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Abstract

When an end user attempts to download an app on the Google Play Store they receive

two related items that can be used to assess the potential threats of an application,

the list of permissions used by the application and the textual description of the

application. However, this raises several concerns. First, applications tend to use

more permissions than they need and end users are not tech-savvy enough to fully

understand the security risks. Therefore, it is challenging to assess the threats of an

application fully by only seeing the permissions. On the other hand, most textual

descriptions do not clearly define why they need a particular permission. These two

issues conjoined make it difficult for end users to accurately assess the security threats

of an application. This has lead to a demand for a framework that can accurately

determine if a textual description adequately describes the actual behavior of an

application. In this Master Thesis, we present pDroid (short for privateDroid), a

market-independent framework that can compare an Android application’s textual

description to its internal behavior. We evaluated pDroid using 1562 benign apps

and 243 malware samples, and pDroid correctly classified 91.4% of malware with a

false positive rate of 4.9%.
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Chapter 1

Introduction

Chapter 1 discusses the need for a framework that can compare an application’s

alleged behavior to its actual behavior (Section 1.1). Section 1.2 discusses the

contributions made in this master thesis. Finally, this chapter concludes by describing

the remaining structure of this master thesis.

1.1 Motivation

A growing concern among smartphone users is how third-party applications handle

sensitive data, and a recent survey on smartphone users found that 19 out of the

top 25 user concerns were related to leaking or tampering with user information

[19]. When an end user installs an application from the Google Play Store, they

receive metadata about the application, including the textual description provided

by the developer and the list of permissions used by the application. To protect

their information, they must use the textual descriptions and list of permissions to

assess any security threats properly. However, it has been shown that end users

lack the ability to comprehend the security risks related to Android permissions [22]

and only 9.1% of application descriptions appropriately describe the need for all the

permissions used in the application [52]. These two issues conjoined make it difficult

for end users to assess the security threats of an application, and it has created a desire
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for a framework that can evaluate if an application description adequately describes

the applications actual behavior.

To address this concern, researchers have developed several frameworks to compare

an app’s textual descriptions to its actual behavior [29, 41, 46, 52, 64]. These

papers mainly have the same goal, but how they describe actual behavior varies.

The work in [46, 52, 64] use the Android permissions an application uses to describe

the actual behavior. The techniques utilized in these papers attempt to evaluate

the textual description and verify if the description states a need for the permissions

requested by the app. One of the concerns with this method is that defining actual

behavior by permissions is a too coarse-grained approach. To create a finer-grained

approach the work in [29, 41] extracted the sensitive APIs used in an application to

define its actual behavior. However, just because an application uses a dangerous

API doesnt necessarily mean it has malicious intent. The framework proposed in

this master thesis, pDroid, attempts to capture an even finer-grained image of an

application’s behavior pDroid uses the dataflows within an application to define the

actual behavior of an application. APIs can only tell us an application accessed

sensitive information. However, dataflows can tell us what sensitive information was

accessed and how an application handled this information. For example, while [29,

41] may consider an app to be suspicious because it uses a sensitive API, such as

LocationManager.getLastLocation(). pDroid will further investigate by checking what

sink received the information. pDroid would most likely consider the behavior of

writing the user’s location to a log file as not suspicious while, on the other hand,

writing the location to a buffer and sending it to a private server would be suspicious.

1.2 Contributions

We created pDroid (short for privateDroid), a market-independent framework that

can compare an Android application’s textual description to its actual internal

behavior. Unlike previous approaches that use permissions or APIs [29, 41, 46, 52,
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64], pDroid defines an application’s actual behavior by the dataflows extracted using

static-taint analysis. We evaluated pDroid using 1562 benign apps and 243 malware

samples, and pDroid correctly classified 91.4% of malware, with a false positive rate

of 4.9%.

1.3 Structure of Thesis

The remaining chapters cover the background, technical details, and evaluation of

pDroid. Chapter 2 covers several background topics related to pDroid and why we

chose to focus on the Android platform. In Chapter 3 we discuss the technical details

related to clustering applications based on their textual descriptions. Chapter 4

discusses how we identify anomalies based on inconsistencies between the textual

description and the dataflows within an application. Our evaluation results and how

we developed our dataset can be found in Chapter 5. Finally, this masters thesis

concludes in Chapter 6.
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Chapter 2

Background

2.1 Android

The Android operating system (OS) was unveiled in 2007 and is maintained by the

Open Handset Alliance under the direction of Google. Android is based on the Linux

kernel and is designed primarily for touchscreen devices such as smartphones and

tablets. Currently, Android is the most used mobile OS worldwide and held 80.7%

of the fourth quarter 2015 market shares for mobile operating systems [28]. The

Android OS allows end users to install applications onto their mobile device that

extends the functionality of the device. The most common method for end users

to find applications that meet their needs is to search an application marketplace.

The largest application market is GooglePlay∗ with over two million apps as of

2016 [4]. A centralized approach to distributing applications is efficient for both

developers and end users. It allows developers a fast, efficient, and simple method

to reach millions of potential customers. For an end user, a centralized approach

allows them to search quickly for applications that can meet their personal needs.

While this approach is useful from a distrubution and marketing perspective, it can

be overwhelming for the operator’s of these marketplaces to properly vet the actual

∗https://play.google.com
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intent of applications uploaded onto the marketplace. Therefore, centralized markets

have created an environment for malware developers to exploit with many potential

victims.

2.1.1 Android Architecture

The Android Architecture is made up of several layers including the application layer,

Android framework, native libraries and Android runtime, hardware abstraction layer,

and the Linux kernel. The layers make up the Android software stack, which is

shown in Figure 2.1. The lowest layer is the Linux kernel and is the foundation

of the Android platform. The Linux kernel handles low-level system services, such

as memory and process management, networking, and controlling hardware drivers.

The kernel also provides Android with several security features such as user-based

permission models and process isolation. The hardware abstraction layer (HAL)

defines a standard interface for hardware vendors to implement and allow Android

to be agnostic about lower-level driver-implementations. The next layer includes

the Android runtime environment which encompasses the Dalvik Virtual Machine

(DVM) and core libraries. Programs for Android are commonly written in Java and

compiled to bytecode for a Java Virtual Machine (JVM), which is then translated into

Dalvik bytecode and stored in a Dalvik Executable (.dex) file allowing for execution

on the DVM. The Dalvik Executable was optimized for minimal memory footprint

allowing it to be ideal for an OS targeted towards devices with constrained processing

power, memory, and storage [17]. Each application running on an Android device is

isolated within its own DVM. The core libraries fall into three categories: Dalvik VM-

specific libraries, Java interoperability libraries, and Android libraries. The Dalvik

VM specific libraries are the set of libraries used predominantly for interacting with

the Dalvik VM; the Java interoperability libraries are an open source implementation

of a subset of the standard Java core libraries that have been adapted for use by

applications running in a DVM. The Android libraries are the Java-based libraries

5



Figure 2.1: The Android Stack Software Stack.

*Android. Android Security. Accessed: 5-24-2016. url: https : / / source . android . com /

security/
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that are for Android development (networking, databases, graphics, os, etc.). The

final discussion about this level is the native libraries, which are written in C/C++.

The Android libraries discussed previously are Java-based. However, many of the

APIs called from the Android libraries do not do the majority of the work but are Java-

based wrappers around a set of native C/C++ libraries. These C/C++ libraries are

included to fulfill a extensive and diverse range of functions such as SQLite database

management, audio, and Secure Socket Layer (SSL) communication [58]. The next

level of the software stack is the Android framework, which provides interfaces that

form the environment Android applications are running upon; this includes Android

API’s that manage location, activities and content providers. On top of the software

stack are the Android applications. Including all applications, such as home, browse,

and third-party applications.

2.1.2 Android Applications

Android applications are written using the Java programming language. Unlike

conventional Java programs, Android applications do not have a main() function

or a single entry point for execution. Instead, they are designed using components.

App components make up the essential building blocks of an Android app. Each

component is a different point through which the system can enter a developer’s

application. There are four different types of components: activities, services, content

providers, and broadcast receivers. Each type of component serves a different role and

the set of components used in an Android application define its overall behavior. The

activity component creates user interfaces. For example, a messaging application

may have one activity that creates the user interface for allowing a user to input

their message and another activity for allowing the user to view their contacts.

