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Abstract 
 

The goal of this work is to design and construct a full scale lateral impact testing facility that is 

capable of recreating the damage that would be created by an overheight vehicle collision. This 

was accomplished by impacting a test specimen with an 8000 lbs. impact cart. The impact cart 

is raised on an elevated track and allowed to roll down the track with a change in height of 10 

ft. This change in height is what provides the impact force necessary to recreate an overheight 

vehicle collision. The track is constructed out of wood and is designed to withstand both the 

gravity and lateral loads that the impact cart will cause. The impact cart consists of a concrete 

block surrounded in plate steel on a cart frame. The cart itself was designed to withstand 

multiple impacts so that it can be used for more than a single test. The supported system for 

the test specimen consists of gravity supports and lateral supports. The lateral support, or 

backstop, prevents the test specimen from sliding during testing and simulates the boundary 

conditions that would occur during an overheight vehicle collision. The facility must be capable 

of testing a variety of specimens in order to fully utilize the potential of such a facility.  
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Chapter 1 Introduction 

 

The bridges of the United States are in a state of disrepair. This damage has been caused by a 

variety of problems, with one of the more detrimental issues being lateral impact due to 

overheight vehicles. While the majority of overheight vehicle collisions only cause superficial 

damage there are instances when an overheight collision can completely destroy a bridge 

beyond repair. An overheight collision occurs when a strikes the rside of the bridge. While these 

occurrences are known to happen it is very difficult to recreate these collision with small scale 

testing, and bridges that are damaged by impact must be repaired quickly in order to maintain 

road or rail serviceability. Therefore, it is prudent to perform testing to replicate these types of 

collisions so that more can be learned about the behavior of bridges under impact loading. This 

understanding will allow more to be done in preventing damage to current and future bridges.  

 

Currently most research regarding overheight impact is based on observational damage of 

existing bridges. These observations are limited because the damage is the only data that can 

be obtained. It is impossible to know the precise force with which the bridge was impacted and 

without that information no result will be as useful as a controlled full scale test.  In order to 

obtain all of the data necessary to truly understand the behavior of impacted bridges a full scale 

destructive test must be performed. Such a test would allow for researchers and engineers to 

determine what happens to a bridge girder during an overheight collision. Such a test would 

also allow for visual damage to be observed on a single specimen that is not connected to an 

existing bridge. This means that no bridges need be kept out of service to simply observe the 

damage caused by the impact.  

 

This thesis outlines the procedure of selecting a full scale testing facility, and then the design 

and construction of such a facility. It also includes the results of a trial test on a prestressed 

concrete beam. Once constructed, this facility will be able to provide lateral impact data for a 

variety of test specimens, as well as visual damage that is representative of the maximum 

damage that could be experienced during an overheight vehicle impact.  
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Chapter 2 Literature Review 

 

While there has been extensive research done in the area of repair of bridges that have 

endured an overheight collision there is very little that has been done in the recreation of such 

collisions. While there have not been tests conducted specifically for overheight collisions, 

there is research involving full scale impact testing. An example of such a test is found in 

(Carolan, Jeong, & Perlman, 2013). The test performed was a lateral impact test on a tank car 

covering. While the test specimen is not relevant to overheight impact, the testing setup is. The 

setup consists of an impact ram with an indenter that slides along a track until it impacts the 

test specimen. This testing setup can be adapted to model the worst case of an overheight 

impact.  

 

The worst case of an overheight vehicle collision is when a piece of construction equipment 

that is improperly loaded onto a flatbed truck strikes the side of a bridge. This worst case was 

determined in a study performed by (Fu, 2003). A nationwide survey was taken concerning the 

frequency and severity of overheight collisions. It was found that while the most frequent 

collisions nationwide were from box trailers, the collisions that caused the most damage were 

due to heavy equipment loaded on flatbeds. Some states reported that flatbed trailers made up 

more than half of the total overheight collisions and not just those that required repair.  

 

The report (Fu, 2003), also stated whether or not each state considered overheight impacts to 

be a problem. Sixty two percent of states that responded to the survey stated that overheight 

impact is a problem. The states that did not deem overheight collision to be a problem were 

also the states that reported the least amount of overheight collisions per year.  

 

Based upon this information it was determined that the best way to simulate a worst case 

overheight impact would be to mimic a piece of heavy equipment improperly loaded on a 

flatbed. Example photos of the type of damage that can be caused by this type of collision are 

shown in Figures 1, 2. 
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Figure 1. Excavator that has impacted the side of a bridge. (DailyCognition, 2013) 

 

 

Figure 2. Damage caused by overheight collision. (DailyCognition, 2013) 
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Chapter 3 Options Considered for Testing Facility 

 

3.1 Overview of Testing 

 

Multiple factors were considered during the process of designing the testing apparatus. The 

test would need to impact the specimen with a certain amount of force, while maintaining a 

low construction cost, and maintaining safety standards during construction and testing. With 

these factors in mind multiple options for the testing apparatus were considered. A drop weight 

test, pendulum test, self-propelled impact cart, and elevated impact cart were all considered as 

potential alternatives.  

 

3.2 Drop Weight Test 

 

The drop weight test requires a load frame that can be firmly anchored to a strong floor with 

adequate bracing to prevent tipping. The drop system itself requires several safety features, 

including a break system, slide rails to maintain linear motion, and a quick release system that 

could be operated from a distance.  In order to impact the specimen on the desired face, the 

drop weight test requires rotation of the specimen out of its standard orientation. This means 

that the direction of impact would coincide with the direction of gravity, unlike the impact that 

would happen to an actual bridge with the impact occurring horizontally. This difference in 

orientation was a cause for concern that the impact would appear to be greater than would 

actually occur in the field.  

