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ABSTRACT 
 

The objective of this work is to predict the mortality of intensive care unit 

patients based on their physiological data and understand the relationships 

between physiological data. Such a model may be used to prioritize care when 

resources are limited or identify patients that will need significant care in the 

immediate future. This effort will take a novel approach applying computational 

topological analysis to classify patients. The algorithm predicting the patient 

outcomes is trained using an evolutionary algorithm. The dataset used is from 

the 2012 PhysioNet Computing in Cardiology Challenge. A set containing 4000 

records with outcomes was used to train and test the prediction algorithm. The 

topology extraction algorithm, Mapper, was used to represent the high 

dimensional data as a 1-D graph of the set topology using a filter. The filter is 

trained using an evolutionary algorithm to maximize the positive prediction rate 

and sensitivity. The Event 1 score is the minimum of these two. This algorithm 

yielded an Event 1 score of 0.42 out of 1.00 for the PhysioNet Challenge. This is 

comparable to a currently used ICU classification system, SAPS-1 that achieved 

an event 1 score of 0.30. 

Additional developments from this work include an optimized Mapper 

clustering function that runs in 120 seconds for the complete data set compared 

to the 2.2 month estimate using the original function. This allowed the rapid 

iteration needed for optimization in this algorithm. The algorithm developed in this 

thesis could be more generally applied to analysis and prediction in any feature 

space for generic problems. 
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CHAPTER I  
INTRODUCTION 

 
The intensive care unit (ICU) is the area of the hospital where patients in 

the most critical of conditions are cared for. During care, the hospital tracks many 

physiological signals and logs them in order to monitor and evaluate the 

condition of the patient. The precise signals collected may vary by ICU facility 

and condition of the patient. This data may be mined and analyzed in an attempt 

to predict patient condition [32]. 

There are already systems in place to evaluate the condition of a patient 

based on this information collected. These include: the mortality probability 

model (MPM), the acute physiology and chronic health evaluation system 

(APACHE II), and the simplified acute physiology score (SAPS II). MPM is used 

upon admission and every 24 hours for the first three days to predict mortality of 

a given patient [14]. APACHE II is used to evaluate the condition of an adult upon 

admission to the ICU. APACHE II is also used to help medical care professionals 

select appropriate medications based on the patient condition. This model is 

based on comparing the mortality rate of a given patient against data from others 

with similar conditions [8]. Like APACHE II, SAPS II is a score calculated only at 

the time of admission that describes the likely mortality rate for the patient [7]. 

The development of a more accurate system for the prediction of mortality 

rates is desired. A more accurate system could improve the quality of patient 

care, reduce medical costs [4], and improve the allocation of resources during 

catastrophic events. Identifying relationships between variables may reduce the 

problem space for such an algorithm or improve early detection of conditions. 
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The research conducted herein proposes a new method that exploits the 

topology of the feature space for a set of patient records in an attempt to classify 

and predict patient mortality. The algorithm was trained using an evolutionary 

optimization of the Mapper filter function. The results are comparable to the result 

for a currently implemented scoring system, SAPS-1, on the same set of data 

and reveals relationships between physiological features. 

The system presented was optimized using one set of criteria and later 

tested against another set of criteria. The performance  improved by 12% on the 

final model to a final Event 1 score of 0.42 on Set A. 
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CHAPTER II  
LITERATURE REVIEW 

 
In 2012, PhysioNet published a challenge to improve the current 

prediction of mortality rates in the ICU based on the first 48 hours of physiological 

data from the patients. The challenge was broken into multiple events, the first of 

which will be the focus of this thesis. The first event from the challenge scored 

algorithms based on their ability to positively identify in-ICU mortalities and not 

misclassify the patients expected to survive. All scores presented are out of a 

maximum score of 1.00. Random chance will yield a score of 0.14 [5]. 

Current Solutions to the 2012 Physionet Challenge 
 

The following papers reviewed have presented different solutions to the 

2012 Physionet Challenge. This work hopes to build on the published work by 

increasing the realization of the data and discovering relationships between the 

data features not previously exploited. In total, 17 papers with submissions to the 

2012 Physionet challenge were reviewed. A synopsis of each method, along with 

the resulting score for Event 1 is included in the discussion. A summary of the 

results for the Event 1 scores across all of the literature are shown in Table 1. 

When possible, the Event 1 score for Set A is shown. This is the data set used in 

the research conducted in this thesis. When not available, the set resulting in the 

greatest Event 1 score was selected as indicated in the table. 

I Silva presented the baseline result for the Physionet challenge using the 

SAPS-I system. The SAPS-I system is the Simplified Acute Physiology Score. It 

is a rating system from 0 to 32 in the provided data set that acts as a predictor of   
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Table 1. Summary of literature results for the Event 1 scores 
First Author Method Event 1 

Score 
Set 

Johnson, AEW Bayesian Ensemble 0.54 Set C 
McMillan, S Time Series Motifs 0.50 Set B 
Bosnjak, A Statistics of Physiological Variables and 

Support Vector Machines 
0.30 Set B 

Severeyn, E Simple Correspondence Analysis Approach 0.44 Set A 
Marco, LYD Classification using Variable Distributions 0.55 Set A 

Silva, I SAPS-I 0.31 Set A 
Xia, H Neural Network Model 0.50 Set A 

Krajnak, M Machine Learning with Clinical Rules 0.39 Set A 
Hamilton, SL Logistic Regression 0.57 Set A 

Bera, D Logistic Regression 0.44 Set A 
Vairavan, S Logistic Regression and a Hidden Markov 

Model 
0.52 Set A 

Macas, M Linear Bayes Classification 0.48 Set B 
Lee, CH Imputation-Enhanced Algorithm 0.47 Set A 

Yi, C Histogram Analysis of Medical Variables 
under Cascaded Adaboost Model 

0.38 Set B 

Xu, J Cluster Analysis of Multi-granular Time 
Series Data 

0.23 Set A 

Citi, L Cascaded SCM-GLM Paradigm 0.53 Set B 
Pollard, TJ Artificial Neural Network with Application of 

Solar Physics Analysis Method 
0.38 Set B 

 

  



 

 5 

mortality. The value is calculated at the time of admission and may not be 

recalculated throughout the stay. The SAPS-I score was calculated for all of the 

patients. Based on the prediction of this system, an Event 1 score of 0.31 was 

achieved [32]. The features extracted in this method could be further used by 

other algorithms to more accurately predict mortality. 

A Bayesian Ensemble method was used by AWE Johnson. As a deep 

learning method, a set of weak learning algorithms were used in conjunction with 

one another and trained to be skewed and make decisions based on the 

observations of the physiological data and the outcomes. Each of the weak 

learners is a tree that selects a set of physiological data and predicts the 

outcome based on them. The physiological data selected is based on a Markov 

chain Monte Carlo sampler. The model used consisted of 500 nodes with depth-2 

(depth two meaning two possible outcomes for each). The model was trained 

using one set and had a success rate on the Event 1 scores for the other two 

sets of 0.53 and 0.54 [17]. One of the weaknesses of this method is the lack of 

transparency in how the algorithm is actually making these choices. 

Searching for time series motifs was the approach taken by S. McMillan. A 

time series motif is a short pattern in a time series that, if consistent across 

multiple records, may be used to predict the patient outcome. All of the time 

series data is subdivided into bins and assigned a local value of low, medium, or 

high. This turns every signal into a string of low/medium/high values that can be 

searched for motifs based on patient outcome. This method achieved an Event 1 

score of 0.50 on set B [20]. Features from such a method can be extracted and 
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explored by another method. Unlike other methods discussed, this method can 

be run on the patient’s physiological data at any point in time using the most 

recent windows of available data. 

A method using statistics of physiological variables incorporated with 

support vector machines was used by A. Bosnjak. The initial method used the 

mean and standard deviation for each of the SAPS-I parameters to train the 

support vector machines to predict mortality rate based off the Set A patient data 

with outcomes. Additional features were added based on the inputs from 

physicians. The result was a SVM that was able to achieve an Event 1 score of 

0.30 on set B [27]. 

A simple correspondence analysis approach was taken by E. Severeyn. In 

this approach the APACHE II, SAPS II, and SOFA scores were used in 

conjunction with other physiological dada to predict mortality. The primary 

variables contributing to the simple correspondence analysis are ALP, BIL, BUN, 

and CRE. The Event 1 score achieved by this method was 0.42 on set A [24]. 

L.Y.D. Marco presented a logistic regression model using the mean of all 

features to predict patient mortality. The patients were sorted by mortality and 

statistics on the mean for each variable. Distributions were created for each 

variable in each condition. Based on this distribution, predictions were made 

using a variety of classifiers and tuned to maximize the Event 1 score. The Event 

1 score achieved by this method was 0.55 [26]. 