The service component runs in the background to perform tasks. Unlike, activity

components, service components do not have a user interface. For example, a

service component can be used to play music in the background. The content

7



provider component handles application data. Using content providers, an application

can store data in files, SQLite databases, or other persistent storage locations an

application can access. The broadcast receiver component responds to system-wide

broadcast announcements. For example, the system may broadcast that a picture

has been captured, and the broadcast receiver can alert the application of this action.

In general, broadcast receivers do minimal work, but instead, alert other components

that an event occurred.

2.1.3 Android Security

The Android mobile platform was designed to be truly open. Android applications are

given access to hardware and software, local data and data from servers. This type of

open platform requires a strong security architecture, and Android was developed with

multi-layered security that allows for an open environment while protecting the users

of the platform [1]. The majority of security between Android applications and the

Android system is enforced at the process level using standard Linux facilities, such

as assigning unique user IDs to each Android application. The Linux kernel has been

in widespread use for years and used in millions of security-sensitive environments. It

also has consistently been researched, attacked, and fixed by thousands of developers

allowing it to become a stable and secure kernel. The Linux kernel provides Android

with several security features such as a user-based permission model, process isolation,

and the ability to remove insecure parts of the kernel. The Linux OS is a multiuser

OS and enforces the security policy that a user’s resources and data must be protected

from other users using the system. Android leverages Linux’s user-based protection

scheme by implementing the policy that application resources must be protected from

other applications running on the system. To achieve this at the kernel level, each

application is running as a separate process with its own unique user ID (UID).

Therefore, the code of two different applications cannot run in the same address

space. Access-control is provided through a permission mechanism that enforces

8



restrictions on the operations a particular application can perform. By default, an

Android application has no permissions associated with it, meaning it cannot do

anything adversely impact the user experience or any data on the device [1]. If an

app developer wishes to have access to a user’s sensitive data, they must declare

they are using the permission in the app’s manifest file. For example, an application

that needs to monitor incoming SMS messages would need to request access for the

Android.permission.RECEIVE SMS permission.

2.2 Mobile Malware

Cabir [60] was the first known malware written specifically for smartphones and was

discovered by a cyber security and privacy company, F-Secure,† in June 2004 [32].

Cabir was a proof-of-concept worm that used Bluetooth to propagate itself to new

victims. A novel feature of Cabir was that it did not exploit vulnerabilities found in

the system, and it worked within the security parameters of the Symbian OS. Instead,

it manipulated the user interface to force users of infected phones to propagate the

worm to victims in range. When a potential victim was in Bluetooth range, the

infected phone would incessantly display file-transfer requests on the infected device’s

screen requiring the user to approve or deny the request. If the user chose to deny

the request, Cabir would display another file-transfer request, and once again require

the user to approve or deny the request. To end the constant file-transfer requests,

the user would eventually need to accept the file-transfer, allowing Cabir to infect the

new victim.

While Cabir and modern malware both aspire to manipulate end users into

executing their malicious payload, the mobile ecosystem Cabir exploited pales in

comparison to the current mobile ecosystem. First, the number of users has increased

significantly. In 2005, just 2% of the U.S. population used a smartphone [14], while in

2016 66% of the U.S. population uses smartphones [43]. The growth of mobile malware

†https://www.f-secure.com/en_US/welcome
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has also substantially increased. In June of 2005, there were only approximately 60

known mobile malware programs [32]. In 2015, Kaspersky Lab’s detected 2,961,727

malicious mobile packages and 884,774 new malicious mobile programs [61]. Finally,

the modern smartphone have far more computational power and access to private

data compared to the smartphone in 2004.

The modern phone ecosystem contains a variety of mobile operating systems,

but the two primary operating systems are Google’s Android and Apple’s iOS.

Both operating systems allow end users to install third-party applications, but the

procedures used by Apple and Google to regulate untrusted third-party applications

are fundamentally different. For iOS, a third-party application must pass a stringent

human-guided review process, before it is approved to run on iOS devices. Third-

party developers are required to distribute their application through the official iOS

application marketplace, App Store. If a third-party developer wishes to distribute his

app in the App Store, he must first submit it to Apple for human evaluation, and the

application is only published to the App Store after it has passed the review process.

The technical details of the review process are largely unknown, but according to

the official Apple App Review Guidelines [3], developers should expect their apps to

go through a thorough inspection for all possible term violations. If an application

is approved, it will be signed and published to the App Store. Additionally, Apple

enforces a mandatory code signing mechanism to ensure only applications that have

been approved and signed by Apple are allowed to run on iOS devices, preventing end

users from installing unapproved applications. The implementation details of the code

signing mechanism can be found in [44]. In constrast, the Android mobile platform

was developed to be truly open, and Google takes a more permissive stance on

regulating untrusted third-party applications. The offical Android app marketplace

is Google Play. However, unlike iOS, Android third-party developers are not required

to distribute their application via Google Play and do not need Google’s approval

before distributing their application. This has created several “alternative” and

“unofficial” app marketplaces, and third-party developers can choose to distribute
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their applications through these markets instead. Third-party app stores are growing

in popularity and provide great convenience to users, especially in countries where

official stores are not available. For example, the largest third-party marketplace is

9Apps‡, which has 250 million monthly users as of April 2016 and over 26 million

daily app downloads [12]. Finally, Android users have the freedom to download apps

from any source they choose, unlike iOS users who are limited to only downloading

Apple approved applications from the App Store.

While iOS has been criticized for developing an approval process that is opaque,

arbitrary, and limits freedom of expression [31], the review process has to prevent

malicious applications from being published in the App Store. Despite iOS’s

popularity, only a handful of malicious apps for iOS have been discovered [20], but

like all security methods, the Apple’s review process is not completely secure. Wang

et. al. successfully published the proof-of-concept malware Jekyll [62] into the App

Store. The malicious app was successfully able to perform many malicious tasks, such

as stealthily post tweets, take photos, send email, and exploit kernel vulnerabilities.

The fundamental idea behind Jekyll was to make it remotely exploitable and introduce

malicious control flows by rearranging signed code. Since the malicious control flows

are added after Apple’s approval and did not exist during the review process, Jekyll

stayed undetected.

The vision to make Android truly open by the Open Handset Alliance and Google

has allowed the Android OS to be the most used OS worldwide [28]. Unfortunately,

its lack of regulation has several security drawbacks and has made Android the ideal

target for malware developers. In 2011, Google addressed the problem of Android

malware by introducing Bouncer [38], an automatic dynamic analysis tool used to

scan new and existing Android applications. Unfortunately, the work of Percoco et.

al. [48] found that Bouncer could be easily by-passed by discovering the emulation

environment, such as the IP Address of the emulator, and preventing the malicious

payload from executing during an inspection. In 2015 Google announced they had

‡http://www.9apps.com/
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added an additional layer of security by having an internal team analyze apps for

policy violations before being published on the Google Play Store, similar to the

approach Apple uses [49]. However, Google’s new layers of security only regulates

the Google Play Store and is unlikely to thwart the trend of Android malware. This

is because the overwhelming majority of Android malware is being developed and

distributed in unregulated third party App Stores in the Middle East and Asia [51],

such as 9Apps. To better understand the security status of Android App Stores,

Cheeta Mobile Security§ surveyed several top alternative app stores, and found that

malware is found at a much higher rate, shown in Table 2.1. Out of the sample of

apps chosen from Google Play, only 48 samples (0.005%). In contrast, out of the

samples from 9Apps, 0.16% apps contained malware.

Unlike the iOS platform, Android user’s have the freedom to download a third-

party application from unoffical markets. Third-party app stores bring great

convenience to users, especially in countries where official App Stores are unavailable.

However, the lack of regulations has made the Android platform the ideal target for

malware developers, and the overwhelming majority of mobile malware is found on

Android. Therefore, the remaining discussion in this master thesis will be focused

solely on the Android platform and Android malware.