 

Adding to the concerns caused by the non-standard specimen orientation, the amount of time 

needed to build the drop frame along with all of the necessary safety systems exceeded the 

overall project time frame. This led to the drop weight test not being implemented as the final 

testing apparatus. 
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3.3 Pendulum Test 

 

The pendulum test would consist of a steel frame with a rigid pendulum arm, elevated and 

allowed to impact the test specimen. The main components of the pendulum would be a steel 

frame and rigid pendulum arm. Due to the large scale of this setup the pendulum could not be 

constructed inside the Structural Laboratory of the University of Tennessee, and an outdoor site 

is needed. This would require the pendulum frame to be anchored to the ground by either a 

shallow foundation or hammered piles. Both of these methods would create permanent 

fixtures at the testing site, making it difficult to find a testing site since few people are willing to 

have such permanent changes made to their property.  

 

A second concern with the pendulum test is not allowing the pendulum arm to impact the 

specimen more than once. This consideration requires a mechanism that will catch the 

pendulum arm on the backswing after initial impact. The cost of this mechanism was 

determined to be beyond the limits of the project budget. Due to exceeding the budget as well 

as the difficulty in finding a suitable testing site, the pendulum test was not implemented as the 

final testing apparatus.  

 

3.4 Self-Propelled Impact Cart 

 

This testing setup relies on an impact cart colliding with the specimen. This setup is different 

from the previous two in that it does not require a frame or any permanent change to the 

testing site. What is required for this testing setup is a large amount of space. In order for the 

cart to impact the specimen with the desired force a large area is needed to allow the cart to 

accelerate to the speed that would achieve the desired amount of force. This speed can be 

reduced if more mass is added to the cart to create the same impact force at a lower speed. 

This will still require a large testing area since the cart will accelerate slower as more weight is 

added. Implementation of a self-propelled cart proved to be too costly and exceeded the 

project budget.  
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This testing setup requires the cart to be self-propelled as well as able to travel in a perfectly 

straight line so that the accuracy of the location of the impact is maintained. In order to achieve 

these conditions a flat ground would be needed in order for the cart to travel on. Finding such a 

site was not practical within the project time frame.  

 

3.5 Impact Cart with Elevated Track 

 

This testing setup also requires an impact cart to collide with the specimen. Unlike the Self-

Propelled cart, the source of energy for this setup relies upon gravity. The cart will be elevated 

above the specimen and will roll down a track and impact the specimen. The difference in initial 

and final height will provide the necessary energy to impact the specimen with the desired 

force. This testing setup requires a smaller amount of space than the self-propelled impact cart 

due to the quick gain in speed that occurs during the decent. This testing setup will not make 

any permanent changes to the testing site as all parts of the testing apparatus can be removed 

upon completion of testing.  

 

The challenges presented in this testing setup are creating a quick release system as well as 

preventing secondary impact of the specimen. Unlike the drop weight and pendulum setups, 

the quick release for the track setup is not under as much pressure. The impact cart sits directly 

on a track which will support a majority of the weight of the cart, reducing the demand on the 

quick release allowing for a more simplistic design as well as resulting in a safer system. In order 

to prevent secondary impact the end of the track has a slight upward angle. Therefore, when 

the cart attempts to impact the specimen the second time, it will have to roll uphill and 

overcome gravity. The initial impact energy decreases the speed of the cart by a large enough 

amount to where the impact cart will not be able to reach the specimen, and create a 

secondary impact.  
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The simple solutions to the challenges of this testing setup allowed for a lower cost setup than 

the other options. In addition to the lower cost, this setup is much less complicated overall, and 

the time needed to construct it is much less than the other options. These reasons along with 

the difficulties found with the other options, led to the impact cart on elevated track being 

chosen as the final testing setup. 
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Chapter 4 Design and Construction of Facility 

 

4.1 Impact Cart 

 

In order to reach the required impact force the weight of the impact cart was determined to be 

8000 lbs. by other research team members. In order to achieve this weight the impact cart is a 

50 ft3 concrete block supported by a steel frame. Attached to the steel frame are eight casters, 

four are the main bearing casters that support the weight of the impact cart. The other four act 

as side wheels to provide lateral stability and straight tracking. The concrete block is connected 

to the frame by steel angles that are bolted to the frame.  

 

Frame and Connections 

 

The support frame of the impact cart consists of 3”x3”x1/4” Hollow Steel Sections (HSS) as 

shown in Figure 3. The worst case loading scenario was taken to be when all of the weight of 

the block is resting solely on one tube. The tube section was chosen based on this loading 

scenario and the American Institute of Steel Construction (AISC) selection tables (American 

Institue of Steel Construction, 2011). The tubes are welded together at their ends to create the 

base frame of the cart. The outside edges of the frame parallel to the impact direction have     

3-1/2”x5”x1/4” steel angles welded to them. These angles are matched up with angles on the 

concrete block. These four angles sit flat on one another when the block is placed on the frame. 

The angles are then connected by bolts. There are 12 bolts total 6 on each side of the block. The 

number of bolts was determined based on a shear loading of 9600 lbs, the weight of the block 

times an impact factor of 1.2. Four bearing plates are welded onto the underside of the frame. 

