
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2012

Contractible Theta Complexes of Graphs
Chelsea Marian McAmis
University of Tennessee - Knoxville, cplaut1@utk.edu

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
McAmis, Chelsea Marian, "Contractible Theta Complexes of Graphs. " Master's Thesis, University of Tennessee, 2012.
https://trace.tennessee.edu/utk_gradthes/1275

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268809741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Chelsea Marian McAmis entitled "Contractible Theta
Complexes of Graphs." I have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Mathematics.

James Conant, Major Professor

We have read this thesis and recommend its acceptance:

Jerzy Dydak, Morwen Thistlethwaite

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Contractible Theta Complexes of Graphs

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Chelsea Marian McAmis

August 2012



Acknowledgements

Many thanks go to my thesis advisor, Dr. Jim Conant, for all the help he has given
me this year. Without his excellent advice and guidance this paper would not be
what it is today. I would also like to thank the committee members, Dr. Jerzy
Dydak and Dr. Morwen Thistlethwaite, for taking the time to be a part of my
thesis.
My parents, Conrad and Barbara Plaut, have always supported me; for that they

deserve endless thanks. Lastly, I would like to thank my husband, Michael McAmis,
for putting up with me during the last few weeks of writing my thesis. Without his
support, I�m not sure if I would have �nished it.

i



Abstract

We examine properties of graphs that result in the graph having a contractible theta
complex. We classify such properties for tree graphs and graphs with one loop and
we introduce examples of graphs with such properties for tree graphs and graphs
with one or two loops. For more general graphs, we show that having a contractible
theta complex is not an elusive property, and that any skeleton of a graph with at
least three loops can be made to have a contractible theta complex by strategically
adding vertices to its skeleton.
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Chapter 1

Introduction

In this paper we expand on recent research in combinatorial topology. We focus on
homotopy types of theta complexes of graphs, which is related to the independence
complex that is discussed in [4] and [5]. This paper speci�cally deals with properties
of the graph that may determine when the theta complex is contractible. Before
these results are discussed, however, a rigorous de�nition of the theta complex and
the primary method used to calculate its homotopy type is necessary.
Given a graph G, de�ne a simplicial complex �(G) whose vertex set is the same

as that for G and which has a simplex � � V if and only if the vertices that span
� are in the complement of at least one edge of G. The main tool for calculating
the homotopy type of �(G) will be discrete Morse theory, which was introduced in
[3]; the next few de�nitions are related to this theory. Given a simplicial complex
K with simplices S, a discrete vector �eld on K is a collection of pairs of simplices
(�; �), called vectors, such that � � � , � has one fewer vertex than � , and such that
no simplex appears in more than one ordered pair. A simplex that does not appear
in any vector is called a critical simplex, and a vector �eld is called a gradient vector
�eld if there are no closed loops of the form: �0; � 0; �1; � 1; :::; �n; �n; �0; ::: where
(�i; � i) is in the vector �eld and �i+1 6= �i is any subset of � i with one fewer vertex
than � i.
According to [2] and [3] , if K is a simplicial complex with a gradient �eld, then it

is homotopy equivalent to a cell complex with one k-cell for every critical k-simplex.
In particular, if the only critical simplices are l k-simplices and a single 0-simplex,
then �(G) is homotopy equivalent to _lSk. The goal in calculating the homotopy
type of �(G) then becomes to �rst de�ne a gradient vector �eld on the simplicial
complex, and then to examine the critical simplices. An outline of this process is
given in Example 1.
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Figure 1.1: The graph of P6 with vertices labeled.

Example 1 Consider the graph of P6, or the polygon with six sides pictured in Figure
1.1. In this example we calculate the homotopy type of its theta complex �(P6).
Label the vertices 1; 2; 3; 4; 5; 6 in the clockwise direction. Now de�ne a vector

�eld by forming all valid vectors of the form (�; � [f1g) and note that the 0-simplex
f1g is clearly critical. Also observe that the only other simplices that can be critical
will be among those for which � [ f1g hits every edge of the graph, which will only
occur if � only avoids edges incident to 1. The goal therefore becomes to examine all
simplices that miss only edges incident to 1 and determine which of these are critical.
We have the following three ways that � can avoid an edge incident to 1: (1)

