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ABSTRACT 

Rapid devel opment of fail ure analys is has brought increased 

attention to the concept of fracture toughness i n  recent years . The 

existing  cri teria for val id p l a ne stra in  fracture toughness testing 

based on a macroscopic view have been shown to be conservative in 

some cases , and for other cases to be of quest ionabl e val id ity . 

Compact tens ion specimens of variabl e th i ckness were fabricated 

from annea l ed 01 tool steel between 0 . 1 25 i nch and 1 . 00 i nch . Load­

COD data and gross p l astic fl ow measurements a re compared to scann ing 

el ectron microscopy (SEM ) fracture surface ana l ysis  in order to 

correl ate macroscopic observations of the ductil e-brittl e  transiti on 

on a macroscopic scal e with micros copic  modes of fa i l ure .  Compar ison s 

of macroscopic and mi croscopic data permit the val i d i ty of macro­

scopic criteria for pl ane stra in fracture toughness to be exami ned. 

Cri teria examined incl ude criteria based on conti nuum mechanics , s ha pe 

of the l oad-crack opening displ acement curve , pl an view pl astic zone 

s i ze (PZS ) and percent s l ant fracture . 

Data indicate , for exampl e ,  that PZS criteri a need not be met 

i n  order to obtain tota l ly  brittl e fracture on a mi croscopic scal e ,  

so that thi s  cr iterion is conservative . Al ternat i vel y pl ane stra i n  

fracture toughness does decrease a s  the percent fl at fracture approaches 

1 00 percent , but SEM data indicate that 1 00 percent macroscopic fl at 

fracture does not correspond to 1 00 percent microscopic brittl e frac­

ture at the minimum thick�es s required to obta i n  1 00 percent 

i ii 



macroscop ic  fl at fracture . Thi s i mpl i es that a l arger th i ckness i s  

requ i red than i s  i ndi cated by macroscopi c appearance and that l arger 

thi cknesses must be uti l i z ed to obtai n  a val i d  pl ane stra i n  fracture 

toughness . 

i v  
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A = crack l ength . 

NOMENCLATURE 

B = thi ckness of the s pecimen . 

E = Young1 s modul us . 

K = fracture toughness parameter (stress intensity factor ) .  

KQ = apparent fracture toughness . 

Kc = the pl ane stress val ue of K .  

K1c 
= the pl an e  strai n val ue  of K. 

n = strai n hardeni ng coeffi c i ent . 

Pp = proport ional l oad on l oad-COD curv e . 

PQ = Secant i ntercept l oad on l oad�COD curve . 

Pm = maxi mum l oad on l oad�COD curve . 

T = surface tens ion of the crack surface . 

w = wi dth of the s pecimen . 

v = Po i s son1s rat i o .  

a = nominal s tress. 

o* = cri t i cal val ue of a. 

ay' at= stress i n  the load di recti on . 

ax , ow= stress i n  the wi dth d i recti on, 
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txy = shear stress on  the xy pl an e .  
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COD = crack open i ng  di spl acemen t 

P I Z  = plasti c i n i t i ation  zone . 

SEM = scann i ng electron microscopy. 
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CHAPTER I 

INTRODUCTION 

Current trends i n  alloy devel opment are toward h i gher spec i fi c  

strength and speci fi c modul i materi a l s .  The a ppl i cat i on of these 

materi al s for structural des i gn , part i cul arl y i n  the aerospace and 

pressure vessel  fiel ds, has brought i ncreas ing  emphas i s  Jn the frac­

ture behavior  of these materi als. S ince fracture is  known to 

occur--even for s tatic  l oading at  moderate temperatures--at stres s 

l evel s l ower than  that of even the yiel d strength of the materi a:, i t  

is cl ear that the ul timate strength or  the y ie l d strength of the 

materi a l  may not be the correct mechani cal property to determine 

maximum a l l owab l e l oads . The abi l i ty of a mater ia l  to w i thstand 

fai l ure i n  the presence of defects such as cracks and notches is 

becomi ng recogni zed as a more mean i ngful  concept upon whi ch  ma�imum 

al l owabl e l oad ·cal cul ations shoul d be based . Fracture res istance 

depends ul timate l y  on the abi l i ty of a mater ia l  to res i st crack 

nucl eati on and/or growth . 

describe that capabi l ity . 