These bearing plates have holes drilled into them in order to connect the casters to the frame. 

This option was chosen to allow the casters to be removed and reused upon completion of 

testing. Welding the casters into place would have worked equally as well but would have 

limited future use of the casters and the cart frame. In addition to the angle sections another 
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set of plates were welded to the sides of the frame. These plates provide the connection of the 

cart to the side casters.  

 

 

Figure 3. Cart frame with caster connection plates and concrete block attachment angles. 

 

Pull Hitch 

 

In order to be able to pull the impact cart up the slope of the track a hitch was fabricated. The 

hitch can be seen in Figure 4. The hitch is made of ¼ in. thick and 3 in. tall steel plates. These 

plates were welded together. The amount of weld provided more than enough strength to pull 

the 8000 lbs. impact cart. The strength of the weld was determined in accordance with AISC 

(American Institue of Steel Construction, 2011). The equation used is shown below (Eq. 4.1). 

The opening between the pieces of steel was made to allow a 1 ½ in. shackle to pass through. 

The hitch was fabricated and then was welded to the frame as one unit. The multiple openings 

on the hitch were meant to provide the option to attach more than one means of pulling the 

cart if needed. It also allows for a release system to be attached to the hitch while it is still 

hooked up to the pulling shackle.  

 
𝜙𝑅𝑛 = 1.392𝐷𝑙                                                                 (4.1) 
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The length of the weld group, l, is 6 in. and the weld size, D, was conservatively taken as 1/8 in. 

The capacity, φRn, of the hitch was determined to be 16.7 k. This is well above the 8000 lbs. 

weight of the impact cart. 

 

 

Figure 4. Pull hitch attached to cart frame. 

 

Casters 

 

Eight casters of two different types were utilized in the design of the impact cart. Four casters 

were used as main bearing casters. These casters were standard rigid plate casters rated at a 

2500 lbs. capacity per caster. The casters are 6 in. in diameter, have a tread width of 3 in, and a 

total height of 7-1/2 in. These casters were bolted onto bearing plates that were welded to the 

underside of the cart frame. The main bearing casters, shown in Figure 5, support the weight of 

the impact cart and allow for the motion and proper acceleration of the cart. Since the main 

bearing casters were not limited by any straight tracking mechanism four additional casters 

were added, two for each side of the cart. These casters ensured that the cart would maintain a 

straight line during travel. These casters are also 6 in. in diameter, but have a 2 in. tread width. 
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The side casters are mounted perpendicular to the main bearing casters. They are connected to 

the cart frame by being bolted to the side plates.  

 

 

Figure 5. Example of main bearing caster. 

 

Concrete Block 

 

The concrete block makes up the largest portion of the weight of the impact cart. The block is 

5x5x2 ft. and in total weighs 7500 lbs. The concrete block has two layers of #5 rebar placed in 

4’6”x4’6” mats with one foot spacing. The rebar was put in place to increase the reliability of 

the lifting hooks. Four lifting hooks were placed in the concrete block. The hooks are pieces of 

#5 rebar that are bent with a U on top and two 90° bends, one for each leg. The legs were 

placed underneath the bottom mat of rebar. This will insure that when the block is lifted the 

hooks will then pull on the rebar mats instead of simply pulling on the hooks. The four sides of 

the concrete block are wrapped in ¼ in. thick plate steel as seen in Figure 6. The plates were 

connected with seem welds on the inside and outside. These plates were added to help prevent 

punching shear from the impactor during testing. The connection between the concrete block 

and the impactor was provided by an imbed plate. The imbed plate was bolted to the formwork 

for the block and those bolts were then used to connect the impactor to the imbed plate. While 

casting the concrete for the block the bottom form dipped in between the studs and created 

humps on the bottom of the block. This meant that the block did not sit perfectly flat on the 
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frame. In order to counteract the gap between the frame and the block, metal shims were 

welded onto the cart frame at each corner. These shims allowed the block to remain level 

during testing and prevented the block from rocking during testing. The finished concrete block 

is show in Figure 7.  

 

 

Figure 6. Concrete Block formwork. Showing steel plates, rebar mats and lifting hooks. 

 

 

Figure 7. Finished concrete block with impactor. 
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Impactor 

 

The dimensions of the impactor are 10”x10”x10” (EN 1991-1-7, 20006). The impactor was built 

with ¾ in. thick steel plates that were welded together. These welds were different than all 

other welds for the impact cart in that the edges of the steel plates were first ground off to an 

angle to allow for a deeper penetration of the weld. This was done to insure that the impactor 

remained intact during testing. The impactor was also filled with concrete to prevent any 

bending of the plates and to insure that good contact was maintained throughout the actual 

impact. The impactor was welded to a base plate that was then bolted to the imbed plate on 

the concrete block. The bolts were threaded into the imbed plate and were used as the bolts 

for the impactor, as shown in Figures 8, 9. To insure that the impactor did not shift or come 

loose during testing the impactor was welded to the ¼ in. steel plate. 

 

 

Figure 8. Imbed plate and attachment bolts. 

 

Figure 9. Impactor attached to the imbed plate. 
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4.2 Track System 

 

The track system for this testing setup requires a framework capable of withstanding both 

gravity and lateral loads. This must be made possible while still occupying a small area, be easy 

to construct and deconstruct, as well as being cost effective. The track system consists of 

wooden posts set into the ground, lateral bracing, work platforms, top decking, X-bracing, and a 

rail system. 