� misses only the edge between 1 and 2; (2) � misses only the edge between 1 and
6; (3) � misses both of the aforementioned edges. These three cases are illustrated
in Figure 1.2. Note that for each case the vertices that border the missing edge
cannot be included in any simplex that is derived from this process. This observation
necessitates the following terminology: Any vertex that cannot be included in any
simplex derived from a case in this process is called an open vertex. Similarly, any
vertex that must be included in any simplex derived from a case in this process is a
closed vertex, and any vertex that may or may not be included in a critical simplex
is referred to as a vertex that has not yet been determined.
Since � can only miss edges incident to 1, any vertex bordering one of the open

vertices in Figure 1.2 must be closed; Figure 1.3 illustrates this step. Now examine
vertex 4 in case (3). If vertex 4 is open, the resulting simplex �1 will still satisfy
the requirement that only edges incident to 1 may be missed; similarly, the simplex
�2 resulting from vertex 4 being closed will also be legal. Since �1 has only one
fewer vertex than �2 and since neither vertex was paired during the �rst step of this
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Figure 1.2: Cases (1), (2), and (3) described above. The white vertices represent
open vertices and the small black vertices represent vertices that have yet to be
determined.

example, we may pair (�1; �2) together as a vector. Therefore case (3) does not lead
to any critical simplices. When this happens, we call the case contractible.
Next examine vertex 4 in cases (1) and (2). In these cases we will also be adding

more vectors to the vector �eld by pairing together some of the simplices that can be
derived from those pictured in Figure 1.3. In both cases (1) and (2), form all valid
vectors of the form (�; � [ f4g); note again that none of the simplices derived from
these cases were paired in the �rst step of this example, so these vectors are valid.
Observe that the only way (�; � [ f4g) can be illegal is if � misses the edge f4; 5g in
case (1) and f3; 4g in case (2), so we are left with one unpaired vector in each case.
Thus each case produces one critical simplex, both of which are pictured in Figure
1.4. Since we are left with two critical 2-simplices and since this process does in fact
produce a gradient vector �eld, we have that �(S6) = S2 _ S2.

The method used in Example 1 can be generalized to any graph G. Depending
on the complexity of the graph the process may become more involved; this is partic-
ularly true when the graph contains vertices that are neither univalent nor bivalent,
as this will result in multiple sub-cases. See [1] for other detailed examples.
Using gradient vector �elds, we begin by examining the homotopy types of theta

complexes of tree graphs. We then generalize our results from tree graphs to study
the homotopy types of more general graphs, beginning with graphs with only one
loop.
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Figure 1.3: The large black vertices represent closed vertices.

Figure 1.4: The two critical simplices derived from cases (1) and (2).
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Chapter 2

Contractible Theta Complexes of
Tree Graphs

Recall that a tree graph is a connected graph G with no loops. We begin with tree
graphs because their relatively simple structure leads to a correspondingly simple
classi�cation of the contractibility of their theta complexes. We �rst give several
de�nitions that will prove useful in the following results.
A chain of edges in a graph G has a simple poison con�guration if it connects two

univalent vertices and contains three edges. Given a simple poison con�guration,
one can construct the general poison con�guration by allowing any con�guration of
vertices and edges to be connected to vertices 2 and 3 of the simple poison con�gu-
ration, but by only allowing the univalent vertices to be connected to simple poison
con�gurations by univalent vertices. We will also consider the graph consisting of
a single vertex to be a poison con�guration of length 0. An example of a simple
poison con�guration and a general poison con�guration can be seen in Figures 2.1
and 2.2.
Let v1; v2 be vertices in a tree. Then the distance between v1 and v2 is de�ned

to be the minimal number of edges between v1 and v2. Let T be a tree and let v0 be

Figure 2.1: A simple poison con�guration. Vertices v1 and v4 are univalent.
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Figure 2.2: A general poison con�guration. The black vertices constitute three
simple poison con�gurations connected at the vertex v, which, for each simple poison
con�guration, is univalent. The white vertices illustrate how any con�guration of
vertices may be connected to vertices 2 and 3 of the simple poison con�gurations.

some univalent vertex of T ; call v0 the root of T . Then if all vertices of T that are
of distance less than or equal to two from v0 are removed from T , we are left with a
disjoint union of tree graphs T1; T2; :::; Tn, each of which is called a v0-subtree of T .
Lemma 2 relates the v0-subtree to the contractibility of the theta complex of a tree
graph.

