.394±5.518 57.325±3.059 54.047±2.665 57.447±2.071 55.266±2.731 

2 60.486±1.778 52.886±3.388 58.384±2.263 57.488±4.696 57.043±3.176 

3 65.158±5.498 63.418±1.557 60.250±2.920 65.150±2.942 58.753±3.789 

4 50.866±2.232 50.279±3.040 44.214±0.684 46.523±2.114 44.617±7.821 

5 68.720±2.559 61.343±1.438 66.127±1.707 60.079±1.590 63.696±2.655 

6 78.728±5.845 80.665±5.487 73.486±0.944 79.111±2.749 69.453±5.070 

7 89.092±4.277 81.487±5.007 92.688±5.511 89.340±4.568 91.170±7.327 

8 71.774±2.732 68.603±5.068 75.798±3.511 73.575±1.050 76.421±3.777 

9 65.612±3.153 62.732±4.174 72.075±0.494 63.688±1.758 66.855±2.669 

10 94.020±3.363 82.868±2.693 88.549±1.356 87.741±4.662 94.182±4.858 

11 66.730±3.181 66.601±4.403 58.923±6.543 59.174±4.009 64.672±10.758 

12 80.202±2.913 70.984±3.727 73.703±0.387 70.775±3.734 70.752±4.726 

Mean±SD 70.898±12.575 66.599±10.873 68.187±14.046 67.508±12.985 67.740±14.294 

 

  



 

79 

 

Table 15: Trunk Flexion ROM (º) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -27.797±2.900 -31.987±3.739 -22.616±0.440 -22.332±2.776 -25.083±3.213 

2 -37.669±8.987 -22.323±4.255 -34.133±1.777 -36.327±2.555 -34.434±4.938 

3 -45.725±3.911 -45.668±1.399 -43.371±1.714 -51.357±0.320 -42.595±1.057 

4 -20.761±1.640 -22.028±1.541 -22.085±1.161 -23.769±1.525 -30.143±2.828 

5 -38.282±1.204 -31.380±1.383 -31.195±0.712 -32.345±1.164 -35.776±1.436 

6 -18.735±3.319 -16.005±2.700 -21.665±1.357 -20.392±2.251 -23.565±2.666 

7 -16.235±3.648 -12.907±1.199 -18.838±2.250 -17.598±2.763 -19.554±3.743 

8 -47.051±1.948 -42.406±3.670 -34.710±1.572 -31.699±1.069 -32.008±1.194 

9 -32.676±2.512 -29.267±1.478 -34.517±1.019 -27.912±2.454 -30.477±1.939 

10 -35.446±4.383 -27.664±2.800 -31.559±0.521 -29.320±1.337 -36.716±3.966 

11 -25.801±0.991 -24.029±1.490 -18.946±1.334 -20.404±1.186 -20.628±1.967 

12 -32.259±1.283 -28.427±1.143 -25.990±1.059 -28.970±1.753 -28.779±1.782 

Mean±SD -31.536±10.015 -27.841±9.553 -28.302±7.730 -28.535±9.148 -29.980±6.909 
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Table 16: Ankle Plantarflexion Moment (Nm/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -0.965±0.153 -1.376±0.233 -1.683±0.360 -1.379±0.110 -1.184±0.303 

2 -1.254±0.189 -1.660±0.165 -0.979±0.148 -0.940±0.279 -0.995±0.230 

3 -1.323±0.161 -1.281±0.089 -1.504±0.084 -1.423±0.017 -1.399±0.063 

4 -1.243±0.161 -1.219±0.128 -1.104±0.120 -1.121±0.175 -1.249±0.146 

5 -0.839±0.071 -0.989±0.087 -0.980±0.149 -1.003±0.174 -1.201±0.135 

6 -1.499±0.145 -1.166±0.061 -1.304±0.174 -1.596±0.111 -1.257±0.043 

7 -1.266±0.060 -1.471±0.193 -1.306±0.065 -1.488±0.290 -0.986±0.286 

8 -1.040±0.074 -0.900±0.082 -1.006±0.058 -0.925±0.095 -1.087±0.094 

9 -1.426±0.131 -1.385±0.169 -1.352±0.114 -1.225±0.108 -1.495±0.104 

10 -1.413±0.073 -1.226±0.153 -1.221±0.074 -1.391±0.180 -1.226±0.270 

11 -1.226±0.105 -1.213±0.035 -1.548±0.032 -1.317±0.070 -1.742±0.065 

12 -1.237±0.119 -1.070±0.158 -1.045±0.174 -1.202±0.236 -1.300±0.247 

Mean±SD -1.228±0.194 -1.246±0.210 -1.253±0.239 -1.251±0.219 -1.260±0.212 
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Table 17: Knee Extension Moment (Nm/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 2.174±0.131 2.111±0.073 2.269±0.080 2.428±0.079 2.341±0.148 

