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ABSTRACT 

The use of aminoglycoside antibiotics began in 1940 with the discovery of streptomycin. 

The overuse and misuse of antibiotics has resulted in prevalent cases of antibiotic 

resistance.  The most common source of aminoglycoside resistance is the presence of 

enzymes that covalently modify the antibiotics at specific locations. One such enzyme, 

APH(3′)-IIIa [the aminoglycoside phosphotransferase three prime three a] conveys 

resistance by transferring the γ-phosphate [gamma phosphate] from ATP [adenosine 

triphosphate] onto the 3′ [three prime] carbon of the aminoglycoside antibiotic sugar ring. 

APH(3′)-IIIa has been shown to be flexible in solution and this flexibility is proposed to be 

responsible for its large substrate profile.  Upon binding the aminoglycoside, APH(3′)-IIIa 

adopts a well-defined structure. All previous experiments were conducted in vitro. Here, 

various aspects associated with the flexibility of APH(3′)-IIIa are further examined in vivo. 

In-cell NMR [nuclear magnetic resonance] experiments are used to determine the protein 

dynamics of APH(3′)-IIIa in the crowded environment of the cell. Next, the flexibility of 

APH(3′)-IIIa is examined when binding more rigid aminoglycoside antibiotics: sisomicin 

and netilmicin in vitro.   
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Chapter I: Introduction 

A. Aminoglycoside Antibiotics 

i. Aminoglycoside general use and chemical structure 

Penicillin was the first antibiotic to be discovered and was used clinically in 1928. 

However, the term antibiotic was not used until 1941[3-5]. After the discovery of beta 

lactam antibiotics, aminoglycoside family antibiotics were the next to be discovered with 

streptomycin in 1940 [4]. Aminoglycosides can be used to treat both gram-positive and 

gram-negative bacterial infections. Aminoglycosides are known for treating tuberculosis as 

well as other serious infections; however, because of potent side effects their clinical use 

must be heavily monitored [6]. Currently, gentamicin, tobramycin, amikacin, streptomycin, 

neomycin, and paromomycin are approved by the US Food and Drug Administration for 

clinical use in the United States [7, 8]. Additional uses of aminoglycosides include the 

inhibition of HIV virus reproduction and treatment of some genetic diseases [9, 10] 

Streptomycin, like other aminoglycosides, is derived from soil bacteria and is synthesized 

from sugar monomers [11].  Aminoglycoside antibiotic structures contain a variety of sugar 

rings, with various modifications. The wide use of these antibiotics is possible in part 

because of variety in their chemical structures [4].  

Most aminoglycosides are separated into one of two major groups, kanamycins and 

neomycins.  The unprimed ring or aminocyclitol is the nucleus of both groups and is a 2-

deoxystreptamine (2-DOS) ring linked by glycosidic bonds to other amino sugar rings 

(Figure 1) [12]. Aminoglycosides that are considered a neomycin contain a 4,5-

disubstituted central 2-DOS ring, whereas those identified as a kanamycin contain a 4,6-

disubstituted central 2-DOS ring [13]. There are numerous modifications that can be made 

to the various sugar rings to individualize the general backbone of the two groups of 

aminoglycosides, including but not limited to additional sugar rings, methyl groups, 

hydroxyl groups and amino groups (see Figure 1 for examples).     
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Figure 1: Aminoglycoside antibiotic structures of kanamycin (top) and neomycin 
(middle) family representatives.  Unprimed (2-DOS), primed and double primed 
rings are depicted.  Gentamicin family representatives, gentamicin B, sisomicin and 
netilmicin are shown at the bottom. Gentamicin B is identical to sisomicin except 
that gentamicin B contains a saturated diamino primed ring, instead of an 
unsaturated diamino primed ring (shown).  
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ii. Mechanism by which aminoglycosides cause cell death  

 Aminoglycosides cause miscoding during protein synthesis which results in a 

compromised cell membrane and a reduction in cell viability [14]. First, aminoglycosides 

bind the aminoacyl-tRNA decoding site (A-site) on the 16S RNA subunit of the ribosome 

[15-17].  Crystal structure of the unbound 30S ribosomal subunit reveals that the A-site 

contains an internal loop in which two adenine side groups are facing into the helix. During 

translation, when the correct anticodon matches the codon of the mRNA, the two adenine 

side groups flip to face the outside of the helix. This conformational change dictates the 

continuation of translation [18]. The crystal structure of the 30S subunit bound by 

paromomycin reveals that the aminoglycoside inserts its primed ring into this helix, forcing 

the two adenines to pucker out from the helix [18].  The central unprimed ring of 

paromomycin interacts with several conserved base pairs in the A-site [15]. Therefore, the 

neamine portion (the prime and unprimed rings) of the aminoglycoside interferes with 

translation processes by binding structurally conserved regions of 16S ribosomal RNA 

(rRNA). This stabilizes a conformation of the A site which allows for incorrect ribosomal 

translation of proteins [16, 18]. The electrostatic forces between the positively charged 

aminoglycosides to the negatively charged RNA molecules drive this binding event [18].  

Aminoglycosides have a ten-fold higher affinity to prokaryotic rRNA as compared to 

eukaryotic rRNA, providing a level of specificity for prokaryotic rRNA [15].    

B. Aminoglycoside Modifying Enzymes 

i. Nomenclature and modification sites  

Antibiotic resistance is an increasing problem in clinical settings [19]. Resistance to 

aminoglycosides can occur via three main mechanisms: chemical modification of the 

aminoglycoside, chemical modification of the rRNA, and point mutations of the A-site [6, 

18]. The main method of resistance is chemical modification of aminoglycosides by 

inactivating enzymes. The first enzyme, β-lactamase, found to provide resistance via 

chemical modification to β-lactam antibiotics was discovered in 1940 [20]. Today there are 

over fifty known enzymes that chemically modify aminoglycosides, termed aminoglycoside 

modifying enzymes (AGMEs) [19].  Each of these enzymes modifies the aminoglycoside at a 
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specific location, and is generally able to catalyze only one type of modification: 

phosphorylation, acetylation and adenylation. [19].  Therefore AGMEs are named according 

to site and type of modification made to the aminoglycoside. Enzymes that facilitate one of 

the listed modifications are termed phosphotransferases (APH), acetyltransferases (AAC), 

or nucleotidyltransferases (ANT) respectively. AGMEs are then further characterized by the 

location of the modification that they facilitate, for instance APH(3′)IIIa phosphorylates the 

hydroxyl group attached to the C-3 on the primed ring of the aminoglycoside antibiotic 

[21]. Because there are several AGME’s that catalyze the same modification, they are then 

further characterized by discovery and resistance profile [19].    

Chemical modifications made to an aminoglycoside reduce its binding affinity for the A-site 

by creating steric hindrance or unfavorable electrostatic interactions with the 30S rRNA 

subunit. For instance, the addition of a negatively charged phosphate group alters the 

attraction of the aminoglycoside for the negatively charged A-site [15]. Chemical 

modifications at the various sites on aminoglycosides decrease their binding affinity for the 

A-site to varying degrees. The aminoglycoside side groups important to A-site binding are 

also important for recognition by AGMES. This makes designing drug targets exclusively for 

either the A-site or AGME difficult. 

ii. Substrate (aminoglycoside) promiscuity 

Aminoglycoside modifying enzymes are promiscuous. If the AGME is able to bind a large 

number of aminoglycoside substrates; thereby seeming to exhibit indiscriminant selectivity 

of substrates, it is termed highly promiscuous. For example, APH(3′)-IIIa would be termed 

highly promiscuous because it is able to bind and modify to over a dozen aminoglycosides. 

AGMEs that are able to efficiently modify only a few aminoglycoside substrates are 

considered to have a low promiscuity.  AAC(3)-IIa for instance is unable to provide 

resistance against neomycins, therefore AAC(3)-IIa has a lower promiscuity than APH(3′)-

IIIa. Other AGMEs, such as AAC(3)-IVa have even more restricted substrate promiscuities 

[19].       
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C. Introduction to APH(3′)-IIIa 

As mentioned before, each AGME has a specific binding profile as well as binding 

mechanism. This thesis will focus on AGME APH(3′)-IIIa which will be referred to as APH. 

The structure and mechanism of APH will be described here; however additional AGMEs 

with differing structures and mechanisms will be discussed in lesser detail in chapters III 

and IV.  

APH is a 31 kDa protein produced by gram-positive cocci such as Staphylococci and 

Enterococci. Functionally, APH catalyzes an adenosine triphosphate (ATP) dependent 

phosphorylation of hydroxyl groups at the 3′ position of aminoglycosides [1]. APH is known 

to modify aminoglycosides: kanamycin A, kanamycin B, neomycin, paromomycin, 

ribostamycin, lividomycin (modifies the 5″ hydroxyl), butirosin, gentamicin B, amikacin, 

and isepamicin, but binds additional aminoglycosides that do not contain a 3′ hydroxyl 

group such as tobramycin [19, 22].  

iii. APH structure 

APH is found as either a monomer or a covalent dimer, linked by two disulfide bridges: 

Cys19 is linked to Cys156 of the partner molecule and vice versa [1]. Crystal structure of 

APH solved by Hon et al. shows APH as a dimer, with each monomer bound to an ADP 

molecule as well as two magnesium ions (Mg2+) and several solvent molecules. The 

monomers are linked in a head-to-tail-tail-to-head orientation [1]. The two active sites face 

each other and are separated by approximately 20 Å [1]. However, in physiological 

conditions APH is most likely to be found as a monomer [23]. In experiments described 

here, purified APH is kept in a monomeric state by incubation with dithiothreitol (DTT), a 

redox reagent that reduces disulfide bonds of exposed cysteine residues. APH is then 

stored in a Tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl) containing buffer 

which also reduces disulfide bonds but is considered more stable than DTT [24].  

