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Abstract 

 

 In this study, HfO2 [hafnium oxide] thin films are investigated extensively as part of 

indium gallium zinc oxide (IGZO) thin film transistor (TFT) devices.  They are incorporated into 

the TFTs, both as a gate insulator and a passivation layer.  First, the HfO2 [hafnium oxide] films 

themselves are investigated through an annealing study and through I-V and C-V measurements.  

Then, HfO2 [hafnium oxide] is suggested as a replacement for commonly used SiO2 [silicon 

dioxide] gate insulator, as it has a dielectric constant that is 4 – 6 times higher.  This higher 

dielectric constant allows for comparable TFT performance at a lower operation voltage (5 V vs. 

20 V).  Finally, HfO2 [hafnium oxide] is applied as a passivation layer in IGZO TFTs, and an 

annealing study is conducted to determine which processing steps will allow for optimal TFT 

performance.  The HfO2 [hafnium oxide] passivation layer proves to show a good level of 

uniformity.  Therefore, taking all results into consideration, both HfO2 [hafnium oxide] gate 

insulators and passivation layers can be used in conjunction with IGZO TFTs to produce a full 

electrowetting array, which should prove to be useful in “lab on a chip” studies. 
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Chapter 1 

Introduction 

 

1.1.  Transistors: A Brief History/Types 

 

Starting from the broadest perspective, a transistor is a semiconductor device used to 

amplify and switch electronic signals.  A field effect transistor typically contains three electrodes 

(electrical leads) consisting of the gate, source, and drain.  A voltage can be applied to the gate, 

which causes an increase in current and the conductivity between source/drain electrodes.  The 

invention of the transistor is credited to Bardeen, Brattain, and Shockley of Bell Laboratories in 

1946-1947.  The transistor proved to be a good alternative to the vacuum or electron tube, and 

eventually researchers began using them in integrated circuits.  Today, transistors are commonly 

used in computer memory applications [1]. 

The invention of the transistor gave way to the creation of different transistor types that 

were used as field-effect devices.  Field-effect devices are those whose properties, specifically 

conductivity for transistors, change in the presence of an electric field.  Types of field-effect 

transistors include metal-semiconductor field-effect transistors (MESFETs), junction field-effect 

transistors (JFETs), and metal-oxide-semiconductor field-effect transistors (MOSFETs).  Thin 

film transistors (TFTs), another type of field-effect transistor, have a structure/operation that is 

very similar to MOSFETs [1,2].   
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1.1.1.  TFT Structures 

 

As previously stated, a common field effect transistor typically consists of three 

electrodes: a gate, source, and drain.  A TFT follows this structure, also employing a gate 

dielectric/insulator layer and a semiconducting active layer.  The difference in MOSFETs and 

TFTs lies in the fact that MOSFETS use the bulk semiconductor (usually silicon) substrate as an 

active layer, whereas in TFTs the active layer is a thin film deposited separately.  A few 

examples of TFT semiconducting active layers that have been researched extensively are 

amorphous silicon (a-Si), polycrystalline silicon (poly-Si), and cadmium selenide (CdSe) [2]. 

 Changing the order of layer deposition changes the TFT structure type [2].  The four 

common structures of TFTs are shown in Figure 1-1 below. 

 

 

Figure 1-1.  Types of TFT structures: (a) inverted-staggered (bottom gate), (b) inverted-coplanar, (c) staggered, and 

(d) coplanar [3]. 

 

The TFT structure type is based upon two factors: the position of the gate itself and the relative 

position between the gate and source/drain electrodes.  An inverted structure means the gate 
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electrode is deposited directly onto the substrate, thus on the bottom of device.  On the other 

hand, a non-inverted TFT has the gate on the top of the device.  Staggered structure means that 

the gate is on the opposite side of the semiconductor active layer from the source/drain 

electrodes, whereas in a coplanar structure, all three electrodes are on the same side of the 

semiconductor.  The usage of each structure depends on its intended application.  For example, 

the inverted-staggered TFT structure is commonly used in producing active-matrix liquid crystal 

displays (LCD) panels [2].  For this work, TFT devices employing the inverted-staggered 

structure will be synthesized and analyzed.  

 

1.1.2. TFT Operation 

 

TFTs, like standard transistors, operate through a bias being applied to the gate electrode 

(VG or VGS), which causes a change in conductivity in the active semiconductor between the 

source and drain electrodes.  Depending on the size of the gate bias in relation to other factors, a 

TFT can operate in two operational regimes known as the linear and saturation regions [2]. 

In the linear region, when the gate voltage is much larger than the drain voltage (VD or VDS), 

drain current (ID or IDS) increases linearly with increasing drain voltage.  In this linear region, ID 

can be calculated as a function of both VG and VD, along with other material constants. For the 

following set of calculations, assume a gradual channel approximation, which means that the 

whole TFT device will be viewed as a chain of individual smaller 1D devices [2].  Figure 1-2 

illustrates how a gradual channel approximation is used to make these calculations. The x-

direction is perpendicular and the y-direction is parallel to the channel.  The carrier density per 

unit area depends on distance y, and the channel potential V(y) is a function of VD.  Here, one  
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Figure 1-2.  A TFT schematic used in gradual channel calculations [2]. 
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material factor that comes into play is the threshold voltage (VTH), which is the VG value at 

which the current flow through the device becomes much stronger; in other words, this VG value  

causes the formation of a conducting path between the source and drain electrodes [4].  The 

mobile charge (Qt) can be calculated with Equation 1.1, if the channel potential V is assumed to 

be nonzero. 

 

 𝑄𝑡 = −𝐶𝐺𝐼(𝑉𝐺 − 𝑉𝑇𝐻 − 𝑉) Eq. 1.1 

CGI represents the capacitance per unit area of the gate insulator.  The current induced by 

majority carriers is given by Equation 1.2. 

 𝐼𝐷 = 𝑊𝜇𝑛𝑄𝑡𝐸𝑦 Eq. 1.2 

W represents the length of the channel, μn is the electron mobility, and Ey is the electric field at 

distance y.  The current density, assuming a diffusion term does not contribute, is given in 

Equation 1.3. 

 𝐽𝑛 =
𝐼𝑛

𝐴
= 𝑞 (𝜇𝑛𝑛𝐸 + 𝑑𝑛

𝑑𝑛

𝑑𝑥
) Eq. 1.3 

Considering 𝐸𝑦 = −
𝑑𝑉

𝑑𝑦
 and substituting this in to Equations 1.1 and 1.2, followed by integrating 

from 0 to channel length L (V = 0 to VD), the gradual channel expression for drain current can be 

calculated as in Equation 1.4.  

 𝐼𝐷 = 𝐶𝐺𝐼𝜇𝑛
𝑊

𝐿
[(𝑉𝐺 − 𝑉𝑇𝐻)𝑉𝐷 −

1

2
𝑉𝐷
2] Eq. 1.4 

Finally, considering a TFT operating in the linear regime (VD << VG), the drain current is 

calculated in Equation 1.5 [2]. 

