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ABSTRACT 

The overall goal of this research was to investigate a new class of mesoporous 

uranium oxide catalyst used to destroy a range of volatile organic compounds (VOes ), 

including aromatics and chlorinated organic compounds under conditions which are 

applicable for U.S. Department of Energy (DOE) facilities and U.S industries. 

Uranium oxides are known to have high efficiency and long-term stability when 

used to destroy volatile organic compounds (VOes) when compared with some of the 

commercial catalysts, such as precious metals, TiO2, and eo3O4 catalysts. Two key 

factors limiting catalytic activities of uranium oxides prepared by conventional methods 

are small surface area and pore size. To overcome these limitations, mesoporous 

uranium oxides dispersed on mesoporous oxide hosts were synthesized and tested for 

voe destruction efficiency. 

This research work consisted of synthesizing potential depleted uranium catalysts, 

as well as testing and structural characterization. A plug flow microreactor was built and 

used to measure the catalytic performance of toluene, chlorobenzene, and 

trichloroethylene (TeE) vs. catalyst temperature. These data result in so-called 'light­

off curves. Destruction efficiency generally increases with temperature. These VOCs 

were chosen as typical of those found in anticipated air pollution controls applications. 

The catalysts have been tested for the destruction of voes at space velocities of 

84,000 mlg- 1h· 1
• A gas chromatograph and a sampling mass spectrometer were used to 

measure conversion and reaction by-products. The X-ray diffraction (XRD), 

transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) adsorption-
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desorption isotherm surface area measurements were used to provide information about 
the compositions present in the catalyst. 

Catalysts were synthesized using a variety of methods, most notably a method 
that includes template-moderated co-synthesis of mesoporous oxides. Catalyst activity 
was improved by supporting the uranium oxide on silica. Dopants ( e.g., Cr, Co, K, Br, 
Fe, Ca, Mg, Cu, Pt, La, Ce, Sr) were added to the urania to improve the catalytic activity. 
Catalyst performance was compared with that of conventional catalysts. Further 
improvement was made by supporting uranium on titanium oxide. This co-assembled 
formulated catalyst was found to be competitive with noble metal catalysts for catalytic 
oxidation of VOCs and chlorinated VOCs. The variation in the U :Ti ratio indicates that 
optimal activity for oxidation of toluene, chlorobenzene, and trichloroethylene was 

obtained for U:Ti ratio of 1 :20 at calcinations temperature of 600 °C. It was stable to 

deactivation and operates effectively in the presence of large amounts of water. 
The gained experiences of this project can be used in the clean up of emissions 

from soil vapor extraction wells, which are in use to remove VOCs from ground water at 
DOE's Hanford and Savannah River sites. 

This work was conducted under the auspices of the U.S. Department of Energy's 
(EM-21) Depleted Uranium uses Research and Development Program. 
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CHAPTER ! 

INTRODUCTION 

One of the inadvertent consequences of the industrial age is the creation of waste 

products and byproducts, which are often released to the air, land or water. The sources 

of these emissions include automobiles, polymers, paints, process vents, process vent 

leaks, transfer operations, storage vessels, waste water treatment, and equipment leaks 

[ I ]. Volatile organic compound (VOC) abatement has gained recent attention due to a 

better understanding of the effects of releasing these compounds into the environment. 

Both the magnitude and hazards of emissions of toxic compounds have led to public 

health concern and recent government regulations to reduce emissions. 

Volatile organic compounds (VOCs) are the most common and significant 

atmospheric pollutants due to their toxicity and odorous nature [2]. They are defined as 

"any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, 

metallic carbides or carbonates, and ammonium carbonate, which participates in 

atmospheric photochemical reactions" [3]. If, however, the photochemical reactivity of 

an organic compound is negligible, it can be excluded from classification as a VOC. 

The Clean Air Act Amendments of 1990 (CAAA) changed the air quality 

regulations in the United States. A major component of the CAAA concerns the 

emissions of hazardous air pollutants (HAPs ). After the rules have been implemented by 

U.S Environmental Protection Agency (EPA), U.S. industries and U.S. Department of 

Energy must manage and modify their operations and emission control systems for off 



gas wastes consisting of complex volatile organic compounds to meet the regulatory 
challenges [ 4]. This title calls for a 90% reduction in the emissions of 189 toxic 
chemicals which are mainly voes, by 1998. 

Each year, approximately, 706000 tons of organic pollutants are discharged to the 
atmosphere from US alone and twice that of U.S are worldwide discharges [5]. 
Approximately, 70% of these compounds are voes. This release has been linked to the 
depletion of ozone layer [6] and production of ground-level ozone [7] and photochemical 
smog [8] .  

More than 2,500 soil and ground water plumes are contaminated with organic 
source solvents, such as alkanes, aromatics, and chlorinated organics compounds. The 
organic compounds are not readily degraded by microorganisms and thus persist in 
environmental media. Many technologies are available for the treatment of voes [9]. 
Pump-and-treat and vacuum-extraction techniques have been developed and are 
commonly used for remediating contaminated soils and ground water [ 10- 13]. 
Adsorption has been used widely by using zeolite or carbon type adsorbents which create 
considerable waste and the low gas hourly space velocity is a limiting factor for the 
voes adsorption system ( 14, 15), and also the small pore size of zeolite materials could 
be problematic when large waste polymer molecules are emitted with voes in the real 
industries. Thermal oxidation or incineration [ 16, 17] is very common technique in 
which requires very high temperature up to 1000 °e. This is a fuel intensive technique 
with small control over the conditions of products which may result the formation of 
NOx, dioxins and furans. Therefore, it is very important to establish an effective method 
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to abate these organic compounds to reduce the em1ss1on of pollution without 

overwhelming economic growth. 

In contrast, catalytic oxidation is a promising method for energy consumption 

and has a better temperature control over the products. The catalytic reaction occurs at 

the fluid-solid interface and a large surface area is very helpful in attaining a significant 

reaction rate. This surface area is provided by many fine pores in a porous structure and 

these pores provide the necessary area for high rate of reaction [18]. Another distinct 

advantage of catalytic oxidation is that it can operate with very dilute pollutant 

concentration ( < 1 % ), which can be thermally combusted without additional fuel. 

Several alternative and clean methods, such as catalytic oxidation over noble 

metals and transition metal oxides are proposed in the literature for destruction of voes 

[ 19-22]. Supported noble metal catalyst, primarily platinum and palladium, show high 

combustion activity for the oxidation of many voes; however, they are relatively 

expensive, susceptible to poisoning even at low contaminant levels, and in some cases 

show poor stability. Metal oxide catalyst (such as TiO2 and eo3O4) can tolerate 

relatively high levels of poisons; however, the activity shown by these oxides is 

generally lower than precious metal catalysts (23, 24). It is therefore recognized that the 

slow reaction kinetics and low destruction efficiency of voes have been limiting steps 

to remediate voe-contaminated soils and groundwater or other mixed waste stream. 

A high-activity oxide catalyst that can operate at a relatively low temperature 

( <450 °e) is highly desirable. Uranium oxides based catalysts are thermally stable, 

destroy low concentrations and mixtures of voes and lifetime studies indicate that 

deactivation during oxidation of chlorinated of voes did not occurre [24, 25]. Uranium 
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oxide based catalysts have also shown relatively high activity for carbon monoxide 
oxidation [26] . Two key factors limiting catalytic activities of uranium oxides prepared 
by conventional methods are small surface area and pore size [27] . The porous material 
is the best candidate as supports for dispersed catalysts. Ordered mesoporous materials 
are one of the most exciting discoveries in the field of materials synthesis over the past 
decade [28]. The most interesting feature of mesoporous materials is its regular pore 
structure, which consists of a hexagonal array with a pore dimension of 2-10 nm (29). 
This property offers a very high surface area with very regular pore size dimensions 
allowing the deposition of active phases, such as transition metal complexes and oxides, 
and the transport of organics in catalytically active sites [30] . 

Previously, uranium oxides have been considered as a waste in our environment; 
however, here we show that we can prepare catalysts made of uniform U308 nanocrystals 
incorporated into a mesoporous oxide matrix, which result in high activity for the 
destruction of volatile organic compounds. This can be effectively used to provide a 
solution to a major problem affecting our environment such as VOC, including alkanes, 
aromatics, and chlorinated organic compounds under industrially relevant flow rates and 
temperatures. Since uranium oxides are nonvolatile and catalytic reactions only involve 
gas/solid heterogeneous reactions, there is no potential risk of leaching radioactive 
materials into the environment during thermal reaction. 
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1 .1  Problem Statement and Research Objectives 

The overall goal of this research is to investigate a new class of mesoporous 

uranium oxide catalyst to destroy a range of volatile organic contaminants, including 

alkanes, aromatics, and chlorinated organic compounds, through the reutilization of 

depleted uranium. This study is motivated by the high efficiency and long-term 

performance of uranium-oxide-based catalyst in degrading many contaminant organic 

substrates as compared with some precious metal catalysts, and by the needs for efficient 

disposal or reutilization of spent uranium at many DOE facilities. Current uranium-oxide 

catalyst ( e.g. U3Os), prepared by conventional solid-state syntheses, have very small 

surface area (<1 m2/g). A large surface area is essential to increase the surface­

adsorption capacity of VOCs on catalysts, which is a pre-condition for any efficient 

heterogeneous catalytic reactions. Furthermore, conventional uranium-oxide catalysts are 

basically non-porous materials, implying that the bulk of the uranium-oxide catalysts are 

not involved in catalytic reactions because they are inaccessible to reactant molecules. 

Accordingly, any increase in surface area will greatly increase the catalytic efficiency of 

the uranium oxides in the destruction of VOCs. Using co-assembly synthesis 

methodology, our specific objectives are as follows: 

• Synthesize the mesoporous uranium oxide (U3Os) and mesoporous supports 

( silica, titania) doped with uranium compounds through a novel surfactant 

template synthetic method. 

• Characterize the mesoporous uranium oxide (lhOs) and uranium oxides 

supported by mesoporous materials (e.g. silica, titania). 
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• Determine the kinetics, mechanisms, pathways, and rate-limiting steps of the 
surface catalyzed thermal oxidation processes on the mesoporous uranium oxide 
and mesoporous hosts loaded with uranium oxides. 

1.2 Thesis Organization 

This thesis is organized into eight chapters. After this introductory chapter, 
Chapter 2 presents a review of pertinent literature. Basic concept and fundamentals in 
catalyst preparations are described in chapter 3. Experimental setup and procedures, 
catalyst preparations are described in Chapter 4. Theoretical considerations such as gas 
adsorption on solid, classification of adsorption isotherm and adsorption hysteresis are 
presented in chapter 5. Results and discussion will cover catalyst activities (BET, XRD, 
and Mass Spectrometer), effect of VOCs concentration, kinetics and mechanism. This 
will be presented in chapter 6. Summary and conclusions are presented in chapter 7. 
A venues for future works are suggested in chapter 8. 

6 



CHAPTER 2 

REVIEW OF PERTINENT LITERATURE 

This chapter provides an overview of end-of-pipe abatement technologies for 

VOCs. For each technology, the overview includes basic operating theory, general 

applicability issues, advantages, and disadvantages. 

2. 1 Pump and Treat Remediation 

Pump and treat is one of the most widely used groundwater remediation 

technologies. Groundwater contaminated with dissolved organic contaminants can be 

pumped out of the aquifer using a series of extraction wells and be treated on the surface 

of the ground to remove the contaminants. The treated groundwater can either be 

returned to the pumped aquifer, or dispose of it off site. Hence, this method is referred to 

as pump-and-treat [31]. The pump-and treat remediation approach is used at about three­

quarters of the Super-fund sites where ground water is contaminated and most sites where 

cleanup is required by the Resource Conservation and Recovery Act (RCRA) and 

National Research Council (NRC). 

Pump-and-treat systems are used primarily to control the movement of 

contaminated ground water, preventing the continued expansion of the contaminated 

zone and reduce the dissolved contaminant concentrations in ground water sufficiently 

that the aquifer complies with cleanup standards and restore the aquifer [33]. The major 

advantage of pump-and-treat is removing the contaminated ground water with a variety 
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of dissolved materials, including VOCs, SVOCs, fuel, UXO (i.e., explosive compounds) 
and dissolved metals. However, this method suffers from serious disadvantages, due a 
series of subsurface processes. One of the major disadvantages of pump and treat is that 
the degree of contaminant removal is highly dependant on the chemical nature of the 
contaminant and the subsurface geology. Additional factors come into play when 
debating the possible use of pump-and-treat for aquifer remediation. Remediation by 
pump-and-treat is a slow process and cleanup times are often very long [34]. 

2.2 Soil Vapor Extraction 

Soil vapor extraction (SVE), also known as volatilization or vacuum extraction, is 
an effective technique in removing of volatile organic compounds (VOCs) and certain 
semi-volatile organic compounds (SVOCs) found in vapor-phase of petroleum 
contaminants from the unsaturated (vadose) zone [35]. SVE consists of a system of small 
diameter vertical wells and lateral trenches linked to piping network that ends in a 
vacuum pump at the wellhead. Soil vapor extraction works by creating negative pressure 
gradients in a series of zone within the unsaturated soil. This negative pressure causes a 
subsurface airflow. The air in the soil is replaced with fresh air that strips the vapor 
phase hydrocarbons from spaces between soil particles in the vadose zone [36]. The 
extracted vapors are treated, as necessary, and discharged to the atmosphere or possibly 
reinjected to the subsurfaces by applicable state laws. Some of the factors that determine 
the effectiveness of SVE are: Temperature, depth to groundwater, soil moisture, soil 
porosity, and volatility of the contaminant [37]. The major advantages of SVE is the 
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performance and availability of equipment with minimal disturbances to site operations. 

It can be applied at sites with competitive cost and combined with other technologies 

such as charcoal adsorption or catalytic oxidation. It is effective only to treat 

unsaturated-zone soils and concentration reductions greater than 90% are difficult to 

achieve. Soil with high moisture requires higher vacuum, hindering the operation of SVE 

system. SVE will not remove heavy oils, metals, PCBs, or dioxins. Air emission permits 

are generally required. 

2.3 Thermal Desorption 

Thermal desorption is a physical separation process, not as a form of incineration 

[38]. Thermal desorption systems are made up of three parts: the pretreatment and 

. material handling system, the desorption unit, and the post-treatment sytems. 

Pretreatment and material handling system is used to remove large blocks and foreign 

objects. In the desorption unit system, soil is heated to volatize water, organic 

contaminants and certain metals. A carrier gas or vacuum system transports vaporized 

water and organics to the desorption unit system. The chamber temperatures and 

residence time aims to volatize the contaminants but not to oxidize them. Offgas from 

the desorber is usually processed to take out particulate matter in the gas stream after the 

desorption step. The vaporized contaminants in this offgas requires further treatments. 

Two common thermal desorption designs are the rotary dryer and thermal screw 

conveyor. Rotary dryer is cylindrical in shape, arranged horizontally and rotates around 

its axis. In thermal screw units, screw conveyors or hollow augers are used to transport 
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the medium through an enclosed trough. Hot oil or steam circulates through the auger to 
indirectly heat the soil. 

Based on the operating temperature of the desorber, thermal desorption processes 
can be categorized into two groups: high temperature thermal desorption (HTTD) and 
low temperature thermal desorption (L TTD). In high temperature thermal desorption, 

wastes are heated to 320 to 560 °c. HTTD is frequently used in combination with 

incineration, solidification/stabilization, or dechlorination, depending upon site-specific 
conditions. In low temperature thermal desorption, wastes are heated to between 90 and 

320 °c. This is a full-scale technology that has been proven successful for remediating 

petroleum hydrocarbon contamination in all types of soil. 
Treatment and control of air emissions from thermal desorption operations is 

extremely important consideration. There should be no emissions of metals, certain 
polycyclic aromatic hydrocarbons and dioxins/furans. Mercury emissions are very 
difficult to control, and using an afterburner is unaccepted. Dust and organic matter in 
the soil increase the difficulty of treating off-gas. Clay and silty soils and high humic 
content soils increase reaction time as a result of binding of contaminants [39]. 

2.4 Adsorption 

Adsorption has been used throughout history as a water treatment process since 
biblical times. This process involves mass transfer of a molecule from the gas or liquid 
phase onto the surface of a solid substrate. The ancient Hindus filtered their water with 
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charcoal and in the thirteen century, carbon materials were used in a process to purify 

sugar solution. 

Two types of adsorption phenomena have been known: physical adsorption takes 

place when intermolecular forces (Van der Waals) attract and hold the gas molecules to 

the solid surface and it is similar in character to condensation of vapor molecules onto a 

liquid of the same composition [40]. Chemisorption occurs when a chemical bond forms 

between the gas molecule and the solid surface. The removal of a chemisorbed 

component is more difficult and requires more energy input. A physically adsorbed 

molecule can be removed readily from the adsorbent surface due to its weaker bond. 

Physical adsorption on activated carbon is of particular interest here for treatment of 

voes. 

Carbon adsorption is a remediation technology in which pollutants are removed 

from air by means of physical adsorption. Carbon is activated for this purpose by 

processing the carbon to create porous particles with a large surface area of 300 to 2,500 

m2 per gram of carbon that attracts and adsorbs organic molecules as well as metal and 

inorganic molecules. It is porous, and the size of the pores is important in determining 

the effectiveness of the adsorbent [ 41]. Contaminated air is passed through one or more 

vessels containing activated carbon. Contaminants sorb onto the surfaces of the activated 

carbon grains. The activated carbon attracts and adsorbs organic and inorganic 

molecules. When the concentration of contaminants in the air exiting the vessels exceeds 

a certain level, the carbon must be replaced. Spent carbon can be regenerated in place; 

removed and regenerated at an off-site facility or disposed [42, 43]. Some degradation 

products such as vinyl chloride and smaller molecules are not sorbed well, and they must 
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be monitored carefully. Spent carbon transport may require hazardous waste handling. 
Relative humidity greater than 50% and elevated temperatures from soil vapor extraction 

(SVE) pumps greater than 3 8 °C reduces carbon capacity. 

2.5 HEP A Filters 

High Efficiency Particulate Attenuation (HEPA) filters are used to prevent the 
emissions of particulates and mists into the environment. Filters are often made of 0.013-
inch thick glass fiber materials. These filters are efficient to capture 99.97% of 0.3 
micron diameter ·aerosol particles. Water is the major problem for HEPA. Usually, a 
preheater is installed in the air ducts of waste stream to prevent condensation which 
damage the HEP A. Construction of HEP A with sintered stainless steel will provide a 
filter which is not subject to water damage and can be installed with built in water jets to 
wash the filter to reduce radiation and to eliminate the dirt accumulation. Preliminary 
tests showed that the use of such filters gives the same efficiency as filtration with a 
fiberglass filter medium. This medium resulted in data indicating that it was efficient to 
capture 99.97% of aerosol with 0.3 micron in diameter. Test data indicated that removal 
of water from the clean side of the filter is required_ for normal filter operation. Water on 
the clean side of filter flows by gravity and air movement out of the bottom of the 
cylindrical filter. Using a vacuum pump, clean air will be drawn out of the cylindrical 
filter. Water sprayed on the dirty side of a vertical filter flushes the accumulated aerosol 
down the dirty side. One of the advantages is the formation of a very thin filter medium 
which stops particle transmission at the exposed surface of the medium. The collected 
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particles can be easily removed from the relatively smooth surface compared to a thicker 
medium, such as wire mesh. In addition, the stainless steel construction makes the filter 
resistant to mechanical damage, high pressure, and temperature. On the other hand, 
washing the dirty side of filter increases the waste volume. 

2.6 Electro-Filtration 

The removal of sub-micron particles from processed waste streams is ineffective 
and requires a significant amount of energy. Several reports on investigations of 
electrically enhanced aerosol filtration in fiber filters have been published. Silverman 
[ 44 ] ,  Thomas and Woodfin [ 45] empirically showed that fiber filtration efficiency was 
enhanced by the application of an electric field. They used a bank of metal screens [ 44] 
and several layers of nylon hosiery [ 45] placed between high voltage electrodes as a 
filter. They measured filtration efficiency with and without electric field. The filtration 
efficiency was much higher with electric field. 

Bogardus [ 46] and Fielding [ 4 7] studied the performance of commercial fiber 
filters when placed in an electric field. Their experiment showed great improvements of 
filtration efficiency over non-electrified filters. 

Granular filtration ( deep-bed filtration) is mechanically simple and consumes 
little energy. However, it relies principally on the mechanisms of interception, 
sedimentation, diffusion, inertia, and surface forces, which yield low collision efficiency 
between particle and collectors [48] . It is well known that the efficiency of aerosol 
filtration in fiber mats [ 44] and in granular beds [ 49] can be improved by the application 
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of an electric field to the filter media. Filtration efficiency greater than 99% are repoted 
in the literature [50]. 

A granular electro filter is simply a bed of coarse particles ( diameter ::::: 1 mm), with 
electrodes arranged so that a strong electric field can be applied to the bed. The electric 
field polarizes the packing granules, and the combined electric field causes the charged 
suspended particles to deviate from the fluid streamline and be collected on the 
oppositely charged surface of the granules. In a different concept of electrofiltration, the 
electric charge is applied directly to the granules [51 ] .  In this case, the granular 
electrofilter operates much like an electrostatic precipitator, but with more complex flow 
paths. This type of electrofiltration is more suitable with less densely packed beds, such 
as fiber filled beds. The filter media is also restricted to a conducting medium. 

Applied electric field across fibrous filters have enhanced performance with gas 
filtration, and successful mathematical analyses have been presented [52, 53]. There are 
two differences between fibrous and granular filters: first, the geometry of the collecting 
solids, and second, in fibrous filtration of gaseous streams, the drag on suspending 
particles is more likely to be dominated by inertial rather than viscous forces. 

Local electric fields are essentially in the direction of the applied field and 
important deviations occur near the granule or fiber packing. If the granules/fiber 
packing are non-conducting, the field lines will be diverted around the granules or fibers. 
If the packing is a better conductor than the fluid, the field lines will be diverted toward 
the granules or fibers. Since the electric forces on the particulates act along the electric 
field lines, it is desirable to have the lines diverted into (rather than around) the granules 
or fibers. This is · similar to the concept of using conducting granules or fibers which can 
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be considered to have a very high dielectric constant than the fluid. When both fluid and 

packing are conductors, it is desirable for the granules or fibers to have a higher 

conductivity than the fluid. In the case, the packing materials are highly conductive, 

more or less packed fibers may be needed to prevent unnecessary current through the 

bed. Cleaner granules could be obtained by vigorously backwashing, but the particles 

could be obtained in a more concentrated suspension by slow backwashing when the field 

is off [54]. 

In summary, many parameters can have a major effect on the electric filtration 

process such as geometry of packing and density, orientation and strength of the electric 

field, particle charge, dielectric constant and conductivity of the packing material and 

fluid, and particle size. It is in our best interest to take all of the major parameters into 

account in order to achieve the highest separation efficiency. 

2. 7 Thermal Oxidation 

Thermal oxidation or thermal incineration, is the process of oxidizing combustible 

materials in the exhaust gas from air strippers and SVE system by raising their 

temperature above the autoignition point in the presence of oxygen and maintaining them 

at high temperature for sufficient time to complete combustion to CO2 and H20. Time, 

temperature, turbulence, and the amount of oxygen affect the rate and efficiency of the 

combustion process. 

Thermal oxidation units are typically single chamber, refractory-lined oxidizer 

equipped with a propane or natural gas burner, a fan to move volatile organic compound 

(VOC) laden air; a filter-mixer to mix the VOC-laden air and a stack. Thermal oxidizers 
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are often equipped with heat exchangers where combustion gas is used to preheat the 
incoming contaminated gas. Operating temperatures range from 760 to 87 1 C, and gas 
residence times are typically 1 second or less. Thermal oxidation units typically are used 
to treat halogenated and nonhalogenated VOCs and semivolatile organic compounds 
(SVOCs) and polychlorinated biphenyls (PCBs) in a gas stream. Thermal oxidation is 
most efficiently applied for treating off-gass containing 1 ,000 to 5000 ppmv of 
combustibles. 

In general, thermal oxidizers are not well suited to exhaust streams with low 
concentration (> 1000 ppmv) and highly variable flow rates because of the reduced 
residence time and poor mixing resulting from high flow rates that decrease the 
completeness of combustion. This causes the combustion chamber temperature to fall, 
decreasing the destruction efficiency. Thermal combustion system usually has very high 
capital cost [55] . 
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CHAPTER 3 

FUNDAMENTALS IN CATALYST PREPARATION 

The objectives of this chapter are to develop an understanding of what it can be 

expected to do or not to do by a catalyst, catalyst organization within industrial and 

academic fields, and classification according to the preparation procedure. We start the 

discussion with a definition: A catalyst is a substance that increases the rate at which a 

chemical reaction approaches equilibrium without itself becoming permanently involved 

in the reaction [56]. 

Enzymes Catalysis is involved the application of enzymes for biochemical 

reactions. Enzymes are protein molecules of colloidal size and they are between the 

molecular homogeneous and the macroscopic heterogeneous catalyst. They are 

characterized by tremendous efficiencies and selectivities [57]. 

Homogeneous catalysis concerns processes in which a catalyst is the same phase 

as the reactants and products [58] . An example of homogeneous catalysis is the 

industrial Oxo process for manufacturing normal isobutyl-aldehyde. It has propylene, 

carbon monoxide, and hydrogen as the reactants and a liquid-phase cobalt complex as the 

catalyst. 

Heterogeneous Catalysis involves more than one phase; usually solid catalysts are 

used with gaseous or liquid reactants, sometimes both. Much of the benzene production 

in US is manufactured from the dehydrogenation of cyclohexane using platinum-on­

alumina as the catalyst. The heterogeneous catalytic reaction occurs at or very near the 
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fluid-solid interface [ 18]. A heterogeneous catalyst is a composite material, characterized 
by: (a) the active species, physical and/or chemical promoters, and supports; (b) shape; 
( c) size; ( d) pore volume and distribution; ( e) surface area. They are convenient to use 
commercially. Easily prepared solid catalyst pellets, packed in tubes through which 
reactants flow, satisfy process requirements for simple construction and dependable 
operation. Majority of industrial catalytic processes adopt this approach. 

For many years, the development and preparations of heterogeneous catalyst 
were considered more as alchemy than science [59], with the predominance of trial and 
error experiments. However, this approach is expensive, time-consuming, does not offer 
assurances on the final results and discourages oscillation between catalysis and other 
related sciences, such as analytical or solid state chemistry, spectroscopy, etc. Thus, it is 
not surprising that catalysis followed an isolated route up until the 1070, when the idea of 
scientific bases for the preparation of catalysts began to develop [60], with significant 
incorporation and overlapping between the different sciences. 

The wide number of variables in preparing heterogeneous catalysts can be 
reduced to a series of elementary steps, which present quite strongly marked analogies 
from one catalyst to another, and may be described in a general way. It must be noted 
that all these steps may not always be required, since a new catalyst may consist only of 
minor modifications of an existing catalyst. A wide ranging approach is always 
n�cessary. However, all the preparation steps must be considered even though scale-up 
may not be required. 

The fundamental aspects in the preparation of heterogeneous catalysts starting 
from catalyst design up to the catalyst in its final form are briefly described, with focus 
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on the key factors in each preparation step. The main properties of mesoporous uranium 
oxide based catalysts and their preparation methods are also reported, considering their 
relevance for environmental applications. 

3.1 Catalyst design 

The design of a catalyst covers all aspects from choice of the active phases to the 
method of forming particles. It can be rigorous and detailed, starting from fundamentals 
to get the best catalyst for a new process, however, in many cases the design of a new 
catalyst is only an improvement and structural modification of an existing industrial 
catalyst [61, 62, 63, 64, 65] . The procedure may be difficult but is a fairly 
straightforward application of many principles as mentioned earlier. Addition of 
promoters may modify the catalyst structure, or improving the stability and enhance the 
catalytic reactions to give better activity or selectivity. However, the nature of the active 
species is always the most important factor. The optimum catalyst is the one that 
provides the necessary combination of properties such as activity, selectivity, lifetime, 
ease of regeneration and toxicity at an acceptable cost. 

3.2 Methods of Catalyst preparation 

Successful preparation of the catalysts can proceed through a series of mysterious 
steps, or unit operations, which present marked analogies and can be described in a 
general ways [66, 67] . Most of catalysts are either a finely divided metal supported on a 
carrier such as alumina or silica, or a metal oxide either on a carrier or unsupported. 
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Either of two types of processes are named precipitation and impregnation method for 
making the catalysts. 

3.2.1 .  Precipitation 

This method involves the precipitation of a solid from a liquid solution, as either a 
precipitate or gel which is a precursor and its nature determines the structure and 
properties of the final solid catalyst. The precursor may be a crystalline or a gel. The 
precipitation of a crystalline solid can be divided into three steps: Supersaturation, 
nucleation and growth. In the supersaturation region, the system is unstable and 
precipitation occurs as a result of any small perturbation. Supersaturation is reached by 
means of chemical process ( addition of bases or acids) or physical transformations 
(change in temperature). Formation of the solid phase occurs in two elementary steps: (i) 
nucleation, and (ii) growth or agglomeration of the particles. Under conditions of high 
supersaturation, the rate of nucleation is much higher than the rate of crystal growth and 
leads to the formation of numerous but small particles. In this condition amorphous 
precipitates can be obtained [67, 68, 69]. 

Precipitation is one of the most widely employed preparation methods and may be 
used to prepare either single component catalysts and supports or mixed catalysts. 
Usually, catalysts with specific properties such as the nature of the phase formed, 
chemical composition, purity, particle size, surface area, pore size, etc., as well as 
downstream processes ( drying, palletizing or calcinations) are desired. The PH of final 
solution plays a major role in the final product and it has to be adjusted and kept constant. 
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Hydroxides and carbonates are the preferred precipitates because of their low solubility, 
easy decomposition and minimal toxicity and environmental problems [70] . 

3.2.2 Sol-Gel Process 

The sol-gel process refers to formation of an interconnected three dimensional 
network by hydrolysis and condensation of metal alkoxide precursors. Sol-gel method . is 
a homogeneous process and it has several promising advantages over precipitation. 
Many different products have been prepared using sol-gel techniques including micro and 
mesoporous materials, mixed oxides, composite powders and ceramic oxides [71]. 

Four main steps are identified in sol-gel preparation: formation of a hydrogel, its 
ageing, removal of solvent and heat treatment. Hydrophilic colloidal solutions are 
formed of micelles that remain separated because of electrical charges on their surfaces 
and in the surrounding solution. If the charge is high, particles effectively repel one 
another and avoid contact. If it is low, then thermal motion leads to collision and 
coalescence. The hydrogel formation (gelation) depends on the micelle concentration, 
temperature, ionic strength of the solution and especially the pH. With low pH acid 
solutions, the equilibrium is driven toward positive surfaces. The surface becomes less 
positive and finally negative as the pH increases. The chemistry of the processes can be 
expressed as follows: 
- M - OR + H

2
O � -M - OH + R - OH 

- M - OH+ XO - M � -M -0 - M + X - OH 

2 1  

(hydrolysis) 
( condensation) 

(3 . 1 )  

(3 .2) 



where X can be either H or alkyl group R. However, this description oversimplifies the 
overall process because it does not represent the nature of the intermediates and end 
products. The two key factors are the relative rates of hydrolysis and condensation, due 
to their impact on the properties of the product [72, 73]. 

3.2.3 Impregnation 

Impregnation known as ' incipient wetness' is the simplest and most direct method 
of deposition (74). The object is to fill the pores of inorganic supports with a solution of 
metal salt of sufficient concentration to give the correct loading. The impregnation 
technique requires less equipment since the filtering and forming steps are eliminated. It 
is the preferred process 'in preparing supported noble metal catalysts for which it is 
usually economically desirable to spread out the metal in as finely divided a form as 
possible. The supported material may be prepared in a variety of ways, but all suffer 
major problems: (i) no control of the location of catalytic particles on support surfaces, 
(ii) potential aggregation of particles, and (iii) poly-dispersion of particle sizes. Large­
particle-size distributions limit the tenability and selectivity of the nano-particle catalysts 
and make it difficult to correlate experimental test results with particle sizes. The 
particles isolated on external surfaces of the supports are susceptible to aggregation, 
which eventually destroys the ultra-dispersion and catalytic efficiency [75]. The 
concentration profile of the impregnated compound depends on the mass transfer 
conditions within the pores during impregnation and drying [62, 70, 76] . 
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Drying is necessary to crystallize the salt on the pore surface. If the rate of drying 
is too slow, evaporation occurs at the meniscus, which retreats down the pore. Some salt 
deposition occurs but most of the solute merely concentrates deeper in the pore. After 
crystallization, the salt is located at the bottom or center of the particle. When the drying 
rate is too fast, a temperature gradient occurs and the solutions are forced outside the 
pores. The ideal situation is when crystallization is slow enough to form uniform 
deposits. 

Calcination is very important. Crystallized salt redisolves when the dehydrated 
catalyst is exposed to moist environments. Calcination converts the salt to an oxide or 
metal and immobilizes the distribution. 

3.2.4 Ion-Exchange Reaction Method 

The ion-exchange reaction has been extensively used to prepare novel intercalate 
materials [75] . It consists of replacing an ion in an electrostatic interaction with the 
surface of a support by another ion species [76] . The general reaction mechanism can be 
written in terms of: 

(3 .3) 

where (S-O) is a surface anionic group in inorganic materials, such as the galleries of 
pillared materials, Mt a singlely-charged cation in as-synthesized materials, and M;+ 

new cationic species needed to be intercalated into the above materials. This type of ion­
exchange reaction has been previously used to organize CdS and ZnS clusters in 
crystalline zeolites with diameter less than 10 A0 [77, 78]. Ordered mesoporous materials 
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synthesized by the use of cationic surfactants have the same structural feature as those of 
ionic intercalate materials. In this case, the group of (S-0-) corresponds to the SiO- of the 
mesopore surface, while M+ is a cationic surfactant ion. The cationic surfactant ions are 
organized in a form of a cylindrical micellar structure with hydrophilic positive ends 
coulombically interacting silica pore surfaces. The weak coulombic interaction can be 
easily broken or replaced by abother cation through ion exchange (see eqn. 3 .3) . In fact, 
this exchanging reaction has been employed to remove surfactant molecules from the 
ordered inorganic materials synthesized through surfactant templating method [79]. 

3.2.5 Co-Assembly Synthesis Method 

The methodology in this synthesis is based on the i+M-s+ scheme for the synthesis 
of mesoporous supports in an acid medium [80, 8 1 ]. The positively charged surfactant 
molecules (SJ, such as protonated block copolymers, interact with positively charged 
inorganic oxide precursors (IJ through a negatively charged mediator M-. The mediator 
M- in our case is the anionic complex of uranyl, depending on precursor uranium 
oxidation states. Nitric acid is used in our synthesis to increase the solubility of uranyl 
nitrate in the sol-gel inorganic precursor solution such as tetraethylorthorsilicon (TEOS). 
The nitrate complexes of uranyl ions are known to be very stable and dominant species 
under high nitrate concentration in several different solvent systems [82]. Their superior 
location at the interface between silica and surfactants may prevent excessive disruption 
of the .silica wall during the formation of mesostructure. 
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3.2.6 Ionic-Adsorption Method 

Adsorption is an excellent method for depositing of a precursor solution on the 

solid support. The term adsorption is used to describe all processes where ionic species 

from aqueous solutions are attracted electrostatically by charged sites on a solid surface. 

Adsorption is cationic or anionic depending on the surface properties. Zeolites are strong 

cationic exchangers, silica is a weak cationic adsorber, alumina adsorbs both cations and 

anions weakly, magnesia is a strong anion adsorber and carbon prefers to form charge­

transfer complexes with electron donation but also weakly adsorb cations [83]. 