A neural-network based system developed by H. Xia was used to predict 

patient mortality rates. The neural network identified 26 features that best 
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predicted the patient mortality and used them to train the neural network to 

classify the patients. For our system, we will be using the same 26 features used 

to train the neural network. These 26 features were chosen based on their 

correlations to mortality as found by H. Xia. This system achieved an Event 1 

score of 0.51 [16]. 

M. Krajnak implemented a fuzzy, clinical rule based system that both 

takes advantage of machine learning and is also able to explain the significance 

of the features. This is one of the advantages this system has over neural 

networks. The initial system consisted of 45 rules across 15 features. The 

weights of the rules were optimized to achieve an Event 1 score of 0.39 [23]. 

S.L. Hamilton used logistic regression to predict the mortality rates for the 

data set. Features for the linear regression included the first and last values, the 

average, minimum and maximum, and the difference rate between the first and 

last values. These features were extracted for every one of the 37 time series 

parameters. Missing data is recovered using the mean for the set of patients 

experiencing either experiencing in-hospital death or surviving, depending on the 

outcome of the patient missing the data. The regression performed yielded an 

Event 1 score of 0.57 [29]. 

D. Bera also used logistic regression method like S.L.Mamilton. 88 

features were extracted from 30 of the patient variables including the minimum, 

mean, and maximum for each variable. The variable was selected based on 

availability. Performing the linear regression with the specified set of features 

yielded an event 1 score of 0.44 [30]. 
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S. Vairavan used a logistic regression model too, with the addition of a 

hidden Markov model. For the Event 1 problem, 10 features were extracted to 

predict mortality. The most novel feature compared to other methods presented 

is the Hidden Markov Model based mortality predictor. Using the time series 

data, the Markov chain computes the transition between states for each patient. 

These states are a sequence of “Alive” and “Dead” calculated based on the time 

series data. These sequences can be calculated for each patient and contribute 

to the prediction of mortality. This method achieved an Event 1 score of 0.50 [21]. 

M. Macas used a Linear Bayes Classification method to classify the 

records and predict mortality using selected features with the Social Impact 

Theory based Optimizer. Multiple outputs from already established scoring 

systems were used by this classifier, along with a wide array of features based 

on the patient variables. In total, 935 features were extracted. Outliers were not 

removed, but features missing significant amounts of data were not considered. 

This system achieved an Event 1 score with Set B of 0.48 [25]. 

C.H. Lee implemented an imputation-enhanced algorithm to predict ICU 

mortality rates. Features were extracted from the patient data for the first 48 

hours and for the last hour specifically. Missing data was recovered based on the 

mean for individual’s age and gender demographic. Primary features were the 

last measurement for each variable and standard statistics for each 12-hour bin 

for each variable including minimum, maximum, mean, standard deviation, and 

number of observations. The highest Event 1 score achieved for set A was 0.47. 

A significant finding from this paper is that the prediction based on the last value 
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features outperformed the models that included the minimum and maximum 

features, showing that additional features do not always yield a more accurate 

result [18]. 

C. Yi utilized histogram analysis of the medical variables under a 

Cascaded Adaboost learning model. All time series data was interpolated across 

the entire 48 hour domain to establish consistent time across all records with one 

reading per minute. Then, the mean value is calculated over every 60 minute 

interval for each patient. This creates a feature vector for each patient in 1776 

dimensions.  Histograms are created based on each feature for each hour per 

patient condition. This generates the differentiation metric for the classification 

algorithm. The Cascaded Adaboost model is then implemented to assign patient 

mortality rates based on this model. This method achieved and Event 1 score of 

0.81. However, the system trained using set a was not well generalized to the 

classification of set B. Run on set B, the algorithm only yielded an Event 1 score 

of 0.38. [22] This emphasizes the important of a model having the ability to be 

generalized. 

J. Xu used a cluster analysis of multi-granular time series data. The 

features used were the minima and maxima from 16 segments of time series 

data over a 48 hour period. 10 variables were selected to analyze, resulting in 20 

features per patient. The Event 1 score for this clustering method using set a was 

0.23. [31] 

L. Citi used a cascaded SCM-GLM Paradigm to predict the ICU mortality 

rates. This machine learning algorithm used only set A for training. The data for 
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all variables was split into two 24 hours periods for feature extraction. For each of 

these periods, the minimum, mean and maximum values were computed. 

Missing values were replaced with the mean of the data for that feature Support 

vector machines were trained based off these features to predict the outcomes 

for set A. This algorithm achieved an Event 1 score of 0.53.[19] 

T.J. Pollard trained a neural network to make the prediction with the 

application of the Solar Physics Analysis Method. Outliers were removed from 

time series data and patients were sorted based on ICU type prior to neural 

network training. Features included mean, variance in time series data, and the 

moments of the gradient in the time series values. Experience in the prediction of 

solar flare research was exploited to detect perturbations in local minima as a 

feature. A three layer neural network was used. The algorithm achieved an Event 

1 score of 0.27 using set B [28]. 

Fundamental differences in the approaches include the transparency of 

the model, whether the model is applied only at the time of admission, or if it may 

be used for real-time prediction, and the number of features chosen to extract 

from the data set. The vast majority of the models outperformed the baseline 

SAPS-I method on Event 1 with scores as high as 0.85. The method 

implemented in this thesis will attempt to perform as well as the systems 

presented here and reveal as yet identified relationships between data features. 

Lessons learned from the literature review include: 

1. More features will not always yield a more accurate result 

2. It is important to recover missing data and the most common method uses 

the mean value for the entire population 
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The primary 26 features presented by H. Xia are used in this research as 

an extensive feature space leads to extended computation times, inhibiting 

optimization of the algorithm. Common methods across much of the literature for 

cleaning and filtering the data before analysis are implemented as well. 

Literature on Tools Applied to Solution 
 

Two data analysis tools, one developed by G. Singh and one by C. Steed, 

will be used to analyze the ICU data set. The topology extraction tool Mapper will 

be used to create clusters of data in the features space of the records. EDEN will 

be used to realize relationships in the data prior to analysis and realize 

relationships in the data after the analysis, with the predicted mortality rates. 

A new approach for evaluating high dimensional point cloud data was 

developed by G. Singh [13] named Mapper. Mapper takes a distance matrix 

containing the distance measurement between all vectors for a high dimensional 

point cloud and represents it as a 1-D graph using a filter function to group 

vectors. The benefits of this approach for clustering are that the number of 

clusters does not need to be pre-determined, and each cluster is broken into 

nodes whose shape within the cluster describes the topology of the point cloud. It 

is a way to take otherwise difficult to visualize high dimension data and view it in 

a meaningful way that preserves relationships in the data. This approach will be 

used to analyze the 26-Dimension feature space created from the 26 features 

identified by H. Xia. A critical part of the mapper function is the filter function, 

which determines the grouping of the cluster output. A genetic, or evolution, 
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algorithm [15] is used to optimize the filter and find the result yielding the highest 

Physionet 2012 Challenge Event 1 Score. 

EDEN (Exploratory Data analysis Environment) is a powerful tool 

developed by C. Steed at Oak Ridge National Laboratory that allows for high-

dimension data visualization [2]. Large data sets may be loaded into the 

environment and analyzed using various statistic and visual indicators. It was 

used to analyze the initial patient data and the cluster/node relationships in the 

Mapper output.  
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CHAPTER III 
DATA 

 
 The following sections describe the records and outcome data available 

for the 4000 patients provided by PhysioNet with outcomes and the methods 

used to extract the features from the data. This section will also explain how 

missing features were addressed. These 4000 data sets represent Set A of the 

PhysioNet challenge. In total, data for 12000 patients was collected; however 

sets B and C were blind sets. Outcome data was not available for these data sets 

and therefore could not be used to evaluate this algorithm. All of the work 

performed here was performed using Set A. 

Data 
 
 Three types of data were available: Descriptors, Time Series Data, and 

Outcomes. Descriptors are simply items describing the patient. The time series 

data contains physiological information about the patients collected by the ICU. 

The outcome data is data that was known after the patient’s stay at the ICU. 

Descriptors 
 

The following are descriptors available for each record:

• RecordID 

• Age 

• Gender 

• Height 

• ICUType 

• Weight 

The Record ID is a unique identifier assigned to each patient record that 

may be used to track the patient’s record and features throughout the process for 

quality assurance purposes. The Age, Gender, and Height of the patient are 

single descriptive measurements describing the patient at the time of admittance. 
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The ICU Type is broken into four categories: Coronary Care Unit, Cardiac 

Surgery Recovery Unit, Medical ICU, or Surgical ICU. Weight is the patient’s 

weight. It is important to note that for some patients, the weight is not recorded 

as a descriptor, but as time series data to reflect changes in weight over the 

length of the stay. 