The term " fracture toughtness " i s  used to 

If correctl y  i nterpreted , fracture tough-

ness  mechan i cal properti es  may be  used to  defi n e  the  l argest crack or 

other defect that a materi al  can tol erate wi thout fracture when 

l oaded to a l evel approachi ng  that at whi ch i t  woul d fa i l  by exces­

s i ve pl asti c deformati on ( 1 ) .  Al ternati vel y ,  fracture toughness may 

be in terpreted as defi n ing the mi n imum energy requi red for crack  

i n i ti at ion  and  a g i ven mode of  propagati on . Recogni zi ng the i mportance 

1 
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of fracture toughness , the technol ogy of fracture toughness testi ng , 

and the defi n i ti on of new materi al  constants based on fracture 

toughness test i ng has grown rapi d ly  i n  recent years . Several materia l  

constants have been proposed, but most attention has  been devoted to 

the pl ane stress s tres s  i nten s i ty factor ( Kc ) and the pl ane stra i n 

stres s  i ntens i ty factor ( Kic ) .  (Th i s  i s  not to i mpl y that these 

two materi al cons tants are i n deed the best con stants to characteri ze 

fracture toughness  behavi o r . ) The two stress i nten s i ty factors Kc and 

Klc predi ct the max imum nomi nal l oad and crack l ength that can be 

tol erated  wi thout ducti l e  teari ng (Kc), or wi thout bri ttl e fracture 

(Kic). 
From a macroscopi c v i ewpo i nt, crack growth vel oc i ties a re known 

to i ncrease as the nomi nal external l oads i ncrease i n  inten s i ty ,  as  

the  l oad i n g  rate i s  i ncreased , as the temperature is  decreased , and a s  

the abi l i ty o f  the material t o  pl a sti cal l y  deform decreases . For a 

g i ven materi a l ;  the abfl i ty of pl asti ca l l y  deform decreases due to 

increased stress state tri axi al i ty wh i ch may be generated by either 

external ly appl i ed l oads or devel oped internal l y  due to geometry. The 

term "constrai nt" i s  used to describe the i nabi l ity of an  i nherent ly  

ducti l e  materi al  to  pl asti ca l l y  deform due  to  the  i ntern al state of 

stress . Addi ti onal l y, i t  i s  recogn i zed that some materi al s have 

meta l l urgi cal structures that render the materia l  i ncapabl e of deform­

ing  pl asti cal l y  even i n  the absence of imposed constrai nt .  S1nce 

ducti l e  fa i l ure- -fa 11 ure accompan ied by macroscopic pl astic fl ow--must 

be the resul t of crack propagat ion through work hardened materi a l,  i t  

is reasonabl e to assume that ducti l e  fa i l ure requ i re s  a h i gher energy, 



occurs at a s l ower rate , and requi res a h i gher stress  i ntensi ty than 

does brittl e fracture . These assumptions , i n  conjuncti on wi th  the 

ease by wh i ch gross macroscopi c fl ow may be mon i tored (vi s ibl e di s ­

tortion , stra i n  gagi ng ) , make i t  most des i rabl e to  obta i n  a material 

parameter than characterizes  the resi stance of a material to bri ttl e 

catacl ysmi c fracture . Such a param�ter then provides a worst case of 

l ower bound des i gn cri teri on . 

Pl ane Stra i n  Fracture Toughness 

3 

The wel l  known pendulum i mpact tests deve l oped as a resul t of 

bri ttl e fracture i n  Li berty shi ps  were the f i rst attempt to character­

i ze bri ttl e behav ior  of materi al s. Unfortunately ,  al though these tests 

prov i de a mi n imum serv i ce temperature for ducti l e  fracture , test 

resu l ts do not provide a s impl e means to cal cul ate max imum al l owabl e 

l oads , nor do they predi ct material  behav ior i n  terms of crack l ength. 

Addi ti onal l y, the pendulum tests are conducted at suffi c i ently h i gh 

strai n rates that data may wel l  not refl ect material behav ior for some 

important practi cal appl i cati ons ( e . g . , pressure vessel des i gn ) .  