Although APH shares very little sequence homology with other protein kinases, it contains 

several structural features associated with protein kinases. APH is made up of two lobular 

regions: the N-terminal region and the C-terminal region [1]. The N-terminal region is 

made up of 94 residues and is the smaller lobe. The larger C-terminal lobe is made up of 

157 residues. The lobes are connected by a stretch of twelve residues that form a short β 
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strand and an α helix [1].   The N-terminal lobe contains a five-stranded antiparallel β sheet 

(strands labeled β1-β5) with an α helix located between strands 3 and 4; following the β 

sheet is another short helix.  The structure of the N-terminal lobe region as well as the 

linking region is consistent with other eukaryotic-type protein kinases. However, APH lacks 

the highly conserved G-X-G-X-X-G motif seen in typical protein kinases located in between 

beta strands β1 and β2 [1]. The C-terminal lobe region is subdivided into a central core 

region, insert region, and C-terminal region. The central core is made up of helices α4 and 

α5 with a hairpin-shaped loop that contains a short antiparallel β sheet.  This region also 

shares conformational similarity with other protein kinases [1]. The insert region consists 

of two helices (αA and αB) connected by a 19-residue loop. The C-terminal region is made 

up of two helices (αC and αD). Both the insert region and the C-terminal region of the C-

terminal lobe differ from the typical protein kinase C-terminal fold. A topological depiction 

of the APH structure is given in Figure 2.  

The 60 residue insert region of APH is particularly interesting. Much smaller in most 

protein kinases, this region is responsible for specificity and selectivity of substrates. X-ray 

crystallography showed that the insert region is located in front of the active site, and is in 

a position to interact with aminoglycoside substrates of APH [1].  

i. ATP and Aminoglycoside binding sites 

 Binding of substrates with APH follow Theorell-chance mechanism, meaning that there is 

an order to substrate binding. ATP and Mg2+ ions bind the enzyme first, followed by the 

aminoglycoside. After the phosphate transfer from ATP to the antibiotic, the 

phosphorylated aminoglycoside is released followed by the release of ADP [23, 25]. At 

typical intracellular ATP concentrations the ATP binding site of APH will be saturated [26].  

All aminoglycoside phosphotransferase enzymes share a common active site motif. The 

ATP active site is found in the linking region between the N-terminal lobe and the C-

terminal lobe. [23].  According to crystal structures, the adenine ring of ATP is buried, 

forming several interactions with both N-terminal lobe and C-terminal lobe residues. The 

α-phosphate interacts with two water molecules, highly conserved residue Lys44, as well 

as the first Mg2+. The β-phosphate was found to interact with one water molecule, Lys44, 

Ser27 as well as the second Mg2+. The donor phosphate or γ-phosphate coordinates with 
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both magnesium ions [23]. The two magnesium ions facilitate the correct orientation of the 

nucleotide when binding to APH.  
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Figure 2: structure of APH, high lighting the GXGXXG region (red), flexible binding loop 
(orange), insert region (purple) and tethering segment (yellow). Topological diagram of 
the secondary structure highlights the same regions and provides a comparison to typical  
eukaryotic protein kinase secondary structure (shown in grey) [1]. 
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Crystal structure analysis of apo APH compared to ADP bound APH revealed the 

interaction of a short loop region (residues 22-29), between β1 and β2, with the binding of 

the ATP molecule.  These residues occupy part of the nucleotide binding region in the 

absence of nucleotide, but shift outward in the presence of nucleotide [23].    

The same electrostatic forces that are important for the binding of the aminoglycoside to 

rRNA are also important in the binding of aminoglycosides to APH. The aminoglycoside 

binding pocket contains three aspartic acid residues, five glutamic acid residues and the C-

terminal carboxylic acid group. The positively charged aminoglycosides are attracted to the 

excess negative charge of APH in the region of its binding site [15]. Crystal structures of 

APH bound with ADP and kanamycin A or neomycin B showed that the flexible loop region 

from 147-170 moves approximately 10 angstroms from unbound to bound state. It is 

thought that Glu157, Asn158, and Glu160 from this loop region interact with the 

aminoglycoside substrate [27]. It is predicted that similar to other protein kinases, an 

aspartate (Asp190) is responsible for the catalytic activity of deprotonating the substrate 

hydroxyl group. It has been suggested that there is a direct transfer of the phosphate group 

onto the aminoglycoside, however the exact mechanism by which APH phosphorylates its 

bound aminoglycoside substrate is still unknown [23]. 

ii. Dynamic nature of APH in solution 

In previous work done by Norris et al. it was shown that in the absence of ligand, APH has a 

highly overlapped heteronuclear single quantum coherence (15N-1H HSQC- henceforth 

will be referred as HSQC) nuclear magnetic resonance (NMR) spectrum [28]. This 

overlapped spectrum indicates that several backbone amide groups are in very similar 

chemical environments, suggesting that the apo enzyme is flexible and may be adopting 

multiple confirmations in an aqueous solution.  Hydrogen-deuterium exchange studies with 

APH revealed that after 15 minutes of exposure to deuterium oxide (D2O), 80% of the 

backbone amides had fully exchanged and were 100% exchanged after 15-20 hours [28]. 

When APH is part of a binary complex with kanamycin A the HSQCH2O spectra is 

dramatically different as compared to the apo form. When bound to antibiotic, 

approximately 85% of all resonances were well-resolved [28, 29]. The chemical shifts seen 

with the binary APH-aminoglycoside complex indicated that APH adopts a more well-
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defined structure when bound to aminoglycoside antibiotics (Figure 3) [28]. Hydrogen 

deuterium exchange experiments done with APH bound to either kanamycin A or 

neomycin B showed significant increase in the protection of backbone amide groups [28]. 

There were also differences in protection of specific amino acids between the bindings of 

kanamycin A or neomycin B. This indicated that the effect of ligand binding to APH resulted 

in different structural and dynamic properties dependent upon the ligand [28].  

iii. Kinetics and thermodynamics of ligand binding 

When discussing the complexes of APH, the term binary will refer to the complex of either 

antibiotic or adenylmethylenediphosphnate (AMPPCP) bound to AGME. AMPPCP is a non-

hydrolysable analog of ATP. The term ternary will refer to the complexes formed with APH, 

aminoglycoside, Mg2+ and AMPPCP. In theory, this not a ternary complex because two Mg 

ions bind to APH therefore, equaling a total of five binding partners. For the purpose of this 

study Mg2+ was kept at saturating levels in both samples during titrations when AMPPCP 

was used. Therefore the only one component is binding to the formed complex of the other 

four. The order of addition is found in the ternary nomenclature, for example the formation 

of ternary complex APH-antibiotic-Mg-AMPPCP was created by adding Mg-AMPPCP into 

APH-antibiotic-Mg complex.   

Binary thermodynamic studies done of APH binding to various aminoglycoside partners 

revealed that, in general, binding is enthalpically driven which is compensated for by an 

unfavorable entropic contribution [30, 31]. The overall gain in structure upon the binding 

of aminoglycoside to APH correlates well as a potential source for the unfavorable entropy 

(∆S). Published negative enthalpy (∆H) values associated with the formation of the binary 

complex indicate that formation is driven by favorable binding contacts such as polar, 

electrostatic, van der Waals forces and hydrogen bonds [30].  The large exothermic heat of 

association is able to compensate for the unfavorable entropy, therefore association of APH 

and all aminoglycosides have a favorable Gibb’s energy change (∆G). Isothermal titration 

calorimetry (ITC) of ternary enzyme-CaATP-aminoglycoside complexes revealed that when 

CaATP is present, binding of the aminoglycoside to APH is generally tighter [30]. As stated 

previously, APH exhibits a Theorell-Chance kinetic mechanism of binding; in this case the 

binding of CaATP seems to encourage binding of aminoglycoside.   
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APH is the most well-studied aminoglycoside modifying enzyme to date, however the exact 

mechanism by which it is able to modify such a large number of substrates remains to be 

fully elucidated [9]. Here we will further examine various aspects of the flexible nature of 

APH. 
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Figure 3: Partial image used with permission of Norris et al.  HSQC NMR spectra of APH 

complexes. APH in its apo (left) and binary APH-tobramycin (right) forms are shown. All 

spectra were taken under similar experimental conditions and shown to matching contour levels 

[2]. 
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Chapter II: In-cell Nuclear Magnetic Resonance 

A. Background  

i. In-cell nuclear magnetic resonance spectroscopy 

The first NMR spectrometer became commercially available in 1961 with the 60 megahertz 

(MHz) Varian A-60 [32].  Typical NMR experiments involve the examination of small 

molecules and macromolecules in vitro, currently NMR techniques are also being used to 

determine the dynamics of proteins in vivo. Termed “in-cell” NMR spectroscopy, this 

technique is valuable as it uses NMR to investigate the conformation as well as the 

dynamics of proteins while they are in their native cellular environment.  The cellular 

environment is crowded, with macromolecular concentrations as high as 400 g/l. Most 

proteins are studied outside the cell with concentrations of 10 g/l or less [33].  There can 

be discrepancies between protein dynamics studied in vitro by NMR and those that are 

studied in the more dilute in vivo environment. Therefore the use of in-cell NMR techniques 

provides a unique opportunity to examine the naturally found dynamics of a protein. 

However, it is unlikely that in-cell NMR spectroscopy will replace in vitro NMR experiments 

as the latter offers sharper line widths and more stable conditions for experiments over 

longer periods of time. In-cell NMR requires that the protein of interest be labeled, as well 

as contained in an intact live cell.  Labeling is required to make the protein of interest 

distinguishable from the resonances of all other proteins in the cell. The most common 

forms of labeling are with 13C, 15N, and 19F [34]. Labeling requires the use of expression 

vectors to overexpress the protein of interest in labeled media.  