Time Series Data 
 

The following types of Time Series Data are available for each record:

• ALP 

• ALT 

• AST 

• Bilirubin 

• BUN 

• Cholesterol 

• Creatinine 

• DiasABP 

• FiO2 

• GCS 

• Glucose 

• HCO3 

• HCT 

• HR 

• K 

• Lactate 

• Mg 

• MAP 

• MechVent 

• Na 

• NIDiasABP 

• NIMAP 

• NISysABP 

• PaCO2 

• PaO2 

• pH 

• Platelets 

• RespRate 

• SaO2 

• SysABP 

• Temp 

• TropI 

• PropT 

• Urine 

• WBC

Each of these fields corresponds to a specific physiological measurement 

taken from the patient. For more information on the specifics of each of these 

measurements, please see the 2012 PhysioNet Challenge webpage [5]. The 

specific details of these signals are not required for this analysis as the desired 

features are being extracted from them. Outliers from the features are removed 

during pre-processing, while Missing data is reconstructed. 
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Outcomes 
 
 The following descriptors are available for the patients in the data set:

• RecordID 

• Length_of_stay 

• Survival 

• In-hospital_death

RecordID is used to pair the outcomes with the patient records and track 

patient records through the algorithm. The Length_of_stay is the period of time 

spent in the ICU by the patient. Most patients with in-hospital death died within 

the first three weeks as shown in Figure 1. Survival is the number of days the 

individual survived after admission to the ICU. In-hospital death is a binary 

identifier as to whether or not an individual passed away while in the ICU.  

In-hospital_death does not account for patients who were recently release 

and passed away at home; it only accounts for patients who died while still in the 

hospital. Out-of-hospital deaths are shown in Figure 2. This data follows a similar 

trend to the data from Figure 1 though it is less obvious. It is possible that a 

patient’s physiological data indicated what would be an in-hospital death, 

however they were released from the ICU and passed shortly after leaving the 

hospital. This would cause the algorithm to classify the patient as a mortality. 

Based on this discrepancy, the Event 1 score would consider this a 

misclassification, reducing the algorithm performance. To correct this, Length of 

Stay and Survival are used to create a mortality outcome DeathX (where X is the 

number of days after release from the ICU). For example, using Death14, an 

additional 91 patients (16% increase) were found to pass away within 14 days of 

leaving the ICU, increasing the deceased count from 554 to 645. Assuming they   
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Figure 1. Patient deaths based on days survived after admission to the ICU 
for patients experiencing in-hospital death 
 

 

Figure 2. Patient deaths based on days survived after admission to the ICU 
for patients experiencing out-of-hospital death. 
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were misclassified by the algorithm as deceased (false positive), this could result 

in an increase the in Event 1 score of 16% when applied to actual near-term 

mortalities and not in-hospital death. 

Outcome Data Analysis 
 
 This data set consisted of 48 hours of patient data. From this, we attempt 

to predict in-hospital death of the patients. The in-hospital death could be within 

days or years of admission depending on the medical condition. It is 

unreasonable to predict mortalities for patients one year after admission with only 

48 hours of data, however predicting mortality within a number of weeks based 

on this data is far more reasonable. In this section we will analyze and discuss 

the validity of this challenge using this data set. 

 One piece of the outcome data is Survival. This number is the number of 

days an individual survived after being admitted to the ICU. Integer values are 

given for 1473 (37%) of the patients. All of the in-hospital death records are 

accounted for in this given population (554 patients). The remaining 919 of these 

patients who did not experience an in-hospital death experienced an out of 

hospital death. Plots showing the number of patient deaths vs days survived are 

shown in Figure 1 and Figure 2. In the cases of in-hospital death, the mortality 

rate for the first two weeks declines steadily and becomes steady around the 

three week mark. For the patients who did not die in the hospital, there is a slight 

trend to indicate greater mortality rates closer to their hospital release date with a 

decline in mortality rates as the time out of the hospital increases. There are local 
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spikes in the number of out of hospital deaths but there is no correlation between 

these spikes and the number of days survived out of the hospital. 

Feature Data Analysis 
 

The desired features are extracted from the descriptors and time series 

data and analyzed with EDEN. EDEN is effective at finding correlations within the 

data and changes in the correlation within data subsets. Many correlations were 

found between features derived from the same sets of time series data (for 

example, mean and max GCS had a strong correlation), however the correlations 

of interest are shown in Figure 3. Within the data provided, a correlation was 

found between the minima of HCO3 and BUN, the mean of Na to the minimum of 

SysABPNISysABP, and the last values of BUN and HCO3.  

The correlation between HCO3 and BUN may be explained by the 

regulation of acidity in the body. The NH4 + HCO3 buffering process or the NH3 + 

CO2 + H2O process will yield urea, leading to an increase in the blood urea 

nitrogen (BUN) [11]. This could explain how the minimum and last HCO3 value 

could relate to the minimum BUN value. 

The relationship of the mean blood sodium to the minimum blood pressure 

is a known relationship. Higher sodium intake results in higher blood sodium, and 

as a result, higher blood pressure [1]. As a result, changes in blood sodium are 

expected to correlate to the blood pressure value. 

Some correlations were found in in-hospital mortality. These are shown in 

Figure 4. The figures show a relationship between in-hospital death and Urine 

Sum, GCS Trend, BUN Last, HCO3 Last, and WBCLast. The decrease in the 
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urine output could indicate kidney failure. The decrease in the GCS trend could 

indicate a worsening in condition over the first 48 hours.   
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Figure 3. Inter-feature relationships discovered in the data set 
 

 

Figure 4. Feature to mortality relationships found in the data set. Deceased 
records are selected in red. 
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CHAPTER IV 
METHOD 

 
The objective of this project was to improve on the current prediction 

algorithms used to predict mortality rates in the ICU and understand the 

relationships between measured data and the outcomes. Relevant data features 

were extracted from 4000 records. After extraction, any missing values are 

handled by recovering the missing values. This process yields the Patient 

Feature Structure. The vectors in the patient feature structure are normalized to 

prevent feature bias then used to compute the distance matrix required by for 

computing the topology. The Patient Feature Structure is used to develop the 

filters that Mapper uses to create the 1D representation of the data. Mapper is 

run on the Patient Distance Matrix using a composite filter from the Patient 

Feature Structure in an iterative, evolutionary loop. The filter training process is 

shown in Figure 5 and the outcome prediction algorithm for a new patient is 

shown in Figure 6  

The feature space is clustered by Mapper. The mortality rate for each 

node is calculated based on in-hospital death. A prediction algorithm is used to 

attempt to reproduce the outcomes of the training set. A score is calculated 

based on the algorithm performance. Well-performing filters move on to the next 

generation and are bred with the remaining filters in that generation. New filters 

are added to the population to maintain diversity. This process continues until a 

100% prediction rate or a designated number of loops is reached. The Optimized 

Filter and Mapper Settings are stored for use in a later prediction algorithm for a 

patient not among this population. This process is shown in Figure 5.  
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Figure 5. Process Diagram for ICU Mortality Mapper Prediction Algorithm 
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Figure 6. Method used to predict patient mortality once an optimal solution 
is found. 
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The Patient Feature Structure and the Test Patient Features are combined 

into the New Patient Feature Structure. This structure undergoes the same 

process to generate the Clean Patient Structure and the Patient Distance Matrix. 

These are now fed into a single Mapper run along with the Optimized Filter code 

and the Mapper Setting used to generate it. Mapper runs, and the mortality rate 

for the patient is predicted, yielding the Prediction for Test Patient, a 0% to 100% 

value predicting the probability of in-hospital death for the patient. This process is 

shown in Figure 6. 

This algorithm may be trained to predict an overall mortality rate, (not just 

in-hospital) by training the filter function to one more or multiple of the DeathX 

outcomes. It would be implemented by predicting the mortality for the patient 

across multiple versions of this model and extrapolating the expectancy curve. 

For this research, we will be focusing on making just a single prediction. 

Data Import 
 

The primary data set consists of data for 4000 patients collected for the first 

48 hours after being admitted to the ICU. Some of the data is static: it does not 

change during the 48 hours. Other data is dynamic, having time series data for 

the first 48 hours. A summary of the types of data is given in the following list: 

 

• RecordID 

• Length_of_stay 

• Survival 

• Death 

• Age 

• Gender 

• Height 

• ICUType 

• Weight 

• ALP 

• ALT 

• AST 
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• Albumin 

• BUN 

• Bilirubin 

• Cholesterol 

• Creatinine 

• DiasABP 

• FiO2 

• GCS 

• Glucose 

• HCO3 

• HCT 

• HR 

• K 

• MAP 

• MechVent 

• Mg 

• NIDiasABP 

• NIMAP 

• NISysABP 

• Na 

• PaO2 

• Platelets 

• RespRate 

• SaO2 

• SysABP 

• Temp 

• TroponinI 

• TroponinT 

• Urine 

• WBC 

• pH

 
All of the raw patient data was imported without any subsampling or 

filtering. All of the patient record data and patient outcome data was imported into 

a Matlab structure Raw Patient Structure that is capable of handling the mix of 

data types in a single construct. The available data is a mixture of single values 

and 2-D arrays containing patient physiological data. For any case where patient 

data was not available, a flag was added to that field in the structure to indicate 

the lack of data. This flag is necessary for the feature extraction and calculation 

functions to properly deal with missing values instead of attempting to compute 

the specified feature. 