2.3 Related Work

The components of pDroid touches several research areas such as Android security,

natural language processing (NLP) in software engineering, and app store mining. To

our knowledge, the first proposed framework for comparing the textual description to

an application’s behavior was Whyper [46]. Whyper correlates the description and

permission by extracting natural language keywords from Android API documents.

Since APIs and permissions can be related together [6], the intuition is that

patterns expressed in the API documentation will have a presence in the application

§http://www.cmcm.com/en-us/
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Table 2.1: Number of samples and malwares in third-party App Stores

App market Number of Sample Number of malware Percentage of malware
9apps 32698 53 0.16%
Getjar 1865 3 0.16%
Vshare 14196 13 0.09%
Aptoide 37098 20 0.05%
Mobogenie 23001 9 0.04%
Google Play 904464 48 0.005%

*Cheeta Mobile. Android App Stores Become Significant Source for Malware. Accessed : 6-8-2016.
2016. url: http://www.cmcm.com/blog/en/security/2016-01-20/925.html
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description, which implies the need for a given permission. If the presence exists, the

application description is transparent and appropriately describes the application’s

behavior; if not, it should raise suspicion.

Three major limitations of Whyper are limited semantic information, lack of

associated APIS, and lack of automation. The limitation of semantic information

is because Whyper uses API documentation to extract semantic patterns. Since

API documentations are related to only describing an API’s functionality, it

cannot obtain subtle correlations between the textual descriptions and the declared

permissions. For example, the work of Qu et. al [52] found that words related to

banking, such as “deposit” and “check” are related to the CAMERA permission,

because banking applications allow end users to deposit checks by snapping a

picture. This type of inference cannot be inferred using only API documentations.

Next, certain sensitive permissions do not have any related APIs [6], such as

RECEIVE BOOT COMPLETED. Therefore, it is not possible to extract an semantic

information related from them. Finally, Whyper’s technique is not fully automated

and requires manual extraction of patterns from API documents.

The work of Qu et. al. addressed these limitations by proposing Autocog

[52], a fully automated technique for comparing application descriptions to de-

clared permissions. To prevent semantic limitation and lack of associated APIs,

Autocog extracts semantic information from textual descriptions instead of API

documentation. To provide automation, Autocog leveraged Explicit Semantic

Analysis [27] to extract semantic information from textual descriptions. Autocog

was a significant improvement over Whyper, but it also has its limitations. First,

AutoCog only supports 11 permissions and does not handle critical permissions

that are related to privacy leaks (e.q., phone number, device identifier, service

provider, etc.), sending and receiving text messages, network I/O and critical

system-level behaviors. Additionally, the work of Zhang et. al. discovered that

Autocog sometimes cannot recognize certain words that have substantial security

implications. For example, if “geographic location” is used to describe the permissions

14



ACCESS COARSE LOCATION and ACCESS FINE LOCATION AutoCog cannot

associate this phrase with any permissions.

Both Whyper and Autocog use permissions to define actual behavior. However,

using permissions to define the behavior of an application is a coarse grained approach

that raises several concerns. First, it is often the case that Android applications

request more permissions than they actually use [6, 21, 59]. Next, it has been shown

that end users lack the ability to comprehend the security threats related to Android

permissions [21]. Finally, Qu et. al. found that only 9.1% of textual descriptions

properly describe the need for all of their permissions [52].

Most similar to pDroid is Chabada [29], which compares the textual descriptions to

the actual behavior. Unlike Whyper and AutoCog, Chabada defines actual behavior

as the sensitive APIs found within an application. Using the APIs, Chabada can

provide a clear picture of the application’s actual behavior. The intuition behind

Chabada is that applications with similar textual descriptions should have similar

API usage. Like pDroid, Chabada clusters applications based on their textual

descriptions. Then it searches for anomalous API usage in application clusters. We see

pDroid as a natural extension to Chabada that provides a more in-depth description

of the application’s actual behavior. The biggest difference between Chabada and

pDroid is that pDroid leverages a more fine-grained approach (dataflows) to define

an application’s behavior. The advantage of this method is that reports of anomalous

behavior can provide a clearer picture of the malicious intent. Additionally, pDroid

leverages binary classification, which labels an application as benign or malicious,

while Chabada uses a one-class SVM for detecting anomalies. In general, binary

classification provides higher accuracy on known malware, while anomaly detection

is better suited for potential zero-day attacks.

In Addition to Chabada, pDroid has similar goals as AAPL [39]. AAPL uses

conditional data flow analysis and joint data flow analysis to find data leakages

in apps. AAPL employees peer voting to distinguish legitimate privacy disclosures

from malicious data leaks. The idea behind peer voting is that applications with
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similar functionality should exhibit similar privacy disclosures. To obtain peers,

AAPL leverages Google Play’s recommendation system to get peer applications. In

their work, they found Google Play’s recommendation system provided more similar

applications than textual descriptions alone. However, this type of clustering is not

suitable for pDroid. First, we envision pDroid assisting end users in assessing the

security threats related to the permissions and textual descriptions. Second, pDroid

was designed to be market independent, and using the Google Play’s recommendation

system would violate this policy.
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Chapter 3

Clustering Applications Using

Alleged Behavior

The intuition behind pDroid is that applications with similar alleged behavior (textual

descriptions) should have similar actual behavior (dataflows). In this chapter, we

discuss the technical details and algorithms used to cluster applications with similar

textual descriptions. Section 3.1 presents the detailed preprocessing phase all textual

descriptions go through before being clustered. In Section 3.2 we discuss how

Latent-Dirichlet Allocation (LDA) [11] is used to convert textual descriptions into

document-topic distributions. Finally, Section 3.3 we discuss how pDroid leverages

the document-topic distributions to cluster applications by the semantic similarity

between their textual descriptions using Affinity Propagation [23].

3.1 Preprocessing Application Descriptions

When a developer wants to publish his application, he will upload his application to

the Google Play Store. Along with the application, the developer will also upload

metadata. This metadata includes a textual description, images, the application

name, etc. In pDroid, we are concerned with the textual description of an
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application, and we consider this the alleged behavior of an application. To allow for

personalization and customization, the Google Play Store has taken a liberal stance

regarding format for application descriptions. While this lenient format is ideal for

creativity, it can cause issues for natural language processing (NLP) tools. Therefore

pDroid first sends all application descriptions through a stringent preprocessing phase

before analysis is completed.

When an unseen app is first introduced to pDroid, its textual description will go

through a sanitizing process. The Google Play Store provides support for many

languages, and the current version of pDroid only provides support for English.

Therefore, pDroid removes any nonEnglish descriptions using Chromium Language

Detector [15], which can detect over 80 different languages. After this step is

completed, we use Python’s powerful Natural Language Toolkit (NLTK) [10] to do

the remaining of our NLP preprocessing. In our first step, we reduce the number of

distinct words in the dataset using case folding, so “The”, “tHE”, and “THE” all

become “the”. Many developers place URLs within their application description to

provide users with the location of external information regarding their application,

company, or personal web page. These URLs are unique and provide little information

about the alleged behavior of an application. Therefore we remove all URLs in a

textual description. Next, we remove any punctuation characters, non-alphabetic

characters, and any non-ASCII values such as ♣, ♠, and c©. We then remove any

word that is less than three characters, so any possible artifacts from the previous

sanitizing processes are eliminated. Topic Models are useful for extracting patterns

for meaningful word use, but they are not good at determining which words are

meaningful. It is often the case that the use of very common words such as “the”,

“you”, and “have” do not indicate the type of similarity between documents that we

are interested in [53]. Therefore, we remove all common English stopwords. Words

that are ubiquitous in our dataset such as “app”,“Google”, and“Android” tell us little

about the similarity between application descriptions, therefore pDroid removes the

20 most common words found in the training dataset. Words found in application
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descriptions that are exceedingly rare, such as the application developer’s name, also

provide little information related to the similarity of application descriptions and

we remove any word that does not occur in more than two application descriptions.

Terms such as“charge”, “charged”, and “charging” are similar, and we want them to

be represented by the same word, and pDroid uses a Porter Stemmer [50] for term

normalization.