 In more commonly used NMR experiments, proteins are able to tumble freely in solution 

and have rotational correlation times that are less than a few nanoseconds [34].  Increasing 

viscosity of a solution results in a slowed tumbling of the protein and in a broadening of the 

resonance lines. Proteins in the cell are subjected to environments of higher viscosity and 

therefore a broadening of resonance lines is to be expected. This broadening results in a 

loss of resonances of more structured portions of the protein.  Larger line widths 

associated with in-cell NMR result in greater peak overlap relative to their in vitro 
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counterpart. Therefore it is important to only compare changes occurring in different in-

cell experiments, rather than to in vitro experiments.  In-cell protein leakage is a common 

problem associated with in-cell NMR.  As the cells are stressed they experience cell damage 

and the labeled protein is released (protein leakage). It was previously reported that 

leaked proteins will cause artifacts, therefore careful measures must be taken to ensure 

that the cells are healthy [33]. Heteronuclear multiple-quantum coherence (HMQC) 

experiments are used with in-cell experiments for their quickness of completion with 

relatively little loss in peak resonance.     

ii. Structural dynamics of APH  

Previous H/D exchange NMR experiments showed that the APH backbone amides exchange 

rapidly, confirming that APH is flexible in solution [28]. This flexibility is hypothesized to 

allow APH to be highly promiscuous. In 2010 the backbone resonance assignments were 

made for the APH-tobramycin complex [29].  This work confirmed and expanded on 

previous NMR work with APH; the 7.5-9 ppm peak range seen with the apo complex 

increases to 115-121 ppm range when bound to tobramycin making it possible to assign 

more of the resonances [28].  

The crowded nature of the cell can be to an extent mimicked by the addition of crowding 

agents such as bovine serum albumin (BSA), glucose or albumin [34]. Preliminary data 

showed that with the addition of BSA, the HSQC NMR spectra remained fairly overlapped as 

compared to the HSQC NMR spectra of apo APH complex without BSA. This indicates that 

even in a crowded environment, 15N labeled APH retains much of its flexibility, shown by 

the retention of highly overlapped spectra (Figure 4).   

Neither crystallography nor typical NMR studies have looked at the enzyme’s dynamics in 

its natural environment. New NMR techniques have provided a way to examine protein 

dynamics while still contained in the cell. Although this method is still being developed, it is 

useful when determining the effects of crowding on a protein’s dynamics. Therefore, in-cell 

NMR techniques will be used to look at the structural dynamics of APH when 

overexpressed in Escherichia coli cells.  
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iii. Aminoglycoside in-cell effects 

Aminoglycoside antibiotics enter both gram-positive and gram-negative bacteria via three 

distinct steps. First is the self-promoted uptake of the antibiotic by binding onto anionic 

compounds like phospholipids to promote an increase in uptake of the antibiotic into the 

periplasmic space [12, 35]. Next, the electron transport system creates a electrochemical 

gradient across the mitochondrial membrane, which facilitates the uptake of antibiotics 

into the cytoplasm by unidentified transporters [12]. The aminoglycoside antibiotics then 

cause errors in protein synthesis. The mistranslated membrane proteins then allow for 

increased uptake in antibiotics which further accelerates cell death [12, 14, 15, 18]. In 

order to see conformational changes associated with binding of APH to an aminoglycoside 

in the cell, the choice and amount of aminoglycoside will need to be optimized. The amount 

of aminoglycoside will need to be low enough to maintain cell viability and therefore cause 

low amounts of cell leakage, but high enough concentrations so that APH will be in its 

bound form.   

B. Experimental Procedures 

i. Chemicals 

Isopropyl-β-D-thiogalactopyranoside (IPTG) was purchased from Inalco Spa (Milan, Italy), 

and 99.9% deuterium oxide was obtained from Cambridge Isotope laboratories (Andover, 

MA). 15N enriched salts were also purchased from Cambridge Isotope Laboratories 

(Andover, MA). All other general chemicals and aminoglycosides were of highest available 

purity and were obtained from either Sigma-Aldrich (St. Louis, MO) or Fisher Scientific 

(Pittsburgh, PA).   

ii. Growth of 15N labeled APH cells  

Following closely to methods previously used, agar plates (10 g/l tryptone, 5 g/l yeast 

extract, 10 g/l NaCl, 15 g/l agar) containing 100 µg/ml ampicillin (amp) and 50 µg/ml 

kanamycin A were streaked with transformed E.coli [33, 34]. The transformed cells 

contained a pET-15b vector with the genetic information to overexpress APH, generously 

provided by Dr. Amber Bible and Dr. Adrianne Norris.  Ampicillin (AMP), while not an 
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aminoglycoside is used because this particular expression vector codes for ampicillin 

resistance via the expression of the enzyme β-lactamase. Resistance to ampicillin, as well as 

overexpression of APH which provides resistance to kanamycin A, ensured that the 

colonies grown contained the correctly cloned pET-15b vector [36]. An extra agar plate 

was created each time and contained both antibiotics, but was not streaked. This was done 

as a negative control.  Plates were inverted and incubated overnight at 37 °C. The next 

afternoon, a single colony was inoculated into approximately 15 mls fresh Luria Broth (10 

g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl) containing 100 µg/ml AMP and incubated at 

37 °C with agitation of 200 RPM overnight.  The following morning the overnight culture 

was used to seed a fresh 100 ml Luria Broth (LB) and AMP culture.  The fresh culture was 

then allowed to grow at 37 °C with agitation until it reached 0.4 OD600.  To ensure that the 

cells used for in-cell NMR were healthy, the cultures were kept at cell concentrations lower 

than 0.5 OD600. This ensured that the cells were actively growing and not in stationary or 

death phase when induced.   

Cells were then transferred to 50 ml centrifuge tubes where they were spun at 1600 xg for 

15 minutes. The Luria broth was then decanted and cells were suspended in 70 ml of 15N 

labeled M9 media.  Ingredients for 1 Liter final volume of M9 minimal media are as follows: 

7 g/l sodium phosphate, 3.5 g/l monobasic potassium phosphate, .5 g/l NaCl, 1 ml trace 

metal solution, 1 ml 1M MgSO4, 100 µl 1M CaCl2, 70 µl .5M FeCl2, 25 µl 2% thiamine, 4 g 

glucose, 1 g 15NH4Cl2, and 100 µg/ml AMP [28]. The M9 minimal media is filter sterilized 

and kept at 4 °C until use. The trace minerals solution was made with a final volume of 1 

liter and contained 2.86 g H3BO3, 1.81 g MnCl2*7H2O, 0.23 g ZnSO4*7H2O, 0.39 g 

Na2MoO4*2H2O, 0.079 g CuSO4*5H2O, and 0.0494 g Co(NO3)2*6H2O, which was filter 

sterilized and kept at 4 °C. The culture was placed at 37 °C with agitation for 10 minutes 

before adding 700 µl of 0.024 g/ml IPTG. The time delay was to allow the cells to acclimate 

to the new media and restart growth. Cells were not initially grown in 15N labeled media so 

that only the induced protein would be labeled. IPTG mimics allolactose in the cell; it binds 

onto the lac repressor which then allows for transcription of APH which is located in the lac 

operon. IPTG is not hydrolyzed by β-galactosidase and therefore remains at a constant 

concentration, encouraging consistent overexpression of APH. An induction time of 4 hours 
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was initially used to produce an increased expression of APH. High concentrations of APH 

are desirable, as it is difficult to get a good signal from the 15N labeled protein in the 

crowded environment of the cell. However, because of the reduced cell viability at high 

induction times, the induction time was later reduced to 30 minutes. Cells were then 

transferred to clean 50 ml centrifuge tubes and spun at 1600 xg for 10 minutes, which 

produced a very fragile pellet of cells. The M9 media supernatant was decanted off and cells 

were then gently suspended in 1200 µl of 7-10% deuterated PBS buffer (3.2 mM Na2HPO4, 

0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl with added 7-10% volume D2O pH 7.4) by 

gentle swirling.   

iii. Cell assays 

To determine the best condition in which to perform in-cell NMR, LIVE/DEAD cell assays 

were used to analyze cell viability. Cells were grown under several different conditions and 

induction times, they were then stained according to the LIVE/DEAD BacLight Bacterial 

Viability Kit protocol[37]. Although the chemical structures of these stains are copy-

righted, it is well documented that the SYTO 9 dye is a green fluorescent nucleic acid stain 

that labels the cell membrane. The red-fluorescent nucleic acid stain, propidium iodide, is 

able to penetrate cells with damaged cell membranes [37].  The emission wavelengths for 

the fluorescent stains are 500 nm for the SYTO 9, and 635 nm for propidium iodide. Cells 

that fluoresced at 500 nm were considered alive and cells that fluoresced at 635nm were 

considered dead. Using a Zeiss Observer .Z1 microscope, cells were visualized using oil 

emersion 63 x objective, which has a resolution of 0.24 micrometers. Cells were observed 

under differential interference contrast (DIC) filter as well as filters for green fluorescent 

protein (GFP) and red fluorescent protein (RFP).  The GFP filter collects emission 

wavelengths at 510 nm and the RFP filter collects emission at 700 nm. Pictures were taken 

of each condition using a Hamamatsu ORCA-ER digital camera attached to the microscope, 

and saved in OpenLab5 software.  All DIC, GFP and RFP images were taken sequentially 

after switching the excitation wavelength. Images were then analyzed via Image J software 

where live and dead cells were counted on each image [38]. The numbers of live or dead 

cells were analyzed and graphed using Graphpad Prism software.  
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iv. Cell lysis  

Small sample size prevented use of the French press to lyse the cells [30]. Sonification was 

also not applicable as it was previously shown to deactivate APH. Therefore cell lysis trials 

were done using various combinations of freeze-thaw cycles and the addition of lysozyme. 

Preparation of cells began according to the method outlined in section ii above, with the 

following variations: unlabeled ammonium chloride was used during induction and cells 

were suspended into 10 mls of non-deuterated PBS buffer. The sample was then separated 

into ten 1ml aliquots.  Each aliquot was subjected to a different combination of freeze thaw 

cycles by freezing in liquid nitrogen and thawing at room temperature and addition of 

lysozyme. Lysozyme was used because of its known ability to damage bacterial cell walls 

[39]. The protocol for using lysozyme in cell lysis calls for a heat shock of the sample in 

order help break apart the cell wall, however heat above 45 °C denatures purified APH 

protein therefore in order to have fully active enzyme heat shock was not used in the 

varying lysis conditions [40].  Among the conditions tried, several included adding 

lysozyme preheated as well as unheated.  Each aliquot was then centrifuged at maximum 

speed for 2 minutes.  38 µl of supernatant from each sample was combined with 12 µl 4% 

SDS loading dye and loaded into a lane on a 10% acrylamide gel [41].  The gel ran at 85 

volts for approximately 45 minutes.  It was then stained it for 20 minutes, followed by 

destain for 1.5 hours. Methods followed and materials used were in accordance with 

previously published work [41, 42].    

v. In-cell nuclear magnetic resonance 

For in-cell NMR experiments, 1200 µl of prepared whole cell sample was transferred to a 

NMR tube.  The whole cell sample was then inserted into the 600 MHz NMR spectrometer. 

