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The great bird will take its first flight . . . filling the world with amazement and all

records with its fame, and it will bring eternal glory to the nest where it was born.

Leonardo da Vinci

v



Abstract

The field of ornithopter research has reached a point where it has become common-

place for Computational Fluid Dynamics (CFD) solvers to have built-in capabilities

for rigid solid body motion. This is suitable for micro air vehicles (MAVs) yet is often

not flexible enough to model wings with dynamic internal structure, such as the wings

of birds and bats. There is currently no program available to perform the surface

motion of a wing which has multiple independently moving joints. The code, detailed

in this paper, provides the user with this type of capability. The bone lengths, joint

angle properties, and thickening parameters are input and the progressive motion of

surface points for each desired time is output. Furthermore, an optimized minimal

surface solver is included for use with elastic wings. The output of this code has been

integrated with OpenFOAM to provide proof-of-concept and verification results. The

verification results demonstrate that both the process and code are viable while the

3D surface motion results demonstrate the motion of a pterosaur wing. As a result,

this code opens the door to a large region of unexplored behaviors and properties

which stem from highly dynamic multi-jointed wings.
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Chapter 1

Introduction

Numerical models for fixed-wing aircraft flight are present in abundance as the

mechanics are well understood and relatively intuitive. For flapping flight, there

has been a great deal of work to develop models for micro air vehicles due to the

potential military and search and rescue applications.

Analysis of bird flight began prior to the mid-1980s. In a paper by Spedding

(1987), the researchers were analyzing the wake of Falco Tinnunculus (a type of

Kestrel) to validate the elliptically loaded airfoil as the loading distribution used

during biological gliding flight. As time progressed, the imaging equipment became

more capable allowing Spedding et al. (2003) to use laser based PIV rather than the

helium filled bubbles used previously. These technological enhancements allowed for

increasing amounts of data, which correspondingly allowed for more detailed analysis.

In a paper by Spedding et al. (2003), the analysis is focused on determining the forces

and power requirements of the freely flying bird, rather than the steady-state behavior

analyzed previously. Hall et al. (1998) presented the first computational model for

large-amplitude flapping flight which utilized a vortex-lattice model of the wake.

Once computational power became sufficiently economical, the aerodynamics of

insect flight came under scrutiny. Gopalakrishnan (2008) performed an analysis

of these creatures to determine the effects of Reynolds numbers (Re) upon their
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performance. In a similar effort, Jones (2013) performed an analysis with the goal of

optimizing a Micro Air Vehicle’s (MAV) wing kinematics and structure for flying in a

gusty environment. In conjunction with these analyses, there have been CFD packages

specifically developed for low-Re flapping flight. One such example is detailed in a

paper by Pearson et al. (2011) which utilizes a variety of techniques suitable for

low-Re flight.

Despite the abundance of information concerning MAVs, there is a distinct lack

of quantitative understanding regarding the flight mechanics of larger ornithopters,

such as pterosaurs, whose flight regimes yield significantly higher Reynolds numbers

than their micro-scale cousins. There are many qualitative papers which postulate

about the flight capabilities of these creatures by analyzing their wing characteristics

and bones, such as those by de Ricqlès et al. (2000), Wilkinson (2008), and Witton

and Habib (2010).

The optimal flap patterns for one particular pterosaur, Coloborhynchus robustus,

have been calculated by Sträng (2009). Sträng utilized low fidelity aerodynamic

models in conjunction with multi-step optimization techniques to determine the flap

patterns given a variety of different conditions. However, there was no way to

determine the validity of the low fidelity models for this flight regime.

To test the low fidelity aerodynamic model used by Sträng (2009), a high fidelity

aerodynamic model must be used. These high fidelity models similarly require a high

resolution model for the motion of the wing. However, at present, no high resolution

motion models have the capabilities required for multi-jointed wings; namely, the

ability to have multiple motion joints acting simultaneously through time.

When a joint is not at the end of a body, that body must deform to accommodate

the joint. For simple joints, this will often result in one body passing through the

other. Another implementation is to have the body around the joints deform to

accommodate the motion; for example, when a human finger is bent, the skin on

the lengthening side stretches and the skin on the contracting side creases. However,

this is not a viable implementation for motion models as it is very easy to generate
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inverted cells at the crease. As such, the body must smoothly deform around the

joint; much like when the arm is pivoted in the shoulder. When the body undergoes

this smooth deformation, the distance to the nearest bone is maintained yet no crease

forms; it is this type of joint-body interaction which must be modeled in the motion

code.

Elastic wings, such as those employed by bats, create another issue: they form

a minimal surface. This is caused by the elastic tension inherent to the membrane

and results in the equilibrium state where there is the minimum amount of area

connecting the specified boundary conditions. As this is the type of wing modeled by

Sträng (2009), the wing motion code must be able to accommodate an elastic wing.

To do this, the motion code must include a partial differential equation (PDE) solver

for the elliptical minimal surface equation. This type of solver utilizes finite difference

approximations and an iterative approach to determine the solution to the PDE.

The code presented and validated in this paper meets these criterion and allows

the user to move a wing with up to 7 joints, where each joint has 3 degrees of freedom,

in any arbitrary periodic pattern with minor constraints. The code outputs the initial

surface for a meshing program, moves the surface for dynamic cases, and allows for

minimal surface wing structures.

3



Chapter 2

Setup

2.1 Wing Information

The pterosaur of study, Coloborhynchus robustus, has known bone lengths and

estimated positions as used by Sträng (2009). The skeletal structure is shown in

Figure 2.1, while the joint positions are given in Table 2.1. The glide joint angles are

shown in Table 2.2

It was found that combining these joint angles with the specified joint locations

does not yield the planar glide plot given. As the author and principal advisor were

unavailable, alternative methods to attain the given glide plots were required. It

is suspected that greater accuracy of these values must be attained, as rounding to

the nearest degree could certainly result in unacceptable levels of inaccuracy. It is

assumed that each joint is off by the same magnitude; as such only 2 modifiers need

to be obtained, Φmod, and Ψmod which correspond to the dihedral angle modification

and the sweep angle modification, respectively. Upon inspecting the geometry plot

(Figure 2.2), it is apparent that the 4th joint is foremost in the flight direction.

Furthermore, upon measuring of the joint positions in multiple manners, the targets

and relative accuracies are determined for the 4th and 8th joints, see Table 2.3, where

the 8th joint is the wing tip and the 1st joint is the shoulder.
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Figure 2.1: Outline of skeleton of Coloborhynchus robustus with the left wing
folded and the right wing in the flying position. Black indicates the preserved bones
on specimen NSM-PV 19892. Note that this skeleton was originally classified as
Anhanguera piscator. Kellner and Tomida (2000) and Sträng (2009)

5



Table 2.1: Joint positions and corresponding chord lengths of Coloborhynchus
robustus. Sträng (2009)

Joint Name Spanwise Position Chord
mm mm

Shoulder 0 356
Elbow 240 351
Wrist 599 343

Knuckle 852 328
Phalange I-II 1413 295

Phalange II-III 1899 216
Phalange III-IV 2277 120

Wing Tip 2485 0

Table 2.2: Glide Joint Angles for Coloborhynchus robustus. Sträng (2009) Ph.
stands for interphalangeal joint. All values are in degrees.

Joint Name Shoulder Elbow Wrist Knuckle Ph.I-II Ph.II-III Ph.III-IV
Joint Index 1 2 3 4 5 6 7

Φi 23 -9 -6 -10 -5 -6 -8
Θi 0 0 0 0 0 0 0
Ψi -22 43 -10 -10 -5 -2 -18
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Figure 2.2: Joint positions during gliding flight. Adapted from Sträng (2009)
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Table 2.3: Extrapolated joint position data.

Joint 4 Joint 8
X Y Z X Y Z

Target -0.20832 2.42619 0.054 0.0912 0.809524 -0.1752
Relative Accuracy 2.20625 10.6995 1.536458 0.90625 3.57 0.541667

Table 2.4: Variable modifications

Variable Degrees
Ψmod -0.56
Φmod -0.07

By performing a 0th order optimization, i.e. selecting the best result of those

tested, with a resolution of 0.01 degrees and sorting the results by least squares

of the difference multiplied by the relative accuracy for each component of each

joint location, the requisite variable modifications were obtained and are shown in

Table 2.4. The 1 million combinations were evaluated and those evaluations took

approximately 1 hour of computing time on a quad-core machine.

These results are applied to all of the corresponding angles and yield the optimal

match for the plot given by Sträng (2009). For the actuation case, the joint motion

is specified by Eqn 2.1 wherein A is replaced with Φ, Ψ, or θ, as defined in the

nomenclature, while i is substituted with the joint index and ϕ indicates the phase

angle. See Table 2.5 for the substitution values.

Ai,actual = Ai,glide + Ai ∗ sin(ω ∗ t+ ϕAi
) (2.1)
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Table 2.5: Joint Index Conversion

Parameter Index
Shoulder 1
Elbow 2
Wrist 3

Knuckle 4

Table 2.6: Flap Parameters

Variable Value Unit
Frequency 2.11 Hz
Base AoA 7.77 deg

ω 0.11 ∼
Φ1 12.24 deg
Ψ1 15.42 deg
Ψ2 20.00 deg
Θ3 8.16 deg
Ψ3 15.00 deg
Ψ4 5.00 deg
ϕΨ1 0.38 deg
ϕΨ2 231.33 deg
ϕΘ3 92.39 deg
ϕΨ3 130.44 deg
ϕΨ4 40.31 deg
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Table 2.7: Critical flight properties and wing parameters

Property Value Units / Note
Flight speed 17 m/s
Frequency 2.66 Hz

Re 0.32 x106

Thickness 5 %, average on wing

The values which are substituted into Eqn 2.1 are from Sträng (2009) and are

shown in Table 2.6. Further information about the flight properties are given in

Table 2.7. As the airfoil is specified as being symmetric and 5% thick, the NACA

0005 was selected as the airfoil model. The SD7003 was selected as the validation

airfoil due to its prominent use in numerous ornithopter analyses coupled with an

abundance of available validation information. A 2D airfoil verification is viable as

the employed methodologies are the same except that the 2D case does not utilize the

minimal surface solver. Both the 2D and 3D cases start from position and angular

data, form the chord, and add the airfoil to the chord. Then the exact same code

is utilized by OpenFOAM for both cases to load the surface changes at the current

simulation time. See references: Catalano and Tognaccini (2011), Ol et al. (2009),

and Kang et al. (2013).

2.2 Moving Surface Code Generation

There are two primary solvers used for this project. The first is a mesh motion

solver for the surface mesh of the wing. This solver is written in Python, takes the

current positions of the surface mesh and transforms them to obtain the new surface

geometry. The second solver, OpenFOAM, is used to solve the aerodynamics. The
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integration of the two solvers is handled using a custom surface motion function within

the aerodynamics solver, OpenFOAM.

The mesh motion code performs its task in several steps: surface generation,

relative position determination, and surface re-mapping. The surface generation

stage is the basis for the latter stages and thus shall be discussed first. Surface

generation begins by calculating the joint and bone positions for the given time and

flap characteristics. The non-thickened wing surface is then computed from this data.

The trailing edge attachment point of the wing membrane to the body are determined

by the gliding configuration and are constant for all points in the flap cycle. In other

words, the chord length of the shoulder at the glide configuration determines the

trailing edge attachment point of the wing and the body. The trailing edge of the

wing membrane is linear between the aft body attachment point and the most distal

point of the wing structure. The end is then truncated so that the minimum chord is

10 cm to mimic the configuration used by Sträng (2009). The leading edge is linear

between the fore body attachment point and the point on the wing structure which

has the smallest angle from the direction of travel.

2.2.1 Surface Minimization

Once the non-thickened surface is determined, it is run through a surface minimization

algorithm which applies the standard minimal surface partial differential equation

(PDE), Eqn 2.2, to the domain (Simon (1997)). This ensures that the surface fits

tightly to all the bones and has the minimal possible surface area which is desired for

wings with an elastic component. The Z term is the z location corresponding to the

local non-thickened mesh. Thus, when the PDE is solved, it is expected that some of

the z-coordinates of the points may change to satisfy the minimal surface condition;

however, the x- and y-coordinates cannot change.

The equation is elliptical in nature and satisfies the conditions of vanishing

mean curvature and minimal surface area for a given set of boundary conditions
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(Simon (1997)). Due to its elliptical nature, it can readily be solved using standard

techniques. As the wing shape changes with time and the input parameters can be

changed, it is logical to use an approach that can accommodate these changes. Finite

difference methods are well suited to perform tasks such as these as they can operate

independently of their solution space; i.e. changing the shape of the domain they

are solving for does not mean that different equations must be implemented, merely

different values.