Any application description that is less than ten words after the preprocessing

phase is removed from the dataset. These application descriptions do not provide

enough context to allow pDroid to infer their alleged behavior. If pDroid is

being used by an application market management team, it is advised that the

management team requests the developer of the application to provide an application

description of better quality before they approve the application to their marketplace.

Figure 3.1 shows the Pinterest Android application∗ description before sanitization

and Figure 3.2 shows the application description after sanitization.

3.2 Converting Textual Descriptions to Feature

Vectors Using LDA

In Google Play, the developer chooses a category (“Social”, “Music & Audio”,

“Tools”, etc.) to assign their application. The simplest approach for clustering

applications would be to cluster applications based on the category they were assigned

to in the Google Play Store. However, using this method has several shortcomings.

First, previous work that has clustered applications based on textual descriptions has

found that the categories inferred from their analysis did not match the categories

found in the Google Play Store. For example, the application categories found in

the work of Gorla et. al. found that applications that do nothing but display ads

and typically promise the user with some benefit form the “advertisement” category

∗https://play.google.com/store/apps/details?id=com.pinterest
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Pinterest is a visual bookmarking tool that helps you discover and save creative
ideas. Use Pinterest to make meals, plan travel, do home improvement projects
and more. With Pinterest you can:

• Plan a project: Home remodels, garden redesigns and other DIYs

• Get creative ideas: Recipes to cook, articles to read, gifts to buy and ways
to save money

• Explore a hobby: From comic art and camping, to woodworking and weaving

• Save travel inspiration: Outdoor adventures, family fun, road trips and more

• Find your style: Fashion, home decor, grooming tips and beauty inspiration

• Pin from your mobile browser: Save good things you find around the web

Figure 3.1: The Pinterest Android application description prior to sanitization.
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pinterest visual bookmark tool help discov save creativ idea use pinterest make
meal plan travel home improv project pinterest plan project home remodel garden
redesign diy get creativ idea recip cook articl read gift buy way save money explor
hobbi comic art camp woodwork weav save travel inspir outdoor adventur famili
fun road trip find style fashion home decor groom tip beauti inspir pin mobil
browser save good thing find around web

Figure 3.2: The Pinterest Android application description after sanitization.
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which is not an actual category in Google Play [29]. Second, several of the Google Play

categories are simply too broad and contain applications with stark differences with

respect to their functionality. For example, alarm clock apps, keyboard apps, and

flashlight apps can all be found in the tools category of Google Play. Next, Android

applications are multifaceted and cannot be described by only one category. The

popular Android application Twitter† is found in the social category on Google Play.

However, it also provides the end user with the capability of sending direct messages

to other Twitter users, which is a trait of applications found in the communication

category of Google Play. Finally, using the categories on the Google Play marketplace

violates the goal of making pDroid market independent.

To achieve market independence and give pDroid the capability to infer the

many facets of an Android application, pDroid creates application categories using

the well-known topic model, Latent-Dirichlet Allocation (LDA) [11]. Topic models

are statistical models that can discover the semantic topics pervading a document

set. After a topic model identifies the semantic topics, it can quantify the semantic

differences between documents, allowing it to organize the otherwise unlabeled and

unorganized dataset. The intuition behind LDA is that documents (application

descriptions) exhibit traits from multiple topics (application categories). This

intuition can be seen visually in the Android application description Instagram‡ shown

in Figure 3.3. In the description words related to Communication are highlighted

in blue, words related to Photos and Videos, are highlighted in green, and the words

highlighted in yellow are related to Social Media. If we took the time to label all words,

a document-topic distrubution could be created showing how related a document is

to a topic.

To capture this intuition, LDA assumes that documents in the collection arose

from a set of topics, where a topic is defined as a distribution over words. To create

topics, LDA uses a sampling algorithm such as Gibbs sampling [34] to find words

†https://play.google.com/store/apps/details?id=com.twitter.android
‡https://play.google.com/store/apps/details?id=com.Instagram.android
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Share your photos and videos , and keep up with your friends and interests. Instagram is a simple way to

capture and share the worlds moments. Follow your friends and family to see what theyre up to, and

discover accounts from all over the world that are sharing things you love. Join the community of over 400

million people and express yourself by sharing photos and videos from your daywhether its your morning

routine or the trip of a lifetime.
Use Instagram to:

• Edit and share photos and videos with filters and creative tools to change photo brightness ,

contrast and saturation , as well as shadows , highlights , perspective and more.

• Discover photos and videos you might like and follow new accounts in the Explore tab.

• Send private messages , photos , videos and posts from your feed directly to friends with

Instagram Direct.

• Instantly share photos and videos on Facebook , Twitter , Tumblr and other social networks.

Figure 3.3: Application Description for the Android Application Instagram.
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that frequently co-occur. Words that co-occur are assumed to be similar and will

be assigned to the same topic. For example, after analyzing a set of application

descriptions related to Weather, LDA created a topic containing the (stemmed) words

“weather”, “forecast,” “temperatur”, and “satellit.” After analyzing applications

related to Travel, LDA created a topic containing the words “flight”, “visit”, and

“map.” More words found in the Weather and Travel category can be found in Figure

3.4. Since LDA assumes that the documents in the collection arose from these topics,

it can create a document-topic distribution, stating how likely a document originated

from this topic, hence how similar it is to a topic.

pDroid uses the Mallet machine learning for language toolkit [42] to implement

LDA. Mallet provides a Java-based implementation of LDA that uses an extremely

fast and highly scalable implementation of Gibbs sampling and provides an efficient

method for document-topic hyperparameter optimization. Following previous work,

we train LDA using 30 topics [29]. Using thirty topics is based on the fact that

Google Play uses 30 topics to categorize their applications, and it is possible that a

more optimal amount of topics exist. Table 3.1 shows the top words in each topic after

we trained LDA on application descriptions. After training, LDA can be used to infer

the document-topic distributions for unseen application descriptions. When pDroid

is given an unseen application description, it will first preprocess the description; then

it will create a document-topic distribution using LDA.

The output of LDA does not provide a binary decision that a document belongs to

a particular topic or does not belong in a topic. Instead, it provides a document-topic

distribution, which is the probability that a document arose from a particular topic.

An example of the document-topic distributions for the social media app for photo

sharing Instagram and the racing game, Mountain Climb Race 2 § are shown in Figure

3.5

§https://play.google.com/store/apps/details?id=com.awesomecargames.

mountainclimbrace2
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(a) Travel (b) Weather

Figure 3.4: Weather and Travel Topics Found By LDA
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Table 3.1: Top words in each category.

Topic Topic Name Top Stemmed Terms In Each Application Cluster.

0 Language languag word learn english german translat spanish french dictionari chines
1 Holidays and Religion christma year holidai santa christian celebr gift polic islam tree
2 Cooking and Food recip beer cake chicken appl cook chocol bake salad creams
3 Fitness and Diet weight bodi diet exercis workout food lose yoga train
4 Fashion girl beauti pictur sexi fashion cheerlead design hair high nail
5 Casino Games slot machin card poker player coin casino spin bonu high
6 Fantasy Games stori halloween world magic monster build adventur citi collect
7 Puzzle Games puzzl level bubbl mode match challeng score classic player
8 Broadcasting radio flag station countri channel world stream broadcast internet listen
9 Racing Games race ball speed level jump control score challeng world mode
10 Reading book question quiz answer read aikido logo test bibl reader
11 Photos and Videos photo imag color share pictur facebook save friend effect
12 Weather weather locat citi travel inform guid forecast rout attract find
13 Communication version email googl user work contact permiss send internet requir
14 Action Games weapon zombi enemi battl fight power world action shoot attack
15 Finance calcul track manag data account market rate expens currenc list
16 Themes theme launcher instal gold appli choos menu icon locker getjar
17 File and System file player mobil control manag connect media wifi network secur
18 Music music song album artist movi danc lyric youtub style record
19 Children anim babi children learn fish memori child balloon sound mode
20 Anime seri comic manga anim releas dragon charact film naruto imag
21 Ringtones sound rington music alarm notif record sleep relax song
22 Legal copyright page guid trademark cheat link owner develop unoffici trick
23 Inspirational love make friend good find life great peopl give feel
24 Information inform includ system provid medic product develop gener design refer
25 Sports team footbal leagu player sport score basketbal soccer match club
26 Social Media facebook twitter updat mobil share latest access find search friend
27 Utilities widget batteri button option chang menu notif click displai model
28 Browsing search galaxi samsung home icon delet creat notif easili shortcut
29 Data home step press polici data background notif menu term privaci
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Instagram was assigned to the following four topics:

• Topic 11 (Photos) with a probability of 60.2%.

