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Abstract

Recently, ensemble modeling was applied to metabolic networks for the sake of

predicting the effects of genetic manipulations on the observed phenotype of the

system. The ensemble of models is generated from experimental wild-type flux

data and screened using phenotypic data from gene overexpression and knockout

experiments, leaving predictive models. The need for data from multiple genetic

perturbation experiments is an inherent limitation to this approach. In this

investigation, ensemble modeling is used alongside elementary mode analysis to

attempt to predict those enzymatic perturbations that are most likely to result in an

increase in a target yield and a target flux when only the wild-type flux distribution

is known. Elementary mode analysis indicates the maximum theoretical yield and

its associated steady-state flux distribution(s), and the minimal cut set knockouts

are determined that eliminate all but the highest-yield elementary modes. These

knockouts and other perturbations are simulated using all of the ensemble models,

and the distributions of predicted fluxes and yields over the models are compared to

elucidate which reactions and metabolites most likely limit the target yield and flux.

Additionally, a systematic method is developed to simultaneously identify multiple

reactions that are responsible for bottlenecks after the minimal cut set knockouts

are performed. These methods are applied to a metabolic network that models 3-

deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) production in E. coli. Results

show that pyruvate accumulation due to glucose uptake and erythrose-4-phosphate

(E4P) shortages resulting from the slow reaction rate of transketolase (Tkt) limit
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DAHP production. These results are consistent with published data, indicating

that a detailed understanding of metabolic networks can be obtained with minimal

experimental data. Additionally, the systematic method identifies four enzymes (Tkt,

Tal, Pps, and AroG) that, when overexpressed experimentally, increase yield to nearly

the maximum theoretical limit. Systematic analysis of a toy network also correctly

identifies the post-MCS overexpression that results in the largest increases in yield

and absolute fluxes. These results indicates that wild-type steady-state flux data can

be used to accurately identify enzyme perturbation targets for increasing yield and

target flux values.
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Chapter 1

Overview and Background

1.1 Overview

In this report we present the development of a mathematically-based systematic

simulation and data analysis of metabolic network structure to identify the top-ranked

enzyme candidates whose under- or overexpression will optimize the production of a

product produced by the network. The innovation of this approach is that it does

not require intermediate experimental results to refine the analysis from one step of

the process to the next. The only required experimental results are the steady-state

fluxes of the various reactions in the network observed in the wild-type strain, which

are often easily estimated from external fluxes given in the literature. Initial results

reported here are very promising; the ranked list of candidate enzymes from the

simulation match exactly the experimental results reported by other researchers in

the literature for the same network system. This approach, if applicable to metabolic

networks in general, would represent a significant advancement in the determination of

genetic modifications in strain design necessary to increase the yield and productivity

of a desired metabolic product, due to the fact that time-consuming and costly

experimental results are not required.
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The simulation and systematic data analysis methodology (SSDA) requires a

priori the following data, and the major steps involved are listed below.

1.1.1 Required data set

Steady-state fluxes of network reactions of the wild-type strain are required. Also

required are various set of network parameters and structural network data, such

as standard Gibbs free energies of the involved reactions, indication of absolutely

irreversible reactions, and stoichiometric relationships of the network reactions. The

specific requirements are described in Chapter 2. For a chosen cellular system and

the metabolic network, these data can usually be attained from literature or from

prior work in one’s own laboratory.

1.1.2 Major simulation and data analysis steps

1. Determine the set of elementary modes for the network.

2. Choose the mode(s) that gives maximum yield and determine the minimum cut

set of enzymes that, upon knockout, leave only the desired elementary modes.

3. Generate a large set of ensemble models based on the a priori data described

above. The generated ensemble models include the reaction kinetic parameters

and fractions of the total enzyme concentrations that are in each complexed

enzyme form. Upon simulation of the wild-type enzyme state, all generated

models predict the same final steady-state fluxes as those supplied.

4. Subject the results from steps 1 to 3 to the developed systematic simulation

and data analysis procedures involving linear algebra to obtain a ranked list of

candidate enzymes to overexpress. These manipulations increase a specified

product-to-input yield to near the theoretical maximum, as given by the

elementary modes, and also increase the flux of the desired product reaction.
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Various third-party software operating on the MATLAB platform are used in this

study, some requiring modification to meet the needs of this investigation. These all

will be described in detail in Chapter 2.

1.2 Background

Metabolic engineering is the directed improvement of the biochemical properties of

cells by using recombinant DNA technology to alter the chemical reactions occurring

within the cells or to add new reactions (Stephanopoulos, 1999). These improvements

are often increases in yields with respect to a specified product and input. One of the

primary ways this is accomplished is through gene underexpression or overexpression.

Therefore, one of the questions metabolic engineers face is which genes should be

targeted. Some of the potential target genes control enzyme concentrations within the

cell. Enzyme concentrations are directly related to the kinetic properties of reactions

in the cell, and by changing enzyme concentrations, one can often change the cellular

properties that one wishes to improve. Because of this, it is feasible for one to focus

one’s attention on genes that control enzyme concentrations. This simplifies the

problem to a degree by allowing one to ask which enzymes are most critical to the

cellular reactions one wants to improve.

At this point, the problem becomes one of characterizing the various reactions

within the cell. Cellular reactions form an interconnected network within the cell,

with the products of one reaction serving as the reactants in another, and some

cellular products serving as regulators of other reactions by inhibiting or activating

them (Jeong et al., 2000). Knowledge of both the topology of a metabolic network

and the kinetics of the reactions is useful for choosing target enzymes.

Various methods for analyzing metabolic networks have been developed. In vivo,

it is difficult to attain kinetic data for chemical reactions (Edwards and Palsson, 2000).

Due to this, many approaches to analyzing metabolic networks have been developed

that rely heavily on the stoichiometry and topology of the network and avoid the
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need for kinetic information. Some of these methods include flux balance analysis

(Varma and Palsson, 1994), metabolic control analysis (Fell, 1992), elementary mode

analysis (Schuster et al., 1999), and extreme pathway analysis (Schilling et al., 2000).

These methods tend to reveal details about the steady state flux distributions of the

network and do not describe the network dynamics. For this reason, they are useful

for discovering the maximum possible yield of a particular product metabolite with

respect to a given input metabolite.

One of the common goals of metabolic engineering is to alter the metabolic network

to achieve this maximum yield. To accomplish this, the network’s reactions to changes

in enzyme concentration and/or activity need to be analyzed. The aforementioned

analysis techniques are limited in their usefulness for this pursuit. Flux balance

analysis, elementary mode analysis, and extreme pathway analysis can only consider

those enzymatic changes that affect the topology of the metabolic network, namely,

gene knockouts. Though this is useful, it does not allow for the analysis of gene

overexpression. Metabolic control analysis, on the other hand, only allows one

to analyze the effects of small changes in enzyme concentrations because it relies

on linearization of the system, which is only valid for small perturbations to the

network (Schuster, 1999). This limits its usefulness, as the gene underexpressions

and overexpressions of interest usually result in large changes in the effected enzyme

concentrations.

Another drawback of these methods is that they cannot consider overall produc-

tion rates (i.e., the overall scale of fluxes across the networks), which is vital to the

usefulness of the modified network. If one achieves a high yield for a target product

and input, it is also important that the system be outputting the target product at

a relatively high rate. Otherwise, the amount of product that can be produced in a

reasonable time is too small to be useful, even if it is produced very efficiently.

Therefore, it is desirable that a dynamic modeling technique be developed. This is

usually difficult due to the lack of available kinetic data associated with the enzymatic
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reactions taking place in cells. Experiments that yield reaction rate data are time-

consuming to conduct.

Recently, a method has been developed to generate a variety of dynamic models

of metabolic networks without the need for detailed kinetic data. This method,

described in detail by Tran et al. (2008), generates a large ensemble of models by

randomly sampling model parameters that are constrained such that each model

converges to a specified steady-state flux distribution for some initial conditions. The

steady-state flux constraint greatly reduces the parameter space being spanned in the

sampling of parameters, preventing one from having to generate prohibitively large

sets of models to find at least some models that are representative of the actual system.

This initial ensemble of models is then screened using readily available data from

phenotypic experiments. These data are routinely collected during cellular metabolic

engineering experiments (Tan et al., 2011). The screening process involves simulating

the perturbed system using each of the ensemble models and comparing the perturbed

models’ predictions to the corresponding experimental results. Those models that do

not exhibit the experimental phenotypes are screened out of the ensemble. This

screening process is iterated with the screened models using additional experimental

data. After each screening step, the ensemble becomes smaller, but more predictive.

After a certain number of screening steps, a small ensemble of predictive models

remain that would be useful for guiding further enzyme choices for overexpression

and/or underexpression.

This method for generating dynamic models has already been applied successfully

toward a number of systems (Contador et al., 2009; Rizk and Liao, 2009). However, it

is not necessarily clear that the screened ensemble of models can be used to effectively

aid in strain design. In the case where experimental data are scarce, the time and

resources spent performing perturbation experiments to screen an ensemble could

be used to test hypotheses on which enzyme perturbations are good targets. As

a result, requiring these experiments to screen the ensemble restricts its usefulness.

This is especially true when considering that there is no guarantee that the screened
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ensemble will give accurate predictions. One question of importance is whether

the particular perturbation experiments chosen for screening affect which models

survive the screening process. Tran et al. (2008) have shown evidence that it does,

but this demonstration is based on simulated experimental data rather than actual

experiments.

A method such as this would be more useful if it did not rely on having extensive

experimental information. If one knows little about which perturbations will produce

favorable behavior in the system, it becomes difficult to choose perturbations a priori

that will serve any purpose other than to allow for the construction of an ensemble

of models. Ideally, one could predict those enzymes that are most likely good targets

without having an extensively-screened ensemble, thus avoiding using time performing

random perturbation experiments.

It is the aim of this investigation to develop whole-ensemble methods that require

no screening to predict enzyme targets that increase a target yield and flux. One way

of accomplishing this is finding those perturbations that produce favorable behavior

in the largest number of ensemble models. ”Favorable behavior” can be described

as a large flux for a target reaction, coupled with a high yield with respect to

an input. Therefore, it is clear that both fluxes and yields will be variables of

interest. One approach to identifying the enzyme perturbations that would lead

to favorable behavior is sensitivity analysis. Each enzyme’s total concentration could

be perturbed slightly upward and downward, and the network models’ reactions

to the perturbations would indicate candidate enzymes that are most likely to

optimize network behavior. One concern with this suggestion, however, is that the

overexpressions and knockouts imposed on the actual system involve large changes

in the respective total enzyme concentrations, and the system’s inherent nonlinearity

may make extrapolations from small perturbations to large ones invalid. For this

reason, a variation on sensitivity analysis is suggested and attempted here that

uses large perturbations instead of small ones. This variation will be referred to

as ”perturbation analysis” to distinguish it from sensitivity analysis.
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At this point, a possible framework for analysis becomes apparent. One can

generate an ensemble of models from experimental wild-type flux data. This ensemble

of models can then be used to simulate the system’s response to a series of single-

enzyme perturbations. These simulations will give time-dependent concentration and

flux data that can be used to calculate target variables of interest, including target

fluxes and yields. Because each model will predict a different set of fluxes and yields,

one can look at the distribution of fluxes and yields over the ensemble models resulting

from a given perturbation and compare these distributions to the wild-type target

flux and yield to find the enzyme perturbation that increase these values for the most

models. It can then be hypothesized that this enzyme perturbation is the one that

is most likely to increase the target flux and yield in the actual system. This is the

basic framework of the investigation to be reported here.

Potential problems may be foreseen in the details of this framework, however. One

potential issue is that metabolic networks tend to be fairly robust, and changes in

just one enzyme may not be enough to elicit a significant response from the system.

One must realize that the robustness of a network is often due to redundancy in the

network (Stelling et al., 2002). With this in mind, two methods are suggested. First,

one can determine subsets of reactions that are structurally limited to having the same

flux at steady state, as described by Pfeiffer et al. (1999), and perturb these enzymes

in tandem. This is particularly helpful in the case of overexpressions, in which case one

or more enzymes may restrict the flux of another overexpressed enzyme’s reaction.

Another approach is to knock out a minimal cut set that eliminates undesirable

elementary modes. By eliminating all but the highest-yield elementary modes, only

the maximum yield is theoretically possible at steady state. With this limitation,

interest is transferred from yield (which is now restricted to the desirable theoretical

maximum) to the ability of the model to reach steady state. Only by never reaching

a steady state may a model not achieve the maximum theoretical yield.