Early theoreti cal work� devoted to predi cti ng s tress  concentra� 

t ions  and tri axial i ty devel oped adjacent  to defects , devel oped by 

workers i n  theory of el asti ci ty and more recentl y conti nuum mechan i cs 

led to the devel opment of the notch tensil e test. This test 

dramati cal l y  demonstrates the l os s  of tens i l e  duct i l i ty due to geo­

metri cal constraint  (descri bed as "notch sens i ti vi ty11) . However ,  

al though the test  does prov i de data i n  the form of nomi nal stres s , i t  

does not provi de data i n  terms of cri t i cal crack l ength . The crack 
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opening fracture tests (bendi ng and compact ten s i on )  devel oped in the 

l ast few years , on the other hand , do incl ude parameters of c rack 

l ength and nomi nal appl ied stres s .  Such tests have an associated pre­

determin ed i n i tia l stress concentration factor and can be conducted 

with temperature or i n i ti a l  stra i n  rate as an i ndependent variabl e .  

Such tests presumabl y measure min imum crack i n i ti ation  energy pl us 

propagation energy i f  starter crack i s  i ntroduced in front of a stress 

i ntensifying notch by fati gue l oading . Data from such  tests can be 

used to estimate l ower bound maximum nomi nal  l oads for a given crack 

l ength or v i ce versa . I t  i s  the fracture toughness tests , then, that 

prov i de the des i gn engineer with a n1aterial  constant formul ated i n  

terms of nomi nal  appl i ed l oad and crack l ength , i n  a s impl e expres s i on . 

Not discounti ng the importance of the trans i ti on from ductil e to 

bri ttl e  behavior with temperature which  is reveal ed by the pendu l um 

impact or  drop wei ght  tests , i t  is the simpl e form of the stress 

i ntensity factors deri ved from fracture toughness testi ng, and the 

di rect appl ication of the stress intensity factor  to cal cul ate maximum 

al l owabl e l oads and/or crack l engths, that make the stres s  intensity 

factors so appea l i ng to the des i gn engineer .  

Considerabl e controversy exi sts i n  the l i terature a s  to the 

precautions that must be fol l owed in experimen tal work to assure that 

the true fracture toughness has been measured. More i nterest has  

cente red on the pl ane stra i n  fracture toughness than the pl ane s tress 

fracture toughness because the p lane  stra i n  val ue  is a l ower bound 

val ue , and because of the greater  experimental  d iffi cul ty i n  measuring 

the pl ane stress  val ue . Even though the pl ane stra i n  va l ue i s  
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presumably easier to determine ,  the continual l y  chang ing s pecifications 

conta1n�d in ASTM E-399 to determine the va l idity of a given test po i nt 

out that the issue  is far from settl ed even for this case .  

Purpose of the I nvestigation 

The difficu l ty in determining whether a val id test  has been per­

formed resides in the cycl ic at,guments as soc i a ted with determining 

whether "brittl e fracture" has occurred in the s pecimen. Brittl e 

fracture is normal ly  considered in a macroscopic sense and is taken to 

simul taneousiy mean , in a compact tension specimen , the absence of 

gross pl astic fl ow and fracture on a pl ane normal to the appl ied l oad 

and paral l el to the crack starter notch . The absence of pl astic fl ow 

i s  assured  by the absence of transverse strain in the specimen and the 

absence of a pl astic hinge visibl e on the surface (plan v i ew) of the 

specimen . Fracture on a pl ane obl ique to the appl ied l oad is presumed 

to be ductil e .  

Al ternativel y, brittl e fracture is assumed to have occurred if 

"pop-in" occurs during the course of the tes t . Pop-in refers to the 

audibl e sound sometimes heard when the crack rapid ly  accel erates . 

Pop-in a l so amounts to a temporary l os s  of s train control and l oad 

monitoring , and is recorded as a constant or decreasing  val ue of l oad 

with crack opening displ acement ( COD}  ( Figure 1). This is in contras t  

to a steadily rising l oad with  COD displ acement which occurs with  a 

sl ow ductil e tearing mode of crack propagation. In  practice , pop-in 

often causes only a temporary i nstabil i ty and the s pecimen does not 

compl ete ly  fracture . I t  is a l so possibl e that the amount of bri ttl e 
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Figure 1 .  Typ ical Load-COD Curves Showi ng "Pop-in" . 



crack propagati on i s  suffi c i entl y smal l that the l oad i n stabi l i ty may 

not be detected . I n  s uch  cases, a secant modul us techn i que i s  u sed 

to calcul ate the presumed p l a ne stra i n  toughness (Figure 2) . 