 

Overall Dimensions 

 

The post lines for the track system were placed directly beneath the track itself in order to 

create proper load path and load distribution. Since the cart size was determined prior to the 

support system the spacing between the post lines was determined based off of the impact 

cart. The cart is 5 ft. wide and the side casters must be in contact with the track at all times. The 

spacing between post lines was determined to be 3’ 8-1/2”. The spacing of the posts along the 

length of the track was determined to be 5 ft. A target impact energy, U, of 100 kJ was used to 

determine the necessary height change from the top to bottom of the track (Zaouk, Bedewi, 

Kan, & Marzougui, 1996). The 8000 lbs. cart (mg in Eq. 4.2) was assumed to be in free-fall and 

the height was then determined based off of the following equation (Eq. 4.2) for potential 

energy. 

 

                 𝑈 = 𝑚𝑔ℎ                                                                      (4.2) 

 

The change in height that would be able to impart the desired energy was determined to be 10 

ft. Since the bottom of the track was already set at a height of one foot. The height at the top of 

the track was 11 ft.  
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Posts 

 

The initial trial size for the posts was a 4x4 wood post. The posts were designed from static 

loading when the impact cart is sitting between post lines. This means that at any given time a 

minimum of four posts will be taking the load of the impact cart. The limiting design criterion 

was compression loading with an applied load of 2000 lbs. per post. The capacity of an 

individual post in compression was determined to be 3000 lbs. Concrete was cast around and 

under the posts to insure that the posts did not shift during testing. This was achieved by 

slightly raising the posts and them screwing them into the guide boards so that the concrete 

could flow under the posts during the pour. The post positioning was laid out by having a 2x4 

guide board that ran the length of the two post lines and a cross board that attached to the two 

post lines. These cross boards were placed every 5’ to maintain post spacing. This created a 90 

degree corner that the posts could be laid against, as seen in Figure 10. Once the concrete was 

cast the top of the posts were cut on the proper angle to insure that full contact between the 

top of the post and the track itself would be achieved.  

 

 

Figure 10. Posts screwed into guide boards. 
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Work Platforms 

 

The work platforms consist of 2x6 boards that wrap around the outside of three lines of posts 

with joists spaced at one foot on centers as seen in Figure 11. The framework was then decked 

with 7/16 in. OSB plywood to provide a working surface. The work platforms served multiple 

purposes in the construction of the track. The main function was to provide a stable platform to 

stand upon for any work that could not be performed from the ground. Two platforms were 

built along the length of the track each spanning between three post lines. Since the elevation 

of the track changes along the length two platforms were placed at different heights with a 

built in ladder to connect them. Another purpose of the platforms was to tie the posts together 

while maintaining the desired spacing between the posts. The platforms were constructed prior 

to casting the concrete which allowed for the posts to be plumed and spaced evenly with ease. 

With the posts connected together bracing for casting of concrete was minimized to only four 

temporary braces instead of needing two braces per post if the platforms were not present at 

the time of concrete casting.  

 

 

Figure 11. Lower work platform without decking and before casting of concrete. 
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Top Joists and Decking 

 

In order to maintain proper spacing at the top of the posts 2x6 joists were added. The joists 

that ran perpendicular to the length of the track were precut. This maintained the spacing at 

the top of the posts so that they would all be in line with each other. The joists that were 

placed along the length of the track were cut to match the existing spacing between the posts. 

This process was done to insure that full contact between the joists and the posts was achieved. 

Each joist was cut on an angle to match the slope of the track. The angle cut of the joist can be 

seen in Figure 12.  The joists were connected to the posts at the very top of each post with joist 

hangers. Since the joists were angled instead of horizontal, notches had to be cut out of the 

bottom of the joists to create a horizontal surface for the joist to rest on the hangers. The 

hangers allowed the joists to be placed in the center of the posts with ease. This was necessary 

to maintain a straight line for which the rails could be attached. Once all joists were attached 

2x4s were placed on top of and perpendicular to the joists. The 2x4’s were nailed flatways 

spaced at one foot. on center in order to provide a stable platform of the rails to sit upon.  

 

 

Figure 12. Lower portion of track with top joists prior to 2x4 decking. 

. 
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Lateral Bracing 

 

In order to prevent the track from swaying side to side during testing lateral bracing was added. 

Each brace consisted of 2 2x4’s that were nailed together on edge. The braces were connected 

to the posts in two different locations. The lowest braces were placed directly underneath the 

work platforms to provide a solid contact surface. While the upper braces were placed directly 

underneath of a small 2x4 wrap that went around each post. These wraps were placed directly 

underneath the joist hangers to insure that gravity loads from the impact cart would be fully 

transferred into the braces without having to rely wholly on the connections. The braces were 

placed at a 45° angle from the posts as shown in Figure 13. This meant that all of the braces 

needed to be cut on 45° to insure complete contact with the wraps and work platforms. In 

order to secure the braces to the ground ¾ in diameter holes were drilled through the braces at 

the bottom and a nail pin was run through the hole as shown in Figure 14. Once driven 

sufficiently into the ground a nail was placed through the nail pin and the pin was then driven 

further into the ground until the nail compressed against the board. The process was necessary 

to insure that the braces had solid contact with the ground in the event that the track would try 

to shift.  

 

 

Figure 13. Lateral bracing applied at multiple levels per post. 
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Figure 14. Nail through nail pin. Lateral bracing to ground connection. 