• Topic 26 (Social Media) with a probability of 26.2%.

• Topic 9 (Racing Games) with a probability of 8.49%.

• Topic 24 (Information) witha probability of 4.80%.

Mountain Climb Race 2 was assigned to the following four topics:

• Topic 9 (Racing Games) with a probability of 90.4%.

• Topic 14 (Action Games) with a probability of 2.47%.

• Topic 23 (Inspirational) with a probability of 2.33%.

• Topic 7 (Puzzle Games) with a probability of .67%.

Figure 3.5: Topic Distrubutions for Instagram and Mountain Climb Race 2.
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Originally, the final stage of clustering applications by alleged behavior was

assigning an application to the four topics it was most highly distributed over.

Therefore Instagram would be assigned to the “Photos”, “Social Media”, “Racing

Games”, and “Information” categories and Mountain Climb Race 2 would be

allocated to the categories “Racing Games”, “Action Games”, “Inspiration”, and

“Puzzle Games.” The weakness of this approach was that it did not take into

consideration the topic proportions for each application. Therefore, an application

such as Instagram is given the same equality of determining the overall behavior as

an application such as Mountain Climb Race 2 in the “Racing Games” category.

The similarity between racing games and Instagram is difficult to understand.

Game developers often describe the quality of the graphics found in their application

in the description. Since graphics share a similarity between images and photos, LDA

gives Instagram a slight distribution over the “Racing Games” category. To mitigate

the issue of LDA inferring unwanted semantic similarities an additional clustering

stage is implemented in pDroid which is discussed in Section 3.3.

3.3 Clustering Apps With Affinity Propagation

LDA does not assign an application description to one particular topic. Instead, it

quantifies the semantic structure of the description by providing a document-topic

distribution. A simple clustering approach would be to assign an application to

its most related topic. However, many Android applications are multi-faceted and

have traits rising from a variety of topics, so this approach would not capture the

entire behavior of the application. Another possible approach would be to require

an application description’s proportion over a topic to meet a threshold before it

is assigned to that cluster, but the ideal limit would be difficult to find and would

be different for each cluster. Therefore, to cluster applications, pDroid uses Affinity

Propagation (AP) [23], using the document-topic distributions as feature vectors.

Unlike k-means, AP does not require the number of clusters to be determined before
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running the algorithm. Instead, AP finds “exemplars” which are members of the

dataset that are representative of clusters [23]. Affinity Propagation creates clusters

by sending messages between pairs of samples until convergence. The messages sent

between two points belong to one of two categories, the responsibility r(i, k) or the

availability a(i, k). The responsibility is defined as the accumulated evidence that

sample k should be the exemplar for sample i. The availability is the accumulated

evidence that sample i should choose sample k to be its exemplar and takes into

consideration the values for all other samples that k should be an exemplar. Therefore,

exemplars are selected by samples if they are similar enough to many samples and

chosen by many samples to be representative of themselves. To implement Affinity

Propagation we use Python’s Scikit-Learn: Machine Learning in Python Toolkit [47].
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Chapter 4

Identifying Anomalous Behavior

After creating application clusters, the next goal of pDroid is to identify which

applications are using anomalous dataflows within each cluster. In this chapter, we

discuss how pDroid identifies abnormal actual behavior in each application cluster.

Section 4.1 describes how pDroid extracts dataflows using FlowDroid [5]. Section 4.2

discusses Android dataflows, and Section 4.3 discusses the possible ways pDroid can

represent dataflows. In Section 4.4 we discuss how pDroid quantifies the sensitivity of

individual dataflows. Section 4.5 discusses how pDroid leverages application clusters

and sensitivity scores to create an anomaly score for applications. Finally, we discuss

how pDroid classifies an application as benign or malicious in Section 4.6.

4.1 Extracting Dataflows from Android Applica-

tions

To extract the permissions used by an Android application, one can just parse the

application’s manifest file. Obtaining the sensitive APIs from an application is also a

relatively simple task, and can be completed using popular reverse engineering tools,

such as apktool [63]. Unfortunately, extracting the dataflows found within an Android

application is not as simple and requires dataflow analysis. pDroid uses static taint
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analysis to obtain sensitive dataflows within an application. In taint analysis, sensitive

information is first identified as a taint source, and data originating from a taint source

is considered tainted. The tainted data is then tracked until it leaves the system

through a tainted sink. Taint analysis can be completed statically or dynamically. In

static taint analysis, the code (source, intermediate, or binary) is observed and reports

any dataflows that may occur during the execution of the program. In dynamic taint

analysis, the program is executed and reports the dataflows that occurred during

runtime. In the static approach, an exhaustive search can be used to indicate all

possible dataflows found within the code. Static analysis provides a complete picture

of information flows found within applications. However, static analysis can report

dataflows that are infeasible during execution time, leading to false positives. In

contrast, during dynamic taint analysis, all dataflows reported are accurate, because

they occurred during the runtime of the application. However, the results of dynamic

analysis are bound to the test cases used to stimulate the application. In pDroid, we

use the state-of-the-art static taint analysis tool, FlowDroid [5].

FlowDroid is a context-, flow-, field-, object-sensitive and lifecycle-aware static

taint analysis tool for Android applications. Since Android applications do not have

a standard main() entry point, FlowDroid creates a dummy main() method from the

list of entry points found within the application. Next, FlowDroid uses the generated

main method to create a call graph and inter-procedural control-flow graph (ICFG).

FlowDroid then detects all sources of information that are reachable from the entry

points. From these sources, FlowDroid applies taint analysis tracking by traversing

the ICFG and reports all discovered flows from sources to sinks [24].

In order to achieve precise taint analysis, Flowdroid must take into consideration

flow-sensitivity, field-sensitivity, object-sensitivity, and context-sensitivity. A taint-

analysis technique is considered flow-sensitive if it takes into consideration the order

of statements. In Figure 4.4.A, flow-sensitivity is required to identify that the sink on

line 2 does not access the information coming from the source on line 3. In contrast,

if the taint analysis technique were flow-insensitive, it would assume the source of
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information on line 3 enters the sink on line 2, leading to a false positive. Context-

sensitive taint analysis is required to track objects returned by method calls which

are invoked with different input parameters. In Figure 4.4.B, context-sensitivity is

necessary to distinguish that the sensitive information accessed on line 2 does not

end up in the sink on line 3. Object-sensitivity is similar to context-sensitivity, and

it takes into consideration the allocation site of the object to differentiate call sites.

In Figure 4.4.C, object-sensitivity is required to distinguish that the sink on line 5

does not receive the information from the source argument in line 3. Finally, field-

insensitive approaches merge taint information to the base object, while field-sensitive

techniques treat all fields of a base object separately.

Applying static taint analysis on large Android applications comes with challenges.

The major area of conflict described by Hammer et. al. is on one hand, the analysis

should be correct and report all data leaks with few false negatives, but should be

able to analyze real-world applications in a realistic amount of time [30]. To find

an optimal trade-off between accuracy and runtime, we follow the work of [7], and

configure FlowDroid with the following configurations:

• No Flow Across Intents: Android components communicate through a messaging object called

an Intent. The most common use of Intents are to start an activity, start a service, or to

deliver a broadcast. pDroid does not track dataflows through intents. Instead, all dataflows

ending in intents are assigned the SUSI category, INTENT.

• Explicit flows only : FlowDroid currently focuses on explicit dataflows, and implicit flows

caused by control-flow dependencies are ignored [25].

• aliasflowins. This option makes FlowDroid flow-insensitive, which improves the runtime for

larger applications, but it may generate false positives.

• aplength set to 3. This sets the maximum access path length to 3, instead of the default of 5.

Large access paths make analysis more precise but makes it more expensive.