7. 

Li ttl e attention has been  d i rected towa rd determi n i ng the 

va l id i ty of a pl ane stra i n  test based on  d i rect evi dence of bri ttl e 

fracture . Thi s  i s  not too surprising because the test is  meant  to be 

as rapid, s impl e, and as i nexpensive as poss ib l e ,  and d i rect observa­

ti on of the fracture surface i s  nei ther rapi d nor i nexpen s i ve .  Never­

thel ess, i t  i s  unfortunate that more attenti on has not been devoted to 

the correl ation of d i rect fracture surface eva l uation by scann i ng 

el ectron mi croscopy (SEM) or repl ica techni ques wi th l oad-COD d i s­

pl acement data . The val i di ty of a p l ane stra i n test depends on whether 

an "i nfl ated'' val ue of Krc has been cal cul ated-�i;e . ,  whether mixed 

mode fracture has occurred . The ducti l e  component of the fracture 

wou l d presumabl y i ncrease the val ue of the requ i red l oad at a gi ven 

strai n  over that requi red for bri ttl e fracture . The va l id i ty of a 

test i s  deci ded on the bas i s  of macroscopi c observations-�e . g , ,  the 

presence of s l ant fracture--or better , by conducti ng a sertes of tests  

wi th  i n creas i ng  pl ate th i c knesses . The  l atter cond i ti on is  more 

reasonabl e but offers the unattracti ve poss i bi l i ty of a l arge sca l e 

test ing program , and/or l a rge l oad capac it ies  requ i red for heavy 

section testi ng . Macroscopi c ·observati ons to determi ne the val i dity 

of a test can g i ve contrad i ctory resu l ts ,  and are subject to some 

questi on .  I t  seems somewhat quest ionabl e, for exampl e ,  to tnherentl y 

assume that s l ant fracture is produced by ductil e fracture mechan i sms 
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and the fl at fracture occurs due to the operation  of bri ttl e c l eavage . 

The absence of ASTM procedure to determi ne the pl ane stress  fractu re 

toughness , and the previ ousl y menti oned l arge number of changes  i n  

the pl ane stra i n  speci fi cati on by ASTM , are the vis i bl e  ind i cati ons 

of the controversy and the i ncompl ete i nformation currentl y avail a bl e .  

The purpose of thi s work i s  to correl ate SEM data of the frac­

tu re surface wi th l oad-COD data from compact tension s pecimens, and  

wi th the  vari ous macroscopic cri teria that have been proposed, to 

determine the val i dity of a test procedure for pl ane stra i n  fracture 

toughtness . Fracture toughness data i s  col l ected i n  terms of the 

specimen th i c knes s , , and the min imum th i ckness  requ i red to produce 

bri ttl e fracture accord ing  to the vari ous cri teri a i s  compared . Such  

a study shoul d hel p to cl ari fy the appal�ent anomal i es between the 

various macroscop i c  cri teri a used to determi ne i f  a va l i d  test has 

been performed . 



CHAPTER II 

THEORY 

Accord i ng to Gri ffi th ( 2 )  who was one of the earl i est  workers 

to be concerned wi th fa i l ure of bri ttl e materi al s ,  crack growth under 

a pl ane stres s  l oad i ng cond i t i on wi l l  occur if  

where 

2 2 d (- a 1ra 
da E 

2 2 
a 1Ta = E 

+ 4aT ) = 0 (1 ) 

the el asti c energy l os s  of  a pl ate of un it  th i ckness 

under a stres s ,  a, mea sured far away from the crack , 

i f  a crack of l ength 2a were suddenl y  cut i nto the 

pl ate at ri ght angl es to the d i rect ion  of a. 

4aT = the surface energy ga i n  of the p l ate due to the 

creatton of the new surface havi ng a surface ten s i on , 

T .  

Th i s  i s  i l l ustrated i n  F igure 3 wh i ch i s  a schemat i c  representati on o f  

the two energy terms and  the i r s um to i ndi cate a cri ti cal crack l ength 

for propagat ion . 