(1 + Z2
x)Zyy − 2ZxZyZxy + (1 + Z2

y )Zxx = 0 (2.2)

Finite Difference Method

Equation 2.2 is solved by applying a finite difference method with a 2nd order

of magnitude. Additional orders of magnitude were considered but the 2nd order

solutions yield the best results. The finite difference method is a process in which

the derivative at a point is calculated based on the values at the points around it.

This allows for the determination of multiple derivatives at a point given the points

in its vicinity. The equations are greatly simplified when the distance between points

is uniform, as is the case in a checkerboard pattern, and is typified in Figure 2.3.

The uniform distance between points is set to 1 mm for this program to ensure

adequate leading and trailing edge resolution. The primary equation, Eqn 2.2, can

be readily decomposed into the equations shown in Eqn set 2.3. Within this equation

set, there are terms of the following form: (X/Y)#(M/P), the M/P and X/Y stand

for Minus/Plus and X-direction/Y-direction, respectively, while the # indicates the

number of steps in that direction. These values can be stacked, one for X and one for

Y within a given entry. Note that the y-direction is the spanwise direction, with 0 at

the root and the x-direction is the chordwise direction with 0 at the location of the

shoulder joint and positive aft. The index of the column in the matrix is modified

by the (X/Y)#(M/P) value. More conventional notations are not viable due to the

need to define a point as being -2 in the y- direction while also being +1 in the x-
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Figure 2.3: Checkerboard pattern typical of finite difference methods. The
coordinate distance is uniform between all points in both the x- and y- directions.

direction. Note that imax is constant and the mesh extends beyond the borders of

the wing which affects the selection criterion, as seen in Figure 2.4. Thus, an XM

term is in the matrix at k − 1 where k is the index of the active term while a Y P

term has the index of k + imax where imax is the number of terms in the chordwise

direction and Y PXM has an index of k + imax− 1.

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Z = P1− P2 + P3

(2.3)
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Figure 2.4: Finite difference mesh where the blue section is a part of the wing.
Figure 2.3 is located at the upper left corner of this plot. The mesh is approximately
2100x1025.

The component terms are then substituted according to one of the following

standard derivations, all of which are based on Taylor series expansion. There are

many ways to distribute the needed points: central difference approximations utilize

equivalent points on each side of the active point, forward and backward difference

approximations utilize points on one side of the active point only, mixed difference

approximations utilize a different non-zero number of points on each side of the active

point.

Thus, for instances which require a 2nd order central difference approximation,

the terms in Eqn set 2.4 are substituted. For those instances when central difference

approximations are not viable, such on the boundaries, forward and backward second

order approximations are used, shown in Eqn sets 2.5 and 2.6, respectively.
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Zx = (XP −XM)/(2 ∗∆x)

Zxx = (XP − 2Z +XM)/(∆x2)

Zy = (Y P − YM)/(2 ∗∆y)

Zyy = (Y P − 2Z + YM)/(∆y2)

(2.4)

Zx = (−3Z + 4XP −X2P )/(2 ∗∆x)

Zxx = (2Z − 5XP + 4X2P −X3P )/(∆x2)

Zy = (−3Z + 4Y P − Y 2P )/(2 ∗∆y)

Zyy = (2Z − 5Y P + 4Y 2P − Y 3P )/(∆y2)

(2.5)

Zx = (X2M − 4XM + 3Z)/(2 ∗∆x)

Zxx = (−X3M + 4X2M − 5XM + 2Z)/(∆x2)

Zy = (Y 2M − 4YM + 3Z)/(2 ∗∆y)

Zyy = (−Y 3M + 4Y 2M − 5YM + 2Z)/(∆y2)

(2.6)

The algorithm used to solve the minimal surface equation, Equation 2.2, is of

a Newton’s method configuration which utilizes a rectangular structured grid with

uniform spacing as is detailed in Hoffman (2001). This method utilizes Eqn 2.7 in

which z(x, y) is the actual solution of the z-coordinate values of the points, Y (x) is

the approximate solution, and η(x, y) is a small perturbation. By utilizing Eqn 2.8,

wherein k is the iteration number, the solution reaches convergence when the η(x, y)

value is sufficiently low. The η(x, y) value is determined by solving the matrix for the

term labeled Res in the equations detailed in Appendix B and is equal to the local

η value. Once the η value is determined, it is added to the current Z value; then, if

the residual is still too high, the solution is run again.

z(x, y) = Z(x, y) + η(x, y) (2.7)

Z(x, y)k+1 = z(x, y)k+1 = Z(x, y)k + η(x, y)k (2.8)
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The boundary conditions are set such that: the known bone locations are specified

directly, the trailing edge is set as linear between the wing tip and the root trailing

edge location, and the leading edge is set either by the bone or as linear between the

root leading edge and the 4th joint, depending on location.

Newtons method solvers require initial values from which to develop the η values.

This was accomplished by performing a first order linear approximation along the

chordwise direction of the wing. Thus, the fore panel is linear between the leading

edge and the bone; while the main body of the wing is linear from the bone to

the trailing edge. As there are no discontinuities in the bone positions, the linear

approximations are continuous. Furthermore, only the points on the bones have any

opportunity to encounter derivative discontinuities and those points are already set

by the boundary condition. From these initial estimates of z position, the Newton’s

method solver of the minimal surface equation can be run.

Due to the restrictions imposed by the local mesh, there are a variety different

solutions to the core function which must be generated and applied. These stencils

are shown in Figure 2.5. Each of these solution configurations yields its own set

of equations, for details see Appendix B. Each equation is transferred to the code

and checked for accuracy after having been solved. However, the presence of the

equations alone does not bear fruit until the correct configuration is selected. To

select the configurations, conditional statements were used to check which parts of

the grid are located on the wing. That information is then used to multiply a variety

of Boolean strings. The first item in the resulting string which returns true is the

equation set which is used to perform the calculations. For instance, if the active

point only has 1 point on the root side and 0 points on the tip side while having 0

points towards the trailing edge and several hundred points towards the leading edge:

stencil G will be selected and those equations will be implemented for that line of the

matrix.

The total time spent to solve the entire matrix serially is excessive; as such, the

code is parallelized. During parallelization, the entire grid is broken into parts (one
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Figure 2.5: Stencil - Linearization Index Key. The cross indicates the point of
interest. The single lines indicate the linear extends while the double lines indicate
the range of the stencil in other directions. Note that while 4th order accuracy was
considered, 2nd order is implemented.
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for each available processor), each of which is given approximately the same number

of points on the wing. These balanced sections are then distributed to the workers

which generate their own segments of the matrix. Upon worker completion, the

matrix segments are reassembled and solved. This is an iterative process until the

residual of the matrix is sufficiently low. In this manner the computational time has

been greatly reduced, as the time to solve the matrix is significantly less than the

time spent constructing the matrix serially. Obtaining the genuine minimal surface

does not significantly improve the surface given the nature of the wing model being

used as the residual after the first iteration is typically on the order of 10−5. Due

to this low initial residual, this optimization step can often be skipped during the

calculations.

2.2.2 Thickening

Thickening is the next operation to be performed on the surface. The normal vectors

at each point on the non-thickened surface are determined by calculating the normal

vector of each face then adding that normal to each of the vertices which comprise

the face. Due to the square structured nature of the surface points, independent

weighting of the vertex normals is not required. The thickness is then calculated

given that the airfoil is a NACA 0005 and is applied to the normals to obtain the

upper and lower surfaces of the wing.

The NACA series of airfoils are equation based shapes. The NACA 4-series

symmetrical airfoils are described in equation 2.9 as given by Ladson et al. (1996),

wherein d is the distance from the chord-line, c is the chord length, and t is the

maximum thickness. For the NACA 0005, t is 5% of the local chord length.

d = 5tc(0.2969(
x

c
)
1
2 − 0.1260(

x

c
)− 0.3516(

x

c
)2 + 0.2843(

x

c
)3 − 0.1015(

x

c
)4) (2.9)

18



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

y

z

Figure 2.6: Example of column based smoothing. For the points at y=1, the column
selects all points within 0.475 (0.95 / 2) of 1, denoted by the green lines. Then, if this
is the upper surface, the blue point is kept while the red point is discarded. Similarly,
for the points within the y=0 column, the blue point is kept for the upper surface as
is the red point for the y=2 column.

Column based smoothing is then performed to remove overlapping points which

are generated by angles of less than 180o. The columns are square, centered on the

active point, and have a side width of 95% of the base ∆ value of 1 mm. This is

demonstrated in Figure 2.6 in a 2D format. The genuine implementation is 3D yet

the image is identical with only the x-axis label changing to ”x”. For simplicity when

calculating the finite difference approximations, the ∆ values in the x and y directions

are identical. It is then ensured that only the outermost point remains on each surface

within each column. With the column size set to slightly less than the structured grid

spacing, maximum point density is ensured while removing all points which are not

on the exterior of the surface.
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2.2.3 Implementation

Determining the relative positions of each of the input points on the wing only has to

be done once due to the fact that the output points are at identical relative positions to

the output points; hence, across time steps the relative location does not change; even

if the span increases, the non-dimensional nature of the relative positions handles it

without incident. These relative positions are specified in terms of the chord fraction

of the base point on the non-thickened surface, the spanwise fraction of the base

point, and the surface upon which the point resides. The tip is slightly more complex

as there can be points between the upper and lower wing surfaces. Resolving this is

accomplished by allowing fractional surface selection values coupled with the known

normals through the points on the non-thickened plane which reside at the tip of the

wing.

New point locations are determined by performing the inverse process with a

slightly different wing surface. The x and y values are readily determined as the basis

for these is inherent to the overall layout of the wing. The z value determination is

more complex. The points in the vicinity of the requested location are polled and

weighted based on distance from the specified point of interest. These values then

undergo a weighted summation process to determine the height value of the new

point. This process is shown in Figure 2.8 for the wing surface generation and Figure

2.9 for the position mapping.

Upon completion of the time update cycle, the results are saved to a file for

reading in by the volume mesh motion solver. Due to practical concerns (single-

thread computation time), all of the result values are pre-calculated after the initial

mesh is determined so that computing resources are utilized most efficiently. This

process can be seen in Figure 2.7.
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Input Wing Data

Wing Generation

Wing STL File

Meshing

Extract Wing Surface Points

Surface Points FTR File

Wing GenerationInput Wing Data Time Data

Surface Maps

Surface Mesh Motion Code

Transient CFD Solver

Figure 2.7: Block diagram from geometric wing data through transient CFD
simulation. Green, orange, red, and blue denote python code, C++ code, OpenFoam
code, and intermediary files, respectively.
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Bone Geometry at time, tBone and Joint Data Time Data

Set Wing Boundaries

Generate Points on 2D Wing Surface

Minimize Surface Area

Thicken Wing Airfoil Data
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Completed Map @ time, t

Figure 2.8: Block diagram of wing surface generation at time, t

Generate Relative Position Map
Wing Position

Map @ time, t0
Extracted

Surface Points

Generate Absolute Position Map

Save Map of Surface Points @ time, t Repeat for All t

Figure 2.9: Block diagram of wing point generation at time, t
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2.3 Code Optimizations

The python code has several optimizations which can significantly decrease its run

time. The first optimization splits the list of required surface file times evenly among

a user specified number of processors. As the standard desktop computer has at

least 4 available computational threads, this can easily yield notable performance

improvements by merely harnessing the processing power already present and often

underutilized.

The second of these optimizations is the parallelization of the matrix generator

for solving the minimal surface equation. This allows the matrix to be generated at

significantly higher speeds than would otherwise be possible; furthermore, as the

generation takes longer than solving the matrix, this provides a significant time

savings to the overall code. It may appear that this optimization clashes with the

first; however, due to slightly different run times of different surface instances, this

optimization often reaps greater benefits than expected for utilizing hyper-threading

(HT) cores due to the inefficient nature of adding values to a NumPy matrix.

The third significant optimization is the saving of state information for 3D cases

to an independent user specified repository. Due to the nature of how the surface

is interpolated, the same state point-surface can be utilized for any specific point-

surface (i.e. whether there are 10 points on the mesh surface or 10 million points,

they are both moved according to the same state point-surface). This optimization

allows for each state point-surface to be calculated once per time per set of motion

parameters rather than for every time in every simulation. As the generation of a

state point-surface typically takes 30-45 minutes, this yields incredible time savings

across multiple runs.