Lemma 2 Let T be a tree with root v0. If �(T ) is contractible then T contains a
v0-subtree Ti such that �(Ti) is contractible.
Proof. Let �(T ) be contractible and assume that for all i, �(Ti) is not contractible.
First note that every v0-subtree Ti of T is connected by its root to a vertex vi in T
that is of distance 2 from v0. If the con�guration of every v0-subtree Ti forces vi to
be closed for all i, then �(T ) is not contractible, since v0 is univalent and since �(Ti)
is not contractible for any i. So vi must be open for some i. But the only way for
vi to be open is if for all v0-subtrees Ti that are connected to vi, all vertices that are
directly connected to the root of Ti are closed; but this implies that the root of any
such v0-subtree is isolated by closed vertices. In particular, �(Ti) is contractible,
which contradicts our assumption.

Figure 2.3 illustrates Lemma 2. The next theorem fully classi�es trees that have
a contractible theta complex.
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Figure 2.3: A tree graph with root v0 and six v0-subtrees, T1; T2; :::; T6, which have
been drawn with white vertices. The theta complex of this tree is contractible; as
predicted by Lemma 2, �(T2) is also contractible.

Theorem 3 Let T be a tree. Then �(T ) is contractible if and only if T contains a
poison con�guration.
Proof. (=)) Let �(T ) be contractible and proceed by induction on the number
of vertices of T . If T has only one vertex, then T has a poison con�guration of
length 0. Next suppose that T has root v0 and can be decomposed into T1; T2; :::; Tm
v0-subtrees. By Lemma 2 since �(T ) is contractible, �(Ti) is contractible for some i.
Let vi be the vertex of T that is connected to the root of Ti and is distance 2 from v0.
By the inductive hypothesis, Ti has a poison con�guration. If none of the univalent
vertices of any of the simple poison con�gurations of the poison con�guration are
connected to vi, then the poison con�guration of Ti is also a poison con�guration of
T , and we are done. If one of the univalent vertices of one of the simple poison
con�gurations is the root of Ti and hence connected to vi, then the path between the
root of Ti and the root of T is a simple poison con�guration that is connected by a
univalent vertex to the univalent vertex of another poison con�guration, and T has
a poison con�guration.
((=) Let T have a poison con�guration. Begin the process of creating a discrete

vector �eld with one of the univalent vertices of the con�guration. Then the simple
poison con�guration that contains this univalent vertex will have vertex 2 open and
vertex 3 forced to be closed. If 4 is also univalent, then we are done. Otherwise, this
process can be repeated on all simple poison con�gurations until eventually a vertex
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Figure 2.4: The same tree from Figure 2.3 is shown here. Again, this tree has a
contractible theta complex; a poison con�guration in the tree is highlighted with
white vertices.

is isolated and T is contractible.

An example of Theorem 3 can be viewed in Figure 2.4. With the classi�cation of
tree graphs with contractible theta complexes complete, we turn to more interesting
cases. Our �rst goal was to experiment with poison con�gurations in graphs with
one loop; although we could not apply Theorem 3 to graphs with one loop, a nice
generalization of the theorem is discussed in Chapter 3.

8



Chapter 3

Contractible Theta Complexes of
Graphs with One Loop

By Proposition 5 in [1] we know that the homotopy types of the simplest graphs with
only one loop, the polygons, have been classi�ed. Speci�cally, if Pn is the n-gon, we
have the following:

�(Pn) '

8<:
S2k�2 _ S2k�2; n = 3k
S2k�1; n = 3k + 1
S2k�1; n = 3k + 2

Of particular interest is the fact that no theta complex of a polygon is contractible.
We therefore turn our attention to more complicated graphs with one loop, which
take the form of polygons whose vertices may be connected to trees.
Let G be a graph with one loop. Then if we remove any vertex v from the loop of