As an example, chloroplatinic acid, H2PtC16, a commonly used platinum reagent, 

is strongly adsorbed on alumina or activated carbon but not on silica gel. Its application 

to alumina by the incipient-wetness method leads to the deposition of a thin shell of 

platinum on the outer portions of the particle. To obtain a more uniform dispersion, the 

adsorptivity of PtCl !- ions may be reduced by competitive adsorption by adding nitric or 

hydrochloric acid to the solution, resulting in a more uniform deposit. Alternatively, 

platinum could be applied to alumina as Pt(NH3)4Ch, in which case platinum is in the 

form of a cation. It is then less readily adsorbed on alumina, but more strongly adsorbed 

on silica gel. If a halogen-free catalyst preparation is desired, a compound such as 

platinum diaminodinitrite, Pt(NH3)2(N02)2, may be used. It is also possible to embed the 

catalytically active material as a layer slightly inside the catalyst particle by adding an 

organic acid such as citric acid to the impregnation solution [84]. Such a structure may 

be desired for prolongation of catalyst life in an application where poisons are deposited 

25 



on the ouside surface of a porous catalyst support. An example is supported platinum 

catalysts for oxidation of pollutants in automobile engine exhaust. 

3.3 Hydrothermal Treatments 

Hydrothermal treatments refer to treatments of precipitates, flocculates or gels 

carried out at low temperature such as 300 °C, under ageing or ripening in the presence of 

the mother liquor [85] . The variables for a given solid are pH, temperature, pressure, 

time and concentration. The main difference between ageing and hydrothermal 

treatments regards the reaction conditions ( such as T, P and time), ageing being 

performed at room temperature and pressure for longer times. All textural or structural 

hydrothermal transformations follow the thermodynamic laws and thus proceed toward a 

decrease in free energy of the system. Increasing attention has been devoted in the last 

decades to the synthesis of zeolites and mesoporous materials, in which the original 

amorphous gels crystallize in hydrothermal conditions around different templating agents 

[86] . Most hydrothermal treatments are performed in the presence of a liquid phase 

(mother liquor); however they also include the steam stabilization procedure of Y zeolites 

[87]. 

3.4 Solid-Phase Recovery 

Separation of the solid phase from the mother liquor can be performed by 

decantation, filtration and centrifugation, followed by washing with distilled water to 

remove completely the mother liquor and eliminate impurities [ 62, 68] . The separation 
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operations are easy for crystalline precipitates, difficult for flocculates and useless for 

hydrogels. Choice of the separation method depends on the particle size of the solids, 

since for example, small particles may require filtration or centrifugation. When washing 

flocculates, problems may arise since removal of counterions reverts flocculates to sol, 

thus care must be taken not to wash too much or allow the settling time to become too 

long. 

3.5 Thermal Treatments 

The thermal treatments of catalysts include drying, calcinations and activation 

[56]. Drying is necessary to remove the large volume of water in the hydrogel. Drying 

occurs through evaporation of moisture from the outside surface of the hydrogel that 

contains up to 90% water. The mass transfer during drying is controlled by temperature, 

relative humidity, flow rate of air over surface, and size of the filtrate. The process 

continues until over 50% of the moisture content is removed and the obtained solids are 

called xerogels. Continued moisture loss occurs with a declining rate, in which 

evaporation is controlled by capillary forces. The saturation point decreases as pores 

becomes smaller and evaporation slows until water is forced into larger pores by 

concentration gradients. If removal of moisture is blocked by smaller pores, an internal 

pressure of steam develops and the structure collapses, with loss of pore volume and 

surface area. High temperature gradients in the sample must be avoided. Gel breakage 

may be reduced by lowering the temperature gradient, increasing the relative humidity of 

the drying medium or decreasing the air flow through the gel bed [89]. Vacuum drying 

such as rotary, lamp-heated evaporator at lower temperature is a satisfactory laboratory 
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device. Dried xerogels encapsulated in fine pores or chemically bound to the oxide. At 
this state, it is easier to form the material into pellets and extrudates. 

Calcination is further heat-treatment beyond drying without the formation of a 
liquid phase. It is carried out in air at temperatures higher than those used in the catalytic 
reaction or catalyst regeneration. Several processes occur during calcinations: (i) loss of 
chemically bound water or CO2, (ii) changes in pore size distribution, (iii) active phase 
generation, (iv) surface conditioning, and (v) stabilization of mechanical properties [76]. 

If a metallic catalyst is the ultimate goal, conversion to the oxide form is 
frequently sought prior to reduction. If a mixed oxide catalyst is the goal, a substantially 
elevated firing temperature may be required to cause mixing by diffusion of individual 
species to form a desired compound or crystal phase. In many event the catalyst should 
be heated under controlled conditions to a temperature at least as high as will be 
encountered in the plant reactor to remove bound water, carbon dioxide, etc. If these 
decompositions occur to a significant extent in the plant, they may cause structural 
weaknesses in pellets, leading to breakup, dusting, and so on, that may cause excessive 
pressure drop and premature reactor shutdown. Therefore, calcinations temperature must 
be properly chosen to obtain phases that are stable in the reaction and regeneration 
conditions. 

Activation is the final step in producing the active component through physical 
and chemical changes. This typically involves heating to cause calcinations or 
decomposition, followed by reduction if a metallic catalyst is desired. In reduction, the 
deposited oxide is converted to the metal by treating with hydrogen, CO or hydrazine. 
The amount of produced metal depends on which oxidic compounds are present. The 
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temperature of reduction is also important. Another factor is the purity of hydrogen. The 
presence of steam, even in small amounts, influences the rate and extent of reduction. 
The sensitivity of these parameters introduces serious doubts concerning control and 
reproducibility of reduction procedures [90]. Very careful instructions must be followed 
for satisfactory results. In many cases a supported-metal catalyst is pyrophoric, and 
reduction is carried out in the plant reactor rather than by the catalyst manufacturer to 
avoid hazards upon shipping and reactor loading. 

3.6 Catalyst Forming 

The shaping of catalysts and supports is a key step in the catalyst preparation 
procedure. The shape and size of the catalyst particles should promote catalytic activity, 
strengthen the particle resistance to crushing and abrasion, minimize the bed pressure 
drop, lessen fabrication costs and distribute dust build-up uniformly [9 1 ] . Unfortunately, 
some of these objectives are mutually exclusive. For instance, small particle size 
increases activity, but also increases bed pressure drop. Thus, the best operational 
catalysts have the shape and size that represent an optimum economic trade-off [92]. The 
choice of the shape and size is mainly driven by the type of reactor. Moreover, for a 
given reactor the best shape and size of the catalyst particle depends on the 
hydrodynamics and heat and mass transfer limitations. Here, we consider the principle 
factors in the production of common forms of particles. 

Pellets or pill is essentially powder compression in a pelleting press. Powder is 
poured into a cylindrical cavity that shapes it into pellets or rings and a piston applies 
pressures [88]. Plasticizing agents and die lubricants such as stearic acid, talc, and 
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mineral oil are usually added to the mixture, and the process can only be used with those 
powder mixtures that are free flowing and that cohere upon pressing [93]. Fibers such as 
polymers are also added to improve thermal conductivity in or out of the pellet. Factors 
such as the ultimate tensile strength of the materials, mesoporosity of the grains, and 
moisture content are important. Compared to the other shaping methods tableting is quite 
an expensive method. 

Spheres Hydrogels such as alumina, silica, and silica-alumina are formed into 
spheres using column method. In this method, the hydrogel is forced through holes in a 
plate at the top of a column containing oil in which the gel is immiscible. The drop falls 
slowly through the oil, hardening as it ages. At the bottom, the spheres are separated, 
dried, calcined, and sieved [94]. 

Extrusion is the most economic and commonly applied shaping technique for 
catalysts and supports [69]. A slurry of the catalyst powder is fed from a hopper into the 
screw drive. The screw forces the slurry through holes in the end plate. Some additives 
such as peptizing agents ( dilute acetic or nitric acid) are added to deagglomerate the 
particles [95]. As the ribbon of slurry emerges from hole, it begins to dry and harden to 
maintain its shape. Special shapes (trilobites, rings, hollow cylinders, monoliths or · 
honeycombs) can be obtained using proper dies. The operating variables include mixing 
time, additive content, water content, ageing, and extrusion temperature. 

Granules are produced simply by grinding and screening with diameter ranging 
from 1 to 20 mm [68]. They usually cause a higher pressure drop in a packed bed than 
pellets of the same size. They may also cause thermal effects that can destroy some 
materials, such as some zeolites. 
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Powders (50-500 µm) and microspheres (<l mm) are used in fluidized bed and 

slurry reactors. They are produced by spray-drying. Hydrogel is sprayed through 

nozzles into a heated zone. Drying and calcinations occurs rapidly as the small drops 

fall. Important process parameters are the viscosity of the liquid, the film-forming 

characteristics, type of atomizer, the temperature and the gas velocity [70] . 
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CHAPTER 4 

EXPERIMENTAL PROCEDURES 

4.1 Experimental Setup 

The primary objective of this research project is to investigate a new class of 

mesoporous uranium oxide and mesoporous sol-gel catalyst loaded with uranium oxides 

to destroy a range of volatile organic contaminants, including alkanes, aromatics, and 

chlorinated organic compounds, through the reutilization of depleted uranium. To 

accomplish this objective, an experimental setup was designed to carry out a series of 

experiments to : 

• Synthesize· an active, stable, poison-resistant mesoporous uranium oxide (U3Os) 

and mesoporous supports ( e.g. sil ica, titania) doped with uranium compounds 

through a novel surfactant template synthetic method. 

• Characterize the mesoporous uranium oxide (U3Os) and uranium oxides 

supported by mesoporous materials (e.g. silica, titania). 

Using the experimental setup described below, a sequence of procedures was followed in 

each experiment in order to ensure repeatable results. 

The experimental setup for this study is shown schematically in figures 4. 1 ,  and 

4.2. Catalytic thermal oxidation of volatile organic compounds (VOCs) were carried out 

under conditions appropriate for the treatment of industrial effluent streams 
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Figure 4.1: Schematic drawing of the analytical arrangements for the laboratory set-up. 
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Figure 4.2: Photograph of experimental setup used in this study. 
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and soil vapor extractions. All reactions were carried out with flow rate of 140 ml/min 

and space velocity of approximately 84,000 mli 1 hf1
• All gases including air, He, 02, 

and H2 were supplied from high pressure cylinders and were regulated by mass flow 

controllers. Gas flow rates were regulated by electronic mass flow controllers (MKS type 

247). A pressure gauge (Ashcroft) was installed to monitor the pressure build up in the 

system. A needle valve was installed to adjust the pressure drop through the reactor 

systems. VOC was introduced to the reactor by the passage of a He stream at flow rate of 

2 1  ml/min through a single saturator (Figure 4.3) maintained at ice bath (0 °C) 

temperature. The saturated stream was mixed with 02 at flow rate of 42 ml/min and He 

(balance) to achieve the desired concentrations, preheated by a stainless steel coil, and 

introduced to the reactor. 

The reaction temperature was measured using a K-type thermocouple projecting 

into the catalyst bed. Each run utilized approximately 100 mg of the catalyst in the form 

of 1 50 µm particles to obtain a better defined range of particles sized to reduce mass 

transfer problems. The plug flow microreactor was a vertical single pass quarts tube with 

6.3 mm OD and 42 cm long and placed in the center of the furnace, where the 

temperature was most uniform (Figure 4.4). The top and bottom of the reactor tube was 

connected to inlet and outlet tubing by Cajon Ultra-Torr fittings. The fittings were sealed 

with Viton O-rings. The catalyst bed section was normally 5 cm OD and 30 cm long. It 

was supported by medium size frit at the middle of the reactor tube to prevent the catalyst 

particles from being carried away with the flow. The inlet and outlet reactor tubing was 

steel (6.3 mm OD) which was traced with a heating tape to reduce effects of condensation 

of VOC in the system. The temperature of heating tape was adjusted by a Thermolyne 
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Figure 4.3: Schematic diagram of the Ice-Bath and experimental Bubbler (Saturator). 
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Figure 4.4: Schematic diagram of the laboratory plug flow microreactor showing the 
furnace and flow system. 
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(Type 45500). The reactor was heated with a tubular furnace, vertically mounted with a 

heated zone 30 cm long and 8 cm in diameter. A Digi-Sense Temperature Controller was 

used for controlling the furnace temperature. 

Analysis of reactants and products were performed on line using a gas 

chromatograph (HP 5890 Series II) equipped with flame ionization detector (FID). The 

inlet and outlet flow rates were determined via a soap bubble flow meter. Prior to its 

introduction to the gas chromatograph (GC), a sparger filled with distilled water was 

incorporated downstream to permit trapping of any HCl or Ch formed during the reaction 

with halogenated hydrocarbons. This measure was deemed necessary for the protection 

of the chromatographic columns. Tests were made to determine the extent that the 

sparger would alter the determination of VOC conversion. Preliminary tests indicated 

that it is possible to measure VOC conversion. 

The powder X-ray diffraction pattern of the sample were recorded using a 

SIEMENS D5005 X-rat diffractometer, where Cu target Ka-ray (11. = 0. 1 54 nm and 

operating at 40 kV and 40 mA) was used as the X-ray source. 

Nitrogen adsorption-desorption isotherm were measured on a micromeritics 

Gemini 2375™ surface area analyzer at 77 °K. The samples were dried at 75 C for two 

hours prior to the measurement. The total pore volume was calculated by converting the 

volume of nitrogen adsorbed at P/Po = 0.99 into the volume of liquid nitrogen, using a 

converting factor of 0.00 1 546. The specific surface area was computed using the 

Brunauer-Emmet-Teller (BET) method. 

A Dycore Quadrupole Mass Spectrometer was used to analyze the residual gases 

such as CO2, CO and unwanted VOC reaction products. A gas sampler consisting of 
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a 1 m capillary entry column was installed in an entry port into a high vacuum system of 
Quadrupole Mass Spectrometer. Since the proposed application is for the catalytic 
destruction of VOCs under realistic conditions, it is required to allow the addition of 
water to the reactant stream. For this purpose, a water injection syringe (Thermo Orion 
Model M 361) was used to introduce water into the reactant heated lines up-stream from 
reactor to see the effect of water on the activity of catalyst. 

Finally, the conversion of VOC was calculated as follows: 

(VOC concen. )bypass exit - (VOC concen. )
reactor exit % conv.of VOC = ---------------------­(VOC concen. )bypass exit 

4.2 Gas Chromatography 

(4. 1 )  

Chromatography was first employed by Ramsey [96] in 1905. It is the separation 
of a mixture of compounds (solutes) into separate components. By separating the sample 
into individual components, it is easier to identify and measure the amount of the various 
sample components. The separation process involves the distribution of a sample 
between two phases. One of these phases is a stationary bed of large surface area, and 
the other phase is a gas which penetrates through the stationary bed. 
Gas chromatography is a technique for separating volatile substances by infiltrating a gas 
stream over a stationary phase [97] . For this work, a compound must have sufficient 
volatility and thermal stability. The sample is vaporized and injected onto 
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chromatographic columns and then separated into many components. The elution is 

brought about by the flow of an inert gaseous mobile phase. The carrier gas such as 

helium serves as the mobile phase that elutes the components of a mixture from a column 

containing an immobilized stationary phase. In contrast to most other types of 

chromatography, the mobile phase does not interact with molecules of the analytes. 

As solutes are eluted from the gas chromatography column, they interact with the 

detector. The GC detector converts this interaction into an electrical signal that is sent to 

the data system. The magnitude of the signal is plotted versus time (from the time of 

injection) and a chromatogram is generated. 

A GC HP 5890 Series II (figure 4.5) with flame ionization detector (FID) was 

used to identify solutes as they exit the column. The essential components are : ( 1 )  carrier 

gas, (2) flow controller and pressure regulator, (3) injection port, (4) column, (5) FID, (6) 

thermostat, (7) recorder [98] .  

Carriers gas must be chemically inert. A pressure regulator is used to assure a 

uniform pressure to the column inlet, and thereby a constant rate of gas flow. At a given 

temperature, this constant rate of flow will elute components at a characteristic time (the 

retention time). The choice of carrier gas is often dependent upon the type of detector. 

Commonly used gases are helium, argon, and nitrogen. 

Pressure and flow-Rate Regulator - Standard pressure reduction valves are used 

on the gas cylinders to regulate the pressure and flow of gas emerging from the tank. 

Flow rates ranging between twenty and thirty milliliters per minute ( carrier + make up) 

are used normally through the capillary column. The flow rate can be measured at the 

outlet of the column by a simple soap bubble flowmeter. 
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Figure 4.5 : (a) GC HP 5890 Series II, (b) Schematic Drawing of GC System 

Sample injection port - The sample should not be too large and should be 

introduced instantaneously as a "plug" of vapor onto the column. Slow injection of large 

samples causes band broadening and loss of resolution. Gases are usually introduced by 

gas-tight syringes or by-pass sample loops. Liquids are handled with syringes. For 

packed columns, sample size ranges from tenths of a microliter up to 20 microliters. 

Capillary columns, on the other hand, need much less sample, typically around 10-3 µI. 

For capillary GC, split/splitless injection is used. The injector can be used in one of two 

modes; split or splitless. The injector contains a heated chamber containing a glass liner 

into which the sample is injected through the septum. The carrier gas enters the chamber 

and can leave by three routes (when the injector is in split mode). The sample vaporizes 

to form a mixture of carrier gas, vaporized solvent and vaporized solutes. A proportion 

of this mixture passes onto the column, but most exits through the split outlet. The 
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septum purge outlet prevents septum bleed components from entering the column as 

shown in Figure 4.6 (a). 

Column - There are two types of column, packed and capillary. Packed columns contain 

a finely divided, inert, solid support material such as diatomaceous earth coated with 

liquid stationary phase. Most packed columns are 1 .5 - 1 0  m in length and have an 

internal diameter of 2 - 4 mm. In order to separate and analyze extremely small samples, 

the diameter of the gas chromatographic column must be reduced to a small value. 

Moreover, a packed chromatographic column often does not operate at its theoretical 

efficiency. Capillary columns operate at a much greater efficiency, making them 

excellent for difficult separations. Capillary columns have an internal diameter of a few 

tenths of a millimeter. They can be one of two types; wall-coated open tubular or 

support-coated open tubular. Wall-coated columns consist of a capillary tube whose 

walls are coared with liquid stationary phase. In supported-coated columns, the inner 

�all of the capillary is lined with a thin layer of support material such as diatomaceous 

earth, onto which the stationary phase has been adsorbed. 

The column tubing can be made from copper, stainless steel, aluminum, and glass 

tubing. In 1979, a new type of wall-coated open tubular column such as fused silica open 

tubular column was devised. They have much thinner walls than the glass capillary 

columns, and are given strength by the polyimide coating. These columns are flexible 

and can be wound into coils as shown in Figure 4.6 (b ). They have the advantages of 

physical strength, flexibility and reactivity. 

Detector - The detector indicates the presence and measures the amount of 

components in the column effluent. There are many detectors which can be used in gas 
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Figure 4.6: (a) Schematic diagram of split/splitless injector. (b) Fused silica coils column. 

chromatography. Different detectors will give different types of selectivity. A non­

selective detector responds to all compounds except the carrier gas, a selective detector 

responds to a range of compounds with a common physical or chemical property and a 

specific detector responds to a single chemical compound. Detectors can also be grouped 

into concentration dependant detectors and mass flow dependant detectors. The signal 

from a concentration dependant detector is related to the concentration of solute in the 

detector, and does not usually destroy the sample. Dilution of with make-up gas will 

lower the detectors response. Mass flow dependant detectors usually destroy the sample, 

and the signal is related to the rate at which solute molecules enter the detector. The 

response of a mass flow dependant detector is unaffected by make-up gas. 

Flame Ionization Detector -When using the flame ionization detector (FID), the 

effluent from the column is mixed with hydrogen and air, and ignited. Organic 

compounds burning in the flame produce ions and electrons which can conduct electricity 
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through the flame. A large electrical potential is applied at the burner tip, and a collector 
electrode is located above the flame. The current resulting from the pyrolysis of any 
organic compounds is measured. This process is shown in Figure 4.7. FIDs are mass 
sensitive rather than concentration sensitive; this gives the advantage that changes in 
mobile phase flow rate do not affect the detector's response. The FID is a useful general 
detector for the analysis of organic compounds; it has high sensitivity, a large linear 
response range, and low noise. It is also robust and easy to use, but unfortunately, it 
destroys the sample. 

Recorder - The signal from most gas chromatographic detectors is an electrical 
current or a voltage. The currents are usually exceedingly small. The signal is usually 
amplified and then fed to a readout or printout device. 

4.3 Quadrupole Mass Spectrometer 

Mass spectrometer is one of most powerful techniques used by the modem chemist. 
It continues to be actively developed. It uses the difference in mass-to-charge ratio (m/e) 
of ionized atoms or molecules to separate them from each other. Mass spectrometry is 
therefore useful for quantitation of atoms or molecules and also for determining chemical 
and structural information about molecules. Molecules have distinctive fragmentation 
patterns that provide structural information to identify structural components. 

Our choice of the Dycor Quadrupole Mass Spectrometer, Model Dycor M 250 
made by Ametek as shown in Figure 4.8, was influenced by the experience of ot�er 
colleagues with this equipment in their research at Oak Ridge Natoal Laboratory. 
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Figure 4.7: Schematic diagram of flame ionization detector. 

Figure 4.8: Ametek Quadrulink and Quadrupole Mass Spectrometer. 
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The Quadrupole Mass Spectrometer shows many advantages over the traditional 
magnetic-sector instrument which is described later in this chapter, and this is reflected in 
its popularity. The unit consist of an ion source, ion optics to accelerate and focus the 
ions through an aperture into the quadrupole filter, the quadrupole filter itself with control 
voltage supplies, an exit aperture, an ion detector and electronics, and a high-vacuum 
system. 

Gas is admitted into the vacuum line and bleeds through a leak into the high vacuum 
region. Gas molecules approaching the quadrupole can be ionized and the motion of 
these ions through the quadrupole is determind by the quadrupole field. For selected 
field conditions, ions of a particular mass-to-charge ratio traverse the quadrupole and 
strike the detector, while all other ions are defocused. Ion currents are amplified and 
passed to the monitor for visual display [99, 100]. 

The quadrupole is pumped by a Varian Macro Torr (Turbo V-70 D), mounted at a 
height of 5 cm above the table, and backed by an oil pump (Edwards- I ,  2 stages). The 
mouth of the pump is attached through a reduction flange to a high-vacuum tee and this 
provides the mounting flange for the quadrupole. A Hastings Vacuum Gauge model 
CVT-16 is attached to the system to monitor the pressure. 

The M250 atmospheric system is used as an atmospheric pressure gas inlet system to 
house the Dycor quadrupole head in its required high vacuum environment. The 

pumping station is attached to the M250 via a 4 lli' conflat-type flange using copper 

gasket supplied. The gas inlet is a I-meter long length of fused silica capillary with an 
inside diameter of 10 microns. The low conductance of the capillary is used to decrease 
the sample gas pressure from atmospheric to about E-6 Torr at the quadrupole sensor. 
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The advantages of the capillary are that gas travels through system in continuous laminar 
flow. A bakeable valve is found at the end of the capillary which can be used to tum off 
the flow of gas to the high vacuum region. The valve can be closed to look at the system 
background spectrum. The inlet gas can be heated to prevent condensation . . This can be 
done by wrapping with heating tape. The capillary is sealed to the sampling system using 
a graphitized vespel ferrule [99] .  The schematic diagram of M250 pressure sampling 
system is shown in Figure 4.9. 

4.4 Details of Catalyst Preparation 

In this section, the preparations of all major catalysts of interest in this project are 
discussed briefly. 

4.4.1 U30s 

High-purity uranium oxide (U3Os) spheres of 150 µm was prepared by the 
thermal decomposition of uranyl nitrate hexahydrate (UO2(NO3)2 . 6 H2O) at 800 °C in 
static air for 24 hours. 

4.4.2 Mesoporous Silica (Si02) 

Using co-assembly synthesis, transparent mesostructured silica-block co-polymer 
composites were prepared by mixing tetraethoxysilane (TEOS) and pluronic F 1 27 
(BASF) in a mixture of ethanol, butanol, cyclohexane. The initial mass ratio was: F 127 
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Figure 4.9: The schematic diagram of M250 pressure sampling system. 

(0.75 g) : TEOS (2 ml) : butanol (0.50 ml) : cyclohexane (0.50 ml) : ethanol (2 ml) . 

Monolithic structure materials were formed after a week polymerization and gelation. 

The mesoporous silica materials were obtained by calcinations at 300 °C for 2 hours and 

then at 800 oC for 8 hours. The overall reaction is shown schematically in Figure 4. 1 0. 

Detailed synthesis calculations are given in appendix B. l .  

4.4.3 U-Meso-5 (Uranium Mesoporous Silica) 

Mesoporous silica-block copolymer composite doped with uo/+ was prepared by 

mixing HNO3 (0.05 M) with tetraethoxysilane (TEOS) and UO2(NO3)2.6H2O. The 

mixture (U:Si=l : 1 0) was added to a solution of Pluronic F 1 27 (BASF), ethanol, butanol, 

and cyclohexane. The initial mass ratio was F 127 ·(o. 75 g): butanol (0.50 ml) : ethanol 
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(2.00 ml) : cyclohexane (0.50 ml) : HNO3/H2O (2.00 ml) : TEOS (2.00 ml) 

UO2(NO3)2.6H2O (0.45 g). The monolithic mesoscopic gel was formed after 1 week of 

condensation and gelation. The mesoporous silica material incorporating U3Os 

nanoparticles were obtained by calcinations, first at 150 C for 6 h and then at 3 50 C for 6 

h and finally at 800 C for additional 6 h in air to remove template. The overall reaction is 

shown schematically in Figure 4.11. Detailed synthesis calculations are given in 

appendix B.2 .  

4.4.4 U-Meso-6 (Uranium Mesoporous Silica) 

A new type of catalyst, U-Meso-6, was synthesized and compared with previous 

one with modified mole ratio of U :Si = 1 :20. In a typical synthesis, transparent 
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mesostructured silica-block copolymer composite doped with UO/+ was prepared by 
mixing HN03 (0.05 M) with tetraethoxysilane (TEOS) and U02(N03)2.6H20. The 
mixture was added to a solution of Pluronic F 127 (BASF), ethanol, butanol, and 
cyclohexane. The initial mass ratio was F127 (0.75 g): butanol (0.50 ml) : ethanol (2.00 
ml) : cyclohexane (0.50 ml) : HNOJ/H2O (2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O 
(0.225 g). The monolithic mesoscopic gel was formed after 1 week of condensation and 
gelation. The mesoporous silica material incorporating U3O8 nanoparticles was obtained 

by calcinations, first at 150 °C for 6 h and then at 350 °C for 6 h and finally at 800 °C for 

6 h in air to remove template. Detailed synthesis calculations are given in appendix B.3. 
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4.4.5 U-Meso-9 (Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-6 except the 
mole ratio of U:Si was I :30. 0.15 g of uranyl nitrate hexahydrate was dissolved in a vial 
by using 2 ml ethanol and 2 ml 0.04 M HNO3 • Then 2 ml TEOS was added to the 
mixture. When the mixture was transparent, 0.75 g of F l 27 was added to the solution. 
For enhancing the dissolution process, 0.5 ml cyclohexane and 0.5 ml butanol was added 
to the solution. After drying in room's temperature, it was calcined at 350 °C for 6 hours 
then at 800 °C for additional 6 hours. The final product was dark green color. Detailed 
synthesis calculations are given in appendix B.4 

4.4.6 U-Meso-10 (Potassium+Uranium Mesoporous Silica) 

Emphasis was placed on studying the effects of doping the mesoporous uranium 
catalysts with other materials such as potassium. The goal was to find a way to enhance, 
i.e to promote the activity of the uranium oxide catalysts. Potassium was used because it 
is a commonly used promoter for various catalysts including iron catalysts used in 
Fischer-Tropsch catalysts and as a promoter in certain oxidation catalysts. Using 
incipient wetness synthesis method, HNO3 (0.05 M) with tetraethoxysilane (TEOS) and 
UO2(NO3)2.6H2O were mixed. The mixture was added to a solution of Pluronic F 127 
(BASF), ethanol, butanol, cyclohexane and potassium nitrite. The initial mass ratio was 
F l27 (0.75 g) : butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane (0.50 ml) : HNO3/H2O 
(2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O (0.235 g) : KNO2 (0.04 g). Material was 
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calcined first at 150 °C for 6 h and then at 350 °C for 6 h and finally at 600 °C for 6 h in 

air to remove template. 

4.4.7 U-Meso-1 1 (Potassium+Uranium Mesoporous Silica) 

The synthesis of U-Meso-11 is identical with U-Meso-10 except that potassium 
oxalate (K2C204) was used instead potassium nitrite. The initial mass ratio was F127 
(0. 75 g): butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane (0.50 ml) : HNO3/H2O 
(2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2 .6H2O (0.235 g) : K2C2O4 (0.084 g). Material 

was calcined first at 150 °C for 6 h and then at 350 °C for 6 h and finally at 600 °C for 6 h 

in air to remove template. 

4.4.8 U-Meso-12 (Bromide+Uranium Mesoporous Silica) 

The synthesis of U-Meso-12 is identical with U-Meso-11 except that potassium 
bromide (K.Br) was used instead potassium oxalate. The initial mass ratio was F127 
(0.75 g): butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane (0.50 ml) : HNO3/H2O 
(2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2 .6H2O (0.235 g) : KBr (0.055 g). Material was 
calcined first at 150 °C for 6 hours and then at 350 °C for 6 hours and finally at 600 °C 
for additional 6 hours in air to remove template. 

4.4.9 U-Meso-13 (Fe+Mg+Uranium Mesoporous Silica) 

Iron and magnesium were tried as an additive into standard synthesis of 
mesoporous uranium oxide catalyst. Iron was added as nitrate and magnesium was added 
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as acetate. The initial mass ratio was F127 (0.75 g): butanol (0.50 ml) : ethanol (2.00 
ml) : cyclohexane (0.50 ml) : HNO3/H2O (2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O 
(0.235 g) : Fe(NO3)3. 6H20 (0.10 g): Mg(C2H3O2). 4H2O(0.05 g). Material was calcined 
first at 150 °C for 6 hours and then at 350 °C for 6 hours and finally at 600 °C for 6 hours 
in air to remove template. 

4.4.10 U-Meso-14 (Fe+Ca+Uranium Mesoporous Silica) 

Iron and calcium were tried as an additive into standard synthesis of mesoporous 
uranium oxide catalyst. Iron was added as nitrate and calcium was added as acetate. The 
initial mass ratio was F127 (0.75 g) : butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane 
(0.50 ml) : HNO3/H2O (2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O (0.235 g) 
Fe(NO3)3. 6H2O (0.10 g): Ca(NO3)2. 4H2O (0.06 g). Material was calcined first at 150 °C 
for 6 hours and then at 350 °C for 6 hours and finally at 600 °C for 6 hours in air to 
remove template. 

4.4.1 1  U-Meso-15 (Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-9 except the 
mole ratio of U :Si was 1 :40. 0.11 g of uranyl nitrate hexahydrate was dissolved in a vial 
by using 2 ml ethanol and 2 ml 0.04 M HNO3. Then 2 ml TEOS was added to the 
mixture. When the mixture was transparence, 0.75 g of F127 was added to the solution. 
For enhancing dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to 
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the solution. After drying in room's temperature, it was calcined at 350 °C for 6 hours 

then at 800 ° C for additional 6 hours. Detailed synthesis calculations are given in 
appendix B.5. 

4.4.12 U-Meso-18 (Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso- 15 except the 
mole ratio of U:Si was 1 :50. 0.09 g of uranyl nitrate hexahydrate was dissolved in a vi�l 
by using 2 ml ethanol and 2 ml 0.04 M HN03. Then 2 ml TEOS was added to the 
mixture. When the mixture was transparence, 0.75 g of F127 was added to the solution. 
For enhancing dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to 

the solution. After drying in room's temperature, it was calcined at 350 °C for 6 hours 

then at 800 ° C for additional 6 hours. Detailed synthesis calculations are given in 

appendix B.6. 

4.4.13 U-Cr-Meso-19 (Chromium + Uranium Mesoporous Silica) 

Using incipient wetness synthesis method (impregnation), 0.025 g of CrCb.6H20 
was dissolved in 2 ml HN03 (0.05 M) and 2 ml ethanol. Then, 0.40 g of previously made 
U-Meso-6 was adcled to the same solution. Stirring for two days did not dissolve the 
solid U-Meso-6. The sample was dried naturally at room temperature, then it was 

calcined at 600 ° C for 5 hours. The final sample is black in color. 
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4.4.14 U-Co-Meso-20 (Cobalt + Uranium Mesoporous Silica) 

Using incipient wetness synthesis method (impregnation), 0;025 g of CoC}i.6H2O 
was dissolved in 2 ml HNO3 (0.05 M) and 2 ml ethanol. Then, 0.40 g of previously made 
U-Meso-6 was added to the same solution. Stirring for two days did not dissolve the 
solid U-Meso-6. The sample was dried naturally at room temperature, then, it was 
calcined at 600 °C for 5 hours. The final sample is black in color. 

4.4. 15 U-Cr-Meso-21 (Chromium + Uranium Mesoporous Silica) 

Using co-assembly synthesis for this catalyst, transparent mesostructured silica­
block copolymer composite doped with UO/+ was prepared by mixing HNO3 (0.05 M) 
with tetraethoxysilane (TEOS), CrCb.6 H2O and UO2(NO3)2.6H2O. The mixture was 
added to a solution of Pluronic F127 (BASF), ethanol, butanol, and cyclohexane. The 
initial mass ratio was F127 (0.75 g): butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane 
(0.50 ml) : HNO3/H2O (2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O (0.235 g) : CrCl3.6 
H2O (0.025 g). The monolithic mesoscopic gel was formed after 1 week of condensation 
and gelation. The mesoporous silica material incorporating Cr2O3 and U3Os 
nanoparticles was obtained by calcinations, first at 1 50 °C for 6 h and then at 3 50 °C for 6 
h and finally at 800 °C for 6 h in air to remove template. Detailed synthesis calculations 
are given in appendix B.7. 
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4.4. 16 MesoCr-22 (Chromium + Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-2 1 except no 
uranium in this catalyst. 0.025 g CrCh. 6 H20 was dissolved in a vial by using 2 ml 
ethanol and 2 ml 0.04 M HN03. Then 2 ml TEOS was added to the mixture. When the 
mixtl!re was transparence, 0.75 g of F127 was added to the solution. For enhancing 
dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to the solution. 

After drying in room's temperature, it was calcined at 350 °C for 6 hours then at 800 °C 
for additional 6 hours. The final product was orange color. 

4.4. 17 U-Co-Meso-23 (Cobalt + Uranium Mesoporous Silica) 

The method of synthesis for this catalyst is similar to U-Meso-2 1 .  0.2355 g of 
uranyl nitrate hexahydrate and 0.025 g CoCh. 6H2O was dissolved in a vial by using 2 ml 
ethanol and 2 ml 0.04 M HN03. Then 2 ml TEOS was added to the mixture. When the 
mixture was transparent, 0.75 g of F127 was added to the solution. For enhancing 
dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to the solution. 
After drying in room's temperature for 4 days or so, it was calcined at 350 C for 6 hours 
then at 800 C for additional 6 hours. The final product was olive or dark green in color. 

4.4. 18 MesoCo-24 (Cobalt + Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-23 except no 
uranium in this catalyst. 0.025 g CoCh. 6H2O was dissolved in a vial by using 2 ml 
ethanol and 2 ml 0.04 M HN03. Then 2 ml TEOS was added to the mixture. When the 
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mixture was transparent, 0.75 g of F127 was added to the solution. For enhancing 
dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to the solution. 
After drying in room's temperature for 4 days or so, it was calcined at 3 50 C for 6 hours 
then at 800 C for additional 6 hours. The final product was dark green in color. The 
detail of calculation is given in appendix B.8. 

4.4.19 U-Cr-Meso-25 (Chromium + Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-21 except the 
mole ratio of U:Si was 1:30. 0.2355 g of uranyl nitrate hexahydrate and 0.025 g CrCh. 6 
H20 was dissolved in a vial by using 2 ml ethanol and 2 ml 0.04 M HNO3. Then 2 ml 
TEOS was added to the mixture. When the mixture was transparence, 0.75 g of F127 
was added to the solution. For enhancing dissolving process, 0.5 ml cyclohexane and 
0.5 ml butanol was added to the solution. After drying in room's temperature, it was 
calcined at 3 50 ° C for 6 hours then at 800 ° C for additional 6 hours. The final product 
was orange color. 