The fourth optimization is the saving of local surface deformations. As the mesh

mover uses displacement rather than velocity, it is readily possible to keep the local

surface deformation information independent of the time step. This allows the local

surface deformation files to remain in place when the time step is changed. By keeping
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these files in place, they can be skipped during the generation phase following a change

in time step of the simulation. (i.e. for t=0 to t=1 for a time step of 0.5 seconds, the

simulation requires 3 files: 0, 0.5, 1. When halving the time step to 0.25 seconds, the

simulation required 5 files: 0, 0.25, 0.5, 0.75, 1; yet 0, 0.5, and 1 are already present

and thus do not need to be recalculated.)

There are also optimizations of operation rather than only optimizations of

calculation time. Among these are calls to the CFD solver files which read in the

relevant information rather than having to manually keep track of and re-enter it for

every run.

Naturally, there are a multitude of internal coding optimizations which assist in

decreasing the run-time for every time step that is calculated. Examples of this

include the choosing of correct methods to fill the surface minimization matrix, using

multiplication instead of powers, etc.

2.4 CFD Solver

Foam-extend is a fork of the OpenFOAM computational fluid dynamics solver. This

fork exists to give users additional tools for utilizing dynamic meshes. As the solvers

are identical in function, the validation studies from one fork are often applicable

to the other. Foam-extend was chosen as the fluid dynamics solver as has been

validated for a variety of cases (Winter (2013), Higuera et al. (2015), and Tavangar

et al. (2015)) as well as being simultaneously non-proprietary and not restricted to

academia. Furthermore, this fork includes mesh motion solvers so that only the

surface motions need to be input while the remainder of the mesh deformation

information is automatically calculated.
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2.4.1 Preparing the Wing for Mesh Generation

The python code generates the initial wing as a point cloud. As meshing programs

require closed surfaces to operate correctly, the point cloud must be converted to

a surface prior to meshing. This is accomplished by utilizing a program which can

generate surfaces from point clouds. While performing this conversion a number of

programs stated the ability to work with point clouds and surfaces; be aware that is

does not mean that they have the ability to convert from a point cloud to a surface.

MeshLab proved to be the most useful tool for performing this conversion (Cignoni

et al. (2008)). The point cloud is easily read into the program, then several iterations

of ball pivoting surface reconstruction are performed. The first iteration has the

smallest ball radius and the subsequent iterations increase in radius. This method

ensures that the finest details are well captured while the later iterations ensure that

the surface is closed. The resulting surface is then ready to be exported in a variety

of different formats.

For the 2D cases, the python code generates the surface FTR file automatically,

eliminating the necessity of an external point cloud to surface conversion program.

2.4.2 Mesh Generation

The OpenFOAM suite of products includes mesh generation utilities (Ope (2016)).

The most useful of these utilities are blockMesh and snappyHexMesh. As the name

suggests, blockMesh allows the user to quickly and easily create a block mesh of

a simple geometry. For the cases discussed here, the external geometries are all

rectangular prisms. To use this utility to create the entire mesh within the rectangular

domain, one must merely specify the corner points, the faces which connect them,

and the number of points in each dimension. Then the meshing utility automatically

performs the 1D, 2D, and 3D meshing of the volume and saves the result.

In order to remove the wing from the mesh, the snappyHexMesh utility is used.

This utility refines all the cells which cross the boundary of the wing, snaps the
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cells to match the contours of the surface (resulting in a body-fitted mesh), and

optionally adds surface layers to the mesh. There are a multitude of options that

accompany these base operations, including but not limited to: setting the cell depth

for each refinement layer (i.e. how many cells ”out” before a courser cell can be

used), a variety of settings for snapping the local mesh to the surface of interest,

growth and relative size specifications for the surface layers, and a multitude of

settings for mesh quality. Furthermore, snappyHexMesh will output a variety of

elements, including: hexahedrons, tetrahedrons, tetrahedral wedges, pyramids, and

other polyhedrons. The discerning reader may note that these are all 3D elements,

this is because OpenFOAM does not operate on 2D meshes; all 2D simulations in

OpenFOAM are single cell deep 3D cases with empty boundary conditions on the

faces perpendicular to the plane of interest.

2.4.3 Dynamic Mesh Decomposition

The OpenFOAM suite utilizes domain decomposition. When performing the mesh

decomposition, there are a variety of methods available to the user. These methods

include a ”simple” method in which the user inputs the number of domains in the x, y,

and z directions then the program splits the domain appropriately. Another option is

hierarchical in which the user also specifies a directionality order to the decomposition

process. For those who have pre-calculated mesh maps, there is also an option to apply

an input file wherein each cell has been set to a domain. The final options are all

relatively similar: ptscotch, parmetis, metis, and scotch. In each of these methods,

the code attempts to reduce the amount of inter-domain communications. This can

be particularly important when running on a high-performance cluster where the

processors are on different machines. It is also of note that mesh decomposition in

OpenFOAM is a genuine decomposition; the mesh is separated into distinct files which

can only ”see” the neighbors of the cells within their domain. Once the decomposition

is completed, it is impossible to apply anything to the entire mesh without first
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reconstructing the mesh. Note that this applies only to the mesh itself and not the

fields which reside atop the mesh. Ope (2016)

Due to these mesh decomposition options, the integration code can be relatively

simple in that it must only export the initial surface mesh, ensure the python program

has run, and import the new surface for each time step.

2.4.4 Dynamic Mesh Motion

Mesh motion is handled by the individual processor cores on their respective parts of

the mesh rather than the mesh motion being performed on a ”total” mesh. This is due

to the simple fact that the mesh decomposition is an actual mesh decomposition rather

than the more typical processor zone decompositions, as discussed in the previous

section. As a result, each processor only has access to its portion of the mesh and

cannot access the mesh from other processor domains; however, there are tools to

allow fields within the mesh to be transfered and accessed by other processors.

There are several distinct mesh motion flavors: 6 DoF rigid body motion, finite

volume mesh motion, finite area surface motion, radial basis function (RBF) mesh

motion, mesquite mesh motion solvers, and fluid-structure interaction (FSI) mesh

motion solvers (Ope (2016)). Each type of solver has its own advantages and

disadvantages.

The 6 DoF rigid body motion solvers are only viable when the entire body is solid

and rigid. The standard solvers include options for periodic linear motion, periodic

angular motion, and combinations thereof. There are more advanced solvers which

allow for constraints of various types to be utilized and thus allow the flow to define

the body motion. However, as the entire body moves as a single rigid entity, the

simple motion data can be shared among the various processing domains and the

mesh can be deformed without issue. The primary limitation of this solver is that

the body MUST be solid and rigid.
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The finite volume mesh motion (fvMotion) solvers are more free-form. These

solvers allow for the mesh to be moved arbitrarily at each point. However, the mesh

motion data cannot be shared between processor domains and thus this class of motion

solver often encounters issues at the interfaces between processor domains in the form

of points not moving as they should or face area mis-matches.

The finite area mesh motion solvers are only for surfaces but operate in a manner

very similar to the finite volume mesh movers.

RBF mesh motion solvers are capable of handling very high amounts of mesh

motion without issue (Bos et al. (2013)). Furthermore, the surface can be deformed

in an arbitrary manner. The most significant detractors of this type of mesh motion

solver are the requirement that each processor domain must be in contact with the

driven patch and the significant amount of time it can take to solve the motion matrix.

Less significant detractors are issues where differential mesh motion can cause the

local solutions to generate face area mis-matches at the processor boundaries.

The mesquite mesh motion solver is a fairly unique type of mesh motion solver.

Rather than adding a piece of code to define the patch motion, this solver is input

an equation of the motion of the patch. That equation is then used to move the

patch and all the other points in the domain. While this motion solver does not often

encounter issues with parallel processing, it does require the patch motion to have an

analytic definition.

FSI solvers are an interesting class of mesh movers in that they use the physical

properties of the body to determine how the body moves and/or deforms when the

fluid interacts with it. Due to the nature of this class of solvers, it is often exceedingly

difficult to drive any motion of the body; instead, the user must allow the solver to

handle all of the motion. These solvers rarely have issues with parallel processing;

however, they do inherently increase mesh complexity and solution time due to the

necessity of solving for the displacements within the body of interest.
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2.4.5 Solvers

As with any CFD code, the Navier-Stokes equations are at the core of the solution

method. For incompressible fluid flow, these equations can be simplified to Equation

2.10, wherein u is the velocity, t is time, P is pressure, ρ is density, and ν is the

kinematic viscosity. Both the complete compressible and the reduced incompressible

forms of the Navier-Stokes equations are found in a wide variety of resources, including

Ope (2016). This equation is then broken down further to be used in an efficient

manner by OpenFOAM. As the core functionality of the solver was not modified for

this paper, its core equations will not be analyzed here. For details on the solver,

please see Ope (2016).

∂u

∂t
+ u∇u = −∇P

ρ
+ ν∇2u (2.10)

This study utilizes a pimple solver which is designed to handle dynamic meshes and

to be capable of running in parallel. It is called pimple as it is a merged PISO-Simple

algorithm wherein PISO stands for pressure implicit with splitting of operator. This

algorithm utilizes generic turbulence modeling, allowing for any turbulence model to

be selected. A diagram of the algorithm is shown in Figure 2.10 with the PISO sub-

algorithm in Figure 2.11. The sources include the OpenFOAM-extend source code

(Ope (2016)), Jasak (1996), and Ferziger and Peric (2001).

As with any computational fluid dynamics study, a mesh refinement study must

be performed to determine the resolution required to obtain a valid solution without

wasting computational resources. Solution convergence is ensured by running the

simulation through a sufficient number of cycles such that the variance from one

cycle to the next is sufficiently low; furthermore, as this is a periodic temporal study,

there must also be convergence within the case from one period to the next.

The variable of note in this study is the lift coefficient, CL, which is defined in

Equation 2.11, wherein ρ∞ is the density, v∞ is the freestream velocity, L is the lift

force on the wing, and Sref is the wing reference area. The force is determined by
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Figure 2.10: Block diagram of PimpleDyMFoam
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Solve the discritized momentum equation to calculate velocity field

Compute Mass Flux at Cell Faces

Solve Pressure Equation

Correct Mass Flux

Repeat for
Prescribed Number

of Iterations

Correct Velocities Based on Pressure Field

Update Boundary Conditions

Repeat for
Prescribed Number

of Iterations

PISO Complete

Figure 2.11: Block diagram of PISO
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performing a discrete integration of the pressure field on the surface of interest in the

direction of interest and is handled by the CFD solver while the other properties are

defined.

L =
1

2
ρ∞v

2
∞CLSref (2.11)
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Chapter 3

Code Verification

Due to the nature of new mesh motion codes, they must be validated to ensure

that the results are within expected parameters. This mesh motion code is being

validated for the 2D case of a pitching and plunging airfoil, an SD7003. As discussed

in 2.4.2, all 2D simulations in OpenFOAM are implemented as 3D simulations which

are 1 cell deep and have empty boundary conditions in the ”non-existent” dimension.

Employing code verification of this type is viable as both the verification code and the

fully 3D code utilize the same methodologies: begin with a singular point and angle

in the chordwise direction, add the chord, thicken the wing, export/import. The only

methodological difference is that the pseudo-2D process does not utilize the surface

minimization algorithm. The reference papers for validation are by Baik and Bernal

(2012), Ol et al. (2009), and Catalano and Tognaccini (2011). In these papers, the

airfoil motion is defined by equation set 3.1 with constants given in Table 3.1.

h = h0 ∗ c ∗ cos(2π ∗ f ∗ t)

θ = θ0 ∗ cos(2π ∗ f ∗ t+ ϕ)

f =
k ∗ U∞
π ∗ c

(3.1)

By applying these equations, point locations for the surface at each time step are

generated and the validation case is run.
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Table 3.1: Validation motion constants

Parameter Value
k 0.25
ϕ π

2

h0 0.5
θ0 8.42 deg

The validation case is run as a Reynolds Averaged Simulation (RAS) utilizing a

k−ω SST turbulence model. This model utilizes the equations shown in section A.2.

A different validation case was run as a RAS utilizing the Spalart-Allmaras (SA)

turbulence model. Details on this turbulence model can be found in section A.3.

Upon running, it has been found that the SA model sheds much more readily than

the k − ω SST model and has thus been removed due to excessive resource usage

caused by the higher required refinement levels when compared to the k − ω SST

case.