2 2.889±0.057 2.966±0.056 2.869±0.226 2.637±0.169 2.903±0.232 

3 2.422±0.134 2.309±0.079 2.004±0.045 2.101±0.139 2.065±0.095 

4 2.471±0.176 2.529±0.087 2.658±0.078 2.596±0.145 2.683±0.093 

5 2.587±0.205 2.441±0.096 2.598±0.124 2.663±0.106 2.566±0.337 

6 2.236±0.052 2.443±0.152 2.335±0.032 2.435±0.109 2.544±0.116 

7 2.679±0.161 2.776±0.181 2.633±0.119 2.667±0.145 2.684±0.177 

8 2.437±0.099 2.466±0.197 2.731±0.073 2.504±0.077 2.466±0.193 

9 3.028±0.155 2.882±0.109 2.783±0.150 2.727±0.280 2.940±0.239 

10 2.561±0.172 2.487±0.207 2.423±0.255 2.417±0.091 2.596±0.211 

11 3.316±0.292 3.392±0.373 3.313±0.103 3.800±0.105 3.619±0.059 

12 2.284±0.231 2.314±0.056 2.313±0.277 2.323±0.297 2.378±0.166 

Mean±SD 2.590±0.340 2.593±0.352 2.577±0.341 2.608±0.414 2.649±0.388 
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Table 18: Hip Extension Moment (Nm/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 1.346±0.283 0.923±0.176 1.160±0.241 1.133±0.140 1.019±0.197 

2 0.984±0.054 0.904±0.143 1.071±0.133 1.303±0.140 1.277±0.246 

3 0.789±0.104 0.957±0.126 0.775±0.081 0.989±0.147 0.872±0.195 

4 0.604±0.079 0.861±0.121 0.639±0.191 0.953±0.163 0.915±0.046 

5 1.000±0.073 1.121±0.174 0.991±0.065 1.000±0.192 1.040±0.267 

6 0.584±0.050 1.004±0.089 0.723±0.085 0.823±0.075 0.638±0.077 

7 0.461±0.022 0.557±0.132 0.638±0.097 0.647±0.051 0.825±0.181 

8 1.389±0.138 1.500±0.223 1.387±0.029 1.572±0.102 1.358±0.127 

9 0.974±0.097 0.910±0.139 1.023±0.049 1.141±0.193 0.957±0.131 

10 0.917±0.046 1.118±0.180 0.806±0.042 0.962±0.095 1.467±0.389 

11 0.706±0.095 0.767±0.230 0.491±0.142 0.909±0.094 0.780±0.052 

12 0.872±0.177 0.946±0.272 1.051±0.063 1.014±0.067 0.718±0.094 

Mean±SD 0.885±0.285 0.964±0.226 0.896±0.259 1.037±0.235 0.989±0.259 
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Table 19: Trunk Extension Moment (Nm/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 7.166±0.908 6.806±0.562 7.072±0.581 7.686±0.818 6.620±0.922 

2 4.489±0.438 4.997±0.899 4.232±0.280 6.031±0.752 4.984±1.591 

3 6.528±0.276 7.216±0.381 6.939±0.476 7.063±0.478 7.500±0.933 

4 4.170±0.718 4.874±0.576 5.157±0.897 5.308±0.186 5.888±0.359 

5 5.991±0.357 4.480±0.372 5.270±0.561 6.297±0.717 6.399±0.388 

6 5.266±0.211 5.404±0.409 4.544±0.154 5.268±0.764 4.263±0.476 

7 3.916±0.652 4.457±0.580 4.301±0.275 4.665±0.627 5.175±0.766 

8 7.998±0.817 6.151±0.214 8.057±0.505 9.192±0.298 8.954±0.797 

9 6.864±0.898 6.043±0.269 6.858±0.232 7.414±0.963 7.777±0.256 

10 6.237±0.519 3.294±0.624 5.213±0.350 6.080±0.244 5.540±0.402 

11 6.454±0.919 4.870±0.679 5.523±0.522 6.213±0.261 5.191±0.298 

12 3.635±0.189 3.213±0.533 3.679±0.141 3.712±0.260 3.217±0.381 

Mean±SD 5.726±1.409 5.150±1.250 5.570±1.362 6.244±1.465 5.959±1.596 
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Table 20: Ankle Plantarflexion Power (W/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -15.701±2.211 -20.418±2.675 -20.629±0.934 -20.792±1.123 -20.775±3.870 