When the el asti c energy rel ease outwei ghs  the demand for s urface 

energy for the same crack l ength , the crack wi l l  be unstabl e .  One can 

defi ne a gross  fracture stress  from thi s i n sta b i l i ty cond i t ion  as 

( 2ET/7Ta) l /2 

10 
(2} 
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Fi gure 3 .  The Gri ffith Model for the Energy Bal ance 
i n  an Infi n i te P l ate . 
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Analysts of the three dimens ional probl em for pl ane strain  l oad­

ing, i ntroduces a stress  i n  the thi ckness d i rection crt� v(a� +ow) ,  

(where v i s  Po i s s ion's ratio , cr� i s  the stress  tn l oadi ng d i recti on , 

ow i s  the stres s  i n  the wi dth d i rect i on ), but onl y  i ntroduces a con­

stant i n  the equations for pl ane stress l oading, Thi s  i s  for pl ane 

strai n  cond i t i on: 

cr = [2ET/ (l - v ) 2 na]112 ( 3 )  

I n  e i ther cas e ,  the Gri ffi th model assumes that t he  mater ia l  i n  

questi on fractures at the l i mi t of l i near el asti c behav i or , but does 

not cons i der the rate of crack growth . The Gri ffi th  model i s  l i mi ted 

i n  appl i cati on , then , to those  materi al s whi ch are i deal l y  bri ttl e .  

Both_ Equati on ( 2 )  and ( 3 ) , wh i ch can be rewr itten tn the form of 

cr (na )1/2 = constant ,  have been s hown to hol d qui te wel l for 11bri ttl e 1 1 

metal s ,  i . e . , materi a l s wi th  negl i gi bl e  amount of permanent deforma­

t ion  precedi ng fracture . However ,  experimental work has  s hown that 

measurement of surface energy (T } i s  subject to much erro r ,  whtch i n  

turn makes correl ation of Griffith model with experimental data d i ffi­

cult.  Thi s  has l ed to a search for a better mode l-... one  of which i s  

due to I rwi n ( 3 ). 

Irwi n appl i ed a stress cri terion  i n stead of energy cri terion  

for fracture and obtai ned: 
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a - a[1Ta]l /2 

y - I21Ty]
1/2 

e cos-2 (1 + s i n  i 2 s i n  �0} 

1/2 
cos 3e ;::; ar1TaJ e s i n  � Txy I21Ty]1/2 cos 2 2 2 (4 ) 

for a crack of l ength 2a s ubjected to a uni axi al  nominal stress  i n  the 

y d i rect ion . The coordi nate system i s  shown i n  Fi gure 4 .  

The term , a (1Ta ) 112 , whi ch a ppears i n  both Gri ffi th  and Irwin 

model s ,  has s pec i a l  properti es --i t i s  proporti onal  to the stress fi el d 

and refl ects an equ i val ent between stress and the square root of crack 

length--and  i s  given a s peci al name , the stress  i nten s i ty factor-K . 

Thus , a Gri ffi th-type rel at ions h i p res ul ts wi thout cons i derati o n  of 

any energy d i s s i pation . 

The fracture toughness concept can be extended one more s tep 

if a cri teri on for fracture i s  i ntroduced . Rupture i s  assumed to occur 
. . 

at the crack ti p when a cri t i ca l  nomi nal stres s a = a* i s  atta i ned at 

a fixed d i stance r* . This  l eads to the important resul t :  

a* ( 1Ta )112 = K K = constant Ic' c (5) 

The matter of termi nol ogy i s  confus ed because McC l i n tock and I rwi n (4) 

defi ne Kic as open i ng mode ( Fi g ure 5) fracture toughness, but do not 

make i t  c l ear how to di sti ngui sh  between (1) p l ane stra i n  versus  p l ane 

stress fracture or ( 2 )  the onset of s l ow growth versus the onset of 

uns table growth .  Hahn and Rosenfi el d (5) redefi ne the quanti ti es Kc 

and Kic as Kic = stress i ntensi ty (val ue of K ) at the onset of s l ow 



Fi gure 4 .  Schemati c I l l ustration of the El astic Stres s 
Di stri bution Near the Ti p of a Crack . 

y 

X 

Fi gure 5 .  The Open i ng Mode (Mode I )  of Crack Surface 
Di spl acement . 
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(stabl e }  crack growth under p l ane s tra i n  cond i ti on . Kc q stress  

i ntens i ty at  the  onset of s l ow crack growth under pl ane stress cond i t ion , 

However , for rea l  fl aws i n  real materi a l s ,  there i s  no s i mpl e 

way to meet the ri g i d  condi ti ons necessary for i deal ized pl ane stress  

or plane stra i n  l oad i ng , even though tentat ive ASTM s tandard l aboratory 

procedures are avai l abl e to determi ne Krc· Th i s  puts a severe l imi ta­

tion  on uti l i zi ng these ASTM recommended procedures . Thi s  wi l l  be 

d i scus sed i n  deta i l  i n  C hapter I V .  