3.1 Mesh Convergence Study

The mesh convergence study is performed by using a set far-field mesh and modifying

the refinement level required at the wing surface. The study is continued until the

CL value changes by less than 2%. Once convergence of the static mesh is attained,

the same mesh is used for the dynamic analysis. As can be seen in Figure 3.1, there

is less than a 2% change in CL value between the 4th and 6th refinement levels,

corresponding to the highest numbers of cells in the plot. Thus, the 4th refinement

level, corresponding to the 2nd point from the left, is considered converged. See

Section 2.4.2 for details on the mesh generation process.
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Figure 3.1: 2D CL validation comparison

Additionally, the pressure distribution is reasonably accurate. In the paper by

Catalano and Tognaccini (2011), the authors discuss how the k − ω SST model has

difficulties locating the transition point of this particular flow. With this information

it is remarkable how well the rest of the pressure values agree, see Figure 3.2.

Thus, the resulting mesh has a far field point every 0.1 meters on a box which is

21x21 meters; resulting in a far field box of 210 x 210. On the wing surface, that 0.1

meter distance has been reduced by half a total of 4 times; resulting in an average

distance of 1/16 meter between the points and a total of 628 points on the wing

surface.
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Figure 3.2: 2D Cp comparison. All k-w runs are steady-state solutions. The LES
runs are time averaged.
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Figure 3.3: 2D CL,mean periodic convergence

3.1.1 Temporal Convergence

The dynamic simulation is run using the same mesh as used for the static mesh

convergence analysis. The results from the static analysis are the initial conditions

for the dynamic case to enhance the convergence rate. The time step is set such

that convergence rate is optimized, in this case such that the initial maximum mesh

Courant number is ∼0.15.

The temporal convergence is determined by checking when the average and

maximum CL values change by less than 1% compared to the previous period. As

shown in Figure 3.3, it can be seen that the solution is converged within 4 iterations.
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Figure 3.4: CL Validation Comparison. CL,actual is from Ol et al. (2009).

3.2 Results

The solution is presented in Figure 3.4 with the results from Ol et al. (2009).

Additional data from Ol et al. (2009) is presented and compared with the CFD results

in Table 3.2. Figure 3.5 shows the CFD results at selected times. Higher resolution

plots of the images presented in Figure 3.5 are shown in Section C.1. The only odd

behavior is the delayed reaction of the minimum CL; this is likely caused by the

boundary layer transition and separation issues mentioned in the paper by Catalano

and Tognaccini (2011). The lower edge vortex shedding is indicated in Figure 3.6

and supports this claim. These vortexes can also be seen in part b of Figure 3.5. No

frequency analysis was performed to ensure that no other factors are significant as

the purpose of the verification is to show that the motion code functions correctly.
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a)

b)

c)

d)

Figure 3.5: 2D validation images with t/T = 0.00, 0.25, 0.50, 0.75 for a, b, c, and
d, respectively, with the streamlines colored based on pressure and the background
color based on the velocity magnitude
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Figure 3.6: 2D CFD results with lower edge vortex shedding circled in red

Table 3.2: Additional Validation Data. ”Actual” values are from Kang et al. (2013)

Source CL,mean CL,max
Actual 0.89 1.34

Calculated 0.77 1.33
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Chapter 4

3D Results

4.1 Surface Motion

The motion of the 3D multi-jointed wing for Coloborhynchus robustus as calculated

in the J5 case by Sträng (2009) is shown in Figures 4.1 and 4.2. As is typical for

ornithopters, the wing tip follows a roughly elliptical path through space, relative to

the body. Higher resolution orthogonal images are available in Section C.2.

The wing tip was clipped to obtain a minimum chord of 10cm, as specified by

Sträng (2009). This clipping is performed while the wing is in the glide configuration,

which is not present during the flap pattern. As a result, the clipped edge is rarely

aligned with the flow during the motion cycle.

During the latter part of the flap cycle, the elbow joint causes the apparent wing

area from the Z+ view to shrink considerably; however, there is also a significant

amount of twisting occurring which is the actual reason for the increase in apparent

aspect ratio. Confirmation of this is provided by analyzing the motion from the X+

and Y+ views.
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Figure 4.1: Isometric of 3D wing motion looking towards body
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Figure 4.2: Isometric of 3D wing motion from above body
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4.2 3D CFD Solution Attempts

The custom code accurately models the motion of the Pterosaur wing, as seen in

Figure 4.1; however, there were several unforeseen issues with implementation in the

CFD solver. The primary issue is the inability of the mesh motion solvers to handle

the surface motion required by the wing surface model. The fvMotion solvers were

unable to deal with any 3D motion that was not completely uniform. As a result of

this issue, the RBF motion functions were implemented instead.

Yet even the RBF motion solvers proved to be unable to handle the motion

required in a reasonable amount of time. Due to the nature of the RBF solvers coupled

with the surface motion behavior, no coarsening of the surface could be implemented

resulting in a very large motion matrix. The large matrix issue is exacerbated by

the restrictions imposed by the meshing utility, snappyHexMesh. In this utility, for

the cells to properly snap to the surface, the cell size must be sufficiently small. Yet,

as the mesher performs isotropic refinement, the mesh contains an extremely high

number of cells on the wing surface. As each vertex is a control point for the RBF

motion solver, the matrix becomes so large that it cannot be solved within an hour

on a 3.2 GHz machine which is not RAM limited.

The next logical course of action involves attempting to run the simulation in

another program; in this instance, SU2 was selected as the attempted simulation

program. The first step in this process is converting the mesh to a form usable by

SU2. Yet converting the mesh proved to be more difficult than anticipated. The

OpenFOAM suite of solvers can handle much more diverse cell types (hexahedrons,

tetrahedrons, tetrahedral wedges, etc) than SU2, as discussed in 2.4.2; as such, direct

mesh conversion was not possible. Thus, the original STL file was imported in

PointWise to create a new mesh. Unfortunately, PointWise cannot properly import

the MeshLab generated STL despite the fact that numerous other program can import

it without issue. As a result, no new 3D mesh could be generated in a timely manner

for use in SU2.
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Due to these difficulties, the 3D CFD solution for this prescribed surface motion is

unobtainable at this time. Thus, this paper discusses the design and implementation

of the surface mover and an overview of the ways it was implemented so that the code

can be utilized in the future. Furthermore, the 2D validation shows that the method

and implementation are fully viable for the 2D case at the present time while Figure

4.1 demonstrates the validity of the 3D wing surface mover.
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Chapter 5

Conclusions

The 2D results demonstrate that the wing motion code is viable for arbitrary wing

motion. However, the mesh movers for the 3D case are not yet capable of coping

with the high cell count inherent to the isotropic meshes generated in OpenFOAM.

As discussed in Chapter 4, there were several issues which precluded the possibility

of obtaining results for the high fidelity 3D wing model. However, the function which

imports the moving surface into the OpenFOAM mesh has been validated by the 2D

case, as OpenFOAM treats all 2D cases as 3D cases with special boundary conditions.

Furthermore, the methodology of the 2D and 3D surface movers are quite similar in

how they process the input points and return the new set of points for the desired

time. The surface mover for the 3D case generates the appropriate surfaces correctly

for any given time, as seen in Figure 4.1; thus, the primary issue which prevents

a 3D result is the lack of a mesh mover which can handle the surface motion in a

timely and parallel manner. Once a suitable mesh mover is found, the code presented

in this paper can be applied to generate the high-fidelity solution requested for any

multi-jointed wing with multiple degrees of freedom.
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5.1 Further Work

Once a suitable CFD solver with a viable parallel mesh motion algorithm is identified,

the 3D case can be run in full detail. This will allow for a basic comparison of

the force disparities between the high and low fidelity models. Upon comparing the

difference ratio at these Reynold’s numbers with those obtained from other studied for

significantly smaller craft, it should be possible to determine an empirical relationship

for the disparity ratio vs Reynold’s number. This information would be quite useful

as a correction factor for low fidelity analysis as it would allow for results significantly

closer to the actual values while maintaining the speed and convenience of low fidelity

modeling.
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Appendix A

Summary of Equations

A.1 RAS

Reynold’s Averaged Simulation (RAS) or Reynold’s Averaged Navier-Stokes (RANS),

was first developed in 1894 by Reynolds (1995). During their development, these

equations replace the time dependence of the incompressible Navier-Stokes equations

with ”variance” terms. Thus each actual velocity (u) is comprised of a mean velocity

(u) and a time-variable velocity (u′).

The derivation can be followed in the original paper by Reynolds (1995) or in

numerous other sources. This technique is only viable for incompressible, Newtonian

fluids. The final equation, which is utilized in CFD codes, is shown in A.1 and has

been written in Einstein notation and for the 2D case.

ρuj
∂ui
∂xj

= ρf i +
∂

∂xj
[−pδij + µ(

∂ui
∂xj

+
∂uj
∂xi

)− ρu′iu′j] (A.1)

A.2 k − w SST

This model is a combination of the k−w turbulence model and shear-stress transport.

Hence, this is a tonal two equation model. The relevant equations and constants are

shown below in A.2 through A.11 and are from Menter (1994) and Menter (1993).
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Kinematic Eddy Viscosity:

νT =
a1k

max(a1ω, SF2)
(A.2)

Turbulent Kinetic Energy:

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj
[(ν + σkνT )

∂k

∂xj
] (A.3)

Specific Dissipation Rate:

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj
[(ν + σωνT )

∂ω

∂xj
] + 2(1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi
(A.4)

Auxiliary Relations:

F1 = tanh{min[max(

√
k

β∗ωy
,
500ν

y2ω
),

4σω2k

CDkωy2
]4} (A.5)

F2 = tanh[max(

√
k

β∗ωy
,
500ν

y2ω
)2] (A.6)

Pk = min(τij
∂Ui
∂xj

, 10β∗kω) (A.7)

CDkω = max(2ρσω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10) (A.8)

Φ = Φ1F1 + Φ2(1− F1) (A.9)

Constants:

α1 =
5

9
, α2 = 0.44, σk1 = 0.85, σk2 = 1 (A.10)

σω1 = 0.5, σω2 = 0.856, β1 =
3

40
, β2 = 0.0828, β∗ =

9

100
(A.11)
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A.3 SA

The Spalart-Allmaras (SA) model solves a single equation for a viscosity-like variable,

nut. The primary equation is shown in A.12. The supporting equations are shown in

A.13 through A.16 where d is the distance to the closest surface and are provided by

Spalart and Allmaras (1992), Spalart and Allmaras (1994), and Dacles-Mariani et al.

(1995).

(A.12)

∂v

∂t
+ uj

∂v

∂xj
= Cb1 [1− ft2]Sv +

1

σ
{∇ · [(v + v)∇v] + Cb2 |∇v|2}

−
[
Cw1fw −

Cb1
κ2

ft2

]
(
v

d
)2 + ft1∆U2

Where:

vt = vfv1, fv1 =
X3

X3 + C3
v1

, X :=
v

v
, S ≡ S +

v

κ2d2
fv2, fv2 = 1− X

1 +Xfv1

(A.13)

and

S ≡
√

2ΩijΩij, Ωij ≡
1

2
(
∂ui
∂xj
− ∂uj
∂xi

)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r6 − r)

r ≡ v

Sκ2d2
, ft1 = Ct1gt exp(−Ct2

ω2
t

∆U2
[d2 + g2

t d
2
t ])

ft2 = Ct3 exp(−Ct4X2)

(A.14)

Constants:

σ = 2/3, Cb1 = 0.1355, Cb2 = 0.622, κ = 0.41, Cw1 =
Cb1
κ2

+ (
1 + Cb2
σ

)

(A.15)

Cw2 = 0.3, Cw3 = 2, Cv1 = 7.1, Ct1 = 1, Ct2 = 2, Ct3 = 1.1, Ct4 = 2

(A.16)
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An optional modification proposed by Spalart changes the last two values, see

A.17.