After appropriate calibrations are performed, a 1 hour HMQC experiment with 32 scans 

was executed. Upon completion of the experiment, cells were transferred to a 

microcentrifuge tube and spun in a table top centrifuge at 2,000 RPM for 10 minutes. 600 µl 

of the supernatant was then transferred to a clean NMR tube and an identical HMQC 

experiment was run after re-calibrating the NMR machine. The supernatant is run 

separately because it must be shown that the protein has not leaked from the cell. If the 

protein has leaked into the extracellular space it is not subjected to the same crowding 
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effects as the in-cell protein. The pelleted cells are then lysed according to our determined 

protocol of alternative freeze-thaw cycles. The cell debris was then centrifuged for 10 

minutes at 13.2 RPM. Upon cell lysis, the labeled APH protein is freed from the cell and 

located in the cell lysate. 600 µl of the cell lysate is transferred to a clean NMR tube and an 

identical HMQC experiment is performed. Spectra were processed in nmrDraw and 

exported to Sparky for analysis and display [43, 44]. Adobe Photoshop software was used 

to invert images to change the background to white. 

vi. Empty vector in-cell nuclear magnetic resonance 

An important negative control was in-cell NMR performed on cells containing an empty 

vector. This was done to determine the amount of 15N that is nonspecifically incorporated 

into the cell. First, competent E.coli cells were transformed with an empty pET-15b vector. 

Proper transformation was confirmed by sequencing to ensure that the vector was empty. 

The empty vector strain of E.coli was then grown using the same procedures previously 

described in section ii. Identical in-cell HMQC NMR experiments were performed and 

analyzed.  

C. Results/discussion 

i. Optimization and visualization of APH in the cell 

The first source of protocol optimization was to reduce the amount of protein leakage from 

the cell. LIVE/DEAD cell assays were performed on cells grown under various conditions 

and the amount of live cells and damaged (termed dead) cells were counted.  As seen in 

Figure 5, cells grown in LB as compared to those grown in minimal M9 media (M9) had 

~10% less total cell death. When cells were grown in LB and then transferred to M9 media 

for 0.5 hours of induction there was 3.3% cell death observed; when the cells were grown 

and induced for 0.5 hours in M9 media there was 17% observed cell death. This indicates 

that there is less cell damage when cells are grown in LB and then transferred to M9 for 

induction. Induction times of 1 hour and 1.5 hours caused cell death to increase to 5% and 

26% respectively. Induction time was the most influential variable in terms of affecting cell 

viability. When cells were grown in LB and transferred to M9 media for a 0.5 hour 
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induction followed by transfer to a deuterated PBS buffer, cell death decreased to 2.3%. 

These conditions were determined to be optimal.  

The second source of protocol optimization was to determine the appropriate method of 

lysing the cells. Keeping in mind the sample size and what was previously shown to 

inactivate APH, several different conditions were tried. Figure 6 shows that lanes 3-12 

exhibit good cell lysis as seen by the presence of several protein bands as well as an 

overexpression of APH which is boxed in at 31 kDa. Addition of lysozyme did not 

significantly increase the amount of cell lysis. The optimal method of lysis was determined 

to be at least 4 freeze-thaw cycles.  

HMQC spectra of whole cells grown and induced under optimal conditions produced a 

spectrum with 9 distinct peaks (Figure 7). The HMQC spectra of the supernatant did not 

contain a significant signal indicating that there was little to no leakage of APH out of the 

cell at this time. The HMQC spectra of the lysate contained an additional 20 peaks, this 

indicates that once released from the crowded environment of the cell, APH is much more 

visible. The lysate, while less crowded, still contains all of the proteins and organelles that 

were once contained in the cell and therefore we do not expect to see a re-establishment of 

the spectra of purified labeled APH.   

In-cell NMR experiments were performed on E.coli BL21 (DES) cells containing an empty 

pET-15b vector as a negative control. In Figure 8, HSQC NMR experiments show that when 

grown under optimal growth and induction conditions there is some inclusion of 15N into 

the cell.  The supernatant does not have visible 15N signal and the lysate shows a 

reappearance of the same 4 peaks. This reappearance indicates that there is inclusion of 

15N into the cell. Compared to the spectra of our in-cell APH, APH has an increased number 

of peaks confirming that we are able to detect, although a bit limited by the lack of varying 

peaks, the labeled APH.  

ii. In-cell structural changes of APH    

LIVE/DEAD cell assays were used to determine the appropriate amount of antibiotic 

(neomycin B, tobramycin or kanamycin A) to add to the whole cell sample (Figure 5). The 

goal was to determine the antibiotic that could be present in high concentrations, without 
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causing more than 5% cell death. In Figure 5, b-d compare amount of antibiotic added to 

the number of live and dead cells that resulted. It was concluded that the addition of 

neomycin B caused less cell death at higher concentrations than either kanamycin A or 

tobramycin. However, these experiments showed that relatively little aminoglycoside could 

be used before inducing large amounts of cell death. 

In Figure 4, HSQC NMR experiments of APH with 150 mg/ml BSA show that in the presence 

of a crowding agent, APH is still highly overlapped and therefore flexible. HSQC NMR 

experiments of the addition of 5 mM neomycin B to APH in the presence of crowding agent 

BSA resulted in a large amount of peak dispersion (Figure 4). BSA interacts with neomycin, 

therefore high concentrations were necessary to ensure APH saturation [45].  The peak 

dispersion indicates that the binding of neomycin B causes a conformational change of APH 

even when in crowding conditions.  

Shown in Figure 7 are spectra of the whole cell, supernatant, lysate and lysate with 

neomycin. The addition of 10 mM neomycin B to the lysate causes shifts in several 

resonances, best seen by the overlay image in Figure 7. These shifts tell us that the binding 

of neomycin B to APH causes a conformational change in the crowded environment of the 

lysate. The mechanism by which aminoglycosides work to kill bacterial cells makes it 

difficult to visualize binding AGMEs in the cell. This was shown to be the case with 

visualizing APH bound to neomycin B in the cell. 
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APH + BSA 

APH + BSA + neomycin 

Figure 4: 1H 15N HSQC NMR spectra of APH complexes. APH in its apo (top), in the presence 
of 150 mg/ml BSA (middle), and in the presence of 150 mg/ml BSA and 5mM neomycin B 
(bottom) are shown. All spectra were taken under similar environmental conditions and 
shown to matching contour levels. 
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Figure 5: Results of LIVE/DEAD cell assays, (a.) total cell count for each growth condition 
was normalized to 1000. Green portion represents cells counted as alive, and the red 
portion represents cells counted as damaged or dead. Growing conditions include cells that 
were  grown in LB media and not induced (lane 1), cells grown in M9 media and not 
induced (lane 2), cells grown in LB and transferred to M9 for a 0.5 hour induction (lane 3), 
cells  grown in M9 and induced for 0.5 hours (lane 4), cells grown in LB and transferred to 
M9 for 0.5 hour induction then transferred to PBS buffer (lane 5), cells grown in LB and 
transferred to M9 for 1 hour of induction (lane 6), and cells grown in LB and transferred to 
M9 for 1.5 hours of induction. (b-d) LIVE/DEAD cell assays of cells grown and induced for 
0.5 hours under optimal growth conditions. Cells were then exposed to various amounts of 
an aminoglycoside antibiotic: kanamycin A (b), neomycin B (c) and tobramycin (d).  After 
45 minutes of incubation cells were stained and fluorescence was viewed. Live (light grey) 
and dead (black) cells were counted from images taken 

a. b. 

c. d. 



24 
 

 

  

Figure 6: SDS gel picture of proteins extracted using  various cell lysis 
techniques: purified APH (lane 1), cell supernatant prior to lysis (lane 2), 
freeze thaw 3x with heated lysozyme (lane 3), freeze thaw 3x  (lane 4), freeze 
thaw 3x with unheated lysozyme (lane 5), freeze thaw 3x with preheated 
lysozyme (lane 6), freeze thaw 4x (lane 7), freeze thaw 4x with heated 
lysozyme (lane 8), freeze thaw 4x with preheated lysozyme (lane 9), freeze 
thaw 5x (lane 10), freeze thaw with unheated lysozyme (lane 11), and freeze 
thaw 5x with preheated lysozyme (lane 12). The black box depicts the location 
of APH on the gel in lane 1, and in lanes 3-12.  
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Supernatant  

Figure 7: 1H- 15N HMQC NMR spectra of in-cell experiments. APH located in the cell (upper 
left) is purple, the supernatant (upper right) is green, the lysate (middle left) is blue, lysate 
plus 10 mM neomycin (middle right) is red and an overlay of spectra with lysate (blue) and 
lysate with 10 mM neomycin (red) is in the lower panel. All spectra were taken under 
similar experimental conditions and shown to matching contour levels. 
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Figure 8: 1H- 15N HMQC NMR spectra of e.coli (BL21) cells containing an empty pET-15b 
vector. Whole cell (top) is shown in green, supernatant (middle) is shown in red, and lysate 
(bottom) is shown in blue. All spectra were taken under similar experimental conditions 
and shown to matching contour levels.   
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Chapter III: APH flexibility allows binding to structurally 

rigid aminoglycosides 

A. Background 

i. Introduction to acetyltransferases(3)-IIa and IIIb 

Acetyltransferases AAC(3)-IIa and AAC(3)-IIIb will be referred to as AAC-IIa and AAC-IIIb 

unless specificity is required. APH is a highly promiscuous AGME with a known flexible 

nature. Aminoglycoside acetyltransferases are another family of AGMEs, and among them 

they have range of substrate profiles as well as intrinsic disorder.  Two well-studied AAC’s: 

AAC-IIa and AAC-IIIb catalyze the transfer of an acetyl group from coenzyme A (CoASH) 

onto the 3-N position on the central 2-DOS ring of aminoglycoside antibiotics [46]. 