G, we are left with a disjoint union of subgraphs of G. We call a subgraph T of G a
subtree of a looped graph (or simply a subtree if the context is clear) if the only vertex
T shares with the loop of G is v, which we will call the root of the subtree. Call a
subtree T of a looped graph G with root v a closed subtree if its con�guration forces
v to be closed; that is, if the process of de�ning a gradient vector �eld is performed
on T , then v is a closed vertex regardless of the choice of initial vertex, provided that
the initial vertex is a univalent vertex other than v. Similarly, call a subtree T of a
looped graph G with root v an open subtree if its con�guration forces v to be open
in the same manner that v is forced to be closed in the closed subtree de�nition.
Although the classi�cation of contractible theta complexes of trees was relatively

simple, the classi�cation of graphs with one loop is relatively harder and requires
several more de�nitions. The following de�nitions will introduce several important
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Figure 3.1: v0 is the root of the tree, and v0; v1; v2 mark the original simple closed
con�guration. The remaining black vertices illustrate a chain of simple closed con-
�gurations emanating from v2, while the white vertices represent legal con�gurations
that may be attatched to v1.

con�gurations of graphs. De�ne a simple closed con�guration of a tree T to be a
chain of three vertices v0; v1; v2 such that v0 is the root of T , v2 is univalent, and
v1 is bivalent. A general closed con�guration may be constructed in the following
way: Given our simple closed con�guration, allow any number of simple closed
con�gurations to be attached by the root to v2 by an extra edge; then for each of these
simple closed con�gurations allow any number of simple closed con�gurations to be
attached by the root to their third vertices by an extra edge, and so on. Additionally,
for any of the simple closed con�gurations allow any con�guration to be attached to
the vertex corresponding to v1 in the original simple closed con�guration, except any
con�guration that would cause v1 to be the root of some simple closed con�guration.
Any con�guration of this type is a closed con�guration, and an example is given in
Figure 3.1.
An open con�guration can be constructed in the same way as a closed con�g-

uration; in this case, we start with a simple open con�guration, or a chain of two
vertices v0; v1 such that v0 is the root of T and v1 is univalent. Then a general open
con�guration is constructed by only allowing any number of closed con�gurations to
be attached to v1 by an extra edge.
Given a poison con�guration of a graph G, one can construct the pseudo poison

con�guration in the following way: For any consecutive vertices v1; v2 in the poison

10



Figure 3.2: This con�guration is also considered a pseudo poison con�guration.

con�guration, allow any number of extra edges to connect the two vertices. Then one
may legally add 3k vertices to any of the edges connecting v1 and v2 and the resulting
con�guration will be a pseudo poison con�guration; this is due to Proposition 5 in
[1]. Additionally, Figure 3.2 illustrates a special con�guration which will also be
considered to be a pseudo poison con�guration. If v1 was univalent before this
process, then we call v1 pseudo univalent in the new con�guration.
The next few results illustrate how the previously de�ned con�gurations are re-

lated.

Lemma 4 A subtree Ti of a looped graph G is a closed subtree if and only if it has
a closed con�guration.
Proof. (=)) Let Ti be a closed subtree of a looped graph G. The root v1 of our
closed subtree is forced to be closed, which means that the vertex v2 connected to v1 is
open. v2 is forced to be open, which means that some vertex v3 connected to v2 was
isolated by the process of creating a discrete vector �eld. v3 can be isolated either if
it is a univalent vertex or if, besides v2, it is connected only to vertices that are forced
to be closed. If it is univalent, then we are done; otherwise, every vertex connected
to v3 besides v2 is forced to be closed. By the same logic above that we used on the
chain of vertices v1; v2; v3, we see that T must have a closed con�guration.
((=) Let Ti have a closed con�guration. Then it is clear to see that this con�g-

uration will force the root of Ti to be closed.

Lemma 5 A subtree Ti of a looped graph G is an open subtree if and only if it has
an open con�guration.
Proof. (=)) Let Ti be an open subtree of a looped graph G. The root v1 of our
open subtree is forced to be open, which means that the vertex v2 connected to v1 was
isolated by the process of creating a discrete vector �eld. v2 can be isolated either if
it is a univalent vertex or if, besides v1, it is connected only to vertices that are forced
to be closed. If it is univalent, then we are done; otherwise, every vertex connected
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to v2 besides v1 is forced to be closed. By the same logic as in Lemma 4 we see that
T must have an open con�guration.
((=) Let Ti have an open con�guration. Then it is clear to see that this con�g-

uration will force the root of Ti to be open.

We now begin the classi�cation of contractible theta complexes of graphs with
one loop.