Ct3 = 1.2, Ct4 = 0.5 (A.17)

The boundary condition at a wall is imposed by v = 0.
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Appendix B

Minimal Surface Equations

The minimal surface equations are detailed in this appendix. The first subsection

details the components which are combined to form the full equations. Latter

subsections display the matrix equations in detail. The key which shows the relation

between the linearization index and the stencil type is shown in Figure 2.5. The

linearization section has some terms which need clarification: (X/Y)#(M/P), the

M/P and X/Y stand for Minus/Plus and X-direction/Y-direction, respectively, while

the # indicates the number of steps in that direction. These values can be stacked,

one for X and one for Y within a given entry. Note that the y-direction is the spanwise

direction, with 0 at the root and the x-direction is the chordwise direction with 0 at

the location of the shoulder joint and positive aft. More conventional notations are

not viable due to the need to define a point as being -2 in the y- direction while also

being +1 in the x- direction.
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B.1 Components

2nd Order (+/- 1)

Zx = (XP −XM)/(2 ∗∆x)

Zxx = (XP − 2Z +XM)/(∆x2)

Zy = (Y P − YM)/(2 ∗∆y)

Zyy = (Y P − 2Z + YM)/(∆y2)

(B.1)

4th Order (+/- 2)

Zx = (X2M − 8XM + 8XP −X2P )/(12 ∗∆x)

Zxx = (−X2M + 16XM − 30Z + 16XP −X2P )/(12 ∗∆x2)

Zy = (Y 2M − 8YM + 8Y P − Y 2P )/(12 ∗∆y)

Zyy = (−Y 2M + 16YM − 30Z + 16Y P − Y 2P )/(12 ∗∆y2)

(B.2)

2nd Order (-3)

Zx = (X2M − 4XM + 3Z)/(2 ∗∆x)

Zxx = (−X3M + 4X2M − 5XM + 2Z)/(∆x2)

Zy = (Y 2M − 4YM + 3Z)/(2 ∗∆y)

Zyy = (−Y 3M + 4Y 2M − 5YM + 2Z)/(∆y2)

(B.3)

2nd Order (+3)

Zx = (−3Z + 4XP −X2P )/(2 ∗∆x)

Zxx = (2Z − 5XP + 4X2P −X3P )/(∆x2)

Zy = (−3Z + 4Y P − Y 2P )/(2 ∗∆y)

Zyy = (2Z − 5Y P + 4Y 2P − Y 3P )/(∆y2)

(B.4)
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4th Order (-1 / +3)

Zx = (−3XM − Z + 5XP −X2P )/(6 ∗∆x)

Zxx = (11XM − 20Z + 6XP + 4X2P −X3P )/(11 ∗∆x2)

Zy = (−3YM − Z + 5Y P − Y 2P )/(6 ∗∆y)

Zyy = (11YM − 20Z + 6Y P + 4Y 2P − Y 3P )/(11 ∗∆y2)

(B.5)

4th Order (-3 / +1)

Zx = (X2M − 5XM + Z + 3XP )/(6 ∗∆x)

Zxx = (−X3M + 4X2M + 6XM − 20Z + 11XP )/(11 ∗∆x2)

Zy = (Y 2M − 5YM + Z + 3Y P )/(6 ∗∆y)

Zyy = (−Y 3M + 4Y 2M + 6YM − 20Z + 11Y P )/(11 ∗∆y2)

(B.6)

B.2 Linearization A

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (XP −XM)/(2 ∗∆x)

Zy = (Y P − YM)/(2 ∗∆y)

Zyy = (Y P − 2Z + YM)/(∆y2)

Zxx = (XP − 2Z +XM)/(∆x2)

Zxy = (XY PP +XYMM −XY PM −XYMP )/(4∆x∆y)

Z = Res ∗ 8∆x2∆y2

(B.7)
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yMmP = yM − yP

xMmP = xM − xP

yMmP2Z = yM + yP − 2 ∗ Z

xyComb = xyMM − xyMP − xyPM + xyPP

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

xyComb2 = xMmP ∗ yMmP

bot = 1/(8 ∗∆x2 ∗∆y2)

(B.8)
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dz = −4 ∗ (4 ∗ (∆x2 + ∆y2) + xMmP2 + yMmP2)

∆yMxM = −xyComb2

∆yPxM = xyComb2

∆yMxP = xyComb2

∆yPxP = −xyComb2

∆xM = 8 ∗∆y2 − (xyComb− 2 ∗ yMmP ) ∗ yMmP

+4 ∗ xMmP ∗ yMmP2Z

∆xP = 8 ∗∆y2 + (xyComb+ 2 ∗ yMmP ) ∗ yMmP

−4 ∗ xMmP ∗ yMmP2Z

∆yP = 8 ∗∆x2 + 2 ∗ xMmP2

−xP ∗ (xyComb+ 4 ∗ yMmP )

+xM ∗ (xyComb− 4 ∗ yMmP )

+8 ∗ yMmP ∗ Z

∆yM = 8 ∗∆x2 + 2 ∗ xMmP2

−xM ∗ (xyComb− 4 ∗ yMmP )

+xP ∗ (xyComb+ 4 ∗ yMmP )

−8 ∗ yMmP ∗ Z

B0 = −(2 ∗ ((4 ∗∆y2 + yMmP2)

∗(xM + xP − 2 ∗ Z)

+(4 ∗∆x2 + xMmP2) ∗ yMmP2Z)

−xyComb2 ∗ xyComb)

(B.9)
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B.3 Linearization D

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (XP −XM)/(2 ∗∆x)

Zyy = (−Y 3M + 4 ∗ Y 2M − 5 ∗ YM + 2 ∗ Z)/(∆y2)

Zy = (Y 2M − 4 ∗ YM + 3 ∗ Z)/(2 ∗∆y)

Zxx = (XP − 2 ∗ Z +XM)/(∆x2)

Zxy = (((Y 2MXP − Y 2MXM)/(2 ∗∆x))

−4 ∗ ((YMXP − YMXM)/(2 ∗∆x)) + 3 ∗ Zx)/(2 ∗∆y)

Z = Res ∗ 8∆x2∆y2

(B.10)

bot = 1/(8 ∗∆x2 ∗∆y2)

xMmP = xM − xP

yMmP = y2M − 4 ∗ yM + 3 ∗ Z

xMP2Z = xM + xP − 2 ∗ Z

yComp1 = 5 ∗ y2M − 2 ∗ y3M + 2 ∗ yM − 5 ∗ Z

xyComb = y2MxM − y2MxP − 4 ∗ yMxM + 4 ∗ yMxP

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

xyComb1 = xMmP ∗ yMmP

xyComb2 = 2 ∗ xMmP ∗ yComp1− 2 ∗ yMmP2 ∗ xyComb

x2Comb = 8 ∗∆x2 + 2 ∗ xMmP2

y2Comb = 8 ∗∆y2 + 2 ∗ yMmP2

(B.11)
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∆y3M = −x2Comb

∆y2MxP = xyComb1

∆yMxM = 4 ∗ xyComb1

∆y2MxM = −xyComb1

∆yMxP = −4 ∗ xyComb1

dz = 2 ∗ (x2Comb− y2Comb)

−xMmP2 ∗ 9 ∗ xyComb

+12 ∗ xMP2Z ∗ yMmP

∆xM = 8 ∗∆y2 + xyComb2

∆xP = 8 ∗∆y2 − xyComb2

∆yM = −5 ∗ x2Comb

+12 ∗ xMmP2 ∗ xyComb

−16 ∗ xMP2Z ∗ yMmP

∆y2M = 4 ∗ x2Comb

+3 ∗ xMmP2 ∗ xyComb

+4 ∗ xMP2Z ∗ yMmP

B0 = −(y2Comb ∗ xMP2Z

+x2Comb ∗ (4 ∗ y2M − y3M

−5 ∗ yM + 2 ∗ Z)

−3 ∗ xMmP2 ∗ xyComb ∗ yMmP )

(B.12)
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B.4 Linearization K

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 8XM + 8XP −X2P )/(12 ∗∆x)

Zxx = (−X2M + 16XM − 30Z + 16XP −X2P )/(12 ∗∆x2)

Zy = (Y 2M − 4YM + 3Z)/(2 ∗∆y)

Zyy = (−Y 3M + 4Y 2M − 5YM + 2Z)/(∆y2)

Zxy = (((Y 2MX2M − 4YMX2M + 3X2M)/(2 ∗∆y))

−8((Y 2MXM − 4YMXM + 3XM)/(2 ∗∆y))

+8((Y 2MXP − 4YMXP + 3XP )/(2 ∗∆y))

−((Y 2MX2P − 4YMX2P + 3X2P )/(2 ∗∆y)))/(12 ∗∆x)

Z = Res ∗ 288∆x2∆y2

(B.13)
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xMmP = x2M − x2P − 8 ∗ xM + 8 ∗ xP

yMmP = y2M − 4 ∗ yM + 3 ∗ z

yComp1 = 4 ∗ y2M − y3M − 5 ∗ yM + 2 ∗ z

Inner1 = 3 ∗ x2M − 3 ∗ x2P − 24 ∗ xM

+24 ∗ xP + y2Mx2M − y2Mx2P − 8 ∗ y2MxM

+8 ∗ y2MxP − 4 ∗ yMx2M + 4 ∗ yMx2P

+32 ∗ yMxM − 32 ∗ yMxP

xComp1 = x2M + x2P − 16 ∗ (xM + xP ) + 30 ∗ z

xyComb = xMmP ∗ yMmP

Inner2 = 4 ∗ xMmP ∗ yComp1

−3 ∗ xyComb− Inner1 ∗ yMmP

Inner3 = xMmP ∗ Inner1 + 12 ∗ yMmP ∗ xComp1

x2Comb = 288 ∗∆x2 + 2 ∗ xMmP ∗ xMmP

y2Comb = 24 ∗∆y2 + 6 ∗ yMmP ∗ yMmP

bot = 1/(288 ∗∆x2 ∗∆y2)

(B.14)
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∆y3M = −x2Comb

∆y2Mx2M = −xyComb

∆y2MxP = −8 ∗ xyComb

∆yMx2P = −4 ∗ xyComb

∆yMxM = −32 ∗ xyComb

∆y2Mx2P = xyComb

∆y2MxM = 8 ∗ xyComb

∆yMx2M = 4 ∗ xyComb

∆yMxP = 32 ∗ xyComb

∆x2P = −y2Comb− Inner2

∆x2M = −y2Comb+ Inner2

dz = 2 ∗ x2Comb− 30 ∗ y2Comb− 3 ∗ Inner3

∆y2M = 4 ∗ x2Comb− Inner3

∆xM = 16 ∗ y2Comb− 8 ∗ Inner2

∆xP = 16 ∗ y2Comb+ 8 ∗ Inner2

∆yM = −5 ∗ x2Comb+ 4 ∗ Inner3

B0 = −x2Comb ∗ yComp1

+xyComb ∗ Inner1

+y2Comb ∗ xComp1

(B.15)
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B.5 Linearization B

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 8XM + 8XP −X2P )/(12 ∗∆x)

Zxx = (−X2M + 16XM − 30Z + 16XP −X2P )/(12 ∗∆x2)

Zy = (Y 2M − 8YM + 8Y P − Y 2P )/(12 ∗∆y)

Zyy = (−Y 2M + 16YM − 30Z + 16Y P − Y 2P )/(12 ∗∆y2)

Zxy = (((Y 2MX2M − 8Y 2MXM + 8Y 2MXP − Y 2MX2P )/(12∆x))

−8((YMX2M − 8YMXM + 8YMXP − YMX2P )/(12∆x))

+8((Y PX2M − 8Y PXM + 8Y PXP − Y PX2P )/(12∆x))

−((Y 2PX2M − 8Y 2PXM + 8Y 2PXP − Y 2PX2P )/(12∆x)))

/(12∆y)

Z = Res ∗ 10368∆x2∆y2

(B.16)
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bot = 1/(10368 ∗∆x2 ∗∆y2)

xMmP = x2M − x2P − 8 ∗ xM + 8 ∗ xP

yMmP = y2M − y2P − 8 ∗ yM + 8 ∗ yP

yComb1 = y2M + y2P − 16 ∗ (yM + yP ) + 30 ∗ z

xComb1 = x2M + x2P − 16 ∗ (xM + xP ) + 30 ∗ z

Inner1 = y2Mx2M − y2Mx2P

−8 ∗ (y2MxM − y2MxP )− y2Px2M + y2Px2P

+8 ∗ (y2PxM − y2PxP − yMx2M + yMx2P

+8 ∗ (yMxM − yMxP ) + yPx2M − yPx2P

−8 ∗ yPxM + 8 ∗ yPxP )

xyComb = xMmP ∗ yMmP

xInner = xMmP ∗ Inner1 + 12 ∗ yMmP ∗ xComb1

yInner = yMmP ∗ Inner1 + 12 ∗ xMmP ∗ yComb1

xMmP2 = 6 ∗ xMmP ∗ xMmP

yMmP2 = 6 ∗ yMmP ∗ yMmP

x2Comp = 864 ∗∆x2 + xMmP2

y2Comp = 864 ∗∆y2 + yMmP2

(B.17)
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∆y2Mx2M = −xyComb

∆y2MxP = −8 ∗ xyComb

∆y2Px2P = −xyComb

∆y2PxM = −8 ∗ xyComb

∆yMx2P = −8 ∗ xyComb

∆yMxM = −64 ∗ xyComb

∆yPx2M = −8 ∗ xyComb

∆yPxP = −64 ∗ xyComb

∆y2Mx2P = xyComb

∆y2MxM = 8 ∗ xyComb

∆y2Px2M = xyComb

∆y2PxP = 8 ∗ xyComb

∆yMx2M = 8 ∗ xyComb

∆yMxP = 64 ∗ xyComb

∆yPx2P = 8 ∗ xyComb

∆yPxM = 64 ∗ xyComb

dz = −30 ∗ (x2Comp+ y2Comp)