• No static fields - This prevents tracking of static fields. This makes analysis faster, but it

may miss potential data leaks.

• No Layout Mode - Input from Android GUI components are not taken into consideration as

sources for dataflows.
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1 int x = 1;

2 sink(x);

3 x = source ();

4.4.A

4 void contextExample (){

5 String x = foo("abc")

6 String y = foo(source ());

7 sink(x);

8 }

9

10 String foo(String s){

11 return s;

12 }

4.4.B

4 void objectExample (){

5 Foo x = new Foo("bar");

6 Foo y = new Foo(source ());

7

8 sink(x.getValue ());

9 }

10

11 class Foo{

12 String s;

13

14 public foo(String inputString ){

15 s = inputString

16 }

17

18 public String getValue (){

19 return s;

20 }

21 }

4.4.C

Figure 4.4: (A) A flow-sensitive example. (B) A context-sensitive example. (C) A
object-sensitive example.
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With these configurations, we embed FlowDroid within pDroid to extract

dataflows. After the dataflows are extracted, pDroid uses them to apply further

analysis. We treat FlowDroid as a black box, and a more detailed description of its

internal mechanisms can be found in the following literature, [5, 24, 25].

4.2 Dataflows in Android Applications

pDroid defines the actual behavior of an application by the set of dataflows

found within the application. Applications running on an Android system are

sandboxed, and applications can interact with the underlying system through an

API interface provided by the Android platform. APIs that provide the application

with resources are considered sources of data. APIs that export information from

the application are called sinks. A dataflow is a tuple containing the signature

of the source method and the signature of the sink method. For example, the

API LocationManager.getLastLocation() returns the users last known location and is

considered a source, and the API URL.openConnection(), which opens a connection

to the referred URL is a sink.

While FlowDroid can provide taint tracking, it does not know which APIs in

the Android interface are sources and sinks. Instead, the user must provide a list

of sources and sinks as input. Creating a comprehensive list of sources and sinks

for the Android platform is a challenging task due to the existing amount of APIs.

For example, Androids version 4.2, contains 110,000 public methods, which makes

manual classifications of sources and sinks infeasible [55]. One possible solution is

permission maps [6, 8, 21], which identifies APIs in the Android interface that require

a permission, and only considers those APIs as sensitive sources or sinks. However,

this method only includes the subset of APIs that are protected by permissions, and

the work of Rasthofer et. al. found that many sources or sinks did not require

a permission [55]. For example, the getNetworkOperatorName() method in the

TelephonyManager class returns the name of the network operator or carrier, but

34



does not require a permission. In pDroid, we use SUSI a fully automated machine-

learning approach for identifying sources and sinks directly from Android source code

[55]. SUSI does not consider only protected APIs but instead considers all APIs

when discovering sources and sinks. SUSI is also fully automated, allowing the list

of sources and sinks discovered by it to be updated when a new version of Android

is released. SUSI also categorizes sources and sinks into human readable categories

such as Location, Bluetooth, and Database. Finally, the list of SUSI categories was

extended in the work of Avdiienko et. al. to include three new categories, intents,

nonsensitive sink, and nonsensitive source. A list of all SUSI categories can be found

in Table 4.1.

4.3 Representing Actual Behavior

FlowDroid provides pDroid with raw dataflows, which contains the full method

signature for both the source and sink that created the dataflow. A method signature

in Java contains the method name and the number and types of its parameters.

Similar to [7], pDroid is configured to work on the following levels of granularity:

• Method This level of granularity is the finest, and uses the full method signature to define

a source or sink. For example, SmsManager.sendTextMessage(...)

• SUSI Category, The most coarse grain method for representing a source or sink, would be

to represent it by the SUSI category it was assigned to, such as SMS MMS

In addition to this type of granularity, all nonsensitive sources and sinks, such as

the device’s display, are represented by the SUSI category, No Sensitive Source and

No Sensitive Sink. We provide an example of representing the actual behavior at

each level of granuality for the mobile application EZ Clock & Weather Widget∗ in

Figure 4.5.

∗https://play.google.com/store/apps/details?id=mobi.infolife.cwwidget&hl=en
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Table 4.1: SUSI Source and Sink categorie

Sources Sinks Shared
HARDWARE INFO PHONE CONNECTION AUDIO
UNIQUE IDENTIFIER VOIP SMS MMS
LOCATION INFORMATION PHONE STATE CONTACT INFORMATION
NETWORK INFORMATION EMAIL CALENDAR INFORMATION
ACCOUNT INFORMATION BLUETOOTH SYSTEM SETTINGS
EMAIL INFORMATION ACCOUNT SETTINGS IMAGE
FILE INFORMATION SYNCHRONIZATION DATA BROWSER INFORMATION
BLUETOOTH INFORMATION NETWORK NFC
VOIP INFORMATION EMAIL SETTINGS
DATABASE INFORMATION FILE
PHONE INFORMATION LOG
CONTENT RESOLVER INTENT
NO SENSITIVE SOURCE NO SENSITIVE SINK
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Method Granularity

NO SENSITIVE SOURCE  Activity.setResult(int, content.Intent)
LocationManager.getLastKnownLocation(String)  Log.i(String, String)

LocationManager.getLatitude()  Log.i(String, String)
LocationManager.getLongitude()  Log.i(String, String)

SUSI Granularity

NO SENSITIVE SOURCE  INTENT
LOCATION INFORMATION  LOG
LOCATION INFORMATION  LOG
LOCATION INFORMATION  LOG

Figure 4.5: Dataflows in “EZ Clock & Weather Widget” using method, class, and
SUSI granularity.
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4.4 Creating Sensitivity Scores For Dataflows

pDroid uses all dataflows found within an application to define the behavior of an

application. However, dataflows within an application are not equally as sensitive.

For example, the source TelephonyManager.getDeviceId() returns the IMEI†, if this

information is sent to an unknown web server using the sink URL.openconnection()

it is certainly a more sensitive dataflow then only writing the IMEI to a log file using

the sink, Log.i(). Additionally, since the actual behavior varies between application

clusters, the sensitivity of a dataflow should also depend on the application behavior

found in a given cluster. To assign weights, we use an approah similar to the

inverse-document frequency (idf) statistic found in term-frequency inverse-document-

frequency (tf-idf) [57]; a well known statistic for detecting how important a word is

to a document in the field of Information Retrieval. The inverse-document frequency

reflects how important a word is to a document in a collection or corpus. Instead of

considering words within a document we are considering how important a dataflow

is to an application cluster. If many applications within an application cluster are

using a particular dataflow, the dataflow should be considered less sensitive, and if

the dataflow is uncommon in the cluster it should be considered a sensitive dataflow.

To calculate the sensitivity weight for a dataflow, pDroid uses equation 4.1, where

N is the amount of applications in application cluster c and ad is the amount of

applications in that cluster that use dataflow d.

Wc,d =
N

ad
(4.1)

4.5 Creating Anomaly Scores

The next goal of pDroid is to identify applications that have actual anomalous

behavior. In pDroid, we consider an application to be exhibiting abnormal behavior

†International Mobile Station Equipment Identity
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when it is using dataflows or combinations of dataflows that are uncommon in the

application cluster it was assigned. Applications exhibiting anomalous behavior are

considered outliers, and pDroid leverages outlier detection to identify applications

that have unusual behavior. Specifically, pDroid uses Orca, a tool for detecting

outliers based on their distance from their closest neighbors [9]. Orca uses the

distance from a sample to its nearest neighbors to determine its similarity. The

intuition is that if samples are close to other samples in the feature space, then the

sample is most likely not an outlier. If an application is using dataflows that are

extremely different from its nearest neighbors (most similar applications), then it

probably exhibits unusual behavior and should raise suspicion. When using distance-

based techniques for outlier detection, a distance metric must be defined. pDroid

uses weighted Euclidean distance, shown in Eq. 4.2. Given a distance measure on a

feature space, there are many different definitions of distance-based outliers [9]. Three

popular definitions are:

1. Outliers are the example for which there are fewer than p other examples within distance d

[35, 36]

2. Outliers are the top n examples whose distance to the kth neighbor is greatest [54]

3. Outliers are the top n examples whoses average distance to the k nearest neighbor is greatest

[2, 18]

Similar to the reasoning in [37], the first definition of an outlier requires a

maximum neighborhood, and does not provide an anomaly score for all applications.