 𝐼𝐷 = 𝐶𝐺𝐼𝜇𝑛
𝑊

𝐿
(𝑉𝐺 − 𝑉𝑇𝐻)𝑉𝐷 Eq. 1.5 
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 As VD continues to increase, eventually it reaches a point where VD = VG – VTH.  At this 

point, the electron channel becomes pinched off, and the drain current saturates.  The saturation 

region begins where the drain voltage increases beyond this point (where VD > VG – VTH).  This 

means that Equations 1.4 and 1.5 for drain current no longer apply, and a new expression must 

be written to account for this condition (Equation 1.6) [2]. 

  𝐼𝐷 =
𝐶𝐺𝐼𝜇𝑛𝑊

2𝐿
(𝑉𝐺 − 𝑉𝑇𝐻)

2 Eq. 1.6 

 

1.1.3. TFT Characterization: Output and Transfer Curves 

 

 The main method of measuring TFTs electrical properties is using a probe station.  Using 

the probe station with a semiconductor analyzer, two of the most important TFT characteristics, 

output and transfer characteristics, can be measured.  The output characteristic is found by 

measuring drain current as a function of drain voltage at different gate voltage steps.  On the 

other hand, the TFT transfer characteristic is found by measuring drain current as a function of 

gate voltage, using a number of drain voltage steps.  Figure 1-3 shows an example of output and 

transfer curves for an amorphous silicon TFT. The transfer curve is more important in 

determining the overall quality of the TFT, but the output curve is also significant in showing the 

linear to saturation region transition.  In Figure 1-3 (a), at each gate voltage, it can be seen that 

up to a certain drain voltage, the drain current increases linearly.  Using the same graph, the point 

at which the drain current saturates (levels off) can be estimated as well. ON current, OFF 

current, and subthreshold swing are related properties that can be determined using a TFT 

transfer curve.  The OFF current is the current on the transfer curve where the TFT is operating 

at a very low current (OFF state), whereas the ON current is orders of magnitude higher,                                                                                                                         
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Figure 1-3. (a) Output and (b) transfer characteristics of an a-Si TFT [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

a. b. 
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meaning the TFT is considered to be turned on.  The ratio ION/IOFF is an important factor because 

it shows how well the TFT works as a switching device and how well a conducting path is 

formed between the source/drain electrodes and importantly the difference in the on and off  

states. Subthreshold or gate voltage swing, is the amount of gate voltage that will increase the 

drain current by a factor of 10.  It is measured in units of V/decade, and it is found by finding the 

maximum slope on the TFT transfer curve [2]. 

 The TFT transfer curve can be manipulated in order to determine other important 

properties.  For instance, if the square root of the drain current is plotted as a function of gate 

voltage in the saturation region, one can determine the threshold voltage and electron mobility.  

This type of plot is shown in Figure 1-4. 

 

Figure 1-4. Saturation region extrapolation of the threshold voltage and electron mobility.  Once the data is fit with 

a linear function, the slope represents the field-effect mobility, and the x-intercept is the threshold voltage [2]. 
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1.1.4. Amorphous Oxide Semiconductors: IGZO 

 

 In recent years, transparent electronics fabricated on flexible substrates have become 

more prevalent.  They can be involved in applications such as paper displays and wearable 

computers.  While hydrogenated amorphous silicon has been studied extensively for use in 

flexible devices, their performance is not quite good enough for this application.  Their field 

effect mobilities are much too low – on the order of 1 cm2/V-s.  Amorphous oxide 

semiconductors are one answer to this issue, as they have a significantly larger mobility, which 

can potentially be larger than10 cm2/V-s.  A study by Kenji Nomura includes fabrication and 

performance of TFTs made with an indium gallium zinc oxide (IGZO) active layer.  These IGZO 

films were prepared using pulsed laser deposition.  To test the usefulness as a flexible substrate, 

electrical measurements were conducted both before and after bending and as shown in Figure 1-

5. 

 Before bending (a) and (b), the OFF current is on the order of 10-7 A, and the ION/IOFF 

ratio is around 103.  In addition, the threshold voltage is around 1.6 V, and the estimated 

saturation and field effect mobilities were 8.3 cm2/V-s and 5.6 cm2/V-s, respectively.  After 

bending, μsat was around 7 cm2/V-s, and the ION/IOFF ratio remained on the order of 103.  Clearly, 

bending did not deleteriously affect the TFT characteristics, so transparent amorphous oxide 

materials such as IGZO are candidate materials for flexible electronics [5].  TFTs that utilize 

IGZO as the active material will be analyzed extensively in this study. 
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Figure 1-5. (a) Output characteristic before bending, (b) transfer characteristic before bending, (c) output 

characteristic after bending, and (d) transfer characteristic after bending [5]. 
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1.2. High-κ Dielectrics 

 

 SiO2 has been a commonly used material for the gate dielectric layer in TFTs.  The 

desired thickness of the layer continues to decrease, as a result of Moore’s Law, which deals with 

the fact that the number of transistors on a device has continued to increase throughout the years.  

While this decreased gate insulator thickness allows the transistor much to operate at higher  

speeds, once a SiO2 layer becomes so small, the leakage current becomes too high, as well as 

increased energy dissipation and heat buildup.  In addition, SiO2 films that small have shown a 

lack of uniformity.  Using a material with a high dielectric constant (κ) as the gate insulator 

solves some of this leakage current problem, as the same capacitance can be realized with a 

thicker film [6].  Other advantages to using a high κ material are the fact that these materials will 

show much less electron tunneling and be able to maintain a higher capacitance at high drive 

currents than lower-κ materials.  In addition, having a high κ enables a TFT to operate at low 

voltages [7]. Table 1-1 below shows the dielectric constants and other characteristics of 

numerous insulating materials.   

 Some of the materials in Table 1-1 exhibit a far superior κ than SiO2.  However, other 

factors to consider are making sure that the material has the proper band gap offset to be 

functional with the active material.  Considering IGZO as the active material, HfO2 has not only 

a superior κ to SiO2 (25 compared to 3.9), but it also has the proper band gap offset to be 

effective in IGZO TFTs [7].   In this study, TFTs that use this HfO2 gate insulator will be 

characterized and compare to TFTs using a SiO2 gate insulator. 
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Table 1-1. Dielectric constant, band gap, and conduction band offset for various dielectric materials [8]. 

Dielectric κ Band gap (eV) CB offset (eV) 

Si - 1.1 - 

SiO2 3.9 9 3.2 

Si3N4 7 5.3 2.4 

Al2O3 9 8.8 2.8 

Y2O3 15 6 2.3 

Ta2O5 22 4.4 0.35 

TiO2 80 3.5 0 

La2O3 30 6 2.3 

a-LaAlO3 30 5.6 1.8 

SrTiO3 2000 3.2 0 

ZrO2 25 5.8 1.5 

HfO2 25 5.8 1.4 

HfSiO4 11 6.5 1.8 
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1.2.1. Hafnium(IV) Oxide (HfO2) and its Performance in IGZO TFTs 

 

 Hafnium (IV) Oxide (HfO2), also known as hafnia, has become a viable candidate for use 

as the gate dielectric material in IGZO thin film transistors.  As previously stated, it has a far 

larger dielectric constant (~ 6 times larger) than SiO2.  Also, HfO2 in particular is 

thermodynamically stable when used in IGZO TFTs [7]. 