Combining these approaches gives the framework which this investigation will

follow. A series of perturbation simulations will be conducted using ensemble models
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constructed with various specifications. Each model in the ensemble will predict

different fluxes, yields, concentrations, and other measures of network behavior

resulting from the perturbations. These predictions will be analyzed by examining the

distributions of select measures of network behavior, including change in the target

flux value, yield, and the rate of accumulation of metabolites. Favorable behavior will

at first include maximizing the target flux and yield, and as the investigation reveals

problematic bottlenecks in the network, additional conditions for favorable behavior

will be considered, such as minimizing the rate of accumulation of metabolites that

tend to accumulate and increasing the concentration of metabolites that tend to be

scarce. Evaluating which perturbations tend to alleviate which bottlenecks will reveal

the important mechanisms behind the functionality of the network. This insight will

suggest enzyme targets for target flux and yield optimization.

The above framework is subject to human judgment, which is slow, potentially

inaccurate, and impossible to automate. It also may require simulation of a large

number of perturbations. To avoid these issues, a systematic approach to enzyme

targeting will be developed. To start developing the systematic method, one needs to

have quantitative data that defines current state of the system and a target optimal

state of the system. For a metabolic network, one way to describe the state of

the system quantitatively is with fluxes. As such, two flux vectors are calculated.

The first is a representative flux vector that represents the general behavior of the

models. The second is an ideal flux vector that has three features: (1) it has the

maximum yield (the optimal state), (2) it is at steady state, and (3) of all maximum-

yield steady-state vectors, it is closest to the representative vector according to some

similarity metric. The purpose of similarity is to reduce the number and severity of

perturbations required to reach the optimal fluxes and to maximize the likelihood

that the ideal flux vector can be reached by the system.

One must find a way to systematically calculate the ideal flux vector. Recall

that a minimal cut set knockout can be found that represses all but the maximum-

yield elementary modes, forcing the network to have the maximum yield at steady
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state. Also note that the maximum-yield elementary modes allow one to form a basis

set of vectors for the maximum-yield steady-state space. This suggests an approach

that will serve as the framework for the systematic method. First, simulate the

MCS knockouts that eliminate all elementary modes but those with the maximum

yield. Next, calculate a flux vector that is representative of the ensemble models’

predicted flux distributions. Project this vector onto the maximum-yield steady-

state space to obtain an ideal flux vector. Comparing the two vectors quantitatively

can simultaneously suggest multiple enzyme targets. This is a significant advantage

over perturbation analysis and other single-enzyme or predefined-group targeting

methods, since the effects of multiple simultaneous enzyme overexpressions cannot be

predicted from the effects of individual overexpressions. Also, attempting to test all

possible combinations of enzymes or enzyme groups quickly becomes computationally

prohibitive, whereas the systematic method only requires one perturbation to be

simulated.
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Chapter 2

Methods

A flowchart representing the general method to be presented is given in Figure 2.1.

There are two different approaches that will be demonstrated in this study. The

first, referred to as the manual approach, is driven by human judgment and focuses

on comparing results qualitatively. It is primarily useful for hypothesis testing of

network behavior. For example, one can hypothesize that the overexpression of an

enzyme E will lead to a larger average flux for reaction R across the models. This

approach lacks a predefined routine to guide the user, which is disadvantageous. For

this reason, the second approach, called the systematic approach, was developed.

This approach is driven by quantitative calculations and has specific instructions for

each step. The systematic method outputs a list of the enzymes of the system rank-

ordered according to how strongly the method indicates the enzymes to be effective

overexpression targets. For this method, ”effective” means likely to increase the target

yield and flux of the network.

2.1 Choosing a network

Two networks were chosen for examination in this study. The first is a model of

DAHP production in E. coli, and the second is a toy model used to further test the

systematic method.

10



Figure 2.1: Flowchart of the general method of investigation. Steps that differ
between the manual and systematic approaches are shown in red text.
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2.1.1 DAHP production network

The network that will be studied in this investigation is a model of the production of 3-

deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) in Escherichia coli. DAHP is a

precursor to the production of aromatic amino acids in the cell. Aromatic amino acids

have numerous industrial uses, primarily in the food and pharmaceutical industries.

For example, l-phenylalanine is used in the production of aspartame, an artificial

sweetener, and is used as a flavor enhancer and as an intermediate in pharmaceutical

production (Rizk and Liao, 2009).

This particular network was chosen for a few reasons. First, it is well-studied

experimentally, allowing for checking of the feasibility and effectiveness of suggested

enzyme targets against results reported in the literature. Also, it has previously

been studied by Rizk and Liao (2009) using the ensemble modeling method, allowing

for one to check one’s application of the ensemble modeling method by reproducing

similar results. This allows one to attribute any inconsistencies with experimental

data to the novel approach presented here and not to incorrect application of any

elements of the ensemble modeling method.

A map of the network to be studied is shown in Figure 2.2. This network is the

same network studied by Rizk and Liao (2009). The network includes glycolysis, the

phosphotransferase system for phosphorylating glucose and initiating glycolysis, the

pentose phosphate shunt, part of the tricarboxylic acid cycle for succinate production,

and additional pathways for acetate and formate production from pyruvate. In

addition to the reactions shown in Figure 2.2, note that there are three artificial

cofactor sink reactions for ATP, NADH, and NADPH in the model not shown

explicitly.

Table 2.1 lists the full names and abbreviations of the enzymes and metabolites

present in the network, as well as the stoichiometry of each reactions. Table 2.2 gives

a list of the reactions in the network model and their properties. The properties listed

in Table 2.2 include the wild-type steady-state fluxes used in this investigation,
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Figure 2.2: A map of the DAHP production network. Note that the artificial
cofactor sink reactions are not shown in this map.
(Source: Rizk and Liao (2009))
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Table 2.1: The full and abbreviated names of the metabolites and reactions, and the stoichiometry of each
reaction in the DAHP network.

Metabolite no. Abbreviation Full name Enzyme no. Enzyme abbreviation Enzyme full name Reaction stoichiometry

1 2PG 2-phosphoglycerate 1 ack acetate kinase ACP+ADP 
 ACETATE+ATP
2 3PG 3-phosphoglycerate 2 aroG 2-dehydro-3-deoxyphosphoheptonate aldolase E4P+PEP 
 DAHP
3 ACCOA acetyl-CoA 3 EI enzyme I PEP 
 P1+PYR
4 ACETATE acetate 4 EIIA enzyme IIA P2 
 P3
5 ACP acetyl phosphate 5 EIIBC enzyme IIBC P3+GLUCOSE 
 G6P
6 ADP adenosine diphosphate 6 eno enolase 2PG 
 PEP
7 ATP adenosine triphosphate 7 fba fructose biphosphate aldolase FDP 
 DHAP+GAP
8 DAHP 3-deoxy-D-arabino-heptulosonate-7-phosphate 8 fum fumarase MAL 
 FUM
9 DHAP dihydroxy acetone phosphate 9 gap glyceraldehyde 3-phosphate dehydrogenase GAP+NAD 
 DPG+NADH
10 DPG 1,3-biphosphoglycerate 10 gnd 6-phosphogluconate dehydrogenase PGT+NADP 
 Ru5P+NADPH
11 E4P erythrose-4-phosphate 11 gpm phosphoglycerate mutase 3PG 
 2PG
12 P1 phosphate group 1 12 HPr histidine protein P1 
 P2
13 P2 phosphate group 2 13 mdh malate dehydrogenase NADH+OAA 
 MAL+NAD
14 P3 phosphate group 3 14 pfk phosphofructokinase ATP+F6P 
 ADP+FDP
15 F6P fructose-6-phosphate 15 pfl pyruvate formate lyase PYR 
 ACCOA+FORMATE
16 FDP fructose-1,6-biphosphate 16 pgi phosphoglucoisomerase G6P 
 F6P
17 FORMATE formate 17 pgk phosphoglycerate kinase ADP+DPG 
 3PG+ATP
18 FUM fumarate 18 pgl 6-phosphogluconolactonase PGL 
 PGT
19 G6P glucose-6-phosphate 19 ppc phosphoenolpyruvate carboxylase PEP 
 OAA
20 GAP glyceraldehyde-3-phosphate 20 pps phosphoenolpyruvate synthase ATP+PYR 
 ADP+PEP
21 GLUCOSE b-D-glucose 21 pta phosphate acetyltransferase ACCOA 
 ACP
22 MAL malate 22 pyk pyruvate kinase ADP+PEP 
 ATP+PYR
23 NAD nicotinamide adenine dinucleotide 23 recATP ATP recycle ATP 
 ADP
24 NADH nicotinamide adenine dinucleotide reduced 24 recNADH NADH recycle NADH 
 NAD
25 OAA oxaloacetate 25 recNADPH NADPH recycle NADPH 
 NADP
26 PEP phosphoenolpyruvate 26 rpe ribulose-5-phosphate 3-epimerase Ru5P 
 X5P
27 PGL 6-phosphogluconolactone 27 rpi ribulose-5-phosphate isomerase Ru5P 
 R5P
28 PGT 6-phosphogluconate 28 sdh succinate dehydrogenase FUM 
 SUCCINATE
29 PYR pyruvate 29 tal transaldolase GAP+S7P 
 E4P+F6P
30 R5P ribose-5-phosphate 30 tkt1 transketolase (1st reaction) R5P+X5P 
 GAP+S7P
31 Ru5P ribulose-5-phosphate 31 tkt2 transketolase (2nd reaction) E4P+X5P 
 F6P+GAP
32 S7P sedoheptulose-7-phosphate 32 tpi triose phosphate isomerase DHAP 
 GAP
33 SUCCINATE succinate 33 zwf glucose-6-phosphate dehydrogenase G6P+NADP 
 PGL+NADPH
34 X5P xylulose-5-phosphate 34 glucose in glucose transport 
 GLUCOSE
35 NADP nicotinamide adenine dinucleotide phosphate 35 acetate out acetate transport ACETATE 

36 NADPH nicotinamide adenine dinucleotide phosphate reduced 36 dahp out DAHP transport DAHP 


37 formate out formate transport FORMATE 

38 succinate out succinate transport SUCCINATE 




Table 2.2: The reactions of the DAHP model and their assumed standard Gibbs
free energies (SGFE), inhibitor metabolites, and wild-type steady-state fluxes for a
75:25 glycolysis:pentose phosphate flux ratio.
(Source: Rizk and Liao (2009))

Enzyme no. Enzymes
SGFE

(kcal/mol)
Inhibitors

Steady-state fluxes
(mmol gDCW−1 hr−1)

1 ack -4.7 1.625
2 aroG -17.9 0.26
3 ei -6.45 1.3
4 eiia -0.1 1.3
5 eiibc -6.45 1.3
6 eno -0.2 2.145
7 fba 1.1 1.105
8 fum 1.3 0.26
9 gap 4.2 2.145
10 gnd -0.8 0.325
11 gpm -2.2 2.145
12 hpr -0.1 1.3
13 mdh -4.8 0.26
14 pfk -4.5 PEP inhibition 1.105
15 pfl -2.5 1.625
16 pgi -2.5 0.975
17 pgk 4.7 2.145
18 pgl -13.3 0.325
19 ppc -11.7 0.26
20 pps -3.6 0.017
21 pta -3.9 1.625
22 pyk -8.4 0.342
23 recATP -0.1 2.99
24 recNADH -0.1 1.885
25 recNADPH -0.1 0.65
26 rpe -0.1 0.13
27 rpi 0.7 0.195
28 sdh -0.7 0.26
29 tal -0.6 0.195
30 tkt1 0.9 0.195
31 tkt2 -0.6 -0.065
32 tpi 0.2 1.105
33 zwf -0.9 0.325
34 glucose in -3.5 1.3
35 acetate out -3.5 1.625
36 dahp out -3.5 0.26
37 formate out -3.5 1.625
38 succinate out -3.5 0.26
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standard Gibbs free energies, and regulating metabolites for each reaction. The

network includes 38 reactions, of which five are external transport reactions. One

of the transport reactions inputs glucose into the network, while four separate

outward transport reactions are responsible for exporting acetate, DAHP, formate,

and succinate from the system.

Wild-type steady-state fluxes were determined by Rizk and Liao (2009) from

external fluxes measured experimentally. However, it should be noted that the flux

ratio between glycolysis and the pentose phosphate pathway at the flux split at

glucose-6-phosphate (G6P) is unknown. Rizk and Liao (2009) generated four sets of

ensemble models, each using a different glycolysis:pentose phosphate flux ratio (25:75,

50:50, 75:25, and 95:5), and determined that only the 75:25 and 95:5 split ratios lead

to predictive ensembles. As such, these ratios are most likely more representative of

the actual cellular system. For this investigation, a 75:25 split ratio was assumed.