Much data exi st in the l i terature to s how the transit ion from 

Kic to Kc wi th a decrease i n  specimen  constrai n t , e . g. ,  a decrease i n  

s peci men thi ckness  (6 , 7 )  ( Fi gure 6 } . Accompanyi ng th i s  transi t i on i s  

the concurrent  macroscopi c  change from fl at fracture (brittl e 1 1Cl eavage11 ) 

to s l ant fracture (ducti l e  s hear ) , and an i n crease i n  transverse s tra i n  

assoc i ated w i th the fracture surface . 

The importance of the materi a l  constants Kc and  Klc ts that 

these  constants are rel ated to basic  materi a l  parameters such as o* 

and r* , and therefore they i dent i fy·the cond i t i ons  for crack extensi on: 

the criti cal stress l evel and crack l en gth . Furthermore, Kic defi nes 

the mi n imum energy to cause ini t i at i on (and propagation ) of the 

crack. 

In both the Gri ffi th and  the I rwi n theories di scussed above the 

materi a l  i s  assumed to be l i nearl y el asti c and therefore i dea l l y  

bri ttle . In real materi a l s, part icu l arl y medium and l ow strength 

materi a l s, there i s  often pl asti c fl ow adj acent to the t ip  of the 

advanci ng crack , i ntroduc i ng one more experimenta l  parameter to be 
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cons i dered i n  determtnatton of K and making the val i d i ty of the 

Gri ffi th and the I rwi n mode l s suspect . A p las tic zone correction  

factor, Yp' can  be  estimated from Equat ion (4)  by setti ng  oy = oys' 

the nomi nal y ie l d strength of the materi al , wh ich  resul ts i n  

- 1 (--'L)2 
Yp - 2'1T oys 

pl ane stress 

- 1 (--'L)2 
Yp - 6'1T oys 

pl ane stra i n  
(6) 

Thi s correct ion  factor has been successful ly  appl ied i n  cases where 

only a smal l amount of pl as t i c  deformat ion occurs , and where that 

pl asti c deformati on occu rs pri or to crack growth .  

17 

From a toughness v i ewpoi n t , l ocal p l asti c fl ow i n  front of the 

advanc i ng crack ti p may wel l be des i rabl e .  I f  fl ow occurs , el ongation 

in  the l oad d i rect i on occurs , whi ch resul ts i n  ''bl unti ng� of the crack 

ttp (Fi gure 7) . ·  T h i s  in turn i ncreases the stress  requi red to cause 

conti nued crack propagati on . 

P l astic  fl ow i n  front of the crack ti p absorbs stored e l ast ic  

stra i n energy decrea s i ng the amount of  stored energy ava i l abl e to 

create new crack surface . I n  add i t ion , pl ast ic  fl ow i n  the l oad 

di recti on i ncreases the radi us of the crack t i p  whi ch decreases the 

stress concentrat ion factor ,  whi ch decreases Kappli ed' wh i ch may cause 

Kappl i ed to be l ess  than  Kc' caus i ng  cessati on of crack growth ( 8 ) . 

For th i s  reason , the stress fi el d wi th  pl asti c fl ow i s  c hanged from 

Figure 4 to F igure 8 .  Adjustment o f  K values was made by substi tuti ng 
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the effective crack l ength 2 (a + rp ) for the actual crack l ength . 