Lemma 6 The root of a subtree Ti of a looped graph G is forced to be neither open
nor closed if and only if �(Ti) is contractible.
Proof. (=)) Let the root v1 of Ti be forced to be neither open nor closed. This
implies that the vertex v2 of Ti connected to v1 is closed, since if v2 were open v1 would
be forced to be closed. But then v1 is an isolated vertex, and �(Ti) is contractible.
((=) Let �(Ti) be contractible. Assume that the root v1 is forced to be closed,

i.e., that Ti has a closed con�guration. But �(Ti) is contractible, so Ti must also
have a poison con�guration. Since simple closed con�gurations all have two edges,
the poison con�guration must involve vertices and edges that are not contained in the
chain of simple closed con�gurations. The only vertices in the chain of simple closed
con�gurations that can be connected to con�gurations besides simple closed ones are
those vertices that are forced to be open by the con�guration. Let v be one such
vertex. Then we have three cases:

1. Assume v is part of the con�guration, and that it connects a univalent vertex
outside the closed con�guration to a univalent vertex inside the closed con�g-
uration. Then since the distance between any univalent vertex of the closed
con�guration and v is 3k + 1, the poison con�guration must end in a chain
v� v2� v3 with v3 univalent and v2; v3 outside the closed con�guration. This,
however, violates a requirement for a closed con�guration. Figure 3.3 illus-
trates this case.

2. Assume v is part of the con�guration, but connects two univalent vertices v2; v3
outside of the closed con�guration. This implies that the other univalent ver-
tex is connected to some open vertex v0 (which may also be v) in the closed
con�guration. Since the distance between any two open vertices in the closed
con�guration is 3k, and since the distance between any univalent vertex in the
closed con�guration and an open one is 3k + 1, this violates a requirement for
a poison con�guration. Figure 3.4 illustrates this case.

3. Lastly assume that the poison con�guration is connected to v, but v is not part
of the poison con�guration. Then v must be connected to vertex 2 or 3 of a

12



Figure 3.3: An example of case (1). The poison con�guration is highlighted in white;
notice that the con�guration connected to v forces v to be closed, which violates the
requirement for a closed con�guration.

Figure 3.4: An example of case (2). The poison con�guration is highlighted in
white; notice again that the requirement for v is violated and this is not a closed
con�guration.

13



Figure 3.5: An example of case (3). The poison con�guration is highlighted in white;
note that once again the con�guration connected to v violates the requirement for a
closed con�guration.

simple poison con�guration, which would similarly create a con�guration that
contradicts a requirement for a closed con�guration. Therefore v1 cannot be
forced closed. Figure 3.5 illustrates this case.

Next assume that v1 is forced to be open, i.e., Ti has an open con�guration. Since
�(Ti) is contractible, Ti also has a poison con�guration. By the same reasons as
above, the poison con�guration must involve vertices connected to some v distinct
from v1 that is forced open by the open con�guration. Then we have three cases
that are almost identical to those above, all of which give rise to a contradiction.
Therefore v1 cannot be forced open, and must be forced to be neither open nor closed.

Lemma 7 A vertex v contained in the loop of a looped graph G is forced to be closed
if and only if at least one subtree of the looped graph that has v for a root is closed,
and all other subtrees that share v as a root are either closed or contractible subtrees.
Proof. (=)) Let v be forced closed. Then at least one subtree with v for a root
must be a closed subtree. If there is an open subtree Ti that has v for a root, then
depending on the choice of starting vertex, v may be forced open or closed. Therefore
all subtrees with v as a root must be closed or contractible.
((=) Let one subtree of the looped graph that has v for a root be closed, with all

other subtrees that share v as a root closed or contractible. Note that the contractible

14



trees do not force v to be open or closed. Since at least one subtree is closed and all
others are either closed or contractible, v is forced closed.

Lemma 8 A vertex v contained in the loop of a looped graph G is forced to be open
if and only if at least one subtree of the looped graph that has v for a root is open,
and all other subtrees that share v as a root are either open or contractible subtrees.
Proof. (=)) Let v be forced open. Then at least one subtree with v for a root
must be an open subtree. If there is a closed subtree Ti that has v for a root, then
depending on the choice of starting vertex, v may be forced open or closed. Therefore
all subtrees with v as a root must be open or contractible.
((=) Let one subtree of the looped graph that has v for a root be open, with all

other subtrees that share v as a root open or contractible. Note that the contractible
trees do not force v to be open or closed. Since at least one subtree is open and all
others are either open or contractible, v is forced open.