Modification at this site causes a significant loss of antibiotic effectiveness. AAC-IIa, like 

APH, is highly dynamic in solution and displays properties of being intrinsically disordered 

in the absence of aminoglycoside substrate [2]. Upon binding of aminoglycoside, AAC-IIa 

adapts a well-defined structure (Figure 9). Unlike APH, AAC-IIa has a limited substrate 

profile, selecting aminoglycosides almost exclusively from the kanamycin family.  

 AAC-IIIb has a large substrate profile and is able to confer resistance to antibiotics from 

both the kanamycin and neomycin families; AAC-IIIb does not have structural flexibility in 

the absence of aminoglycosides. The binding of CoASH to AAC-IIIb causes increased 

flexibility of the long loop in the antibiotic binding domain [47].  The presence of CoASH 

causes an increased association between the enzyme and antibiotic for both AAC-IIa and 

AAC-IIIb [2]. AAC-IIa shares approximately 35% amino acid sequence identity and 

approximately 39% sequence similarity with AAC-IIIb [2]. There are no crystal structures 

available for either of these proteins, but structure models show that they are very similar 

and superimpose to 1.43 Å over the entire protein [2]. The source of differences in their 

substrate promiscuity is still under investigation.  
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ii. Binding of sisomicin to acetyltransferases(3)-IIa and IIIb 

Sisomicin is an aminoglycoside first isolated in 1970, and is active against gram-positive 

bacteria [48].   Sisomicin is considered part of the gentamicin family, an aminoglycoside 

family with a 4,6-disubstituted central 2-DOS ring (Figure 1) [49]. Sisomicin contains an 

unsaturated diamino sugar ring which is unique to it and netilmicin. Sisomicin contains 2 

methyl groups on its double primed ring, which may influence its ability to bind various 

AGMEs. Netilmicin is identical to sisomicin except for an additional methyl group on its 

unprimed central ring (Figure 1). Kinetic studies revealed that sisomicin is acetylated at a 

faster rate by AAC-IIIb but has a lower Km value with AAC-IIa [2]. Among the 

aminoglycosides tested with AAC-IIa, sisomicin has the lowest Km value. ITC experiments 

reveal that association of sisomicin to AAC-IIa is enthalpically favored (-49 kcal/mol) and 

entropically disfavored. When sisomicin associates to the binary AAC-IIa-CoASH complex, 

the aminoglycoside affinity increases 15-50 fold and enthalpy is less favored (-9.7 

kcal/mol) [2]. Binding of sisomicin to AAC-IIIb is associated with a favorable enthalpy. For 

both enzymes, the addition of CoASH causes sisomicin to bind with higher affinity, seen by 

a decrease in their respective KD values [2]. The formation of ternary complexes with 

sisomicin causes an increase in favorable enthalpy with AAC-IIIb but a decrease in 

favorable enthalpy with AAC-IIa. Changes in enthalpy are compensated by changes in 

entropy to result in relatively unchanged changes in free energy [2].  

Mentioned previously, NMR experiments show that the spectra of apo-AAC-IIa are highly 

overlapped, indicative of an intrinsically disordered protein. Binding of tobramycin to AAC-

IIa causes the complex to gain structure. Binding of sisomicin to AAC-IIa also causes a gain 

in structure, however when compared to the tobramycin binary complex, there is less peak 

dispersion indicating that the sisomicin binary complex retains some flexibility (Figure 9). 

The addition of tobramycin to the AAC-IIa-CoASH complex, shown in Figure 9, reveals that 

formation of the ternary complex is very similar to that of the tobramycin binary complex. 

Addition of sisomicin to form the ternary complex causes a larger change in peak 

dispersion. This indicates that CoASH is required by the AAC-IIa-sisomicin complex to 

achieve similarly well-defined structural features similar to that observed with the binary 

AAC-IIa-tobramycin and ternary AAC-IIa-CoASH-tobramycin complexes [2].  AAC-IIa may 
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be inhibited from entering a more structured form when only sisomicin binds because of 

the rigid diamino sugar ring. To investigate the ability of flexible proteins to overcome 

structural differences in substrates, the binding interactions of APH are examined with 

sisomicin and netilmicin.          

iii. Formation of differing ternary complexes dependent upon order of addition 

AAC-IIIb with its two substrates, CoASH and aminoglycosides, forms a ternary complex. 

However, adding the substrates, neomycin B and paromomycin, in varying orders results in 

ternary complexes that are not identical to one another (Norris, unpublished). In the first 

pathway to form the ternary complex the binding order is AAC-IIIb, neomycin then CoASH, 

in the second pathway the order of binding is AAC-IIIb, CoASH and then neomycin.  

However, Hess’s law is still obeyed in the formation of the ternary complex in both forms 

[50]. Hess’s law states that “the enthalpy change for any sequence of reactions that sum to 

the same overall reaction is identical” [51]. Based on Hess’s law, the change in enthalpy 

found by adding the substrates in differing orders should result in the same total change in 

enthalpy if the same ternary product is formed. Using differential scanning calorimetry 

(DSC) they demonstrated that the melting temperature of ternary complex AAC-CoASH-

neomycin was 2.3 °C higher than the melting temperature of ternary complex AAC-

neomycin-CoASH. There are also differences in the hydrodynamic radius, final NMR 

spectra, and solvent protection of the ternary complexes dependent upon the order of 

addition (Norris et al., manuscript under review). Together the data suggest that the order 

of addition plays a large role in the final ternary complex that is formed with AAC-IIIb. This 

is the first time that the order of addition has been investigated with AGMEs. Similar 

differences were observed with AAC-IIa and sisomicin (Norris, unpublished). Here the 

order of addition is further investigated for APH by DSC as well as ITC.     
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Figure 9: NMR spectra comparing the peak dispersion of binary (top) and 
ternary (bottom) complexes of sisomicin (red) and tobramycin (black) with 
AAC-IIa.  Reprinted with permission [2]. 
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B. Methods 

i. Chemicals and Reagents 

99% D2O and 15N-enriched salts were purchased from Cambridge Isotope Laboratories 

(Andover, MA).  Thrombin was purchased from Enzyme Research Laboratories (South 

Bend, IN), IPTG from Inalco Spa (Milan, Italy) and the high performance Ni Sepharose resin 

used for APH purification was purchased from Amersham biosciences (Piscataway, NJ). 

Ion-exchange matrix Macro Q is from Bio-Rad laboratories (Hercules, CA). Aminoglycoside, 

and all other chemicals and reagents were purchases in the highest purity available from 

Sigma-Aldrich or Fisher. Desulfated Aminoglycoside were used for all kinetic and 

thermodynamic studies, concentrations were determined by activity assays previously 

described [52].     

ii. Growth and purification of APH 

Following a previously established protocol, BL21 E.coli cells with APH containing pET-15b 

expression vector were grown at 37 °C with agitation to an OD600 of ~0.8 in either LB (for 

unlabeled APH) or M9 minimal media containing 15NH4Cl (for 15N labeled APH) [30, 36]. LB 

contained 0.1 mg/ml AMP. APH expression was induced by the addition of 1 mM of IPTG.  

Cells were harvested by centrifugation after 4 hours, and stored at -80 °C for up to 12 

months.  For purification, cells were suspended in lysis buffer (100 mM NaCl, 20 mM 

imidazole, 200 µM PMSF, and 50 mM Tris-HCl pH 7.4 at 4 °C). Cells were lysed by three 

passes through a French press and cell debris pelleted by centrifugation. APH was purified 

from the crude lysate by nickel affinity chromatography. Thrombin was used to 

proteolytically remove the Histag from APH.  Separation of cleaved APH was achieved 

through nickel affinity chromatography, and separation from excess thrombin by ion-

exchange chromatography. The ratio of UV absorbance at 280 nm and 260 nm confirmed 

that the protein was freed from nucleic acids. Purified APH was dialyzed extensively in 

appropriate buffer at 50 mM (pH 7.4) at 4 °C, 100 mM NaCl, and 2 mM TCEP-HCl, then 

stored at 4 °C for up to one week or frozen immediately using liquid nitrogen and stored at 

-80 °C. Final concentrations of protein were determined at absorbance of 280 nm using an 

extinction coefficient value of 1.54. 
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iii. Steady-state kinetics 

Sisomicin does not have a hydroxyl located on its C-3 primed ring, therefore APH is unable 

to chemically modify sisomicin. Kinetic parameters for the inhibition activity of sisomicin 

were determined by using a continuous assay previously described [36]. Phosphorylation 

of aminoglycoside antibiotics is monitored by a coupled reaction of the ADP generated 

from phosphorylation of the aminoglycoside to the oxidation of NADH using the enzymes 

pyruvate kinase and lactate dehydrogenase. The oxidation of NADH is monitored at 340 nm 

using a Cary-Win UV-vis spectrophotometer (Varian, Palo Alto, CA). The spectrometer was 

blanked with 985 µl deionized water, and the NADH stock was tested by adding 15 µl to 

water and observing the change in absorbance. Next, 970 µl of assay mix (50 mM Tris pH 

7.4, 50 mM KCl, 1 mM ATP, 1.5 mM MgCl2, and 2 mM phosphoenolpyruvate trisodium salt 

at 25 °C) is added to appropriate amounts of sisomicin and kanamycin A as well as 150 µM 

NADH and 0.02 mg/ml pyruvate kinase/lactate dehydrogenase enzyme solution. The 

reaction was then initiated by the addition of 10 µl of 100 µM purified APH.  The reactions 

followed Michaelis-Menten type kinetics where sisomicin is a competitive inhibitor. The 

specific activity (micromoles per second per milligram) was plotted versus substrate 

concentration and fitted to the equation below in order to determine the Ki of sisomicin, 

       [ ]      [ ]  
[ ] 

  
  

where ν=the initial velocity, and Km is the Michaelis constant.  

iv. Isothermal titration calorimetry 

ITC experiments were performed at 25 °C using a VP-ITC macrocalorimeter from Microcal, 

Inc. (Northampton, MA). APH concentrations were kept between 20-30 µM to maintain the 

c-value, a parameter obtained by multiplying the association constant and the total 

concentration of the ligand binding site, was kept between 1 and 100. Measurements were 

carried out in 50 mM Tris-HCl, PIPES, HEPES, or ACES buffers which also contained 100 

mM NaCl and 2 mM TCEP-HCl at a pH of 7.4. Enzyme preparations include a final step of 

dialysis into one of the listed buffers. Ligand solutions were prepared with the same 

dialysate as was used for the enzyme. The pH was checked for both solutions and kept 
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within 0.05 units of each other, samples were then degassed under vacuum for 10 minutes 

before being appropriately loaded into the VP-ITC macrocalorimeter.  Titrations of 

substrate into enzyme solution consisted of 29 injections of 10 µl, separated by 240 

seconds with a cell stirring speed of 300 rpm. 