 

X-Bracing 

 

In order to counteract the lateral force that the track might experience while the impact cart 

travels down the track X-bracing was added along the length of the track. The bracing consisted 

of 2x4s that were nailed to the posts. These braces were placed on both the top and bottom of 

the work platforms in an alternating pattern to properly distribute the lateral forces. The braces 

were only placed underneath the sloped portion of the track. The reason for this is because 

when the track is flat the impact cart is not able to impart a large amount of lateral force to the 

track. When possible the bracing was placed flat against the concrete that surrounds the posts 

as shown in Figure 15. This was done to transmit as much of the lateral force as possible into 

the ground rather than carry it through the entire frame of the track.  

 

Rail System 

 

In order to create an effective impact with the specimen the impact cart needed to roll down a 

smooth surface. This surface was provided by rails that were attached to the top of the track. 

The rails were made of W8x13 steel sections. The rails were placed directly on top of the post 

lines to effectively transmit the load through the track to the ground. The rails were attached to 

the track by U-bolts as shown in Figure 16. The U-bolts wrapped around the 2x6 joists and were  
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Figure 15. 2x4 X-Bracing 

 

 

Figure 16. Rails connected to joist by U-Bolts. 
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bolted to the rails on either side of the web. The U-bolts were placed on either side of each 

post in order to insure that the rails did not shift along the length of the track during testing. 

 

At the points along the track where the slope changes the rails were cut and the top flanges of 

the rails were butted up against one another. The tops of the rails were welded together to 

create a smoother transition between pieces as shown in Figure 17. The welds were also 

necessary to ensure that the pieces held together and acted as one cohesive unit. In addition to 

welding the top flanges splice plates were also welded on the inside of the web wherever to 

pieces came together. These plates helped to tie the pieces together. Once the two rails were 

completed they were tied together with 2x2 in. HSS tubes as seen in Figure 18. The tubes were 

welded onto the inside of the web of each rail. In order to maintain a constant distance 

between the rails the tubes were all cut to an exact length and the rails were either pushed or 

pulled until the tube fit snuggly on either side.  

 

 

Figure 17. Welds connecting the top of the rails and splice plates. 
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Figure 18. HSS tubes between rails. 

 

Joist Compression Boards 

 

Extra compression reinforcement was added on either side of each post. This was achieved by 

nailed 2x4’s against the posts. The 2x4’s were wedged between the joist hangers and the 

concrete that was poured around the posts. These boards were installed to ensure that when 

the impact cart travelled over the top of the posts that the load would be carried from the rails 

through the joists to the 2x4’s and into the posts. The added compression wood is shown in 

Figure 19.  

 

 

Figure 19. Added 2x4’s for extra compression reinforcement. 
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4.3 Backstop Design 

 

In order to insure that the test beam receives the maximum impact force from the impact cart a 

backstop is necessary. The backstop provides lateral support that prevents the test beam from 

moving horizontally, while being able to measure the amount of force that is resisted by the 

backstop to determine reactions. The backstop consists of two concrete footings with a steel 

W-shape set in each footing, as well as interchangeable steel tubes that provide lateral 

resistance.  

 

Footing 

 

The footing was designed to resist the lateral loads that would be created during testing. In 

order to do this the footing area would need to be large enough to absorb the impact force and 

transfer it into the soil. The soil found on the site consists of fill with all kinds of materials 

including boulders, slabs of concrete and other types of large fill. Well compacted soil filled in 

the gaps between the large fill with a layer of compacted gravel on top of the fill. The lateral 

bearing pressure of the fill was assumed to be 800 lbs/ft2. This number is not based off of 

testing, since soil samples would be nearly impossible to acquire, but rather upon IBC allowable 

maximum value for sedimentary and foliated rock (Coduto, 2012). This classification was 

chosen since it most closely matched the existing soil conditions. The listed IBC value is 400 

lbs/ft2 however there is a prevision that states that the allowable values may be doubled for 

short term loading conditions. Since the impact duration was expected to be extremely short 

the value of 800 lbs/ft2 was deemed to be satisfactory.  

 

 The design of the footing was based upon a rigid analysis from (Coduto, 2012); the rigid 

analysis was chosen in lieu of a more in depth analysis because it provided a simpler calculation 

while still being conservative. This type of analysis was also necessary because it allows the use 

of IBC allowable lateral bearing pressures where other more precise analysis would require 

detailed soil properties which were not readily available. From this analysis the minimum 
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footing depth was determined that could provide the necessary lateral bearing pressure to 

resist an estimated impact load, P, of 40 k per footing. This loading was determined by other 

research team members. The load was applied at a height, h, of 4’4” above the surface of the 

concrete. A free-head condition was used since the steel beams would essentially act as vertical 

cantilevers being loaded on the free end. The equations used are as follows.  

   

𝐷𝑚𝑖𝑛 =
𝐴

2
(1 + √

4.36ℎ

𝐴
)                                                          (4.3) 

 

Where 

 

𝐴 =
2.34𝑃

𝑆1𝐵
                                                                       (4.4) 

 

In the above equations Dmin is the minimum required depth of the footing while B is the width 

and S1 is the allowable lateral bearing pressure. Based upon these equations it was determined 

that the footing depth would need to be 7’ 6” and the length would need to be 7 ft. This cross 

sectional area provides enough lateral resistance to withstand the impact force. In order to 

properly distribute the load across the entire face a mat of #5 rebar with bars spaced at 12 in. 