Feature Extraction 
 

From the raw data and outcome data, h = 26 features were extracted. By 

extracting features, patients may then be represented by a 1 x h vector in a g x h 

matrix containing the 26 desired features where g is the number of records 

(4000). This vector is later used to compute the Patient Distance Matrix. These 
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features, along with some additional extracted features and some calculated 

features may be used to create the 35 x 4000 filter function space that is used by 

Mapper to generate the 1D cluster representation of the patients for in-hospital 

death prediction. The Feature Extraction section discusses how the 35 features 

were extracted. The following are three representations for the patient feature 

matrix: 

 

where V represents each patient vector, a 1 x 26 vector in the feature space and 

F represents the column vector of each feature, a 4000 value list of a specific 

feature for each patient. 

Extracted Features 
 

Three sets of features were extracted from the data set: 26 Distance Features 

for the distance matrix, additional features for use in Mapper filter functions, and 

outcome features. 

The 26 Distance Features were chosen based on the results of [16] showing 

that these 26 features have the greatest correlation to mortality based on the 

neural network prediction. The extracted features are as follows: 
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1. GCSLast 

2. GCSMean 

3. GCSMax 

4. HCO3Min 

5. UrineSum 

6. GCSTrend 

7. HCO3Max 

8. BUNMax 

9. BUNLast 

10. HCO3Last 

11. BUNMin 

12. HCO3Mean 

13. BUNMean 

14. SysABPMean 

15. WBCLast 

16. SysABPLast 

17. FiO2PaO2Ratio 

18. WBCMean 

19. TempMean 

20. GlucoseMax 

21. NaMean 

22. NaMax 

23. SysABPNISysABP

Min 

24. Age 

25. LactateLast 

26. TempLast 

Additional features are extracted for use in the Mapper filter function and 

for filtering and sorting the data. These are not part of the distance matrix 

calculation, but they may be used to group the patient data in Mapper. The 

values extracted are as follows: 

1. RecordID 

2. Length_of_stay 

3. Survival 

4. Death 

5. Age (redundant) 

6. Gender 

7. Height 

8. ICUType 

9. Weight 

Age is extracted both as a Distance Feature and as an Additional Feature. It 

is extracted in this step as it is part of the basic demographic information 

describing the patient. A later filter mask is used to prevent it from being used 

twice in the filter function. For cases where Weight is represented as time-series 

data, the first value is taken to represent the patient weight. 

Survival represents the number of days an individual survived after admission 

to the ICU.  A -1 Survival value represents individuals that have no record of 

death. A non-“-1” value is known for all patients that experienced in-hospital 

death. If left as-is, the clustering algorithm will group all of the long-term survivors 

with those who deceased quickly. The good values for the data set had a 

maximum close to 2600 days for survival. Also, none of the raw data had a value 
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of 2600 days for survival. As a result, any individuals with unknown survival are 

assigned a survival value of 2600 days. This simultaneously allows these 

individuals to be clustered with other long term survivors, and allows us to know 

they are the group who had their value assigned. 

Feature Extraction Functions 
 
Functions were created to extract desired data from the patient fields. Table 2 

summarizes all of the features extraction functions used. In all cases, the function 

is run on a selected field for the patient (for example, GCS). The function extracts 

the feature indicated by the function name and adds it to the patient structure. All 

features are resolved to a single floating point value to allow them to be used as 

vector components or filters. Any features that could not be created due to 

missing features are identified and later replaced by the feature’s mean value as 

described in the Dealing with Missing and Erroneous Values section.  

Created Features 
 

Additional features were computed for the data set and used for filtering, 

training, and understanding the data set in EDEN. The following features are 

computed for the data set:  

1. BMI 

2. BMI Class 

3. SurvivalRate 

4. DaysHome 

5. Death7 

6. Death 14 

 

Calculate BMI 
 

This function adds the field BMI and BMIClass to the patient structure. 

BMI is added as a feature to the patient structure due to its correlation   



 

 29 

Table 2. Feature extraction and creation descriptions 

Feature Description 

Static returns the first value of the data from the field 

Sum returns the summation of all of the data from the field 

Ratio returns the ratio of the mean of the first field divided by 

the mean of the second field 

ABMin returns the minimum of the mean of the first field and the 

mean of the second field 

Min returns the minimum of the data from the field 

Max returns the maximum of the data from the field 

Mean returns the mean of the data from the field 

Trend returns the slope of the data from the field using Matlab 

polyfit() with order 1 

MaxSum returns the sum of the local maxima 

First returns the first value of the data from the field 

Last returns the last value of the data from the field. Invalid if 

fewer than 2 data points. 

BMI returns the body mass index based on the height and 

weight of the patient 

BMIClass returns the body mass index class based on the height 

and weight of the patient 

AgeBasedSurvival returns the expected annual survival rate based on World 

Health Org. data for a specific age and gender 
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to mortality rates [12]. The BMI is calculated using Equation 1.  

  Equation 1 
Where Height is the patient height in meters and Weight is the patient weight in 

Kilograms. The patient’s BMI class is assigned a value from 0 to 3 based on their 

BMI as shown in Table 3. Each of these values designates a specific BMI class. 

Calculate Age Based Survival Rate 

This function adds the field SurvivalRate to the patient structure. The survival 

rate is calculated based on data provided by the World Health Organization 

(WHO) in [9]. The WHO study provides data on the probability that an individual 

would become deceased the following year based on their current age and 

gender, worldwide. Other data sets were provided in the study, based on 

geographical region as well, however, the geographical location of our patients is 

unknown. Thus, the data set for world averages was used. The values given in 

the lookup table were converted into survival rates. The lookup tables used are 

shown in Table 4.  

Days Home 

This function takes the difference between the Days Survived and Days in ICU. 

This is used to estimate the number of days an individual was outside of the ICU 

prior to being deceased. For large values, we cannot expect our prediction 

algorithm to be accurate. If a person left the ICU one year ago then died, it is 

unreasonable to predict this mortality based solely on 48 hours of ICU data. 
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Table 3. BMI Class Limits 

BMI Range Description Identifier 
BMI < 18.5 Under Weight 0 
18.5 ≤ BMI < 25 Normal Weight 1 
25 ≤ BMI < 30 Over Weight 2 
30 ≤ BMI Obese 3 
 
Table 4. Male and female survivability rates based on individual’s age 
 

Age Male Survival Rate Female Survival Rate 
0 94.15% 94.53% 
1 99.30% 99.25% 
5 99.81% 99.81% 

10 99.88% 99.88% 
15 99.82% 99.82% 
20 99.74% 99.75% 
25 99.69% 99.71% 
30 99.62% 99.69% 
35 99.56% 99.68% 
40 99.44% 99.63% 
45 99.26% 99.53% 
50 98.93% 99.30% 
55 98.45% 98.98% 
60 97.56% 98.37% 
65 96.35% 97.53% 
70 94.39% 96.03% 
75 91.61% 93.92% 
80 87.25% 90.39% 
85 79.83% 83.17% 
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However, a person dying within a few weeks of leaving the ICU may have died 

due to complications from their condition that originally took them to the ICU in 

the first place. This value is calculated to analyze those groups in both Mapper 

and EDEN. 

Death X 

The DeathX feature is a feature indicating that the individual died in or 

within X days of leaving the ICU. This feature was used to assess if the individual 

who recently left the ICU may have been misclassified as a result. An individual 

may have been mistakenly released from the ICU, or released from the ICU to go 

home and spend the rest of their life with friends and family who otherwise 

would have died in the hospital. This parameter adjusts for that and can be used 

instead of the Death value imported from the Outcomes data set (where Death 

indicated in- hospital death). The number of positive cases available based on 

this new parameter is outlined in Table 5. Results are presented later on in this 

document based on the Death14 Parameter. Using this parameter, there is a 

17% increase in the number of positive cases, making it 614 up from 548. 

Dealing with Missing and Erroneous Values 
 

Once the features have been extracted, erroneous values are removed 

and are considered missing. Missing values are then recovered using the mean 

value for the good data in the specific field. Statistics on the missing values and 

outliers for the 26 features are in Table 6. The number of manipulations  
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Table 5. Statistics for mortality after leaving the ICU compared to in-
hospital death. 