4.4.20 U-La-Meso-27 (Lanthanum + Uranium Mesoporous Silica) 

Using co-assembly synthesis for this catalyst, transparent mesostructured silica­
block copolymer composite doped with uo/+ was prepared by mixing HNO3 (0.05 M) 
with tetraethoxysilane (TEOS), La(NO3)3.6 H2O and UO2(NO3)2.6H2O. The mixture was 
added to a solution of Pluronic F 127 (BASF), ethanol, butanol, and cyclohexane. The 
initial mass ratio was F l27 (0.75 g): butanol (0.50 ml) : ethanol (2.00 ml) : cyclohexane 
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(0.50 ml) : HNO3/H2O (2.00 ml) : TEOS (2.00 ml) : UO2(NO3)2.6H2O (0.235 g) 
La(NO3)3 .6 H2O (0. 10 g). The monolithic mesoscopic gel was formed after 1 week of 
condensation and gelation. The mesoporous silica material incorporating La2O3 and 

U3O8 nanoparticles was obtained by calcinations, first at 150 °C for 6 h and then at 350 

°C for 6 h and finally at 800 °C for 6 h in air to remove template. 

4.4.2 1 U-Ce-Meso-28 (Cerium + Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-Meso-27. 0. 10  g 
Ce(NO3)3 . 6H2O and 0.2355 g of uranyl nitrate hexahydrate was dissolved in a vial by 
using 2 ml ethanol and 2 ml 0.04 M HNO3 . Then 2 ml TEOS was added to the mixture. 
When the mixture was transparent, 0.75 g of F127 was added to the solution. For 
enhancing dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to the 
solution. After drying in room's temperature for 4 days or so, the mesoporous silica 
material incorporating CeO2 and U3Os nanoparticles was obtained by calcinations at 350 

°C for 6 hours then at 800 °C for additional 6 hours. 

4.4.22 MesoCu-29 (Copper + Mesoporous Silica) 

Using co-assembly synthesis for this catalyst, 0.54 g Cu(NO3)2 . 3 H2o was 
dissolved in a vial by using 2 ml ethanol and 2 ml 0.04 M HNO3 . Then 2 ml TEOS was 
added to the mixture. When the mixture was transparence, 0.75 g of F127 was added to 
the solution. For enhancing dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol 
was added to the solution. After drying in room's temperature, the mesoporous silica 
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material incorporating CuO was calcined at 350 °C for 6 hours then at 800 °C for 
additional 6 hours. The final product was black color. 

4.4.23 U-Cu-Meso-30 (Copper + Uranium Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to MesoCu-29, except 
uranium was added. _0.54 g Cu(NO3)2 . 3 H2o and 0.2355 g of uranyl nitrate hexahydrate 
was dissolved in a vial by using 2 ml ethanol and 2 ml 0.04 M HNO3 . Then 2 ml TEOS 
was added to the mixture. When the mixture was transparence, 0.75 g of F127 was added 
to the solution. For enhancing dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol 
was added to the solution. After drying in room's temperature, the mesoporous silica 
material incorporating CuO and U3Os nanoparticles was calcined at 350 °C for 6 hours 
then at 800 ° C for additional 6 hours. Detailed synthesis calculations are given in 
appendix B.14. 

4.4.24 U-Sr-Meso-33 (Strontium + Uranium Mesoporous Silica) 

The idea was to add a small amount of the strontium to increase the activity of the 
uranium oxide catalyst. Using co-assembly synthesis for this catalyst, transparent 
mesostructured silica-block copolymer composite doped with UO/+ was prepared by 
mixing HNO3 (0.05 M) with tetraethoxysilane (TEOS), SrCh.6 H2O and 
UO2(NO3)2 .6H2O. The mixture was added to a solution of Pluronic F127 (BASF), 
ethanol, butanol, and cyclohexane. The initial mass ratio was F127 (0.75 g) : butanol 
(0.50 ml) : ethanol (2.00 ml) : cyclohexane (0.50 ml) : HNO3/H2O (2.00 ml) : TEOS 
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(2.00 ml) : UO2(NO3)2.6H2O (0.23 5 g) : SrCh.6 H2O (0. 1 2  g). The monolithic 

mesoscopic gel was formed after 1 week of condensation and gelation. The mesoporous 

silica material incorporating SrO and U3O8 nanoparticles was obtained by calcinations, 

first at 1 50 °C for 6 h and then at 350 °C for 6 h and finally at 800 °C for 6 h in air to 

remove template. Detailed synthesis calculations are given in appendix B. 1 5 .  

4.4.25 MesoSr-34 (Strontium + Mesoporous Silica) 

The method of co-synthesis for this catalyst is similar to U-MesoSr-33 except no 

uranium in this catalyst. 0. 12 g SrCh. 6 H2O was dissolved in a vial by using 2 ml 

ethanol and 2 ml 0.04 M HNO3. Then 2 ml TEOS was added to the mixture. When the 

mixture was transparence, 0.75 g of F 1 27 was added to the solution. For enhancing 

dissolving process, 0.5 ml cyclohexane and 0.5 ml butanol was added to the solution. 

After drying in room's temperature, the mesoporous silica material incorporating SrO 

was calcined at 350 °C for 6 hours then at 800 °C for additional 6 hours. 

4.4.26 U-Ti-Si-39 (Uranium + Titanium + Mesoporous Silica) 

Using co-assembly method, the following materials were used: 2 ml of 0.04M 

HNO3 and 2 ml of tetraethyl orthosilicate (TEOS) were mixed very well in a vial . Then, 

0.2355 g UO2(NO3)2.6H2O was added to the solution. Stirring the solution for 30 

minutes. After the solution was transparence, 0.75 g of F 1 27 surfactant, 2 ml ethanol, 0.3 

ml Butanol, and 0.3 ml Cyclohexane was added to the mixture. Then, 0. 1 1 8  g of 

Ti(OC2Hs)4 was added to the same container. Mixing for over night and letting to dry for 

a week. The dried solid material (gel) was clear yellow and was calcined at 350 °C for 6 
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hrs. After 350 °C calcinations, the sample was light yellow. Then · it was divided into 

three equal weights. 1/3 was kept as U-Ti-Si-39 (350 °C), the other two were calcined at 

600 °C and 800 °C individually for 6 hrs. I call them U-Ti-Si-39 (600 °C) and U-Ti-Si-39 

(800 °C) respectively. U-Ti-Si-39 (600 °C) was a light brown but calcinations at 800 °C 

was dark brown. 

4.4.27 U-Pt-Si-40 (Uranium + Platinum mesoporous Silica) 

Using co-assembly method, 2 ml of 0.04M HN03 and 2 ml of tetraethyl 

orthosilicate (TEOS) were mixed very well in a vial. Then, 0.2355 g U02(N03)2.6H20 

was added to the solution. Stirring the solution for 30 minutes. After the solution was 

transparence, 0.75 g of F127 surfactant, 2 ml ethanol, 0.3 ml Butanol, and 0.3 ml 

Cyclohexane was added to the mixture. Then, 0.035 g of Pt(NH3)4(N03)2 was added to 

the same container. Mixing for over night and letting to dry for a week, gave a clear 

yellow gel. The dried solid (gel) was calcined at 350 °C for 6 hrs giving a black powder. 

Then it was divided into three equal weights. 1/3 was kept as U-Pt-Si-40 (350 °C), the 

other two were calcined at 600 °C and 800 °C individually for 6 hrs. I named them U-Pt­

S i-40 (600 °C) and U-Pt-Si-40 (800 °C) respectively. 

4.4.28 TiO2-41 (Mesoporous Titanium Oxide) 

Titanium oxide was prepared in the following method: 1 g of Pluronic P 123 was 

dissolved in 12 g absolute ethanol. This solution was added to a solution containing 2.7 

ml concentrated hydrochloric acid and 3.88 ml titanium(IV) ethoxide. After 2 hours 
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stirring, the solution was transferred into a big Petri Dish to dry at room temperature for 

3-7 days before the calcinations. The as synthesized catalyst was calcined at 400 °C for 6 

hours giving a white powder. 1 /3 was kept as TiO2-4 1 ( 400), the other two were calcined 

at 600 °C and 800 °C individually for 6 hours. I named them TiO2-4 1 (600), and TiO2-4 1 

(800) respectively. Detailed synthesis calculations are given in appendix B.9. 

4.4.29 U-Ti-Meso-42 (Mesoporous Uranium + Titanium) 

A new type of catalyst was synthesized by co-assembly of uranyl nitrate with 

tetraethoxy titanium, and using a Pluronic P 123 as a surfactant in strong acid solution. 

This synthesis has been reported in the literature for rare earth ions [ 1 0 1 ]  and the present 

work is the first time this has been attempted with uranyl ions. The atom ratio of U :Ti 

was 1 :  1 0. 1 .25 g of P 123 as a surfactant was dissolved in 14 g of 2-propanol and stirring 

for 2 hours. Then, it was mixed with a precursor solution prepared by mixing 3 g of 

Titanium (IV) ethoxide and 0.53 g of 2,4-pentanedione and 4 g of 2-propanol with 

stirring for 2 hours. Based on mole ratio of U :Ti = 1 :  1 0, 0.53 g UO2(NO3)2.6H2O was 

added to the mixture. The obtained solution was hydrolyzed at low PH=2 condition by 

addition of 4 ml HNO3 (0.05 M). After stirring the light transparent solution for 2 days, it 

was transferred to an open container, gelation under ambient conditions for 1 0  days. The 

trunk sample was annealed at 1 50 °C for 72 hours, then at 400 °C for 24 hours in oven to 

remove the template. Detailed synthesis calculations are given in appendix B. l 0. 
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4.4.30 U-Ti-Meso-43 (Mesoporous Uranium + Titanium) 

The method of co-synthesis for this catalyst is similar to U-Ti-Meso-42 except the 
mole ratio of U :Ti = 1 :20. 1.25 g of P 123 as a surfactant was dissolved in 14 g of 2-
propanol and stirring for 2 hours. Then, it was mixed with a precursor solution prepared 
by mixing 3 g of Titanium (IV) ethoxide and 0.53 g of 2,4-pentanedione and 4 g of 2-
propanol with stirring for 2 hours. Based on mole ratio of U :Ti = 1 :20, 0.265 g 
UO2(NO3)2.6H2O was added to the mixture. The obtained solution was hydrolyzed at 
low PH=2 condition by addition of 4 ml HNO3 (0.05 M). After stirring the light 
transparent solution for 2 days, it was transferred to an open container, gelation under 
ambient conditions for 10 days. The trunk sample was annealed at 150 °C for 72 hours, 
then at 400 °C for 24 hours in oven to remove the template. The prepared catalyst was 
divided into three equal portions . .  The first portion was named U-Ti-Meso-43 (400). The 
other two portions were calcined at 600 °C and 800 °C respectively. I named them U-Ti­
Meso-43 (600) and U-Ti-Meso-43 (800) respectively. Detailed synthesis calculations are 
given in appendix B.11. 

4.4.31 U-Ti-Meso-44 (Mesoporous Uranium + Titanium) 

The method of co-synthesis for this catalyst is similar to U-Ti-Meso-43 except the 
mole ratio of U :Ti = 1 :30. 1.25 g of P 123 as a surfactant was dissolved in 14 g of 2-
propanol and stirring for 2 hours. Then, it was mixed with a precursor solution prepared 
by mixing 3 g of Titanium (IV) ethoxide and 0.53 g of 2,4-pentanedione and 4 g of 2-
propanol with stirring for 2 hours. Based on mole ratio of U :Ti = 1 :30, 0.18 g 
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UO2(NO3)2.6H2O was added to the mixture. The obtained solution was hydrolyzed at 
low PH=2 condition by addition of 4 ml HNO3 (0.05 M). After stirring the light 
transparent solution for 2 days, it was transferred to an open container, gelation under 

ambient conditions for 10 days. The trunk sample was annealed at 15  0 °C for 72 hours, 

then at 400 °C for 24 hours in oven to remove the template. Detailed synthesis 

calculations are given in appendix B. 12. 

4.4.32 U-Ti-Meso-45 (Mesoporous Uranium + Titanium) 

The method of co-synthesis for this catalyst is similar to U-Ti-Meso-44 except the 
mole ratio of U:Ti = 1 :40. 1 .25 g of P123 as a surfactant was dissolved in 14 'g of 2-
propanol and stirring for 2 hours. Then, it was mixed with a precursor solution prepared 
by mixing 3 g of Titanium (IV) ethoxide and 0.53 g of 2,4-pentanedione and 4 g of 2-
propanol with stirring for 2 hours. Based on mole ratio of U :Ti = 1 :40, 0. 13 g 
UO2(NO3)2.6H2O was added to the mixture. The obtained solution was hydrolyzed at 
low PH=2 condition by addition of 4 ml HNO3 (0.05 M). After stirring the light 
transparent solution for 2 days, it was transferred to an open container, gelation under 
ambient conditions for 10 days. The trunk sample was annealed at 1 50 °C for 72 hours, 

then at 400 °C for 24 hours in oven to remove the template. Detailed synthesis 
calculations are given in appendix B. 13. 
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4.4.33 K-U-SBAlS-46 (Mesoporous SBA-15) 

SBA- 1 5  silica was prepared usmg Pluronic P 123 (Aldrich) and 

tetraethylorthosilicate (TEOS, Aldrich) according to the procedure described in literature 

[ 1 02]. Typically, 1 6  g of P123 was dissolved in 250 g of deioned water and 1 00 g of 

concentrated HCl (Aldrich). After the P123 was completely dissolved, an extra 250 g of 

deioned water was added followed by the addition of 34.4 g of TEOS. The mixture was 

stirred for extra 2 hours at room temperature before it was placed in a 35°C oven under 

static conditions for 24 hours, and then heated at 1 00 °C for an extra 24 hours under static 

conditions. The white fine powder of the SBA- 1 5  product was filtered without washing 

and dried in an oven at 70 °C for the whole night. The product was washed with ethanol 

and diluted HCl solutions and dried again, and then calcined to remove the surfactant of 

P123 at 550 °C for 4 hours with a heating rate of 1 .5 °C/min in air. 

Using incipient wetness synthesis method (impregnation), 0.05 g of KNO3 was 

dissolved in 2 ml ethanol in a vial. Then, 0.385 g of U-SBA- 1 5  (pr�viously made) was 

added to the mixture of ethanol and KNO3. After steering for over night, the sample was 

dried at room temperature. The dried sample was then calcined at 600 C for three hours. 

4.4.34 U-SBAlS-47 (Mesoporous SBA-15 + Uranium) 

Using incipient wetness synthesis method (impregnation), 0. 1 g UO2(NO3)2.6H2O 

was dissolved in 4 ml ethanol. When the mixture was transparence, 0.385 g of SBA- 1 5  

was added to the solution. After stirring for 6 hours, the sample was dried at room's 

temperature for 4 days, then, it was calcined at 800 °C for 3 hours. 
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4.4.35 U-MCM41-49 (Mesoporous MCM-41 + Uranium) 

The following materials were used for the preparation of the mesoporous MCM-

4 1  silicate: fumed silica (99 .8%, Aldrich), tetraethyl orthosilicate (TEOS; Aldrich, 98%), 

tetramethylammoi:iium hydroxide (TMAOH; Aldrich, 25 wt.%), 

cetyltrimethylammonium bromide (CTAB; Aldrich, 99%), sodium hydroxide (NaOH; 

Loba, 98%), and distilled water. 

The siliceous MCM-4 1 was synthesized hydrothermally according to a procedure 

outlined [ 103 ,  1 04, 1 05] as follows: In a Teflon-lined stainless steel autoclaves, a typical 

gel with molar composition of 1 0SiO2 : l .3 5  (CTA)2 0 :0 .75(TMA)2O: 1 .3Na2O:680H2O 

was synthesized at 1 00 °C for 24 h. The as-synthesized sample was calcined at 550 °C in 

a flow ofN2, for an hour followed by 6 h in air. 

Using incipient wetness synthesis method (impregnation), 0. 1 g UO2(NO3)2.6H2O 

was dissolved in 4 ml ethanol. When the mixture was transparence, 0.385 g of MCM-4 1 

(calcined at 550 °C) was added to the solution. After stirring for 6 hours, the sample was 

dried at room's temperature for 4 days, then, it was calcined at 800 °C for 3 hours. 

4.4.36 K-U-MCM41-50 (Mesoporous MCM-41 + Potassium) 

Using incipient wetness synthesis method (impregnation), 0.05 g KNO2 was 

dissolved in 4 ml ethanol, then, 0.385 g of U-MCM-4 1 (calcined at 550 °C) was added to 

the solution. After stirring for 6 hours, the sample was dried at room's temperature for 4 

days, then, it was calcined at 800 °C for 3 hours. 
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4.4.37 U-Ti-La-51 (Mesoporous Uranium + Titanium + Lanthanum) 

Using the method of co-synthesis for this catalyst, 1.25 g of P 123 as a surfactant 
was dissolved in 14 g of 2-propanol and stirring for 2 hours. Then, it was mixed with a 
precursor solution prepared by mixing 3 g of Titanium (IV) ethoxide, 0.1 g La(NO3)3. 
6H2O, 0.53 g of 2,4-pentanedione, and 4 g of 2-propanol with stirring for 2 hours. Based 
on mole ratio of U :Ti = 1 :20, 0.265 g UO2(NO3)2.6H2O was added to the mixture. The 
obtained solution was hydrolyzed at low PH=2 condition by addition of 4 ml HNO3 (0.05 
M). After stirring the light transparent solution for 2 days, it was transferred to an open 
container, gelation under ambient conditions for 10 days. The mesoporous titania 
materials incorporating La2O3 and U3O8 were annealed at 150 °C for 72 hours, then at 
400 °C for 24 hours in oven to remove the template. 

4.4.38 La-U-52 (Uranium + Lanthanum) 

This catalyst was synthesized by IPC (in-situ polymerizable complex) method. 
This method was first developed by Pechini in 1967 to prepare capacitor materials 
focusing only on niobates, titanates and zirconates [106]. The basic chemistry involved 
in the IPC method is related to the formation of metal complexes as well as the 
dehydration reaction of an a.-hydroxycarboxylic acid and a polyhydroxy alcohol. All the 
studies previously reported have clearly indicated that the IPC method is quite suitable 
for producing highly pure and homogeneous oxides at reduced temperatures ( 400-900 
°C). Having this in mind, 0.01 mole La (NO3)3. 6H2O was mixed with 0.4 mole ethylene 
glycol. Separately, 0.1 mole citric acid and 0.01 mole uranyl nitrate hexahydrate were 
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mixed well. The two above solutions were transferred into a different quarts vial. 

During well mixing, it was heated to 60 °C. Later, condensing the citrate complex at 130 

°C and polyesterification, it was gradually heated to 200 °C. The dried sample was 

heated to 800 °C for 6 hours. 

4.4.39 La-Ti-53 (Lanthanum + Titanium) 

This catalyst was synthesized by IPC (in-situ polymerizable complex) method. 
0.0 1 mole La (NO3)3. 6H2O was mixed with 0.4 mole ethylene glycol. Separately, 0. 1 
mole citric acid and 0.0 1 mole Ti(OPr)4 were mixed well. The two above solutions were 

transferred into a different quarts vial. During well mixing, it was heated to 60 °C. Later, 

condensing the citrate complex at 130 °C and polyesterification, it was gradually heated 

to 200 °C. The dried sample was heated to 800 °C for 6 hours. 

4.4.40 La203-54 (Lanthanum Oxide) 

La203 was prepared by the thermal decomposition of La (N03)3 • 6H20 at 800 °C 
in static air for 24 hours. 

4.4.41 CeOi-55 (Cerium Oxide) 

CeO2 was prepared by the thermal decomposition of Ce (NO3)3 • 6H2O at 800 °C 

in static air for 24 hours. 
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4.4.42 Pt/TiOi-56 (Platinum over Titanium Oxide) 

Using incipient wetness synthesis method (impregnation), · 0.036 g 
Pt(NH3)4(NO3)2 was dissolved in 2 ml ethanol and 2 ml 0.04M HNO3. Then, 0. 122 g of 

powder TiO2 (calcined at 500 °C) was added to the solution. After stirring for 6 hours, the 

sample was dried at room's temperature for 4 days, then, it was calcined at 500 °C for 3 

hours. 

4.4.43 Pt/U308-57 (Platinum over Uranium Oxide) 

Impregnation method was used to synthesize this catalyst. UO2(NO3)2.6H2O was 
calcined to provide U3O8. 0.06 g Pt(NH3)4(NO3)2 was dissolved in 2 ml ethanol and 2 ml 
0.04M HNO3. Then, 0.4 g powder U3O8 was added to the solution. After stirring for 6 
hours, the sample was dried at room's temperature for 4 days, then, it was calcined at 500 

°C for 3 hours. 

4.4.44 Pt(0.1 % )/y Alumina-59 (Platinum over 'Y Alumina) 

This is also a commercial catalyst. It was purchased from Alfa Aesar Chemical 
Company. 
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CHAPTER S 

THE FUNDAMENTALS OF GAS ADSORPTION 

Gas adsorption measurements are widely used for determining the surface area 
and pore size distribution of a variety of different solid materials, such as industrial 
sorbents, catalysts, pigments, ceramics, and building materials. Two types of adsorption 
phenomena have been recognized in principle for many years: Physical adsorption and 
chemical adsorption, or chemisorption. Physical adsorption is caused by secondary (van 
der Wais) attractive forces such as dipole-dipole interaction and induced dipoles and is 
similar in character to condensation of vapor molecules onto a liquid of the same 
composition. Chemisorption involves chemical bonding, is similar in character to a 
chemical reaction, and involves transfer of electrons between adsorbent and adsorbate. 
Physical adsorption is of particular interest here because it provides a method of 
measuring the surface area of a catalyst and determining its average pore size and pore­
size distribution. 

The term sorption proposed by McBain [ 107] in 1909 embraces adsorption as 
process in which adsorptive molecules are transferred to, and accumulate in the 
interfacial layer on a surface and absorption by penetration into the lattice of the solid, 
and capillary condensation within the pores. The designation adsorption is frequently 
employed to denote uptake whether by capillary condensation or by surface adsorption. 
In such an experiment the material actually adsorbed by the solid (the adsorbent) is 
termed the adsorbate. Adsorption is brought about by the forces acting between the solid 
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and the molecules of the gas. These forces of two main kinds (physical and chemical) 
and they give rise to physisorption (or van der Waals) and chemisorption respectively. 

The specific surface area of a particular sample is defined as the amount of 
surface contained on a specific quantity (i.e. volume or mass) of sample. Methods of 
obtaining the specific surface area of solid particles have been discussed by Adamson 
[108]. Such methods include optical and electron microscopic inspection, adsorption 
from solution, and indirectly by mercury intrusion porosimetry . .  Most commonly, 
adsorption of inert gases is used for this purpose, since this method does not make 
assumptions concerning the overall shape of the particles. It is also relatively 
straightforward in application and has been proven valid for many systems. 

There are two types of isotherms to determine surface area of porous solids: 
Langmuir isotherm and Brunauer-Emmett-Teller (BET) isotherm. The mass of 
adsorbate, N, located at the interface between solid and gaseous phases is a function of 
temperature and pressure, N = f (T, P). Experimentally, one can obtain adsorption data 
by determining N as a function of pressure at constant temperature, N = f (P)r, in which 
case an "isotherm" can be constructed. Alternatively, one can vary the temperature of the 
adsorbing system at constant pressure, N = f (T)p, resulting in an "isobaric plot" . For 
experimental convenience, the most common measurements of adsorption are isotherms. 
An adsorption isotherm is the relationship at constant temperature between the partial 
pressure of the adsorbate and the amount adsorbed at equilibrium. This varies from zero 
at P/P0 = 0 to infinity as P/P0 reaches 1 provided that the contact angle of the condensed 
vapor is zero, i.e., the surface area is completely wetted. 
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5.1 The Langmuir Isotherm 

The Langmuir adsorption isotherm model [ 109] was developed in 19 18  for 
submonolayer adsorption under equilibrium conditions. Equilibrium between a vapor 
and the adsorbed state is defined in this case as being reached when the rate at which 
molecules leave the surface ( desorb) is matched by the rate at which molecules are 
captured on a bare site on the surface (adsorb). Langmuir had to make several 
assumptions in order to describe the adsorption process. First, he assumed that the 
factors affecting adsorption and desorption of adsorbate molecules were constant as the 
coverage of the surface approached completion of one monolayer. Second, he assumed 
that the surface consisted of energetically homogeneous adsorption sites. Third, each site 
can adsorb only one adsorbate molecules, thereby limiting the adsorbed film to one 
monolayer in thickness. 

If the fractions of occupied sites and unoccupied sites on the surface are 0 1 and 80, 

respectively, the total surface is described by 

(5 . 1 )  

the rate of adsorption (k0) on unit area of surface is then 

(5 .2) 

where a1 is the condensation coefficient (the fraction of the molecules hitting the surface 

that actually adsorb) and Pis the partial pressure of the adsorbate in the carrier gas. K is a 

constant given by the kinetic theory of gases, i.e. 
O.5 L 

K = --;:== ../M R L  (5.3) 
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where L is Avogadro's number, M is the molar mass of the adsorbate, R is the gas 
constant, and T is the temperature (K). 

The adsorption of a molecule from the surface is an activated process requiring an 
input of energy essentially equal to the isosteric heat of adsorption (AHiso). The rate of 
desorption (kd) from unit area of surface is equel to 

K z,,, 0 (- � Hiso ) 
d = 1 v1 exp 

R T  
(5 .4) 

where Z,,, is the number of sites per unit area of surface (Z,,, 01 = the number of adsorbed 
molecules per unit area of surface) and is the frequency of the oscillation of the molecule 
in the direction perpendicular to the surface. At equilibrium k0 = kd so that 

or 

solving this equation for 01 leads to 
0 - a1 K p 

1 - ( - � H. ) 
a K P  + Z v exp ,so 

1 m 1 

R T  

(5 .5) 

(5 .6) 

(5 .7) 

if N is the mass of adsorbate per gram of adsorbent and Nm is the monolayer capacity, 
then, 01 = N!Nm as long as N � Nm . Thus, 

N B P  
- = --- (5 .8) 
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Where 

(5.9) 

Equation (5.8) is the well known langmuir equation. This equation shows that a 
chemisorption-type isotherm (Figure 5. 1 )  is obtained from this theory. At small value of 
P, where P in the denominator can be neglected compared with B, equation (5.8) reduced 

to a simple proportionality between 0 and P, and this behavior is that corresponding to 

the initial steep rise of the isotherm curve. At higher pressures the value of P in the 
denominator contributes appreciably, and the increasing denominator leads to values of 

01 that do not increase proportionality with increases in P. For sufficiently large values 

of P, 01 approaches the constant value of unity. 

5.2 The Brunauer-Emmett-Teller (BET) Isotherm 

The Langmuir isotherm disregards the possibility that _initial overlayer may act as 
a substrate for further adsorption to give a multilayer adsorbate. Instead of the isotherm 
leveling off to some saturated value at high pressures in these cases one expects it to 
continue to rise indefinitely because there is no limit to the amount of material that may 
condense. The most popular isotherm dealing with multilayer adsorption is the one due 
to Brunauer, Emmett, and Teller, the BET isotherm. The derivation is an extension of the 
Langmuir argu�ent, and it assumes that each layer with an exposed surface is in 
e�uilibrium with the gas. 
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Figure 5. 1 : Plot of {N!N m ) vs. P (atm) as a function of B. 

On most surfaces, contrary to the assumption inherent in the Langmuir isotherm, 
adsorption does not cease after a monolayer of adsorbate is completed. In most cases, 
multilayer adsorption can take place on the surface. In 1938, Brunauer, Emmet, and 
Teller [ 1 1  O] extended the Langmuir model to include the adsorption of multiple 
molecular layers on a surface. These researchers developed a method by which the 
monolayer coverage could be calculated from adsorption data obtained in the multilayer 
region of the isotherm. The "BET" model, as it is now called, states that, at any pressure 

75 



below the saturation vapor pressure (P 0), the fractions of the surfaces covered with 1 ,  2, 

... , i molecules will be 01, 02, ... ,0i respectively, so that the thickness of the adsorbed 
layer will not be constant at all points on the surface. On the surface corresponding to 
one gram of adsorbent the total number of molecules (Nr) adsorbed will be 

(5. 1 0) 

so that N, the amount adsorbed in grams, will be given by 

MAdZm L (i (}i ) N = ------"=--- (5. 1 1 )  

where M is the molar mass of the adsorbate and Ad  is the specific surface area of the 
adsorbent (m2/g). 

Since the molecules in each layer are in slightly different environments, each will 

have its own value of a, �H;so, and v. Thus, in order to perform the summation in 

equation ( 5 . 1 0), Brunauer et al. made several simplifying assumptions: 
a. First, in all layers of adsorbate except the first, the heat of adsorption is 

equal to the molar heat of liquefaction (MIL), i.e., 

filliso,2 = filliso,3 = . . .  = Afliso,i = MIL 

b. Second, the desorption/ adsorption behavior of the adsorbate molecules in 
the second and higher layers is the same as that of the adsorbate in the 
liquid state, i.e., 
V2 = V3 = . . .  = Vi 

and 
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c. Third, when the vapor is saturated with the adsorbate (P = P 0), the 
adsorbate condenses to a bulk liquid on the surface and the number of 
layers approaches infinity. Given the above assumptions, the summation 
of terms in Equation (5.10) leads to Equation (5. 1 2), the BET Equation. 

N C(PI Po) 
N

m
= (1 -PI PoXt- (1 -cXPt Po)} 

for convenience of plotting, it is rewritten as: 

(5. 1 2) 

(5. 1 2) 

The parameter C in Equation (5. 1 2), which is related exponentially to the enthalpy 
of adsorption in the first adsorbed layer, is given by 

(5. 1 4) 

however, in practice the C constant is nearly always taken as 
(5. 15) 

The factor ( Afliso - Ml 
L 
) is the net heat of adsorption of the adsorbate on the 

surface at absolute temperature T. 
If plotted as NINm against PIP°' equation (5. 1 2) gives a curve having the shape of 

a type II isotherm as C>2 (Figure 5.2). The shape of the knee depends on the volume of 
C, becoming sharper as the value of C becomes larger. A high value of C (= 1 00) is 
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Figure 5.2 :  Curves of N/Nm against P/Po, calculated from the BET equation (5.12) for different values 
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associated with a sharp knee on the isotherm. On the other hand, if C is low (� 20) point 
B can not be identified as a single point on the isotherm. 
By plotting {N(P

0 
IP  - l )t 1 verses (PI P

0
) ( a so-called "BET plot"),' the amount of 

adsorbate (Nm) in a monolayer can be obtained. The slope of the resulting line should be 
equal to [(C-J)INmC] and the line should have an intercept of [l!NmC], Thus, 

and 

N = l 
m slope + intercept 

C = slope + 1 intercept 
The specific surface area of the sample is calculated using 

(5 . 1 6) 

(5 . 1 7) 

(5 . 1 8) 

where cr is the cross-sectional area of the adsorbate and S is the mass of the sample. 
Although several simplifying assumptions were necessary in deriving the BET 

equation, it has been a highly successful model for the calculation of the mono layer 
coverage of adsorbate. Even though the BET plot frequently shows deviation from 
linearity in the multilayer region of the isotherm (P/P0 > 0.35), linearity of the BET plot 
over some portion of the low partial pressure regime can usually be expected. 

In addition to the assumption listed above, it is easy to overlook the fact the BET 
equation can only be applied to certain types of adsorption isotherms. The general types 
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of adsorption isotherms as suggested by Brunauer, Deming, and Teller [ 1 1 1 ] are 

illustrated in Figure 5 .3 .  Of these, adsorption conditions which produce isotherms of 

Types Ill and V can be analyzed with the BET treatment, nor can the BET equation be 

used in cases where the C constant is very small. 

5.3 Classification of Adsorption Isotherm 

A search of the literature on the van der Waals adsorption of gases reveals that 

there exist five different types of isotherms. To give an example of each type we may 

mention the adsorption of oxygen on charcoal at - 1 83 °C (Type I), nitrogen on iron 

catalysts at - 195 °C (Type II), bromine on silica! gel at 79 °C (Type III), benzene on 

ferric oxide gel at 50 °C (Type IV), and water vapor on charcoal at 1 00 °C (Type V). 

Figure 5 .3 il lustrates these five types of isotherms, they are imaginary, not real isotherms. 

The reversible Type I isotherm is concave to the p/p0 axis and N approaches a limiting 

values as p/p0 ---+ 1 .  Type I isotherms are given by microporous solids having relatively 

small surface areas ( e.g. activated carbons, molecular sieve zeolites and certain porous 

oxides}, the limiting uptake being governed by the accessible micropore volume rather 

than by the internal surface area. The reversible Type II isotherm is the normal form of 

isotherm obtained with a non-porous or macroporous adsorbent. The Type II isotherm 

represents unrestricted monolayer-multilayer adsorption. The beginning of the isotherm 

is often taken to indicate the stage at which monolayer coverage is complete and 

multilayer adsorption begin. The reversible Type Ill isotherm is convex to the p/p0 axis 

over its entire range. Isotherms of this type are not common, but there are a number of 
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Figure 5 .3 :  The five types of adsorption isotherm 

8 1 



systems ( e.g. nitrogen on polyethylene) which give isotherms gradual curvature. In such 
cases, very weak interactions between adsorbent and adsorbate play an important role in 
the formation of the isotherm. Characteristic features of the Type IV isotherm are its 
hysteresis loop, which is associated with capillary condensation taking place in 

mesopores and the limiting uptake over a range of high p/po . The initial part of the Type 

JV isotherm is attributed to monolayer-multilayer adsorption since it follows the same 
path as the corresponding part of a Type II isotherm obtained with the given adsorptive 
on the same surface area of the adsorbent in a non-porous form. Type IV isotherms are 
observed for many mesoporous adsorbents. The Type V isotherm is uncommon. It is 
related to the Type Ill isotherm in that the adsorbent-adsorbate interaction is weak, but is 
obtained with certain porous sorbents. 

5.4 Adsorption Hysteresis 

Hysteresis appearing in the multilayer range of physisorption isotherm is usually 
associated with capillary condensation in mesoporous structures. Such hysteresis loops 
may exhibit a wide variety of shapes. Two extreme types are shown HJ and H4 in Figure 
5.4. In · the former, the two branches are almost vertical and nearly parallel over an 
appreciable range of gas uptake, whereas in the later they remain nearly horizontal and 

parallel over a wide range of p/p0 • In certain respects Type H2 and H3 may be regarded 

as intermediate be�een these two extremes. A feature common to many hysteresis loops 
is that the steep region of the desorption branch leading to the lower closure point occurs 
at a relative pressure which is almost independent of the nature of the porous adsorbent 
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but depends mainly on the nature of the adsorbate. Although the effect of various factors 

on adsorption hysteresis is not fully understood, the shape of hysteresis loops have often 

been identified with specific pore structures. Thus, Type H 1 is often associated with 

porous materials known, from other evidence, to consist of agglomerates or compacts of 

approximately uniform spheres in fairly regular arrays, and hence to have narrow 

distributions pore size. Many porous sorbents such as inorganic oxide gels and porous 

glasses tend to give Type H2 loops, but in such systems the distribution of pore size and 

shape is not well-defined. Indeed the H2 loop is especially difficult to interpret. In the 

past, it was attributed to a difference in mechanism between condensation and 

evaporation processes occurring in pores with narrow necks and wide bodies, but it is 

now recognized that this provides as over-simplified picture and the role of network 

effects must be taken into account. The Type H3 loop, which does not exhibit any 

limiting adsorption at high p/p0 , is observed with aggregates of plate-like particles giving 

rise to slit-shaped pores. Similarly, the Type H4 loop is often associated with narrow slit­

like pores, but in this case the Type I isotherm character is indicative of microporosity. 