O.C. in both directions was placed vertically in the direction of impact. The width of the footing 

was determined based upon the size of the steel beam that would be placed at the center of 

the footing, and the amount of concrete that would be needed to provide shear resistance in 

the direction of impact. The shear action of the steel beam was taken to be one way shear since 

the beam extends the entire depth of the footing. Therefore the shear capacity of the concrete 

was calculated based upon (ACI; 2011). It was desired that the concrete provide the entire 

amount of required shear resistance. 

 

The shear capacity of the concrete was set equal to the loading divided by a strength reduction 

factor, φ, of 0.75. The concrete was normal weight with strength of 3000 psi; the depth of the 



25 
 

footing was used as the width of the beam model. Based upon the beam model the amount of 

concrete needed to resist shear was determined to be 6 in. Since this value did not provide 

enough tolerance for constructability the value was bumped up to 12 in. This means that the 

footing would need to have 12 in. of concrete on either side of the steel beam. Therefore the 

overall width of the footing was determined to be the depth of the steel beam plus 12 in. on 

either side.  

 

Steel Beams 

 

The steel beams that would be embedded in the concrete footing served as the method of load 

transference from the test specimen to the footing. The beams were placed vertically and had a 

length of 4’ 4” sticking out of the footing. This height was used in calculations to determine the 

size of the steel beam. In order to maintain the assumption of a rigid system a maximum 

limiting deflection of 1/32 in. was used. To obtain the size of the beam the limiting deflection 

was inputted into the deflection equation for a cantilever beam with a length of 4’ 4”.  

 

The limiting deflection was plugged into the equation and the required moment of inertia was 

obtained. This value was then used to pick the most economical W-shape. A W-21x111 was 

selected. This section meets the deflection criteria as well as strength checks. In order to 

connect the HSS tubes to the beams bolt holes were drilled through the flange of the beam. 

Several rows of holes were drilled to provide multiple elevations at which the tubes could be 

placed. This provided construction tolerance in case if the actual elevation of the beams did not 

match the design elevation. 

 

HSS Tubes 

 

In order to make the backstop more versatile HSS tubes were used to extend the beams to the 

test specimen. The tubes were designed to be a removable feature of the backstop so that 

multiple test specimens could be tested with the facility. The tubes serve the purpose of 
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transferring the load from the test specimen to the steel beams. These tubes were oriented 

horizontally between the test specimen and the steel beams. Therefore the limiting design 

criterion was compression. Based upon an effective length of 7 ft. the minimum size for the HSS 

tubes was 3x3x1/4 in. This was not the ultimate section chosen since two 8x8x1/2 in. tubes 

were available at no cost. Therefore the size used was 8x8x1/2 in. In order to attach the tubes 

to the beams plates were welded onto the tubes with the same bolt hole pattern as that on the 

beams. A plate was also welded onto the front side of the tubes to insure full contact between 

the tubes and the test specimen. These details are shown in Figure 20. 

 

 

Figure 20. Completed backstop with footing beam and tube. 
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4.4 Backstop Construction 

 

Footing layout and excavation 

 

In order for the footings to be placed in the correct location string lines were run off of the 

length of the existing track. Cross lines were then run perpendicular to these lines to set the 

distance away from the end of the track. These lines were attached to batter boards that held 

the string lines constant. Once the string lines were set the footprint of the footings were 

painted onto the ground so that the footings could be excavated. The overall dimensions of the 

two footings are 4’x7’x7’6”. The total volume of soil that needed to be excavated was 7.67 yds3 

per footing. This large amount of soil required excavation to be completed with construction 

equipment rather than by hand. A small excavator, Caterpillar 307C, was used to dig out the 

footings as seen in Figure 21.  

 

Steel Beam Layout and Erection 

 

Once excavation was complete the layout for the steel beams began. String lines that laid out 

the footprint of the beams were run and attached to the already existing batter boards. In 

order to insure that the beams would remain in proper position during the concrete pour a 

guide system made up of 2x4’s was built as shown in Figure 22.  

 

The main portion of the guide system consisted of two 14 ft. long 2x4’s that spanned across the 

open footing. These boards were spaced at the width of the flange of the steel beam plus 1/8 

in, for ease of steel erection, for a total spacing of 12 ½ in. Cross members were placed along 

the length of the boards to maintain spacing and stability. Two of these cross members were 

used to mark the front and the back of where the steel beam was to be placed. The same 1/8 

in. was added in this direction to ease in erecting the steel making the gap between the two 

boards 21-5/8 in. At the midpoint of the 14 ft. boards two stacked 2x4’s were placed. These 

stacked boards served as added stability and were also used to maintain lateral positioning of 
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the guide system. The stacked boards were attached to the 14 ft. boards with a scab board to 

aid in ease of construction, and to insure that they did not come loose during steel erection. 

With all of the boards joined together the guide system was staked in place with nail pins as 

seen in Figure 23. This created a guide box for the steel beams to be placed in.  

 

The steel beams were erected with a small crane, Caterpillar Galion 150FA. In order to slide the 

beams through the guide system they needed to be lowered straight down. This objective was 

accomplished by torch cutting a hole through the web of the steel at its balance point and 

running a shackle through the hole. The beams were slowly lowered through the guide system 

until they settled on the bottom of the footing. Once set the beams were plumed by placing 

small wood shims between the beam itself and the guide system. A beam set in the guide 

system is shown in Figure 24. 

 

 

Figure 21. Caterpillar 307C excavating one of the footing. 
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Figure 22. Guide system for steel beams. 