Lin and Chou from National United University conducted an experiment in which they 

tested temperature effects on IGZO TFTs made with a HfO2 gate dielectric layer.  The TFTs 

were made using a bottom gate structure as shown in Figure 1-6. 

 

 

Figure 1-6.  A schematic of the IGZO TFTs used in the temperature effects experiment [7]. 

 

Following fabrication, the TFTs were subjected to annealing treatments for 30 minutes ranging 

from 150 °C to 450 °C in 50 °C increments.  Finally, the electrical characteristics of these TFTs 

were measured.  The transfer characteristics of the TFTs are shown in Figure 1-7.   The results  
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Figure 1-7.  Transfer characteristics of IGZO TFTs made with an HfO2 gate dielectric, annealed at varying 

temperatures [7]. 
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show that the TFT transfer characteristics improve with 150 and 200 °C anneals.  Increasing 

annealing temperature past 200 °C causes a decline in transfer characteristics up to 350 °C, 

above which the curves no longer resemble a typical TFT transfer curve.  Figure 1-8 shows how 

important TFT characteristics, such as ON/OFF current ratio and subthreshold swing (SS), 

change with annealing temperature. 

 

Figure 1-8. Variation of ION/IOFF, IOFF, threshold voltage (Vt), and SS with annealing temperature [7]. 

 

In light of both the transfer curves and the variation in TFT characteristics with annealing 

temperature, Lin and Chou determined that the optimal annealing temperature for IGZO TFTs 

made with an HfO2 gate dielectric is 200 °C.  In addition to good electrical characteristics, this 

method of heat treating the TFTs provides a low thermal budget, making them relatively 

inexpensive to mass produce [7].  

Another study by Wantei Lim and his group at the University of Florida incorporates a 

sputtered HfO2 gate dielectric layer into bottom gate IGZO TFTs deposited on glass substrates.  

Figure 1-9 shows a schematic of their TFTs, and Figure 1-10 shows the output and transfer 

characteristics.  
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Figure 1-9.  A schematic of the IGZO TFTs made by the group at UF.  A 6 μm gate length and 100 μm gate width 

were used [9]. 

 

 

 
 

Figure 1-10.  (a) Output and (b) transfer curves for the IGZO TFTs with a sputtered HfO2 gate dielectric [9]. 

 

 

 

 

 

 

a. b. 
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Lim et al reported a saturation mobility of 7.2 cm2/V-s, a threshold voltage of 0.44 V, ION/IOFF of 

around 105, and a subthreshold swing of 0.25 V/decade.  In addition, they aged the TFTs for 

1000 hours at room temperature, yielding promising results.  The saturation mobility of the TFTs 

remained nearly the same after aging.  In addition, the threshold voltage changed by as little as 

460 mV.  These characteristics suggest that these particular TFTs are a viable option for use on 

organic flexible substrates if the processing temperature is kept low enough [9]. 

  

1.2.2. ALD of HfO2 – Precursors 

 

 HfO2 is commonly deposited using a method known as atomic layer deposition (ALD), 

which is a form of chemical vapor deposition in which chemicals called precursors react with 

gases and the surface of the substrate in order for a desired material to be deposited in a self-

limiting manner [10].  The precursors and gases used depend on which material is being 

deposited.  For example, there are a few types of precursors that can be used to deposit HfO2  

using ALD.  Hafnium amides are a very common type, consisting of amides such as tetrakis 

(ethylmethylamino)hafnium (TEMAH) and tetrakis (dimethylamino)hafnium.  These two 

precursors require an oxidant to provide an oxygen source, which can be O2, water vapor (H2O) 

or ozone (O3).  Other HfO2 precursors include hafnium nitrate (HfN4O12) and hafnium halides, 

such as hafnium chloride (HfCl4) and hafnium iodide (HfI4) [11]. 
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1.2.3. TEMAH Properties from CNMS ALD 

 

 The TEMAH precursor will be used in our study as it is the precursor used in the ALD 

tool in the Center for Nanophase Materials Sciences (CNMS) cleanroom (Oxford Instruments).  

The HfO2/TEMAH data sheet provided by Oxford Instruments shows a number of 

characteristics/properties of this particular HfO2 precursor.  The precursor is oxidized via an O2 

plasma and the TEMAH carrier gas, and the purge gas is Ar.  HfO2 deposited with this precursor 

exhibits a refractive index ranging from 1.95 to 2.05, depending on the plasma exposure time.  In 

addition, the data sheet lists these process benefits to this precursor: true self-limiting ALD 

behavior, low damage/carbon content from use of remote plasma (as compared to thermal ALD), 

better stoichiometry (compared to thermal ALD), highly repeatable process, and highly 

conformal deposition.  This low carbon content, which Oxford Instruments claims to be less than 

2%, is demonstrated via Auger electron analysis, which is shown in Figure 1-11 below.  In 

addition, Oxford Instruments provides a Rutherford backscattering spectrometry (RBS) analysis 

showing that their HfO2 films are stoichiometric.  This is shown in Figure 1-12 [12]. 

 

1.3. Logic Gate Circuits 

 

TFTs can be used in concert with other circuit elements to form what is known as a logic 

gate circuit.  Logic gate circuits implement Boolean functions, in which the output depends on a 

combination of inputs.  Input and output values in a truth table are represented by 0 and 1, which 

represent nominal voltages.  For example, for a device with a low operation voltage, 0 and 1 

could represent 0 V and 5 V, respectively.  In this case, the logic gate circuit elements will  
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Figure 1-11. Sputtered depth profile Auger electron analysis conducted by Oxford Instruments in order to prove the 

low carbon content of HfO2 films deposited with ALD and this TEMAH precursor [12]. 

 

 

 

Figure 1-12.  RBS analysis conducted by Oxford Instruments in order to prove the proper stoichiometry of their 

HfO2 films [12]. 
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employ an HfO2 gate insulator, so they will operate at low voltage.  The truth tables for the 

circuit elements can be explained by looking at when certain combinations of inputs produce a 

high output.  AND gates exhibit a high output if all of its inputs are also high.  In contrast, an OR 

gate only needs one or more of its inputs to be high for the output to be high.  NOT gates, 

commonly referred to as inverters, essentially invert the input; in other words, the output is high 

if the input is low (and vice-versa).  NAND (NOT-AND) gates consist of an AND gate and an 

inverter, which means it will operate oppositely to an AND gate.  If any input is low, the NAND 

gate will exhibit a high output.  NOR (NOT-OR) gates consist of an OR gate and an inverter, so 

if any output is high, the output will be low.  EXOR (Exclusive-OR) gates are slightly more 

complicated, as they will only exhibit a high output if either, but not both, of the inputs are high.  

On the other hand, EXNOR (Exclusive-NOR) gates will exhibit a low output if either, but not 

both, of its inputs are high [13].  Figure 1-13 show the symbols for logic gate circuit elements, 

and Table 1-2 shows the truth tables for each of these elements. 