The second definition does not take into consideration the local density of samples.

Therefore, we use the third definition to define an outlier in pDroid, where outliers

are considered the n examples whose average distance to the k nearest neighbor is

greatest. This definition provides pDroid with the most flexibility, allowing it to

discover anomalies on a per-cluster basis.

dx,b =
n∑

i=1

(wi(xi − bi)2)1/2) (4.2)
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To use Orca, we convert the raw dataflows to feature vectors representing the

dataflows an application uses. Since there are many ways to represent dataflows,

there is also many ways to construct feature vectors for Orca to use. First, we

take into consideration the granularity desired for analysis. pDroid is configured to

provide anomaly scores using the two granularities discussed in Section 4.3. We found

that method granularity was most suitable for providing anomaly scores. Next, an

application may use a particular dataflow many times. We evaluated two different

methods for representing the quantity of a dataflow. The first method took into

consideration the number of occasions a dataflow was found within an application.

Therefore, if dataflow d is found in application a v times, then ad = v. The second

approach is binary approach, and creates a feature vector based on if a dataflow was

found within an application. If the application used dataflow d, then ad = 1, if it

did not then ad = 0. Through our evaluation, we found that the binary approach

outperformed the full approach. Therefore, for each application, pDroid creates a

feature vector ~a. If an application used a dataflow, di, then ai is set to 1, and ai is

set to 0 if the application does not contain di. Since pDroid uses weighted Euclidean

distance, pDroid must also create a weight vector, ~w, for each application, where

wi represents the importance of di in the overall distance calculation. To create

an application’s weight vector, we use the per-cluster sensitivity scores discussed in

Section 4.4. If an application is assigned to the application cluster c, then wi = Wc,di .

Additionally, we did not want to punish an application for not using a dataflow that

one of its neighbors used. Therefore, if di is not found in an application, wi = 0.

To create an anomaly score for an unknown app, a, that was assigned to

application cluster c, pDroid runs Orca with k set to 5 and uses other applications

assigned to c as the reference set (potential neighbors). The output of Orca will be

an anomaly score representing the average distance from its five nearest neighbors.

In Table 4.2 we provide the anomaly scores for an application cluster and malicous

applications are highlighted in red.
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Table 4.2: Anomaly Scores for an Application Cluster

air.com.mobigrow.canyouescape.apk 0.869 B

biz.mtoy.blockpuzzle.revolution.apk 7.23 B

com.PinballGame.apk 0.403 B

com.adwo.android.snake.apk0 79.725 M

com.bankey.candy.apk 14.703 B

com.bigduckgames.flow.apk 5.329 B

com.bitlogik.uconnect.apk0 34.555 M

com.bottleShootingGames.apk 6.719 B

com.camelgames.abnormalup.apk 38.54 M

com.cdroid.darts.apk 26.238 B

com.chenyx.tiltmazs.apk0 45.134 M

com.djinnworks.StickCliffDiving.lite.apk 1.765 B

com.game.BubbleShooter.apk 0.56 B

com.game.basketballshoot.apk 0.56 B

com.gp.jewels.apk1 54.284 M

com.hapogames.BubbleFarm.apk 0.909 B

com.icegame.fruitlink.apk 8.748 B

com.kiwifruitmobile.sudoku.apk 17.669 B

com.leagem.chesslive.apk 2.332 B

com.leagem.mahjong.apk 0.564 B

com.leftover.CoinDozer.apk 11.595 B

com.masshabit.squibble.free.apk0 44.33 M

com.mogo.threesameline.apk1 76.947 M

com.natenai.glowhockey2.apk 0.0 B

com.nix.game.mahjong.apk 2.949 B

com.oe.crazycorns.apk0 20.774 M

com.ps.yams.apk 71.856 M

com.threed.bowling.apk 6.097 B

com.wooga.diamonddash.apk 20.961 B
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If an application receives a high anomaly score, pDroid can provide addi-

tional information about how each dataflow contributed to the overall anomaly

score. For example, we used pDroid to inspect the malicious Android application,

com.camelgames.abnormal.apk that belongs to the BeanBot Malware Family [33].

Table 4.3 shows the per-dataflow anomaly scores for each dataflow. The bolded

dataflows represent the malicous payload that is transporting sensitive information to

the app’s command and control server. Since these dataflows are uncommon in other

applications within the cluster, pDroid assigns these dataflows a high anomaly score.

Additionally, this malware sample has the ability to stealthily send text messages in

the background [33], which pDroid also detects.

4.6 Running pDroid as a Malware Classifier

Now that we have created anomaly scores for all applications, the final stage of

pDroid uses supervised learning to classify applications as benign or malicious based

on their anomaly scores. In addition to the anomaly scores, we found that applications

with many dataflows naturally recieved higher anomaly scores. To address this issue

we added an additional feature, the amount of unique dataflows found within an

application. pDroid leverages the well known classification tool, Support Vector

Machine (SVM) [13], to classify applications. Support Vector Machines are based

on the concept of decision planes that define decision boundaries, where a decision

plane is one that separates a set of objects that belong to different classes. To train our

SVM, pDroid normalizes anomaly scores in each application cluster and aggegrates all

applications to create a training set. The goal of traininig a Support Vector Machine

is to find the separating hyperplane with the largest margin; the larger the margin,

the better generalization of the classifier [16]. The basic intuition behind SVMs is to

map the original input space into a feature space using a kernel, so that in the new

feature space the data will be linearly separable. There are many types of kernels

that can be used in SVM models, including linear, polynomial, radial basis function
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Table 4.3: Anomaly Scores for each dataflow in com.camelgames.abnormalup.apk.

Dataflow Anomaly Score
NO SENSITIVE SOURCE  ContextWrapper.openFileOutput() 0.429
NO SENSITIVE SOURCE  Log.w() 0.182
ContentResolver.query()  NO SENSITIVE SINK 0.429
ContentResolver.query()  URL.openConnection() 5.0
ConnectivityManager.getNetworkInfo()  NO SENSITIVE SINK 0.5
NetworkInfo.getExtraInfo()  NO SENSITIVE SINK 5.0
TelephonyManager.getDeviceId()  URL.openConnection() 5.0
TelephonyManager.getLine1Number()  URL.openConnection() 5.0
TelephonyManager.getSimSerialNumber()  URL.openConnection() 5.0
TelephonyManager.getSubscriberId()  NO SENSITIVE SINK 2.0
SmsManager.getDefault()  SmsManager.sendTextMessage() 5.0
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(RBF), and sigmoid. The most commonly used kernel, and the one used in pDroid

is the RBF kernel.

When training a SVM with a Gaussian Kernel, two parameters must be

considered, the regularization parameter C and the kernel hyperparameter γ. The

parameter C, controls the trade off between misclassificaiton and the simplicity of the

decision surface. A low C value makes the decision smooth, while a high C aims at

classifying training examples correctly. The γ parameter defines how far the influence

of a single training example reaches. The larger gamma is, the closer other examples

must be to be affected. Proper C and γ values are critical to an SVM’s performance,

and we leveraged Python Scikit-learn library’s implementation of Grid Search to find

the optimal paramaters.

Grid Search is a traditional hyperparameter optimization techniques that is simply

an exhaustive sweep over a set of manually set of potential values. To perform grid

search, one chooses a finite amount of reasonble values for the hyperparameters. In

our case, we let C be equal to values of 1, 10, 100, and 1000 and γ to be values from

.0001, .001, .01, and .01. Then we used grid search to train an SVM with each pair

of (C, γ). Through our evaluation, we found that a C value of 100 and a γ value of

.01 provided optimal results.
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Chapter 5

Evaluation

In this chapter, we discuss the data collection, evaluation, and limitations of pDroid.

Section 5.1 explains how we collected the dataset for evaluating pDroid. Next, in

Section 5.2 we evaluated pDroid’s ability to detect malware. In Section 5.3 we discuss

how clustering applications improved performance. In Section 5.4 we evaluate our

method for creating sensitivity scores increase, and Section 5.4 compares the different

levels of granularity for dataflows. Also, this chapter also discusses the limitations of

pDroid in Section 5.6.