The reaction governed by the enzyme phosphofructokinase (Pfk) is inhibited by

phosphoenolpyruvate (PEP). This inhibition is modeled as competitive inhibition.

Additionally, the enzyme 2-dehydro-3-deoxyphosphoheptonate aldolase (AroG) is

assumed to have been modified to be resistant to feedback inhibition from tryptophan

(Rizk and Liao, 2009).

2.1.2 Toy network

An additional, smaller network is studied to improve confidence in the generality

of the systematic enzyme targeting method presented in Section 2.5.3. This toy

network is the same network used by Trinh et al. (2009), though the standard Gibbs

free energies of the reactions were contrived in this study. A map of the network is

presented in Figure 2.3. For purposes of this study, metabolite A is considered the

input of interest, and metabolite P is considered the product of interest. Reaction

stoichiometry, standard Gibbs free energies, and wild-type steady-state fluxes are

presented in Table 2.3. All reactions but r6r and r8r are irreversible. Metabolites
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Figure 2.3: A map of the toy network. Inward transport fluxes are colored red,
outward transport fluxes are colored blue, and reversible transport fluxes are colored
violet. The input metabolite of interest is colored red, and the outward metabolite of
interest is colored blue.
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Table 2.3: Enzyme names and their corresponding reactions’ wild-type steady-state fluxes, standard Gibbs free
energies, and stoichiometries for the toy network.

Enzyme no. Enzyme name
Wild-type steady-state flux

(mmol gDCW−1 hr−1)
SGFE (kcal/mol) Reaction stoichiometry

1 r2 0.3 -5 A → C
2 r3 0.75 -5 C → D + P
3 r5 0.7 -5 A → B
4 r6r 0.45 -0.1 B 
 C
5 r7 0.25 -5 B → 2 P
6 r1 1 -5 → A
7 r4 1.25 -5 P →
8 r8r 0 -0.1 B 

9 r9 0.75 -5 D →



include A, B, C, D, and P and are allowed to vary between 0.01 and 100 times their

wild-type steady-state concentrations.

2.2 Generating the ensemble of models

Using the metabolic network information presented in Section 2.1, one can generate

an ensemble of dynamic models for the network. The process and theory behind

ensemble model generation is described in detail by Tran et al. (2008), with additional

details given by Contador et al. (2009). The process as applied in this study will be

briefly summarized in this section.

The first step in ensemble model generation is to check the thermodynamic

feasibility of the directions of the supplied steady-state fluxes. This determination is

based on the specified allowable Gibbs free energy ranges for each of the reactions. The

allowable Gibbs free energies may either be specified directly or be calculated from

the specified standard Gibbs free energies and allowable metabolite concentration

ranges. For this study, the metabolite ranges specified by Tan et al. (2011) are used.

Non-cofactor metabolites are allowed to vary between 0.01 and 100 times their steady-

state concentrations, and cofactors are restricted to their steady-state concentrations.

Cofactor concentrations are restricted in order to simulate the environment of the

cell, where cofactor concentrations are tightly regulated. The calculated Gibbs free

energies determine the allowable directions for each reaction. Those reactions that are

limited to negative free energies may only react in the forward direction. Similarly,

those reactions limited to positive free energies may only react in the backward

direction. Reactions whose free energy limits span both positive and negative free

energies may react in either direction. The forward direction for each reaction is

defined by the stoichiometric matrix of the network.

Once the steady-state fluxes are found to be feasible according to the ranges of

allowed Gibbs free energies, one must choose a kinetic model type to use to model

each reaction individually. For this study, elementary reaction kinetic models are
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used for their simplicity and versatility. Elementary reactions have been used in

many ensemble modeling studies of metabolic networks to date (Tran et al., 2008;

Contador et al., 2009; Rizk and Liao, 2009; Tan et al., 2011).

The generation procedure for a single model is summarized in Figure 2.4. To use

elementary reaction modeling, each reaction in the network must first be expanded

into a series of elementary reactions. Each elementary reaction j of overall reaction i

follows the mass action principle shown in Equation 2.1.

vi,j = ki,j[x1][x2] · · · [xm] (2.1)

In Equation 2.1, vi,j is the reaction rate of the jth elementary reaction of overall

reaction i, ki,j is the kinetic parameter of elementary reaction i of overall reaction

j, and [xk] represents the concentration of the kth reactant of m total reactants

associated with elementary reaction j of overall reaction i. These reactants may be

either enzyme complexes or metabolites. This expansion is shown by Contador et al.

(2009) for reactions with one or two reactants and one or two products, with or

without inhibition.

Note that Equation 2.1 involves many variables that may be unknown, primarily

the metabolite and enzyme complex concentrations. To proceed without knowledge

of these variables, the concentrations of the metabolites and enzyme complexes are

lumped into the kinetic parameter. In the parameter sampling step of the ensemble

generation step, the lumped kinetic parameter is sampled, making concentration data

unnecessary. As a result of the parameter lumping, each metabolite and enzyme

complex concentration is expressed as a fraction of a reference concentration. For

metabolites, the reference concentration is the steady-state concentration, and for

enzyme complexes, the reference concentration is the total enzyme concentration

(the sum of the concentrations of the complexed forms of the enzyme, including the

free enzyme). Each concentration is divided by its reference concentration, and the

kinetic parameter is multiplied by each of the reference concentrations. This process
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Figure 2.4: The process by which a single model of an ensemble is generated. This
process needs to be repeated n times, where n is the specified number of models in
the ensemble. Different models are generated each run as a consequence of random
sampling of reaction rate reversibilities and enzyme concentration fractions.
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is described in much more detail by Tran et al. (2008). As a result, the metabolite

and enzyme complex concentration values are expressed as fractions of their reference

concentration, as shown in Equation 2.2.

vi,j = (ki,j[x1,ref ][x2,ref ] · · · [xm,ref ])
(

[x1]

[x1,ref ]

)(
[x2]

[x2,ref ]

)
· · ·

(
[xm]

[xm,ref ]

)
= Ki,j[x̂1][x̂2] · · · [x̂m]

(2.2)

In Equation 2.2, [xk,ref ] is the reference concentration of reactant k, Ki,j is the lumped

kinetic parameter, and [x̂k] is the concentration fraction of reactant k.

In this study, the elementary reaction expansion process is done using matrix

representations of the system. The system of total reactions is represented as a

matrix equation, shown in Equation 2.3.

dx(t)

dt
= S · v(t) (2.3)

In Equation 2.3, x is the vector of metabolite concentrations at time t, S is the

stoichiometric matrix representing the network structure, and v(t) is the flux vector

of the system at time t. The stoichiometric matrix relates reaction fluxes to metabolite

concentrations through the stoichiometry of each reaction. Each row of S represents a

metabolite, and each column represents a reaction. Element Si,j is the stoichiometric

coefficient of metabolite i in reaction j. After expanding the total reactions to

elementary reactions, Equation 2.4 describes the system,

dxexp(t)

dt
= Sexp · vexp(t) (2.4)

where xexp(t) is the expanded vector of metabolite and enzyme complex concentra-

tions, including both metabolite concentrations and enzyme complex concentrations;

Sexp is the expanded stoichiometric matrix of the system that describes the structure

of the elementary reaction network; and vexp(t) is the expanded flux vector that lists

the fluxes of each of the elementary reactions at time t.
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Once the elementary reactions are constructed, reversibilities are randomly

sampled for each of the elementary reaction steps. The definition of reversibility

for elementary reaction step j of total reaction i as defined by Tran et al. (2008) is

given in Equation 2.5,

Ri,j =
min(vforwardi,j , vreversei,j )

max(vforwardi,j , vreversei,j )
(2.5)

where Ri,j is the reversibility of elementary reaction step j for overall reaction i.

”Elementary reaction step” refers to a pair of elementary reactions that governs the

forward and reverse reaction rates of the reactions between one set of elementary

metabolites and the next within an overall reaction; vforwardi,j refers to the forward

elementary reaction rate, and vreversei,j refers to the reverse elementary reaction rate.

Reversibility ranges between 0 and 1, with 0 indicating an irreversible reaction and 1

indicating a perfectly reversible reaction.

Additionally, a set of concentration fractions is sampled for each of the enzymes.

An enzyme concentration fraction is the fraction of an enzyme’s total concentration

that is found in a specified complex form of the enzyme. For example, if an enzyme

can be found in its free form or bound to either metabolite A or B, then there are three

complex forms for the enzyme. The enzyme concentration fraction for the free form

specifies the fraction of the total that is present in the free form. The concentration

fraction is similarly defined for each of the complexed A and B forms. Concentration

fractions are constrained such that all enzyme concentration fractions for a given

enzyme must add up to 1.

After the reversibilities and enzyme concentration fractions are chosen via

sampling, the reversibilities must be checked for thermodynamic feasibility. Each

randomly sampled reversibility is checked against specified allowable ranges of

Gibbs free energies. Those that are not consistent are resampled until they meet

thermodynamic specifications. The feasible set of reversibilities is used along with the

enzyme concentration fractions to solve for kinetic parameters that give the specified

steady-state flux distribution.
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Once this procedure is finished, one ensemble model has been generated. The

procedure is repeated n times, where n is the specified number of models desired in

the ensemble. This investigation uses n = 1500 models for all simulations for both the

DAHP and toy networks, though larger networks will need more models to effectively

cover the kinetic parameter space.

In this study, the ensemble generation procedure is performed using a modified

version of a MATLAB R© script provided by Tan et al. (2011). The program takes

as input the stoichiometric matrix of the total reaction system, the standard Gibbs

free energies of the reactions, and the allowable concentration ranges The primary

modifications made to the program were the separation of the ensemble generation

and simulation functionalities into two separate programs and the allowing of multiple

enzyme perturbations at any desirable overexpression or underexpression level. More

details about the simulation procedure can be found in Section 2.4.

2.3 Choosing the perturbations to be simulated

Many tools are available to help the investigator determine the perturbations to be

simulated. The manual method relies on iterating through all possible perturbations

in a process called perturbation analysis (see Section 2.3.1). In perturbation analysis,

enzymes may be expressed individually or as parts of predefined groups. One can

group enzymes into enzyme subsets, which are groups of enzymes that must have the

same steady-state fluxes (see Section 2.3.2). Another option is that a minimal cut set

may be knocked out prior to perturbation analysis to constrain network functionality

and minimize the number of perturbations to be iterated over. This minimal cut set

is one of the smallest groups of enzymes that will repress a specified functionality

from the metabolic network when knocked out (see Section 2.3.3). Functionalities to

be eliminated are described by elementary modes, which are flux distributions that

represent the fundamental steady-state flux modes of the network. Elementary modes

reveal the maximum theoretical yield of the system and specify how this yield may be
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achieved (see Section 2.3.2). The systematic method begins by selecting the minimal

cut set knockouts.

2.3.1 Performing perturbation analysis

Perturbation analysis is a modification to sensitivity analysis that can potentially

identify enzyme targets for knockout or overexpression. Sensitivity analysis is, in

essence, the monitoring of the response of output variables to a small change in

a chosen variable in the dynamic equations. This process is exemplified in the

determination of control or sensitivity coefficients. A sensitivity coefficient is the

fractional changes in one variable in response to an infinitesimal fractional change in

another variable (Fell, 1992). These sensitivity coefficients are defined in Equation

2.6.

CV
P = lim

δP→0

δV/V

δP/P
(2.6)

In Equation 2.6, CV
P is the sensitivity coefficient for variable V with respect to

variable P .

In metabolic control analysis, flux sensitivity coefficients are used extensively

(Fell, 1992). A flux sensitivity coefficient is the control coefficient of a reaction

flux with respect to a total enzyme concentration. The problem with sensitivity

coefficients with regard to metabolic networks, however, is that enzyme concentration

perturbations in perturbation experiments usually involve very large changes in

enzyme concentrations. It is not guaranteed that the effect of small changes is at

all indicative of the effects of large changes, i.e., the response may not be linear. For

this reason, analysis using large changes is likely to be more predictive of the behavior

of the actual biological system under perturbation.

Because they are not dependent on linearized approximations of network behavior,

ensemble models allow for large changes in enzyme concentrations to be simulated.
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Perturbation analysis, then, is the prediction of the response of a target variable to a

large change in an enzyme’s concentration via ensemble model simulation.

Perturbation analysis is performed through a series of simulations of individual

enzyme overexpressions and knockouts. The overexpression and knockout of each

individual enzyme or enzyme group is simulated using each model in the ensemble.