5.5 The Determination of Pore Volume and Pore Size Distribution 

Most solids with high surface area are to some extent porous. Porosity is a 

concept related to texture and refers to the pore space in a material . The total pore 

volume, V1ota1, is often derived from the amount of vapor adsorbed at a relative pressure 

close to unity by assuming that the pores are then filled with condensed adsorbate in the 

normal liquid state. 
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The determination of pore volume and pore size distribution from BET isotherms 
was suggested by Barrett, Joyner, and Halenda in 195 1 [ 1 12] .  This is based on the 
Kelvin equation: 

(5. 19) 

This equation relates the principle radii, r 1 and r2, of curvature of the liquid 

meniscus in the pore at the relative pressure, p/p0 , at which condensation occurs. a is 

the surface tension of the liquid condensate and V is its molar volume. In using this 
approach to obtain the pore radius two fundamental assumptions are necessary: 

1. The pores are cylindrical and the curvature of the meniscus in the cylindrical 
pores is directly related to the pore width. 

2. The amount of adsorbate in equilibrium with the gas phase is retained by the 
Adsorbent by two mechanisms: (a) physical adsorption on the pore walls, and 
(b) capillary condensation in the inner capillary volume. 

In the cylindrical pores, the meniscus is hemispherical and r1 = r2. Rearrangement 

of the Kelvin equation and replacement of{ _!_ + __!_ ) by � gives : 

2 a V  

r* = 
RT ln (PIP0 ) 

r1 r2 rk 

(5.20) 

In the context of physisorption, it is expedient to classify pores according to their 

sizes: (i) pore with widths exceeding about 50 nm (500 A )  are called macropores; (ii) 
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pores of widths between 2 nm (20 A ) and 50 nm ( 500 A ) are called mesopores; (iii) 

pores with widths not exceeding about 2 nm (20 A )  are called micropores. 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

The combustion activity (light-off curve) of uranium oxide based catalysts have 
been determined for a range of typical voes which are chemically different in nature. 
The compounds investigated include toluene, chlorobenzene and trichloroethylene 
respectively. The conversions were measured at a constant flow rate of 140 cc/min 
(0.15% toluene, 0.30% 02, He balance) and using 0.1 g catalyst, the Gas Hourly Space 
Velocity (GHSV) was calculated as follows: 

GHSV = � = 140 ml/min x 60 min = 84,000 mlg-Ih- I W 0.1 g catalyst hr 
Where F is the flow rate per hour and W is the weight of catalyst. 

(6.1) 

The vapor pressure of voe was estimated by using the Antoine Equation as follows: 
* B Log10 P = A - --

T + e  
(6.2) 

Where p• is the vapor pressure in mm Hg and A, B, and e are empirical 
constant [ 113] that varies from one substance to another. T is the temperature in °e. By 
using Antoine Equation, the vapor pressure of toluene, chlorobenzene and 
trichloroethylene at O °C, was calculated as follows: 
Lo p• = 6.95334 - 1343·943 = 0.827 gio 0+ 219.377 
Lo P. = 7.10690 - l500.0 = 0.4105 gio 0+ 224.0 

87 

• p toluene = 6.717 mm Hg 

p• chtorobenrenee = 2.573 mm Hg 

(6.3) 

(6.4) 



Lo p• = 6.5183 - 1018·60 = 1.232 grn 0 + 192.70 P • trich1oroethytene = 1 7 · 07 mm Hg (6.5) 

By knowing the vapor pressure of toluene, chlorobenzene and trichloroethylene, the 
concentration of each can be calculated by the following method in the flow system: 

P�tuene (6.717 mm Hg) 
760 mm Hg 

21ml 6 x---- x l0 =1325 ppm 140 ml/min 

P;hlorobelUfflC (2.573 mm Hg) 
760 mm Hg 

P�chloroethylene ( l  7.07 ) mm Hg) 
760 mm Hg 

21ml 6 x---- x l O = 508 ppm 140 ml/min 

21ml 6 x ---- x l0 = 3369 ppm 140 ml/min 

(6.6) 

(6.7) 

(6.8) 

Assuming ideal gas law, the %volume of water in the reactant stream at syringe 
flow rate of Q ml/min and total flow rate of 140 ml/min, was calculated as follows: 

Q ml 1g H 20 1 mole H 2 0 22400 ml ml . -- x ----- x ---- x ------ =  Q x 1244.44 - water m stream mm l mlH 2O . 18 g H 2O l moleH 2 Oat STP min 
Q X 1244.44 �

} 

mm 
1 x 100 = % by volumeH 20 vapor entering into reactor. (6.9) 

(Q X 1 244.44 + 140) � mm 

Blank reactions in an empty reactor and using a catalyst bed of frit silica used to produce 
the supported catalysts indicated that activity for the combustion of all VOCs at Gas 
Hourly Space Velocity (GHSV) of 84,000 mli 1h- 1 was negligible. 
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6.1 Oxidation of Toluene 

6. 1 .1 Efficacy of Mixed (0308 - Si02) Catalysts 0308 

The BET surface area of U3Os was <0. 1 m2/g. Two XRD were run, one before 
and one after run in the reactor. In both cases, the samples were calcined at 800 °C. 
Before the reaction, the sample shows sharp peaks due to U 308• Every peak can be 
assigned to U3Os, but all are shifted to slightly higher angle, impling a smaller lattice 
constant and probably reduced sample. No peaks due to UO2 observed. · It also does not 
fit to UO3. After reaction the sample showed decreased peak intensity, perhaps due to 
sample poisoning, but also a broad amorphous peak. Peaks again were assignable to 
U3Os, with no sign of UO2. The Tso was 520 °C. 

Mesoporous Silica (Si02) 

The idea was to compare the activity of mesoporous silica based catalyst �ith 
variable mole ratio of uranyl nitrate hexahydrate. For this purpose, a pure SiO2 sample 
was synthesized. The final calcination temperature was 800 °C. The BET surface area 
(See Figure A. l ) was 22 1 .8 cm2/g. The XRD before the reaction shows sharp peaks 
aligned with SiO2. The Tso was 550 °C. 

U-Meso-5 (Uranium Mesoporous Silica) 

The monolithic mesostructure uranium oxide based catalyst was formed at final 
calcinations temperature of 800 °C. The mole ratio of U:Si was I :  I 0. The BET surface 
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area (see Figure A.2) was 224.6 m2/g. The XRD measurements of the calcined catalyst 

before experiment indicated that the uranium is present as U3Os. This catalyst performed 

poorly. After reaction, this catalyst was examined by XRD. The XRD in Figure 6. 1 

clearly demonstrated that this catalyst contained a fluorite phase of UO2. This phase is 

associated with the poor activity of this catalyst. It is not clear why this catalyst 

contained such high quantities of UO2 phase. This catalyst did show 50% toluene light­

off at 425 °C. 

Meso-6 (Uranium Mesoporous Silica) 

The mole ratio of U:Si was 1 :20. The BET surface area (See Figure A.3) was 233 

m2/g. Two XRD were run, one before and one after the reaction. In both cases, the 

samples was calcined at 800 °C. Before the reaction, the sample showed peaks due to 

U3Os, but there was a very high background. Peaks are very close to predicted angle, 

suggesting lattice constant is comparable to U3O8 without reduction. There is no sign of 

UO2. After reaction, exhibited the same peak with present of U3Os, but no sign of UO2 . 

This catalyst was very stable at the beginning, but after long rup did show some 

deactivation at 575 to 600 °C. This deactivation was recovered by heating in oxygen for 

an hour. 
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Figure 6. 1: XRD spectra identifying the active U30s phase and inactive U02 phase 
present in U-Meso-5. 

It was considered very important to control the concentration of toluene 
independently in the reaction stream, since in a technical application, the concentration of 
VOC may be variable. It was important to be able to confirm the catalyst activity with 
respect to this variable. This was accomplished by adding another gas flow line and 
reconfiguring the reactor streams with three individual flow rates. After modification, the 
activity vs. concentration of toluene was determined. The results are shown in Figure 
6.2. The plot reveals that decreasing conversion as toluene concentration increases as 
might be expected for a fixed flow rate. 
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Figure 6.2: The conversion of toluene as a function of toluene concentration in the exit 
reactor stream. 

The Mass Spectrometric analysis indicates that toluene is converted a�most 

entirely to CO2 and H20, but there is evidence for small amount of xylene and CO in the 

exhaust streams. This catalyst showed 50% toluene light-off at 4 10  °C. A comparison of 

the activity of this catalyst with U30s, Si02, and U-Meso-5 is shown in Figure 6.3 . The 

plot 'indicates that loading as low as 1 :20 uranium to silicon give high activity probably 

due in part to high dispersion of uranium. The results for pure U30s catalyst suggest ·that 

uranium loading is not as important as surface area and preparation methods. 
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Figure 6.3: Comparison of catalytic performance (U3O8, SiO2, U-Meso-5, and U-Meso-
6) for destruction of toluene. 

6.1.2 Effect of Chromium Doping on Catalyst Efficiency 

U-Cr-Meso-19, 21 (Chromium + Uranium Mesoporous Silica) and MesoCr-22 
(Chromium + Mesoporous Silica) 

It is well known that Cr is an active element for oxidation of VOC. The idea was 
to add a small amount of the Cr which through synergistic interactions may promote the 
activity of the uranium oxide, perhaps by enhancing the abili� of the uranium to transfer 
oxygen, or by stabilizing a smaller uranium oxide particle size. Cr based catalysts were 
prepared by different synthetic methodologies and compared for their catalytic activity. 
In a synthetic method, a silica supported uranium oxide catalyst without Cr was first 
synthesized using co-assymbly method as described previously with a U:Si mole ratio of 

1 :20. Then, it was calcined at 800 °C accordingly. This material was post impregnated 

with Cr and calcined at 600 °C. The BET surface area was 253.4 m2/g. The post-
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impregnated was done in such a way to produce a comparable weight loading of Cr 
(4.9%) onto the silica supported uranium catalyst as in the co-synthesis catalyst. 

In a second approach, Cr was added into the co-assembly synthesis of the silica 

supported uranium. After synthesis, the resulting catalyst was calcined at 800 °C. The 

BET surface area (See Figure A.4) was 203 m2/g and pore volume of 0.29 cm3 /g 
suggesting that mesoporosity is achieved in the co-synthesis. The synthesis mole ratio of 
Cr:U:Si was about 1 :  1 :20, which computes to a Cr loading of 4.9%. Detailed loading 
calculations are given in appendix B.7. XRD of this catalyst indicates that uranium is 
present as U30s, but Cr is not visible due to its low concentration of or it is existing as 
very small particle. 

In addition to above two catalysts, another sample was synthesized using co­
assambly synthesis in which as silica supported Cr was prepared with no uranium oxide. 
The BET surface area was 207 m2/g (See Figure A.5). The synthesis concentration is 
about 5.9% wt �r, comparable with Cr loading in the other two Cr containing catalysts. 

After calcinations at 800 °C, the presence of Cr203 was confirmed by XRD. The three Cr 
doped catalysts are compared with undoped uranium-silica catalyst in Figure 6.4 where 
toluene "light-off'' curves are shown. The activity increased, as characterized by the 
temperature of 50% conversion, Tso, which decreased from 405 °C down to 375 °C. The 
impregnation method for doping the catalyst with Cr was not as effective as the co­
synthesis method. The activity of the impregnated catalyst is dominated by the activity 
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Figure 6.4: Effect of Chromium addition by co-assembly or impregnation synthesis techniques for destruction of toluene. 

of the supported uranium oxide. Cr is active even without uranium when it is put onto 
silica using the co-assembly approach. 

6.1 .3 Effect of Cobalt Doping on Catalyst Efficiency 

U-Co-Meso-20, 23 (Cobalt + Uranium Mesoporous Silica) and MesoCo-24 (Cobalt 
Mesoporous) 

Similarly, post impregnation method was performed with Co loading and the 
resulting catalyst was calcined at 600 °C. The BET surface area was 242 m2/g. As 
compared with Cr, the post-impregnation with Co has the effect of decreasing the 
activity. The Tso was 440 °C. 
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In the second approach, Co was added into the co-assembly synthesis of the silica 
supported uranium. The synthesis mole ratio of Co:U:Si was about 1 :  1 :20, which 
computes to a Co loading of 5.23%. Detailed loading calculations are given in appendix 

B.8. After synthesis, the resulting catalyst was calcined at 800 °C. The BET surface area 

was 223 m2/g (See Figure A.6). Both co-assembly and post-impregnation synthesis were 
performed with comparable loading. It has seen that doping with Co has little effect on 
the activity of co-synthesized catalyst, suggesting that the Co is not interacting with U or 

contributing to the activity. The Tso was 420 °C. 

In the final approach, a different catalyst was synthesized in which as silica 
supported Co was prepared without uranium. The synthesis mole ratio of Co:Si was 

about 1 :20, which computes to a Co loading of 6.44%. After calcination at 800 °C, the 

presence of CoO was confirmed by XRD. The BET surface area (See Figure A.7) was 
224 m2/g . . Interestingly, Co supported on silica without uranium is also of comparable 
activity as the pure uranium. These results suggest that the uranium phase and the Co 
phase both have comparable activity, and are not synergistically interacting. The post 
impregnation however may lead to large Co crystallite particles which are less active by 
virtue or smaller surface area and which may block access to uranium in the mesopores. 
The results are shown in Figure 6.5. 
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Figure 6.5 : Effect of Cobalt addition by co-assembly or impregnation synthesis 
techniques for oxidation of toluene. 

6.1 .4 The Efficacy of Mixed (U3O8 - TiO2) Catalyst 

Ti02-41 (Mesoporous Titanium Oxide) 

Mesoporous titanium oxide catalyst was synthesized by co-assembly method 

according to a procedure outlined previously in chapter 4. Mesoporous titanium oxide is 

known to be active in oxidation reactions especially when used as a support for vanadia 

catalyst. The prepared titanium oxide was calcined at 400 °C, then, it was divided into 

three equal portions. The first portion was named TiO2-41(400). The other two portions 

were calcined at 600 °C and 800 °C respectively. They were named TiO2-41(600) and 

TiO2-4 l (800). The purpose was to study the effect of calcinations temperature on the 

activity of catalyst. TiO2-41 ( 400) has considerable activity for oxidation of toluene. As 

shown in Figure 6.6, the activity of this catalyst decreases considerably when it was 
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Figure 6.6: Effect of calcinations temperature upon light-off by TiO2. 

calcined above 400 °C. Calcination at 800 °C seriously degrades the titania catalysts. The 

degradation is probably due to loss of surface area due to the collapse of the titania 
mesoporous structure, since the BET surface area drops from 127 m2/g down to 3 m2/g. 

The Tso was 365, 425, and 550 °C, for TiO2-4 1 (400), TiO2-4 1 (600), and TiO2-4 1 (800) 
respectively. The N2 adsorption-desorption isotherms of titania oxide are shown in 
appendix A (See Figures : . A.8, A.9, and A. 10) at various calcinations temperature. All 
three different stages of calcinations are characterized by ordered cylindrical pores, show 
completely reversible Type IV isotherms with the inflection in the low relative pressure 

range (PIP°=0.40-0.90) with a H2 type hysteresis loop, indicating mesoporous materials 

and the role of network effect during calcinations. The XRD (Figure 6. 7) demonstrates 
that with increasing calcinations temperature, the titania crystallite size grows and 
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Figure 6.7: XRD pattern of TiO2 mesoporous materials at calcinations temperature of 350 °C (a), 600 °C (b), and 800 °C (c). 

converts from the anatase to the rutile titanium oxide structures which has less activity. 
Either the structure or the decreased surface area must be the cause of the loss of the 
activity. 

U-Ti-Meso-(43, 42, 44, and 45) (Uranium Mesoporous Titanium Oxide) 

A new type of catalyst, titania supported uranium oxide was synthesized and 
compared with TiO2. The new catalyst was formed by co-assembly of uranyl nitrate with 
tetraethoxy titanium, and using a pluronic as a surfactant in HNO3 solution. This 
synthesis has been reported in the literature for rare earth ions [ 101] and the present work 
is the first time this has been attempted with uranyl ions. The as synthesized catalyst was 
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calcined at 150 °C for 72 hours followed by 24 hours at 400 °C. This catalyst was 

divided into three equal portions. The other two portions were calcined at 600 °C and 

800 °C. The first portion was named U-Ti-Meso-43(400). The other two portions were 

named U-Ti-Meso-43(600) and U-Ti-Meso-43(800) respectively. These catalysts, 
calcined at three different temperatures are shown in Figure 6.8. A conversion of 100% 

was achieved below 400 °C. It is seen that the catalyst improved upon calcinations to 

600 °C, but, then degrades slightly after calcinations at 800 °C. The degradation is 

probably due to loss of surface area due to the collapse of the titania mesoporous 
structure, since the surface area drops from 175 down to 23 m2/g after calcinations at 800 

°C. However, it is very significant that the catalyst maintains high activity, a very 

important property for an oxidation catalyst. With a T 50 of 340 °C, it is still better than 

uranium supported on high surface area mesoporous silica. It appears that the uranium 
interacts synergistically with titanium oxide and inhibits deactivation caused by sustained 

temperature as high as 800 °C. The activity of this catalyst was shown to be stable for 

days and its activity is comparable to 0. 1 % Pt/ AhO3 and therefore competitive with the 
more expensive preciousmetal catalyst. The comparison of BET surface areas, total pore 
volume, and micropore area for uranium-titanium and titanium oxide catalysts are listed 
in Table 6. 1 .  Adsorption-desorption isotherms of uranium-titanium catalysts are shown 
in appendix A (See Figures: A. 1 1 , A. 12, and A. 13) for all three different stages of 
calcinations. The Type IV isotherms with a H2 type hysteresis loop, indicating 
mesoporous materials. 
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Table 6. 1 :  Catalyst BET surface area, average pore size, and total pore volume at various 
1 . f t tu £ U T  M 43 d TO 41  ca cma 10ns empera res or - 1- eso- an 1 2-

= 

-� .... 
= 
0 
u 

Catalyst Calcinations BET Surface Area Total Pore Volume 
Temperatures ( oC) (m2/g) (cm3/g) 

U-Ti-Meso-43 400 175. 12 0.3 15 
U-Ti-Meso-43 600 97.376 0.304 
U-Ti-Meso-43 800 23 .89 0.059 

TiO2 -4 1 400 127.8 1 0. 142 

TiO2-4 1 600 18.21 0.0417 
TiO2-4 1 800 2.953 0.0046 

1 00 
U-Ti-Meso(400) a • e U-Ti-Meso ( 400), SA=249 .6 m2/g, • 

T50=330 C 0. 1 % Pt/ Al2O3 • 
75 • U-Ti-Meso (600), SA=l08.62 m2/g, • 

T50=325 C • 

, . 
• A U-Ti-Meso (800), SA=25.14 m2/g, • 

50 T50=345 C 
• 

• • 0. 1 % Pt/ Al203, SA=224.6 m2/g, 
T50=375 C (Commercial) .I • 

25 

I 
I 
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Temperature ( 0C) 

Figure 6.8: The effect of calcinations temperature upon light-off by U-Ti-Meso-43( 400, 
600, 800) for oxidation of toluene. 
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The powder X-ray diffraction pattern of the samples were recorded using a SIEMENS 

D5005 X-rat diffractometer, where Cu target Ka-ray (A = 0. 154 nm and operating at 40 

kV and 40 mA) was used as the X-ray source. Variation of small-angle powder X-ray 
diffraction (XRD) patterns for uranium-titanium oxide at various stages of calcinations 

temperatures of 350, 600, and 800 oC are shown in Figure 6.9. All patterns are similar 

and they exhibit typical low angle diffraction associated with the nature of mesoporous 
titania oxide. It demonstrates that with increasing calcinations temperature, the titania 
crystallite size grows and converts from the anatase to titanium-uranium oxide (UTiOs) at 

calcinations temperature of 800 °C. The light olive green color of UTiO5 suggests that 

the compound is somewhat deficient in oxygen. The analytical results, however, indicate 
that the oxygen deficiency is minimal. Decomposition to rutile and U3Os, as determined 

by x·-ray analysis, takes place above 1020 °C [ 1 14]. 

The ordered mesoporous structures of uranium-titanium oxides composites have 
been confirmed by transmission electron microscopy (TEM). TEM measurements 
indicated that uranium particles in the form of UTiO5 were dispersed in the pores and on 
the external surface of titania support. All TEM images are shown in Figure 6. 10 in order 
of their calcinations temperatures. 

The mass spectrometer indicated that at lower temperature there were some 

byproducts. With increasing the reactor temperature above 380 °C, only carbon dioxide 
and water were observed. The activity of this catalyst was very stable for weeks and it is 
competitive with the most expensive precious metal catalyst. 
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Figure 6.9: XRD pattern of U-Ti-Meso-43 at calcinations temperature of 350 °C (a), 600 °C (b), and 800 °C (c). 
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: : -.' . : .  B- / . .  . - :  : _ . · : 

A: TEM (400 °C) at 250 K magnification B: TEM (400 °C) at 600 K magnification 

C: Z-contrast (600 °C) D: TEM at (600 °C) 

E. Z-contrast (800 °C) F: TEM at (800 °C) Figure 6.10: Z-contrast and TEM image of mesoporous uranium-titanium oxide catalyst (U-Ti-Meso-43). 
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Further syntheses were made in which the uranium was doped in different amount 
with titanium. Previously, it was found that uranium oxide supported on mesoporous 
silica yields higher activity when the uranium content was decreased from 1 :20 to 1 :30 
(UMeso-6 and U-meso-9). Therefore, the activity of the catalyst is not straightforward to 
predict since it depends upon surface area or other factors besides simply the amount of 
uranium oxide in the catalysts and the stability of the resulting catalyst. These 
measurements should help determine the optimal catalyst configuration. As is evident in 
the Figure 6. 1 1 , the activity was decreased slightly by decreasing the loading of uranium 
to titanium from 1 :20 to 1 :30 and 1 :40. On the other hand, increasing the atomic ratio of 
uranium to titanium from 1 :20 to 1 : 1 0  slightly improved the activity as compared with 
others. Therefore, the relative amount of uranium oxide is evidently been optimized at 
1 :20. The activity decreases with decreasing loading of the uranium-to-titanium ratio 
from 1 :20 to 1 :30 and 1 :40. However, the activity increases with decreasing uranium-to­
titanium ratio from 1 :l O to 1 :20. 

6. 1.5 The Efficacy of Mixed U3O8 and K Promotor 

U-MCM41-49 (Uranium+Mesoporous MCM-41), K-U-MCM41-50 . (Potassium 
+Uranium + Mesoporous MCM-41), U-SBA-15-47 (Uranium +SBA-15), and K-U­
SBA-46 (Potassium +Uranium +SBA-15). 

The idea was to check the effects of potassium loading. For this purpose, two 
catalysts were prepared on MCM-41 .  First, a novel MCM-4 1 supported base catalyst, U­
MCM-4 1 ,  was synthesized with the impregnation method. U-MCM-41 was synthesized 
on the MCM-4 1 pore wall as confirmed by characterization using X-Ray diffraction, and 
N2 adsorption. The BET surface area of the empty MCM-41 was 986 m2/g, and with 
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Figure 6.11: Catalyzed oxidation of toluene by variable doped uranium in U-Ti-Meso 
(42, 43, 44, and 45) for oxidation of toluene. 

20.60 % wt loading (U:MCM-41 = 1:32) was 758 m2/g. The calcinations temperature 

was 800 °C to activate the uranium. A portion of this catalyst was further doped by 

impregnation with potassium nitrate and calcined at 600 °C to decompose the nitrate. 

The BET surface area collapsed considerably to 26 m2/g. The mole ratio of K to U­

MCM-41 was 1 to 11. These two catalysts are compared in Figure 6.12. It was seen that 

K acts as a poison. The activity (T 50) was changed from 335 °C to 400 °C. 

The effect of different pore sizes in the urania catalysts were compared. Two 

different mesoporous silica supports were impregnated with uranyl nitrate. SBA-15 has a 

pore size of around 5-8 nm, while MCM-41 has smaller pore sizes of 2-3 nm. The 

smaller pored catalyst performed slightly better, possibly due to higher uranium surface 
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Figure 6.12: Effects of doping MCM-41 with uranium and potassium promoter for oxidation of toluene 

area as seen in Figure 6.13. The T50 was 335 and 360 °C for U-MCM-41 and U-SBA-15 
respectively. The hesteresis in the lower portion of light-off curve with U-SBA-15 was 
due to pressure build up in the system. This problem was corrected by modification of 
our system, and using a different reactor. In addition to above catalysts, another sample 
was synthesized by impregnation of KN02 with U-SBA-15. The mole ratio of K to U­
SBA-15 was 1 : 11. It was seen that K completely destroyed the activity of catalyst. 

6.1.6 Effect of Support (Ti02 - 0308) on Platinum based Catalysts 

PtffiO2-56 (Platinum over Titanium Oxide) and Pt/U3O3-57 (Platinum over 
Uranium Oxide) 

It is known that Pt is a highly active VOC oxidation catalyst. Studies were made 
of the addition of Pt to uranium oxide catalysts using incipient wetness synthesis method. 
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Figure 6. 13: Comparison of doping uranium with SBA- 15 and MCM-4 1 for oxidation of 
toluene. 

In the first study, the possibility of using the uranium oxide as a support for Pt was 
examined. The idea was to create a bi-functional catalyst in which the VOC reacts on Pt 
while the uranium oxide provides a source of oxygen for the catalytic conversion. To test 
this possibility, uranium oxide was deposited on pure U3Os. In another study, Pt was 
deposited on pure titanium oxide, another reducible oxide. Both catalysts were calcined 

at 600 °C. The results are shown in Figure 6. 14 .  It was seen that the Pt supported on 

titania was extremely active with light-off temperature (Tso) of 160 °C. Supporting Pt on 

uranium oxide is also very active with T 50 near 230 °C, but it is not as good as the Pt/TiO2 

catalyst. 
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Figure 6. 14: Comparison of titania (Ti02) and urania (lhOs) as oxidative supports for 
destruction of toluene. 

6.1 .  7 Effect of (Ti - Pt) Doping on Catalyst Efficiency 

U-Ti-Si-Meso-39 (Uranium + Titanium + Mesoporous Silica) 

Catalyst with good activity and stability to deactivation can be prepared from co­

synthesis of uranium oxide on pores of both mesoporous silica and titania. The co­

assembled mesoporous catalyst was calcined at 350 °C, then, it was divided into three 

equal portions. The first portion was named U-Ti-Si (3 50). The other two portions were 

calcined at 600 °C and 800 °C respectively. They were named U-Ti-Si (600) and U-Ti-Si 

(800). The resulting surface area was 429, 34 1 .6, and 205 .3 m2/g in order of calcinations 

temperatures. The first purpose was to study the improvement in the activity of catalyst 

by doping silica supported uranium oxide with titanium in smaller concentrations 

(U:Ti:Si = 1 :  1 :20). This approach gave catalysts with activities slightly improved as 
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compared with U-Meso-6, but not as effective as the U-Ti-Meso(600). The second 

approach was to see the effect of calcinations temperature on the activity of catalyst. As 

shown in Figure 6. 1 5, these catalysts were very stable at high temperature with constant 

Tso =390 °C. The XRD of this catalyst indicates amorphous peaks for calcination 

temperature of 3 50 °C. As calcinations temperature was increased to 600 °C, the titania 

crystallite size grows to anatase, then it converts to U3Os and possibly to anatase at 

800 °C. 

U-Pt-Si-Meso-40 (Uranium + Platinum + Mesoporous Silica) 

It is well known that the influence of a promoter such as Pt on the catalytic 

activity of a catalyst is highly considerable. A similar approach was used for preparation 

of this catalyst. The idea was to study the improvement in the activity of catalyst by 

doping silica supported uranium oxide with platinum in smaller concentrations (U:Pt:Si = 

1 :  1 :20). This approach gave catalysts with activities considerably improved as compared 

with U-Meso-6 as it was expected. The second approach was to see the effect of 

calcinations temperature on the activity of catalyst. As shown in Figure 6. 1 6, the surface 

area of these catalysts has been reduced considerably as calcinations temperature was 

increased from 350 °C to 800 °C, resulting the loss of surface area from 477 to 247 m2/g. 

The Tso was 1 70, 1 85, and 235 °C, for U-Pt-Si (350), U-Pt-Si (600), and U-Pt-Si (800) 

respectively. The mass spectrometer indicated that all exit gasses were converted to 

carbon dioxide and water. The XRD indicates the presence of Pt at calcinations 

temperature of 350 °C. 
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Figure 6. 15: The effect of calcinations temperature upon light-off curve by U-Ti-Si-39 
for oxidation of toluene. 
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Figure 6. 16: The effect of calcinations temperature upon light-off curve by U-Pt-Si-40 
for oxidation of toluene. 
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6.1.8 Effect of Copper Doping on Efficiency of Catalyst 
MesoCu-29 (Copper + Mesoporous Silica) and U-Cu-Meso-30 (Uranium + Copper + 
Mesoporous Silica) 

A number of additives in low concentration are known to promote the catalytic 
performance of mesoporous silica. A new transition metal oxide catalyst such as CuO 
was co-synthesized and compared with previous catalysts. The new catalyst was formed 
by co-synthesis of Cu(NO3)2 . 3H2O and TEOS by using a F127 surfactant in acid 
solution. The atom ratio of Cu:Si was 5:20. The as synthesized sample was calcined at 

800 oC accordingly. A second catalyst was produced in the same way with uranium 

oxide. The mole ratio of U:Cu:Si was 1:5:20. The BET adsorption-desorption isotherm 
was 147 and 257 m2/g with and without uranium respectively. It confirms that the 
mesoporousity has been achieved (See Figure A.14 and A.15). As shown in Figure 6.17, 
doping Cu with uranium oxide enhanced the activity of catalyst slightly as compared with 
silica supported uranium oxide. It is seen that supporting Cu on uranium oxide has light­

off temperature (Tso) of 385 °C. Supporting Cu only on mesoporous silica is very 

unactive which resulted light-off temperature (Tso) of 540 °C. The XRD shows the 
presence of both U3Os and CuU3O10 (Copper Uranium Oxide) in the doped catalyst 
which indicates that uranium has slightly interacted with Cu. Besides titanium and 

chromium, copper is the third oxide to interact with uranium. Detailed synthesis 
calculations are given in appendix B.14. 
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Figure 6.17: The effect of copper addition into uranium mesoporous silica supported by co-assembly method for oxidation of toluene. 

6.1 .9 Effect of Strontium Doping on Efficiency of Catalyst 

U-Sr-Meso-33 (Uranium + Strontium + Mesoporous Silica) and MesoSr-34 
(Strontium + Mesoporous Silica) 

Previously, it was found that the addition of potassium in the co-synthesis 
destroys the mesoporous structure of the urania-silica catalyst. To better understand this 
with strontium, two catalysts were prepared. In the first approach, a silica supported with 
Sr was synthesized using the surfactant approach described previously and then calcined 
at 800 °C. It also had a mole ratio of Sr:Si = 1 :20 which computes for a Sr to a loading of 
8%. Another sample was synthesized in which one was doped with uranium oxide by co­
assembly method. The mole ratio was U:Sr:Si = 1:1:20 which computes to a Sr loading 
of about 6.55%. The calcinations temperature was also 800 °C. The BET adsorption-
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desorption isotherm was 94.56 and 30.77 m2/g with and without uranium loading. The 
Figures A.16 and A.17 confirms that the mesoporousity has been achieved. As shown in 
Figure 6.18, doping Sr with uranium oxide did not enhance the activity of silica 
supported catalyst as compared with silica supported uranium oxide (U-Meso-6). It is 
very obvious that the Sr does not interacting with uranium and acts as a poison which we 
have seen by K previously. Supporting Sr on uranium oxide gave a light-off temperature 

(Tso) of 550 °C. Supporting Sr only on mesoporous silica resulted in an identical light­

off temperature (Tso) of 550 °C. The XRD pattern was unclear for both cases. Similarly, 

doping with Zn, Al, and Li were done. There was no significant synergistic interaction 
between uranium and transition metal oxides. 

6.1 .10 Summary of Synthesis Experiments with Toluene 

Table 6.2 summarizes important information about each experiment. The first 
column identifies the name of the catalyst. The second column describes the purposes of 
the experiment and details of the composition of the catalyst. The third column indicates 
the final temperature at which the catalyst was calcined. The fourth column gives the T 50 

for toluene [ determined as the temperature at which 50% conversion of toluene to 
oxidation products (CO2 and H2O) was obtained] and provides a measure of the catalyst 
activity. The fifth column provides the figure number for the light-off curve for toluene 
with that catalyst. 
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Figure 6.18: The effect of strontium addition into uranium mesoporous silica support by co-assembly method for oxidation of toluene. 
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Table 6.2: Summaries of compositions, calcinations temperature, Tso, figure number, 
bl b d h . fi fi 11 I d fi . d . f I ta e num er, an synt es1s re erences or a catalysts use or ox1 atton o to uene. 

Purposes of Calcination Toluene Figure Table Synthesis 
Catalyst synthesis and Temp. (°C) Tso °C No. Finding No. Chapter 

experiment Reference 

U3Os Activity of 800 520 6.3 Tso=520 °C A. 1  4.4. 1 U3O8 

SiO2 
Activity of 600 550 6.3 Tso=550 °C A. 1 4.4.2 SiO2 

Improvement in 
U-Meso- activity of SiO2 Reducing Tso 

5 by doping with 800 425 6.3 by doping silica A. I 4.4.3 
U at mole ratio with uranium. 
of U:Si=l : 10 

Improvement in Reducing Tso activity of SiO2 U-Meso- by doping with 800 4 10  6.3 by decreasing A. 1 4.4.4 6 the content of U at mole ratio uranium. ofU:Si=l :20 
Improvement in The effect of Cr 

U-Cr- activity of SiO2 doping in 
Meso- 19 by doping with 600 4 1 8  6.4 U-Meso-6 A.2 4.4. 1 3  
(imp.) U and Cr using by impregnation 

method impregnation. 
Improvement in 

U-Cr- activity of SiO2 The effect of Cr 
Meso-2 1 by doping with 800 375 6.4 doping in A.2 4.4. 1 5  
(co-syn) U and Cr using U-Meso-6 

co-synthesis by co-synthesis. 
method 

Comparing the Observing the 
MesoCr- activity of activity of Cr-

22 chromium oxide 800 470 6.4 Silica based A.2 4.4. 16  
(co-syn) without uranium catalyst without 

Uraniunm. 
Comparing the 

activity of Differences in U-Cr-Meso-2 1 
and Tso 

U-Cr- U-Cr-Meso-25 · by reducing 
Meso-25 by changing the 800 4 1 8  6.4 uranium content A.2 4.4. 19 
(co-syn) mole i:atio of in 

U:Si = 1 :20 tQ U-Cr-Meso-2 1 .  
U:Si = 1 :30 
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Table 6.2 : Continued. 
Purposes of Calcination Toluene Figure Table . Synthesis 

Catalyst synthesis and Temp. (0C) Tso °C No. Finding No. Chapter 
experiment Reference 

Improvement in The effect of 
activity of SiO2 

Co doping of 
U-Co- by doping with U U-Meso-6 

Meso-20 and Co using 600 440 6.5 by A.3 4.4. 14 
(imp) impregnation impregnation 

method method. 

Improvement in The effect of 
U-Co- activity of SiO2 

Co doping 
Meso-23 by doping with U 800 420 6.5 with A.3 4.4. 1 7  U-Meso-6 (co-syn) and Co using co- by co-synthesis method synthesis. 

Observing the 
MesoCo- Comparing the activity of Co-

24 activity of cobalt 800 420 6.5 Silica based A.3 4.4. 1 8  
(co-syn) oxide without catalyst 

uranium without 
Uraniunm. 