 

 

Figure 23. Nail pins securing the guide system to the ground. 
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Figure 24. Steel beam sitting within the guide system. 

 

With the rebar mat and steel beams set in place concrete was poured in the open footings. The 

large volume of concrete needed for the footings required for the concrete to be poured out of 

ready mix trucks as seen in Figure 25. The concrete was poured in two foot lifts and was 

vibrated for consolidation after each lift was poured. The concrete was poured up to the 

existing ground elevation. Since nothing needed to be placed on top of the concrete no 

finishing was required. Therefore the only method of finishing was normal consolidation due to 

vibrating the concrete. One of the finished footings is shown in Figure 26. 

 

In order to make the tubes removable they needed to be bolted onto the vertical beams. 

Therefore the backplate that was welded to the HSS had four holes drilled through it with a 

spacing of 6 in. Matching holes were also drilled through the vertical beams prior to placement 

with spacing of 2 in, as seen in Figure 27. The smaller spacing was so that the tubes could be 

placed at multiple elevations. The tubes were installed by lowering them into place with a crane 

and then bolting them to the flange of the vertical beams. During installation it was discovered 

that the holes in the vertical beam did not match up with the holes in the tubes. The holes were 
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Figure 25. Concrete being poured from a ready mix truck. 

 

 

Figure 26. Finished concrete footing. 
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not off by much, however it was enough that only two bolts could be used for one of the tubes. 

As a substitute to bolts the backplate was connected to the beam by two small welds on either 

edge of the flange as seen in Figure 28. This connection held the tube in place during testing 

and the welds were ground off when the tubes needed to be taken down.  

 

 

Figure 27. Vertical beams with predrilled holes at 2” spacing. 

 

 

Figure 28. Connection of HSS tubes to vertical beams. 
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Support System 

 

In order to have the maximum impact force possible the impact point must be at the center of 

gravity of the impactor. Since the target impact location off the test specimen was the bottom 

flange the specimen needed to be elevated to where the center of the bottom flange lined up 

with the center of the impactor. This was accomplished through the support system. The 

system consists of New Jersey Barriers and HSS tubes placed beneath the barrier. The choice of 

these materials was based on availability. The barriers were already on the testing site and 

were made available to use two of them for testing. The barriers were not tall enough on their 

own to properly elevate the test specimen. This problem meant that a secondary component 

was necessary. The height needed was determined to be roughly 12 in. Fortunately four 

12”x12”x3/8” steel HSS tubes were available for use. Two tubes were placed underneath each 

of the barriers. The barriers were placed perpendicular to the direction of the test specimen 

and just to the inside of the backstop. This was done to create a support condition that was 

close to what the specimen would experience if it were being used in an actual bridge. The 

support system is shown in Figure 29.  

 

 

Figure 29. One of the supports with test specimen sitting on top. 
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Operating the Testing Facility 

 

In order to operate the testing facility the impact cart must be pulled up the track, locked in 

place, and then released. This was accomplished by means of two large excavators. The first 

excavator pulls the impact cart up the slope. The impact cart is connected to the excavator by a 

chain and shackles that connect to the hitch on the cart itself as seen in Figure 30. Once the cart 

is pulled up the track a second excavator locks the impact cart in place. Meaning that the 

bucket of the second excavator is placed on the front side of the impact cart preventing it from 

rolling down the slope. Once the second excavator has secured the impact cart the chain is 

slacked and the shackle is unfastened from the hitch of the impact cart. Once the shackle is 

removed the bucket of the second excavator is raised and the impact cart is allowed to roll 

down the track. This method of release served as a type of quick release system, but was much 

safer than the alternatives. This method allowed for multiple redundancies and could be tested 

prior to the actual test without having the impact cart roll down the track.  

 

 

Figure 30. Impact cart hooked up to excavator by shackles and chain. 
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Chapter 5 Testing Results and Modifications 

 

To verify all of the design assumptions described in Chapter 4 a single impact test was 

performed on a prestressed beam. The operation of the testing facility went smoothly and the 

impact cart collided with the beam as planned. The backstop also acted as planed and 

prevented the beam from sliding. The damage that occurred to the specimen can be classified 

as a catastrophic failure of the structural integrity of the beam. Upon impact the bottom flange 

of the beam crumbled and the beam twisted about the midpoint. Cracking was observed 

throughout the bottom flange of the beam and all the way through the cross section of the 

beam and into the top deck. The prestressing strands were all uncovered and the pre-

tensioning was released from all of the strands. The damage to the beam is shown in Figures 

31, 32.  

 

The impact testing facility itself performed well; however, when the impact cart hit the first 

angle change near the bottom of the ramp the structure failed. The joists nearly sheared 

completely in two and the welds on the rails broke. The failure was instantaneous, suggesting 

that the failure was due to vertical impact. The damage to the track is shown in Figures 33, 34. 

Despite this damage to the track the impact cart still collided with the beam with the expected 

force. This indicates that the facility as a whole worked for the intended purpose. However, 

modifications must be made so that this type of failure does not occur in future tests. In order 

to fix the broken section the initial design concept was scrapped in favor of an alternative that 

was more suited to withstand vertical impact.  

 

In order to determine what loading was needed for the redesign, an impact factor was 

calculated. This impact factor was then multiplied to the original static load. As a starting point 

for picking an impact factor the worst case scenario was chosen to be if the impact cart were to 

be in free-fall and impact the structure from a fall height of 10 ft. This scenario would provide 

the largest impact factor possible because this scenario provides the largest loading. This case is 
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Figure 31. Prestressed beam after impact. 