2 -14.858±2.167 -19.962±1.594 -12.605±1.343 -10.227±2.816 -13.928±0.222 

3 -18.123±1.429 -18.751±1.537 -20.758±1.287 -19.205±0.405 -19.027±1.133 

4 -17.228±1.498 -14.918±0.565 -15.864±0.252 -14.678±0.274 -19.927±2.247 

5 -11.633±1.458 -12.454±1.639 -12.709±2.016 -12.879±0.860 -14.060±1.620 

6 -21.055±1.572 -18.095±1.869 -16.790±0.655 -21.687±1.269 -16.969±0.422 

7 -16.693±1.906 -19.267±1.012 -16.083±1.240 -16.393±1.180 -13.893±3.333 

8 -12.534±0.754 -10.100±1.073 -11.615±0.320 -10.553±1.245 -12.750±0.991 

9 -21.026±0.940 -21.489±3.733 -20.274±2.350 -17.171±2.121 -21.282±0.555 

10 -19.390±1.143 -15.646±0.976 -15.837±0.994 -16.594±2.650 -15.814±2.834 

11 -18.856±0.777 -17.480±0.341 -23.423±0.873 -19.714±1.033 -25.465±1.018 

12 -18.920±1.142 -18.756±1.640 -18.727±2.187 -17.583±1.050 -20.812±2.333 

Mean±SD -17.168±3.039 -17.278±3.396 -17.110±3.722 -16.456±3.763 -17.892±3.921 
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Table 21: Knee Extension Power (W/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -28.345±2.720 -24.623±1.919 -29.491±1.612 -29.925±5.503 -29.749±2.879 

2 -32.164±1.619 -26.922±2.639 -31.478±1.424 -29.506±2.525 -36.267±2.203 

3 -23.722±2.290 -24.508±2.206 -22.999±0.741 -20.996±1.984 -23.375±1.621 

4 -27.100±1.747 -31.400±0.979 -29.200±3.294 -29.231±2.593 -32.781±2.502 

5 -33.159±1.728 -28.205±1.154 -33.163±0.838 -30.468±2.070 -33.126±0.665 

6 -23.418±2.100 -27.776±3.400 -24.493±0.761 -26.006±0.943 -25.970±1.784 

7 -32.006±1.728 -29.757±1.961 -27.991±1.610 -27.878±2.286 -30.053±1.790 

8 -35.583±2.188 -35.490±2.013 -38.580±0.502 -6.775±0.997 -35.828±2.420 

9 -43.441±2.605 -41.840±3.733 -42.965±1.623 -38.338±3.007 -44.417±0.578 

10 -30.999±0.912 -26.592±2.373 -30.402±1.820 -27.832±2.918 -30.330±1.826 

11 -50.055±4.260 -52.323±3.508 -42.564±2.003 -56.154±1.309 -47.268±1.201 

12 -24.710±4.280 -27.316±1.021 -30.253±3.397 -29.544±2.718 -25.726±1.905 

Mean±SD -32.058±8.004 -31.396±8.217 -31.965±6.396 -29.388±11.265 -32.907±7.223 
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Table 22: Hip Extension Power (W/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -16.428±1.546 -11.149±2.834 -12.269±0.456 -12.143±3.253 -10.516±1.543 

2 -10.028±1.332 -8.865±0.382 -11.714±1.399 -14.735±2.125 -13.936±0.970 

3 -9.965±1.631 -11.604±2.573 -14.275±2.865 -13.298±0.822 -17.390±0.859 

4 -10.307±2.743 -7.709±0.870 -8.736±0.680 -8.920±0.663 -11.276±1.564 

5 -14.311±1.261 -14.365±2.920 -12.709±0.941 -11.499±0.592 -13.328±2.768 

6 -12.180±1.414 -16.103±2.120 -16.771±1.903 -13.875±0.511 -14.213±1.817 

7 -13.946±3.925 -11.536±0.732 -13.179±1.657 -11.984±1.196 -11.745±1.130 

8 -10.767±0.801 -14.918±1.437 -13.651±1.045 -18.493±5.260 -15.394±1.474 

9 -25.992±2.327 -27.148±5.165 -23.508±0.642 -26.739±4.388 -25.508±0.684 

10 -13.781±0.309 -12.425±1.505 -11.025±3.500 -12.441±0.252 -13.289±1.520 

11 -29.450±1.204 -27.535±2.325 -22.998±1.225 -26.995±1.544 -18.780±1.435 

12 -19.613±2.741 -20.010±1.977 -24.578±3.331 -24.877±2.591 -15.335±2.362 

Mean±SD -15.564±6.397 -15.281±6.511 -15.451±5.334 -16.333±6.377 -15.059±4.075 
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Table 23: Ankle Eccentric Work (J/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -0.584±0.148 -1.061±0.445 -0.877±0.310 -0.779±0.153 -0.863±0.161 