 

1.4. Motivation for This Work 

 

 Since TFTs that utilize an HfO2 gate insulator have become more prevalent in recent 

years, some of the properties of HfO2 deposited by ALD will be studied.  In addition, it is 

important to know the optimal processing conditions for IGZO TFT performance, such as O2 

partial pressure during IGZO deposition, HfO2 film thickness, and annealing time/temperature.  

Several experiments will be conducted in order to find the optimal process flow for IGZO TFTs 

that utilize a HfO2 gate insulator.  Since TFT passivation is also an area of interest, HfO2 will 

also be applied as a passivation layer for the TFTs, which can also act as an electrowetting  
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Figure 1-13. Symbols for each type of logic gate element [13]. 

 

 

 

 

 

Table 1-2. Truth tables for each of the logic gate circuit elements [13]. 

  

 INPUTS OUTPUTS 

  

 A B AND NAND OR NOR EXOR EXNOR 

NOT gate  0 0 0 1 0 1 0 1 

A Ā  0 1 0 1 1 0 1 0 

0 1  1 0 0 1 1 0 1 0 

1 0  1 1 1 0 1 0 0 1 
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dielectric film.  If HfO2 passivation is successful and there is a good level of wafer uniformity, 

HfO2 passivation may be able to be incorporated into a full electrowetting array.  Electrowetting 

consists of manipulating drops of liquid on a surface electronically by capacitively changing the 

surface energy of a hydrophobic surface.  The area where this will be most applicable is for “lab-

on-a-chip” devices, which are necessary due to the ever-decreasing size of electronic devices and 

a need for high throughput in experiments [14]. 
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Chapter 2 

Experimental Procedures 

 

2.1. IGZO TFT Fabrication Overview 

 

 The IGZO TFT fabrication process features numerous thin film deposition and patterning 

steps.  The general process for fabrication will be explained below, and specifics for each 

experiment will be explained in the succeeding chapters.  For patterning, a standard 

photolithography process is utilized.  A bottom gate TFT structure will be used exclusively in 

this work (see Figure 1-1).  Fabrication work for these TFTs was conducted in the Center for 

Nanophase Materials Sciences (CNMS) cleanroom or at the thin films lab at the University of 

Tennessee, Knoxville.  A schematic of the TFTs is shown in Figure 2-1. 

 

 

Figure 2-1.  Schematic of the IGZO TFTs, which employ an HfO2 gate insulator and sometimes an HfO2 

passivation layer. 
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2.1.1. Photolithography 

 

 In order to fabricate a proper TFT, patterning must be done in concert with thin film 

deposition in order to make the desired structure.  This can be done using a photolithography 

process.  First, the wafer is coated with first P-20 primer and then SPR995-2.1 (2.1 μm thick) 

photoresist using a spin coater operating at 3000 rpm for 45 seconds.  Then, the wafer is 

subjected to a pre-exposure bake on a 115 °C hot plate for 1 minute.  The wafer is exposed with 

a Quintel Contact Aligner.  Once the proper mask is chosen and loaded into the aligner, the 

wafer is loaded, the mask features are aligned with the features already on the wafer, and the 

wafer is exposed to ultraviolet (UV) light for 10-11 seconds.  After a post-exposure bake 

(identical to previous bake), the wafers are developed in CD-26 developer for 1 minute, which 

causes the exposed pattern to dissolve in the developer solution, creating a positive image of the 

mask. 

 The next step depends on whether an etch process or lift-off process is being used.  For 

the etch process, the desired film is already on the wafer and the resist patterned on top, so the 

next step is to etch away the unwanted areas of the film using either a wet chemical etching or 

reactive ion etching (RIE) process.  For the lift-off process, the next step is to deposit the film 

that needs to take the form of the pattern.  The final step for both etching and lift-off processes is 

to remove the remaining photoresist using sonicated acetone bath.  Once the photoresist is 

removed, the wafer is rinsed and cleaned, dried, and is ready for the next fabrication step. 
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2.1.2. Gate Electrode  

 

For IGZO TFT fabrication, the starting substrate is a p-type silicon wafer with a 500 nm 

layer of thermally grown SiO2.  In each case, chromium was used for the gate electrode layer, 

and it was deposited using a DC sputtering tool in the CNMS cleanroom.  60 W DC power and 3 

mTorr working pressure were used for 16 minutes on each wafer, which deposited a Cr thickness 

of ~150 nm.  During sputtering, 25 standard cubic centimeters per minute (sccm) argon gas was 

flowing into the chamber.  The etching process was used to pattern the gate electrodes.  This was 

done using a Cr etchant (Chromium Etch 1020AC) , and the etching time usually ranged from 2 

– 3 minutes. 

 

2.1.3. Gate Insulator 

 

 For these IGZO TFTs, HfO2 was studied as a replacement gate insulator layer for SiO2.  

These HfO2 layers were deposited using an Oxford Instruments ALD tool (see section 1.2.3 for 

further details).  Either a 25 or 50 nm HfO2 layer was deposited, and either a 150 or 200 °C 

processing temperature was utilized.  In addition, in some cases a H2 plasma preclean was used, 

which will be further discussed later as part of the experimental data. 

 

2.1.4. IGZO Active Layer 

 

 The active semiconducting layer used in these TFTs was IGZO deposited by radio 

frequency (RF) magnetron sputtering at the University of Tennessee.  80 W RF power and 5 
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mTorr working pressure were used consistently throughout these experiments; however, the O2 

partial pressure and sputter time were varied according to the desired IGZO oxygen content and 

film thickness.  The O2 partial pressures and IGZO sputter times for each experiment will be 

discussed in detail in the succeeding chapters.  The lift-off method was employed in IGZO 

patterning. 

 

2.1.5. Source/Drain Electrodes 

 

 The electron beam evaporator in the CNMS cleanroom was used to deposit the 

source/drain electrodes.  Typically, a titanium/gold layer was deposited; the titanium layer was 

necessary because otherwise the gold film would not adhere well to the substrate. A 10 nm layer 

of Ti is first deposited, followed by a Au layer ranging from 60-90 nm in thickness.  In the e-

beam evaporator, Ti evaporated at currents around 0.1 A, and Au evaporated around 0.25 A.  

The lift-off method was used in source/drain patterning. 

 

2.1.6. Passivation 

 

 In certain experiments, a passivation layer was employed.  The objective of passivation is 

to make a device more stable and less reactive with the environment.  The passivation layer was 

a second layer of ALD HfO2, which is deposited in the same manner as in the gate insulator 

deposition step.  The passivation layer is a critical layer for one of our TFT applications, which is 

an active matrix thin film transistor electrowetting array. 
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2.1.7. Via Hole 

 

 In order to be able to do electrical testing on these TFTs, the gate, source, and drain 

electrodes have to be opened, as they are covered with HfO2 films from the gate insulator and 

passivation steps.  The photolithography process was used to pattern contact points on the 

electrodes, and then the HfO2 was etched away using an Oxford Instruments RIE metal etcher.  