Binary titrations included the titration of aminoglycoside, or AMPPCP solution into enzyme 

solution. Aminoglycoside concentrations ranged from 0.25-1 mM, and the AMPPCP 

concentration was 2.25 mM.  Ternary titrations included either the titration of 

aminoglycoside into the enzyme-Mg-AMPPCP complex, or the titration of AMPPCP into 

enzyme-aminoglycoside-Mg complex. In ternary experiments where aminoglycoside was 

titrated in, the Mg-AMPPCP concentration was kept constant at 1.25 mM in both solutions. 

In ternary experiments where AMPPCP was titrated in, the antibiotic concentration was 

kept constant at either 0.5 or 1 mM for either sisomicin or netilmicin respectively, and Mg 

was at saturating levels of 1.25 mM. By keeping all of the additional substrates at saturating 

levels in both solutions the heat associated with binding of either aminoglycoside or 

AMPPCP respectively were measured exclusively. Enzymatic activity was periodically 

checked before and after titrations. Sedphat software as well as nitpic software were used 

to fit the data. Isotherms depicted were created using nitpic software. Binding of an 

aminoglycoside to APH causes a well-documented shift in the pKa values of several 

functional groups, therefore each binding experiment was performed in at least 3 of the 

following buffers: Tris-HCl, ACES, HEPES, or PIPES. The buffers have varying heats of 

ionization (∆Hion), 11.4, 7.3, 4.87, and 2.7 respectively [53]. The observed enthalpy (∆Hobs ) 

contains contributions from various sources as seen by the equation [54]: 

                [                 ]         

In the equation above, ∆Hint is the intrinsic enthalpy of binding, and ∆n is the net 

protonation. The portion of the equation in brackets represents the heat of ionization from 

the buffer and the protein (∆Henz) which maintains the pH. In the presence of high 

concentrations of salt (i.e., 100 mM NaCl) the heat of binding of buffer to enzyme (∆Hbind) is 

assumed to be zero [54].   Therefore by performing each binding experiment in 3 buffers 

with different ∆Hion, the ∆Hint and ∆n can be determined using the equation:  
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v. Differential scanning calorimetry 

DSC experiments were performed in PIPES buffer on a VP-DSC Microcalorimeter from 

MicroCal. It was previously established that APH is able to refold after heat denaturation. 

The melting transition data was recorded from 10 °C until 75 °C for just the buffer, apo 

APH, binary APH-Sisomicin, ternary complexes where sisomicin was added to APH-Mg-

AMPPCP complex or AMPPCP was added to APH-sisomicin-Mg complex and buffer with Mg, 

sisomicin and AMPPCP. PIPES buffer was used in the reference cell. All samples were 

degassed for 15 minutes prior to injection and contained one to three of the following: 50 

µM purified APH dialyzed in PIPES buffer (50 mM PIPES, 100 mMNaCl, 2 mM T-CEP and pH 

of 7.4), 1.25 mM MgCl2, 1.25 mM AMPPCP, 0.5 mM sisomicin, with the final volume made up 

of PIPES buffer. Origin software was used to analyze the data with a non-2-state model for 

fitting. Baselines were not stable enough to reliably calculate the change in heat capacity.     

vi. Nuclear magnetic resonance  

NMR samples used contained 150 µM purified 15N labeled APH protein, in 50 mM MOPS 

buffer, 2 mM TCEP-HCl, 100 mM NaCl, and 7% D2O, pH 7.4. Experiments included using 

samples of apo APH, the addition of 0.5mM desulfated sisomicin, and finally the addition of 

1.25 mM MgCl2 and 1.25 mM AMPPCP. Apo APH sample was transferred to a Shigemi tube 

(Allison Park, PA) with a total volume of 350 µl. HSQC spectra were obtained on a Varian 

Inova 600 MHz triple resonance spectrometer at 25 °C at the University of Tennessee. 

HSQC experiment parameters were optimized, and included a delay of 1.5 seconds between 

scans, pulse width of 8.05 µs, 64 transients, and a spectral width of 8012. The binary and 

ternary samples were prepared by titration of appropriate amount of substrate into apo 

APH sample, HSQC parameters were kept the same. Spectra were processed with nmrDraw 

and exported to Sparky for analysis and display [43, 44]. Adobe Photoshop software was 

used to invert and change the color of the images. APH protein model 1L8T from the 

protein data bank was used to highlight shifted amino acids in Molecular Operating 

Environment (MOE) at The University of Tennessee. The model is from crystal structure 

analysis of APH bound to ADP and kanamycin A [27].    
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C. Results/Discussion 

i. Kinetic interactions of APH with sisomicin 

Most aminoglycoside substrates demonstrate substrate inhibition as they compete for the 

same binding site and sisomicin is not an exception [2, 36]. However because sisomicin 

does not have a hydroxyl group on its 3′ carbon, it is unable to be chemically modified by 

APH. As expected, it is a competitive inhibitor with respect to aminoglycosides and the 

determined Ki value of sisomicin is 0.203 ± 0.089 mM. Sisomicin has an inhibition constant 

(Ki) of >700 µM and ~1000 µM with AAC-IIIb and AAC-IIa respectively. It is important to 

note that Ki and Km values are not correlated to one another. For instance, a substrate with 

a low Km value need not have a low Ki value. Therefore, no further conclusions can be 

drawn from this value.    

ii. Thermodynamic interactions of APH with sisomicin and netilmicin  

Binary and ternary thermodynamic interactions of APH with kanamycin A, kanamycin B, 

tobramycin, amikacin, ribostamycin, neomycin B, paromomycin I, and lividomycin A were 

previously published in 2004 [30]. The previous ITC experiments were done at 37 °C, 

contained 50-100 µM APH, 0.75-3 mM aminoglycoside concentration and buffers contained 

100 mM KCl instead of 100 mM NaCl. However, these changes should not affect the 

observed trends [30]. Furthermore, binary APH ITC experiments were performed under 

currently used conditions with antibiotics: kanamycin A, kanamycin B, neomycin B and 

ribostamycin (Wright, unpublished data). At 25 °C, antibiotics have similar KD values to 

previously published KD values, less favorable enthalpy (ranging from 3 to 29.8 kcal/mol 

less favorable due to large heat capacity change observed with this enzyme), and a 

correlating increase in favorable entropy. Binary binding parameters for APH complexes 

with sisomicin, netilmicin and AMPPCP are found in Table 1. Binary binding of APH with 

sisomicin had a KD value similar to that of kanamycin A. Kanamycin B, neomycin B, 

paromomycin I, lividomycin A, ribostamycin and tobramycin all bind to APH with stronger 

affinities than sisomicin and netilmicin [30]. However, both sisomicin and netilmicin bind 

with stronger affinities than amikacin, which has a bulky group attached to the N-1 of its 2-

DOS ring. The neamine portion of the antibiotic has been shown to be important for 
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binding; therefore large groups found on the first two rings may be more inhibitory than 

the unsaturated prime diamino ring found on sisomicin and netilmicin. Netilmicin has a KD 

value approximately two fold higher than that of sisomicin. This difference can be 

attributed to the additional methyl group located on netilmicin in the same location that 

amikacin has its bulky group (Figure 1). This methyl group is predicted to give netilmicin 

an increased hydrophobic property. 

Previous ternary experiments performed in 2004 with APH included changes already 

mentioned as well as the use of CaCl2 and ATP instead of MgCl2 and AMPPCP [30]. Ternary 

parameters determined by ITC are found in Table 2. The KD value of sisomicin to the APH-

Mg-AMPPCP complex showed little change from binary KD value, similar to previous results 

where the addition of antibiotic to APH-Ca-ATP complex remained similar to the binary KD, 

or slightly decreased [30]. This is unlike what is seen with enzyme AAC-IIIb, where the 

addition of co-substrate causes a great increase in affinity of the antibiotic for the enzyme 

complex [46]. Addition of co-substrate has been shown to increase affinity of 

aminoglycoside for enzymes, APH, AAC-IIIb, AAC-IIa, ANT(2″)-Ia, and AAC(6′)-Iy [2, 30, 49, 

55]. Sisomicin follows this trend seen by its general lower KD value when binding the APH-

MgAMPPCP complex, whereas netilmicin did not.   

Interestingly, binding of netilmicin or sisomicin to APH is associated with relatively less 

favored enthalpy, as well as the most favorable entropy seen in literature of APH relative to 

other aminoglycosides [30].  Formation of the netilmicin binary complex had the most 

unfavorable intrinsic enthalpy, and the sisomicin binary complex was only slightly more 

favorable: -7.6 and -10.3 kcal/mol, respectively (Table 1). Binary experiments, APH-

sisomicin, performed in Tris-HCl, and HEPES buffers had a favorable entropy (18 and 5.8 

cal/K respectively) associated with the binding of sisomicin to APH (Figure 10). Binary 

Netilmicin ITC experiments had a favorable entropic contribution in all buffers (Figure 11). 

Netilmicin has the most favorable entropy associated with binary complex formation of an 

aminoglycoside with APH as reported so far in literature. Netilmicin binary complex 

formation in Tris-HCl buffer was endothermic because of proton contribution of the buffer, 

and low enthalpic contributions of the reaction (Figure 11). Favorable entropy is often a 

reflection of increased disorder caused by the release of water [31]. There is compensation 



37 
 

that occurs with enthalpy and entropy values to yield a relatively unchanged favorable ∆G. 