Comparing the Tso = 540 °C 
MesoCu- activity of copper 800 540 6. 1 7  for silica based A. 1 2  4.4.22 29 oxide without copper oxide 

uranium catalyst. 
Improvement in 
activity of SiO2 The effect of 

by doping with U Uranium 
U-Cu- and Cu using co- 800 385 6. 1 7  doping with A. 12 4.4.23 Meso-30 synthesis method MesoCu-29 

and comparing by co-
with copper synthesis. ·· 

oxide 
The effect of 

Using TiO2 as a TiO2 _as 
Pt/fiO2- support fot Pt by 500 1 60 6. 14  support for Pt A.9 4.4.42 56 using impregnation. impregnation 

method. 
The effect of 

Using U3Os as U3Os as 
Pt/U3Os- support for Pt 

57 support for Pt by 500 230 6. 1 4  and comparing A.9 4.4.43 
impregnation. with 

Pt/TiOi-56. 
Comparing 

0. 1%  Pt/y commercial Tso = 375 °C 
alumina- catalyst (0. 1 % 800 375 6.8 for commercial A.5 4.4.44 

59 Pt/Al2O3) with catalyst. 
uranium-titanium 
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Table 6.2: Continued. 
Purposes of Calcination Toluene Figure Table Synthesis 

Catalyst synthesis and Temp. (0C) Tso °C No. Finding No. Chapter 
experiment Reference 

U- Doping with U 

MCM41 - to improve the 600 335 6. 1 2  Ts0
=600 °C A.7 4.4.35 activity of 49 MCM-41 

K-
Doping U- The effect of 

UMCM41 - MCM-4l with K 600 400 6. 1 2  promoter K A.7 4.4.36 
50 promoter to on U-

enhance the MCM41 -49. 
activity 

Doping with U 
U-SBA1 5- to improve the 800 360 6. 1 3  Tso=360 °C A.8 4 . . 4.35 47 activity ofU-

SBA- 1 5  

Doping U-SBA-
The effect of 

K-U-
1 5  with K 

promoter K promoter to 600 Deactivated NIA NIA 4.4.36 SBA15-46 enhance the on U-

activity SBA1 5-47. 

Improvement in Tso=390 °C 
the activity of for uranium-

catalyst .by silica based 
U-Ti-Si-39 doping silica 350 390 6. 1 5  catalyst A. 1 0  4.4.26 (350) supported doped with 

uranium oxide Ti in equal 
with titanium at mole ratio of 

calcinations Uranium. 
temperature of 

350 °C. 

To find the 
change on 

The effect of Tso by 

U-Ti-Si-39 calcinations increasing 

temp. at 600 °C 600 385 6. 1 5  calcinations 
(600) A. I O  4.4.26 

in the activity of temperature 

catalyst of 
U-Ti-Si-39 
from 350 to 

600 °c. 
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Table 6.2 : Continued 
Purposes of Calcination Toluene Synthesis 

Catalyst synthesis and Figure Table 
experiment Temp. (0C) Tso °C No. Finding 

No. 
Chapter 

Reference 
To find the 

The effect of change on T 50 

U-Ti-Si- cacination by increasing 

39 (800) temperature at 800 380 6. 1 5  calcinations A. I O  4.4.26 
800 °C in the temperature of 

activity. U-Ti-Si-39 
from 600 to 

800 °c. 

Improvement in Tso= l 70 °C 
the activity of for uranium-

U-Pt-Si- catalyst by silica based 

40 (350) doping silica 350 1 70 6. 16  catalyst doped A. 1 1  4.4.27 
supported with Pt in 

uranium oxide equal mole 
with Pt. ratio of 

Uranium. 
To find the 

The effect of change on T 50 
calcinations by increasing 

U-Pt-Si- temperature at 
40 (600) 600 °C in the 600 1 85 6. 16  calcinations A. 1 1  4.4.27 temperature of 

activity of U-Pt-Si-40 
catalyst. from 350 to 

600 °c. 
To see the 

The effect of change on T 50 

cacination by increasing 
U-Pt-Si- temperature at calcinations 
40 (800) 800 °C in the 800 235 6. 1 6  temperature of A. 1 1  4.4.27 

activity of U-Pt-Si-40 
catalyst. from 600 to 

800 °c. 

TiO2-4 1 Using Pure TiO2 400 365 6.6 Tso=365 °c A.4 4.4.28 
(400) as catalyst 
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Table 6.2 : Continued 
Purposes of Calcination Toluene Synthesis 

Catalyst synthesis and Figure Table 
experiment Temp. (°C) Tso °C No. Finding No. Chapter 

Reference 
Effect of Differences in 

calcinations Tso by 
TiOi-4 1 temperature at increasing 

(600) 600 °C for 600 425 6.6 calcinations A.4 4.4.28 
activity of pure temperature of 

TiO2 
TiO2-4 l from 
400 to 600 °c. 

To see the 

Effect of change on T 50 

TiO2-4 1 calcinations by increasing 

(800) temperature at 800 550 6.6 calcinations A.4 4.4.28 
800 °C in temperature of 
activity. TiO2-4 1 from 

600 to 800 °c. 

Doping TiO2 
with U to 

enhance the Tso=390 °c 
U-Ti- activity of 
Meso- catalyst at mole 400 390 6. 1 1  doping TiO2-4 1 A.6 4.4.29 

42 (400) ratio ofU:Ti = with uranium 
1 : 1 0, TiO2 at U:Ti = 1 : 1 0  

considered as a 
support. 

Doping TiO2 
with U to 

U-Ti- enhance the Tso=330 °c 

Meso- activity of 400 330 6.8, A.5, 

43 (400) catalyst at mole 6 . 1 1 doping TiOi-4 1 A.6 4.4.30 
ratio ofU:Ti = with uranium 

1 :20 for at U:Ti = 1 :20 
comparison. 

Effect of 
U-Ti- calcinations Effect of 

Meso- temperature at 600 6.8, calcination A.5, 
600 °C for 325 

43 (600) 6. 1 1  temperature 
A.6 4.4.30 

activity ofU-Ti- Tso from 330 
Meso-43 °C to 325 °C 

To see the 
Effect of change on T 50 

U-Ti- calcinations by increasing 

Meso- temperature at 800 6.8, calcinations A.5, 
800 °C in 345 temperature of 

43 (800) 6. 1 1  A.6 4.4.30 
activity. U-Ti-Meso-43 

from 600 to 
800 °c. 
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T bl 6 2 C f d a e on mue 
Purposes of 

Catalyst synthesis and 
experiment 

Doping TiO2 with 
U to enhance the 

activity. 
U-Ti- Changing the mole 

Meso-44 ratio from 
(400) U:Ti = 1 :20 

to 
U:Ti = 1 :30 

Doping TiO2 with 
U to enhance the 

activity of catalyst 

U-Ti- at mole ratio of 
U:Ti = 1 :40 for Meso-45 comparison with (400) mole ratio of U :Ti 

= 1 :30 

Doping Sr with 
silica supported 

U-Sr- uranium oxide at 
mole ratio of Meso-33 U:Sr:Si = 1 : 1  :20 to 
increase the 

activity. 
Comparison of the 
activity of Sr only 

on mesoporous 
MesoSr- silica at mole ratio 

34 of Sr:Si = 1 :20 
with U-Sr-Meso-
33 which is doped 

with uranium. 

Calcination 
Temp. (°C) 

400 

400 

800 

800 

Synthesis Toluene Figure 
Finding Table 

Chapter Tso °C No. No. Reference 
To observe 

the 
differences 
between Tso 

6. 1 1  of A.6 4.4.3 1 400 
U-Ti-Meso 

43 
by decreasing 
the mole ratio 
of uranium. 

To find the 
differences 
between Tso 

of 
400 6. 1 1  U-Ti-Meso - A.6 4.4.32 

44 
by decreasing 
the mole ratio 
ofuranium. 

To observe 
the change in 

550 6. 1 8  Tso ofU- A. 1 3  4.4.24 Meso-6 by 
doping with 

Sr. 

To find the 
differences in 
Tso ofU-Sr-

550 6. 1 8  Meso-33 A. 1 3  4.4.25 
without 

doping with 
uranium. 

1 2 1  



The sixth column (Finding) describes the most important results of the experiment. The 
seventh column gives the table number in the appendix containing additional information. 
The last column gives the chapter and section containing details of the synthesis of each 
catalyst. 

6.2 Oxidation of Chlorobenzene 

Extensive studies were made of the decomposition of chlorobenzene as catalyzed 
by mesoporous urania catalyst. Emphasis was placed on studying the effects of doping 
the catalysts with other materials including potassium, bromide, Fe, Ca and Mg. The 
goal was to find a way to enhance the activity of the uranium oxide catalysts. 

6.2.1 The Efficacy of Mixed U308 and (K - Br) Promotor 

U-Meso-10, U-Meso-1 1  (Potassium + Uranium mesoporous Silica) and U-Meso-12 
(Bromide + Uranium Mesoporoud Silica) 

Doping of uranium oxide was first tried by adding potassium into the co-synthesis 
of the mesoporous uranium catalysts. Potassium was used because it is a commonly 
promoter for various catalysts including iron catalyst used in Fischer-Tropsch catalysts 
and as a promoter in certain oxidation catalysts. Three different potassium precursors 
were tried, specifically adding potassium as a nitrate, oxalate or bromide. It was found 
generally the effect of potassium was to diminish the activity of the uranium catalysts. 
For example by adding the potassium as a nitrate, the resulting catalyst exhibited less 

than 8% conversion at 420 °C while undoped mesoporous uranium with the same 

uranium concentration gave a conversion of about 50% under the same conditions. Using 
1 22 



the oxalate and bromide precursors did not improve the activity compared to the nitrate. 
The oxalate yielded about 15% conversion while a corresponding undoped uranium oxide 
catalyst yielded 60% conversion at 440 °C. Further measurements on the bromide at 
increased temperature indicated that even up to 640 °C gave less than 5% conversion. 
Evidently, the potassium is strongly interacting with the uranium oxide and is killing its 
activity. 

6.2.2 Effect of (Fe, Mg, Ca) Doping on Efficiency of Catalysts · 

U-Meso-13 (Fe + Mg + Uranium mesoporous Silica) and U-Meso-14 (Fe + Ca + 
Uranium Mesoporoud Silica) 

In this experiment, iron was tried as an additive and it was added as a nitrate into 
the standard synthesis of mesoporous uranium oxide catalyst. Besides the iron, Ca or Mg 
was added. The Mg was added as the acetate and Ca was added as a nitrate. The relative 
amounts (mole ratio) of Fe, Mg or Fe, Ca and U compared to the silica support were 
1: 1 :20. The additions of these components were found to have a slightly deleterious 
rather than promotional effect upon the uranium catalyst. A comparison of the 
conversion of chlorobenzene as a function of temperature is shown in Figure 6.19. These 
two catalysts showed identical 50% chlorobenzene light-off at 500 °C. The fact is that 
the activities are affected by the addition of Fe, Mg and Fe, Ca as compared with silica 
supported uranium oxide catalyst. It indicates that one of both these species are 
interacting with the U rather than forming a spectator phase. Further synthesis were done 
in which the uranium content was decreased. The activity of catalyst was slightly 
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Figure 6.19: Comparison of catalyzed oxidation of chlorobenzene by pure uranium oxide 
catalyst and doped with (Fe+Mg or Fe+Ca) using co-assembly in mesoporous silica 
support. 
decreased. Therefore, activity of the catalyst is not straightforward to predict since it 
depends upon surface area or other factors besides simply the amount of uranium oxide in 
the catalysts. 

The BET adsorption-desorption isotherm was 210 and 204 m2/g for U-Meso-13 
and U-Meso-14 respectively (See Figure A.18 and A.19). The Type IV 
isotherm with a H2 Type hysteresis loop, indicating the mesoporousity has been 
achieved. The XRD indicated that in both cases, Fe2O3 was dominant in the catalyst 
with a trace of U3O8. No sign of UO2 at all. The Mass Spectrometric analysis indicated 
the present of CO2, H2O and HCl at exit stream as expected [115]. The experimental 
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catalytic reactor was substantially revised. A water sparger was incorporated 

downstream to permit trapping of HCl or Cl2 formed during the reaction. This measure 

was deemed necessary for the protection of the chromatographic column. Tests were 

made to determine the extent that sparger would alter the determination of chlorobenzene 

conversion. The preliminary tests indicated that it is possible to measure chlorobenzene 

conversion. 

6.2.3 The Efficacy of Mole Ratio (0308 - Si02) on Efficiency of Catalysts 

U-Meso-6, U-Meso-9, U-Meso-15 and U-Meso-18 (Uranium + Mesoporous Silica) 

Previously, it was found that uranium oxide supported on mesoporous silica 

yields higher activity than pure U30s and that the activity of the supported uranium oxide 

increased when the U content was decreased from 1 :  1 0  to 1 :20. This seeming anomaly is 

attributed to the very high surface area that can be achieved in the mesoporous silica 

support which causes the urania to be highly dispersed both in the pores and on the 

external surface. During the co-synthesis, the addition of ethanol permits the fast 

gelation at room temperature of the reagent mixture. The gelation time can be related to 

cross-link polymeric chains. The high gelation rates favor the highly branched cluster 

aggregates of a colloidal nature, giving rise to highly cross-linked mesoporous materials 

[ 1 1 6]. The co-synthesis procedure leads to thick wall, stable mesopores with uranyl ions 

trapped along the walls of the pores. Having these in mind, three more catalysts were co­

synthesized with mole ratio of U:Si = 1 :30, 1 :40, 1 :50 named such as U-Meso-9, U­

Meso- 1 5  and U-Meso- 1 8  respectively. The activity of the four modified uranium oxide 
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Figure 6.20: Comparison of catalyzed oxidation of chlorobenzene by various doped 
Uranium oxide catalysts co-assembled in mesoporous silica support. 

supported on mesoporous silica catalysts vs. temperatures for oxidation of chlorobenzene 
are shown in Figure 6.20. The variation in the U:Si ratio indicates that optimal activity 
for chlorobenzene oxidation is obtained for U:Si = 1 :30. For the mole ratio of U:Si = 
1 :20, 1 :30, 1 :40, and 1 :50, the TSO was 420, 400, 450, and 475 oC respectively. All 
four catalysts had reversible Type IV isotherms with a H2 Type hysteresis loop, 
indicating mesoporous materials. 
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Figure 6.21: Comparison of catalyzed oxidation of chlorobenzene by 0.1 % Pt/ Alumina, uranium supported on mesoporous titanium oxide and pure titanium oxide catalysts. 

6.2.4 Comparison of Mixed (0308 - Ti02) and Platinum based Catalyst 

U-Ti-Meso-43 (Uranium Mesoporous Titanium Oxide), TiO2-41 (Mesoporous 
Titanium Oxide) and 0.1 % Pt/ y Alumina. 

Previously, these catalysts were used for oxidation of toluene. Here, we 
compare their activity with chlorobenzene. As shown in Figure 6.21, the activity of 
uranium-titanium oxide catalyst was very good for decomposition of chlorobenzene as 
compared with pure titanium oxide catalyst. This catalyst was very stable over period 
of several days. By comparison, a mesoporous titanium oxide gives a conversion of 
about 50% at 4 70 °C whereas a corresponding doped titanium oxide catalyst would 
have around 82% conversion under the same conditions. 
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)be activity of doped titanium oxide catalyst was discussed with researcher at 
Johnson Mathy, a manufacturer of commercial VOC catalysts based upon Pt/Alumina. 
They suggested that the uranium and Pt catalyst could be compared best by using 
Pt/ Alumina powder or pellets readily available through chemical suppliers. Such 
samples were purchased and run in our reactor for composition with doped titanium 
oxide catalyst and the results indicate that titanium oxide catalyst doped with uranium 

oxide is competitive with 0. 1 % Pt/ Alumina with only 10 °C differences in the T 50 of 
light-off curve. The scatter in the data at low temperatures was due to hysteresis in the 
light-off curve leading to unstable conversion at low temperatures. 

· 6.2.5 Summary of Synthesis Experiments with Chlorobenzene 

Table 6.3 . summarizes important information about each experiment. The first 
column identifies the name of the catalyst. The second column describes the purposes of 
the experiment and details of the composition of the catalyst. The third column indicates 
the final temperature at which the catalyst was calcined. The fourth column gives the T 50 

for chlorobenzene [ determined as the temperature at which 50% conversion of 
chlorobenzene to oxidation products (HCl, Ch, CO2 and H2O) was obtained] and 
provides a measure of the catalyst activity. The fifth column provides the figure number 
for the light-off curve for chlorobenzene with that catalyst. 

1 28 



Table 6.3: Summaries of compositions, calcinations temperature, T50, figure number, 
table number, and synthesis references for all catalysts used for oxidation of 
chlorobenzene. 

Purposes of Calcination C. Figure Table Synthesis 
Catalyst synthesis and Temp. (0C) Benzene No. Finding No. Chapter 

experiment Tso °C Reference 

Improvement 
in activity of 

U-Meso-6 SiO2 by doping 800 420 6. 1 9, Tso=420 °C A. 14, 4.4.4 with U at mole 6.20 A 1 5  
ratio of 

U:Si=l :20 

Improvement Reducing Tso 
in activity of ofU-Meso-6 

U-Meso-9 SiO2 by doping 800 400 6.20 by A. 1 5  4.4.5 with U at mole decreasing 
ratio of the content 

U:Si = 1 :30 of uranium. 

Improvement Reducing Tso 
in activity of ofU-Meso-9 

U-Meso- SiO2 by doping 800 450 6.20 by A. 1 5  4.4. 1 1  1 5  with U at mole decreasing . 
ratio of the content 

U:Si = 1 :40 ofuranium. 

Improvement Reducing Tso 
in activity of ofU-Meso-

U-Meso- SiO2 by doping 800 475 6.20 15 by A. 1 5  4.4. 1 2  1 8  with U at mole decreasing 
ratio of u the content 

:Si = 1 :50 ofuranium. 

Doping silica 
supported The effect of 

uranium oxide promoter K 
U-Meso- with KNO3 by 600 deactivat NIA on U-Meso-6 NIA 4.4.6 1 0  imp. at mole ed by method of 

ratio of imp. To 
U:K:Si = reduce Tso, 

1 : 1 :20 
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Table 6.3 : Continued. 
Purposes of Calcination C. Figure Table Synthesis 

Catalyst synthesis and 
Temp. (0C) 

Benzene No. Finding No. Chapter 
experiment Tso °C Reference 

Doping silica The effect of 
supported promoter K 

uranium oxide on U-Meso-6 
U-Meso- with K2C204 600 Deactiva 

NIA 
by method of 

NIA 4.4.7 1 1  by imp. at ted imp. To 
mole ratio of reduce T50 • 

U:K:Si = 
1 : 1 :20 

Doping silica The effect of 
supported promoter Br 

uranium oxide on U-Meso-6 
U-Meso- with KBrby 600 Deactiva 

NIA 
by method of 

NIA 4.4.8 1 2  imp. at mole ted imp. To 
ratio of reduce T50• 

U:Br:Si = 

1 : 1 :20 
Doping silica Doping 

supported U-Meso-6 
uranium oxide with 

U-Meso- with (Fe+Mg) 600 500 6. 1 9  (Fe+Mg) A. 14  4.4.9 1 3  and U in mole by method of 
ratio of imp. 

U:Mg:Fe:Si = to reduce Tso 
1 :0.5 :0.5 :20 

Doping silica Doping 
supported U-Meso-6 

uranium oxide with (F e+Ca) 
U-Meso- with (Fe+Ca) 600 500 6. 1 9  by method of A. 14 4.4. 1 0  14 and U in mole imp. 

ratio to reduce 
U:Ca:Fe:Si = Tso-
1 :0.5 :0.5 :20 
Comparing Tso=380 °c 
commercial with C. 

0. 1%  Pt/ y catalyst (0 . 1  % Benzene as 
Alumina- Pt/ A}i03) with NIA 380 6.2 1 compared of A. 1 6  4.4 .44 

59 uranium- Tso=375 °C 
titanium based with 

catalyst. Toluene. 

Tso=500 °C 
Using pure with C. 

Ti0r4 1 Ti02 as Benzene as 

(400) catalyst for 400 500 6.2 1 compared of A. 16  4.4.44 
oxidation of Tso=365 °c 

chlorobenzene with 
Toluene. 
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Table 6.3 : Continued. 

Purposes of Calcination C. 
Figure Table Synthesis 

Catalyst synthesis and Benzene Finding Chapter 
experiment Temp. (0C) Tso °C 

No. No. 
Reference 

Doping TiO2 Tso=375 °C 
with U to with C. 

U-Ti- enhance the Benzene as 

Meso-43 activity of 
400 375 6.2 1 compared of A. 16  4.4.30 

(400) 
catalyst at Tso=330 °C 

mole ratio of with 
U:Ti = I :20 for Toluene. 

comparison. 
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The sixth column (Finding) describes the most important results of the experiment. The 
seventh column gives the table number in the appendix containing additional information. 
The last column gives the chapter and section containing details of the synthesis of each 
catalyst. 

6.3 Oxidation of Trichloroethylene (TCE) 

6.3.1 Effect of Water on (0308 - Ti02) based Catalyst 

U-Ti-Meso-43(400) 

Trichloroethylene is a major pollutant found in the ground water plumes at DOEs 
Hanford, Paducah, and Savannah River sites. It was concluded that to test the 
applicability of depleted uranium catalysts for the catalytic destruction of TCE under 
realistic conditions. Since the proposed application is for catalytic destruction above soil 
vapor extraction (SVE) wells, it is required to allow for the addition of water to the 
reactant stream. Water is certainly going to be present in any process stream coming 
from a SVE and it has the potential of affecting the activity of the depleted uranium 
catalysts. In addition, water is expected to significantly alter the ratio of Cb to HCl that 
is obtained as a by-product of the combustion of the TCE. Since it is expected that the 
desired product should be HCl, which would be trapped by a water bubbler in the 
process, it was decided to include the means to test this process. Also, the presence of 
HCl and water in the reactant streams was expected to be harmful to analysis equipment, 
necessitating its removal from the analysis stream. 
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The experimental catalytic reactor was substantially revised to meet the above 
requirements. A water injection syringe was incorporated into the reactant lines up­
stream from the reactor. A water sparger was incorporated downstream to permit 
trapping of HCI. Tests were made to determine the extent that the sparger would alter the 
determination of VOC conversion. Preliminary tests indicated that it is possible to 
measure TCE conversion. Initial tests indicated that introduction of water into the 
reactant stream does not interfere with the catalytic activity of the U-Ti-Meso (400). The 
results are shown in Figure 6.22 which indicates that comparable conversions can be 
obtained even in the presence of up to about 15% vol. water in the reactant stream which 
resulted a Tso of 450 °C. Seven percent water content slightly increased the activity of 
catalyst by having a Tso of 425 °C. 

6.3.2 Effect of Support (0308, Si02, Ti02) and Water on Lanthanum 
Oxide Based Catalysts 

La-U-52 (Lanthanum+ Uranium ) and La-Ti-53 (Lanthanum + Titanium) 

These two catalysts were synthesized by IPC (in-situ polymerizable complex) 
method. This method was first developed by Pechini in 1967 to prepare capacitor 
materials focusing only on niobates, titanates and zirconates [ I 06]. The basic chemistry 
involved in the IPC method is related to the formation of metal complexes as well as the 
dehydration reaction of an a-hydroxycarboxylic acid and a polyhydroxy alcohol. All the 
studies previously reported have clearly indicated that the IPC method is quite suitable 
for producing highly pure and homogeneous oxides at reduced temperatures ( 400-900 
OC). 

1 33 



u 

1 00 

e No Water T50=450 C U-Ti-Meso-( 400) 

t 75 + Water Vol % 7.0 T50=425 C I -
t � A Water Vol % 9.0 T50=425 C I 

C • Water Vol % 1 5 .0 T50=450 C • 
I 

0 -� 50 
t 

I 
'I C 

0 

I 
u 

25 

I I I 
0 I I I I I 

250 300 350 400 450 500 550 

Temperature (
0
C) 

Figure 6.22 : Oxidation of trichloroethylene (TCE) over U-Ti-Meso-43(400) at various 
water content in the reactor stream. 

Lanthanum oxide based catalysts such as La2O3 and Ce2O3 showed strong activity for 

destructions of chlorinated hydrocarbon at temperatures between 250 and 350 °C when 

steam was added to the feed stream [ 1 1 7] .  The addition of urania or titania has a 

synergistic interaction, which leads to a very active catalyst. In first attempt, using 

temp lated co-synthesis of uranium and lanthanum (La: U = 1 : 1 )  yields a mesoporous 

oxidation . . A water flow rate of 1 . 1 7 ml/min ( 1 4.77% volume water) was added to the 

catalyst (SA � 14.75 m2/g) with Tso of 530 °C without presence of water for TCE feed 

stream for improving the activity of catalyst by removing the coke and chlorine 

poisoning� · As shown in Figure 6.23, addition of water ·had no effect for improving or 

damaging the activity of this catalyst. 

During second attempt, uranium was replaced by titanium (La:Ti = 1 :  1) to 

achieve synergistic interaction between lanthanum and titanium. This approach gave 
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Figure 6.23: Comparison of catalyzed oxidation of trichloroethylene (TCE) by La-U-52 (Pechini method) at variable water flow rate. 

catalyst with activities slightly improved as compared with U-La, but not as effective as it 
was expected. The addition of 14. 77 % volume water had no effect on the catalyst 
activity. The Tso was 500 °C as shown in Figure 6.24. The BET surface area was 13.42 

U-La-Meso-27 (Lanthanum + Uranium Mesoporous Si02) and U-Ti-La-51 
(Lanthanum + Uranium + Mesoporous Ti02) 

Catalyst with good activity and stability to deactivation can be prepared from co­
synthesis of uranium oxide on pores of mesoporous silica. The co-assembled 
mesoporous catalyst was calcined at 800 °C. The resulting surface ar.ea was 321 m2/g. 
Our purpose was to study the improvement in the activity of catalyst by doping the silica 
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Figure 6.24: Comparison of catalyzed oxidation of trichloroethylene (TCE) by La-Ti-53 
(Pechini Method) at variable water flow rate. 

supported �ranium oxide with lanthanum in smaller concentrations (U:La:Si = 1 :0.5:20). 
This approach did not improve the activity of catalyst. As shown in Figure 6.25, T 50 was 
525 °C. There was no sign of deactivation for this catalyst. 

A similar approach was to use titanium as a support. Titanium oxide is an active 
catalyst for oxidation and addition of uranium and lanthanum will have a synergistic 
interaction which leads to a very active catalyst. This approach gave catalysts with 
activities highly improved as compared with Si02 as a support. These two catalysts are 

compared in Figure 6.25. The T50 was 465 °C which is compatible with U-Ti-Meso 

(600). This catalyst also was stable at high temperature. 
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Figure 6.25 :  Comparison of activities for oxidation of trichloroethylene (TCE) by using two different supports (Ti02, Si02) doped with uranium and lanthanum. 

6.3.3 Effect of Water and Doping with Cerium on (U3O8 - SiO2) based 
Catalysts 

Ce02-55 (Cerium Oxide), and U-Ce-Meso-28 (Uranium + Cerium + Meso Si02) 

Emphasis was placed on studying the effects of doping the mesoporous uranium 
catalyst with other materials such as cerium oxide by co-assembly method. The goal was 
to enhance the activity of the uranium oxide catalyst. The literature indicated that 
addition of water also will increase the activity of cerium oxide based catalyst. Therefore, 
the silica supported uranium oxide (with Ce) was synthesized using the surfactant 
approach described before and then calcined at 800 °C. It also had a U:Ce:Si mole ratio 
of 1 :0.5:20 respectively. The BET was 2 1 1 m2/g. The Figure A.22 indicates that the 
mesostructure has been achieved. In addition to above catalyst, Ce02 was prepared by 
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thermal decomposition of Ce (NO3)3• 6H2O at 800 °C in static air. The BET surface area 

was 8 m2/g. As shown in Figure 6.26, the addition of water slightly improved the activity 

of uranium based catalyst at lower temperatures, which resulted a Tso of 500 °C, but it 
has no effect at higher temperatures. It seems that the temperature of reactor plays a 
major rule in the activity of a catalyst when water is applied as it has been seen before 

[ 1 19] .  The activity of CeO2 was unchanged by addition of water. The T5o was 575 °C 

for both cases. 

6.3.4 Effect of Water on Activity of Lanthanum Oxide based Catalyst 

La203 (lanthanum Oxide) 

Lanthanum oxide (La2O3) was prepared by thermal decomposition of La (NO3)3. 
6 H2O at 800 C in static air. The idea was to compare the activity of both lanthanum 
oxide and cerium oxide for destruction of TCE by applications of water. A series of 
different water flow rates were tested. As shown in Figure 6.27, the presence of water 
will not increase or decrease the catalytic oxidation of La2O3. 

6.3.5 Summary of Synthesis Experiments with Trichloroethylene 

Table 6.4 summarizes important information about each experiment. The first 
column identifies the name of the catalyst. The second column describes the purposes of 
the experif!lent and details of the composition of the catalyst. The third column (% 
Volume Water) specifies the percent water by volume in the reactor inlet stream. 
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Figure 6.26: Comparison of "light-off' curve for oxidation of trichloroethylene (TCE) over Ce02 and U-Ce-Meso-28 at variable water flow rates. 
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Figure 6.27: The effects of various water flow rates on the activity of La203 for destructions of trichloroethylene (TCE). 
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Table 6.4: Summaries of compositions, calcinations temperature, Tso, figure number, 
table number, and synthesis references for all catalysts used for oxidations of . hi th 1 tnc oroe ,y ene. 

Purposes of % T.C.E Synthesis 
Catalyst synthesis Volume TSO Figure Finding Table Chapter and Water oc 

No. No. Reference experiment 
Doping silica 

supported Tso = 520 °C 
uranium oxide 

with La to doping 
U-La- increase the 0 520 6.25 U-Meso-6 A.20 4.4.20 Meso-27 activity of with 

catalyst at Lanthanum 
mole ratio of oxide. 

U:La:Si = 

1 :0.5 :20 
Doping titania Reducing Tso 

supported of 
uranium oxide U-La-Meso-27 

with La to by doping 
U-Ti-La-5 1  increase the 0 465 6.25 with Titania. A.20 4.4.37 activity of Tso was 

' catalyst at reduced from 
mole ratio of 520 °C to 465 

U :Ti: La = oc. 
1 :20:0.45 

Doping silica Tso = 525 °C 

, supported doping uranium oxide 
with La to U-Meso-6 

U-Ce- increase the with 
Meso-28 activity of 0 525 6.26 Cerium oxide A.2 1 4.4.2 1 

catalyst at OR 
mole ratio of doping 

. U:Ce:Si = 1 :  CeOi-55 with 
0.5 :20 Uranium. 

The effect of Reducing Tso 
water on the by application 

U-Ce- activity of U- of water on U-
Meso-28 Ce-Meso-28 at 1 5  500 6.26 Ce-Meso-28 A.2 1 4.4.2 1 

mole ratio of from 525 °C to 
U:Ce:Si = 1 :  500 °C. 

0.5 :20 
Tso = 575 °C 

Pure CeO2 as The activity of 
CeOi-55 catalyst for 0 575 6.26 CeOi-55  A.2 1 4.4.4 1 

TCE without 
Uranium. 
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Table 6.4: Continued. 
synthesis % T.C.E Figure Table Synthesis 

Catalyst and Volume T50 Finding Chapter 
experiment Water oc 

No. No. Reference 
The effect of Reducing Tso 
water on the by application 

CeOi-55 activity of 1 5  575 6.26 of water on A.2 1 4.4.4 1 
CeOi-55, Pure CeO2 No effect. 

Pure La2O3 as Tso = 530 °C La2O3-54 catalyst for 0 530 6.27 A.22 4.4.40 
TCE 

Reducing Tso 
The effect of ofLa2O3-54 

water to by application 
La2O3-54 increase the 5 530 6.27 of5% volume A.22 4.4.40 activity of water in 

Pure La2O3 at reactor inlet 
5% volume. stream. 

No effect. 
Reducing Tso 

The effect of ofLa2O3-54 
water to by application 

La2O3-54 increase the 9 530 6.27 of9% volume A.22 4.4.40 activity of water in 
Pure La2O3 at reactor inlet 
9% volume stream. 

No effect. 
Reducing Tso 

The effect of ofLa2O3-54 
water to by application 

La2O3-54 increase the 1 5  530 6.27 of 1 5% A.22 4.4.40 activity of volume water 
Pure La2O3 at in reactor 
1 5% volume. inlet stream. 

No effect. 
Doping 

uranium oxide 
as a support 

with La using 
Pechini 

Method to 
La-U- increase the 0 520 6.23 Tso = 520 °C A. 1 8  4.4.38 52(Pechini) activity of 

catalyst by 
polymerization 

complex at 
mole ratio of 
La:U = 1 : 1  
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Table 6.4: Continued. 
synthesis % T.C.E Figure Table Synthesis 

Catalyst and Volume TSO Finding Chapter 
experiment Water oc 

No. No. Reference 
The effect of 

water to Reducing Tso increase the 
activity of of La-U-52 

Pure La-U-52 by application 
La-U- at 1 5% volume 1 5  520 6.23 of 1 5% A. 1 8  4.4.38 52(Pechini) using uranium volume water 

in reactor as a support. inlet stream. 
No effect. 

Doping 
titanium oxide 
with La using 

Pechini 
Method to 

increase the 

La-Ti- activity of 
Tso = 500 °C catalyst by 0 500 6.24 A. 1 9  4.4.39 53(Pechini) polymerization 

complex at 
mole ratio of 
La:Ti = 1 : 1  

Reducing Tso 
ofLa-Ti-53 

by application 
of l 5% 

The effect of volume water 
water to in reactor 

increase the inlet stream. 
activity of No effect. 

pure La-Ti-52 Also, 
La-Ti- at 1 5% volume 1 5  500 6.24 comparing U A. 1 9  4.4.39 53(Pechini) using titanium (in La-U-52) 

as a support and Ti (in La-
La:Ti = 1 : 1  Ti-53) as 

support for La. 
Ti is a better 

support. 
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Table 6.4: Continued. 

synthesis and % T.C.E Figure Table Synthesis 
Catalyst experiment Volume TSO No. Finding No. Chapter 

Water oc Reference 
Doping TiO2 

comparison of 
with U to Tso = 450 °C 

enhance the with T.C.E as 
U-Ti- activity of compared of 

Meso-43 catalyst at mole 0 450 6.22 Tso=330 °c A. 1 7  4.4.30 
(400) ratio of with Toluene 

arid U:Ti = 1 :20 
Tso=375 °C 

with 
C.Benzene. 

Reducing Tso 
The effect of of U-Ti-Meso 
water at 7% by application 

volume on the of7% volume 
U-Ti- water in 

Meso-43 activity of 7 425 6.22 reactor inlet A. 1 7  4.4.30 
(400) catalyst at stream. identical mole 

ratio of U :Ti = 
Tso was 

1 :20 reduced from 
450 °C to 425 

oc. 
Reducing Tso 
of U-Ti-Meso 

The effect of by application 
water at 9% of9% volume 

U-Ti- volume on the water in 
Meso-43 activity of 9 425 6.22 reactor inlet A. 1 7  4.4.30 

(400) catalyst at stream. 
identical mole No change in 
ratio U:Ti = Tso as 

1 :20 compared with 
7% water by 

volume. 
Reducing Tso 
of U-Ti-Meso 
by application 

of 1 5% 
The effect of volume water 
water at 1 5% in reactor 

U-Ti- volume on the inlet stream. 
Meso-43 activity of 1 5  450 6.22 Decreasing in A. 1 7  4.4.30 

(400) catalyst at Tso as 
identical mole compared with 
ratio U:Ti = 9% water by 

1 :20 volume. No 
change as 
compared 

without using 
water. 

1 43 



The fourth column gives the T 5o for trichloroethylene [ determined as the temperature at 

which 50% conversion of trichloroethylene to oxidation products (HCl, Ch, CO2 and 

H20) was obtained] and provides a measure of the catalyst activity. The fifth column 

provides the figure number for the light-off curve for trichloroethylene with that catalyst. 

The sixth column· (Finding) describes the most important results of the experiment. The 

seventh column gives the table number in the appendix containing additional information. 

The last column gives the chapter and section containing details of the synthesis of each 

catalyst. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

Catalytic oxidation offers a great degree of control over the reaction products and 
can operate with dilute effluent stream {<l % VOC), which can not be treated easily by 
thermal combustion or any other pollution control device. Therefore, catalytic oxidation 
may be considered as a promising method for energy consumption. 

The literature indicated that uranium oxide has a high activity for the catalytic 
destruction of VOCs and halogenated VOCs (23). DOE has a surplus of depleted 
uranium inventory for which beneficial uses are being sought ( 118). Therefore, the aim 
of this research was to explore the possibility of tailoring depleted uranium based 
catalysts for use in the catalytic oxidation of VOCs. 