50 seconds of etching time in BCl3 gas was sufficient to etch 50 nm HfO2; in other words, HfO2 

etched at a rate of ~1 nm/sec, so the etching times were changed according to the total HfO2 

thickness. 

 

2.2. Annealing 

 

 Various annealing steps were used, typically using a box furnace but sometimes using a 

hot plate.  The box furnace temperature was set to increase at a rate of 20 °C/min.  Various 

annealing times and temperatures were used according to each experiment.  Annealing 

treatments were done following fabrication most of the time, but in certain experiments a pre-

passivation annealing step was investigated as discussed below. 

 

2.3. Electrical Measurements 

 

 An Agilent B1500 semiconductor analyzer was used in electrical testing of the IGZO 

TFTs.  The probe station connected to the analyzer was used to probe the three electrodes in 

order to make electrical measurements.  Output and transfer characteristics of the TFTs were 
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measured using this method.  In addition, in the experiment in the following chapter, where the 

properties of HfO2 are studied, I-V and C-V measurements are taken instead.  Unless otherwise 

stated, the channel width and length for the measured devices will be 50 μm and 20 μm, 

respectively. 
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Chapter 3 

HfO2 Film Characterization 

 

3.1. Overview 

 

 Prior to fabricating IGZO TFTs that employ an HfO2 gate insulator, some of the 

properties of the ALD-deposited HfO2 films themselves will be studied.  Doing so can shed some 

light on processing conditions that allow for optimal performance.  While processing conditions 

for IGZO TFTs will be studied extensively in the succeeding chapters, it will be useful to have 

an idea of what kinds of trends to expect for the HfO2 films alone. 

 

3.2. Experimental Procedure 

 

 First, 50 nm layers HfO2 were deposited at 150 °C on two moderately doped (10 – 20 Ω-

cm) silicon wafers using the ALD tool in the process as described in Section 2.1.3.  Following 

HfO2 deposition, contacts were made on one of the wafers in order to conduct capacitance-

voltage and current-voltage measurements.  This was accomplished by first patterning metal 

contacts (by lift-off) using a TFT source/drain mask, following the steps of the photolithography 

technique as described in Section 2.1.1.  60 nm Au was deposited onto 10 nm Ti for the S/D 

contacts.  In order to determine the optimal annealing temperature, both the patterned and 

unpatterned samples were annealed at 200, 300, and 400 °C. 

 Using the semiconductor analyzer probe station, I-V and C-V measurements were 

measured using the patterned sample.  A 400 μm x 400 μm contact square was probed in 
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addition to an area of the wafer on which the HfO2 layer had been scratched off to make contact 

with the bottom silicon substrate.  I-V measurements were measured from -20 – 20 V, where the 

absolute value of the current is taken to represent the negative current.  An HP 4284 LCR meter 

was connected to the probe station in order to take C-V measurements.  The measurements were 

taken from -10 – 10 V at frequencies of 1, 10, 100, and 1000 kHz. 

 Ellipsometry measurements were conducted using a Horiba Jobin Yvon Uvisel 

ellipsometer on the unpatterned sample to determine how annealing temperature affects film 

thickness and the index of refraction.  A 70.2 ° angle of incidence and ~ 632 nm wavelength 

were used for measurements. 

 

3.3. Results and Discussion 

3.3.1. I-V Characterization 

 

The I-V measurements are shown in Figure 3-1.  For each of the annealing temperatures 

below 400 °C, the I-V measurements showed relatively low maximum leakage currents of about 

10-10 A.  The sample annealed at 400 °C showed a substantially larger leakage current of about 2 

x 10-8 A.  The discrepancy between the 400 °C annealed sample and the rest of the samples 

makes sense because, according to the literature, the crystallization temperature for HfO2 is 

around 400 °C [8].  The micro or nanocrystallization in the HfO2 film is causing a decline in 

HfO2 performance, likely via conduction in the grain boundaries, and this fact will be important 

later when incorporating HfO2 as a gate insulator for IGZO TFTs.     

At low voltages (~5 V), the leakage current does show some improvement.  For example, 

the leakage current reduces by almost an order of magnitude from the as-deposited to the 300 °C  
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Figure 3-1. I-V curves for the as-deposited and annealed samples in the -20 – 20 V range.   
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annealed sample.  However, at higher voltages (~20 V), there is little variation in leakage current 

with annealing temperature, again excluding the 400 °C annealed sample.  Obviously, a lower 

voltage yields a lower leakage current.  Figure 3-2 below illustrates this fact, along with 

comparison of the leakage currents for each sample at different voltages.  

 

 

Figure 3-2.  Leakage current vs. annealing temperature at -20 to 20 V. 

 

3.3.2. C-V Characterization 

 

 While there was some semblance of a relationship between annealing temperature and I-

V characteristics, the same cannot be said for the C-V characteristics.  Excluding the 400 °C 

annealed sample, very little change was observed between the capacitance and annealing 

temperature at all voltages.  The C-V curves at the varying frequencies are shown in Figure 3-3. 

Except for the as- deposited sample, the capacitance steadily increase with frequency until 

steeply decreasing at 1000 kHz.  The reason for this will be explored when calculating the  
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Figure 3-3.  C-V curves for (a) as-deposited, (b) 200 °C anneal, (c) 300 °C anneal, and (d) 400 °C anneal. 
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experimental values of the dielectric constant.  Figure 3-4 shows a comparison of the 

capacitances at varying voltages at 100 and 1000 kHz. 

 

 

Figure 3-4.  Capacitance vs. annealing temperature at 100 kHz and 1000 kHz (-10 and 10 V).   

 

 The capacitance measurements can be used to calculate the dielectric constant of HfO2 at 

varying frequencies and annealing temperatures.  The following expression is used for these 

calculations. 

  𝐶 =
𝑘𝜖0𝐴

𝑑
 Eq. 3.1 

C is capacitance in F, k is the dielectric constant, ε0 is the vacuum permittivity (8.854 x  

10-14 F/cm),  A is the area of the capacitor in cm2, and d is the thickness of the film in cm.  The 

thickness of the HfO2 film is 50 nm (50 x 10-9 cm), and the area of the capacitor is 0.0016 cm2.  

Therefore, using the maximum measured capacitance from each curve (Fig. 3-3), the dielectric 

constant can be calculated as a function of frequency and annealing temperatures, as shown in 

Table 3-1. Excluding the 1000 kHz κ values, the dielectric constants range from around 14.5 to 

17, which are reasonable when compared to the literature value of 18 for ALD-grown HfO2.  The 

drastic decrease in κ for 1000 kHz stems from a change in the modes of polarization present in  
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Table 3-1.  Calculated κ values at varying frequencies and annealing temperatures. 