Days after Leaving 
ICU 

Deceased Additional Percent 
Increase 

0 548 0 0% 
7 614 66 12% 
14 640 92 17% 
21 659 111 20% 

 
 

Table 6. Statistics on each feature 
 
Field Outliers  Missing  Field Outliers Missing 
RecordID 0 0  BUNMax 89 64 
Death 0 0  BUNLast 92 112 
Length_of_stay 77 60  HCO3Last 36 149 
Survival 0 0  BUNMin 101 64 
Age 0 0  HCO3Mean 44 76 
Gender 0 3  BUNMean 93 64 
Height 16 1894  SysABPMean 26 1201 
ICUType 0 0  WBCLast 38 176 
Weight 44 326  SysABPLast 49 1219 
BMI 1 1895  FiO2PaO2Ratio 43 1458 
BMIClass 0 1895  WBCMean 43 73 
SurvivalRate 0 3  TempMean 46 64 
GCSLast 0 66  GlucoseMax 65 113 
GCSMean 0 64  NaMean 45 75 
GCSMax 53 64  NaMax 44 75 
HCO3Min 54 76  SysABPNISysABPMin 25 134 
UrineSum 16 124  Age 0 0 
GCSTrend 19 1418  LactateLast 28 2535 
HCO3Max 49 76  TempLast 4 67 
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performed on each record was tracked for filtering purposes. Removing highly 

modified records may lead to a more accurate result. 

There is a discrepancy between the missing counts for some of the 

values, such as GCS Mean and GCS Last. This occurs because the Last feature 

requires that more than 2 values exist for the Last feature to be valid. 

Missing Data 
 

From the initial set of data imported, there was data missing from certain 

physiological time series. In these cases, the feature was flagged for 

replacement. Information on missing data by feature is shown in Table 6. 

Removal of Erroneous Data 
 
Outliers (>+/- 3 Standard Deviations from mean) were removed for some of the 

analyses from all fields and later replaced. In other cases, outliers were 

selectively removed.  Without very specific analysis of every physiological signal, 

this is the easiest way to remove errors for the full data set. An example is with 

the height parameter.  

Height was reported in centimeters. The maximum height value reported 

was 431.8 cm. This is the equivalent of just over 14 feet. It is easy to believe this 

is incorrect. Re-interpreting the 432 value in alternative units or decimal places 

do not yield reasonable results for the height of a human.  

With the amount of manual time it would take to comb through 26 features 

across 4000 records, it is easiest to just remove an outlier for the current 

algorithm. 
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Replacement 
 

For patients who are missing a value for a particular feature, the mean 

value for the entire population is used to replace the missing value. Once 

replaced, the final patient feature matrix is prepared for Mapper input extraction. 

Alternative methods were considered, such as using the mean value interpolated 

based on age and gender, however, such relationships were not present in this 

data set. Such a method would not have yielded any benefit as a result. 

After all of the missing and erroneous values have been addressed, the 

resulting Patient Feature Structure is exported and stored for use in the 

optimization routine. This same structure was then normalized and prepared for 

the distance calculation. 

Normalize Features 
 

Before computing feature space distances, all of the features are 

normalized from 0 to 1 across their range to ensure that the individual values of a 

given feature do not mistakenly weight its contribution to distance in the feature 

space. The features are normalized based on Equation 2. 

   Equation 2 

such that any value in Fnormalized is always less than or equal to 1. 

Calculate Patient Distance Matrix 
 

As described in Table 7, the distance matrix is a g x g symmetric distance 

matrix where g is the number of records. The cell i,j contains the value   
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Table 7. Inputs for the function Mapper. 
INPUTS  
d  n x n distance matrix where cell i,j contains the distance between vectors 

i and j 
filter n x 1 array of real numbers used to decompose the space 
resolution Number of samples in each interval 
overlap Percentage of overlap between each consecutive interval 
magicFudge Number that “fudges” the number of clusters that will tend to be created 

by the algorithm 
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representing the distance between the ith and jth record vectors in the feature 

space. This distance matrix is required by Mapper to determine which records 

are within the same node or cluster. 

There exist many options for the metric or distance function. These 

include the Euclidean metric, the squared Euclidean metric, or the L1 distance. 

They are listed in order of computation intensity from high to low. Since this 

analysis is not being performed in real time, we have chosen Euclidean metric. If 

real-time computation is desired on a much larger data set, the L1 could be 

considered. If more clusters are desired, the squared Euclidean metric could be 

used. By not taking the square root of the distance function, the distance 

between points that are far from one another will be exaggerated. 

The distance matrix d is generated from the 26 desired features. For each 

record, the features represent a 26 dimension vector. Before measuring the 

distance between the vectors, all of the features are normalized so as not to 

weight one more heavily than the other based on the inherent physiological data 

values. Once the features have been normalized, the Euclidean distance 

between each feature is calculated based on Equation 3.  

  Equation 3 
In Equation 3, V represented the gx1 vector in the feature space and g 

represents the dimension of the feature space. 
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Generate Filter Function 
 

The filter is any value that may be assigned to each patient that maps the 

patient into a 1D space. This filter could be any feature or combination of 

features for each patient. In our algorithm, we will attempt to exploit this property 

by creating linear combinations of the available features to map the point cloud 

data into a 1D space that may be used to predict mortality rate. A list of all 

considered filter function components are listed in Table 8. 

Filters are created using a linear combination of features. Before 

combining the features, all of the features are normalized, mapping the minimum 

value to 0 and maximum value to 1. After a set of features are selected, their  

values are summed and divided by the number of features. This ensures that in 

all cases, the mapper function uses a filter function from 0 to 1 for each patient, 

making all filters comparable. 

A filter mask was used to decrease the evolution algorithm’s search space 

for an optimal filter. The filter mask works by preventing specific filters from being 

activated. As there are multiple features that draw from the same data type (for 

example GCSMean, GCSMax, et.), it is reasonable to pick only one filter per data  

type to start. A bit string similar to the filter bit strings is used to allow or disallow 

a specific filter from being activated. The Filter Mask section shows the filter 

mask configuration used for this project.  
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Table 8. List of bits in filter and mask strings with corresponding filters. 
 

Bits 1-8 testType bits  Bits 9-34 Top 26 features(cont.) 
1 Age  19 BUN Min 
2 Gender  20 HCO3 Mean 
3 Height  21 BUN Mean 
4 ICUType  22 SysABP Mean 
5 Weight  23 WBC Last 
6 BMI  24 SysABP Last 
7 BMI Class  25 FiO2PaO2 Ratio 
8 Survivability Rate  26 WBC Mean 
Bits 9-34 Top 26 features  27 Temp Mean 
9 GCS Last  28 Glucose Max 
10 GCS Mean  29 Na Mean 
11 GCS Max  30 Na Max 
12 HCO3 Min  31 SysABPNISysABP Min 
13 Urine Sum  32 Age 
14 GCS Trend  33 Lactate Last 
15 HCO3 Max  34 Temp Last 
16 BUN Max  Bit 35 Distance 
17 Bun Last  35 Distance from Patient 1 
18 HCO3 Last    
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Extract Topology 
 

The Mapper function is a function designed to take a distance matrix for a 

high-dimensional data set and apply a filter function that maps the data set into a 

1-D representation of the data, preserving the topology. Connectedness and 

shape (number of branches, holes) are preserved in this representation. This 

allows the high dimension data set to be analyzed by nodes and clusters. This 

section will lay out the requirements for the mapper program, describe how they 

have been calculated, and describe how the mapper outputs are used. 

Mapper Inputs 
 

The inputs for the Mapper function are defined in Table 7. Mapper 

requires a g x g distance matrix and a g x 1 filter function. The distance and filter 

inputs are constructed using the information from the patient feature matrix. The 

resolution, overlap, and magicFudge are parameters used to configure how 

mapper groups and projects the clusters. 

Mapper Configuration 
 

There are three parameters used to tune the output of Mapper:  

Resolution, Overlap, and Magic Fudge 

Resolution determines the length of each interval. In our case, we will 

typically use the inverse of the number of samples desired to calculate this value. 

The number of samples is related to the number of nodes that exist in each 

cluster. 
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Overlap is the percent overlap between adjacent nodes in a cluster. This 

is what forms the connectedness of the data set. Increasing the overlap percent 

typically results in fewer nodes as more data is shared between adjacent nodes. 

Decreasing the overlap percent typically results in more nodes. 

MagicFudge is used to “fudge” the desired number of clusters. Increasing 

this number will increase the number of clusters and decreasing this will 

decrease the number of clusters. This allows control over the number of clusters 

but does not require us to pre-determine the number of clusters to be created. 

This is one of the benefits of using Mapper over other cluster creation tools. 

Mapper Outputs 

The outputs for the Mapper function used are defined in Table 9. The 

adjacency matrix contains information on the relationship between the nodes. 

The node info contains info on the interval level, the filter value for the node, and  

the set of members in the node. levelIDx contains the list of nodes in the 

subinterval of the filter. 