Either individual enzymes or independent groups of enzymes, such as enzyme subsets

(see Section 2.3.2) may be perturbed in turn and iterated over. Each model predicts a

different network behavior. This diversity of behaviors is captured in the distributions

of the values of the variables of interest predicted by the models. Variables of

interest may include fluxes, concentrations, yields, and rates of accumulation of

metabolites. Each distribution for each variable of interest resulting from the

simulations is represented as a histogram and compared to its respective wild-type

value to determine which enzyme perturbations tend to increase the variables of

interest the most. More details on how this comparison to wild-type values is

performed is presented in Section 2.5.1.

2.3.2 Elementary mode and enzyme subset calculation

Elementary modes describe pathways through a metabolic network that consist of an

irreducible set of enzymes required to maintain a steady state (Trinh et al., 2009).

Each elementary mode can be considered as a steady-state flux vector that indicates

one of these irreducible pathways. Since these vectors are at steady state, where

dx
dt

= 0, they lie within the null space of the stoichiometric matrix S and are mapped

to 0 by S. The entire set of elementary mode flux vectors spans the null space of

S. Since all steady-state vectors for a metabolic network lie within the null space

of that network’s stoichiometric matrix S, any steady-state flux distribution of the

network can be represented by some linear combination of elementary modes. As

such, elementary modes provide a way to calculate the theoretical maximum yield of

a metabolic network with respect to an input and output flux pair of interest. By
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finding the elementary mode (or set of modes) with the highest yields, one has found

both the highest yield itself and the particular flux space that accomplishes this yield.

This knowledge can then be used to determine a minimum cut set of enzymes that,

when knocked out, will force the system to manifest the elementary modes at steady

state that give the maximum yield. More information on the minimum cut set and

its determination is presented in Section 2.3.3.

To derive the elementary modes of the system, the MATLAB R© toolbox Metatool

5.1 is used. The toolbox and its availability, use, and functionality are described by

Kamp and Schuster (2006). Additional details on the algorithm used by the program

to find the elementary modes are presented by Urbanczik and Wagner (2005).

As a part of its calculation routine, Metatool finds subsets of enzymes that are

structurally limited to the same flux at steady state (Pfeiffer et al., 1999). These

subsets are useful to this study because they reveal enzymes that are parts of a

reaction set, such as those involved in a linear chain of reactions, that must be

overexpressed as a whole for any significant effect on network behavior to be assessed.

The use of Metatool in this study involves the following inputs:

1. the stoichiometric matrix of the network to be studied and

2. the indication of the irreversibility of each reaction in the network.

Metatool then outputs the following:

1. the flux distributions defining each elementary mode and

2. the enzyme subsets.

For the DAHP production network described in Section 2.1, ten reactions were

considered to be irreversible. These reactions were AroG, Pfk, Pgl, Pyk, Pps, and the

five transport reactions. With this input, Metatool indicated twenty-six elementary

modes and fifteen enzyme subsets. Of the elementary modes, one mode exhibited the

maximum theoretical yield of 0.8571. This mode is shown in Figure 2.5. The enzyme

subsets are shown in Figure 2.6.
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Figure 2.5: Reactions enclosed in the box constitute the maximum-yield elementary
mode of the DAHP production network, as determined by Metatool.
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Figure 2.6: Each box encloses an enzyme subset of the DAHP production network,
as determined by Metatool.
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2.3.3 Minimum cut set determination

For a metabolic network, a minimum cut set is one of the smallest sets of enzymes that,

when knocked out, represses a specified functionality (Klamt, 2006). The specified

functionality can be a set of elementary modes which, when repressed, will no longer

be expressed as steady-state flux distributions. For this study, a minimum cut set was

determined to repress all elementary modes other than the maximum-yield elementary

modes, while preserving all maximum-yield elementary modes. By knocking out this

minimal cut set, the system is guaranteed to have the maximum theoretical yield if

it reaches a steady state.

CellNetAnalyzer, a MATLAB R© toolbox, was used to calculate the minimum cut

set. Klamt et al. (2007) has given a description of the program, its capabilities, and its

availability. To obtain minimum cut sets from the program, two inputs were required:

1. the elementary modes that must be repressed, and

2. the elementary modes that must be retained.

Both of these must be specified separately because the modes to be repressed represent

the smallest set of modes that will be guaranteed to be repressed by the calculated

minimum cut sets, and similarly for the modes to be retained. To illustrate this

point, imagine a network with three elementary modes. Suppose that one wants to

eliminate the first mode and retain the second and third. If one only specifies that

the first mode is to be eliminated, the second and third modes may also be eliminated

by the minimum cut sets that are calculated. If one wants to ensure that they are

not eliminated, one must explicitly specify that they are to be retained.

For the DAHP production network described in Section 2.1.1, 100 minimal cut sets

were found that repress all elementary modes except the maximum-yield mode shown

in Figure 2.5. The final minimal cut set chosen for follow-up investigations included

Pfl, Ppc, Pyk, and Zwf. This minimal cut set was chosen out of the 100 because it

was the only minimal cut set for which all metabolites that were products of at least
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one intact reaction were reactants of another intact reaction. ”Intact reaction” refers

to a reaction that is not knocked out. This was determined by visual inspection of

the network structure.

2.4 Simulating perturbations using the ensemble

models

Simulation using the ensemble models is conducted by setting up and solving a system

of ordinary differential equations. Each of the elementary reactions has its own rate

equation written in a form derived from the mass action principle shown in Equation

2.1. The inputs of Equation 2.1 are normalized concentrations, and the outputs

are reaction rates. In order to set up a solvable system of ODEs, the reaction

rate outputs need to be related back to the concentrations. This can be done by

substituting Equation 2.1 for each elementary reaction into vexp of Equation 2.4.

This results in vexp being a time-dependent vector of mass-action principle equations,

with metabolite concentrations as both the inputs and time-dependent outputs, and

the resulting ODE system is solvable.

The system of ODEs is used to simulate the effect of enzymatic perturbations on

the steady-state flux levels and concentrations. To simulate an enzyme perturbation,

the total concentration of an enzyme is increased or decreased by some factor. The

absolute total enzyme concentration has been lumped into the kinetic parameter

during the concentration normalization process. For this reason, the kinetic

parameters of the elementary reactions for the enzyme of interest and its complexes

are multiplied by the desired perturbation factor. This process is described in more

detail by Tran et al. (2008). Note that changing the total enzyme concentration

does not affect the enzyme concentration fractions that were sampled as described in

Section 2.2. In this study, unless otherwise noted, overexpressions are represented by
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a twofold increase in total enzyme concentration, and knockouts are represented by

a 99 percent decrease in total enzyme concentration.

In perturbation simulations, initial conditions need to be specified in the form of

concentrations of metabolites and enzyme concentration fractions, the latter being

sampled as described in Section 2.2. To attempt to use realistic concentration values,

the initial concentrations for the metabolites are set to the wild-type steady-state

concentrations. In the kinetic parameter lumping procedure described in Section 2.2,

concentrations were expressed as percentages (in decimal form) of their respective

steady-state concentrations. As a result, the initial condition vector of concentrations

is a vector of ones. A second motivation for using the wild-type steady-state

concentrations instead of random initial conditions is to avoid possible problems

with multiple steady states. Though Tan et al. (2011) mention that multiple steady

states are relatively rare, experience gathered from this study indicate otherwise,

with as many as 90 percent of generated models exhibiting multiple steady states

(unpublished results).

In summary, the dynamic simulation process takes as inputs the following:

1. the kinetic model parameters and enzyme concentration fractions generated

from ensemble modeling,

2. the initial conditions in terms of percentages of wild-type steady-state concen-

trations of metabolites,

3. the length of time to be simulated, and

4. the fold-changes for the total enzyme concentrations of the enzymes to be

perturbed,

and outputs the following:

1. the dynamic responses of the fluxes for both total and elementary reactions and
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2. the dynamic responses of concentration percentages of metabolites and enzyme

complexes relative to the wild-type steady-state concentrations.

The program used to conduct the simulations is a modified version of a MATLAB R©

script written by Tan et al. (2011). It utilizes the ode15s ODE solver. The primary

modifications to the script are the removal of a simple check for multiple steady states,

the parallelization of the script to simulate using multiple models simultaneously, and

the separation of model generation and simulation into separate scripts.

2.5 Analysis of simulation results

To analyze simulation results, two different methods are used. For the manual

approach, the distributions are compared according to the model rescuing concept,

as described in Section 2.5.1. A particular application of the model rescuing concept

that studies which models are closest to reaching a steady state is described in Section

2.5.2. The systematic approach calculates parameters systematically based on the

predicted flux values from the models following minimal cut set knockout simulation.

The systematic calculation is described in Section 2.5.3.

2.5.1 Model rescuing concept

It is the goal of this study to identify enzymes whose perturbation will increase the

target flux and yield of a metabolic system. The ”model rescuing concept” is a

whole-ensemble simulation analysis method directed toward this end.

When a perturbation is simulated, each ensemble model gives a different prediction

for the final values of the variables of interest, which include fluxes, concentrations,

and yields. In perturbation studies, one looks for the enzymes which, when

overexpressed, lead more models out of the whole set of models in the ensemble

to shift toward increased yield and flux of the desired products. In effect, one would

plot a histogram of yield or of flux for each perturbation simulated and look for
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those enzymes that, when perturbed, would by themselves lead to a larger shift in

the histogram distribution curve to the right (toward the higher level of yield or flux

value).

Why can this approach be used to predict useful enzyme perturbations? Assume

that some subset of models in the ensemble is capable of predicting the phenotype of

the system under all perturbations. Those perturbations that lead to more favorable

distributions are more likely to change the output variable of interest to a more

favorable value for the accurate subsets of models and, therefore, for the actual cellular

system.

This line of reasoning is at the heart of the model rescuing concept. The goal is

to find those enzyme perturbations that affect target variables in a favorable sense

for the largest fraction of models. ”Adjusting target variables in a favorable sense”

typically refers to increasing transport fluxes for desirable products and/or product-

to-substrate yields and decreasing the concentration and rate of accumulation of

metabolites that tend to accumulate, though other variable changes may be defined

as favorable as seen fit by the investigator. Those perturbations that accomplish the

most favorable adjustment as defined by the investigator are proposed to be the best

candidates for experimental perturbation studies.

For the DAHP network presented in Section 2.1, the model rescuing method

is applied in combination with perturbation analysis to determine whether single-

enzyme perturbations can lead to discovery of the optimum set of simultaneous

enzyme perturbations. First, single-enzyme perturbation analysis is performed on

the network as described in Section 2.3.1 using 1500 models. The dynamic response

of each single-enzyme perturbation is simulated for 2000 hours. The distributions for

two variables of interest, the outward transport flux of interest and the product-to-

substrate yield, are compared to their wild-type values. Only those perturbations that

tend to increase the yield are considered to be beneficial. A function that quantifies

the optimality of a perturbation based on the statistics of the distribution for each

of the variables of interest could be constructed and used to select the most optimal
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perturbation. This was not pursued here, however, because the initial distribution

result immediately shows from inspection that network rigidity and robustness causes

the network to be insensitive to any single-enzyme perturbation. As a result, no useful

conclusions may be drawn from this set of single-enzyme perturbation studies (see

Section 3.1).

2.5.2 Steady-state analysis method

This section presents an application of the model rescue method described in Section

2.5.1. In this method, the variable of interest is a metric that indicates how far

a model is from steady state at the end of 2000 hours of simulation. A minimal

cut set knockout is performed on the network first to repress the functionality of all

elementary modes except those with the theoretical maximum yield, such that any

model reaching a steady state will exhibit that yield. The goal, then, is to find those

perturbations that, when performed in addition to the minimal cut set knockouts,

enable more models to reach a steady state.

The key to this method is the minimal cut set knockouts because they enable

the optimization process. There are usually multiple variables of interest that are

sought to be improved simultaneously via enzyme perturbations. The minimal cut

set knockout procedure described in Section 2.3.3 allows us to guarantee that the

steady-state yield will be at the theoretical maximum. This provides one with a

condition that must be met in order to maximize the yield.

A metric is needed to measure how close a model’s final predicted flux distribution

is to steady state. To derive a metric, we use the fact that any steady-state flux

distribution lies in the null space of the stoichiometric matrix of a network. For any

steady-state flux distribution column vector vss, Equation 2.7 must be satisfied,

S · vss = 0 (2.7)
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where S is the stoichiometric matrix of the network, and vss lies in the null space of

S. Any deviation in the right-hand side of Equation 2.7 from zero indicates that the

network is not at steady-state for a given flux distribution vector. Larger deviations

in the right-hand side from zero indicate larger deviations of the flux vector from

steady-state.