  1 kHz 10 kHz 100 kHz 1000 kHz 

As-Deposited 15 14.54 15.88 9.88 

200 °C Anneal 15 14.54 15.88 9.7 

300 °C Anneal 15 14.54 15.88 9.7 

400 °C Anneal 15.88 15.7 16.94 10.05 
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the material.  There are three main modes of polarization, including electronic, ionic, and 

orientational mechanisms.  As the frequency increases, the movement of the charge lags behind 

the alternating electric field, so one of the polarization mechanisms no longer contributes to the 

material’s net polarization.  In this case, upon reaching 1000 kHz, the orientational polarization 

mechanism drops off, which causes a decrease in the overall polarization and therefore the 

dielectric constant [15]. 

 

3.3.3. Ellipsometry 

 

 The measured film thicknesses were fairly close to the expected thickness of 50 nm.  

Excluding the 300 °C annealed sample, the thickness decreases very slightly with increasing 

annealing temperature.  There is also a slight increase in the index of refraction with an increase 

in annealing temperature.  These results are shown in Table 3-2.  The decrease in film thickness 

from 300 to 400 °C is consistent with the crystallization temperature, as there is also 

densification of the film. 

 

Table 3-2.  Ellipsometry data including HfO2 film thickness, index of refraction, and chi square (to show goodness 

of fit to model). 

  Thickness (nm) n X2 

As- Deposited 51.5 1.919 0.3445 

200 °C Anneal 51.1 1.925 0.38 

300 °C Anneal 51.2 1.928 0.6011 

400 °C Anneal 49.6 1.928 0.576 
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Chapter 4 

IGZO TFT Performance: HfO2 G.I. Compared to Previous SiO2 G.I. Data 

 

4.1. Overview 

 

As stated in the introduction, the dielectric constant for HfO2 is higher relative to that of 

SiO2.  This higher dielectric constant will yield superior properties, including the ability for the 

device to operate at a much lower voltage.  Previously, IGZO TFTs were studied using an SiO2 

gate insulator.  The characteristics for these TFTs will be used as a basis for comparison for ones 

with an HfO2 G.I.  Table 4-1 below lists the specific steps used in making this set of IGZO TFTs 

using HfO2.  The previously made TFTs with SiO2 employ a nearly identical process, with the 

difference being that the G.I. is 100 nm SiO2 deposited using plasma-enhanced chemical vapor 

deposition (PECVD) for 1 minute, 37 seconds at 350 °C; because the G.I. is different, the via 

hole process is different: SiO2 is etched using a recipe that utilizes SF6 gas, in which 100 nm 

SiO2 is etched in 1 minute.  Assume the SiO2 sample characteristics were measured as-fabricated 

(no annealing treatments). 

 

4.2. Results and Discussion 

 

 As expressed before, the point of using an HfO2 gate insulator in lieu of SiO2 is to lower 

the operation voltage of the devices.  In addition, it will allow for a higher capacitance and lower 

leakage current.  Starting with the previous SiO2 results, the output and transfer characteristics 

show good TFT properties in that they show relatively low OFF currents, high ON currents, and  
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Table 4-1.  Steps of the fabrication process for the IGZO TFTs employing an HfO2 G.I. 

Sample 1 2 

Substrate Si 

Buffer 500 nm thermal SiO2 

Gate 150 nm Cr - 60 W, 16 min. 150 nm Cr - 60 W, 16 min. 

Gate 

Patterning Etching Etching 

G.I. OPT HfO2 at 150 °C - 50 nm OPT HfO2 at 150 °C - 25 nm 

Active 

50 nm IGZO - 80 W, pO2 10%, 36 

min. 

50 nm IGZO - 80 W, pO2 10%, 36 

min. 

Active 

Patterning Lift-off Lift-off 

S/D 10/60 nm Ti/Au 10/60 nm Ti/Au 

S/D Patterning Lift-off Lift-off 

Via Hole OPT-HfO2 Etch - 50 sec. OPT-HfO2 Etch - 50 sec. 

Anneal 150, 200, 250, 300 °C for 1 hr. 150, 200, 250, 300 °C for 1 hr. 
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thus a high ON/OFF current ratio.  The output and transfer characteristics for an IGZO TFT 

utilizing an SiO2 G.I. are shown in Figure 4-1. 

  

 

 

Figure 4-1. (a) Output and (b) Transfer characteristics of previous IGZO TFTs with SiO2 G.I. 

 

  

These TFTs show an OFF current of ~ 10-12 A, an ON current of  ~10-4 (at VDS = 10.1 V and VGS 

= 20 V), and thus an ON/OFF current ratio of ~108.  The ON current occurs at a gate voltage of 

20 V.  When considering IGZO TFTs employing an HfO2 G.I., we expect this voltage to be 

much lower, and we also expect that the annealing treatment will be the deciding factor in the 

functionality of these TFTs.  Some HfO2 results are shown in Figure 4-2, in which major 

differences can be seen when changing the post-fabrication annealing step.  While the 

characteristics improve with increasing annealing temperature, a 200 °C anneal is not sufficient 

for the superior HfO2 properties to be realized.  However, the low operation voltage becomes 

effective after annealing at temperatures beyond 200 °C.  Such results for both the 25 nm and 50   
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Figure 4-2. Transfer characteristics for (a) as deposited, (b) 150 °C anneal, and (c) 200 °C anneal for the sample 

with a 50 nm HfO2 gate insulator. 
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nm HfO2 gate insulator samples can be found in Figure 4-3. 

While the low voltage operation does become evident after annealing at 250 °C, 

considerable hysteresis can be seen, which is not desirable in TFT transfer characteristics.  The 

hysteresis is less prevalent in the 25 nm sample relative to the 50 nm sample.  However, when a 

300 °C annealing temperature is reached, most of the hysteresis is eliminated.  For both samples 

at 300 °C, the OFF current is ~10-12 A, the ON current is 10-4 A, and thus the ON/OFF current 

ratio is 108, which is the same as the previous SiO2 gate insulator data.  The difference is the 

much lower operation voltage for HfO2.  The electron mobility, threshold voltage, and 

subthreshold swing are superior for HfO2 as well.  For HfO2, μn = 19.1 cm2/V-s, VTH = 1.7 V, 

and S.S. = 0.07 V/dec.  For SiO2, μn = 9.80 cm2/V-s, VTH = 3.5 V, and S.S. = 0.24 V/dec Figure 

4-1 (b) and Figure 4-3 (c) can be used together to compare the performance of SiO2 and HfO2 

gate insulators.  In conclusion, since an HfO2 gate insulator, with optimal processing conditions, 

can produce similar properties at a lower voltage than SiO2, it should also allow electrowetting to 

be driven at a lower voltage in a full electrowetting array. 
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Figure 4-3. Transfer curves for the 50 nm and 25 nm HfO2 samples annealed at 250 °C ((a) and (b), respectively) 

and for the 50 nm and 25 nm HfO2 samples annealed at 300 °C ((c) and (d), respectively). 
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Chapter 5 

HfO2 Passivation: Annealing Treatments Test 

 

5.1. Overview 

 

 As expressed above, passivation has become an area of interest, considering the effects 

the environment can have on electronic devices.  Contaminants are floating around everywhere, 

and they can compromise the devices.  In addition, the surfaces can become subject to oxidation, 

which will also ruin the devices.  In this study, HfO2 is studied as a passivation layer as part of 

the process in Chapter 2.  A number of annealing treatments are studied to see which produces 

the best TFT properties. The specifics for this run are shown in Table 5-1 below.  The difference 

between the two samples is that one employs a pre-passivation anneal, whereas the other sample 

does not.  Additional annealing treatments will be used in addition to those in Table 5-1 to 

attempt to reach good TFT characteristics.  According to the literature, IGZO electrical 

properties are controlled by oxygen vacancies, which are added and removed throughout 

fabrication (after IGZO deposition) [7].  The concept of adding annealing treatments is valid in 

this regard because, depending on the time and temperature, annealing can either introduce new 

oxygen vacancies in IGZO or take them away.  This will ultimately determine how good the TFT 

properties are.  
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Table 5-1.  Specific fabrication steps for HfO2 PVX. 