∆y2M = −x2Comp− xInner

∆y2P = −x2Comp+ xInner

∆x2M = −y2Comp− yInner

∆x2P = −y2Comp+ yInner

∆yP = 16 ∗ x2Comp− 8 ∗ xInner

∆yM = 16 ∗ x2Comp+ 8 ∗ xInner

∆xP = 16 ∗ y2Comp− 8 ∗ yInner

∆xM = 16 ∗ y2Comp+ 8 ∗ yInner

B0 = y2Comp ∗ xComb1

+x2Comp ∗ yComb1

+xyComb ∗ Inner1

(B.18)
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B.6 Linearization L

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 8XM + 8XP −X2P )/(12 ∗∆x)

Zxx = (−X2M + 16XM − 30Z + 16XP −X2P )/(12 ∗∆x2)

Zy = (−3YM − Z + 5Y P − Y 2P )/(6 ∗∆y)

Zyy = (11YM − 20Z + 6Y P + 4Y 2P − Y 3P )/(11 ∗∆y2)

Zxy = (((−3X2M + 4Y PX2M − Y 2PX2M)/(2∆y))

−8((−3XM + 4Y PXM − Y 2PXM)/(2∆y))

+8((−3XP + 4Y PXP − Y 2PXP )/(2∆y))

−((−3X2P + 4Y PX2P − Y 2PX2P )/(2∆y)))/(12 ∗∆x)

Z = Res ∗ 9504∆x2∆y2

(B.19)
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xMmP = x2M − x2P − 8 ∗ xM + 8 ∗ xP

yMmP = y2P + 3 ∗ yM − 5 ∗ yP + z

yComb1 = 4 ∗ y2P − y3P + 11 ∗ yM + 6 ∗ yP − 20 ∗ z

xComb1 = x2M + x2P − 16 ∗ (xM + xP ) + 30 ∗ z

Inner1 = 3 ∗ x2M − 3 ∗ x2P − 24 ∗ xM + 24 ∗ xP

+y2Px2M − y2Px2P − 8 ∗ y2PxM + 8 ∗ y2PxP

−4 ∗ yPx2M + 4 ∗ yPx2P + 32 ∗ yPxM − 32 ∗ yPxP

xyComb = xMmP ∗ yMmP

Inner2 = 12 ∗ xMmP ∗ yComb1− 33 ∗ xyComb

−11 ∗ Inner1 ∗ yMmP

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

Inner3 = −xMmP ∗ Inner1− 4 ∗ yMmP ∗ xComb1

x2Comb = 864 ∗∆x2 + 6 ∗ xMmP2

y2Comb = 792 ∗∆y2 + 22 ∗ yMmP2

bot = 1/(9504 ∗∆x2 ∗∆y2)

(B.20)
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∆y3P = −x2Comb

∆y2Px2M = −11 ∗ xyComb

∆y2Px2P = 11 ∗ xyComb

∆y2PxM = 88 ∗ xyComb

∆y2PxP = −88 ∗ xyComb

∆yPx2M = 44 ∗ xyComb

∆yPx2P = −44 ∗ xyComb

∆yPxM = −352 ∗ xyComb

∆yPxP = 352 ∗ xyComb

∆x2M = −y2Comb+ Inner2

∆x2P = −y2Comb− Inner2

∆y2P = 4 ∗ x2Comb+ 11 ∗ Inner3

dz = −20 ∗ x2Comb− 30 ∗ y2Comb+ 11 ∗ Inner3

∆yP = 6 ∗ x2Comb− 5 ∗ Inner3

∆xP = 16 ∗ y2Comb+ 8 ∗ Inner2

∆xM = 16 ∗ y2Comb− 8 ∗ Inner2

∆yM = 11 ∗ x2Comb+ 33 ∗ Inner3

B0 = −x2Comb ∗ yComb1 + y2Comb ∗ xComb1

+11 ∗ xyComb ∗ Inner1

(B.21)
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B.7 Linearization N

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (−3XM − Z + 5XP −X2P )/(6 ∗∆x)

Zxx = (11XM − 20Z + 6XP + 4X2P −X3P )/(11 ∗∆x2)

Zy = (Y 2M − 8YM + 8Y P − Y 2P )/(12 ∗∆y)

Zyy = (−Y 2M + 16YM − 30Z + 16Y P − Y 2P )/(12 ∗∆y2)

Zxy = (((−3Y 2M + 4Y 2MXP − Y 2MX2P )/(2∆x))

−8((−3YM + 4YMXP − YMX2P )/(2∆x))

+8((−3Y P + 4Y PXP − Y PX2P )/(2∆x))

−((−3Y 2P + 4Y 2PXP − Y 2PX2P )/(2∆x)))/(12∆y)

Z = Res ∗ 9504∆x2∆y2

(B.22)
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xMmP = x2P + 3 ∗ xM − 5 ∗ xP + z

yMmP = y2M − y2P − 8 ∗ yM + 8 ∗ yP

xComb1 = 4 ∗ x2P − x3P + 11 ∗ xM + 6 ∗ xP − 20 ∗ z

yComb1 = y2M + y2P − 16 ∗ (yM + yP ) + 30 ∗ z

Inner1 = 3 ∗ y2M + y2Mx2P − 4 ∗ y2MxP

−3 ∗ y2P − y2Px2P + 4 ∗ (y2PxP − 6 ∗ yM

−2 ∗ yMx2P + 8 ∗ yMxP + 6 ∗ yP

+2 ∗ yPx2P − 8 ∗ yPxP )

xyComb = yMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

xMmP2 = xMmP ∗ xMmP

Inner2 = 12 ∗ yMmP ∗ xComb1− 33 ∗ xyComb

−11 ∗ Inner1 ∗ xMmP

xyComb2 = xMmP ∗ yComb1

xyComb4 = yMmP ∗ Inner1 + 4 ∗ xyComb2

x2Comb = 792 ∗∆x2 + 22 ∗ xMmP2

y2Comb = 864 ∗∆y2 + 6 ∗ yMmP2

bot = 1/(9504 ∗∆x2 ∗∆y2)

(B.23)
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∆x3P = −y2Comb

∆y2Mx2P = −11 ∗ xyComb

∆y2MxP = 44 ∗ xyComb

∆y2Px2P = 11 ∗ xyComb

∆y2PxP = −44 ∗ xyComb

∆yMx2P = 88 ∗ xyComb

∆yMxP = −352 ∗ xyComb

∆yPx2P = −88 ∗ xyComb

∆yPxP = 352 ∗ xyComb

∆y2M = −x2Comb+ Inner2

∆y2P = −x2Comb− Inner2

∆x2P = 4 ∗ y2Comb− 11 ∗ xyComb4

dz = −30 ∗ x2Comb− 20 ∗ y2Comb− 11 ∗ xyComb4

∆xP = 6 ∗ y2Comb+ 55 ∗ xyComb4

∆yP = 16 ∗ x2Comb+ 8 ∗ Inner2

∆yM = 16 ∗ x2Comb− 8 ∗ Inner2

∆xM = 11 ∗ y2Comb− 33 ∗ xyComb4

B0 = −y2Comb ∗ xComb1 + 11 ∗ xyComb ∗ Inner1

+x2Comb ∗ yComb1

(B.24)
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B.8 Linearization Q

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 5XM + Z + 3XP )/(6 ∗∆x)

Zxx = (−X3M + 4X2M + 6XM − 20Z + 11XP )/(11 ∗∆x2)

Zy = (Y 2M − 8YM + 8Y P − Y 2P )/(12 ∗∆y)

Zyy = (−Y 2M + 16YM − 30Z + 16Y P − Y 2P )/(12 ∗∆y2)

Zxy = (((Y 2MX2M − 4Y 2MXM + 3Y 2M)/(2∆x))

−8((YMX2M − 4YMXM + 3YM)/(2∆x))

+8((Y PX2M − 4Y PXM + 3Y P )/(2∆x))

−((Y 2PX2M − 4Y 2PXM + 3Y 2P )/(2∆x)))/(12 ∗∆y)

Z = Res ∗ 9504∆x2∆y2

(B.25)
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xMmP = x2M − 5 ∗ xM + 3 ∗ xP + z

yMmP = y2M − y2P − 8 ∗ yM + 8 ∗ yP

xComb1 = 4 ∗ x2M − x3M + 6 ∗ xM + 11 ∗ xP − 20 ∗ z

yComb1 = y2M + y2P − 16 ∗ (yM + yP ) + 30 ∗ z

Inner1 = 3 ∗ y2M + y2Mx2M − 3 ∗ y2P − y2Px2M

+4 ∗ (y2PxM − 6 ∗ yM − 2 ∗ yMx2M + 8 ∗ yMxM

+6 ∗ yP + 2 ∗ yPx2M − 8 ∗ yPxM − y2MxM)

xyComb = yMmP ∗ xMmP

Inner2 = 12 ∗ yMmP ∗ xComb1

−33 ∗ xyComb− 11 ∗ Inner1 ∗ xMmP

Inner3 = yMmP ∗ Inner1 + 4 ∗ xMmP ∗ yComb1

yMmP2 = yMmP ∗ yMmP

xMmP2 = xMmP ∗ xMmP

x2Comb = 792 ∗∆x2 + 22 ∗ xMmP2

y2Comb = 864 ∗∆y2 + 6 ∗ yMmP2

bot = 1/(9504 ∗∆x2 ∗∆y2)

(B.26)
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∆x3M = −y2Comb

∆y2Mx2M = −11 ∗ xyComb

∆y2PxM = −44 ∗ xyComb

∆yMxM = −352 ∗ xyComb

∆yPx2M = −88 ∗ xyComb

∆y2MxM = 44 ∗ xyComb

∆y2Px2M = 11 ∗ xyComb

∆yMx2M = 88 ∗ xyComb

∆yPxM = 352 ∗ xyComb

∆y2M = −x2Comb+ Inner2

∆y2P = −x2Comb− Inner2

∆x2M = 4 ∗ y2Comb− 11 ∗ Inner3

dz = −30 ∗ x2Comb− 20 ∗ y2Comb− 11 ∗ Inner3

∆xM = 6 ∗ y2Comb+ 55 ∗ Inner3

∆yP = 16 ∗ x2Comb+ 8 ∗ Inner2

∆yM = 16 ∗ x2Comb− 8 ∗ Inner2

∆xP = 11 ∗ y2Comb− 33 ∗ Inner3

B0 = −y2Comb ∗ xComb1

+11 ∗ xyComb ∗ Inner1 + x2Comb ∗ yComb1

(B.27)
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B.9 Linearization M

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (−3XM − Z + 5XP −X2P )/(6 ∗∆x)

Zxx = (11XM − 20Z + 6XP + 4X2P −X3P )/(11 ∗∆x2)

Zy = (−3YM − Z + 5Y P − Y 2P )/(6 ∗∆y)

Zyy = (11YM − 20Z + 6Y P + 4Y 2P − Y 3P )/(11 ∗∆y2)

Zxy = (−3((−3XM + 4Y PXM − Y 2PXM)/(2∆y))

−((−3Z + 4Y P − Y 2P )/(2∆y))

+5((−3XP + 4Y PXP − Y 2PXP )/(2∆y))

−((−3X2P + 4Y PX2P − Y 2PX2P )/(2∆y)))/(6 ∗∆x)

Z = Res ∗ 2376∆x2∆y2

(B.28)
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xMmP = x2P + 3 ∗ xM − 5 ∗ xP + z

yMmP = y2P + 3 ∗ yM − 5 ∗ yP + z

xComb1 = 4 ∗ x2P − x3P + 11 ∗ xM

+6 ∗ xP − 20 ∗ z

yComb1 = 4 ∗ y2P − y3P + 11 ∗ yM

+6 ∗ yP − 20 ∗ z

Inner1 = 3 ∗ x2P + 9 ∗ xM − 15 ∗ xP

+y2P + y2Px2P + 3 ∗ y2PxM − 5 ∗ y2PxP

−4 ∗ (yP + yPx2P + 3 ∗ yPxM − 5 ∗ yPxP )

+3 ∗ z

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

xyComb = xMmP ∗ yMmP

Inner2 = 12 ∗ yComb1 ∗ xMmP − 33 ∗ xyComb

−11 ∗ yMmP ∗ Inner1

xComb2 = 11 ∗ xMmP ∗ Inner1

yComb2 = 12 ∗ xComb1 ∗ yMmP

x2Comb = 216 ∗∆x2 + 6 ∗ xMmP2

y2Comb = 216 ∗∆y2 + 6 ∗ yMmP2

xyComb2 = yComb2− xComb2

bot = 1/(2376 ∗∆x2 ∗∆y2)