Consider the case where the flux distribution vector v is not a steady-state flux

distribution. This case is described in Equation 2.8, with the right-hand side of

Equation 2.7 being replaced by a non-zero vector z.

S · v = z (2.8)

The magnitude of z represents how far a given flux distribution is from steady-state.

As such, z is used to define s, a scalar steady-state error metric, as shown in Equation

2.9.

s , ||z||2 = z> · z (2.9)

Strictly speaking, any value for s other than zero indicates that a flux distribution is

not at steady state. However, it can take a very long simulation time for a model to

reach a true steady-state, so some leniency is practical for identifying those predicted

flux distributions that are “close” to steady state. A threshold value is chosen so that

any flux distribution with an s value less than the threshold value is considered to be

at steady state. In this study, a threshold value of 0.05 mmol2 gDCW−2 hr−2 is used.

Appropriate threshold values are to be chosen based on the unit associated with the

fluxes and the magnitude of the fluxes in the wild-type steady-state vector.

With the parameter s and its threshold value defined, the general procedure may

now be described. An overview of the procedure is shown in Figure 2.7. An ensemble

of models is first generated using the wild-type steady-state flux values reported in

the literature. The ensemble models are then used to simulate the dynamic response

of the network to the knockout of the minimal cut set of enzymes that leaves only

the maximum-yield elementary modes intact. The resulting predicted flux vectors
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Figure 2.7: The general procedure for the steady-state analysis method.
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at the end of simulation time are used to calculate the s values and determine

their distribution, thus determining the fraction of models that reach steady state.

Perturbation analysis with overexpressions is performed only on the enzymes that

remain functional after the minimal cut set knockouts. Additional knockouts are

not considered because they tend to shut down the network, reducing all fluxes

to near-zero values. The fraction of models that reach a steady state by the end

of simulation time is calculated for each perturbation, and the set of simultaneous

enzyme perturbations that leads to the largest number of models reaching a steady

state is predicted to be the most optimal.

Perturbation analysis, as required in the steady-state analysis method, will be

computationally expensive for larger networks due to the large number of possible

enzyme combinations whose perturbations must be simulated to find the optimal

simultaneous perturbation set. For this reason, a method that yields a set of target

enzymes from a smaller number of perturbation simulations is needed. Such a method

is presented in Section 2.5.3.

2.5.3 Systematic enzyme targeting (SET) method

A systematic enzyme targeting (SET) approach to identifying target enzymes for

overexpression that does not require a large number of perturbation studies is

desired. Such an approach would be feasible for large networks, for which the

computational intensiveness of iterating over the possible combinations of enzymes

is prohibitive. For example, a network with only 40 enzymes has 780 possible two-

enzyme combinations and 9,880 possible three-enzyme combinations. Our research

has developed an approach that identifies enzyme overexpression targets after only a

single perturbation simulation, namely, the minimal cut set knockout perturbation.

This is done by first finding a flux distribution that generally represents the end-

of-simulation flux distributions exhibited by the models after minimum cut set

knockout. This representative flux vector is then projected onto the flux space
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spanned by the maximum-yield elementary modes to give an ideal flux vector that is

at steady-state and has the maximum theoretical yield. The differences between the

representative and ideal flux values are calculated, and the largest element-to-element

differences reflect which reactions are furthest from their target steady-state values,

indicating that these reactions’ fluxes need to be altered via enzyme perturbations.

To quantify this deviation, a metric is defined that indicates the error between

each representative flux value and its respective target steady-state flux value. It is

reasoned that rate-limiting reactions will tend to decrease the flux of all downstream

reactions, such that the error metric may appear large for non-bottleneck reactions

that are downstream of the truly bottlenecked reactions. To account for this, each

reaction’s metric is compared to the metrics of immediately-upstream reactions to

find those reactions where significant deviations from target steady-state fluxes are

first manifested. These reactions are regarded as those that are most likely to be rate-

limiting, and their enzymes are suggested as likely perturbation targets. The primary

advantage of this method is that it uses only one enzyme perturbation simulation (the

MCS knockout simulation) to simultaneously identify multiple enzyme targets for

overexpression. This is much more efficient than perturbation analysis, which requires

multiple perturbation simulations involving different combinations of enzymes in each

perturbation study. When this method is applied to the E. coli DAHP production

network, the method suggests as overexpression targets exactly the same enzymes

reported in the literature to be effective in increasing DAHP flux and yield.

The method involves three main steps:

1. Finding the end-of-simulation flux distribution vector, vrep, that is represen-

tative of the whole ensemble of models’ flux distributions after MCS knockout

simulations are performed,

2. Determining the ideal steady-state flux distribution vector, videal, to which the

representative flux vector is to be compared, and
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3. Comparing the element-by-element differences between vrep and videal to

suggest enzyme overexpression targets.

The first step is accomplished using singular value decomposition of a normalized

matrix of end-of-simulation flux vectors for all the models in the ensemble. Let F

be a matrix of fluxes, with rows representing reactions and columns representing

models in the ensemble. First, each column vector in this matrix is normalized to a

magnitude of 1 to prevent flux vectors with large flux values from falsely biasing vrep.

The resulting matrix of normalized column vectors will be referred to as N. Singular

value decomposition is performed on this matrix to produce matrices U, Σ, and V,

whose relationship to N are shown in Equation 2.10,

N = U ·Σ ·V> (2.10)

where U and V are matrices with orthonormal columns that represent the left and

right singular vectors, respectively, and Σ is a diagonal matrix with positive values

arranged in decreasing order. These values are referred to the singular values of N

and are representative of the amount of variance, or information, contained in N that

lies along the direction specified by each successive singular vector. The first column

of U is associated with the largest singular value of Σ. Therefore, it is the vector that

captures the largest amount of the variance in the fluxes of N and is, therefore, most

representative of the set of fluxes present in N. If the N matrix is effectively rank 1

(i.e., almost all the variance in the system lies along one direction), this first principal

component vector is sufficiently representative of the fluxes in N and is chosen to be

vrep. One can check the Scree plot of the system to ensure the effective rank of N is 1.

The Scree plot is derived from the singular values. The cumulative Scree plot shows

the fraction of information captured by each successive singular vector’s direction.

A matrix that is effectively rank 1 will have a very large first singular value relative

to all the other singular values. The ease with which one can check the amount of
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information contained within the representative flux vector is an advantage of using

the SVD method over using an arithmetic mean of the fluxes over the models.

Next, the ideal flux distribution vector videal needs to be obtained. The ideal flux

distribution vector needs to be a steady-state vector with the maximum theoretical

yield of the network. All possible candidate vectors that meet these criteria reside in

the vector space spanned by the maximum-yield elementary mode flux vectors. Of

these candidate vectors, the perpendicular projection of vrep onto the maximum-yield

elementary mode space is chosen as videal. This is because the nearest ideal vector

candidate to vrep is more likely to require a small number of enzyme perturbations to

be attained and is more likely to be a feasible flux distribution for the actual system.

To calculate videal, a projection matrix that projects onto the maximum-yield

elementary mode space is first constructed. Let E represent a matrix comprised of the

maximum-yield elementary modes, expressed as flux column vectors. Using singular

value decomposition, UE, an orthonormal matrix with the same column space as E,

is obtained. The decomposition is shown in Equation 2.11.

E = UE ·ΣE ·VE
> (2.11)

The projection matrix PE is then calculated as shown in Equation 2.12.

PE = UE ·UE
> (2.12)

This allows for videal to be calculated as shown in Equation 2.13.

videal = PE · vrep (2.13)

The next step is to compare vrep and videal to see which corresponding elements

deviate the most from each other. To do so, a comparison metric c will be defined.

Since the goal of this investigation is to find overexpression targets, it is natural

to define the comparison metric such that it is an approximation of the degree of
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overexpression required to increase a reaction’s flux to its target steady-state value.

This required degree of overexpression may be estimated for a reaction by calculating

the ratio of the ideal flux of each reaction to its corresponding representative flux.

Based on this estimation, c is defined as shown in Equation 2.14,

ci ,
videal,i
vrep,i

(2.14)

where ci is the ith element of c, vrep,i is the ith element of vrep, and videal,i is the

ith element of videal. Reactions with c values greater than 1 have smaller-than-ideal

representative fluxes, while reactions with c values less than 1 have larger-than-ideal

representative fluxes.

The values of elements in c show to what degree each reaction deviates from its

ideal flux value. However, a reaction that has a significantly smaller-than-ideal flux

is not necessarily a bottleneck that prevents the system from reaching a steady state.

A true bottleneck reaction will not supply enough flux to downstream reactions to

maintain the downstream reactions’ ideal flux values. As a result, reactions that are

downstream of the true bottleneck will also tend to have smaller-than-ideal fluxes.

Because these non-bottlenecked downstream reactions will be rate-limited only by the

bottleneck reaction, their deviation from ideal flux will tend to be to the same degree

as that of the bottleneck reaction. With this in mind, one may develop a second

metric, l, that more effectively indicates truly bottlenecked reactions. To calculate

l, one must compare the c value of each reaction to the c values of reactions that

are immediately upstream of it. ”Immediately upstream reactions” refers to those

reactions that have at least one product metabolite that is a reactant of the current

reaction. To find these reactions, one needs to first identify the reactions immediately

upstream of each reaction. This can be done by calculating the upstream reaction

matrix, Sfeed, as shown in Equation 2.15,

Sfeed = Sr
> · Sp (2.15)
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where Sr is the stoichiometric matrix of the network’s reactants (negative elements)

with the products (positive elements) set to zero; Sp is the stoichiometric matrix of

the network’s products with the reactants set to zero. All non-zero elements of both

matrices are set to 1. Element Sfeed,ij indicates the number of products reaction j

shares with reaction i. The calculation may be explained as follows. Row i of S>r

indicates whether each metabolite is a reactant for reaction i. If the jth position

in row i has a 1, this indicates that the jth metabolite is a reactant for reaction i.

Similarly, the jth component of column i of Sp indicates whether metabolite i is a

product of reaction j. By multiplying these two matrices together as in Equation

2.15, the rows of S>r are multiplied by the columns of Sp as an inner product. Each

row-and-column multiplication gives the number of times a 1 appears in the same

element position of both the row and the column. This translates to the number of

metabolites shared between the reactants of the reaction represented by the row of

S>r and the products of the reaction represented by the column of Sp. Therefore,

element Sfeed,ij indicates the number of metabolites that were indicated with a 1 in

both row i of S>r and column j of Sp.

In this investigation, cofactors are not considered to be metabolites when finding

immediately upstream reactions for a reaction. This is because cofactors are

maintained at near-constant concentrations in the actual cellular system, and the

effect of one reaction’s varying flux rate on the concentration of a cofactor is likely

to be very small. Therefore, reactions are unlikely to influence one another through

the reaction linkages provided by cofactors. As such, the rows of Sr and Sp that are

associated with cofactors are eliminated prior to the calculation of Sfeed.

With the elements of Sfeed indicating which reactions need to be compared, the

maximum difference in the value of c between a reaction and all immediately-upstream

reactions is calculated for each reaction and stored in the vector l. The reactions along

a pathway that exhibit large increases in their c value relative to the previous reactions

are indicated by large values of l. Reactions downstream of bottlenecks will tend to
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have similar c values and, therefore, low l values. The element-wise calculation is

shown in Equation 2.16,

li ,
ci

ci,min c
(2.16)

where li is the ith element of l, ci is the ith element of c, and ci,min c is the smallest

value of c of any reaction that is immediately upstream of reaction i. The minimum

c value of all immediately upstream reactions is used so that the highest possible l

value for each reaction is chosen. This has a particular advantage over averaging the

c values over all immediately-upstream reactions. In the case where a reaction has

a significantly higher c value than only some of the immediately upstream reactions,

whether the reaction is rate-limiting or not is uncertain. If the reaction is not rate-

limiting, including it among the possible enzyme targets would be confusing, but

probably not a critical failure. Simulations of various combinations of suggested

overexpression targets may reveal that the overexpression target is not an effective

one. If the reaction is rate-limiting, however, it is important that it be indicated by the

method, whether it impedes all or only some immediately-upstream reactions. Failure

to indicate an important enzyme target among all possible targets for overexpression

is likely to be a critical error at this point, since there is no way to detect or correct this

error later. Therefore, averaging of c values over all immediately upstream reactions

does not give a small enough value in the denominator of Equation 2.16, leading to a

smaller l value, which increases the likelihood of failure to indicate critical bottleneck

reactions.