The additional methyl group on netilmicin seems to also play a role in the thermodynamic 

contributions of binding, further emphasizing trends seen with sisomicin. The hydrophobic 

qualities of these substrates cause an increase in favorable entropic contributions as well 

as a correlated decrease in favorable enthalpic contributions.  This indicates that there is 

interaction of the hydrophobic groups with APH’s active site, as was seen with AAC(6′)-Iy 

[55].  APH is able to interact with the double primed ring region of the antibiotics and 

methyl groups found here, which affects the order of water molecules and various global 

hydrogen bonds formed.        

Formation of the binary APH complexes with sisomicin and netilmicin are both associated 

with a positive net protonation of the complex, which may indicate an upshift in pKa values 

for several functional groups in both ligand and enzyme (Figure 12) [54, 56]. Amikacin and 

ribostamycin are the only antibiotics recorded to cause a net deprotonation when binding 

APH [30].  There is also positive net protonation associated with the addition of sisomicin 

or netilmicin to the APH-Mg-AMPPCP complex.  This follows the general trend seen from 

previous experiments done with other antibiotics [30]. Binding of aminoglycoside 

antibiotic to the binary APH-metal-ATP complex has been shown to always have a positive 

net protonation.   

When comparing changes in thermodynamics between the binding of antibiotic to APH 

(binary) and the binding of antibiotic to APH-metal-ATP complex (ternary) typically the 

ternary complex has a less favorable enthalpy (10-20 kcal/mol) and an increased favorable 

entropy [30].  The binding of amikacin is the only antibiotic that has been previously found 

to cause an increased favorable enthalpy with the formation of the ternary complex [30]. 

Binding of sisomicin to form the ternary complex had a very slight increase in favorable 

intrinsic enthalpy (0.2 kcal/mol), whereas binding of netilmicin to form the ternary 

complex decreased the favorable enthalpy by 1 kcal/mol (Table 2). The reasons behind this 

have yet to be elucidated at this time. Sisomicin and netilmicin bind fairly tightly with APH 

yet they do not follow the thermodynamic trends previously seen with this enzyme. The 

only other antibiotic to deviate from the general thermodynamic trends, amikacin, has the 

lowest binding affinity to APH, approximately 20 times lower than sisomicin.  
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Typical carbohydrate-protein interactions are characterized by a favorable enthalpy and 

unfavorable entropy [57]. Expanding our comparison to other AGMEs, binary binding of 

sisomicin to AAC-IIIb also yields a small favorable heat contribution made by enthalpy and 

has a favorable entropy [2]. Binding of sisomicin to AAC-IIa had a highly favorable 

enthalpic contribution and unfavorable entropic contribution similar to data of binding of 

other antibiotics to AAC(3)-IIa. Binary binding of netilmicin with AAC(6′)-Iy also has a 

favorable entropy, however binding of sisomicin did not [55]. The only other antibiotics 

with documented favorable entropic contribution are kanamycin A binding to either AAC-

IIa or IIIb, and amikacin to AAC(6′)-Iy [2, 46, 55]. The reasons behind this similarity are still 

unknown at this time. Binding of aminoglycosides to AGMEs typically results in favorable 

enthalpy and unfavorable entropy, additionally seen with AAC(3)-IV, ANT(4′) and ANT(2″) 

[49, 58, 59].  

iii. Thermodynamics of the ternary complex formation are not dependent upon the order 

of addition 

The formation of ternary complex APH-siso-Mg-AMPPCP is associated with a favorable 

intrinsic enthalpy, and unfavorable entropy (Table 2). The binary complex, APH-AMPPCP, 

had a favorable enthalpy as well as favorable entropy, consistent with APH binding to other 

ATP analogs (Table 1) [60]. According to Hess’s law the total enthalpy change of one 

pathway should be the same as another if the same final product is formed. Therefore by 

adding the enthalpies of binary APH-siso complex and ternary APH-siso-Mg-AMPPCP 

complex and comparing the total to the total enthalpy found by the adding enthalpy of 

binary APH-AMPPCP complex to ternary APH-Mg-AMPPCP complex, inferences can be 

made about the final complex formation dependent upon the order of substrate addition.  

                                                                                                                

For ITC, experiments done in Tris-HCl buffer, the total changes in enthalpy for each 

pathway were within error of each other. This indicates that for APH, the order of binding 

does not change the thermodynamic properties of the final ternary complex, and therefore 

follows Hess’s law. 
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iv. Differential scanning calorimetry of APH complexes 

As seen in Figure 13, the melting temperature of APH complexes occurred as a single 

denaturation event (single peak). The Tm of the apo APH was calculated to be 47.5 °C. The 

Tm of the binary APH-siso complex was 54.2 °C. When compared to previous DSC 

experiments of APH bound to various well known aminoglycosides substrates, the melting 

temperature of APH-siso is comparable with that of APH-KanA (Wright, unpublished). This 

suggests that APH is able to bind sisomicin with a formation of structure similar to that 

seen with other aminoglycosides. The Tm of ternary APH-siso-Mg-AMPPCP complex and 

ternary APH-Mg-AMPPCP-siso complexes were 55.2 °C and 54.9 °C respectively. The 

melting temperatures of both ternary complexes are within 0.3 °C of each other; this 

indicates that the complex formed by the addition of sisomicin to the APH-Mg-AMPPCP 

complex is very similar if not identical to the complex formed by the addition of AMPPCP to 

the APH-sisomicin-Mg complex.  

The addition of sisomicin to APH resulted in a higher Tm when compared to the apo APH 

complex, this is similar to what was seen with other aminoglycosides. This is unlike AAC-IIa 

which adopts a more flexible conformation to accommodate the methyl groups as well as 

the unsaturated primed diamino sugar ring of sisomicin, and had a lower Tm than when 

bound to other aminoglycosides.  

v. Nuclear magnetic resonance of APH-siso complex 

It was previously shown that even after the binding of sisomicin to flexible protein AAC-IIa, 

AAC-IIa retained some of its flexibility as compared to its binding of tobramycin [2]. Shown 

in Figure 14 is the binding of sisomicin to APH, binding results in a peak dispersion that is 

relatively similar to APH bound to tobramycin (Figure 3). This indicates that the APH 

conformation formed by sisomicin binding to APH is not drastically different than that of 

the complex formed by tobramycin binding to APH. The NMR resonances for tobramycin 

bound APH were previously assigned and published, therefore chemical shifts of specific 

amino acids can be determined by spectral comparisons [29]. Figure 15 depicts the amino 

acids that show significant changes in their chemical shifts. Comparison between two-

dimensional HSQC spectra of APH-tobramycin complex and APH-sisomicin complex 
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revealed that there was a significant shift in 23 amino acid assigned resonances. Notably, 

there was a shift in Glu160 and Asp190. Both amino acids have been shown to interact with 

the aminoglycoside substrate by x-ray crystallography[27]. There was a noticeable shift in 

several amino acids in the flexible binding loop that is predicted to be intrinsically 

disordered: Ala141, Asp144, Asp153, Asp155, Cys156, and Glu160; as well as several other 

amino acids located in and around the aminoglycoside binding pocket. Out of the 23 amino 

acids that shifted their resonance, 8 were negatively charged, and 7 were hydrophobic. The 

fact that amino acid residues showed significant shifts distributed all over the protein, 

including remote sites, is again consistent with the role of flexibility of APH to bind 

structurally different aminoglycosides. 

Overall the NMR data indicates that the binary APH-sisomicin complex has gained a 

significant amount of structure as compared to the apo APH complex. The retained 

flexibility that was observed with AAC-IIa bound to sisomicin is not observed with APH 

bound to sisomicin. Therefore APH is able to compensate for the additional restrictions 

presented by sisomicin. The flexible nature of APH is better able to overcome structural 

differences in substrates to form additional interactions with the substrate. The flexible 

nature of AAC-IIa seems to have limited interaction even with substrates that it binds fairly 

well.  
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      Table 1: Thermodynamic parameters for Aminoglycoside binding (binary complex)a 

aminoglycoside buffer KD (µM) 
ΔHobs 

(kcal/mol) 

ΔHint b 

(kcal/mol) 

-TΔS 

(kcal/mol) 

ΔG 

(kcal/mol) 
Δn 

sisomicin Tris-HCl 4.7 ± 2.2 -1.9 ± 0.6 -10.4 ± 0.8 -5.4 ± 0.7 -7.3 ± 0.2 0.7 ± 0.1 

HEPES 1.6 ± 0.9 -6.2 ± 0.1 -1.7 ± 0.2 -7.9 ± 0.05 

PIPES 4.2 ± 1.2 -8.8 ± 0.1 1.5 ± 0.1 -7.3 ± 0.02 

netilmicin Tris-HCl 7.1 ± 0.7 1.6 ± 0.04 -7.6 ± 0.8 -8.6 ± 0.01 -7.02 ± 0.05 0.8 ± 0.1 

ACES 7.4 ± 1.9 -1.3 ± 0.08 -5.7 ± 0.2 -7.0 ± 0.1 

HEPES 6.9 ± 0.9 -4.5 ± 0.1 -2.6 ± 0.2 -7.04 ± 0.2 

PIPES 9.1 ± 0.3 -5.1 ± 0.04 -1.8 ± 0.06 -6.9 ± 0.02 

AMPPCP Tris-HCl 12.2 ± 8.6 -4.2 ± 2.2 ND -2.5 ± 2.6 -6.7 ± 0.3 ND 

a Given errors were calculated by fits to sedphat critical chi-square for error surface projections. b Errors for 

intrinsic enthalpy(ΔHint) and net protonation (Δn) are derived from the deviation from linearity of ΔHobs vs 

ΔHion curves. ND stands for ‘not determined’, since accurate values of ΔHint could not be obtained. 
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      Table 2: Thermodynamic parameters for Aminoglycoside binding (ternary complex)a 

aminoglycoside buffer KD (µM) 
ΔHobs 

(kcal/mol) 