5.1 Data Collection

To test pDroid, we leverage the dataset used to evaluate MudFlow [7]. This dataset

contains the dataflows discovered from FlowDroid in 2,866 of the most popular

Android apps from the Google Play Store, and dataflows found within 15,338 malware

apps. The malware set came from two sources, VirusShare [56] and the Android

Genome Project [65]. For simplicity, we will call this dataset, the MudFlow Dataset.

Initially, this dataset lacked the necessary metadata for our analysis, such as the

textual description. We used two approaches for obtaining the textual descriptions.

First, we crawled the Google Play Store to check if the application still existed on

the store. If this was the case, we saved the textual descriptions. If the application
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was no longer on the Google Play Store, we checked if the application’s description

existed in the dataset used to evaluate Chabada [29], which we will call the Chabada

Dataset. While we were not able to obtain textual descriptions for all 2,866 benign

apps in the MudFlow Dataset, we were able to receive descriptions for 1562 benign

apps.

It is often the case that malware repositories, such as VirusShare and the Android

Genome Project only contain the .apk file for each sample and lack any metadata

about the application. This makes obtaining malware metadata a more complicated

process. To get malware, we first compared the malware samples found in the

MudFlow and Chabada dataset for matches. This provided us with 118 malware

samples containing both the textual description and the dataflows. To increase

our dataset, we leveraged a similar technique found in [29]. Many of the samples

found within the Android Genome Project are repackaged versions of benign apps.

These applications provide the same functionality as the original application but

have the malicious payload injected into them. Therefore, we installed the malware

onto an Android emulator to evaluate the expected behavior of the application; then

we searched the Google Play Store for an application that would provide similar

functionality and used its textual description to represent the malicious app’s alleged

behavior. Using this method, we were able to obtain 243 malware samples in overall.

We evaluated pDroid using 1562 benign apps and 243 malware samples.

5.2 PDroid for Malware Detection

Our first goal is to evaluate how effective pDroid can correctly classify applications

as benign or malicous. To evaluate our system, we use standard machine learning

evaulation approaches [16]. We define a true positive, true negative, false positive,

and false negative as the followiing:
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• True Positive (TP) - pDroid correctly classifiers a malicious app as malware.

• True Negative (TN) - pDroid correctly classifies a benign application as

benign.

• False Positive (FP) - pDroid missclassifies a benign application as malicous.

• False Negative (FN) - pDroid missclasssifies a malicous application as benign.

To evaluate pDroid’s ability to detect malware, we take into consideration the

True Positive Rate (TPR), True Negative Rate (TNR), and Accuracy. Since our

dataset is extremely unbalanced (contains more benign samples then malware) the

standard method for calculating accuracy, shown in Eq. 5.1, would not be ideal.

Instead, we use the geometric accuracy, shown in Eq. 5.2. To evaluate our system, we

use stratified 10-fold cross validation. In k-fold cross-validation, the original dataset

is randomly partitioned into k equal size partitions (“folds”). One fold is held out

and is considered the testing set. The other k− 1 partitions are used for training the

classifier. This approach is repeated k times, where each time a different partition

is held out for testing. Stratified k-fold cross-validation extends this approach by

preserving the percentage of samples for each class in each fold [47]. Therefore, we

run pDroid ten times, each time with a different set of training and testing samples.

For each run, we report the TPR, TNR, and geometric accuracy. The results for each

run can be found in Table 5.1. pDroid’s geometric acccuracy was 93.5 % with a false

positive rate of 4.9%.

pDroid correctly classified 91.4% of malware, with a false positive rate of 4.9%.

accuracy =
TP + TN

TP + FN + TN + FP
(5.1)

g =
√
TP × TN (5.2)

47



Table 5.1: Cross Validation Results for pDroid.

run TNR (%) TPR (%) Geometric Accuracy (%)
0 96 91 93.5
1 96 92 94.0
2 94 94 94.0
3 94 90 92.0
4 96 93 94.5
5 95 92 93.5
6 95 92 93.5
7 94 92 93.0
8 97 92 94.5
9 94 91 92.5
Avg 95.1 91.4 93.5
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Table 5.2: Comparison of Clustering Techniques.

Clustering Technique TNR (%) TPR (%) Geometric Accuracy (%)
Affinity Propagation 95.1 91.9 93.5
K Means (30 clusters) 93.2 91.0 92.45
No Clustering 88.0 90 89

Table 5.3: Evaluation of Sensitivity Scores.

Sensitivity TNR (%) TPR (%) Geometric Accuracy (%)
Sensitivity Scores 95.1 91.5 93.1
No Sensitivity Scores 90.1 91.0 90.2

5.3 Evaluating the use of application clusters

Next we wanted to evaluate what improvements were provided by clustering

applications before creating anomaly scores. we evaluated the performance of pDroid

using no clusters, k-means clustering, and affinity propagation. Table 5.2 shows the

results for each technique. We found that application clustering improved the false

positive rate by 7.1%.

Application clustering reduces the false positive rate by 7.1%.

5.4 Evaluating Dataflow Sensitivity Scores

For each dataflow, pDroid assigned a sensitivity score that quantifies the sensitivity

of a given dataflow. To evaluate how useful sensitivity score we ran pDroid assuming

all dataflows were equally as sensitive, and the results are shown in Table 5.3. We

found that using sensitivity scores improved the TNR by 5.0%.
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Table 5.4: Evaluation of Granularity

Granularity TNR(%) TPR (%) Geometric Accuracy (%)
Signatures 93.4 91.4 92.4
SUSI Categories 87.7 85.8 86.7

5.5 Using Varying levels of granualrity

Next, we use SUSI categories to represent dataflows. Despite being a more coarse-

grained approach, using SUSI categories performed well and received a geometric

accuracy of 86.7%.

5.6 Limitations

There are several limitations with pDroid. As with other static analysis systems [26,

39, 40] on Android, pDroid cannot detect privacy disclosures caused by Java reflection,

code obfuscation, or dynamic code loading. pDroid is also susceptible to the pollution

attack described in [39], where a malicous developer intentially creates many malicous

applications with similar textual descriptions, causing pDroid to create a “malicous

cluster” where malcious dataflows are common and therefore will go undetected. A

simple solution to this issue would be to only compare applications that are developed

by different developers. However, this could be easily by passed by registering the

malicious applications under different names.
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Chapter 6

Conclusions

This chapter concludes this Master Thesis by discussing the Future Work and

Conclusion. Section 6.1 discusses the future work and potential improvements that

could be made to pDroid. Section Section 6.2

6.1 Future Work

Many frameworks can detect malware, but pDroid unique method of comparing most

similar applications should allow it to be a successful tool in identifying ”grayware”

applications. These type of applications generally are not considered malicious but

are not being fully transparent about the application’s full ability. In future work,

we plan on adapting pDroid to focus on detecting grayware instead of only malware.

Additionally, we want to use pDroid to provide security reports to end users, who

can use them to interpret the potential security risks of an application.

While pDroid was able to detect malware at a high rate, there is room for

improvement. First, we only consider the textual description to be the alleged

behavior of an application. However, the amount of downloads, size, and recommend

app’s, and could provide more insight on the application’s behavior. Next, pDroid

currently assumes that advertising frameworks should be trusted and does not take

into consideration the dataflows within them. However, they are most likely leaking
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sensitive data about the end user. This type of behavior should be stated in the

textual description. pDroid uses the amount of dataflows found within an application

to assist in classifying an app as benign or malicious. A malicous application could

easily trick pDroid by adding an excessive amount of benign dataflows into their

application, which would cause pDroid to misclassify it. Therefore, a new technique

for comparing applications of similar sizes needs to be developed.

6.2 Conclusion

In this master thesis we presented pDroid, a framework for comparing the textual

description of an application to the internal dataflows of an application. Unlike

previous approaches, pDroid uses a more fine-grained approach to capture an

application’s actual behavior. pDroid correctly identified 91.4% of malware with

a false positive rate of 4.9%.
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