(B.29)

81



∆y2Px2P = −11 ∗ xyComb

∆y2PxM = −33 ∗ xyComb

∆y2PxP = 55 ∗ xyComb

∆yPx2P = 44 ∗ xyComb

∆yPxM = 132 ∗ xyComb

∆yPxP = −220 ∗ xyComb

∆y3P = −x2Comb

∆x3P = −y2Comb

∆y2P = 4 ∗ x2Comb+ xyComb2

−11 ∗ xyComb

∆yP = 6 ∗ x2Comb− 5 ∗ xyComb2

+44 ∗ xyComb

∆x2P = 4 ∗ y2Comb+ Inner2

dz = −20 ∗ (x2Comb+ y2Comb)

+xyComb2 + Inner2

∆xP = 6 ∗ y2Comb− 5 ∗ Inner2

∆yM = 11 ∗ x2Comb+ 3 ∗ xyComb2

∆xM = 11 ∗ y2Comb+ 3 ∗ Inner2

B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb1

+11 ∗ xyComb ∗ Inner1

(B.30)
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B.10 Linearization P

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 5XM + Z + 3XP )/(6 ∗∆x)

Zxx = (−X3M + 4X2M + 6XM − 20Z + 11XP )/(11 ∗∆x2)

Zy = (−3YM − Z + 5Y P − Y 2P )/(6 ∗∆y)

Zyy = (11YM − 20Z + 6Y P + 4Y 2P − Y 3P )/(11 ∗∆y2)

Zxy = (−3((YMX2M − 4YMXM + 3YM)/(2∆x))

−((X2M − 4XM + 3Z)/(2∆x))

+5((Y PX2M − 4Y PXM + 3Y P )/(2∆x))

−((Y 2PX2M − 4Y 2PXM + 3Y 2P )/(2∆x)))/(6∆y)

Z = Res ∗ 2376∆x2∆y2

(B.31)
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xMmP = x2M − 5 ∗ xM + 3 ∗ xP + z

yMmP = y2P + 3 ∗ yM − 5 ∗ yP + z

xComb1 = 4 ∗ x2M − x3M + 6 ∗ xM + 11 ∗ xP − 20 ∗ z

yComb1 = 4 ∗ y2P − y3P + 11 ∗ yM + 6 ∗ yP − 20 ∗ z

Inner1 = x2M − 4 ∗ xM + 3 ∗ y2P + y2Px2M

−4 ∗ y2PxM + 9 ∗ yM + 3 ∗ yMx2M − 12 ∗ yMxM

−5 ∗ (3 ∗ yP + yPx2M − 4 ∗ yPxM) + 3 ∗ z

xyComb1 = xMmP ∗ yMmP

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

xyComb2 = 12 ∗ xComb1 ∗ yMmP − 11 ∗ xMmP ∗ Inner1

yComb4 = 12 ∗ yComb1 ∗ xMmP − 11 ∗ yMmP ∗ Inner1

x2Comb = 216 ∗∆x2 + 6 ∗ xMmP2

y2Comb = 216 ∗∆y2 + 6 ∗ yMmP2

bot = 1/(2376 ∗∆x2 ∗∆y2)

(B.32)
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∆y2Px2M = −11 ∗ xyComb1

∆y2PxM = 44 ∗ xyComb1

∆yMx2M = −33 ∗ xyComb1

∆yMxM = 132 ∗ xyComb1

∆yPx2M = 55 ∗ xyComb1

∆yPxM = −220 ∗ xyComb1

∆y3P = −x2Comb

∆x3M = −y2Comb

∆y2P = 4 ∗ x2Comb+ xyComb2− 33 ∗ xyComb1

∆yP = 6 ∗ x2Comb− 5 ∗ xyComb2 + 165 ∗ xyComb1

∆x2M = 4 ∗ y2Comb+ yComb4− 11 ∗ xyComb1

dz = −20 ∗ (x2Comb+ y2Comb) + yComb4

+xyComb2− 33 ∗ xyComb1

∆xM = 6 ∗ y2Comb− 5 ∗ yComb4 + 44 ∗ xyComb1

∆yM = 11 ∗ x2Comb+ 3 ∗ (xyComb2− 33 ∗ xyComb1)

∆xP = 11 ∗ y2Comb+ 3 ∗ yComb4

B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb1

+11 ∗ xyComb1 ∗ Inner1

(B.33)
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B.11 Linearization U

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 5XM + Z + 3XP )/(6 ∗∆x)

Zxx = (−X3M + 4X2M + 6XM − 20Z + 11XP )/(11 ∗∆x2)

Zy = (Y 2M − 5YM + Z + 3Y P )/(6 ∗∆y)

Zyy = (−Y 3M + 4Y 2M + 6YM − 20Z + 11Y P )/(11 ∗∆y2)

Zxy = (((Y 2MX2M − 4Y 2MXM + 3Y 2M)/(2∆x))

−5((YMX2M − 4YMXM + 3YM)/(2∆x))

+((X2M − 4XM + 3Z)/(2∆x))

+3((Y PX2M − 4Y PXM + 3Y P )/(2∆x)))/(6∆y)

Z = Res ∗ 2376∆x2∆y2

(B.34)
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xMmP = x2M − 5 ∗ xM + 3 ∗ xP + z

yMmP = y2M − 5 ∗ yM + 3 ∗ yP + z

Inner1 = x2M − 4 ∗ xM + 3 ∗ y2M

+y2Mx2M − 4 ∗ y2MxM − 15 ∗ yM

−5 ∗ yMx2M + 20 ∗ yMxM

+3 ∗ (3 ∗ yP + yPx2M − 4 ∗ yPxM + z)

xComb1 = 4 ∗ x2M − x3M + 6 ∗ xM

+11 ∗ xP − 20 ∗ z

yComb1 = 4 ∗ y2M − y3M + 6 ∗ yM

+11 ∗ yP − 20 ∗ z

xyComb1 = xMmP ∗ yMmP

x2Comb = 216 ∗∆x2 + 6 ∗ xMmP ∗ xMmP

y2Comb = 216 ∗∆y2 + 6 ∗ yMmP ∗ yMmP

xyComb3 = 12 ∗ yComb1 ∗ xMmP

−11 ∗ yMmP ∗ Inner1

Inner2 = 12 ∗ xComb1 ∗ yMmP − 33 ∗ xyComb1

−11 ∗ xMmP ∗ Inner1

bot = 1/(2376 ∗∆x2 ∗∆y2)

(B.35)
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B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb1

+11 ∗ xyComb1 ∗ Inner1

∆y2Mx2M = −11 ∗ xyComb1

∆y2MxM = 44 ∗ xyComb1

∆yMx2M = 55 ∗ xyComb1

∆yMxM = −220 ∗ xyComb1

∆yPx2M = −33 ∗ xyComb1

∆yPxM = 132 ∗ xyComb1

∆y3M = −x2Comb

∆x3M = −x2Comb

∆y2M = 4 ∗ x2Comb+ Inner2

∆yM = 6 ∗ x2Comb− 5 ∗ Inner2

∆x2M = 4 ∗ y2Comb+ xyComb3− 11 ∗ xyComb1

dz = −20 ∗ (x2Comb+ y2Comb) + xyComb3 + Inner2

∆xM = 6 ∗ y2Comb− 5 ∗ xyComb3 + 44 ∗ xyComb1

∆yP = 11 ∗ x2Comb+ 3 ∗ Inner2

∆xP = 11 ∗ y2Comb+ 3 ∗ xyComb3

(B.36)
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B.12 Linearization S

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 5XM + Z + 3XP )/(6 ∗∆x)

Zxx = (−X3M + 4X2M + 6XM − 20Z + 11XP )/(11 ∗∆x2)

Zy = (Y P − YM)/(2 ∗∆y)

Zyy = (Y P − 2Z + YM)/(∆y2)

Zxy = (((Y PX2M − YMX2M)/(2∆y))

−4((Y PXM − YMXM)/(2∆y))

+3((Y P − YM)/(2∆y)))/(6∆x)

Z = Res ∗ 792∆x2∆y2

(B.37)

xMmP = x2M − 5 ∗ xM + 3 ∗ xP + z

yMmP = yM − yP

xComb1 = 4 ∗ x2M − x3M + 6 ∗ xM + 11 ∗ xP − 20 ∗ z

yComb1 = 3 ∗ yM + yMx2M − 4 ∗ yMxM

−3 ∗ yP − yPx2M + 4 ∗ yPxM

yComb2 = yM + yP − 2 ∗ z

xyComb1 = yMmP ∗ xMmP

yComb3 = −11 ∗ yMmP ∗ yComb1

+44 ∗ yComb2 ∗ xMmP

xyComb2 = 36 ∗ yMmP ∗ xComb1− 33 ∗ xyComb1

−11 ∗ yComb1 ∗ xMmP

x2Comb = 792 ∗∆x2 + 22 ∗ xMmP ∗ xMmP

y2Comb = 72 ∗∆y2 + 18 ∗ yMmP ∗ yMmP

bot = 1/(792 ∗∆x2 ∗∆y2)

(B.38)
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∆x3M = −y2Comb

∆yMxM = 44 ∗ xyComb1

∆yPx2M = 11 ∗ xyComb1

∆yMx2M = −11 ∗ xyComb1

∆yPxM = −44 ∗ xyComb1

dz = −2 ∗ x2Comb− 20 ∗ y2Comb+ yComb3

∆yM = x2Comb+ xyComb2

∆yP = x2Comb− xyComb2

∆xM = 6 ∗ y2Comb− 5 ∗ yComb3

∆x2M = 4 ∗ y2Comb+ yComb3

∆xP = 11 ∗ y2Comb− 3 ∗ yComb3

B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb2

+11 ∗ xyComb1 ∗ yComb1

(B.39)

B.13 Linearization T

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (−3XM − Z + 5XP −X2P )/(6 ∗∆x)

Zxx = (11XM − 20Z + 6XP + 4X2P −X3P )/(11 ∗∆x2)

Zy = (Y 2M − 5YM + Z + 3Y P )/(6 ∗∆y)

Zyy = (−Y 3M + 4Y 2M + 6YM − 20Z + 11Y P )/(11 ∗∆y2)

Zxy = (−3((Y 2MXM − 4YMXM + 3XM)/(2∆y))

−((Y 2M − 4YM + 3Z)/(2∆y))

+5((Y 2MXP − 4YMXP + 3XP )/(2∆y))

−((Y 2MX2P − 4YMX2P + 3X2P )/(2∆y)))/(6∆x)

Z = Res ∗ 2376∆x2∆y2

(B.40)
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xMmP = x2P + 3 ∗ xM − 5 ∗ xP + z

yMmP = y2M − 5 ∗ yM + 3 ∗ yP + z

xComb1 = 4 ∗ x2P − x3P + 11 ∗ xM + 6 ∗ xP − 20 ∗ z

yComb1 = 4 ∗ y2M − y3M + 6 ∗ yM + 11 ∗ yP − 20 ∗ z

Inner1 = 3 ∗ x2P + 9 ∗ xM − 15 ∗ xP + y2M + y2Mx2P

+3 ∗ y2MxM − 5 ∗ y2MxP

−4 ∗ (yM + yMx2P + 3 ∗ yMxM − 5 ∗ yMxP ) + 3 ∗ z

xyComb1 = xMmP ∗ yMmP

x2Comb = 216 ∗∆x2 + 6 ∗ xMmP ∗ xMmP

y2Comb = 216 ∗∆y2 + 6 ∗ yMmP ∗ yMmP

Inner2 = 12 ∗ yComb1 ∗ xMmP − 33 ∗ xyComb1

−11 ∗ yMmP ∗ Inner1

Inner3 = 12 ∗ xComb1 ∗ yMmP − 11 ∗ xMmP ∗ Inner1

bot = 1/(2376 ∗∆x2 ∗∆y2)

(B.41)
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∆y2Mx2P = −11 ∗ xyComb1