Once the l vector is calculated, the values in the vector are sorted and ranked,

and those enzymes with the largest values of l are suggested overexpression targets.

The ideal ranking pattern is one where the first few l values are significantly larger

than the rest that follow, indicating a relatively clear division point for the enzymes

that need to be overexpressed.

44



This method is applied to the E. coli DAHP production network from Rizk and

Liao (2009). An ensemble of 1500 models is generated and used to simulate the

knocking out of a minimum cut set of enzymes that eliminates all but the highest-yield

elementary modes. The minimum cut set is calculated using the CellNetAnalyzer

package developed for MATLAB R© (Klamt et al., 2007). Simulations are continued

for 2000 hours, and the initial conditions are set to be the wild-type steady-state

metabolite concentrations. Once the simulations are complete, the system is analyzed

using the systematic enzyme targeting (SET) method described in this chapter.

Section 3.4 reports the simulation and analysis results.
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Chapter 3

Results and Discussion

3.1 Individual-Enzyme Perturbation Analysis

Before the SET procedure was developed during the course of this research, an

obvious first step to finding effective enzyme targets for perturbation is to try a

brute-force approach, iterating one at a time over the single-enzyme overexpressions

and/or knockouts and analyzing the resulting target flux and yield distributions of the

models in the ensemble. Model rescuing concepts are applied to judge the effectiveness

of each of the attempted perturbations. No minimal cut set knockouts are applied

before the single-enzyme perturbation studies are carried out. An ensemble of 1500

models is generated.

Despite its simplicity, this method fails to indicate target enzymes for over-

expression or knockout. Most of the overexpressions have such a small effect on

network behavior that it is difficult to determine whether any perturbation of a single

enzyme has a more significant effect than any other. A sample of ten single-enzyme

overexpressions that are representative of the general behavior seen among all 38

overexpressions is shown in Figure 3.1, which is a set of histograms showing the

distributions of changes in the outward transport flux of DAHP. Figure 3.1 shows

that most overexpressions result in little consistent change to the behavior of the
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Figure 3.1: The number of models exhibiting various changes in DAHP outward transport flux after
overexpression of the indicated single enzyme. Flux changes are in mmol gDCW−1 hr−1. A total of 1500 ensemble
models were used. Note that in all cases, the majority of the models did not increase the DAHP outward flux.
Some single-enzyme overexpressions decreased DAHP flux, most notably Ppc.



network. Those that have a larger effect, such as Ppc, tend to decrease the DAHP

fluxes of most models to near-zero values and shut down the network. What one

desires to see in an effective perturbation is the overall distribution curve shifted

to the right of the zero point to indicate a general increase in the final DAHP

net transport flux. No single-enzyme perturbation distributions give this profile.

Similarly, a significant number of single-enzyme knockouts, such as RecATP and

Tal, shut down the network completely, reducing all fluxes of all reactions to near-

zero values. Most other perturbations have little effect on the network behavior. A

sampling of knockouts that is representative of the different behaviors observed is

shown in Figure 3.2.

Some insight may still be gained from this approach, however. For example, as

can be seen in Figure 3.2, the knockout of Sdh results in some increase in DAHP

outward transport flux for most of the models. This is because Sdh knockout shuts

down the TCA cycle pathway, decreasing outward succinate flux. Shutting down this

side-product production pathway increases the production of DAHP, the product of

interest, slightly. This type of information, however, is not worth the computational

effort required to attain it. Single-enzyme perturbation analysis of the entire network

can be computationally expensive when the network involves a large number of

reactions.

One feasible way to avoid the problems seen with perturbation analysis of single

enzymes is to try enzyme-subset perturbation studies and analysis instead, in which

single-subset perturbations are simulated one at a time instead of individual-enzyme

perturbations. The rationale is that enzymes in subsets of reactions limit the effects of

their member enzymes being overexpressed individually and that all the reactions in

the subset must be overexpressed simultaneously to significantly affect the network’s

behavior. This was attempted with the subsets of enzymes indicated in Figure 2.6,

and the results were similar to those shown for the single-enzyme perturbations. Other

approaches are obviously needed to effectively determine enzyme targets.
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Figure 3.2: Distributions of the number of models exhibiting various changes in DAHP outward transport flux
after knocking out the indicated single enzyme. Flux changes are in mmol gDCW−1 hr−1. Note that network
shutdown is predicted by most models for the knockout of RecATP, RecNADH, Rpe, Rpi, Tal, or Tkt1.



3.2 Minimal cut set knockouts

The above perturbation studies use the wild type as the starting point, with no

knockouts being introduced initially. Minimal cut set knockouts should prove to be a

more effective way to increase the yield of the network, since they force the network

to operate via maximum-yield elementary modes. The minimal cut set knockouts

chosen for this network are Pfl, Ppc, Pyk, and Zwf, as described in Section 2.3.3.

The behavior of the network resulting from minimum cut set knockouts is simulated

using the same ensemble of 1500 models used in Section 3.1. Figure 3.3 shows the

distribution of changes in outward DAHP flux over the models for the base case that

has only the minimum cut set knockouts. Figure 3.4 shows the distribution of yields

resulting from the minimum cut set knockouts.

As Figure 3.3 shows, less than ten models predict an increase in DAHP outward

flux. This is the expected behavior, since after the minimal cut set knockouts, there

are fewer flux paths available through the network. Figure 3.4 shows that most of the

models also predict a decrease in yield. Since only one realizable elementary mode

remains after knocking out the minimum cut set, this must mean that the models are

not reaching steady state by the end of the simulation (at 2000 hours). Figure 3.5

shows the distribution of s values over the models after MCS knockouts are performed.

It verifies no model reaches a steady state, at which s would be 0. No models have an

s value below the threshold of 0.05. This is an expected result also, since the kinetic

parameters and enzyme concentrations of the reactions involved in the maximum-

yield elementary modes are tuned to support their wild-type flux values, which differ

significantly from some of the fluxes listed in videal. Overexpressions are needed to

allow the system to reach a steady state.
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Figure 3.3: The distribution of the number of models exhibiting the indicated
changes in DAHP outward transport flux after knockout of the minimum cut set
enzymes. The wild-type DAHP outward flux is 0.26 mmol gDCW−1 hr−1. Most
models predict a marked decrease in DAHP outflux.
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Figure 3.4: The distribution of the number of models exhibiting the indicated
DAHP-to-glucose yields after knockout of the minimum cut set enzymes. The wild-
type yield is 0.2. Some models show an improved yield beyond 0.2, but most predict
a decrease in yield, meaning most of the models are not reaching a steady state.
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Figure 3.5: The distribution of s values resulting from the MCS knockouts.
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Metabolite accumulation rates can help indicate the enzyme targets that will

enable the network to reach a steady state, These rates may be attained by calculating

the product of the stoichiometric matrix and the flux vector of any given flux

distribution. Performing this calculation with the models’ predicted flux vectors

after 2000 hours reveals that pyruvate accumulates at a rate at least one order of

magnitude larger than any other metabolite in the system for more than 95 percent

of the models (data not shown). Figure 3.6 shows the distribution of rates of change

of pyruvate amount over the models for the minimum cut set knockouts; it shows that

almost all models have an accumulation rate greater than 0.2 mmol gDCW−1 hr−1.

Pyruvate accumulation is preventing the system from reaching a steady state and,

therefore, the maximum yield, and reducing pyruvate accumulation should bring the

models closer to the desired yield.

Other metabolites have also accumulated during the simulation time, but are no

longer accumulating by the time 2000 hours have passed. These metabolites are not

indicated by the accumulation rates, but by their concentrations. Concentration data

are shown in Table 3.1 for the MCS knockout case after 2000 hours of simulation.

Note that PYR, F6P, G6P, PEP, and S7P are accumulating significantly more than

other metabolites. Also note the low concentration of E4P, one of the reactants

for the production of DAHP. It is not immediately clear what could be causing these

accumulations and shortages. Before hypothesizing, it is wise to perform perturbation

analysis to gain additional insight.

3.3 Perturbation analysis with enzyme subsets

after MCS knockouts

Perturbation analysis is performed with enzyme subset overexpressions on the network

after MCS knockouts. The subsets used are shown in Figure 2.6. The resulting DAHP

outward transport flux change, yield, and pyruvate accumulation rate distributions
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Figure 3.6: The number of models exhibiting various rates of change (ROC) in
pyruvate amount after knockout of the minimum cut set enzymes.
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Table 3.1: Mean concentration fractions after the minimal cut set knockouts
are performed. A concentration fraction is the ratio of a metabolite’s current
concentration to its steady-state concentration. A metabolite at its steady-state
concentration has a concentration fraction of 1. Concentrations higher than the
steady-state concentration are represented by concentration fractions greater than
1. Significantly accumulated or scarce metabolites’ concentration fractions are shown
in red.

Metabolite Mean conc. fraction

2PG 14.044
3PG 2.2509

ACCOA 0.010101
ACETATE 0.029204

ACP 0.010281
ADP 1.5563
ATP 1.3405

DAHP 0.33509
DHAP 0.63785
DPG 1.8684
E4P 0.12984
P1 1.3295
P2 2.9367
P3 7.2022

F6P 377.77
FDP 2.8495

FORMATE 0.029204
FUM 0.006903
G6P 91.275
GAP 1.9169

GLUCOSE 9.1959
MAL 0.005914
NAD 1.0641

NADH 0.95987
OAA 0.0058363
PEP 62.494
PGL 0.010854
PGT 0.035168
PYR 1505.2
R5P 1.0159

Ru5P 0.28664
S7P 40.073

SUCCINATE 0.016603
X5P 10.563

NADP 1.359
NADPH 1.1535
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are monitored and shown in Figures 3.7, 3.8, and 3.9, respectively. The changes

in DAHP flux are very similar across all the subset overexpressions, though the

Tkt2 subset has a slightly heavier right-hand tail on its distribution. In the yield

distributions, some differences are noted among the subsets. The enzyme Tkt2 is

particularly notable, with a small group of models giving a larger yield around 0.4.

This is not seen with any of the other overexpressions. Note that this improvement

coincides with a slight increase in the number of models near the zero point in the

pyruvate accumulation rates for Tkt2 relative to the other subset overexpressions.

This suggests that more intermediates are forming DAHP instead of accumulating as

pyruvate.after Tkt2 overexpression.

It appears that Tkt2 is the best single-subset overexpression target for increasing

DAHP flux and yield. This is consistent with experimental data, which indicate Tkt

overexpression results in an increases in DAHP flux (Rizk and Liao, 2009). From

the concentration data presented in Table 3.1, Tkt2 overexpression seems to help

increase the concentration of E4P, helping to relieve the shortage. Whether Tkt2 is

the best overexpression target cannot be decided with confidence, as the effects of

its overexpression on the network seem to be small. It seems that more significant

improvements to DAHP flux and yield will only arise from multiple simultaneous

subset overexpressions.

There are a number of factors that could be preventing the system from achieving

better yields and DAHP fluxes. The most likely explanation is that multiple subset

overexpressions are required before the DAHP flux and yield can begin to increase.

Another explanation is that F6P accumulation is limiting the rate of Tal by virtue of

being one of Tal ’s products. The accumulation may be due to the feedback inhibition

of Pfk by the accumulated PEP. In addition, there could be a shortage of ATP, since

two of the three ATP-producing reactions in the network were eliminated out by the

minimal cut set knockouts.
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Figure 3.7: The distribution of the number of models exhibiting the indicated changes in DAHP outward
transport flux after knockout of the minimum cut set enzymes and overexpression of the subset of enzymes
containing the listed enzyme.
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Figure 3.8: The number of models exhibiting various yields after knockout of all minimum cut set enzymes and
overexpression of the enzyme subset containing the listed enzyme. The unperturbed yield is 0.2.



60

0 1 2
0

20

40

60

80

100

120
aroG

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
ei

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
eno

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
fba

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
pgi

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
pps

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
recATP

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
recNADH

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
rpe

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
rpi

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o
. 
o
f 
m

o
d
e
ls

0 1 2
0

20

40

60

80

100

120
tkt2

Pyruvate ROC (mmol gDCW
−1

 hr
−1

)

N
o

. 
o

f 
m

o
d

e
ls

Figure 3.9: The number of models exhibiting various rates of change (ROC) of pyruvate molar amount after
knockout of the minimum cut set enzymes and overexpression of the enzyme subset containing the listed enzyme.