Sample 1 2 

Substrate Si 

Buffer 500 nm thermal SiO2 

Gate 150 nm Cr - 60 W, 16 min. 150 nm Cr - 60 W, 16 min. 

Gate 

Patterning Etching Etching 

G.I. OPT HfO2 at 200 °C - 50 nm OPT HfO2 at 200 °C - 50 nm 

Active 

22 nm IGZO - 80 W, pO2 30%, 27 

min. 

22 nm IGZO - 80 W, pO2 30%, 27 

min. 

Active 

Patterning Lift-off Lift-off 

S/D 10/60 nm Ti/Au 10/60 nm Ti/Au 

S/D Patterning Lift-off Lift-off 

Via Hole (Gate) OPT-HfO2 Etch - 50 sec. OPT-HfO2 Etch - 50 sec. 

Pre-PVX 

Anneal N/A 250 °C for 1 hr. 

PVX OPT HfO2 at 200 °C - 50 nm OPT HfO2 at 200 °C - 50 nm 

Via Hole (All 

Electrodes) OPT-HfO2 Etch - 50 sec. OPT-HfO2 Etch - 50 sec. 

Post-PVX 

Anneal 150, 200, 250, 300 °C for 1 hr. 150, 200, 250, 300 °C for 1 hr. 
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5.2. Results and Discussion 

 

In each case, the measurements are taken at a drain current of 10.1 V (corresponding to  

ID3). Starting with sample 1 without a pre-PVX anneal, the TFT transfer characteristics are not 

good following PVX deposition.  The ON current and subthreshold swing are both very low, and 

there are many humps in the curves, which could be due to the fact that the IGZO, in that state, is 

acting too much like an insulator (not enough oxygen vacancies) .  The first four annealing 

treatments do not enhance TFT properties.  150 and 200 °C anneals yield similar TFT 

characteristics (with a very slight increase in ON current with 200 °C).  Annealing at 250 and 

300 °C produces metallic behavior (too many oxygen vacancies), meaning the drain current stays 

high and changes very little with increasing gate voltage.  This data is shown in Figure 5-1.  

 

 

 

 

 

 

 

Figure 5-1.  Sample 1 transfer characteristics for (a) before post-PVX annealing (after PVX), (b) 200, (c) 250, and 

(d) 300 °C 1 hour post-PVX anneal. 

 

 Additional annealing treatments at 200 °C were added in an attempt to produce good TFT 

properties.  Characteristics of these treatments are shown in Figure 5-2.  Annealing for an extra 2 

hours at 200 °C for the sample previously annealed at 200 °C for 1 hour produced decent TFT  
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Figure 5-2. Sample 1 transfer characteristics for (a) 200 °C 1 hr. + 200 °C 2 hr. anneal, (b) 250 °C 1 hr. + 200 °C 2 

hr. anneal, (c) 300 °C 1 hr. + 200 °C 2 hr. anneal, and (d) 200 °C 1 hr. + 200 °C 4 hr. anneal. 
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properties, with few humps in the graphs, little hysteresis, and an ON current of ~10-4 A at VG = 

10 V and VD = 10.1 V.  However, an extra 2 hours at 200 °C for the 250 and 300 °C samples still  

produces metallic characteristics.  Another 2 hours at 200 °C for the sample with 200 °C post-

PVX anneal (for a total of 5 hours at 200 °C) produces significant hysteresis and a lack of 

uniformity among measurements. 

Considering sample 2 (with a pre-PVX annealing step), a major difference can be seen 

between the transfer characteristics for measurements before and after pre-PVX annealing.  

Before pre-PVX annealing, the TFTs are not yet turned on, as the ON current is only 10-10 A.  

However, annealing at 250 °C before adding the passivation layer allows the TFTs to reach an 

ON current of 10-5 A (at VGS = 10 V and VDS = 10.1 V), although there is a significant leakage 

current.  After depositing the passivation layer, the TFTs do show significantly less leakage 

current and a good  ON/OFF current ratio (108), but the drain current does not increase steeply as 

it should (high subthreshold swing), and hysteresis becomes a factor.  Post-PVX annealing 

treatments should help eliminate this hysteresis.  Figure 5-3 shows a comparison of each of the 

transfer characteristics for the above described measurements of sample 2. 

 

Figure 5-3.  Sample 2 transfer characteristics for (a) before pre-PVX annealing, (b) after pre-PVX annealing at 250 

°C, and (c) before post-PVX annealing (after PVX). 
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 The same first four post-passivation annealing treatments were applied to sample 2 as in 

sample 1.  A comparison for the first four post-PVX annealing treatments for sample 2 can be 

seen in Figure 5-4.   150 and 200 °C annealing produces TFT transfer curves with a decent 

subthreshold swing, but there are humps in some of the curves, possibly due to impurities in the 

IGZO.  The 250 °C annealing treatment produces significant hysteresis, along with a larger 

variation in threshold voltage in each curve.  The 300 °C anneal causes a leftward shift of the 

curves, and they no longer show good TFT characteristics.  

 

 

 

 

 

 

 
 

Figure 5-4.  Sample 2 transfer characteristics for (a) 150, (b) 200, (c) 250, and (d) 300 °C 1 hour post- PVX anneal. 

 

 

 Similarly to sample 1, additional 200 °C anneals were applied to sample 2, and these 

produced good TFT transfer characteristics.  Based on all of data in this chapter, there are two 

annealing treatments that produce the best TFT characteristics.  One is to apply the pre-PVX 

anneal at 250 °C for 1 hour, post-PVX anneal at 250 °C for 1 hour, and add an additional 200 °C 

anneal for 4 hours.  The other is to keep the pre-PVX anneal, post-PVX anneal at 300 °C for 1 

hour, and add an additional 200 °C anneal for 2 hours.  These two treatments yield an ON/OFF 

current ratio of ~107 and a threshold voltage of ~2.5 V.  The former case will be used as part of 
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the HfO2 PVX wafer level uniformity test in Chapter 7.  The data for the additional 200 °C 

anneals is shown in Figure 5-5 below, where the best TFT characteristics are in (c) and (e).  