∆y2MxM = −33 ∗ xyComb1

∆y2MxP = 55 ∗ xyComb1

∆yMx2P = 44 ∗ xyComb1

∆yMxM = 132 ∗ xyComb1

∆yMxP = −220 ∗ xyComb1

∆y3M = −y2Comb

∆x3P = −y2Comb

∆y2M = 4 ∗ x2Comb+ Inner3− 11 ∗ xyComb1

∆yM = 6 ∗ x2Comb− 5 ∗ Inner3 + 44 ∗ xyComb1

∆x2P = 4 ∗ y2Comb+ Inner2

dz = −20 ∗ (x2Comb+ y2Comb) + Inner2 + Inner3

∆xP = 6 ∗ y2Comb− 5 ∗ Inner2

∆yP = 11 ∗ x2Comb+ 3 ∗ Inner3

∆xM = 11 ∗ y2Comb+ 3 ∗ Inner2

B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb1

+11 ∗ xyComb1 ∗ Inner1

(B.42)
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B.14 Linearization R

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (−3XM − Z + 5XP −X2P )/(6 ∗∆x)

Zxx = (11XM − 20Z + 6XP + 4X2P −X3P )/(11 ∗∆x2)

Zy = (Y P − YM)/(2 ∗∆y)

Zyy = (Y P − 2Z + YM)/(∆y2)

Zxy = (−3Zy + 4((Y PXP − YMXP )/(2∆y))

−((Y PX2P − YMX2P )/(2∆y)))/(2∆x)

Z = Res ∗ 792∆x2∆y2

(B.43)

xMmP = x2P + 3 ∗ xM − 5 ∗ xP + z

yMmP = yM − yP

xComb1 = 4 ∗ x2P − x3P + 11 ∗ xM + 6 ∗ xP − 20 ∗ z

yComb1 = yM + yP − 2 ∗ z

Inner1 = 3 ∗ yM + yMx2P − 4 ∗ yMxP − 3 ∗ yP

−yPx2P + 4 ∗ yPxP

xyComb1 = yMmP ∗ xMmP

x2Comb = 792 ∗∆x2 + 22 ∗ xMmP ∗ xMmP

y2Comb = 72 ∗∆y2 + 18 ∗ yMmP ∗ yMmP

Inner2 = 36 ∗ yMmP ∗ xComb1− 99 ∗ xyComb1

−33 ∗ Inner1 ∗ xMmP

Inner3 = 33 ∗ yMmP ∗ Inner1− 44 ∗ yComb1 ∗ xMmP

bot = 1/(792 ∗∆x2 ∗∆y2)

(B.44)
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∆x3P = −y2Comb

∆yMx2P = −33.0 ∗ xyComb1

∆yMxP = 132.0 ∗ xyComb1

∆yPx2P = 33.0 ∗ xyComb1

∆yPxP = −132.0 ∗ xyComb1

dz = −2.0 ∗ x2Comb− 20.0 ∗ y2Comb− Inner3

∆yM = x2Comb+ Inner2

∆yP = x2Comb− Inner2

∆xP = 6.0 ∗ y2Comb+ 5.0 ∗ Inner3

∆x2P = 4.0 ∗ y2Comb− Inner3

∆xM = 11.0 ∗ y2Comb− 3.0 ∗ Inner3

B0 = y2Comb ∗ xComb1 + x2Comb ∗ yComb1

−33.0 ∗ xyComb1 ∗ Inner1

(B.45)

B.15 Linearization F

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 4XM + 3Z)/(2∆x)

Zxx = (−X3M + 4X2M − 5XM + 2Z)/(∆x2)

Zy = (−3Z + 4Y P − Y 2P )/(2∆y)

Zyy = (2Z − 5Y P + 4Y 2P − Y 3P )/(∆y2)

Zxy = (−3((X2M − 4XM + 3Z)/(2∆x))

+4((Y PX2M − 4Y PXM + 3Y P )/(2∆x))

−((Y 2PX2M − 4Y 2PXM + 3Y 2P )/(2∆x)))/(2∆y)

Z = Res ∗ 8∆x2∆y2

(B.46)
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xMmP = x2M − 4 ∗ xM + 3 ∗ z

yMmP = y2P − 4 ∗ yP + 3 ∗ z

yComb1 = 4 ∗ y2P − y3P − 5 ∗ yP + 2 ∗ z

xComb1 = 4 ∗ x2M − x3M − 5 ∗ xM + 2 ∗ z

Inner1 = 3 ∗ x2M − 12 ∗ xM + 3 ∗ y2P + y2Px2M

−4 ∗ (y2PxM + 3 ∗ yP + yPx2M − 4 ∗ yPxM)

+9 ∗ z

xyComb1 = xMmP ∗ yMmP

xMmP2 = xMmP ∗ xMmP

yMmP2 = yMmP ∗ yMmP

x2Comb = 8 ∗∆x2 + 2 ∗ xMmP2

y2Comb = 8 ∗∆y2 + 2 ∗ yMmP2

bot = 1/(8 ∗∆x2 ∗∆y2)

(B.47)
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∆y2Px2M = −xyComb1

∆y2PxM = 4 ∗ xyComb1

∆yPx2M = 4 ∗ xyComb1

∆yPxM = −16 ∗ xyComb1

∆x2M = 4 ∗ y2Comb− 3 ∗ yMmP2 + y2Px2M(−3 + 4 ∗ yP )

−16 ∗ yP ∗ (y2PxM + yPx2M − 4 ∗ yPxM)

+y2P (69 ∗+10 ∗ x2M − 40 ∗ xM − y2Px2M

+4 ∗ y2PxM + 4 ∗ yPx2M − 16 ∗ yPxM − 30 ∗ z)

+12 ∗ (y2PxM − y3P − 2 ∗ yP + yPx2M − 4 ∗ yPxM) ∗ z

−3 ∗ z ∗ z − 2 ∗ (x2M − 4 ∗ xM)(2 ∗ y3P − 2 ∗ yP + 5 ∗ z)

∆y3P = −x2Comb

∆x3M = −y2Comb

∆y2P = 4 ∗ x2Comb+ 4 ∗ xComb1 ∗ yMmP

−3 ∗ xyComb1− xMmP ∗ Inner1

∆xM = (4/3) ∗ (10 ∗ xyComb1 + (3 ∗ (3 ∗ y2P + y2Px2M

−4 ∗ (y2PxM + 3 ∗ yP + yPx2M − 4 ∗ yPxM))) ∗ yMmP

+(−40 ∗ y2P + 12 ∗ y3P + 28 ∗ yP ) ∗ xMmP )− 5 ∗ y2Comb

∆yP = −40 ∗ x2 + 2 ∗ (−5 ∗ xMmP2− 8 ∗ xComb1 ∗ yMmP

+6 ∗ xyComb1 + 2 ∗ xMmP ∗ Inner1)

dz = 2 ∗ (x2Comb+ y2Comb) + 7 ∗ xyComb1

+(31 ∗ x2M − 12 ∗ x3M + 8 ∗ xM − 3 ∗ (y2Px2M

−4 ∗ (y2PxM + yPx2M − 4 ∗ yPxM))) ∗ yMmP

+(31 ∗ y2P − 3 ∗ y2Px2M + 12 ∗ y2PxM − 12 ∗ y3P

+8 ∗ yP + 12 ∗ yPx2M − 48 ∗ yPxM) ∗ xMmP

−9 ∗ (xMmP2 + yMmP2)

B0 = −y2Comb ∗ xComb1− x2Comb ∗ yComb1

+xyComb1 ∗ Inner1
(B.48)
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B.16 Linearization G

P1 = (1 + Z2
x) ∗ Zyy

P2 = 2 ∗ Zx ∗ Zy ∗ Zxy
P3 = (1 + Z2

y ) ∗ Zxx
Zx = (X2M − 4XM + 3Z)/(2∆x)

Zxx = (−X3M + 4X2M − 5XM + 2Z)/(∆x2)

Zy = (Y 2M − 4YM + 3Z)/(2∆y)

Zyy = (−Y 3M + 4Y 2M − 5YM + 2Z)/(∆y2)

Zxy = (((Y 2MX2M − 4Y 2MXM + 3Y 2M)/(2∆x))

−4((YMX2M − 4YMXM + 3YM)/(2∆x))

+3((X2M − 4XM + 3Z)/(2∆x)))/(2∆y)

Z = Res ∗ 8∆x2∆y2

(B.49)
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xMmP = x2M − 4 ∗ xM + 3 ∗ z

yMmP = y2M − 4 ∗ yM + 3 ∗ z

xComb1 = 4 ∗ x2M − x3M − 5 ∗ xM + 2 ∗ z

yComb1 = 4 ∗ y2M − y3M − 5 ∗ yM + 2 ∗ z

xyComb1 = xMmP ∗ yMmP

Inner1 = 3 ∗ x2M − 12 ∗ xM + 3 ∗ y2M + y2Mx2M

−4 ∗ (y2MxM + 3 ∗ yM + yMx2M − 4 ∗ yMxM) + 9 ∗ z

yComb2 = 5 ∗ y2M − 2 ∗ y3M + 2 ∗ yM − 5 ∗ z

x2Comb = 8 ∗∆x2 + 2 ∗ xMmP ∗ xMmP

y2Comb = 8 ∗∆y2 + 2 ∗ yMmP ∗ yMmP

Inner3 = y2Mx2M − 4 ∗ (y2MxM + 3 ∗ yM + yMx2M − 4 ∗ yMxM)

Inner4 = 3 ∗ (7 ∗ y2M − Inner3 + 4 ∗ (yM − y3M))

Inner5 = Inner4 ∗ z − 30 ∗ z ∗ z

−(y2M − 4 ∗ yM) ∗ (3 ∗ y2M + Inner3)

bot = 1/(8 ∗∆x2 ∗∆y2)

(B.50)
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∆y2Mx2M = −xyComb1

∆y2MxM = 4 ∗ xyComb1

∆yMx2M = 4 ∗ xyComb1

∆yMxM = −16 ∗ xyComb1

∆x2M = 4 ∗ y2Comb+ 2 ∗ (x2M − 4 ∗ xM) ∗ yComb2 + Inner5

∆y3M = −x2Comb

∆x3M = −x2Comb

∆y2M = 4 ∗ x2Comb+ 4 ∗ xComb1 ∗ yMmP

−3 ∗ xyComb1− xMmP ∗ Inner1

∆xM = −5 ∗ y2Comb− 4 ∗ (−8 ∗ xM ∗ yComb2

+2 ∗ x2M ∗ (5 ∗ y2M − 2 ∗ y3M + 2 ∗ yM − 5 ∗ z)

+Inner5)

∆yM = −5 ∗ x2Comb+ 2 ∗ (−8 ∗ xComb1 ∗ yMmP

+6 ∗ xyComb1 + 2 ∗ xMmP ∗ Inner1)

dz = 2 ∗ (x2Comb+ y2Comb)− 11 ∗ xyComb1

+(40 ∗ x2M − 12 ∗ x3M − 28 ∗ xM

−3 ∗ (3 ∗ y2M + Inner3)) ∗ yMmP

+(−9 ∗ x2M + 36 ∗ xM + 40 ∗ y2M − 3 ∗ Inner3

+4 ∗ (−16 ∗ yM − 3 ∗ y3M)) ∗ xMmP

B0 = y2Comb ∗ xComb1 + x2Comb ∗ yComb1

−xyComb1 ∗ Inner1

(B.51)
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Appendix C

High Resolution Images

This appendix contains high resolution images for select figures.

C.1 CFD Images for 2D Validation

This section contains high resolution copies of the images in Figure 3.5. Subplots a-d

are presented in Figures C.1 through C.4, respectively.

C.2 Surface Motion Images of 3D Wing

This section contains high resolution copies of the images presented in Figure 4.1.

The plots are grouped by time step; wherein the time steps from 0.000 through 0.875

are presented in Figures C.5 through C.12, respectively.
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Figure C.1: High Resolution, 2D Validation, t/T = 0.00
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Figure C.2: High Resolution, 2D Validation, t/T = 0.25
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Figure C.3: High Resolution, 2D Validation, t/T = 0.50
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Figure C.4: High Resolution, 2D Validation, t/T = 0.75
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Flow up

Flow left

Flow left

Figure C.5: High Resolution, 3D Motion, t/T = 0.000
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Flow up

Flow left

Flow left

Figure C.6: High Resolution, 3D Motion, t/T = 0.125
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Flow up

Flow left

Flow left

Figure C.7: High Resolution, 3D Motion, t/T = 0.250
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Flow up

Flow left

Flow left

Figure C.8: High Resolution, 3D Motion, t/T = 0.375
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Flow up

Flow left

Flow left

Figure C.9: High Resolution, 3D Motion, t/T = 0.500
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Flow up

Flow left

Flow left

Figure C.10: High Resolution, 3D Motion, t/T = 0.625
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Flow up

Flow left

Flow left

Figure C.11: High Resolution, 3D Motion, t/T = 0.750
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Flow up

Flow left

Flow left

Figure C.12: High Resolution, 3D Motion, t/T = 0.875
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