This research consisted of synthesizing potential depleted uranium catalysts, as 
well as testing and structural characterization. A quartz plug flow microreactor was built 
to compare the catalytic performance for oxidation of toluene, chlorobenzene, and 
trichloroethylene. These VOCs were chosen as typical of those found in anticipated 
applications. In particular, toluene was selected as typical of VOC found commonly in 
vent air streams from operations in which volatile organic solvents are· used for the 
manufacture of organic chemicals and polymers, cleaning and degreasing purposes in 
metal processing, machining and finishing, and the vent or exhaust air from air stripping 
process units which are used to clean ground water or soil which has been contaminated 
with hazardous volatile organic chemicals and solvents. Chlorobenzene was chosen as a 
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model chloro-organic compound to demonstrate the effectiveness of the uranium oxide 
catalysts. Chlorobenzene was selected for three reasons. First, it is listed by the US 
Environmental Protection Agency as one of the 318 compounds designated as VOCs. 
Second, chlorobenzene can be considered as a suitable chemical model reagent to probe 
the destruction of poly-chlorinated biphenyls (PCBs ), which are common toxic 
compounds receiving much media attention ( 119). Third, chlorobenzene is a particularly 
stable molecule that is difficult to oxidize. Trichloroethylene also is a major pollutant 
found in the ground water plumes at DOEs Hanford, Paducah, and Savannah River sites. 

Two key factors limiting catalytic activities of uranium oxides prepared by 
conventional methods are small surface area and pore size [27] . A porous material is the 

· best candidate as supports for dispersed catalysts. Ordered mesoporous materials are one 
of the most exciting discoveries in the field of materials synthesis over the past decade 
[28] . 

Two methods have been used to prepare uranium-oxide catalysts supported on 
- mesoporous oxide hosts. Impregnation or incipient wetness and most notably the 
templated co.;synthesis of mesoporous oxides. The later method isolates urania in a 
highly disperse� form on a mesoporous oxide support, typically silica or titania. The 
structural properties of these new catalytic systems were characterized by X-ray 
diffraction (XRD), transmission electron microscope {TEM) and nitrogen adsorption­
desorption isotherm surface area measurements (BET). 

The as-synthesized catalysts were calcined and tested for the destruction of VOCs 
at space velocities of 84,000 mlg- 1h· 1

• The effects of post-synthesis calcinations 
temperatures were also considered. A gas chromatograph was used to measure the 
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concentration of VOCs from by-pass and reactor exit streams. The catalyst activity vs. 
catalyst temperature was measured. This data results in so called "light-off' curves. 
Conversion generally increases with temperature. From light-off curves, the temperature 
{Tso) at which 50% conversion of the VOC to oxidation products (CO2 and H2O) is 
obtained, at fixed flow rates, and provides a measure of the catalyst activity.· Lower T 50 

indicates higher activity. Previously, in Tables 6.2, 6.3, and 6.4, the individual activity of 
each catalyst was summarized. These tables give the figure number of the li:gh�-off 
curve, and the Tso for the destruction of toluene, chlorobenzene, and trichloroethylene, 
respectively. Tables 7.1, and 7.2 in this chapter summarize the T5o (50% conversion) and 
T90 (90% conversion) for all selected catalysts discussed in this work.respectively . .  

The basis used to evaluate the catalyst performance is Tso (the temperature of 
50% conversion) and T90 (the temperature of 90% conversion). A desirable Tso would be 
<325 °C while T90 may vary from 375 °C to 425 °C depending on the nature of the 
volatile organic compound (VOCs ). Continuous evolutions of preparative methods have 
led to steady improvements in catalyst performance. XRD, BET, TEM, GC, and Mass 
Spectrometer indicated that supporting the U3O8 phase and changing the mole ratio of 
uranium to silica . and titania modifies the structure and chemistry of the uranium oxide. 
Among the non-uranium based catalysts which were tested for toluene oxidations (See 
Table 6.2), Pt/TiO2 was the best with a T 50 of 160 °C and 0.1 % Pt/y Alumina was the 
poorest with a T50 of 325 °C. Among the uranium based catalysts, U-Pt-Si-40 was the 
best with a Tso of 185 °C and K-U-SBA15-46 was the poorest with complete deactivation 
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Table 7 . 1 :  Summaries of composition ratio, calcinations temperature, BET surface area, 
an d T fi 11 l d l d' d . h' k . l so or a se ecte cata ysts lSCUSSe m t  1s wor respective 1y. 

Composition Calcinatio BET Toluene 
Catalyst n Temp. Ratio (OC) (m2/g) Tso °C 

U3Os Pure U3Os 800 0. 1 520 

SiO2 
Pure mesoporous 

600 22 1 .8 550 
SiO2 

U-Meso-5 U:Si = 1 : 10 800 247.4 425 

U-Meso-6 U:Si = 1 :20 800 233 4 10  

U-Meso-9 U:Si = 1 :30 800 267 NIA 

U-Meso- 1 5  U:Si = 1 :40 800 336.7 NIA 

U-Meso- 1 8  U :Si = 1 :50 800 267 NIA 

U-Meso- 1 0  
U:K:Si = 1 :  1 :20 

600 4.5 NIA 
imp. with KNO3 

U-Meso- 1 1  
U:K:Si = 1 : 1 :20 

600 1 NIA 
imp. with K2C2O4 

U-Mesd- 1 2  
U:Br:Si = 1 : 1  :20 

600 4 NIA 
imp. with KBr 

U-Meso- 1 3  
U:Mg:Fe:Si = 

600 2 10 NIA 
1 :0.5 :0.5 :20 

U-Meso- 14 
U:Ca:Fe:Si = 

600 204 NIA 
1 :0.5 :0 .5 :20 

U-Cr-Meso- 1 9  U :  Cr: Si = 
600 253.4 4 1 8  (imp.) 1 :0.2:20 

U-Cr-Meso-2 1 U: Cr: Si = 
800 203 .8  375 (co-syn) 1 :0.2 :20 

MesoCr-22 
Cr: Si = 1 :95 800 207 470 (co-syn) 

U-Cr-Meso-25 U: Cr: Si =1 :0.2 
800 20 1 4 1 8  (co-syn) :30 

U-Co-Meso-20 U: Co: Si = 
600 242 440 (imp) 1 :0.23 :20 

U-:Co-Meso-23 U: Co: Si = 
800 223 420 (co-syn) 1 :0.23 :20 

1 48 

C. T.C.E Benzene 
Tso °C Tso °C 

NIA NIA 

NIA NIA 

NIA NIA 

420 NIA 

400 NIA 

450 NIA 

475 NIA 

Deactivate 
NIA 

d 

Deactivate 
NIA 

d 

Deactivate 
NIA d 

500 NIA 

500 NIA 

NIA NIA 

NIA NIA 

NIA NIA 

NIA NIA 

NIA NIA 

NIA NIA 



Table 7. 1 :  Continued. 

Composition Calcinatio BET Toluene C. T.C.E Catalyst Ratio n Temp. (m2/g) Tso °C 
Benzene 

Tso °C (OC) Tso °C 
MesoCo-24 

Co: Si = 1 :85 800 
(co-syn) 224 420 NIA NIA 

U-La-Meso-27 
U :La:Si = 1 :0.5 

800 32 1 NIA NIA 520 :20 

U-Ce-Meso-28 
U:Ce:Si = 1 :  

800 2 1 1 NIA NIA 525 0.5 :20 

CeOi-55 Pure CeO2 800 8 NIA NIA 600 

MesoCu-29 Cu:Si = 5 :20 800 257.6 540 NIA NIA 

U-Cu-Meso-30 U:Cu:Si =l :5 :20 800 146.76 385 NIA NIA 

Pt/fiOi-56 TiO2:Pt 1 6.4: 1 500 39.7 1 60 NIA NIA 

Pt/U3Or57 U3O8 :Pt = 5 .25 : 1 500 0.0921 230 NIA NIA 

0. 1% Pt/ y 
0. 1% Pt/A}iO3 NIA 224.6 375 380 NIA 

Alumina-59 

U-Ti-La-5 1 
U :Ti: La = 

800 242.5 ' NIA NIA 465 
1 :20:0.45 

La2O3-54 Pure La2O3 800 2.3 NIA NIA 530 

La-U-
La:U = 1 : 1  800 14.75 NIA NIA 530 

52(Pechini) 

La-Ti-
La:Ti = 1 : 1  800 13 .42 NIA NIA 500 

53(Pechini) 

imp. Uranyl 

U-MCM41-49 
Nitrate 

600 758 335 NIA NIA 
U: MCM-41 = 

1 :32 
Imp. KNO2 

K-MCM41 -50 K:MCM-41 = 600 26 400 NIA NIA 

1 :  1 1  

K-SBA1 5-46 
Imp. KNO2 

600 1 1 2 
Deactivate 

NIA NIA 
K:SBA- 1 5  = 1 � 1 1 d 

U-SBA1 5-47 U: SBA- 1 5  = 1 :32 800 355 360 NIA NIA 

U-Ti-Si-39 
U:Ti:Si = l : 1  :20 350 429 390 NIA NIA 

(350) 

U-Ti-Si-39 
U:Ti:Si =1 : 1 :20 600 341 .6 385 NIA NIA 

(600) 

U-Ti-Si-39 
U:Ti:Si = 1 : 1 :20 800 205 .3 380 NIA NIA 

(800) 
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Table 7 . 1 :  Continued. 

Composition 
Calcinatio 

BET Toluene C .  T.C.E 
Catalyst n Temp. Benzene Ratio 

(OC) 
(m

2
/g) Tso °C Tso °C 

Tso °C 

U-Pt-Si-40 U :Pt:SI = 1 :  0.2: 
350 477 1 70 NIA NIA 

(350) 20 

U-Pt-Si-40 U :Pt:SI = 1 :  0.2 : 
600 398 1 85 NIA NIA 

(600) 20 

U-Pt-Si-40 U :Pt:SI = 1 :  0.2: 
800 247 235 NIA NIA 

(800) 20 

TiOi-41 
Pure TiO2 400 127.8 1 365 500 NIA 

(400) 

TiOi-4 1 (600) Pure TiO2 600 1 8.2 1 425 NIA NIA 

TiO2-4 l 
Pur TiO2 800 2.95 550 NIA NIA 

(800) 

U-Ti-Meso-
U:Ti = 1 : 10  400 195 .6 390 NIA NIA 

42 (400) 

U-Ti-Meso-
U:Ti = 1 :20 400 249.6 330 375 465 

43 (400) 

U-Ti-Meso-
U:Ti = 1 :20 600 1 08.62 325 375 465 

43 (600) 

U-Ti-Meso-
U:Ti = 1 :20 800 25. 1 4  345 375 465 

43 (800) 

U-Ti-Meso-
U:Ti= 1 :30 400 1 39.0 1 400 NIA NIA 

44 (400) 

U-Ti-Meso-
U:Ti = 1 :40 400 162. 14 400 NIA NIA 

45 (400) 

U-Sr-Meso-
U:Sr:Si = 1 : 1  :20 800 94.56 550 NIA NIA 

33 

� 
MesoSr-34 · Sr:Si = 1 :20 800 30.77 sso N/A NIA 

. � 
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Table 7.2 : Summaries of composition ratio, calcinations temperature, BET surface area, 
and T 90 (90% conversion) for all selected catalysts discussed in this work respectively. 

Composition Calcination BET Toluene C. T.C.E Catalyst Benzene Ratio Temp. (°C) (m2/g) T90 °C T90 °C T90 °C 

U3Os Pure U3Os 800 0 . 1  NIA NIA NIA 

SiO2 Pure mesoporous 600 22 1 .8 NIA NIA NIA SiO2 

U-Meso-5 U:Si = 1 : 1 0  800 247.4 NIA NIA NIA 

U-Meso-6 U:Si = 1 :20 800 233 525 535 NIA 

U-Meso-9 U:Si = 1 :30 800 267 NIA 525 NIA 

U-Meso- 1 5  U:Si = 1 :40 800 336.7 NIA 600 NIA 

U-Meso- 1 8  U :Si = 1 :50 800 267 NIA 600 NIA 

U-Meso- 10  U:K:Si = 1 : 1 :20 600 4.5 NIA Deactivated NIA imp. with KNO3 

U-Meso- 1 1  U:K:Si = 1 : 1 :20 600 1 NIA Deactivated NIA imp. with K2C2O4 

U-Meso- 12 U:Br:Si = 1 : 1 :20 600 4 NIA Deactivated NIA imp. with KBr 

U-Meso- 1 3  U:Mg:Fe:Si = 600 2 10  NIA 625 NIA 1 :0.5 :0.5 :20 

U-Meso- 14 U:Ca:Fe :Si = 600 204 NIA 625 NIA 1 :0.5 :0.5 :20 
U-Cr-Meso- U: Cr: Si = 600 253.4 NIA NIA NIA 1 9  (imp.) 1 :0.2 :20 
U-Cr-Meso- U: Cr: Si = 2 1  800 203 .8 420 NIA NIA 

(co-syn) 1 :0.2 :20 

MesoCr-22 Cr: Si = 1 :95 800 207 NIA NIA NIA (co-syn) 
U-Cr-Meso- U: Cr: Si =1 :0.2 25 800 201 NIA NIA NIA 

(co-syn) :30 

U-Co-Meso- U: Co: Si = 600 242 500 NIA NIA 20 (imp) 1 :0.23 :20 
U-Co-Meso- U: Co: Si = 23 (co- 800 223 490 NIA NIA 

syn) 1 :0.23 :20 

1 5 1  



Table 7 .2: Continued. 

Composition Calcination BET Toluene C. T.C.E Catalyst Benzene Ratio Temp. (°C) (m2/g) T90 °C T90 °C T90 °C 

MesoCo-24 Co: Si = 1 :85 800 224 500 NIA NIA 
(co-syn) 

U-La-Meso- U:La:Si = 1 :0.5 800 32 1 NIA NIA NIA 
27 :20 

U-Ce-Meso- U:Ce:Si = 1 :  800 2 1 1 NIA NIA NIA 
28 0.5 :20 

CeO2-55 Pure CeO2 800 8 NIA NIA NIA 

MesoCu-29 Cu:Si = 5 :20 800 257.6 NIA NIA NIA 

U-Cu-Meso- U:Cu:Si = 800 1 46.76 465 NIA NIA 30 1 :5 :20 

Pt/fiOi-56 TiO2 :Pt 1 6.4: 1 500 39.7 1 75 NIA NIA 

Pt/U3Os:.57 U3Os:Pt = 5 .25 : 1 500 0.092 1 240 NIA NIA 

0. 1% Pt/ y 0. 1 % Pt/ A}iO3 NIA 224.6 325 430 NIA 
Alumina-59 

U-Ti-La-5 1 U :Ti: La = 

800 242.5 NIA NIA 550 1 :20:0.45 

La2Or54 Pure La2O3 800 2.3 NIA NIA NIA 

La-U- La:U = 1 : 1  800 14.75 NIA NIA 575 52(Pechini) 

La-Ti- La:Ti = 1 : 1  800 1 3 .42 NIA NIA 560 
53(Pechini) 

imp. Uranyl 

U-MCM41 -49 Nitrate 
600 758 360 NIA NIA U: MCM-41 = 

0 1 :32 
Imp. KNO2 

K-MCM41 -50 K:MCM-41 = 600 26 400 NIA NIA 

1 :  1 1  

K-SBA1 5-46 Imp. KNO2 600 1 1 2 Deactivated NIA NIA K:SBA- 1 5  = 1 : 1 1 

U-SBA1 5-47 U: SBA- 1 5  = 1 :32 800 355 400 NIA NIA 

U-Ti-Si-39 
U:Ti:Si =1 : 1 :20 350 429 425 NIA NIA (350) 

U-Ti-Si-39 
U:Ti:Si = 1 : 1  :20 600 34 1 .6 425 NIA NIA (600) 
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Table 7.2: Continued. 

Composition Calcination BET Toluene 
C. 

T.C.E 
Catalyst 

Ratio Temp. (°C) (m2/g) T90 °C 
Benzene 

T90 °C 
T90 °C 

U-Ti-Si-39 
U:Ti:Si =l :1 :20 800 205.3 425 NIA NIA 

(800) 

U-Pt-Si-40 U :Pt:SI = 1 :  0.2: 
350 477 1 75 NIA NIA 

(350) 20 

U-Pt-Si-40 U :Pt:SI = 1 :  0.2: 
600 398 195 NIA NIA 

(600) 20 

U-Pt-Si-40 U :Pt:S1 = 1 :  0.2: 
800 247 2 10  NIA NIA 

(800) 20 

TiO2-4 1 (400) Pure TiO2 400 127.8 1 365 NIA NIA 

TiOi-4 1 (600) Pure TiO2 600 1 8 .2 1 425 NIA NIA 

TiOi-4 1 (800) Pur TiO2 800 2.95 550 NIA NIA 

U-Ti-Meso-42 
U:Ti = 1 : 1 0 400 1 95 .6 445 NIA NIA 

(400) 

U-Ti-Meso-43 
U:Ti = 1 :20 400 249.6 350 450 NIA 

(400) 

U-Ti-Meso-43 
U:Ti = 1 :20 600 1 08.62 345 NIA NIA 

(600) 

U-Ti-Meso-43 
U:Ti = 1 :20 800 25. 14  365 NIA NIA 

(800) 

U-Ti-Meso-44 
U:Ti = 1 :30 400 1 39.0 1 450 NIA NIA 

(400) 

U-Ti-Meso-45 
U:Ti = 1 :40 400 1 62 . 14  475 NIA NIA 

(400) 

U-Sr-Meso-33 U:Sr:Si = 1 : 1 :20 800 94.56 NIA NIA NIA 

MesoSr-34 Sr:Si = 1 :20 800 30.77 NIA NIA NIA 
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respectively. For chlorobenzene oxidation (See Table 6.3), U-Ti-Meso-43 was the best 
catalyst with a T50 of 375 °C and U-Meso- 10, U-Meso- 1 1 , and U-Meso- 12  were the 
poorest with complete deactivation among the uranium and non-uranium based catalysts, 
respectively. For the trichloroethylene (TCE) oxidation (See Table 6.4), U-Ti-Meso-43 
was the best with a T50 of 425 °C and CeO2-55 was the poorest with a Tso of 575 °C 
among uranium and non-uranium based catalysts. 

The following conclusions are drawn from experimental results and observations: 
1 .  The initial catalysts made at Oak Ridge National Laboratory by this group were 

urania in a mesoporous silica support. These catalysts were made by template co­
assembly. XRD measurements indicated that the urania is present as U3Os. TEM 
measur�ments indicated that the U3O8 particles were dispersed in the silica support. 
Some less active catalysts contained a UO2 phase, suggesting that U3Os is the active 
phase. Pure U3Os was found to be less active than urania supported on mesoporous 
silica (See_ Table 6.2 and 6.3). This seeming anomaly is attributed to the very high 
surface area that can be achieved in the mesoporous silica support which causes the 
urania to be highly dispersed both in the pores and on the external surface. Supported 
in this way, it is possible to use a much smaller amount of depleted uranium in the 
catalyst as . shown previously in Table 6.2. Various molar ratios of U :Si were tried to 
see the differences in the improvement of the activity of catalyst, the results indicated 
that the optimal activity for chlorobenzene oxidation is obtained for U:Si = 1 :30 by 

having the lowest T 50 of 400 °C (See Table 6.3). 

2. In order to further improve the activity of uranium oxide catalysts supported on 
mesoporous silica, various metal oxides such as (Cr, Co, Cu, Fe, Ca, Mg, Sr) were 

1 54 



doped onto the catalysts. Doping chromium oxide onto a urania supported on the 
mesoporous silica (Cr:U:Si = 0.2: 1 :20) catalyst enhances the activity slightly for 

toluene oxidation (Tso = 375 °C), but only if the chromium oxide · is added in co­

synthesis (U-Cr-Meso-2 1 ). Post impregnation of chromium oxide (U-Cr-Meso- 19) 

yielded no improvement (T 5o = 418  °C) compared to urania supported on the 

mesoporous silica catalysts (U-Meso-6), and without urania the mesoporous 

chromium oxide supported '(T5o = 470 °C) on silica catalyst (Meso-Cr-22) was much 

less active. Doping copper oxide into a urania supported on mesoporous silica 

catalyst (U-Cu-Meso-30, Cu:U:Si = 5: 1 :20) also enhanced the activity (T50 = 385 °C) 

slightly as shown in Figure 6. 1 7. As shown in Figure 6.5, cobalt oxide, appears to 
have comparable activity to the uranium oxide, and doping it into urania supported on 
mesoporous silica catalyst had little synergistic effect. Doping Sr into urania 

. supported on mesoporous silica catalyst (U-Sr-Meso-33,  Sr:U:Si = 1 :  1 :20) decreased 

the catalyst activity (T50 = 550 °C) for toluene conversion as shown in Figure 6. 18. 

3. Fe, Mg, and Ca were tried as dopants for oxidation of chlorobenzene. Unfortunately, 

these also decreased the activity of the catalyst (T50 = 500 °C) as shown in Table 6.3. 

4. Potassium is used as a promoter for some catalysts. However, addition of Potassium 
by co-synthesis to the urania supported on mesoporous silica catalyst destroyed the 
mesoporous structure and strongly deactivated the catalysts, whether Potassium was 
added as a bromide, oxalate or nitrate salt. Even post-impregnation of high surface 
area urania supported on mesoporous silica catalyst with Potassium salts caused loss 
of surface area and activity. As shown in Table 6.2, the addition of potassium to U-
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MCM-4 1 and U-SBA-1 5  changed the Tso from 335 °C to 400 °C for U-MCM-4 1 and 

from 360 °C to complete deactivation for U-SBA- 1 5 . Evidently Potassium is a strong 

poison for depleted uranium catalysts. 

5. Mesoporous titanium oxide (TiO2) is an active catalyst for oxidation of toluene as 

shown in Figure 6.6. Doping with uranium has a synergistic interaction which leads 

to a very active catalyst. Using the template co-synthesis method to dope urania into 

titania (with mole ratio of U: Ti= 1 :20) yields a mesoporous catalyst (U-Ti-Meso-43) 

with a Tso of 325 °C for toluene oxidation. Mesoporous titanium oxide (TiO2) is not 

stable at high temperatures because of crystallization that leads to mesopore collapse 

as shown in Table 6. 1 .  Interestingly, urania stabilizes the TiO2 mesoporous 

framework and leads to much higher surface area and inhibits deactivation caused by 

sustained temperatures as high as 800 °C. The activity of the (U-Ti-Meso-43) 

catalyst was shown (Figure 6 .8) to be stable for days and its activity is comparable to 

a 0. 1 % Pt/ yAhO3 (commercial catalyst, Tso = 375 °C) and therefore competitive with 

the more expensive precious metal catalyst. 

6. A second approach to achieve the U-Ti synergy was to dope a U-Meso-6 catalyst with 

Ti in smaller levels (U-Ti-Si-39, U :Ti:Si = 1 :  1 :20). This approach gave catalysts with 

a slight improvement in activity as compared to U-Meso-6, but not as good as the U­

Ti-Meso-43 catalysts. These catalysts were also stable at high temperature. In the 

final approach, the same procedure was followed to achieve the Pt-U synergy by 

doping a U-Meso-6 sample with Pt in smaller amount (U-Pt-Si-40, U:Pt:Si = 

1 :0.2 :20) which resulted Tso of 1 70 °C. The results are shown in Table 6.2. 
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7. The U-Ti-Meso-43 catalyst was tested for chlorinated VOCs. This catalyst was 

active, although higher temperatures were required to obtain comparable conversions. 

Measured Tso was 325, 375 ,  and 465 °C for toluene, chlorobenzene and 

trichloroethylene respectively. The results from quad mass spectrometer indicated 

that the only carbon containing byproduct besides CO2 was benzaldehyde. 

Conversion to benzaldehyde depended upon temperature but it was generally less 

than 10%. The conversion of toluene, chlorobenzene and trichloroethylene over the 

U-Ti-Meso-43 catalyst (Table 7 . 1 )  indicated that the efficiency of destruction for the 

above VOCs decreases in the following order: 

toluene > chlorobenzene > trichloroethylene 

8. The effect of water on the conversion of U-Ti-Meso-43 catalyst was tested for 

oxidation of trichloroethylene as shown in Figure 6.22. This is also important 

because, in an application for soil vapor extraction, the reactant stream will be 

saturated in water. Addition of water as high as 1 5  volume % did not interfere with 

catalytic conversion (Tso = 450 °C) and appeared to enhance HCl:Cli product ratios. 

9. The addition of water for increasing the activities of U-Ce-Meso-28, CeO2-55 and 

La2O3-54 were tried. The results indicated that there was no improvement in the 

activities of catalysts as shown in Table 6.4. 

1 0. The overall results indicated that urania supported on titania are more efficient, 

corrosion resistant due to water addition and stable at very high temperature than 

silica supported catalyst even in the presence of water as high as 1 5% by volume 

(Table 6.4). For both of titania and silica based catalysts, the optimum mole ratio of 

U to Ti and U to Si was 1 :20. 
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1 1 . From various synthesis and characterization techniques applied to produce active 

urania catalysts, we have learned that mesoporous synthesis provides: 

• increased activity 

• a more efficient use of uranium 

• U linked Ti gives the highest activity to date 

• stability to deactivation even in the presence of large amounts of water and 

uranium catalysts are a viable potential use for depleted uranium stockpiles, but it is not 

as active as a platinum catalyst. 

. . . . 
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CHAPTER S 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The completion of tables 7 . 1  and 7 .2 are fully recommended in order to make a 
comprehensive conclusion about tlw most effective and least effective catal).'st with 
toluene, chlorobenzene and trichloroethylene. 

The impregnation method can be modified by various techniques like 
pressurizing, vacuum treatment, or acoustic activation. This way, all gases trapped in the 
pores of mesoporous materials can be removed and facilitate the impregnation process. 
Research is needed to develop this technique. 

U-Ti-meso-43 was considered as the best uranium-titanium based catalyst 
synthesized and tested in this work. The honeycomb monolithic structure of this catalyst 
has the potential to be used as commercial catalyst for SVE or in other applications, but 
should be tested for other compounds. 
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Table A. 1 :  Comparison of catalytic performance by (U30s, Si02, U-Meso-5, and · U-
Meso-6) for the destruction of toluene. 

% % 

% Std 
% 

Std Conversi Std Conversi Std 

Temperature 
Conv Ave. 

Conversi 
Ave. on Ave. on Ave. 

ersio Con de Con de U-Meso- Con de U-Meso- Con de 
(°C) on 

5 6 n v. v. 
U3Os 

v. v. v. v. v. v. 

SiO2 s s U:Si = s U:Si = 
1 : 1 0  1 :20 

325.0 6.2 5.6 0.6 3 .4 3.9 0.5 4.2 4.5 0.5 

325.0 5.0 4 . 1  4.8 

325.0 5.6 4.3 

350.0 9.0 9.4 1 . 1  6.2 6.8 1 .0 8.8 7.5 1 . 1 14.9 1 5 .7 0.8 

350.0 9.2 6.3 7.0 1 5 .6 

350.0 1 1 .0 8.0 6.7 16.5 

375.0 1 1 .7 12.4 0.7 1 9.2 1 8.6 0.6 23.5 22.9 1 .7 

375.0 12.3 1 8.6 20.9 

375.0 1 3 . 1  1 8.0 24.2 

400.0 9.6 1 1 .4 1 .5 8.4 8.3 0.4 50.5 49.7 1 .0 . 44.7 48.0 5.2 

400.0 12.0 8.6 49.9 45.3 

400.0 12.5 7.8 48.6 54.0 

425 .0 16.0 14.6 1 .2 65.4 65.7 1 . 1 

425.0 1 3 .8 64.9 

425 .0 14.0 66.9 

450.0 19.6 1 8.7 0.8 1 0.5 1 2.4 1 .9 64.2 64.5 0.7 75.7 75.7 0.7 

450.0 1 8.2 12.6 63.9 75. 1 

450.0 1 8.2 14.2 65.2 76.4 

475.0 24. l 24.8 0.6 82. 1 82.3 0.2 

475 .0 25. 1 82.3 
475.0 25 . 1  82.5 

500.0 28.4 28.5 1 . 1 39.5 4 1 .2 1 .8 68.8 69.9 1 . 1  88.2 87.8 0.4 

500.0 29.7 4 1 .0 7 1 .0 87.4 

500.0 27.5 43 .6 69.9 87.9 

525.0 9 1 .2 9 1 .3 0.2 

525.0 9 1 .5 

525.0 9 1 . 1  

550.0 65.5 64. 1 1 .5 

550.0 64.2 

550.0 62.5 

600.0 82.5 8 1 .3 1 .8 
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Table A.2: Effect of Chromium addition by co-assembly or impregnation synthesis 
tee h '  fi d . f 1 mques or estruct10n o to uene. 

% 
% % Convers Std Std Std % Std 

ion Ave. Conversio Ave. Conversio Ave. 
Conversio Ave. 

Temperature 
U-

% 
dev n % dev n % 

dev % 
dev (OC) Conv U-Meso- Conv Meso-22 Conv 

n 
Conv Meso- 19  U-Meso-6 

(Cr) (J 
21 (Cr) 

(J 
(Cr) 

co-syn. (J (J 

imp. co-syn. co-syn. 

200.0 0.0 0.7 1 .2 2.8 2.7 0.4 0.3 3.2 2.5 1 .7 2.8 1 .7 
200.0 0.0 2.2 4.4 5.2 

200.0 2.0 3. 1 4.9 1 .6 

225.0 6. 1 5.4 1 .0 2.4 3.0 0.5 0.4 3.4 2.8 0.0 1 .7 2.0 
225.0 5.7 3.2 4.1 1 . 1  

225.0 4.2 3.4 5.9 4.0 

250.0 5.9 6.7 1 .7 6.5 5.7 0.9 6.1 5.6 0.5 1 .2 3.4 2. 1 

250.0 5.5 5.8 5.0 3.7 

250.0 8.6 4.7 5.6 5 .4 

275.0 8.6 7.7 1 .0 3.2 3.4 0.5 5.6 5.5 0.6 2.2 3.3 1 .0 

275.0 7.8 3.0 6.0 4.0 

275.0 6.7 4.1 4.9 3.7 

300.0 7.2 6.2 1 .0 6.5 7.9 1 .2 5 .3 5.5 0.2 7.2 8.5 1 .2 

300.0 5.2 8.3 5.5 ·9.6 

300.0 6.2 9.0 5.6 8.8 

325.0 1 1 .2 1 0.2 1 .9 1 1 .6 9.3 2.0 10.0 9. 1 2.0 10.8 1 0.5 1 .7 

325.0 1 1 .3 8 . 1  10.4 8.8 

325.0 8.0 8. 1 6.8 12. 1  

350.0 19.6 19.0 0.8 24.9 24.2 0.7 1 1 . l  12.6 1 .5 14.9 1 5.7 0.8 

350.0 19.3 23.7 12.5 1 5.6 

350.0 1 8. 1  24.0 1 4.0 1 6.5 

375.0 3 1 .7 29.4 2.4 52.8 52. 1 0.7 1 8.6 1 8.9 0.7 23.5 22.9 1 .7 

375.0 29.3 5 1 .6 1 8.3 20.9 

375.0 27.0 5 1 .8 19.7 24.2 

400.0 44.0 4 1 . l  2.6 80.3 79.9 0.4 30.2 29.7 0.6 44.7 48.0 5.2 

400.0 40.0 79.6 29.8 45.3 

400.0 39.3 79.8 29. 1 54.0 

425.0 57.5 56.0 1 .3 94.5 94. 1 0.3 4 1 .0 40. 1 1 . 1  65.4 65.7 0.9 

425.0 55.0 94.0 40.5 64.9 

425.0 55.5 93.9 38.9 66.9 

450.0 67.4 66.0 1 . 1  98.4 98.5 0. 1 43.4 43.8 0.8 75.7 75.7 0.7 

450.0 65.6 98.5 44.7 75. 1 

450.0 65.2 98.6 43.3 76.4 

475.0 72.2 72.0 0.3 99.7 99.6 0.0 55.0 55.2 0.7 82. 1 82.3 0.2 

475.0 72.0 99.6 54.5 82.3 

475.0 7 1 .6 99.6 55.9 82.5 

500.0 80.6 80.3 0.4 65.2 64.5 0.6 88.2 87.8 0.4 

500.0 80.0 64.4 87.4 

500.0 79.4 64. 1  87.9 

525.0 9 1 .2 9 1 .2 0.0 

525.0 9 1 .5 

525.0 9 1 . 1  
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Table A.3: Effect of Cobalt addition by co-assembly or impregnation synthesis 
h . u 'd . f t  l tee mques or ox1 at1on o o uene. 

% % 
Conversi Ave. 

Std Conversi 
Temperature on % dev 

on 
(OC) U-Co- Con U-Co-

Meso-20 v. Meso-23 cr 
imp. co-syn. 

200.0 4.5 5.2 0.7 4.3 

200.0 5.3 3.0 

200.0 5.9 4.9 

225.0 5.2 6.0 2.0 6.5 

225.0 4.5 5.3 

225.0 8.2 6.2 

250.0 5.4 7.0 1 . 1  3.7 

250.0 7.6 5.0 

250.0 7.8 3.5 

275.0 9. 1 7.9 1 .7 8.7 

275.0 6.7 6.2 

275.0 7.6 4.5 

300.0 8.8 9.5 0.6 9.6 

300.0 9.9 1 0.8 

300.0 9.7 7.7 

325.0 1 1 .9 1 1 . 1  0.7 1 0.8 

325.0 1 0.6 1 3.0 

325.0 10.8 1 0.3 

350.0 12.7 1 2.4 0.4 1 2.2 

350.0 12.0 1 1 .7 

350.0 12.3 10.8 

375.0 1 8.5 19.0 1 .0 24.5 

375.0 20.2 28.8 

375.0 1 8.3 26.8 

400.0 24.2 24.8 1 .7 40.5 

400.0 23.S 4 1 .0 

400.0 26.7 42.2 

425.0 39.6 37.5 2.9 62.2 

425.0 38.8 62.5 

425.0 34.2 6 1 .8 

450.0 6 1 .0 59.9 1 . 1  76.3 

450.0 59.9 76.7 

450.0 58.8 77. 1 

475.0 77.8 76.2 1 .4 88.2 

475.0 75.6 87.5 

475.0 75.2 87. 1  

500.0 90.6 89.0 1 .3 94.6 

500.0 88.2 94.8 

500.0 88.4 94.4 

525.0 

525.0 

525.0 

Ave. 
Std 

% dev 
Con 

v. cr 

4.1 1 .0 

6.0 0.6 

4. 1 0.8 

6.5 2. 1 

9.4 1 .6 

1 1 .3 1 .4 

1 1 .6 0.7 

26.7 2 . 1  

4 1 .2 0.9 

62.2 0.4 

76.7 0.4 

87.6 0.5 

94.6 0.2 
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% % 
Conversi Ave. 

Std Conversi Ave. 
Std 

on % dev 
on % dev MesoCo- Con U-Meso- Con 

24 v. 6 v. 
cr cr 

co-syn. co-syn. 
5.4 4.8 1 .5 1 .7 2.8 1 .7 

3.0 5 .2 

5.9 1 .6 

4.9 6 . 1  1 . 1  0.0 1 .7 2.0 

7.2 1 . 1  

6.3 4.0 

7.2 7.4 0.8 1 .2 3.4 2. 1 

8.3 3.7 

6.7 5.4 

8.3 9.0 0.6 2.2 3 .3 1 .0 

9.2 4.0 

9.6 3.7 

10.4 10.0 0.4 7.2 8.5 1 .2 

10 . 1  9.6 

9.7 8.8 

1 1 . 1  1 1 .8 0.8 10.8 1 0.5 1 .7 

1 1 .8 8.8 

1 2.6 1 2. 1  

16. 1  1 7.8 1 .5 14.9 1 5.7 0.8 

1 8.8 1 5.6 

1 8.5 1 6.5 

27. 1 28.4 1 . 1  23.5 22.9 1 .7 

28.6 20.9 

29.3 24.2 

42.7 4 1 .8 0.9 44.7 48.0 5 .2 

4 1 .6 45.3 

4 1 . J  54.0 

55.2 56.4 1 .0 65.4 65.7 0.9 

57.0 64.9 

56.9 66.9 

72.2 72.3 0.6 75.7 75.7 0.7 

72.9 75. 1 

7 1 .7 76.4 

82.5 82.5 0.2 82. 1  82.3 0.2 

82.6 82.3 

82.2 82.5 

89.5 89.2 0.4 88.2 87.8 0.4 

89.3 87.4 

88.8 87.9 

89.4 89.3 0.0 9 1 .2 9 1 .2 0.0 

89.3 9 1 .5 

89.3 9 1 . l  



Table A.4: Effect of calcinations temperature ( 400, 600, and 800 °C) upon light-off for 'd t· f t  I b TO ox1 a 10n o o uene 1y 1 2 ,  

% % % 
Temperature Conversion Ave. Std. Conversion Ave. Std. Conversion Ave. Std. 