Adjacency Matrix 

The adjacency matrix is a sparse matrix containing binary data indicating 

which nodes overlap to form a cluster. So, if a 1 exists at cell 5,7, this indicated 

that nodes 5 and 7 are connected in the topology. A 0 would indicate that they 

are not connected. While a 1 implies that they belong to the same cluster as the 

other node, a 0 does not imply they are not a member of the same cluster as 

multiple nodes string  together to form a single cluster.   
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Table 9. Outputs for the function Mapper 
OUTPUTS  
adja The adjacency matrix of the output graph 
nodeInfo Cell array containing the information listed below.  
nodeInfo.Level The interval index for the node 
nodeInfo.Filter The max filter value belonging to all of the nodes in this cluster 
nodeInfo.Set The set of all of the members belonging to this cluster. 
levelIDX List of nodes belonging to each subinterval of the cluster. 
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Node Info 

The node info is a structure containing three sets of data: level, filter, and 

set. The only information pertinent to our optimization is the set, an array 

containing all of the members in that node. This information is used to extract info 

from the patient feature structure and describe the node. 

Post-Processing Topology 
 

In order to create a graphical representation of the output of mapper, it 

must undergo some post processing. In our case we take advantage of this to 

show how well or poorly our algorithm groups individuals with similar mortality. 

The graphical representation of the data topology is achieved using a program 

Graphviz that was supplied with Mapper. Graphviz imports the mapper output 

and generates a graphic. 

Calculate inputs for Graphviz 

Graphviz requires the node relationship information contained in the 

Mapper adjacency (adja) output, the size for each node, the color for each node, 

and the desired labels for the bottom of the graph.  

The adjacency info is taken directly from the mapper output. The set size 

is calculated by counting the number of values in the nodeInfo.Set array. The 

color is determined based on the mean mortality for the patients in the set. 

Generate Graphviz Input 

The function writeDotFile provided with Mapper takes the information from 

the previous section and converts it into a .dot file that Graphviz can use to 
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generate the images. The images may then be used for quick inspection of a 

solution to describe its performance. 

The labels chosen include the file used to generate the mapper output, 

data used as inputs for mapper, mapper parameters, and the filter code used. 

With this information, it is possible to fully recover this result from the original 

patient feature structure. Later results also include the filter’s Event 1 score as 

defined by [32]. 

Graphical Representation of Mapper Outputs 

The outputs of Mapper undergo some minor post processing to format the 

data for Graphviz. Graphviz is a Matlab script that takes the post-processed 

mapper output and converts it into a graphical representation as shown in Figure 

7. In this figure, the color represents the mortality rate, scaling from 0% (Yellow) 

to 100%(Red). The size of each node is a representation of the number of 

patients in the cluster. The lines connecting some of the nodes represented 

overlap between adjacent nodes. Outside of this information, the shape or 

relative position of the nodes has no meaning or representation. 

Assigning Mortality Rates to Cluster Nodes 
 

After mapper has created all of the nodes and clusters, each node is 

assigned a mortality rate based on its members. The mortality rate assigned is 

the mean mortality rate for all patients in that node. 
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Figure 7. Sample Mapper output after Graphviz Processing 
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The nodeInfo output from mapper is a structure containing information 

about each node. NodeInfo.set contains the list of all of the members in a given 

node. The in-hospital death outcome is extracted from the patient structure for 

each patient and the mean is calculated on the resulting array. 

Predict Patient Mortality Based on Clusters 
 

A simple algorithm was constructed to predict patient mortality based on the 

node data.  

1. Identify all nodes containing the patient 

2. Look up the mortality rate for each of these nodes 

3. Choose the greatest mortality rate 

4. If that mortality rate is greater than or equal to 50%, predict that the patient is 

deceased 

5. If the mortality rate is less than 50%, predict that the patient survived. 

Other prediction algorithms could be created for this step use a different 

topology or filter data in a given node so that a specific gender or age range was 

analyzed separately. This algorithm was chosen for simplicity and its general 

applicability as the focus of this research was optimizing the filter function. This 

particular prediction algorithm is prone to over-predict mortality (false positives). 

Calculate Filter Performance 
 

The fitness function for the algorithm was based on the Event 1 score from 

the 2012 Physionet Challenge using data set A. The performance is based on 

the minimum of the sensitivity (Se, Equation 4 ) and the positive predictivity (+P, 
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Equation 5). True Positives (TP), False Positives (FP), True Negatives (TN), and 

False Negatives (FN) are defined in Table 10 and are used in Equations 4-6. 

  Equation 4 

  Equation 5 

  Equation 6 
A perfect score is achieved when all of the deceased patients are 

positively identified by the prediction algorithm and none of the surviving patients 

are predicted as deceased.  Random chance will yield a core of 13.9% and the 

currently used SAPS-1 system will yield a score of 29.6% [32]. The algorithm 

discussed in this research achieved a score of 30.0%  
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Table 10. Outcomes matrix definitions 

 

Observed 

Deceased Survive 

Predicted 

Deceased True Positive  
(TP) 

False Positive 
(FP) 

Survive False Negative 
(FN) 

True Negative 
(TN) 
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Breed New Filters based on Performance 
 

Each new generation is calculated after the previous generation has been 

evaluated. First, the previous population is sorted based on member 

performance. The top five members from this population are selected and 

preserved for the next generation. Next, ten new members are generated by 

breeding the top members with all other members of the population.  

Two randomly generated 1x10 arrays are created; one with random 

values from 1 to 5 (to select one of the first 5 members) and one containing 

values from 1 to 20 (to randomly select one of any of the previous generation’s 

members). Once the breeding pairs have been selected, the bit strings were 

combined by averaging their respective values. This method was chosen over 

the method presented by Whitley [15] in order to preserve favorable features 

more often. The concern is then raised if enough variation is being maintained in 

the population. This is addressed by injecting completely random individuals into 

the population. Any features in both are maintained, and any features absent 

from both are maintained. Any discrepancies are settled by random selection. 

The final five members are randomly generated and added to the population. Any 

redundant members are replaced with a randomly generated member.  

Training of Mapper Filter Function using Evolution Algorithm 
 

As defined in the Mapper Inputs section, any number of filters can be 

created from combinations of the filter features. Our optimization routine will 

activate or deactivate each individual filter in an attempt to subdivide the space 
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into meaningful clusters used to predict the mortality rates in each node. An 

evolution algorithm was chosen for this task because it is a convenient way to 

search a space that can be constructed as a binary string of features for the topic 

of interest, in our case, a filter. 

Mapper takes between 30 seconds and one minute to run with the 

parameters we have defined. It would take just under two years to compute every 

possible filter and filter score on a single core machine. The code has been 

optimized to run on multiple cores to reduce computation time. 

Optimization Configuration 

A population of 20 members was chosen to allow the algorithm to 

complete a generation quickly, giving a user multiple opportunities to evaluate 

algorithm progress and ability to proceed or start with a new population. The 

process continues until the number of desired generations is reached. It may 

immediately be run again after completion with the current population to improve 

on the current result. 

Filter Mask 

A filter mask was implemented that would restrict the search space of the 

breeding algorithm. The filter mask used is described in Table 11. With this 

mask, our search space is limited to 220-1 or just over one million possible filters 

as opposed to the 34 billion possibilities. The 220 possible filters come from the 

20 possible features accessible by the feature mask and the -1 as a filter of all   
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Table 11. Filter mask used to minimize evolution algorithm search space. 
 

Mask Value Feature  Mask Value Feature 
1 Age  0 BUN Min 
1 Gender  0 HCO3 Mean 
1 Height  0 BUN Mean 
1 ICUType  1 SysABP Mean 
1 Weight  1 WBC Last 
0 BMI  1 SysABP Last 
0 BMI Class  1 FiO2PaO2 Ratio 
0 Survivability Rate  0 WBC Mean 
0 GCS Last  1 Temp Mean 
1 GCS Mean  1 Glucose Max 
0 GCS Max  1 Na Mean 
1 HCO3 Min  1 Na Max 
0 Urine Sum  1 SysABPNISysABP Min 
0 GCS Trend  0 Age 
0 HCO3 Max  1 Lactate Last 
1 BUN Max  1 Temp Last 
0 Bun Last  1 Distance from Patient 1 
0 HCO3 Last  KEY: (1) Filter Active (0) Filter Inactive 

 
  



 

 52 

0’s is considered invalid and is recalculated. Each 1 and 0 in Table 11 represents 

if a particular feature is “on” or “off.” This is reasonable based on the inter-data 

relationships found using EDEN. 

Mapper Configuration 

Different sets of parameters were tested with Mapper. The specific 

configuration parameters chosen may greatly affect the outcome of the clustering 

algorithm. Different sets of parameters were tested. These sets of parameters 

are shown in Table 12. Configuration set 2 was used for the solution presented in 

the results section. 