From this study, one can conclude that, first of all, employing a pre-PVX annealing step 

produces much better results.  In addition, there seems to be a critical temperature (above 200 

°C) at which annealing adds too many oxygen vacancies, causing the IGZO to be overly 

conductive.  However, further annealing at a lower temperature, 200 °C in this case, allows 

oxygen to be reintroduced into the IGZO, which causes the TFTs to regain their semiconducting 

properties. 
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Figure 5-5.  Sample 2 transfer characteristics for (a) 200 °C 1 hr. + 200 °C 2 hr. anneal, (b) 250 °C 1 hr. + 200 °C 2 

hr. anneal, (c) 300 °C 1 hr. + 200 °C 2 hr. anneal, (d) 200 °C 1 hr. + 200 °C 4 hr. anneal, and (e) 250 °C 1 hr. + 200 

°C 4 hr. anneal. 
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Chapter 6 

HfO2 Passivation – Wafer Level Uniformity Test 

 

6.1. Overview 

 

 Uniformity is very important when considering electronic devices.  TFTs should show 

similar characteristics, regardless of where they are measured on the wafer; however, this is not 

always the case.  Problems with deposition steps can lead to a film thickness gradient, which 

could potentially change the properties.  Since an electrowetting device uses a large section of 

the wafer, uniformity is vital.  Non-uniformity will cause an electrowetting device to not function 

properly.  For this reason, before an electrowetting device is fabricated, one must make sure that 

the specific fabrication steps yield uniformity.  In this case, TFT uniformity will be tested across 

a unit TFT array on a wafer with an HfO2 passivation layer. 

 

6.2. Experimental 

 

 The degree of uniformity for a unit TFT array can be determined by measuring the 

transfer characteristics at many positions across the wafer.  Figure 6-1 shows a layout of the unit 

TFTs and shows the positions where the properties were measured.  These properties were 

measured a second time five days later to validate passivation success.  As part of this 

experiment, measurements were made for TFT patterns with varying channel widths and lengths.  

The W/L matrix is shown in Figure 6-2.  As expressed in Chapter 2, most TFT characteristics 

have been measured using TFTs with a channel width of 50 μm  and length of 20 μm.  This W/L  
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Figure 6-1.  Layout of the unit TFT array.  The die numbers shown are the ones that will be measured. 

 

 

Figure 6-2. TFT layout of the W/L matrix. 
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Matrix will shed some light on how TFT properties change with channel width and length. 

 The specific fabrication process for this test is shown in Table 6-1 below.  Note that the 

annealing process used was the optimal one described in Chapter 6.  Also, IGZO film thickness 

is greatly increased due to a mistake in fabrication. 

 

6.3. Results and Discussion 

 

 Figure 6-3 shows the general uniformity of the wafer.  The characteristics stay fairly 

constant when moving through row 5 (die 5-1 to 5-9) as both the ON current and OFF current do 

not change much.  The same applies for row 7 (7-1 to 7-9).  The curves in column 5 (5-5 to 9-5) 

do look a bit different at VG less than 2 V, but the overall TFT characteristics stay about the 

same.  Note that when comparing this run to the results in the annealing treatment test in Chapter 

6, the threshold voltage has increased slightly to around 4 – 6 V depending on the die, which 

comes as a result of the increased IGZO layer. 

 

Figure 6-3. Transfer characteristics for (a) row 5, (b) row 7, and (c) column 5. 
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Table 6-1. Specific fabrication steps for the HfO2 PVX wafer level uniformity test. 

Substrate Si 

Buffer 500 nm thermal SiO2 

Gate 150 nm Cr - 60 W, 16 min. 

Gate 

Patterning Etching 

G.I. OPT HfO2 at 200 °C - 50 nm 

Active 86 nm IGZO - 80 W, pO2 30%, 104 min. 

Active 

Patterning Lift-off 

S/D 10/90 nm Ti/Au 

S/D Patterning Lift-off 

Via Hole (Gate) OPT-HfO2 Etch - 50 sec. 

Pre-PVX 

Anneal 250 °C for 1 hr. 

PVX OPT HfO2 at 200 °C - 50 nm 

Via Hole (All 

Electrodes) OPT-HfO2 Etch - 50 sec. 

Post-PVX 

Anneal 250 °C for 1 hr. + 200 °C for 4 hr. 
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The TFTs did not degrade after 5 days and 50 days, and the characteristics remained nearly the 

same.  The characteristics before and after waiting 5 and 50 days are shown in Figure 6-4. The  

 

Figure 6-4. Transfer characteristics before and after waiting (a) 5 days and (b) 50 days. 

 

similarities of the before/after 5 days and 50 days curves further validate the success of HfO2 

passivation.  The threshold voltages and ON currents are virtually the equal for all cases. 

 Finally, the W/L study showed a clear trend in regards to threshold voltage.  These results 

are shown in Figure 6-5.  Holding width constant, threshold voltage increases with increasing 

channel length.  On the other hand, holding length constant, threshold voltage decreases with 

increasing channel width. 

 Considering all of the data, the uniformity should be good enough to produce a full 

electrowetting array with these processing conditions.  HfO2 has proven to work well as a 

passivation layer using this particular annealing treatment in conjunction with this fabrication 

process, but HfO2 passivation will be studied even more on electrowetting devices outside of this 

research to determine if there are even better processing conditions to drive electrowetting. 
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Figure 6-5. Transfer characteristics of constant channel width (a) W = 100 μm, (b) W = 50 μm, (c) W = 20 μm, (d) 

W = 10 μm and constant length (e) L = 20 μm and (f) L = 10 μm. 
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Chapter 7 

Conclusions 

 

A study of high-κ HfO2 films at varying annealing temperatures led to the conclusion that 

since HfO2 crystallizes between 300 and 400 °C and results in higher leakage currents, 300 °C is 

the highest annealing/processing temperature that the devices should experience.  In addition, 

analysis of C-V measurements lead to an experimental κ value of 14 – 17, which is reasonable 

when considering the literature value of 18 for previously measured ALD-grown HfO2.  Using 

an HfO2 gate insulator in lieu of commonly used SiO2, it was determined that IGZO TFTs using 

HfO2 had properties superior to SiO2.  For instance, HfO2 allows the TFT to reach an ON current 

of 10-4 A at VG = 5 V, as opposed to 20 V for SiO2 (VD = 5.1 V in both cases).  Finally, when 

HfO2 was applied as a passivation layer and annealing treatments were studied, it was 

determined that using a pre-PVX anneal clearly produces better TFT characteristics than not 

using one.  One of the  optimal annealing treatments was to anneal before passivation at 250 °C 

for 1 hour, anneal after passivation at 250 °C for 1 hour, and anneal for an additional 4 hours at 

200 °C.  This annealing treatment was used for an HfO2 PVX wafer level uniformity test, and the 

measurements on varying positions of the wafer showed  excellent uniformity. 

 Considering the success of HfO2 gate insulators (ability for low operation voltage) and 

HfO2 passivation layers (good uniformity) leads to the ultimate conclusion that a full 

electrowetting array can indeed be made using these processing conditions.  Experiments will 

continue to be done on electrowetting devices incorporating HfO2, and hopefully this research 

bears fruit and contributes to the success of “lab on a chip” research. 
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