2 -0.525±0.234 -969±0.341 -0.472±0.147 -0.446±0.251 -0.458±0.162 

3 -0.859±0.088 -0.810±0.059 -0.897±0.068 -0.931±0.185 -0.756±0.122 

4 -0.791±0.079 -0.696±0.079 -0.900±0.290 -0.679±0.102 -0.758±0.099 

5 -0.431±0.109 -0.534±0.072 -0.542±0.087 -0.639±0.299 -0.672±0.340 

6 -0.871±0.210 -0.733±0.113 -0.703±0.190 -0.894±0.064 -0.810±0.110 

7 -0.707±0.038 -0.721±0.136 -0.646±0.108 -0.895±0.276 -0.563±0.205 

8 -0.489±0.121 -0.559±0.298 -0.473±0.090 -0.432±0.051 -0.529±0.070 

9 -0.932±0.161 -0.945±0.123 -0.921±0.178 -0.725±0.353 -0.905±0.132 

10 -0.766±0.129 -0.753±0.096 -0.816±0.135 -0.662±0.315 -0.976±0.819 

11 -0.748±0.220 -0.601±0.154 -0.963±0.110 -0.879±0.139 -1.052±0.160 

12 -0.826±0.181 -0.811±0.098 -0.774±0.116 -0.979±0.320 -0.898±0.220 

Mean±SD -0.711±0.165 -0.766±0.164 -0.749±0.178 -0.745±0.182 -0.770±0.185 
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Table 24: Knee Eccentric Work (J/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -2.304±0.309 -1.915±0.451 -1.852±0.457 -2.225±0.354 -2.226±0.127 

2 -2.897±0.447 -2.780±0.620 -2.837±0.116 -2.935±0.484 -3.150±0.266 

3 -2.221±0.181 -2.216±0.167 -2.061±0.339 -1.993±0.056 -1.958±0.177 

4 -2.248±0.176 -2.401±0.086 -2.177±0.177 -2.345±0.316 -2.692±0.155 

5 -2.629±0.342 -2.335±0.117 -2.519±0.171 -2.151±0.617 -2.302±0.375 

6 -2.098±0.169 -2.205±0.159 -2.220±0.286 -2.126±0.102 -2.142±0.096 

7 -2.318±0.099 -2.279±0.185 -2.160±0.140 -2.002±0.437 -2.432±0.199 

8 -2.428±0.268 -2.251±0.570 -2.535±0.175 -2.581±0.066 -2.484±0.095 

9 -2.814±0.137 -2.810±0.484 -3.023±0.228 -2.585±0.344 -2.862±0.143 

10 -2.720±0.214 -2.452±0.048 -2.325±0.411 -2.693±0.457 -2.350±0.669 

11 -3.220±0.332 -3.504±0.656 -2.961±0.177 -3.310±0.164 -3.301±0.273 

12 -2.422±0.404 -2.481±0.235 -2.331±0.315 -2.429±0.257 -2.570±0.229 

Mean±SD -2.527±0.33 -2.469±0.40 -2.417±0.36 -2.448±0.39 -2.539±0.40 
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Table 25: Hip Eccentric Work (J/Kg) 

Subject Regular surface Turf surface 
Turf + foam shock 

pad 

Turf + low density 

shock pad 

Turf + high density 

shock pad 

1 -0.844±0.277 -0.945±0.326 -0.818±0.276 -0.860±0.343 -0.797±0.089 

2 -1.693±0.440 -1.368±0.740 -1.570±0.177 -1.765±0.466 -1.800±0.380 

3 -1.116±0.130 -1.151±0.113 -1.165±0.190 -1.365±0.225 -1.281±0.132 

4 -0.793±0.176 -0.689±0.086 -0.652±0.177 -0.833±0.316 -0.792±0.155 

5 -1.158±0.194 -1.025±0.151 -0.982±0.071 -1.086±0.266 -1.246±0.123 

6 -1.526±0.142 -1.528±0.291 -1.515±0.199 -1.447±0.263 -1.453±0.237 

7 -1.346±0.290 -1.357±0.259 -1.430±0.195 -1.566±0.352 -1.641±0.396 

8 -1.250±0.230 -1.188±0.167 -1.294±0.075 -1.431±0.235 -1.331±0.075 

9 -1.636±0.348 -1.766±0.435 -1.873±0.251 -1.714±0.290 -1.706±0.092 

10 -2.203±0.206 -1.456±0.322 -1.819±0.343 -1.771±0.235 -2.296±0.444 

11 -1.833±0.345 -1.628±0.437 -1.543±0.179 -1.551±0.298 -1.634±0.205 

12 -2.695±0.568 -2.038±0.280 -2.111±0.402 -2.037±0.300 -1.807±0.127 

Mean±SD -1.508±0.554 -1.345±0.374 -1.398±0.438 -1.452±0.370 -1.482±0.430 
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