 

 

Figure 32. Prestressed beam after impact. 
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Figure 33. Damage to joists after testing. 

 

 

Figure 34. Damage to rails after testing. 
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not necessarily practical; however it served as a starting point to see what types of numbers 

were possible. The static deflection, Δ, was determined based upon the following equation. 

 

∆=
𝑃𝑙

𝐴𝐸
                                                                         (5.1) 

 

The input values were based off of the extra compression boards that were nailed to the posts. 

This was done because these boards received little damage and the goal of the redesign was to 

determine how much more surface area would be required to sustain the impact force. The 

load, P, used was 8000 lbs, length, l, of 12 in, area, A, of 4.5 in2, and elastic modulus, E, of 

400,000 psi. The computed static deflection was 0.053 in.  

 

The dynamic deflection, Δ in Eq. 5.2, was calculated based off of energy methods. The system 

was modeled as a spring system with a falling mass. The potential energy of the impact cart was 

set equivalent to the spring stiffness equation, as shown below, where mg is the weight of the 

cart, h is the drop height, and k is the stiffness of the wood. 

 

𝑚𝑔(ℎ + ∆) =
1

2
𝑘∆2                                                              (5.2) 

 

Equation 5.2 was rearranged to solve for the dynamic deflection. The drop height was varied 

and multiple values of the dynamic deflection were plotted in Figure 35. These values were 

then compared to the static deflection to determine an impact factor. 

 

Based off of the maximum dynamic deflection of 3.63 in. from a drop height of 10 ft. the impact 

factor was determined to be 68.5. This is obviously unreasonably large and not a true 

representation of how much force is being transferred into the structure. Since this number 

was so large the worst case cannot be considered as the actual loading case.  
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Figure 35. Dynamic deflection vs. Drop Height. 

 

As a substitute to the worst case of a 10 ft. drop height the load was taken to be a rectangular 

pulse force. This loading scenario is much more realistic since the impact cart rolls over this 

portion of the structure for only a finite amount of time and with a relatively constant loading. The 

impact factor, Rd, was determined based on the following equation (Chopra, 2012). 

 

𝑅𝑑 =

{
 

 2sin (𝜋
𝑡𝑑
𝑇𝑛
)  ,

𝑡𝑑
𝑇𝑛
≤
1

2

2,                            
𝑡𝑑
𝑇𝑛
≥
1

2

                                                  (5.3) 

 

The natural period, Tn, was determined to be 0.0738 s and the time duration for the application 

of the load, td, was taken to be 0.1 s. These values result in an Rd of 2. This modification factor is 

much more reasonable than the 68.5 from the previous scenario. With the impact factor of 2 

applied to the static load the new design load equals 16,000 lbs. The broken portion of the 

structure was then modified based on this new loading.  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10

D
yn

am
ic

 D
e

fl
e

ct
io

n
 (

in
) 

Drop Height (ft) 

Dynamic Deflection vs. Drop Height 



40 
 

Only one section of the track needed to be redesigned. The rails were temporarily removed 

over the section while the joists and 2x4 decking were permanently removed. In place of the 

joist and decking system two walls were built and the rails were placed directly on top of them. 

The walls consist of 2x12’s and ½ in. plywood. The 2x12’s were placed in the horizontal 

direction and stacked on top of one another. The top board was cut on an angle that matched 

the slope of the track. There were two layers of 2x12 and one layer of plywood between the 

2x12’s. This is shown in Figure 36. The total thickness of this wall is 3 1/2 in. The entire system is 

then covered in ¾ in. plywood on either side of the wall. This plywood is screwed into the posts 

and then nailed onto the wall as shown in Figure 37. This creates a solid composite wood wall. 

This amount of wood is overkill, however it was desired to build a quick and easy solution that 

would ensure that the structure would not fail again.  

 

With the walls built the rails were then set directly on top of them. This section of rail was then 

welded to the other rails as previously described. Since the impact cart did not shift laterally 

during the first test it was determined that the rails did not need to be secured to the walls and 

rather only to the existing rails.  

 

 

Figure 36. Replacement 2x12 and plywood walls. 
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Figure 37. Plywood on the outside of the wall screwed into plywood. 
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Chapter 6 Conclusions and Observations 

 

The objective of this research was to design and build a fully functioning full scale lateral impact 

testing facility. The facility includes an impact cart, a track that can support the cart while it rolls 

down the slope, a support system, and a backstop that is capable of preventing the specimen 

from sliding during impact 

 

Multiple Factors were considered during design and construction of the full-scale impact testing 

facility. An impact cart with an elevated track was selected over drop weight and pendulum 

tests because it is more cost-effective and a safer system, as well as less construction time 

involved. Based upon a full-scale trial test conducted in this thesis research, the whole system 

was proved to function as designed. 

 

The design of this facility involved multiple facets of civil engineering: statics, dynamics, 

concrete and steel design. All of these aspects had to be meshed together in order to 

accomplish the research objectives. The most challenging part of this research was taking a 

design and turning it into a physical structure. Being able to change designs based upon 

changing construction conditions was key to the success of this project. Coordination of 

multiple parties to actually complete a trial test was also very difficult. All of the aspects of this 

research fit well into how actual civil engineering projects are conceived and created. They 

must be designed, coordinated and constructed. All three of these aspects were accomplished 

for this research.  
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