Application of Result to Test Patient 
 

After an optimized filter has been trained, the optimized filter along with 

the Mapper parameters and Patient Feature Structure are ready to be used to 

predict the patient’s mortality. The new patient is added to the Patient Feature 

Structure and the same is applied as before, without the optimization step. This 

tool not only predicts if the individual is likely to be deceased in the ICU, but also 

is capable of providing a percentage chance of survival by extracting the 

mortality rate from the node the patient is grouped with. 

Statistics on the specific node for life expectancy and confidence level 

may be extracted as well, based on the days survived data stored in the Patient 

Feature Structure. This algorithm could be re-trained based on the first 24 hours 

of patient data, or the first 12 hours to provide a more accurate, short term 

prediction capability.  
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Table 12. Mapper settings used in evolution algorithm. 
Generations Resolution Overlap Magic Fudge 
Default 5 50 10 
Set 1 25 10 10 
Set 2 20 10 10 
Set 3 30 10 10 
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CHAPTER V  
RESULTS  

 

This section will present the algorithm output, the performance of the 

optimized filter, the statistics on the results, and the validity of the models 

created. The results were presented for the models trained to the in-hospital 

death outcome and the Death14 outcome. 

Interpreting Algorithm Results  
 

The Mapper results are color plotted using mortality data. A deep red node 

would indicate a node that indicates mortality. A completely yellow node would 

indicate a node with only survivors. The size of the circle indicates the number of 

records in the node. A line joining two adjacent nodes indicate an overlap 

between the adjacent nodes of approximately the percent overlap specified in the 

Mapper configuration. 

 By visual inspection, a successful mapper algorithm for the prediction of 

mortality rates will contain either of the following: 

1. A large cluster that shows a gradient from high mortality rate to low mortality rate. 

For this to be significant, this cluster must contain a high percentage of the total 

population and contain a significant number of nodes. 

2. A few large clusters contain all the deceased patients and very few surviving 

patients.  
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Performance of In-Hospital Death Optimized Filter 
 

The algorithm was allowed to evolve for 100 generations and was able to 

yield a 0.30 Event 1 score. The cluster generated is shown in Figure 8.As for the 

broader applicability of this model, the statistics for this clustering are shown in 

Table 13.  Statistics for individual clusters are in Table 14. 

Also of note, the sum of the deceased and survivors is 695 dead + 3760 

surviving = 4455 total patients > 4000 initial patients because of the overlap 

between the nodes. A single patient may be in more than one node, and for the 

totals in Table 13, the values were summed by node, leading to artificially inflated 

values. 

The optimized filter generated is created based on the following features:

• Age 

• FiO2PaO2 Ratio 

• Glucose Max 

• Lactate Last 

• Distance from 

Patient 1

A linear combination of these features was used as the filter function input 

to Mapper to yield the cluster shown in Figure 8. One primary cluster was created 

with multiple single record nodes. Cluster 2 was mis-identified as a cluster by the 

Mapper algorithm; only a single record exists in the entire cluster. To understand 

how the filter utilized these values, the data for all of these features was analyzed 

against the true positives in EDEN. All of the patients were assigned a 
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Figure 8. Mapper Cluster with 30% Event 1 score for the 2012 Physionet 
challenge. 
 

Table 13. Statistics for the optimized Mapper output 
Statistic Value  Statistic Value 
Total Nodes 35  Nodes with <5 members 17 
Total Deceased 695  Members in nodes with <5 

members 
23 

Total Survivors 3760  Deceased in nodes with <5 
members 

17 
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Table 14. Statistics for topology nodes 
Node Cluster Members Number of Deaths Mortality Rate 
28 2 1 1 100% 
30 2 1 1 100% 
1 1 67 1 1% 
2 1 1 0 0% 
3 1 127 1 1% 
5 1 192 4 2% 
7 1 279 9 3% 
9 1 353 17 5% 
11 1 389 31 8% 
13 1 444 40 9% 
15 1 510 52 10% 
16 1 3 1 33% 
17 1 496 61 12% 
19 1 548 85 16% 
21 1 420 103 25% 
23 1 269 89 33% 
25 1 162 85 52% 
27 1 89 49 55% 
29 1 47 28 60% 
31 1 20 18 90% 
32 1 4 2 50% 
33 1 14 10 71% 
34 1 1 1 100% 
4 -1 1 0 0% 
6 -1 1 0 0% 
8 -1 1 0 0% 
10 -1 2 0 0% 
12 -1 1 0 0% 
14 -1 1 0 0% 
18 -1 1 0 0% 
20 -1 1 0 0% 
22 -1 1 1 100% 
24 -1 1 1 100% 
26 -1 1 0 0% 
35 -1 6 4 67% 
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single node based on their proximity in the feature space to the nodes they were 

members of. This allowed for each patient to be assigned an explicit mortality 

rate based on their most appropriate node. This enables the filtering of the data 

in EDEN based on the true mortality value and the predicted mortality rate for 

that patient. The results of this analysis are shown in Figure 9 through Figure 13. 

Emerging from this analysis are the following trends for true positive 

patients identified by the trained algorithm as shown in Figure 10: 

1. There is a notable shift upward in the mean age for the patients 

2. There is a notable shift upward in the mean value for the FiO2PaO2 Ratio 

3. There is a notable shift upward in the max glucose value 

4. There is a significant shift upward in the last lactate value 

5. There is a differentiation that occurs based on the distance to patient 1. 

Similar tendencies are observed in Figure 11 for the set of all mortalities, though 

they are not as pronounced. This reveals that the patients positively identified by 

this algorithm are identified based on changes in the features indicated. These 

patients can be removed from the set and the training routine can be repeated to 

determine a filter function better trained to identify the remaining patients. The 

prediction can then be configured to choose one topology or another based on 

thresholds in the indicated features. 

Intra-feature relationships are shown in Figure 12 and Figure 13 for the 

filter parameters found. A completely blue square indicates a strong inverse 

relationship between the features. A completely red square indicated a strong 

positive relationship between the features.  
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Figure 9. Data relationships with true positives highlighted in red 

 
Figure 10. Distributions for full data set (dark bars) and true positives (light 
blue bars) 

 

 
Figure 11. Distributions for full data set (dark bars) and mortalities (light 
blue bars) 



 

 60 

 

 
Figure 12. Correlation matrix for true positives only 
  
 

 
Figure 13. Correlation matrix for all data points 
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Performance of Death14 Optimized Filter 
 

The algorithm was allowed to evolve for 100 generations using Death14 

as the desired outcome and was able to yield a 0.26 Event 1 score. The cluster 

generated is shown in Figure 14.As for the broader applicability of this model, the 

statistics for this clustering are shown in Table 15.  Statistics for individual 

clusters are in Table 16. 

Based on the statistics, there are not a large number of members in the 

non-clustered groups, and there are enough nodes to spread out the deceased 

and survivors to allow the algorithm to differentiate. Based on these two facts, the 

model is considered valid for greater application. 

Also of note, the sum of the deceased and survivors is 692 dead + 3705 

surviving = 4397 total patients > 4000 initial patients because of the overlap 

between the nodes. A single patient may be in more than one node, and for the 

totals in Table 15, the values were summed by node, leading to artificially inflated 

values. 

The optimized filter created is based on the following features:
• Age 
• Height 
• SysABP Mean 
• WBC Last 

• Lactate Last 
• Temp Last 
• Distance to Patient 

A linear combination of these features was used as the filter function input to 

Mapper to yield the cluster shown in Figure 14. One primary cluster was created 

with two small clusters and multiple small nodes. Clusters 2 and 3 were 

misidentified as a cluster by the Mapper algorithm; only a single record exists in 

the entire cluster. To understand how the filter utilized these values, the data for  
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Figure 14.  Mapper Cluster for Death14 with 26% Event 1 score for the 2012 
Physionet challenge 
 

Table 15. Statistics for the Death 14 Optimized Mapper Output 
Statistic Value  Statistic Value 
Total Nodes 37  Nodes with <5 members 18 
Total Deceased 692  Members in nodes with <5 

members 
19 

Total Survivors 3705  Deceased in nodes with <5 
members 

5 
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Table 16. Statistics for topology nodes for Death14 
Node Cluster Members Number of Deaths Mortality Rate 
28 3 1 0 0% 
30 3 1 0 0% 
2 2 1 0 0% 
5 2 1 0 0% 
37 1 23 14 61% 
33 1 81 49 60% 
35 1 41 22 54% 
31 1 140 71 51% 
29 1 247 68 28% 
27 1 390 101 26% 
36 1 5 1 20% 
25 1 410 76 19% 
23 1 508 81 16% 
17 1 388 42 11% 
19 1 428 42 10% 
21 1 451 44 10% 
1 1 13 1 8% 
15 1 379 26 7% 
11 1 248 11 4% 
13 1 304 13 4% 
9 1 163 5 3% 
3 1 43 1 2% 
7 1 97 2 2% 
26 1 1 0 0% 
6 -1 1 1 100% 
16 -1 1 1 100% 
20 -1 1 1 100% 
24 -1 1 1 100% 
34 -1 1 1 100% 
4 -1 2 0 0% 
8 -1 1 0 0% 
10 -1 1 0 0% 
12 -1 1 0 0% 
14 -1 1 0 0% 
18 -1 1 0 0% 
22 -1 1 0 0% 
32 -1 1 0 0% 
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all of these features was analyzed against the true positives in EDEN. All of the 

patients were assigned a single node based on their proximity in the feature 

space to the nodes they were members of. This allowed for each patient to be 

assigned an explicit mortality rate based on their most appropriate node. This 

enables the filtering of the data in EDEN based on the true mortality value and 

the predicted mortality rate for that patient. The results of this analysis are shown 

in Figure 15 through Figure 19. 