(OC) Ti02 
% dev. 

Ti02 
% dev. % dev. 

Conv. C1 Conv. C1 Ti02 Conv. C1 
(400C) (600C) (800C) 

200.0 5 .7 6.0 1 . 1  2.0 1 .7 1 .3 3.3 2.7 0.5 
200.0 7. 1 0.0 2.7 
200.0 5 . 1  3.2 I 2.2 
225.0 3.0 4.7 1 .5 4.5 3.8 1 . 1  2.2 1 .4 0.8 
225 .0 5.7 3 .0 1 .4 
225 .0 5.5 3 .2 0.6 

250.0 8.9 8.9 0.6 6. 1 4.6 1 .4 4.2 4.0 1 .4 

250.0 8.3 3 .3 5.3 

250.0 9.5 4.4 2.5 

275.0 10.6 9.7 1 .6 5 .9 4.6 1 .8 8. 1 7.7 1 .5 

275.0 1 0.5 3.3 6. 1 

275.0 7.9 3 .6 8.9 

300.0 14.2 1 4.4 0.9 5 .4 4. 1 1 . 1  7.8 6.4 1 .4 

300.0 1 5 .4 3 .2 I 5 . 1  

300.0 1 3 .7 3 .9 6.2 

325.0 2 1 . 1  20.0 1 .3 9. 1 8.5 0.8 4.3 7.2 2.5 

325 .0 1 8.6 7.6 8.4 

325.0 20.2 8 .6 8.8 

350.0 32.0 34.4 2.2 1 2.4 1 1 .2 1 .4 1 1 .7 9.8 1 .7 

350.0 36.3 1 1 .4 8.5 

350.0 34.9 9.7 9.2 

375.0 66.0 66. l 0.2 23.4 20.9 2.3 9.5 9.8 0.4 

375.0 66.3 19.0 10.0 

375.0 66. l 20.3 8.6 

400.0 89.2 89. 1 0.2 34.8 34.8 0.4 9.6 1 0.9 1 .3 

400.0 89.0 35.2 1 0.7 

400.0 88.9 34.3 1 2.3 

425.0 95.5 95.2 0.2 50.3 53.3 2.6 13.5 1 5 .0 1 .3 

425 .0 95.2 54.7 1 5 .6 
425 .0 95.0 54.8 1 5.8 

450.0 96.5 96.4 0.2 60.8 6 1 .2 0.4 1 5 .0 1 8.6 3 .2 

450.0 96.2 6 1 .5 20.5 

450.0 96.0 6 1 .4 20.4 

475 .0 96.6 96.4 0. 1 66.4 66. l  0.3 27.4 24.8 4. 1 

475.0 96.4 65.9 27.0 

475 .0 96.3 66.0 20. 1 . 

500.0 96.3 96.2 0.2 68.0 67.7 0.3 38.2 36.4 1 .5 

500.0 96.0 · 67.6 35 .4 

500.0 96.4 67.4 35.7 
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Table A.5: Effect of calcinations temperature ( 400, 600, and 800 °C) upon light-off 
curve b U T M 43 � . d . f l 1y - 1- eso- or ox1 atlon o to uene. 

% % 
Conversi Ave. 

Std Conversi Ave. 
Std 

Temperat on % on % 

ure (0C) U-Ti- Con 
de 

U-Ti- Con 
de 

v. v. 
Meso v. Meso v. 

CJ (J 

(400C) (600C) 
250.0 1 1 .8 1 0.7 1 .2 1 2.6 1 2.0 0.8 

250.0 9.4 12.3 

250.0 1 0.8 1 1 .2 

275.0 1 3.5 1 2.7 0.7 12.5 1 2.3 1 . 1  

275.0 12 . 1  1 1 . 1  

275.0 1 2.4 13 .2 

300.0 1 5.6 1 6.4 0.9 2 1 .9 20.6 1 . 1  

300.0 1 7.4 19.8 

300.0 1 6. 1  20. 1 

320.0 39.2 38.5 1 .4 

320.0 38.6 

320.0 36.5 

325.0 27.3 25.8 1 .7 56.9 52.9 4.7 

325.0 26. 1 54.0 

325.0 24.0 47.7 

335.0 56.3 55.2 0.9 72.4 7 1 .2 1 . 1  

335.0 54.5 70.9 

335.0 54.8 70.3 

350.0 95.8 94.0 1 .5 97. 1 96.7 0.4 

350.0 93.3 96.6 

350.0 93.0 96.3 

360.0 98.5 98.4 0.0 99.4 99.3 0. 1 

360.0 98.5 99.3 

360.0 98.4 99.3 

365.0 99.4 99.4 0.0 

365.0 99.4 

365.0 99.4 

375.0 1 00.0 1 00. 0.0 100.0 1 00. 0.0 

375.0 1 00.0 1 00.0 

375.0 1 00.0 1 00.0 

380.0 1 00.0 100. 0.0 

380.0 100.0 

380.0 100.0 

390.0 

390.0 ' 

390.0 

400.0 

400.0 

4 10.0 

4 10.0 
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% % 
Conversi Ave. 

Std Conve Ave 

on % rsion Std. 

U-Ti- Con 
de 

0 . 1% 
% dev. 

v. Con (J 

Meso v. Pt/Ah (J v. 

(800C) 03 

9.1 9.4 0.8 

8.8 

1 0.3 

7.5 6.3 1 .0 

5.6 

5.8 

1 3.9 1 3 .8 0.3 1 2.5 1 2. 0.5 
1 4.0 1 3.3 

1 3.6 

22.9 2 1 .7 1 . 1  1 8.5 18 .  0.5 
2 1 . 1  1 9.2 

2 1 .0 

29.9 28.6 1 .6 

29.0 

26.8 

56.9 56.4 0.5 30.4 30. 0.5 
56.6 29.6 

55.9 

92.2 92. l  0. 1 40.3 4 1 .  1 .3 

92. 1  42. 1 

92.0 

97.9 97.9 0.0 54.4 54. 0.2 

97.9 54.0 

97.9 

99.0 98.9 0.1  

98.9 

98.9 

66.4 67. 1 .0 

67.9 

77.4 78. 1 .5 

79.6 

87.6 88. 0.9 

88.9 



Table A.6: Catalyzed oxidation of toluene by variable doped uranium in U-Ti-Meso-42, 
43 , 44, and 45 for oxidation of toluene. 

% Percent Percent Percent 
Convers Convers Conver Convers 

ion Ave ion Ave sion Ave ion Ave 

Temperatur U-Ti- Std. U-Ti- Std. U-Ti- Std. U-Ti- Std. 
% dev. % dev. % dev. % dev. e (OC) Meso Con CJ 

Meso Con (J 
Meso Con CJ 

Meso Con CJ 

(400) v. (400) v. (400) v. (400) v. 

U:Ti U:Ti U:Ti U:Ti 
=1 : 1 0  =1 :20 =1 :30 =1 :40 

250.0 1 1 .8 1 0.7 1 .2 1 .4 3 . 1  1 .6 
250.0 9.4 3 .3 
250.0 1 0.8 4.6 
275.0 1 3 .5 1 2.7 0.7 7.6 7.9 0.3 3 .7 5.0 1 .3 
275.0 12 . 1 8 . 1  5 .2 

275 .0 1 2.4 8.0 6.3 
300.0 0.0 2.0 3 .5 1 5 .6 1 6.4 0.9 8 .2 7.4 0.7 5 . 1  5 .9 1 .2 

300.0 6.0 1 7.4 7.0 5 .3 

300.0 0.0 1 6. l  7.0 7.3 

325.0 9.7 8 .4 1 .5 27.3 25.8 1 .7 1 0.9 10. 0.5 6.6 5 .7 0.8 

325 .0 6.7 26. l 1 0.0 5 .7 

325 .0 8 .7 24.0 1 0.4 5.0 

335.0 56.3 55.2 0.9 , 

335.0 54.5 

335.0 54.8 

350.0 95.8 94.0 1 .5 9.0 9.5 0.5 9.3 7.6 1 .8 

350.0 93 .3 9.6 7.7 

350.0 1 3 .0 1 2. 1 .4 93 .0 1 0.0 5.7 

360.0 1 3 .3 98.5 98.4 0.0 

360.0 1 0.7 98.5 

360.0 98.4 

365 .0 99.4 99.4 0.0 

365 .0 99.4 

365.0 99.4 

375.0 1 6.7 2 1 .  4. 1 1 00.0 100. 0.0 20.0 20. 0.9 24.0 24. 0.2 

375 .0 23 . 1  1 00.0 2 1 .7 24.0 

375.0 24.4 100.0 2 1 .0 24.3 

380.0 1 00.0 1 00. 0.0 

380.0 100.0 

380.0 100.0 

400.0 62.2 6 1 .  0.8 35.3 37. 1 .9 48.2 47. 1 .3 

400.0 60.8 39.0 47.7 

400.0 60.7 37.8 45 .7 

425 .0 84.5 85. 0.6 77.6 77. 0.3 69.6 69. 0.3 

425 .0 85.3 77. l 69.4 

425 .0 85.7 77. 1 69.0 

450.0 95.5 95. 0.2 93.6 93 . 0.0 83. l 83. 0.2 

450.0 95.9 93 .6 83.0 

450.0 95 .8  93.6 83.3 

475.0 96.7 97. 0.7 98.5 98. 0.3 9 1 . 1  9 1 .  0.4 

475 .0 97.5 99.0 9 1 .9 
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I 

Table A.7: The effects of doping MCM-4 1with uranium and potassium promoter for 
oxidation of toluene. 

Temperature (°C) % Conversion ( MCM-4 1 )  
% Conversion (MCM-4 1 )  
Impregnated with KNO2 

200.00 14. 1 8  14.44 

200.00 10.43 1 3 .63 

200.00 6.00 1 1 .74 

225 .00 1 1 .66 1 1 .84 

225 .00 9.50 1 1 .72 

225 .00 14.54 12 .26 

250.00 14.75 1 6.23 

250.00 1 5 .30 14. 1 6  

250.00 14. 1 9  1 3 .00 

275 .00 1 8.48 1 5 .0 1 

275 .00 17 .96 1 8 .86 

275 .00 22. 1 0  20.30 

300.00 25 .00 1 7.36 

300.00 27.67 23.88 

300.00 27. 14  20.60 

325 .00 43 .22 25.50 

325 .00 40.82 25 .08 

325 .00 5 1 .38 30.70 

350.00 77.98 39.75 

. 350.00 78.25 4 1 .52 

350.00 80.00 37.97 

360.00 92 .30 

360.00 95 .97 

360.00 97.08 

375 .00 99.82 45 . 1 0  

375.00 99.90 48.40 

375 .00 99.85 46.0 1 

400.00 53 . 1 7  

400.00 50. 1 0  

400.00 49.64 
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Table A.8: Comparison of doping uranium with SBA- 1 5  and MCM-4 1 for oxidation of 
toluene. 

Temperature (°C) 
% Conversion (MCM-4 1 )  % Conversion (SBA- 1 5) 

doped with U doped with U 

200.00 14. 1 8  29.25 
200.00 1 0.43 25 .73 

: 

200.00 6.00 30.25 

225 .00 1 1 .66 30.27 

225 .00 9.50 33 .96 

225.00 14.54 32.63 

250.00 14.75 3 1 .03 

250.00 1 5 .30 3 1 .57 

250.00 14. 1 9  34.45 

275.00 1 8.48 3 1 .09 

275.00 1 7.96 29.85 

275 .00 22. 1 0  32 .54 

300.00 25.00 40.6 1 

300.00 27.67 36.5 1 

300.00 27. 14 36.90 

325 .00 43 .22 35 .70 

325 .00 40.82 41 .24 

325 .00 5 1 .38  44.65 

350.00 77.98 47 .40 

350.00 78.25 45 . 14  

350.00 80.00 46.44 

360.00 92.30 

360.00 95 .97 

360.00 97.08 

375 .00 99.82 64. 1 3  

375 .00 99.90 68.80 

375 .00 99.85 67.06 

400.00 9 1 .70 

400.00 94.33 

400.00 92.86 

425 .00 99.96 

425 .00 99.97 

425 .00 99.96 

1 79 



Table A.9: Comparison of titania (TiO2) and urania (U3Os) as oxidative supports for Pt 
for oxidation of toluene. 

Temperature (°C) 
% Conversion % Conversion 

Pt/lhOs Pt/TiO2 

120 0.00 

120 0.00 

120 0.00 

1 30 5 .92 

1 30 6. 1 3  

1 30 4.43 

140 9.70 

140 1 0.44 

140 8.93 

1 50 22 .46 

1 50 24. 12  

1 50 25 . 1 5  

165 8 1 .67 

1 65 78 . 1 6  

1 65 84. 1 5  

1 75 94.8 1 

1 75 94.00 I 

1 75 94.45 

1 85 98.60 

1 85 98 .60 

1 85 98.83 

200 5 .00 
200 4.30 
200 1 .00 
2 1 5  2 1 .37 
2 1 5  2 1 .85 
2 1 5  2 1 .7 
225 28.6 
225 30. 14 
225 29.92 
240 1 00 
240 1 00 
240 100 
250 1 00 
250 1 00 
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Table A. 1 0: The effect of calcinations temperature (350, 600, and 800 °C) upon light-off 
b U T' s · 39 � 'd 

. 
f 1 curve iy - 1- 1- or ox1 at1on o to uene. 

% Conversion 
Temperature (°C) U-Ti-Si 

(350 °C) 

1 75 .00 0.00 
1 75 .00 2.60 
1 75 .00 3 .67 
200.00 3 .90 
200.00 4.76 
200.00 0.00 
225 .00 5 .60 
225.00 6. 1 3  
225 .00 1 .40 
250.00 5 .53 
250.00 4.66 
250.00 2.72 
275 .00 4.72 
275 .00 4.60 
275 .00 4.96 
300.00 8.40 
300.00 7. 10  
300.00 6.87 
325 .00 1 0.82 
325 .00 1 3 .06 
325 .00 1 3 .43 
350.00 1 8 .25 
3 50.00 1 8 .60 
350.00 1 6.88 
375 .00 29.72 
375 .00 32.00 
375 .00 3 1 .89 
400.00 65 .90 
400.00 65.88 
400.00 65.83 
425 .00 93 .80 
425 .00 93 . 1 7  
425 .00 93 .20 
450.00 99. 1 6  
450.00 99.05 
450.00 98.95 

1 8 1  

% Conversion % Conversion 
U-Ti-Si U-Ti-Si 
(600 °C) (800 °C) 

0.00 6.90 
0.00 4.45 
2.80 0.50 
0.00 4.76 
0.00 1 .50 
5 .26 3 .03 
0.00 0.00 
2.42 3 .20 
1 .30 2.70 
0.70 1 .80 
1 .50 2.40 
0.00 1 .82 
0.00 0.00 
1 . 1 0 0.00 
0.00 0.00 
5 .60 7.00 
4.30 6.83 
5 .06 7.74 
14.33 6 .90 
12 . 1 7  1 3 .65 
1 1 .95 1 3 . 1 8  
1 9.08 23 .3 1 
14.70 20.62 
1 7. 14 1 9.86 
34.83 46.70 
35 .30 47.50 
40.70 4 1 .50 
70.6 1 8 1 .36 
70.9 1 8 1 .65 
69. 1 0  8 1 .75 
93 .87 94.84 
94.27 95 .03 
93.76 95 .09 
99. 1 8  98 .42 
99. 1 1  98.37 
99.02 98.27 



Table A. 1 1 : The effect of calcinations temperature (3 50, 600, and 800 °C) upon light-off 
b U P S .  40 � 

. 
d 

. 
f 1 curve iy - t- 1- or ox1 at1on o to uene. 

Temperature (C) 
% Conversion 

U-Pt-Si (350 °C) 

1 40.00 1 2.55 

1 40.00 1 1 .25 

140.00 1 0.06 

1 50.00 1 5 .62 

1 50.00 1 2.5 1 

1 50.00 12 .27 

1 60.00 25.80 

1 60.00 26.45 

1 60.00 23.60 

1 65.00 32.06 

1 65.00 32.00 

1 65 .00 3 1 .55 

1 75.00 1 00.00 

1 75.00 1 00.00 

1 75.00 1 00.00 

1 90.00 1 00.00 

1 90.00 1 00.00 

1 90.00 1 00.00 

200.00 

200.00 

200.00 

21 0.00 

2 1 0.00 

21 0.00 

225.00 

225.00 

225.00 

1 82 

% Conversion % Conversion 
U-Pt-Si (600 °C) U-Pt-Si (800 °C) 

6.00 

3 .00 

5 . 1 0  

4.60 

16 . 1 0  

14.65 

12.00 

26.30 5 . 1 6  

22.60 4.20 

24.50 5 .27 

86. 1 0  

89.40 

87. 1 2  

1 90.00 22 .50 

1 00.00 2 1 .60 

1 00.00 2 1 .30 

1 00.00 

1 00.00 

1 00.00 

1 00.00 

1 00.00 

1 00.00 



Table A. 12 :  The effect of  copper addition into uranium mesoporous silica support by 
bl h d £ 'd . f 1 co-assem lY met o or ox1 ation o to uene. 

Temperature (°C) 
% Conversion 
UMesoCu(29) 

. 300.00 0.00 

300.00 0.00 

300.00 0.00 

325 .00 1 0.40 

325 .00 14.20 

325 .00 1 1 .20 

350.00 1 7.20 

350.00 16.52 

350.00 16 . 12 

375 .00 23 .20 

375 .00 26.00 

375 .00 25 .26 

400.00 64.30 

400.00 64.60 

400.00 64.26 

425 .00 73 .86 

425 .00 74.84 

425 .00 76.30 

450.00 86.35 

450.00 86.52 

450.00 86.80 

475 .00 94.46 

475 .00 94.74 

475 .00 94.75 

500.00 98.08 

500.00 98.04 

500.00 98.02 

525 .00 

525 .00 

525 .00 

550.00 

550.00 

550.00 

1 83 

% Conversion % Conversion 
MesoCu(30) UMeso(6) 

0.00 7 . 1 7  

0.00 9.55 

0.00 8.75 

0.00 10.75 

0.00 8.75 

0.00 12. 12 

4.85 14.94 

4.20 1 5 .60 

6.3 1 1 6.46 

7.85 23 .48 

8.52 20.93 

9. 1 6  24. 1 5  

7.86 44.70 

10.36 45.30 

6. 10  54.00 

1 1 .60 65 .42 

12 .42 64.85 

1 3 .80 66.93 

1 3 .50 75 .70 

16.77 75 .09 

1 8.46 76 .40 

26.74 82. 1 3  

24.07 82.32 

25 .47 82.52 

35 . 1 5  88. 1 8  

34.32 87.40 

36.2 1 87.94 

40.55 9 1 . 1 6  

43 . 1 6  9 1 .46 

44.00 9 1 . 1 4  

65 .80 

66.3 1 

66.30 



Table A. 1 3 :  The effect of Strontium addition into uranium mesoporous silica support by 
bl th d � 

. 
d f f t  I co-assem lY me o or ox1 a 10n o o uene. 

Temperature (°C) 
% Conversion 
UMesoSr(3 3) 

350.00 5 .90 

350.00 7.8 1 

350.00 9.46 

375 .00 9.00 

375 .00 6. 1 0  

375 .00 6.80 

400.00 6.92 

400.00 7.50 

400.00 9.66 

425 .00 8 .06 

425 .00 1 0.43 

425 .00 12. 14  

450 .00 10.70 

450.00 1 1 .92 

450.00 1 3 .40 

475 .00 24.05 

475 .00 1 8.94 

475 .00 2 1 .30 

500.00 27.60 

500.00 27.00 

500.00 28. 1 8  

525 .00 39 .00 

525 .00 35 .92 

525 .00 37.65 

550.00 50.0 1 

550.00 5 1 .00 

550.00 52.82 

575 .00 

575.00 

575.00 
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% Conversion % Conversion 
MesoSr(34) UMeso(6) 

14.94 

1 5 .60 

16.46 

0.00 23 .48 

0.00 20.93 

0.00 24. 1 5  

1 .80 44.70 

2.86 45 .30 

3 .90 54.00 

5 .82 65 .42 

3 .90 64.85 

5 .40 66.93 

8.40 75.70 

6.55 75.09 

7.04 76 .40 

16.50 82. 1 3  

1 5 .77 82.32 

17 .00 82.52 

2 1 .02 88. 1 8  

23 .06 87.40 

2 1 . 1 1 87 .94 

33 .80 9 1 . 1 6  

35 .46 91 .46 

35 .22 9 1 . 1 4 

45 .40 

49.03 

50 .97 

63 .73 

65.05 

66.34 



Table A. 14 : Comparison of catalyzed oxidation of chlorobenzene by pure uranium 
oxide catalyst and doped with (Fe +Mg or Fe+ Ca) using co-assembly in mesoporous 
s1 1ca support. 

% 

Conversio % 
% Temperature n Ave. Std. Conversion Ave. Std. 

Conversion 
Ave. Std. 

U-Meso- % dev. U-Meso-14 % dev. % dev. 
(°C) 1 3  Conv. Fe+Ca Conv. 

U-Meso-6 
Conv. s s 

U:Si=l :20 
s 

Fe+Mg U:Si=l :20 
U:Si=l :20 

250 1 0.70 1 3 .88 12 .75 
250 8.70 10 . 14 1 .25 7.61 1 1 .20 3.23 12.85 1 3 . 1 8  0.67 
250 1 1 .00 12 . 10  13 .96 

275 17.77 1 7.72 16.35 

275 1 5 .75 16.3 1 1 .27 1 5 .80 17.08 1 . 12 16.70 16.78 0.48 

275 1 5.4 1 1 7.74 17.30 

300 1 7.27 1 7.56 1 8.70 

300 17.77 17.32 0.4 1 1 7.74 1 8. 16  0.90 22.82 20.26 2.23 

300 16.94 19.20 19.26 

325 16.86 2 1 .07 18.40 

325 13 .86 1 5 .60 1 .56 22.74 20.96 1 .83 2 1 . 1 5  19.60 1 .40 

325 16 . 10  19.09 22.45 

350 16. 10  24.57 32.22 

350 16.25 16. 1 1  0. 14  22.80 23.98 1 .02 33 .93 33 .80 1 .52 

350 1 5 .98 24.57 35.26 

375 1 9.70 25.30 37.06 

375 18 .52 1 8.95 0.65 23.50 23 .80 1 .40 43.75 4 1 .22 3.63 

375 1 8.65 22.56 42.86 

400 22.62 3 1 .70 44.00 

400 2 1 .06 22. 12  0.92 32.80 32. 17  0.57 45 .23 45. 1 5  1 . 1 2  

400 22.70 32.01 46.24 

425 26. 1 1 38.66 53 .89 

425 24.67 26.60 2.20 35.3 1 36.83 1 .70 54.26 54.60 0.9 1 

425 29.00 36.52 55.63 

450 3 1 .68 40.65 64.2 1 

450 3 1 .80 3 1 .52 0.37 42.90 4 1 .57 1 . 1 8  63.06 64 .30 1 .30 

450 3 1 . 10  4 1 . 1 6  65.64 

475 34.20 43.80 74.53 

475 36.88 36.56 2.2 1 44. 1 0  43 .86 0.20 73 .20 73.44 0.98 

475 38.60 43.70 72.60 

500 48.56 45.73 

500 46.98 47.35 1 .07 46.73 46.6 1 0.82 

500 46.5 1 47.37 

525 53.40 52.68 

525 55. 1 0  54.36 0.87 50.70 5 1 .75 0.99 

525 54.60 5 1 .87 

550 63.50 6 1 .40 

550 62 .75 64.4 1 2.27 62.64 62.65 1 .26 

550 67.00 63.93 

575 84.94 76.30 

575 83 .84 84.24 0.60 75 .77 75.98 0.28 

575 83 .96 75 .89 

600 87.63 8 1 .44 

600 88.30 87.96 0.47 82.48 8 1 .66 0.73 

1 85 



Table A. 15: Comparison of catalyzed oxidation of chlorobenzene by various doped 
'd 1 bl d . T uranium ox1 e cata vst co-assem e m mesoporous st tea support. 

(%) (%) (%) 
Conversi Ave St Conversi Ave St Conversi Ave 

Temperature 
on d. on d. on 

U-meso- % de U-meso- % de U-meso- % 
(°C) 

6 Con v. 9 Con v. 1 5  Con 
U:Si = v. s U:Si = v. s U:Si = v. 
1 :20 1 :30 1 :40 

250 12.75 4.75 1 0.3 1 
250 1 2.85 1 3.2 0.7 6.33 5.4 0.8 1 3.01 1 2.5 
250 13 .96 5.25 14.23 
275 16.35 1 2.50 1 7.50 
275 16.70 16.8 0.5 1 1 .95 1 2.7 0.8 1 8.00 1 9.0 
275 17.30 13 .56 2 1 .50 
300 1 8.70 22.96 2 1 .85 
300 22.82 20.3 2.2 20.22 20.8 2.0 2 1 .56 2 1 .8 
300 19.26 19.06 22. 1 0  
325 1 8.40 29.54 1 3.08 
325 2 1 . 1 5  20.7 2 . 1  30.41 29.6 0.9 1 2.72 13 .5 
325 22.45 28.70 14.62 
350 32.22 33.06 23.23 
350 33.93 33.8 1 .5 34.64 32.9 1 .9 26.88 24.8 
350 35 .26 30.88 24.35 
375 37.06 43.86 20.55 
375 43.75 4 1 .2 3.6 44.34 43.4 ·1 .2 1 9.70 20. 1 
375 42.86 42.90 22. 12 
400 44.00 53.48 30.80 
400 45.23 45.2 1 . 1  53.40 53.8 0.6 32.67 3 1 .9 
400 46.24 54.50 32. 1 9  
425 53 .89 6 1 . 14  3 1 .77 
425 54.26 54.6 0.9 6 1 . 1 6  6 1 ,6 

I 
0.8 3 1 .67 32.6 

425 55.63 62.50 34.37 
450 64.2 1 69.44 47.05 
450 63.96 64.3 1 .3 68.03 68.7 0.7 45. 16  47.3 
450 65.64 68.57 49.7 1 
475 74.53 52.03 
475 73.20 73.4 1 .0 52.6 1 52.8 
475 72.60 53.85 
500 67.56 
500 69.85 68.3 
500 67.4 1 
525 72.42 
525 74.76 72.8 
525 7 1 .25 
550 83.55 
550 83.4 1 83.7 
550 84.05 
575 85.32 
575 85.50 85.5 
575 85.66 
600 96.66 
600 96. 1 6  96.4 
600 96.38 
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(%) 
St Conversi Ave St 
d. on d. 
de U-meso- % de 
v. 1 8  Con V. 

s U:Si = v. s 
1 :50 
5.5 

2.0 7.89 6.5 1 .2 
6.2 
7. 1 1  

2.2 3.88 5. 1 1 . 8  
4.2 
7.4 

0.3 6. 1 8  5.9 1 .6 
4. 1 5  
6.3 

1 .0 5.6 6.9 1 .7 
8.74 
1 7.6 

1 .9 20.9 1 8.2 2.4 
16.2 
25.3 I 

0.6 27.7 22. 1  4.6 
24.6 
32.42 

1 .0 29.9 32.8 3.0 
36 

35.8 
u 37.6 37.2 1 .3 

38.2 
36.4 
42. 1  40. 1  3.2 
4 1 .8 
54 

0.9 47 49.9 3.7 
48.7 
60 

1 .4 65.3 6 1 .2 3.7 
58.3 
69.8 

1.8 67.7 67.9 1 .8 
66.2 
78.4 

0.3 78.6 77.7 1 .4 
76 

0.2 

0.3 



Table A. 16 : Comparison of catalyzed oxidation of chlorobenzene by 0. 1 % Pt/ Alumina, 
rt d ft . 'd d ft . 'd t 1 t uramum suppo e on mesoporous 1 amum ox1 e an pure 1 amum ox1 e ca atys s. 

% 
% 

Temperature 
Conversion Ave. Std. % Ave. Std. Conversion Ave. Std. 

U-Ti- % dev. Conversion % dev. % dev. (OC) 
Meso- Conv. O' TiO2 (400) Conv. O' 0. 1% Conv. CJ 

(400) Pt/Alumina 

250.00 1 0.76 19.75 26.08 

250.00 1 3.95 1 1 .54 2. 14  19 .40 20.9 2.3 23.64 24.86 1 .73 

250.00 9.90 23.55 

275.00 1 7.95 28. 1 8  

275 .00 1 5.89 1 3 .95 3.83 3 1 .28 29.73 2.2 

275 .00 16.4 1 

300.00 9.54 2 1 .34 29.40 30 0.92 

300.00 9.54 9.54 0.00 22.50 2 1 .97 0.6 30.70 

300.00 22.07 

325 .00 1 7.23 1 8.3 1 .48 30.60 28.84 2.5 

325 .00 19.32 27.07 

325.00 

350.00 26.26 26.4 0.20 26.35 30.37 29.98 0.54 

350.00 26.55 26.50 28.66 3.87 29.60 

350.00 33 . 14 

375 .00 4 1 .8 1  42. 12  0.44 54.36 

375 .00 42.44 54.02 54. 1 0.22 

375 .00 53 .93 

400.00 57. 1 7  58.2 1 .44 36.60 77 .44 

400.00 59.21 34.65 36.47 1 .75 80.87 79.3 1 .73 

400.00 38. 1 4  79.58 

425 .00 74.3 1 73.53 1 . 1 0  87.56 

425.00 72.76 88 .90 88.22 0.67 

425 .00 88.2 1 

450.00 46.40 

450.00 44. 12  44.22 2. 12  

450.00 42. 16  

475 .00 

475 .00 

475.00 

500.00 

500.00 

500.00 

1 87 



Table A. 1 7 :  Oxidation of trichloroethylene (TCE) over U-Ti-Meso-43 at various water 
content in the reactant stream. 

Temperature % Conversion % Conversion % Conversion % Conversion 

(OC) (No Water) (Water = 7 (Water = 9 (Water = 1 5  
vol.%) vol.%) vol.%) 

300.00 6.22 . 4.70 4.40 2.50 
300.00 6.00 5 .83 4.00 3 .90 
300.00 7.90 6.80 3 .35  4.50 
325 .00 4.46 1 1 .62 6.06 7. 1 7  
325 .00 5 .80 1 1 . 1 3 8. 1 3  6.27 
325 .00 6.00 1 1 .02 8 .70 9 . 1 8  
350.00 7.50 1 9 .23 1 4.45 6.60 
350.00 8.00 14.74 1 6.50 8 .00 
350.00 9.22 1 6.77 1 7 .40 1 1 .33 
375 .00 2 1 .86 28.55 20.7 1 10. 1 0  

375 .00 2 1 .54 3 1 . 1 0  23 .44 1 3 .45 
375 .00 25.3 1 30.67 2 1 .00 1 1 . 1 2 
400.00 24.43 3 1 .45 32.68 22.03 
400.00 25 .55 36.36 34.66 2 1 .88 
400.00 27. 1 8  36. 1 5  33 .05 22 .42 
425 .00 42 .88 55 .48 45.94 36.50 
425 .00 44. 1 7  55 .0 1 47.90 34.77 
425 .00 45 .27 45.53 48.79 35 .48 
450.00 49.05 69.84 63 .90 52.68 
450.00 5 1 .87 68.70 64. 1 8  5 1 .33 
450.00 53 .00 68.46 64.2 1 53 .30 
475 .00 63 .50 80. 1 8  76.92 73 .30 
475 .00 65 .84 80.56 77.48 73 .7 1 
475 .00 66.70 80.56 78. 1 0  72.30 
500.00 76.52 86. 1 0  86.76 82.36 
500.00 76. 1 5  86.90 86.4 1 82.80 
500.00 79.36 86.23 87.55 83 .53 

1 88 



Table A. 1 8 : Comparison of catalyzed oxidation of trichloroethylene (TCE) by La-U-52 
(Pechini method) at variable water flow rate. 

Temperature (°C) 
% Conversion (U-La) % Conyersion (U-La) 

without water 14. 77% volume water 

400.00 0.00 5 .32 

400.00 0.00 6.40 

400.00 0.00 5 .22 

425 .00 0.00 7 .46 

425 .00 0.00 7.45 

425 .00 1 .50 5 .55 

450.00 1 3 . 14  10.85 

450.00 14.05 1 2.20 

450.00 1 1 .50 1 3 . 1 5  

475 .00 20.62 22.26 

475 .00 1 9. 1 7  23.27 

475 .00 20.92 24. 1 1 

500.00 32.86 3 1 . 1 5 

500.00 3 1 .65 35 .03 

500.00 32 .58 33 .95 

525.00 53 .24 55 .72 

525 .00 54.50 54.67 

525 .00 55 .25 57. 14  

550.00 78.50 79.87 

550.00 79.76 80. 1 9  

550.00 80.43 80.36 

1 89 



Table A. 19 :  Comparison of catalyzed oxidation of trichloroethylene (TCE) by La-Ti-53 
(Pechini method) at variable water flow rates. 

Temperature (°C) 
% Conversion by LaTi, % Conversion by LaTi 

no water with 14.77% volume water 

350.00 5.4 1  5.32 

350.00 5 .20 4.85 

350.00 6.42 5 . 1 5  

375 .00 5 .96 6. 1 0  

375 .00 5.43 5 .64 

375 .00 6.73 5 .89 

400.00 6.3 1 5 .90 

400.00 6.83 7 .55 

400.00 6.62 9.40 

425 .00 1 0.80 1 1 .77 

425.00 12 .60 14.42 

425 .00 14.4 1 1 3 .23 

450.00 29.56 23 .60 

' 450.00 3 1 .70 25 .25 

450.00 3 1 .58 27.90 

475 .00 35 .70 39.46 

475 .00 40.40 40.65 

475.00 40. 1 9  4 1 .22 

500.00 5 1 .20 47.36 

500.00 5 1 .6 1  50.57 

500.00 52.08 5 1 .00 

525 .00 67.52 68 .46 

525 .00 67 .47 68.83 

525 .00 67.00 69.34 

550.00 80.00 80.63 

550.00 80.90 80.20 

550.00 8 1 .30 8 1 .34 

1 90 



Table A.20: Comparison of activities for oxidation of trichloroethylene (TCE) by using 
two different supports (TiO2 or SiO2) doped with uranium and lanthanum. 

Temperature (°C) % Conversion % Conversion 
(U-La-Meso-2 7) (U-Ti-La-51) 

300.00 1 0. 1 5  1 0.86 
300.00 9.07 8.94 I 

300.00 1 0.2 1 9.50 
325.00 1 1 .67 9.22 

325.00 1 1 .25 9. 1 0  

325 .00 1 1 .80 1 0.60 

350.00 1 2.22 9.90 

350.00 1 3.04 1 1 .92 

350.00 1 3 .54 1 1 . 1 8  

375 .00 1 6.62 1 5.01 

375.00 1 6.47 1 5.86 

375 .00 1 6.95 1 5.7 1  

400.00 1 9.0 1 1 7.45 

400.00 1 8.40 1 9.0 1 

400.00 1 9.72 1 9.50 

425.00 2 1 .45 29. 1 3  

425.00 20.28 30.32 

425.00 22. 1 8  30.45 

450.00 27.45 40.00 

450.00 28.38 38.3 1 
450.00 26.55 40.77 
475.00 29.66 59.00 

475 .00 29.66 58.82 

500.00 36.7 1  72.9 1 

500.00 36.30 7 1 .93 

500.00 36.93 7 1 .28 

525.00 5 1 .27 8 1 .48 

525 .00 5 1 .50 80.78 

525.00 5 1 .60 80.26 

550.00 6 1 .95 

5 50.00 6 1 .90 

550.00 62.01 
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Table A.2 1 :  Comparison of "light-off' curve for oxidation of trichloroethylene (TCE) 
over CeO2-55 and U-Ce-Meso-28 at variable water flow rates. 