All of these potential problems were tested using full-ensemble modeling and

model rescue analysis. Removal of PEP’s feedback inhibition of Pfk is tested by

generation of another ensemble of 1500 models without the regulatory inhibition, and

little difference is observed in the level of F6P accumulation or the yield and flux

levels of the network under the perturbations tested so far. Additionally, restrictions

on ATP and ADP concentrations were lifted with expectations that the artificial

ATP sink reaction RecATP would run in reverse and provide additional ATP (see

Section 2.2 for details on the concentration limitations imposed on cofactors). The

results showed that the opposite case occurs; ATP shortages are much more common

when the concentration limitations are lifted. The reaction RecATP has a forward

flux in the wild type, and the concentration limitations limit rather than enhance

the forward reaction rate. Constraining the concentrations of ADP and ATP to be

constant constrains the Gibbs free energy for RecATP such that it does not have too

large of a forward flux.

These results leave us to suspect that multiple overexpressions are what is

primarily required. One possible approach is to test every combination of two or three

enzymes or subsets. This would be very computationally expensive and prohibitive,

so another approach is sought. An analytical method of determining the most likely

enzyme candidates for overexpression is necessary to proceed.

3.4 Systematic enzyme targeting (SET)

3.4.1 Systematic analysis of DAHP network

An analytic method was developed as described in Section 2.5.3 and is used here

to attempt to identify effective overexpression targets after the MCS knockouts are

performed. Each model predicts a flux distributions after 2000 hours of simulation of

the MCS knockouts. The flux distributions predicted by all models are normalized

to a length of 1 and listed as columns in the matrix N. Singular value decomposition
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is performed on N to determine the first left singular vector, which is a vector that

spans the one-dimensional space that contains the largest amount of variance within

N’s flux vectors. This vector is referred to as vrep.

It is desirable that vrep be representative of the fluxes predicted by all the models.

For this to be true, the effective rank of N must be near 1, in which case most of the

information contained in the flux vectors in N lies along one dimension. The effective

rank of N may be determined by comparing the relative values of the singular values

in a Scree plot. The cumulative sum of the squares of the singular values of Vn are

plotted as fractions of the sum of squares of the singular values in the Scree plot

in Figure 3.10. The plot shows that 99.4 percent of the information contained in

N resides in a one-dimensional space spanned by its first left singular vector. This

indicates that vrep is highly representative of nearly all the models’ flux behaviors.

After vrep is obtained, the rest of the systematic procedure may be carried out.

Table 3.2 shows the calculated values of vrep, videal, c, and l for each of the reactions

in the network, ordered by decreasing l value. It also shows the ratio ci : cinput, where

cinput is the c value of the inward transport reaction of interest. Recall the following

details of the systematic method.

1. videal represents the projection of vrep onto the space of positive-coefficient

linear combinations of maximum-yield elementary mode flux vectors. These

maximum-yield modes are the only steady-state modes attainable by the system

after the MCS knockouts. In essence, videal is the feasible maximum-yield

steady-state flux vector that lies nearest to vrep.

2. ci represents the approximate level of overexpression required to increase

reaction i’s flux from vrep to videal. Higher values of c indicate reactions that

have fluxes significantly smaller than their respective ideal fluxes.

3. A high l value suggests a reaction that has a significantly larger c value than

at least one immediately-upstream reaction. Therefore, a higher value of l
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Figure 3.10: The cumulative Scree plot of the squares of the singular values of
the normalized flux vector matrix resulting from simulation of the minimum cut set
knockouts. Note that the effective rank of the normalized flux vector matrix is 1,
as shown by the relatively large value of the first singular value relative to the other
singular values. The projection of all columns of N onto the one-dimensional subspace
of N spanned by the first left singular vector of N would capture approximately 99.4
percent of the variation in the matrix.
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Table 3.2: The representative and ideal fluxes, c values, and l values for each of the
reactions in the DAHP network, as determined by the systematic enzyme targeting
method and ordered by decreasing l value. Note that the first four enzymes have l
values much larger than the other enzymes.

Enzyme vrep,i videal,i ci ci/cinput li

pps 0.0041022 0.21321 51.975 64.7650 64.556
tal 0.0071743 0.0609 8.4911 10.581 9.1677

aroG 0.039285 0.1828 4.652 5.7967 7.8121
tkt2 -0.032102 -0.1218 3.7953 4.7292 4.4578
ei 0.26482 0.2132 0.80512 1.0032 1.352

rpe -0.013414 -0.0609 4.5415 5.659 1.1966
pfk 0.16456 0.1523 0.92548 1.1532 1.087
pgi 0.25043 0.2132 0.85138 1.0609 1.0574
tkt1 0.017966 0.0609 3.3908 4.2251 1.0119
eiibc 0.26482 0.2132 0.80513 1.0032 1.0032
eno 0.3069 0.1828 0.59549 0.74202 1.002
fba 0.16441 0.1523 0.92632 1.1543 1.0009
gpm 0.30751 0.18275 0.5943 0.74054 1.0001
pgk 0.30753 0.1828 0.59427 0.74049 1

recATP 0.16142 -0.1828 -1.1322 -1.4108 1
recNADH 0.30543 0.1828 0.59836 0.74559 1
glucose in 0.26568 0.2132 0.80253 1 1

tpi 0.16443 0.1523 0.92621 1.1541 0.99987
eiia 0.26492 0.2132 0.80482 1.0029 0.99983
hpr 0.26488 0.2132 0.80496 1.003 0.9998

dahp out 0.039303 0.1828 4.6499 5.7941 0.99955
rpi 0.01818 0.0609 3.3508 4.1753 0.73782
gap 0.30753 0.1828 0.59427 0.74049 0.64161
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indicates a higher likelihood that the reaction’s associated enzyme is a good

overexpression target.

4. The general concept of the method is that those reactions that deviate

downward more significantly from their ideal fluxes than immediately-upstream

reactions are likely to be limited by slow enzyme kinetics. Overexpression of

these enzymes should increase the yield and possibly the fluxes of interest of

the system.

The method works surprisingly well, with the first four suggested enzymes being

Pps, Tal, Tkt2, and AroG, the very same four enzymes shown by experiment to be

good overexpression targets (Patnaik et al., 1995; Rizk and Liao, 2009).

Table 3.2 indicates an important effect of the MCS knockouts on network behavior.

Note that RecATP has a negative c value, indicating that this reaction’s direction

after the MCS knockouts is reversed from its wild-type direction. The reaction

associated with RecATP is an artificial sink reaction for ATP, which allows the model

of the system to react excess ATP to form ADP to maintain equal concentration of

both cofactors. In the wild-type flux distribution, more ATP is produced than ADP,

so RecATP converts the excess ATP to ADP. This direction is the forward direction

of the reaction. However, after the MCS knockouts, RecATP is forced to reverse

direction, converting ADP to ATP. This indicates that the cellular system may have

problems with ATP shortages as a result of the MCS knockouts. Most likely, these

shortages arise from the fact that the MCS knockouts disable two of the three ATP-

producing reactions in the network, Pyk and Ack. One option for avoiding ATP

shortages is to underexpress Pyk instead of knocking it out. The effect on yield would

most likely be minimal, since adding Pyk would only add one elementary mode to

the system. This mode is the futile cycle consisting of Pyk and Pps. Because it does

not lead to carbon flux exiting the system via an undesirable side-product transport

reaction, this mode would probably not cost much yield, though it might exacerbate

pyruvate accumulation issues.
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Simulations affirm the effectiveness of the overexpression of the suggested targets.

The first three and four suggested enzyme overexpressions are performed (referred to

as Groups I and II, respectively), in addition to the simultaneous overexpression of

Pps, Tkt, and Tal (Group III) and Pps and Tkt (Group IV) studied by Rizk and Liao

(2009). Note that since Tkt1 and Tkt2 are reactions governed by the same enzyme,

they are both overexpressed in Groups III and IV. The purpose of Group III is to

test that the addition of the overexpression of Tkt1 does not interfere with the effect

of overexpression of the other suggested enzymes.

Since c values are representative of approximate overexpression levels required

to bring each reaction to its ideal flux, they are used to calculate the optimal

overexpression level for each enzyme. Overexpression factors are used for each enzyme

i that are equal to the ratio ci:cinput, where ci is the c value of enzyme i and cinput

is the c value of the inward transport reaction. This ratio is chosen instead of ci

because the goal of the enzyme overexpressions is to redistribute the inward flux more

optimally among pathways rather than attempt to reach an optimal flux state with

a higher or lower inward transport flux. Decreasing the inward transport flux limits

the outward transport flux that may be achieved. Increasing the transport flux may

cause additional enzymes that are close to their maximum capacity before increasing

the inward transport flux to become bottlenecks. These new bottlenecks would not

yet have been revealed by systematic analysis and could adversely affect the target

flux and yield of the system, obscuring the effects of the enzyme overexpressions being

simulated. Using the raw ci value for reaction i assumes that one is attempting to

reach the state indicated by videal, which is likely to have a lower or higher inward

transport flux than vrep.

Figure 3.11 shows the distribution of changes in DAHP flux resulting from each

of the enzyme group overexpressions. Overexpressions were simulated to the levels

indicated by ci:cinput ratios in Table 3.2. As can be seen, most of the models still have

a decrease in overall DAHP flux. This is because the first iterations of the systematic

analysis process are primarily oriented toward increasing the yield of the network.
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Figure 3.11: Distributions of fractional changes in DAHP transport flux from the wild-type flux after groups
of enzymes are overexpressed in conjunction with MCS knockouts. The MCS distribution is also shown for
comparison.
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Methods for focusing on increasing absolute flux are currently being investigated

and are described in Section 4.3. Figure 3.12 shows the distribution of yields after

each group overexpression. Group II is especially effective at increasing the yield to

near the maximum theoretical yield for a large percentage of the models (about ten

percent of the models). The other perturbation groups are notably less successful,

but still result in a significant increase in yield compared to the MCS knockouts

alone. The pyruvate accumulation rates for the models are shown in Figure 3.13.

All four perturbation groups reduce the level of pyruvate accumulation significantly.

This is due to the overexpression of Pps in all four overexpression groups. Figure 3.14

shows the distributions of s values from each of the enzyme group overexpressions and

compares them to the MCS-only distribution. Considering that no models were at

steady-state before, the increase in the number is significant, especially for Group II.

Group II’s larger increases in yield and the number of models reaching steady state

indicates that, in addition to Pps, Tal, and Tkt2, AroG overexpression results in

additional improvement. This result is corroborated by reported experimental results

provided by Patnaik et al. (1995) that state that AroG overexpressed with Tkt tends

to increase DAHP flux and yield.

Perturbation of Group II’s enzymes leads to the most favorable network behavior

overall. Therefore, this perturbation is selected as the suggested perturbation for

the next round of systematic analysis. Figure 3.15 shows the Scree plot of Vn after

MCS knockouts and Group II overexpression. The models’ flux predictions begin to

diverge, leading to more scatter in the flux vectors. As such, vref now only accounts

for 92 percent of the variance for this perturbation, as compared to 99.4 percent of

the variance with only the MCS knockouts, as shown in Figure 3.10. Table 3.3 shows

the vrep and videal fluxes, the c values, and the l values for each reaction after MCS

knockouts and Group II overexpressions. The l values of the top-ranked enzymes

have decreased significantly from the MCS knockout case (compare to Table 3.2),

and no obvious outliers are evident indicating which additional enzymes are to be

overexpressed. Since the top four suggested enzymes are the same four as were
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Figure 3.12: Distributions of yields after groups of enzymes are overexpressed in tandem with MCS knockouts. The
MCS distribution is also shown for comparison. The wild-type yield is 0.2.
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Figure 3.13: Distributions of pyruvate rates of accumulation (ROCs) after groups of enzymes are overexpressed in tandem
with MCS knockouts. The MCS distribution is also shown for comparison.
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Figure 3.14: Distributions of s values after groups of enzymes are overexpressed in tandem with MCS knockouts. The
MCS distribution is also shown for comparison. Note that approximately 20 percent of the 1500 models reach a steady-state
after the overexpression of Group II.
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Figure 3.15: The cumulative Scree plot of the singular values of the normalized
flux vector matrix resulting from simulation of the minimum cut set knockouts and
the suggested perturbations from the first round of systematic analysis for the DAHP
production network.
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Table 3.3: Systematic fluxes and parameters resulting from the second round of
perturbations for the DAHP network.