ΔHint b 

(kcal/mol) 

-TΔS 

(kcal/mol) 

ΔG 

(kcal/mol) 
Δnb 

sisomicin Tris-HCl 4.3 ± 0.6 -5.0 ± 0.6 -10.5 ± 0.5 -2.3 ± 0.4 -7.3 ± 0.1 0.5 ± 0.07 

HEPES 3.2 ± 0.3 -7.8 ± 0.2 0.3 ± 0.3 -7.5 ± 0.05 

PIPES 4.2 ± 0.08 -9.5 ± 0.05 2.2 ± 0.05 -7.3 ± 0.01 

netilmicin ACES 27.5 ± 18.8 -3.0 ± 0.7 -6.5 ± 1.9 -3.0 ± 1.2 -6.2 ± 0.5 0.4 ± 0.4 

HEPES 11.0 ± 2.5 -5.4 ± 0.3 -1.4 ± 0.4 -6.8 ± 0.1 

PIPES 12.3 ± 2.8 -4.9 ± 0.05 -1.8 ± 0.08 -6.7 ± 0.02 

AMPPCPc Tris-HCl 91.5 ± 16.8 -11.8 ± 1.3 -6.4 ± 0.5 6.3 ± 1.1 -5.5 ± 0.07 -0.5 ± 0.06 

HEPES 69.3 ± 3.9 -9.0 ± 1.3 3.3 ± 1.4 -5.7 ± 0.07 

PIPES 86.6 ± 14.2 -7.4 ± 0.6 1.9 ± 0.7 -5.5 ± 0.05 

a Given errors were calculated by fits to sedphat critical chi-square for error surface projections, ternary 

experiments where the aminoglycoside was titrated into APH-Mg-AMPPCP complex. b Errors for intrinsic 

enthalpy(ΔHint) and net protonation (Δn) are derived from the deviation from linearity of ΔHobs vs ΔHion 

curves. c ternary experiments where AMPPCP was titrated into APH-sisomicin-Mg complex. 
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Figure 10: Typical thermogram (top) and isotherm (bottom) for titration of sisomicin into 
APH in buffers PIPES (purple), HEPES (blue) and Tris-HCl (black).  Time integration of the 
thermal power yields the heat of injection. In the isotherms, data points are shown with a 
fitted line to single-site binding. Scale of y-axis is matched in all isotherms for the ease of 
visual comparison. 
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Figure 11: Typical thermogram (top) and isotherm (bottom) for titration of netilmicin into 
APH in buffers PIPES (purple), HEPES (blue), ACES (green) and Tris-HCl (black)  Time 
integration of the thermal power yields the heat of injection. In the isotherms, data points 
are shown with a fitted line to single-site binding.  
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Figure 12 : Determination of the intrinsic enthalpy of binding. The observed enthalpy 
determined in different buffers is plotted vs the heat of ionization of the buffer. Depicted are 
binary APH-sisomcin (blue), ternary APH-Mg-AMPPCP-sisomcin (red), binary APH-
netilmicin (green), and ternary APH-Mg-AMPPCP-netilmicin (purple). R values for the linear 
regressions are >0.95, except ternary APH-Mg-AMPPCP-netilmicin which had an R value of 
.58. 
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Figure 13: DSC traces of APH complexes apo (red), binary APH-sisomicin 
(green), ternary APH-Mg-AMPPCP-sisomicin (black), and ternary APH-
sisomicin-Mg-AMPPCP (blue) are shown above.   
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apo APH APH + sisomicin 

Figure 14: 1H-15N HSQC NMR spectra comparing the peak dispersion of apo APH( 
blue) top left, and binary APH-sisomicin (red) top right.  Overlay images of apo 
APH( blue) with binary APH-sisomicin (red)  on the  bottom left. Overlay spectra 
of binary APH-sisomicin (red) with ternary APH-sisomicin-Mg-AMPPCP (green) 
on bottom right. All spectra were taken under similar experimental conditions 
and shown to matching contour levels. 
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Figure 15: Structure model of APH bound to ADP (green), two Magnesium ions (orange), 
and kanamycin B (purple).  Highlighted in red are the amino acids  that showed 
significant shift in location on the spectra upon APH binding to sisomicin as compared to 
resonances identified in the binary APH-tobramycin spectra.   
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Chapter IV: Conclusion and future studies 

Exploring the interactions of enzyme APH with its numerous aminoglycoside substrates 

will provide insight into carbohydrate-protein interactions as well as the discovery of 

drugs that target these enzymes. By examining the dynamics of APH in the cell, we were 

able to conclude that the flexible nature of APH that has previously been shown in vitro is 

expected to be true in vivo. Therefore the characteristics attributed to APH’s flexibility are 

expected to present in vivo as well as in vitro. This makes the research previously done with 

APH and its various substrates even more relevant to clinical application.  

It was shown here that in-cell NMR can be used to visualize dynamic protein, APH, in the 

cell. In vitro experiments with BSA showed that APH retains much of its flexibility in 

crowded environments and the addition of neomycin B causes a gain in global structure. 

This change in structure was also visualized in NMR spectrum of APH in the lysate.  When 

neomycin B was added to the lysate sample the spectra changed, indicating a change in 

protein structure. One of the goals for this project was to visualize a change in the structure 

of APH associated with the binding of an aminoglycoside in vivo. However, practical 

limitations prevented the visualization of structural changes associated with the binding of 

neomycin to APH in the cell. High concentrations of neomycin caused increased amounts of 

cell death, which then allowed for cell leakage of proteins from the cell. At lower 

concentrations of neomycin we were not confident that a significant portion of APH was 

bound to neomycin in the cell. However, we are confident that neomycin induces structural 

changes in the cell as this was visualized in both the cell lysate and in the presence of BSA 

where the protein concentrations were high.  

Future directions for in-cell NMR analysis of in vivo structural changes of APH includes 

finding a substrate that is readily imported into the cell but does not cause cell death and 

the optimization of  the induction process or cell line to allow for increased induction time 

or exposure to aminoglycosides without high amounts of cell death or leakage. In-cell NMR 

could also be used to compare structured and flexible apo enzymes AAC-IIIb and AAC-IIa in 

the cell. This comparison would allow look at two relatively similar enzymes, and 
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determine the differences in spectra of flexible AGMEs and structured AGMEs. This 

comparison would also provide insight into the natural state of these two enzymes, for 

example, if AAC-IIIb is typically found bound to CoASH in the cell, then it may be more 

flexible in vivo than it has been shown to be in vitro.   

There are relatively few published thermodynamic studies with AGMEs; APH is 

thermodynamically, one of the well characterized AGMEs. This allows for comparisons 

between the bindings of its various aminoglycoside substrates. The promiscuity of APH is 

largely attributed to its flexibility which accommodates a large number of aminoglycoside 

chemical structures. The binding of APH with sisomicin or netilmicin is yet another 

example of APH’s ability to accommodate for structural diversity in its substrates. AAC-IIa 

is unable to completely accommodate for the additional methyl groups and unsaturated 

sugar ring of sisomicin.   It was shown here that binding of sisomicin to APH, unlike AAC-IIa 

where part of the enzyme remains unstructured, results in a well-structured complex; 

similar in conformation to complexes formed with APH and other aminoglycosides. DSC 

data showed that the melting temperature of binary complex APH-sisomicin was also 

similar to when APH is bound to other members of the kanamycin group aminoglycosides. 

The AAC-IIa-sisomicin complex showed a lower melting temperature than complexes of 

other kanamycins with this enzyme. DSC data also highlighted another difference between 

these two highly flexible enzymes; APH and its complexes with ligands were all reversible 

transitions while AAC-IIa denaturation was irreversible.  Unlike AAC-IIIb, the order of 

addition of substrates did not yield ternary APH complexes with different dynamic 

properties.  

Interestingly, the binding of netilmicin to APH highlighted an interesting effect of altered 

pKas of titratable groups on the observed binding enthalpy. When binding netilmicin to 

APH is tested in Tris-HCl, the reaction appeared to be endothermic which is misleading. 

The reaction is exothermic. However, as the heats of ionization of the buffer increased, its 

contribution to the observed enthalpy grew to a degree that overwhelmed the actual 

binding enthalpy. This exemplifies the importance of determining the intrinsic enthalpy of 

a reaction, especially when there are protonation and deprotonation events occurring. The 

enthalpies associated with the binding of either sisomicin or netilmicin to APH were much 
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smaller than APH with other aminoglycosides where the effects of heats of ionization of 

buffers were smaller.  

The formation of the ternary complexes with sisomicin and netilmicin had no effect, or the 

opposite effect on enthalpy change as compared to the formation of ternary complexes 

with APH and other aminoglycosides studies to date. An increase in favorable entropy, as 

seen here, could be attributed to an increase in disorder of water. This may mean that the 

binding of sisomicin or netilmicin with APH caused a release of more water molecules than 

previously seen with other aminoglycosides. It is important to note that APH was able to 

accommodate for these structural differences, unlike AAC-IIa, and we attribute this 

difference to the flexibility of APH.     

In the future, the binary and ternary APH complexes with sisomicin can be further explored 

with hydrogen-deuterium exchange experiments on NMR to look at the protection of 

specific amino acids from exchange. HSQC and hydrogen-deuterium exchange NMR 

experiments could be performed with APH and netilmicin to determine if similar gain in 

structure is observed with the APH-netilmicin binary complex. DSC experiments could also 

be performed on APH-netilmicin complexes to compare melting temperatures of the 

various complexes. This would directly look at the effect of the additional methyl group 

located on netilmicin’s unprimed sugar ring. It was found during this project that AAC-IIa 

and not AAC-IIIb is able to modify netilmicin, and therefore kinetic and thermodynamic 

parameters could be examined with AAC-IIa and netilmicin. HSQC NMR experiments with 

AAC-IIa and netilmicin would provide insight into the effect of the methyl group on the 

unprimed ring of netilmicin and its effect on the structure of this binary complex in terms 

of gain in structure or flexibility. Netilmicin is a relatively unexplored aminoglycoside and it 

would be interesting to examine the binding of this aminoglycoside with various AGMEs.   
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