% Conversion 
% Conversion 

% Conversion 
% Conversion 

Temperature 
(CeO2) 

(CeO2) 
U-Ce-Meso(28) 

U-Ce-Meso(28) 

(OC) 1 5% volume 1 5% volume 
no water 

water 
no water 

water 

300.00 4.08 2.40 1 . 12  0.00 

300.00 3 .70 2.49 2.26 0 .00 

300.00 5 .02 4.05 4.50 0.00 

325 .00 6.9 1 3 .96 3.53 0.00 

325 .00 3 . 1 5  1 .50 3 .62 0.00 

325.00 5 .97 2.83 5 .36 0.00 

350.00 8 .4 1  5 .43 4.40 5 .00 I 

350.00 7. 1 0  1 .52 4.44 4.60 

350.00 9.40 2.83 5 .50 3 . 1 6  

375 .00 7.85 4.38 5 .70 1 7.84 

375 .00 7.28 6.89 6.95 1 9. 1 6  

375 .00 7 .85 3 .70 7.72 20.33 

400.00 9. 17  7 .40 10.06 14.56 

400.00 8.60 7 .55 1 0.80 1 5 .66 

400.00 8 .46 8.44 1 2. 12 1 7 .7 1 

425 .00 9.34 6.80 14.85 25.33 

425 .00 1 1 .09 10 .75 1 6.00 27.50 

425 .00 8 .62 1 0.85 1 6.01  27.83 

450.00 1 3 . 1 6  1 6.30 1 9. 1 3 27.70 

450.00 12.94 14.72 2 1 . 1 2 28.67 

450.00. 1 3 .92 14.53 22.3 1 30.34 

475 .00 1 5 .20 1 5 .88 28.00 33 .37 
475 .00 19 .53 20.85 28 .60 34.82 

475 .00 1 8 .02 1 8 .02 28.75 30.00 

500.00 17 .84 19 .8 1 36.32 52.67 

500.00 1 8 .60 23 .0 1 37.60 50.00 
500.00 1 8.78 23 .40 37.00 48.85 

525 .00 2 1 .42 29.23 45 .44 

525 .00 23.78 29.26 48 .90 

525 .00 24.8 1 30. 1 8  50.50 

550.00 33 .67 35 .0 64.66 63 .50 

550.00 33 .82 35 . 17  65.30 63 .53 

550.00 34.70 40.0 65 .20 64. 1 6  
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Table A.22 : The effects of various water flow rates on the activity of La203 for 
destructions of trichloroethylene (TCE). 

Temperature % Conversion 
% Conversion % Conversion % Cpnversion 

(OC) No Water 
4.66% 9.0% 4.66% 

Volume water Volume water Volume water 

300.00 4.2 1 5 .94 4.36 3 .98 

300.00 5 .00 5 .70 4.88 5 .62 

300.00 4.50 6.30 5 .30 4.90 

325 .00 4.00 6. 1 8  6.23 6. 1 0  

325 .00 4.00 8 .40 7 .20 5 .74 

325 .00 5 .66 6.35 8 . 1 1  4.93 

350.00 4.40 5 .40 9.6 1 5 .7 1 

350.00 4.30 5 .70 9.67 8 .40 

350.00 5 .66 8 .90 1 2.80 8.90 

375 .00 8 .53 1 0.87 1 3 .89 9.63 

375 .00 10.80 1 1 .98 1 3 . 1 6  7 .60 

375 .00 1 3 .20 1 3 .70 12. 1 9  9. 14  

400.00 14.40 1 6.85 7 .63 6.30 

400.00 1 1 .90 1 5 . 1 3  10.76 9.80 

400.00 1 1 .04 1 3 .60 1 1 .87 9.30 

425 .00 1 1 .90 14.25 1 2.82 1 1 .64 

425 .00 14.40 14.23 12 .35 1 3 .25 

425 .00 1 7.50 14.37 8.26 1 3 .63 

450.00 1 6.50 1 6. 1 3 1 8 . 1 8  1 5 .56 

450.00 1 9.00 1 7.25 1 8.73 1 7.70 

450.00 1 9.60 20. 1 2  20.32 1 9.01 

475 .00 1 8 .20 23 .64 26.03 25 . 1 0 

475 .00 1 8 .40 25 .87 28.27 25 .60 

475.00 1 8.06 23.37 25 .08 24.96 

500.00 27.74 3 1 .47 36.93 33 .66 

500.00 27.72 33 .06 37.80 35 .05 

500.00 26.43 3 1 .95 36.60 34.98 

525 .00 47.30 47.28 47.46 49.40 
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Figure A.1: BET adsorption-desorption isotherm for mesoporous Si02. 
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Figure A.2: BET adsorption-desorption isotherm for U-Meso-5 (U :Si = 1: 10) 
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Figure A.3: BET adsorption-desorption isotherm for U-Meso-6 (U:Si = 1 :20) 
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Figure A.4: BET adsorption-desorption isotherm for U-Cr-Meso-21. (U :Cr:Si = 1:0.2:20). 
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Figure A.5 : BET adsorption-desorption isotherm for MesoCr-22 (Cr:S 
i = 1:95) 
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Figure A.6: BET adsorption-desor[tion isotherm for U-Co-Meso-23 (U :Co:Si = 
1:0.23 :20) 
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Figure A.7: BET adsorption-desorption isotherm for MesoCo-24 (Co:Si = 1 : 85) 
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Figure A.8 :  BET adsorption-desorption isotherm for pure TiO2 at calcinations 
temperature of 3 50 °C. 
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Figure A.9: BET adsorption-desorption isotherm for pure TiO2 at calcinations 
temperature of 600 °C. 
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FigureA. 10 : BET adsorption-desorption isotherm for pure TiO2 at calcinations 
temperature of 800 °C. 
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Figure A.11: BET adsorption-desorption isotherm for U-Ti-Meso ( 400) at calcinations temperature of 400 °C. 
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Figure A.12: BET adsorption-desorption isotherm for U-Ti-Meso (600) at calcinations temperature of 600 °C. 
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Figure A. 1 3 :  BET adsorption-desorption isotherm for U-Ti-Meso (800) at calcinations 
temperature of 800 °C. 
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Figure A. 14: BET adsorption-desorption isotherm for Meso-Cu-30 at calcinations 
temperature of 800 °C. 
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Figure A.15: BET adsorption-desorption isotherm for U-Cu-Meso-29 at calcinations temperature of 800 °C. 
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Figure A.16: BET adsorption-desorption for U-Sr-Meso-33 at calcinations temperature of 800 °C. 
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Figure A. 17 :  BET adsorption-desorption for MesoSr-34 at calcinations temperature of 
800 °C. 
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Figure A. 1 8 : BET adsorption-desorption isotherm for U-Meso- 1 3  at calcinations 
temperature of 800 °c (U:Mg:Fe: FiguSi = 1 :0.5 :0.5 :20) 
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Figure A.19: BET adsorption-desorption isotherm for U-Meso-14 (U:Ca:Fe:Si = 1 :0.5:0.5:20) 
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Figure A.20: BET adsorption-desorption isotherm for La-U-52 (Pechini Method). 
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A.2 1: BET adsorption-desorption isotherm for La-Ti-53 catalyst (U :Ti:La = 1 :20:0.45) 
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Figure A.22: BET adsorption-desorption isotherm for U-Ce-Meso-28 at calcinations 
temperature of 800 °C. 
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APPENDIX B 
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B.1 Synthesis calculations for Si02. 

Tetraethoxysilane (TEOS) = 2 ml 
Pluronic F127 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 

2 ml TEOS x 0.934g x 1 mole TEOS = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 
0.008966 g-mole TEOS x 60·0 g Si0 2 

= 0.538 g SiO 2 produced at the end of 1 moleSiO2 

experiment. 

B.2 Synthesis calculation for U-Meso-5. 

U:Si = 1: 10 mole ratio 
Tetraethoxysilane (TEOS) = 2 ml 
Pluronic F127 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 
UO2 (NO3 )2 • 6 H 2O = 0.45 g as follows: 

2 ml TEOS x 0.934g x 1 mole TEOS = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 
0.008966 g-mole TEOS x 60·0 g Si0 2 

= 0.538 g SiO 2 produced at the end of 1 moleSiO 2 

· experiment. 
l mole U 0.008966113 g - mole TEOS x --- = 0.000896611 g - mole Uranyl Nitrate 10 mole Si 

0.000896611 g-mole Uranyl Nitrate x 

502 g. = 0.45 g Uranyl Nitrate required for experiment. 1 g - mole UO2 (NO3 ) 2 • 6 H 2O 
. 842 g 1 0.000896611 g - mole Uranyl mtrate x ----- x - = 0.251 g U at the end 1 g - mole U 303 3 U 
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Total weight = 0.538 g (Si)+ 0.251 g (U) = 0. 789g 
Si = 68% 
U = 32% by weight 

B.3 Synthesis calculation for U-Meso-6. 

U :Si = 1 :20 mole ratio 
Tetraethoxysilane (TEOS) = 2 ml 
Pluronic F127 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 
UO

i
(NO

3
)

2 • 6 H
2
O = 0.225 g as follows: 

2 ml TEOS x 0.934g x 

1 mole TEOS = 0.008966 g - mole TEOS produced 
1 ml TEOS 208.34 g 

0 008966 1 60.0 g SiO2 . g-mo e TEOS x -------- 0.538 g SiO
2 produced at the end of 

1 mole SiO
2 

experiment. 

lmole U . · 0.008966113 g - mole TEOS x --- = 0.000448306 g - mole Uranyl Nitrate 
20 mole Si 

0.000448306 g-mole Uranyl Nitrate x 

502 g. = 0.225 g Uranyl Nitrate required for experiment. 
1 g - mole UO

2 
(NO

3 ) 2
• 6 H

2
O 

. 842 g 1 0.000448306 g - mole Uranyl mtrate x ----- x - = 0.126 g U at the end 
lg - mole U3O3 

3 U 
Total weight = 0.538 g (Si)+ 0.1260 g (U) = 0.664 g 
Si = 80% 
U = 20% by weight 

All mixtures were stirred over night, then it was dried at room temperature in an open 
vial for 7 days. After drying, the raw catalyst was annealed at 150 C for 6 hours to build 
mesoporous structures, then it was heated at 600 C for additional 6 hours, and finally it 
was calcined at 800 C for 8 hours intentionally to remove the template and making U3Os 
for higher activity. 
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B.4 Synthesis calculation forU-Meso-9. 

U:Si = 1 :30 mole ratio 
Tetraethoxysilane (TEOS) = 2 ml 
Pluronic Fl27 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 
UO2 (NO3 )2 . 6 H2O = 0.15 g as follows: 

2 ml TEOS x 
0.934g x 

1 mole TEOS = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 
0.008966 g-mole TEOS x 

60·0 g Si0 2 = 0 .538 g SiO 2 produced at the end of 1 moleSiO 2 

experiment. 

1 mole U 0.008966113 g - mole TEOS x --- = 0.00029887 g - mole Uranyl Nitrate 30 mole Si 
0.00029887 g-mole Uranyl Nitrate x 

502 g. = 0.150 g Uranyl Nitrate required for experiment. 1 g - mole UO2 (NO3 ) 2 • 6 H 2O 
. 842 g 1 0.00029887 g - mole Uranyl mtrate x ----- x - = 0.084 g U at the end · l g - mole U 3O3 3 U  

Total weight = 0.538 g (Si) + 0.084 g (U) = 0.622 g 
Si = 86.50% 
U = 1 3 .50% by weight 

B.5 Synthesis calculation for U-Meso-15 

U :Si = 1 :40 mole ratio 
Tetraethoxysilane (TEOS) = 2 ml 
Pluronic F127 (BASF) surfactant = 0. 75 
Butanol = 0.5 ml 
Cyclohe�ane = 0.5 ml 
Ethanol .= 2 ml 
UOi'(NO3 )2 • 6 H2O = 0.1125 g uranyl nitrate as follows: 
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0 934g 1 mole TEOS 2 ml TEOS x · x ---- = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 
0.008966 g-mole TEOS x 

60·0 g Si0 2 
= 0.538 g SiO2 produced at the end of 1 mole SiO 2 experiment. 

l mole U 0.008966113 g - mole TEOS x --- = 0.000224153 g - mole Uranyl Nitrate 40 mole Si 0.000224153 g-mole Uranyl Nitrate x 

502 g. = 0.1125 g Uranyl Nitrate required for experiment. l g - mole UO 2 (NO3 ) 2 . 6 H 2O 
. 842 g 1 0.000224153 g - mole Uranyl mtrate x ----- x - = 0.063 g U at the end 1 g - mole U 3O3 

3 U 
Total weight = 0.538 g (Si)+ 0.063 g (U) = 0.601 g Si = 89.50% U = 10.50% by weight 

B.6 Synthesis calculation for U-Meso-18 

U :Si = 1 :50 mole ratio Tetraethoxysilane (TEOS) = 2 ml Pluronic F127 (BASF) surfactant = 0.75 Butanol = 0.5 ml Cyclohexane = 0.5 ml Ethanol = 2 ml UO2 (NO3 )2 • 6 H 2O = 0. 09 g uranyl nitrate as follows: 
2 ml TEOS x 

0.934g x 

1 mole TEOS = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 
0.008966 g-mole TEOS x 

60·0 g Si0 2 
= 0.538 g SiO 2 produced at the end of 1 mole SiO2 experiment. 

l mole U 0.008966113 g - mole TEOS x --- = 0.000179322 g - mole Uranyl Nitrate 50 mole Si 
0.000179322 g-mole Uranyl Nitrate x 
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502 i· · . · = 0.0900 g Uranyl Nitrate required for experiment. 
1 g - mole UO2 (NO 3 )2 • 6 H 2O 

842 g 1 
0.000 1 793 g - mole Uranyl nitrate x ----- x - = 0.05 g U at the end 

1 g - mole U 303 3 U 

Total weight = 0.538 g (Si) + 0.05 g (U) = 0.588 g 
Si = 9 1 .50% 
U = 8.50% by weight 

B. 7 Synthesis calculation for U-Cr-Meso-21. 

U :Si = 1 :20 mole ratio 
Tetraethoxysilane (TEOS) = 2 ml 
Pluronic F 1 27 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 
CrCh.6 H2O = 0. 12 g (see calculation) 
UO2 (NO3 )2 . 6  H2O = 0.225 g as follows: 

2 ml TEOS x 0.934g x 1 mole TEOS 
= 0.008966 g - mole TEOS produced 

1 ml TEOS 208.34 g 

0.008966 g-mole TEOS x 
60

·
0 g Si02 = 0.538 g SiO 2 produced at the end of 

1 mole SiO 2 

experiment. 

l mole U 0.008966 1 1 3  g - mole TEOS x --- = 0.000448306 g - mole Uranyl Nitrate 
20 mole Si 

0.000448306 g-mole Uranyl Nitrate x 

502 g. 
= 0.225 g Uranyl Nitrate required for experiment. 

1 g - mole UO 2 (NO3 )2 • 6 H 2O 
. 842 g 1 

0.000448306 g - mole Uranyl nitrate x ----- x - = 0. 1 26 g U at the end 
l g - mole U

3
O

3 
3 U  

· · 1 mole Cr 
0.008966 1 1 3  g - mole TEOS x --- = 0.000448306 g - mole CrC13 • 6 H 2O 

20 mole Si 

2 1 0  



0.00044836g - moleCrC\ 6 H2Ox 26635 g =0. l 194g CrC\ 6H2Orequirecforexp. · l g - mole CrC\. 6H2O 
15 1 .992g 1 0.00044836g - moleCrC\ 6 H2Ox ----- x - =0.034 g Crat theend of · l g - mole C;O3 2Cr 

calcinatin at800 °C. 

Note: CrC13_ 6 H 2O will change into Cr2O3 after calcinations. 

Total weight =:= 0.538 g S i + 0.034 Cr + 0. 126 g U = 0.698 g 

Si = 77% 
Cr = 4.90 
U = 18 . 1 

B.8 Synthesis calculation for U-Co-Meso-24. 

U :Si = 1 :20 mole ratio 
Tetraethoxysilane {TEOS) = 2 ml 
Pluronic F127 (BASF) surfactant = 0.75 
Butanol = 0.5 ml 
Cyclohexane = 0.5 ml 
Ethanol = 2 ml 
CoCh.6 H2O = 0. 107 g (see calculation below) 
UO2 (NO3 )2 . 6  H 2O= 0.225 g as follows: 

2 ml TEOS x o.934g x 
1 mole TEOS = 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 

0.008966 g-mole TEOS X 
60·0 g Si0 2 = 0.538 g SiO 2 produced at the end of 1 moleSiO 2 

experiment. 
1 mole U 0.008966 1 13  g - mole TEOS x --- = 0.000448306 g - mole Uranyl N 1trate 20 mole Si 

0.000448306 g-mole Uranyl Nitrate x 

502 g. = 0.225 g Uranyl Nitrate required for experiment. 1 g - mole UO2 (NO3 ) 2 . 6  H 2O 
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. 842 g 1 0.000448306 g - mole Uranyl nitrate x ----- x - = 0. 1 26 g U at the end 1 g - mole U 30 3 3 U 

1 mole Co 0.008966 1 1 3  g - mole TEOS x --- = 0.000448306 g - mole CoC1 2 • 6 H 2O 20 mole Si 
0.00044836g - moleCoC� 6 H2Ox 237·84g 0. 1 07 gCoC\ . 6 H2Orequirecforexp. · l g - mole CoC� . 6H2O 

165 .86(g 1 0.00044836g - moleCoC\ .6H2Ox ------- x - =0.037 g Co at theendof calcinatin l g - moleCo2O3 2Co 
Note: CoCh. 6H2O turns into Co2O3 after calcinations at 800 °C. 

Total weight = 0.538 g S i +  0.037 Co + 0. 1 26 g U = 0.701 g 

Si = 76% 
Co = 5 .23 
U = 1 8.77 

B.9 Synthesis calculation for TiO2• 

P123 (surfactant) = 1 .25 g 
2-Propanol = 14 g 
Ti(OC 2H 5 )4 

= 3 .0 g 
2,4-Pentanedione = 0.53 g 
Ethanol = 2.0 g 

3 .0 g  Ti(OC H ) x g - mole Ti(OC 2 H s ) 4 = 0.0 1 3 1 5 g - mole Ti(OC 2 H 5 ) 4 2 5 4 228.0 g (F.W) 

0.0 1 3 1 5 g mole Ti(OC 2H 5 )4 
l g mole Ti0 2 x 79-90 g (M.W) = l .05 g TiO 2 . l g mole Ti(OC 2H 5 )4 l g mole TiO 2 

produced after calcinations. 

%wt Ti = 74 
%wt U = 26 

B.10  Synthesis calculation for U-Ti-Meso-42. 

U:Ti = 1 :  I O  (mole ratio) 

The following materials have been used for the synthesis of precursor: 
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Titanium (IV) ethoxide = 3 g 
2, 4- Pentanedione = 0.53 g 
2-Propanol = 4 g 
After 2 hours steering, it was added to the following solutions: 
1.25 g of P 123 surfactant was dissolved in 14 g of 2-propanol and steering for 2 hours. 
0.530 g of UOi (NO3 )2 • 6 H 2O was added to this solution. The PH of mixture including 
the precursor and surfactant was adjusted to 2 by addition of 4 ml HNO3. The total sol 
solution was steered for 2 days. Then, it was transferred to an open tray, drying under 
ambient conditions for 10 days. The trunk sample was annealed at 150 C for 72 hours, 
then, it was calcined at 3 50 C for 24 hours to remove the templates. The prepared 
catalyst was divided into three equal portions. The other two portions were calcined at 
600 C and 800 C respectively. 
Calculations are as follows: 
Titanium (IV) ethoxide {Ti(OC2Hs)4 } = 3.0 g 
3 g Titanium (IV) ethoxide lmole UO2 (NO 3 )2 • 6 H 2 O 502 g (MW) -------- x ---�---'---------"- x -------- = 0.66 g reqmred 

227.9 g (MW) 1 0  mole Titanium (IV) etoxide 1 mole UO2 (NO3 )2 • 6 H 2 O 

UO 2 (NO 3 ) 2 • 6 H 2 0 for the above mole ratio in this experinent. 

0.66 g 1 · 842 g l O 369 U h d d d ---- Urany mtrate x ----- x - = . g at t e en pro uce 502 g (MW) l g - mole U3O3 3 U  

3 g Ti(OC2H 5 )4 l mole TiO 2 79.90 g TiO 2 l Ti 
------ x ------------- x ----- x -- = 1.05 g TiO 2 after calcinations 227.9 g (MW) 1 mole Ti(OC2H 5 )4 1 mole TiO 2 1 TiO 2 

Total catalyst produced = 1.05 ( TiO2 ) + 0.369 (U3Os) = 1.419 g total (weight of 
catalyst). 
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B. 11  Synthesis calculation for U-Ti-Meso-43 . 

U: Ti 
1 :  20 

The following materials have been used for the synthesis of precursor: 
Titanium (IV) ethoxide = 3 g 
2, 4- Pentanedione = 0.53 g 
2-Propanol = 4 g 
After 2 hours steering, it was added to the following solutions: 
1 .25 g of P 123 surfactant was dissolved in 14  g of 2-propanol and steering for 2 hours. 
0.265 g of UO2 (NO3 ) 2. 6 H2O was added to this solution. The PH of mixture including 
the precursor and surfactant was adjusted to 2 by addition of 4 ml HNO3 • The total sol 
solution was steered for 2 days. Then, it was transferred to an open tray, drying under 
ambient conditions for 10  days. The trunk sample was annealed at 1 50 C for 72 hours, 
then, it was calcined at 350 C for 24 hours to remove the templates. The prepared 
catalyst was divided into three equal portions. The other two portions were calcined at 
600 C and 800 C respectively. 
Calculations are as follows: 
Titanium (IV) ethoxide {Ti(OC2Hs)4} = 3.0 g 
3 g Titanium (IV) ethoxide I mole UO2 (NO 3 ) 2 • 6 H 20 502 g (MW) 
-------- x x --------

227.9 g (MW) 20 mole Titanium (IV) etoxide I mole UO 2 (NO3 ) 2 • 6 H 2O 

UO2 (NO3 ) 2 • 6 H 2O for the above mole ratio. 

0.330 g required 

0.330 g U l . 842 g 1 d rany nitrate x ----- x - = 0. 185 g U at the end pro uced 502 g (MW) l g - mole U 3O3 3 U 

3 g Ti(OC 2H 5 ) 4 l mole TiO 2 79.90 g TiO 2 ------ x ---------- x ------ =  1 .05 g TtO 2 produced at the end of exp. 227.9 g (MW) 1 mole Ti(OC 2H 5 ) 4 1 mole TiO 2 

Total catalyst produced = 1 .05 (TiO 2 ) + 0. 185 (U3O8) = 1.235 

%wt Ti = 85 
%wt U = 15 
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B.12 Synthesis calculation for U-Ti-Meso-44. 

U: Ti 1: 30 
The following materials have been used for the synthesis of precursor: 
Titanium (IV) ethoxide = 3 g 2, 4- Pentanedione = 0.53 g 2-Propanol = 4 g 
After 2 hours steering, it was added to the following solutions: 
1.25 g of P123 surfactant was dissolved in 14 g of 2-propanol and steering for 2 hours. 0.177 g of UOi (NO3 )2 • 6 H 2O was added to this solution. The PH of mixture including 
the precursor and surfactant was adjusted to 2 by addition of 4 ml HNO3. The total sol solution was steered for 2 days. Then, it was transferred to an open tray, drying under ambient conditions for 10 days. The trunk sample was annealed at 150 C for 72 hours, then, it was calcined at 350 C for 24 hours to remove the templates. The prepared catalyst was divided into three equal portions. The other two portions were calcined at 600 C and 800 C respectively. Calculations are as follows: 
Titanium (IV) ethoxide {Ti(OC2Hs)4} = 3.0 g 
3 g Titanium (IV) ethoxide lmole UO

2 
(NO

3
)

2
. 6  H

2
O 502 g (MW) 

-------- x x --------

227 .9 g (MW) 30 mole Titanium (IV) etoxide I mole UO 
2 
(NO 

3
) 

2
• 6 H 

2 
0 

UO
2 
(NO

3 
)

2
• 6 H

2
O for the above mole ratio. 

0.220 g required 

0.220 g 842 g 1 ---- Uranyl nitrate x ----- x - = 0.123 g U at the end produced 502 g (MW) 1 g - mole U 3O3 3 U 

3 g Ti(OC2 H 5 )4 1 mole TiO 2 79.90 g TiO 2 l 05 T'O d d t th d f ------ x ------- x ----- = . g 1 2 pro uce a e en o exp. 227.9 g (MW) 1 mole Ti(OC2 H 5 ) 4 1 mole TiO 2 

Total catalyst produced = 1.05 ( TiO2 ) + 0.123 g (U3Os) = 1.173 g catalyst produced 
%wt Ti = 89.5 %wt U =  10.5 
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B.13 Synthesis calculation for U-Ti-Meso-45. 

U: Ti 
1 :  40 

The following materials have been used for the synthesis of precursor: 

Titanium (IV) ethoxide = 3 g 
2, 4- Pentanedione = 0.53 g 
2-Propanol = 4 g 

After 2 hours stirring, it was added to the following solutions: 

1 .25 g of P 123 surfactant was dissolved in 14  g of 2-propanol and steering for 2 hours. 
0. 1 32 g of UO2 (NO3 )2 . 6 H 2O was added to this solution. The PH of mixture including 
the precursor and surfactant was adjusted to 2 by addition of 4 ml HNO3. The total sol 
solution was steered for 2 days. Then, it was transferred to an open tray, drying under 
ambient conditions for 1 0  days. The trunk sample was annealed at 1 50 C for 72 hours, 
then, it was calcined at 3 50 C for 24 hours to remove the templates. The prepared 
catalyst was divided into three equal portions. The other two portions were calcined at 
600 C and 800 C respectively. 
Calculations are as follows: 

Titanium (IV) ethoxide {Ti(OC2Hs)4} = 3 .0 g 

3 g Titanium (IV) ethoxide lmole UO 2 (NO3 ) 2 . 6 H 2O 502 g (MW) -------- x x --------
227.9 g (MW) 40 mole Titanium (IV) etoxide l mole UO 2 (NO 3 )2 . 6 H 2 O 

UO2 (NO3 )2 . 6 H 2O for the above mole ratio. 

0. 1 65 g required 

0. 1 65 g U l . 842 g 1 rany nitrate x ----- x - = 0.092 g U at the end produced 
502 g (MW) 1 g - mole U 3O3 3 U 

3 g Ti{OC 2H 5 )4 l mole TiO 2 79.90 g TiO 2 ------__,,;;,._-- x ------- x ------ = 1 .05 g T1O 2 produced at the end of exp. 
227.9 g (MW) 1 mole Ti(OC 2H 5 ) 4 1 mole TiO 2 

Total catalyst produced = 1 .05 { TiO 2 ) + 0.092 (U3O8) � 1 . 1 4 g catalyst produced 

%wt Ti = 9 1 .93 
%wt U =  8.07 
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B.14 Synthesis calculation for U-Cu-Meso-30. 

This catalyst was made in the following procedure: 

The mole ratio U : Si : Cu was 1 : 20 : 5 respectively. The chemicals are as follows: 

TEOS = 2 ml, F l27 = 0.75 g, Uranyl nitrate = 0.225 g, Ethanol = 2 ml, HNO3 = 2 ml 
Cyclohexane = 0.5 ml, Butanol = 0.5 ml 
Cu(NO3)2. 3H2O = 0.5415 g based on the following calculations: 

2 ml TEOS x 
0.934g x 

1 mole TEOS 
= 0.008966 g - mole TEOS produced 1 ml TEOS 208.34 g 

0.008966 g-mole TEOS x 
60·0 g Si0 2 

= 0.538 g SiO 2 produced at the end of 1 moleSiO 2 

experiment. 

0.008966113 g-mole Si x 5 mole C� = 0.002241 g - mole Cu (NO3 )2 . 3  H 2O is required 20 mole S1 

0.002241528 g-mole Cu (NO3)2. 3H2O x 

241·60g 
= 0.5415 g Cu(NO3 ) 2 . 3  H 2O must be weighed 1 mole Cu(NO3 ) 2 . 3  H 2o 

0.5415 g Cu(NO3 ) 2 .3 H 2O 1 mole CuO 79.54 g O 1783 C O d d _____ _;;,_ ________ x -------- x __ _.;;.__ = . g u was pro uce 241.60 g (MWt) 1 mole Cu(NO 3 ) 2 .3H 2O 1 mole CuO 
Calculation of required uranyl oxide hexahydrate as follows: 

l mole U 0.008966113 g - mole TEOS x --- = 0.000448306 g - mole Uranyl Nitrate 20 mole Si 

2 1 7  



0.000448306 g-mole Uranyl Nitrate x 

502 g. = 0.225 g Uranyl Nitrate required for experiment 
1 g - mole UO2 (NO3 )2 • 6 H 2O 

0.000448306 g - mole Uranyl nitrate x 842 g x -1- = 0. 1 263 g U at the end 
l g - mole U 3O3 3 U 

Total weight = 0.538 g (Si) + 0. 1 783 g (Cu) + 0. 1 263 g (U) = 0.8426 g 

Si = 63 .85% Cu = 2 1 . 1 6% U = 1 5% by weight 

All mixtures were stirred over night, then it was dried at room temperature in an open 

vial for 7 days. After drying, the raw catalyst was annealed at 1 50 C for 6 hours to build 

mesoporous structures, then it was heated at 600 C for additional 6 hours, and finally it 

was calcined at 800 C for 8 hours intentionally to remove the template and making U3Os 

for higher activity. 

MesoCu (30) 

This catalyst was made in the following procedure without uranyl nitrate: 

The mole ratio Si : Cu , 20 : 5 respectively. The chemicals are as follows: 

TEOS = 2 ml, F 1 27 = 0.75 g, Ethanol = 2 ml, HNO3 = 2 ml 
Cyclohexane = 0.5 ml, Butanol = 0.5 ml 
Cu(NO3)2. 3H2O = 0.54 1 5  g based on the following calculations : 

O 934 1 mole TEOS 
2 ml TEOS x . g X ----- = 0.008966 g - mole TEOS 

1 ml of TEOS 20834 g TEOS 

0.008966 g-mole TEOS x 

experiment. 

60·0 g Si0 2 = 0.538 g SiO 2 produced at the end of 
1 mole SiO 2 

0.008966 1 1 3 g-mole Si x 5 mole C� = 0.00224 1 g - mole Cu (NO3 ) 2 • 3 H 2O is required 
20 mole S1 

2 1 8  



0.00224 1 528 g-mole Cu (NO3)2. 3H2O x 

241 .60 g 
1 l C (No ) 3 

= 0.54 1 5 g Cu(NO3 )2 . 3 H 2O must be weighed 
mo e u 

3 2 • H 2o 

0.54 1 5  g Cu(NO 3 ) 2 .3 H 2O 1 mole CuO 79.54 g -----.....;.._�___.;;;.- x -------- x --�- = 0. 1 783 g CuO was produced 
24 1 .60 g (MWt) 1 mole Cu{NO 3 ) 2 .3H 2O 1 mole CuO 

Total weight = 0.538 g (Si) + 0. 1 783 g (Cu) = 0.7 163 g total weight of catalyst was 

produced. 

Si = 75 . 1 0% Cu = 24.90% by weight 

All mixtures were stirred over night, then it was dried at room temperature in an open 

vial for 7 days. After drying, the raw catalyst was heated at 1 50 C for 6 hours to build 

mesoporous structures, then it was calcined at 600 C for additional 6 hours, and finally it 

was calcined at 800 C for 8 hours to make CuO. 

B.15 Synthesis calculation for U-Sr-Meso-33. 

This catalyst was made in the following procedure: 

The mole ratio U : Si : Sr was 1 : 20 : 1 respectively. The chemicals are as follows: 

TEOS = 2 ml, F 1 27 = 0.75 g, Uranyl nitrate = 0.225 g, Ethanol = 2 ml, HNO3 = 2 ml 
Cyclohexane = 0.5 ml, Butanol = 0.5 ml 
SrCh.6 H2O = 0. 1 2  g based on the following calculations: 

2 ml TEOS x 
o.934g x 1 mole TEOS = 0.008966 g - mole TEOS produced 

1 ml TEOS 208 .34 g 

0.008966 g-mole TEOS x 60·0 g SiO 2 = 0.538 g SiO 2 produced at the end of 
1 moleSiO 2 

experiment. 
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0.008966 1 13 g-mole Si x 1 mole Sr. = 0.0004483 g - mole SrCl2 • 6 H 2O is required 20 moleS1 

0.0004483 g-mole SrCh. 6H2O x 
266·62 g = 0. 12  g SrC1 2 • 6 H 2O must be weighed 1 mole SrC1 2 • 6 H 20 

0. 12  g SrC1 2 .6 H 2O 1 moleSrO 1 03.62 g O 0466 SrO d. d ------- x ------- x ---- = . g was pro uce 266.62 g (MWt) 1 moleSrCl2 .6H 2O 1 moleSrO 

Calculation of required uranyl oxide hexahydrate as follows: 
l mole U · . 0.008966 1 13 g - mole TEOS x --- = 0.000448306 g - mole Uranyl Nitrate 20 moleSi 

0.008966 1 13 g-mole Uranyl Nitrate x 

· 502 g. · = 0.225 g Uranyl Nitrate required for experiment 1 g - mole UO2 (NO3 ) 2 • 6 H 2O 
. 842 g 1 0.000448306 g - mole Uranyl nitrate x ----- x - = 0. 1 263 g U at the end l g - mole U3O3 3 U  

Total weight = 0.538 g (Si) + 0.0466 g (Sr) + 0. 1 263 g (U) = 0.7 1 07 g 
Si = 75. 7% Sr = 6.55% U = 1 7. 75% by weight 
All mixtures were stirred over night, then it was dried at room temperature in an open 
vial for 7 days. After drying, the raw catalyst was annealed at 1 50 C for 6 hours to build 
mesoporous structures, then it was heated at 600 C for additional 6 hours, and finally it 
was calcined at 800 C for 8 hours intentionally to remove the template and making U 308 
for higher activity. 
MesoSr (34) 
This catalyst was made in the following procedure without uranyl nitrate: 
The mole ratio· �i : Sr , 20 : 1 respectively. The: chemicals are as follows: 
TEOS = 2 ml, F127 = 0.75 g, Ethanol = 2 ml, HNO3 = 2 ml 
Cyclohexane = 0.5 ml, Butanol = 0.5 ml 
SrCh.6 H2O = 0. 12 g based on the following calculations: 

0 934 1 mole TEOS 2 ml TEOS x . g X ----- = 0.008966 g - mole TEOS 1 ml of TEOS 20834 g TEOS 
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0.008966 g-mole TEOS X 
60·0 g SiO 

2 0 53 ·o . 8 g St 2 produced at the end of 1 moleSiO 2 

experiment. 
. 1 mole Sr 0.008966 113 g-mole St x . = 0.0004483 g - moleSrC1 2 . 6 H2O is required 20 moleSt 

0.0004483 g-mole SrC}i. 6H2O x 

266.62 g 0. 12 g SrCl2 • 6 H 2O must be weighed 1 mole SrCl 2 • 6 H 2 0 

0. 12 g SrC1 2 .6 H 2O 1 moleSrO 103.62 g ___ ___,;;;.._�- x ------ x -------- 0.0466 g SrO was produced 266.62 g (MWt) 1 moleSrC1 2 .6H 2O 1 moleSrO 

Total weight = 0.538 g (Si) + 0.0466 g (Sr) = 0.5846 g total weight of catalyst was 
produced. 
Si = 92% Sr = 8% by weight 
All mixtures were stirred over night, then it was dried at room temperature in an open 
vial for 7 days. After drying, the raw catalyst was heated at 150 C for 6 hours to build 
mesoporous structures, then it was calcined at 600 C for additional 6 hours, and finally it 
was calcined at 800 C for 8 hours to make SrO. 
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