Emerging from this analysis are the following trends for true positive 

patients identified by the trained algorithm as shown in Figure 16: 

1. There is a notable shift upward in the mean age for the patients 

2. There is a slight shift downward in the mean SysABP value 

3. There is a notable shift upward in the WBC Last value 

4. There is a slight shift upward in the last lactate value 

5. There is a differentiation that occurs based on the distance to patient 1. 

Similar tendencies are observed in Figure 17for the set of all mortalities, though 

they are not as pronounced. This reveals that the patients positively identified by 

this algorithm are identified based on changes in the features indicated. These 

patients can be removed from the set and the training routine can be repeated to 

determine a filter function better trained to identify the remaining patients. The 

prediction can then be configured to choose one topology or another based on 

thresholds in the indicated features. 

Intra-feature relationships are shown in Figure 18 and Figure 19 for the 

filter parameters found. A completely blue square indicates a strong inverse 

relationship between the features. A completely red square indicated a strong   
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Figure 15. Data relationships with true positives highlighted in red for 
Death14 

 

 
Figure 16. Distributions for full data set (dark bars) and true positives (light 
blue bars) 

 

 
Figure 17. Distributions for full data set (dark bars) and mortalities (light 
blue bars) 
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Figure 18. Correlation matrix for true positives only 
 
 

 
Figure 19 Correlation matrix for all data points 
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positive relationship between the features. 

Revised Mortality Prediction Algorithm 
 
 The mortality prediction algorithm used to predict mortality was basic and 
not optimized. A revised algorithm was implemented as follows: 
 

1. Calculate centers for all nodes 
2. Assign each patient to a single node based on their proximity to the node 

centers 
3. If the mortality rate for the node is >=threshold, predict the patient is 

deceased 
4. If the mortality rate for the node is <threshold, predict the patient survives 

A threshold is calculated for each model to maximize the score. Using this 
updated prediction algorithm with the optimized clusters, the following revised 
Event 1 scores were achieved: 

• In-hospital Death: 0.42 with threshold = 0.3 
• Death14:  0.37 with threshold = 0.1 
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CHAPTER VI  
DISCUSSION 

 

The model created using in-hospital death as the trained outcome has the 

following findings. A significant inverse relationship between age and the last 

lactate value was found for the true positives. A significant relationship was also 

found between the node mortality and maximum glucose value. These features 

of the cluster could be used to identify the reliability of the data in the node as 

these relationships are not present for the greater group of mortalities as shown 

in Figure 13. Based on the statistics, there are not a large number of members in 

the non-clustered groups, and there are enough nodes to spread out the 

deceased and survivors to allow the algorithm to differentiate. Based on these 

two facts, the model is considered valid for greater application. 

The model created using Death14 as the trained outcome has the 

following findings. The last values for WBC last and Lactate last show slightly 

elevated levels in deceased patients. They are also well-differentiated by their 

position from patient 1.Based on the statistics, there are not many members in 

the non-clustered groups, and there are enough nodes to spread out the 

deceased and survivors to allow the algorithm to differentiate. Based on these 

two facts, the model is considered valid for greater application. 

Comparing the two models, in-hospital mortality and Death14, both 

performed at similar levels of accuracy (0.42 and 0.37) While these were low 

compared to many of the other models used, they achieved the intent of 

discovering relationships within the data set with  performance comparable to the 
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currently a currently used system. This system could have been trained to predict 

the given set and achieve a score of 1.00, however the models would not have 

been more broadly applicable. 

Validity of Model 
 

Only a single data set was available for this project, so, the training and 

test sets are identical. The minimal in-hospital death records does not allow the 

data set to be separated into representative training and test sets. Because of 

this, it is important to evaluate the validity of the model. On one end of the 

spectrum, we could have created a 4000 cluster space that would have 

essentially worked as a lookup table for all of the patients and would have 

yielded 100% prediction accuracy, but would not be applicable to another data 

set. On the other end, we would have a single cluster with all the patients in it 

that would have 0% prediction accuracy. A reasonable model in our case will 

have minimal single-patient nodes with the vast majority of the patients in nodes 

with more than ten to twenty patients. This creates a model that is general 

enough that it can be used to predict the mortality of a test patient introduced to 

the population. The solution presented satisfies this requirement. 

Improvements in Mapper Efficiency 
 

In the process of developing this algorithm, there was the need for a more 

efficient Mapper function to allow for rapid iteration with the full data set. Mapper 

was executed for subsets of the available data. As the number of patients 

increased, the runtime increased exponentially. The data trend indicated a two 
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month run time when evaluating Mapper using all 4000 patients. This was due to 

the way the matrices were being handled within the function. There existed a 

matrix definition that was later converted to a sparse matrix. This code was 

replaced by code that initially defined the matrix as a sparse matrix. The results 

of the Mapper code were compared to the original mapper code. The result is a 

mapper function that can fully execute in about 120 seconds. This is an 

improvement of four orders of magnitude on runtime. All results are identical for a 

sample set of 20 different subsamples of the total data set. A comparison of 

algorithm performance is shown in Figure 20. This code change is described in 

Appendix A. 
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Figure 20. Comparison of Mapper function to revised Mapper function. 
 

  



 

 72 

CHAPTER VII  
CONCLUSIONS 

 
The system developed was able to achieve a score of 0.42 for the 

PhysioNet Event1 Score after only a few generations of optimization. At this time, 

this model performs as well as a currently used patient condition evaluation 

system, but not as well as the neural network solutions presented in the literature 

review that regularly achieved scores in excess of 0.50. This process however 

does reveal relationships within the data and provide differentiation features for 

the true positive data, should this method be applied in a diagnostic setting. This 

topological approach can be further developed to achieve better performance. 

Future developments are discussed in the following section.  
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CHAPTER VIII  
RECOMMENDATIONS 

 
The following are recommendations to improve on and further develop this 

work. A combination of these approaches could be applied to improve the 

performance of this method. This method could also be applied outside of the 

ICU setting with any set of features for a data set. 

Develop Better Prediction Algorithm Using Current Mapper Output 

Such an algorithm will be aware of the data cluster shape, if the point was 

located at one end of a chain or the other, and be aware of any gradient or 

tendency along that path. This information can be extracted from the adjacency 

matrix. 

Optimize Mapper Parameters to Increase Performance 

The mapper configuration can be optimized to minimize the number small 

nodes disconnected from a cluster. This will either cause the smaller nodes to 

coalesce into the main cluster or into smaller clusters. This will improve the 

validity of the algorithm. 

The mapper configuration can also be optimized to increase the number of 

nodes in the main cluster. This can be done by increasing the number of filter 

samples. 



 

 74 

Solve for All Cases in Current Space Using Super Computing 

If a super computer were available, it would be possible to simply solve for 

all possible filters for a specific mapper configuration and see if a better 

performing solution was available. 

Allow for the Application of Weights to Filters 

All of the features involved in the filters were either completely on or 

completely off. Future work could consider applying weights to the filters instead 

of simply activating or removing them. 

Use mortality predictions from multiple filter functions 

A single 1-D topology from Mapper was used to predict mortality. This 

process worked to optimize a single filter. This can be extended to use a set of 

different filters, extract the mortality rates from each topology, and compare 

them. One can imagine that a specific topology may predict mortality for a 

specific age, gender, or ICU type well, but another topology may work better for 

another case. This scoring function can apply weights to each graph based on 

ICU type, age, or gender for the patient.  
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Appendix A: 
Modifications to Main Mapper Function 

The main Mapper function has been modified in the following ways: 

Previously, the main function Mapper.m created by Gurjeet Singh contained the 

code in Figure A1. 

This definition of the matrix and traversal of the matrix incurs a large number of 

unnecessary computations. This code has been replaced by the code in Figure 

A2: 

This change in code leads to the definition of the sparse matrix with the 

required data. The for loop from the origonal code is no longer needed to 

populate the matrix. This results in the code running in 120 sec on average for 

this data set vs. the projected two months it would have taken based on the 

results shared in the document above. 
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Figure A1: Origonal Mapper Code 
 
 

 
Figure A2: Optimized Mapper Code 
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