Lemma 9 A vertex v contained in the loop of a looped graph G is forced to be neither
open nor closed if and only if any subtrees of the looped graph that have v for a root
are contractible or if both a closed subtree and an open subtree have v as a root.
Proof. (=)) Let v be forced to be neither open nor closed. Then if there are only
either closed or open subtrees with v as a root (in addition to possible contractible
subtrees) but not both, then v would be forced closed or open, so all subtrees with v
as a root must be contractible or both an open and a closed subtree must be present.
((=) Let all subtrees of the looped graph with v for a root be contractible. Then

none of the subtrees force v to be open or closed, and so v is forced to be neither
open nor closed. Let both an open and a closed subtree have v for a root. Then v
is forced neither to be open nor closed.

The following lemma connects the poison con�guration from Chapter 2 to the
one-loop case, in that it shows that graphs with one loop that have contractible
theta complexes appear to "contain" a poison con�guration.

Lemma 10 Let G be a graph with one loop such that it does not have the pseudo
poison con�guration featured in Figure 3.2 and such that if a subtree Ti of G has
poison con�guration, then the poison con�guration contains the root of Ti. Further-
more, assume that no vertex of the loop of G is the root of both a closed and an open
subtree. Then �(G) is contractible if and only if after �lling in all of the subtrees of
G according to the process of creating a gradient vector �eld and closing all vertices
surrounding the roots of open subtrees, the remaining empty con�guration is a poison
con�guration or G has two open subtrees with consecutive roots.
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Proof. (=)) Let �(G) be contractible. Since G does not have the pseudo poison
con�guration shown in Figure 3.2, any poison con�guration of a subtree Ti of G con-
tains the root of Ti, and no vertex of the loop is the root of both an open and a closed
subtree, it is clear that the contractibility of �(G) must depend on the con�guration of
its loop. Therefore we must consider the remaining empty con�guration after �lling
in all subtrees and closing all vertices surrounding the roots of open subtrees. As-
sume that this remaining empty con�guration is not a poison con�guration and that
G does not have two open subtrees with consecutive roots. Then since this remaining
con�guration is necessarily a tree, by �lling in the remaining empty con�guration we
see that we are left with a nontrivial critical simplex, a contradiction. Therefore this
remaining con�guration must have a poison con�guration or G has two open subtrees
with consecutive roots.
((=) Let the remaining empty con�guration be a poison con�guration. Then

after �lling in this con�guration we are left with a vertex that is isolated by closed
vertices and �(G) must be contractible. Let G have two open subtrees with consec-
utive roots. Then �(G) is clearly contractible.

Finally, we introduce the theorem that classi�es the contractibility of theta com-
plexes for graphs with one loop.

Theorem 11 Let G be a graph with one loop. Then �(G) is contractible if and
only if G has a pseudo poison con�guration.
Proof. (=)) Let �(G) be contractible. If G has a subtree with a poison con�gura-
tion that does not involve its root, then we are done. Similarly, if G has the pseudo
poison con�guration from Figure 3.2, then we are done. Lastly, if one of the vertices
of the loop of G is the root of both an open and a closed subtree, then the structure
of both of these trees creates a poison con�guration. So assume G has none of the
above con�gurations. Then by Lemma 10 either G has two consecutive open subtrees
or the remaining empty con�guration after �lling in all subtrees of G and closing all
vertices surrounding the roots of open subtrees has a poison con�guration. If G has
two consecutive open subtrees then the structure of the open subtrees plus the edge
between their roots creates a poison con�guration. Therefore let us assume that the
remaining con�guration of G has a poison con�guration. We have the following two
cases:

1. Let the poison con�guration be bordered by two closed vertices. If these vertices
are the roots of closed subtrees, then the structure of the closed subtrees plus the
3k+2 edges between them creates a poison con�guration. If these vertices are
closed because they border the roots of open subtrees, then the structure of the
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open subtrees plus the 3k+1 edges between them creates a poison con�guration.
If these vertices are closed because one of them borders an open subtree and the
other is the root of a closed subtree, then the structure of the open and closed
subtrees and the 3k edges between them creates a poison con�guration.