Enzyme vrep,i videal,i ci li

tal 0.02921 0.070808 2.4241 2.0471
aroG 0.11571 0.21242 1.8359 1.9885
tkt2 -0.085519 -0.14162 1.656 1.9442
pps 0.20381 0.24783 1.216 1.5292
pfk 0.14948 0.17702 1.1843 1.3904
rpe -0.036984 -0.070808 1.9145 1.1562
pgi 0.29096 0.24783 0.85175 1.0699

eiibc 0.31131 0.24783 0.79609 1.016
tkt1 0.044262 0.070808 1.5997 1.004
eno 0.23008 0.21242 0.92326 1.0007
eiia 0.31163 0.24783 0.79526 1.0002
gpm 0.23024 0.21242 0.92264 1

recATP -0.089941 -0.21242 2.3618 1
recNADH 0.22785 0.21242 0.93229 1
glucose in 0.31628 0.24783 0.78357 1

fba 0.14948 0.17702 1.1843 0.99998
hpr 0.31168 0.24783 0.79512 0.99998
tpi 0.14949 0.17702 1.1842 0.99992
pgk 0.23024 0.21242 0.92262 0.99976

dahp out 0.11786 0.21242 1.8024 0.98176
ei 0.31168 0.24783 0.79514 0.86124
rpi 0.044441 0.070808 1.5933 0.83221
gap 0.23018 0.21242 0.92284 0.77932
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previously overexpressed, it can be concluded that the optimal enzyme overexpression

set has probably been found.

It is not clear that the overexpression levels indicated by the ci:cinput ratios are the

optimal overexpression levels for the system. Various scalar multiples of the Group

II overexpressions are simulated, and the resulting DAHP outward flux and yield

distributions are shown in Figures 3.16 and 3.17, respectively. For a doubling of the

overexpression factors, network shutdown affects nearly 30 percent of the models,

and higher levels of overexpression drive even more models to near-zero fluxes. As

the DAHP and glucose fluxes near zero for many models, yield calculation becomes

unstable. This results in a wide variety of predicted yields, even some orders of

magnitude the theoretical maximum. From these data, one can conclude that the

levels of overexpression indicated by the systematic method are scaled correctly.

3.4.2 Systematic analysis of toy network

To test the approach’s generality, the toy network presented in Section 2.1.2 was

analyzed using the same systematic approach. Figure 3.18 presents the Scree plot of

the singular value decomposition of Vn for the toy network following the minimal cut

set knockout of r3. This shows that vrep (the first left singular vector) contains 92

percent of the variance of the 1500 ensemble fluxes and is representative of the entire

ensemble.

On calculating videal for the toy network, it is notable that the projection of

vrep onto the maximum-yield elementary mode space reduces one of the elementary

mode components to nearly zero. The two elementary modes for the toy network are

shown in Figure 3.19, in which mode 7 is the zero-component mode. This may be

a significant result because it suggests that this mode is difficult for the network to

reach. In this case, this is explained by the fact that mode 7 calls for the reversal

of direction of r6r compared to its wild-type direction. From Table 2.3, r6r has a

wild-type steady-state flux of 0.45, which is significant compared to the mean flux of
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Figure 3.16: The distributions of fractional changes in DAHP flux relative to its wild-type flux for the indicated
scalar multiples of the systematically-indicated overexpression factors for the Group II overexpression targets.
The systematically-indicated overexpression levels were 65-fold for Pps, 11-fold for Tal, 5-fold for Tkt2, and 6-
fold for AroG. Network shutdown begins to affect many models with doubled expression levels and worsens as
overexpression levels increase.
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Figure 3.17: The distributions of DAHP-to-glucose yields for the indicated scalar multiples of the systematically-
indicated overexpression factors for the Group II overexpression targets. The systematically-indicated
overexpression levels were 65-fold for Pps, 11-fold for Tal, 5-fold for Tkt2, and 6-fold for AroG. Yields higher
than the theoretical maximum are observed because of the numerical error resulting from dividing the near-zero
fluxes predicted by models that exhibit network shutdown.
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Figure 3.18: The cumulative Scree plot of the singular values of the normalized flux
vector matrix resulting from simulation of the minimum cut set knockout for the toy
network.
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Figure 3.19: The maximum-yield elementary modes for the toy network are colored red. Minimal cut set
knockouts to eliminate all other modes but these are shown. Note that in mode 7, r6r (the reaction shown in
green) must have a net flux from C to B, while the wild-type net flux direction is from B to C.



0.61. This wild-type flux is in the direction from B to C, while mode 7’s direction

is from C to B. This significant forward wild-type flux discourages the reaction from

running backward toward B without significant concentration buildups of C.

The representative and ideal fluxes and the c and l values are calculated and

presented in Table 3.4. Note that only the four reactions in mode 6 are listed. The

only clearly suggested overexpression target following MCS knockout is r7, since its

l value is significantly larger than those of the other reactions. Reaction r7 has an l

value of approximately 1.47, while the other reactions’ l values are near 1.

To test whether r7 is indeed the ideal overexpression target, single-enzyme

perturbation analysis is performed on the network after MCS knockout. Since the

MCS knockout has been performed, only overexpressions will be analyzed. The

distributions of changes in r4 flux for each of the perturbations are shown in Figure

3.20, while the distributions of yields are shown in Figure 3.21. Flux and yield

distributions for the MCS knockouts are also included in these figures for comparison.

It is clear that both the flux and yield distributions suggest the overexpression of

r7 after MCS knockout, since the distributions clearly lie further to the right for r7

than for any other overexpression. These results confirm that the prediction made

by the systematic method is effective in increasing the target flux and yield of the

system, and confidence in the generality of the systematic enzyme targeting method

is increased.
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Table 3.4: Systematic method fluxes and parameters as calculated for the toy
network with only minimal cut set knockouts. Note that one of the high-yield modes
had a near-zero component, so its reactions are not included.

Enzyme vrep,i videal,i ci li

r7 0.32067 0.36864 1.1496 1.4716
r5 0.47189 0.36864 0.78121 1.017
r1 0.47991 0.36864 0.76814 1
r4 0.65401 0.73728 1.1273 0.98061

80



81

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08
MCS only

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

r
2
 

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

r
5
 

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

r
6r

 

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−0.2 0 0.2 0.4 0.6
0

0.02

0.04

0.06

r
7
 

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

r
1
 

(r
4
 − r

4,wild type
)/r

4,wild type

F
ra

ct
io

n 
of

 m
od

el
s

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

r
4
 

(r
4
 − r

4,wild type
)/r

4,wild type
F

ra
ct

io
n 

of
 m

od
el

s

Figure 3.20: Distribution of changes in r4 outward transport flux in the toy network resulting from the minimal
cut set knockout and an additional overexpression. The wild-type flux is 1.25.
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Figure 3.21: Distribution of r4-to-r1 yields in the toy network resulting from the minimal cut set knockout and
an additional overexpression. The wild-type yield is 1.25.



Chapter 4

Conclusion

In summary, a systematic enzyme targeting (SET) method has been developed to

identify enzyme overexpression targets and to estimate their respective levels of

overexpression required to increase a target flux and yield of a metabolic network. The

steady-state wild-type flux distribution of the system is the only experimental data

required to perform the SET procedure. The method employs ensemble modeling to

simulate the knocking out of a minimal cut set of enzymes that eliminates all but the

maximum-yield elementary modes of the network. The SET method simultaneously

identifies those enzymes whose overexpression brings the MCS-knockout network

to steady state for the largest fraction of ensemble models, thereby increasing the

yield of the network to the theoretical maximum for these models. Two network

systems were analyzed using the SET method: (1) a toy network that demonstrated

the concepts and feasibility of the SET method, and (2) a network representing

DAHP production in E. coli. Results demonstrate the effectivenes of the methods.

Enzyme targets provided by the SET method for the DAHP network exactly matched

the overexpression targets found in the literature. Upon simulation of the SET

method’s suggested enzyme overexpressions, both networks were predicted to reach

near-theoretical-maximum yields, and outward transport flux was increased for many

models.
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4.1 Evaluating the manual and systematic meth-

ods

Two primary approach philosophies were attempted in this study to predict enzyme

targets for knockout and overexpression. First, a manual, human-judgment-driven

approach was used that relied on subjective judgment and gaining an understanding

of the system through the simulation data collected. Though this approach did

work to some degree, it was slow and did not reveal the most effective solutions

to the problem at hand. It does have a use in leading the investigator to a better

understanding of the underpinnings of the network, such as how reactions tend to

interact when perturbed and which metabolites accumulate. This sort of approach

is especially useful in allowing the investigator to probe any desired concentration

or flux value at any simulated time for any model. However, the large amount of

data generated can be daunting, so concrete solutions may be difficult to ascertain.

Additionally, this method relies heavily on perturbation analysis, which is typically

computationally limited to single-enzyme or single-group perturbations. Attempting

combinations of enzymes or groups of enzymes increases the number of required

perturbations significantly, making these kinds of studies prohibitively expensive

in terms of computational resources. This is particularly problematic for networks

consisting of large numbers of reactions.

The systematic approach was highly effective and much more computationally

efficient. Rather than requiring large numbers of simulations for perturbation analysis

and hypothesis testing, the systematic method requires just a few simulations.

Solutions are suggested with almost no human input involved, and the solutions

seem to be very accurate and consistent with reported experimental results. Unlike

the manual method, the systematic method can find combinations of enzymes

simultaneously. Like any automated calculation method, however, one needs to be

able to interpret the results. It is possible that some enzyme suggestions will not be

feasible. For example, if the method were to suggest overexpression of recATP in the
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DAHP network, one would need to realize that this is an artificial ATP sink reaction,

and the suggestion of this enzyme as a target may indicate that the system needs

additional ATP to maintain favorable yields and fluxes.

4.2 Problems with the methods

Some problems can be foreseen with the analysis of metabolic networks using whole

ensembles of models. The primary problem is that it will not scale well into

larger, whole-cell metabolic networks. The increase in the number of reactions and

metabolites involved will increase the complexity of the simulations in three ways.

First, the number of model kinetic parameters will increase dramatically. Second, the

number of models will need to be increased in order to adequately sample the kinetic

space. Third, the simulation time will need to be increased to allow the network to

reach a point close enough to steady state to allow for analysis of long-term behavior of

the network. There are no clear methods for improving the efficiency of this method.

One helpful computational aspect of the method is that it adapts well to parallel

computation, due to its number of repetitious and independent calculations.

A second potential issue is that the systematic enzyme targeting method seems

to focus on increasing yields only, while absolute flux values are allowed to fall. This

is to be expected, considering the method’s procedure. The direction of a flux vector

determines its yield entirely, and magnitude of the vector has no effect on yield.

Magnitude does scale the absolute flux values, however. The normalization of the

flux vectors in the calculation of Vn removes the magnitude component, biasing the

method toward finding those overexpressions that increase yield instead of absolute

flux. This normalization step is necessary, however, to prevent biasing of the relative

sizes of the singular values in the singular value decomposition of the final matrix of

flux vectors, which would lead to a false determination of the effective rank of the

matrix.
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4.3 Improvement opportunities

There are many opportunities for further development of the methods presented

in this study. Perhaps the most important work that needs to be continued is

testing the systematic enzyme targeting method on other systems. Its reliability

has not been universally established, since it has only been attempted on two

different metabolic networks. Additional networks may point out weaknesses and

oversights in the method. In particular, attempting the method on a network with a

biomass production component could yield interesting results. Other possible network

elements to be considered are additional regulation and larger network sizes.

One possible improvement to the systematic enzyme targeting method involves

adding concentration terms to the calculation of c in an attempt to find perturbation

targets that increase flux values. A second stage of the systematic procedure could be

introduced to attempt to maximize flux values without negatively affecting the yield.

To guide developments toward this end, consider that a network at steady state will

only exhibit metabolic buildups and inefficiencies through metabolite concentration

imbalances. For a network does eventually reach a steady state, metabolites will

tend to build up to some level at the slowest point in the network to force slow

reactions up to the required rates for steady state. By finding these accumulation

points and the reactions primarily responsible for them, targets may be suggested

that are oriented toward increasing flux values. This consideration may be adapted

to the systematic enzyme targeting method by adding concentration terms to the

calculation of c such that larger values of ci reflect larger metabolite concentration

buildups for the reactants of reaction i.

One could also attempt solving the system ODEs algebraically for their steady-

states instead of relying on dynamic simulation to reach a steady state. Such an

approach has been attempted by Tan et al. (2011) and has the potential to reduce

the computation time significantly, since dynamic simulation is the primary time

bottleneck. The procedures used in this study, particularly the systematic method,
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could be made into a MATLAB R© toolbox and made easier to use and more user-

friendly.

In summary, the development of the SET approach in targeting enzymes

for overexpression in order to increase network performance, if shown to be

applicable universally, would represent a significant advancement in metabolic

network engineering. The method allows for investigators to avoid investing

significant amounts of resources in performing a series of experimental studies directed

toward achieving the same objective.
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