2. Let the poison con�guration be formed by only one vertex of the loop forced to
be closed and all other vertices forced to be neither open nor closed. Then since
the remaining con�guration is a poison con�guration, this implies that the loop
is a polygon with 3k + 2 edges. Then since the closed vertex must be the root
of a closed subtree, the structure of the closed subtree plus the con�guration of
the loop imply that G has a pseudo poison con�guration.

((=) Let G have a pseudo poison con�guration. Then, according to Proposition
5 in [1], since the extra edges that make the pseudo poison con�guration more than
a poison con�guration do not a¤ect the process described in Theorem 3, we see that
�(G) is clearly contractible.

The results in this chapter seem to indicate that as the complexity of the graph
grows, so does the list of con�gurations that force the theta complex to be con-
tractible. Indeed, we will see that this tendency continues as we add more loops to
the graphs. One trend that will change, however, is the con�gurations themselves.
Up until now the poison con�gurations that have been added to the list are more or
less generalizations of those that were introduced in Chapter 2. We will soon see
that entirely new con�gurations will need to be added to the list in Chapter 4.
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Chapter 4

Contractible Theta Complexes of
General Graphs

Once the classi�cation of the zero- and one-loop cases were complete, the natural
next step was to examine the two-loop case. The initial goal was to see if Theorem
11 could be extended to include graphs with two loops, and ultimately to graphs
with an arbitrary number of loops. After a systematic examination of graphs with
two loops, however, the graph in Figure 4.1 was shown to have a contractible theta
complex. This graph does not have a pseudo poison con�guration, nor does its
con�guration follow from any pattern that had been previously discussed.
As with the zero- and one-loop cases, one could continue to classify the con-

tractible theta complexes of graphs for the n-loop case by systematically outlining
certain con�gurations that force the theta complex of a graph to be contractible. As
one can especially see from the two-loop case, however, the con�gurations tend to
become signi�cantly more complicated with every case. This increase in complex-
ity is not without explanation, however; the �nal result of this paper reveals that
contractibility of the theta complex of a graph is not necessarily an elusive property.
Before we discuss this idea further, consider the graphs in Figure 4.2. These

represent the three possible skeletons of a graph with two loops. Any graph with
two loops will have one of these three basic shapes, plus extra vertices on the edges
shown and possibly trees attached to those vertices. Graphs with two loops that have
trees will not, however, be discussed for the following reason: If a graph with two
loops has a tree connected to one of its vertices, then we have two cases. First, the
tree may be a contractible subtree; in this case it will not a¤ect the contractibility of
the theta complex of the whole graph. On the other hand, if the tree is a closed or an
open subtree, then after starting the gradient vector �eld on the tree the remaining
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Figure 4.1: A graph with two loops and a contractible theta complex that does not
contain a pseudo poison con�guration.

Figure 4.2: The three possible skeletons of a graph with two loops.

empty con�guration will be a graph with one loop; thus the contractibility of its
theta complex falls into a category in the previous chapter.
Therefore consider the three skeletons in Figure 4.2. For each of these cases we

can �nd a graph with a contractible theta complex; these examples are shown in
Figure 4.3. This fact led to the discovery that, given any skeleton for a graph with
at least three loops, one can systematically place vertices on the edges of the graph
to force it to have a contractible theta complex. This proved that the contractibility
of a theta complex is not an elusive property requiring only a small number of very
speci�c con�gurations. Theorem 13 proves this in general, but we �rst present a
speci�c example of this process.

Example 12 Consider the graph in Figure 4.4; it represents the skeleton of a graph
with four loops. The goal of this example is to systematically add vertices to the
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Figure 4.3: Enough vertices can be added to each skeleton to make a graph with a
contractible theta complex.

Figure 4.4: The skeleton of a graph with four loops.

skeleton until we have devised a graph with a contractible theta complex.
First add two vertices as shown in Figure 4.5. Next label one of the new vertices

as v and begin creating the gradient vector �eld by using v as the starting vertex.
We will �rst deal with the case where the edge between the two newly added vertices
is avoided; Figure 4.6 shows how these vertices must be �lled in at this stage.
We add one more vertex to the graph on the edge between the two closed vertices,

as shown in Figure 4.7. This forces this case to be contractible, as the newly added
vertex will be isolated between two closed vertices. This concludes the �rst case.
Note that at this point no vertex that was added in case (1) may be changed and

no more vertices may be added to the edge between two vertices that were �xed in case
(1). For the second case, the other edge adjacent to v is avoided, while the edge in
case (1) is not. We �ll in the �xed vertices according to the gradient vector �eld, as
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Figure 4.5: We have added two vertices to the graph.

Figure 4.6: Vertex v is the starting vertex as we create the gradient vector �eld. The
large black and white vertices are now �xed and have been �lled in as dictated by
the gradient vector �eld.
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Figure 4.7: The �nal vertex that will be added in case (1). Note that since this
vertex is isolated between two closed vertices, this case will be contractible.

Figure 4.8: We �ll in the vertices �xed in case (1) as dictated by the second case in
the gradient vector �eld.

illustrated in Figure 4.8. To conclude case (2), we add the vertices shown in Figure
4.9. Note that once again a vertex is isolated between two closed vertices and this
case is also contractible.
We repeat the procedure for the third case, in which both edges incident to v are

avoided. Figure 4.10 shows the vertices that are added in this case and how they are
�lled in according to the gradient vector �eld. As before, we have isolated a vertex
between two closed vertices, and this case is also contractible. Since all three cases
are contractible, we have indeed acheived our goal of constructing a graph with the
skeleton introduced in Figure 4.4 that has a contractible theta complex.

We now present the theorem illustrated by Example 12.
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Figure 4.9: All vertices to be added in case (2); note that once again we have a vertex
isolated between two closed vertices.

Figure 4.10: The �nal stage of the third case. As before, we again have an isolated
vertex. The vertices shown here are exactly those that will be included in the graph
that was constructed in Example 12.
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Theorem 13 Let G be a graph with at least three loops. Then there exists a graph
G0 with a contractible theta complex that can be obtained from G by adding a �nite
number of vertices to the edges of G.
Proof. Let G be a graph with at least three loops and choose a loop. Choose a
bivalent vertex u on the loop; if such a vertex does not exist on the chosen loop, add
one. Proceed to create the gradient vector �eld as previously described in this paper,
starting with u. Since u is bivalent we start the process of creating the gradient
vector �eld with three cases; pick one case to start with.
Choose another bivalent vertex v on the loop; if no other bivalent vertex exists,

add one. Starting on one side of u, label all vertices that are not bivalent and that
lie on the loop between u and v as v1; v2; :::; vn. If no such vertices exist, then add
enough bivalent vertices between u and v so that the vertex that is consecutive to v
on our chosen side is forced closed. Otherwise, add enough vertices to the chosen
side so that between each consecutive pair vi; vi+1 there are 3k + 2 vertices. Add
enough vertices between u and v1 so that v1 is closed. Then all vi will be forced
closed. Finally add enough vertices so that there are 3k vertices between vn and v.
Repeat this exact procedure for the other side of the loop. Now v is isolated between
two closed vertices, and this �rst case is contractible.
Proceed to the second case and �ll in all of the vertices in the �rst loop, which

is now determined and cannot be changed. Choose a neighboring loop and choose a
bivalent vertex v on the loop that has not yet been determined. If none exist, add
one. Label the two vertices that are closest to v that have already been determined
as u1 and u2. Beginning with u1, label all vertices between u1 and v that are not
bivalent as v1; v2; :::; vn. If no such vertices exist, then add enough bivalent vertices
between u1 and v so that the vertex that is consecutive to v on this side is forced
closed. Otherwise, add enough vertices so that between each consecutive pair vi; vi+1
there are 3k+2 vertices. Add enough vertices between u1 and v1 so that v1 is closed.
Then all vi will be forced closed. Finally add enough vertices so that there are 3k
vertices between vn and v. Repeat this exact procedure beginning with u2. Then v
is isolated between two closed vertices, and this second case is contractible.
For the third case, �ll in all of the vertices in the �rst and second loops, which

are now determined and cannot be changed. Then repeat the exact same procedure
outlined for the second loop for the third loop. This will force the third case to also
be contractible, and our desired graph G0 is de�ned.

Theorem 13 concludes our �ndings. Future research on this topic may include an
exploration of graphs whose theta complexes are not necessarily contractible, such
as the classi�cation of the homotopy types of theta complexes of certain families of
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graphs. For instance, line graphs and polygons have already been classi�ed in [1]; a
future project may involve the classi�cation of more complicated families.
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