In con s i dering the change of the pl a st ic  zone sizes , it i s  

reported ( 5 )  that for materi al s whi c h  have a l ow stra i n  harden i ng 

coeffi c i ent  (n ) , the s hape of the pl asti c zone i s  pl ana r ,  but i f  

(n ) i ncreases , the zone wi ll expand i n  the load i ng  d irection (figure 

9). The pl asti c zones have been observed to change i n  the same way 

20 

i f  specimen con stra i nt changes l oadi ng  the condi ti o n  from pl ane stress  

to pl ane stra i n .  Therefore , both metal l urgi ca l  and geometr ica l  

factors are i nvol ved in defi n i ng the amount of  pl ast ic  flow assoc i ated 

wi th or prior to crack growth . 
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CHAPTER III 

EXPERIMENTAL PROCEDURE 

Materi a l s 

The materia l  used for thi s i nvesti gati on was an 01 tool steel , 

heat treated to a l ow hardness .  Chemical compo s it i on of thi s materi al  

i s  l i sted in Tab l e 1, and mechanical propert ies  determi ned from tens i l e  

spec imens are l i sted i n  Tab l e 2. Meta l lographi c exami nation and SEM 

mi croscopy s how that the -mi crostructure cons i s ts primari l y  of a d i s� 

pers ian of carbi de part i cl es i n  a ferri te matrix (Ftgu res 10� 1 1 } 

wh i c h  i s  cha racterist ic  of etther the anneal ed or quenched and tempered 

condi t i on. Some pat�es of pearl i te were detected (Figu re 1 1 )  whi c h  

i nd i cate that the materi al  was probabl y i n  the anneal ed condi ti on . 

Tes t  Specimens 

Fracture toug hness compact tens i on specimens  were fabri cated . . 
based on ASTM Standard E-399 ( Fi gure 12) ( 9 ) . One i nc h  thick speci� 

mens were made accord i ng to thi s s peci ficati on. Thtnner speci mens 

were made such that al l dimen sions  were identi ca l to the one i nch 

thick s pecimen except the th i c kness , e.g . , crack  l ength � l oad i ng pi n 

l ocation. A total of seven d i fferent th icknesses were prepared , 

vary i ng from 0.125 to 1 .00 i nches . (Pre l i mi nary testi ng of the com­

pact tens ion  speci mens i nd i cated that the 1 .00 i nch  thickness was near 

the maximum that coul d be fractured  us i ng the avail a bl e Instron l oad� 

i ng frame. } 
22 



TABLE I 

CHEMICAL COMPOSITION & HEAT TREATMENT 

Chemi cal Composi tion 
(�Ie ight Percent) 

0.9 C ,  1 .  3 Nn 

0.5 W ,  0.5 Cr 

Heat Treatment 

Harden at 1475°F , and tempered at 

450°F , or annealed at l450°F, as 

recei ved 

TABLE II 

MECHANICAL PROPERTIES 

Y ield Strength (0 .2%) 

Utimate Strength 

Tensil e  El ongation 

Reducti on i n  Area 

Hardness 

Strai n Hardening Coefficient 

55,500 ps i 

101,000 ps i 

25% 

50% 

Rc 10 
0 . 233 
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Figure 10 . Optical Micrograph of the Etched Pl an View 
of the Compact Tensi on Specimen After Load­
ing to 90% of the Fracture Load . Mag . :  750X . 
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Figure 1 1 . SEM Mi crograph of the Same Surface as 
Fi gure 1 0 .  Mag . :  2000X . 
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The notch tip radi u s  of  the specimens was estimated to be about 

0,003 inches (based on metal lorgaphi c  exami nation ) .  

Tens i l e  Loadi ng 

Spec imens were l oaded i n  an ln stron Un i versal Testi ng Mac h i ne 

hav i ng a maximum l oad capacity of 20,000 pounds . A crack open i ng 

d i spl acement gage (COD ) was fabri cated accord i ng to ASTM E-399 

standards, and whi ch util ized four averag i ng stra i n  gages to monito r 

the open i ng of the crack duri ng l oading (F i gure 1 3) ,  Load-COD data 

was s i mu l taneousl y mon i tored u s i ng the I n stron x-..y recorder, Tests 

were conducted at a con stant crosshead vel oc i ty of 0.02 i nches/minute 

at room temperature . 

At l east two spec imens were tested at each  thickness . For a 

g i ven th i ckness , one speci men was l oaded to fail ure tn order to obta i n  

l oad and d i spl acement data to cal cul ate fracture toughness and to 

prov ide  specim�ns for �EM eval uation of the fracture surface. The 

second spec imen was then l oaded to 90 percent of the max imum l oad of 

the broken spec i men i n  order to measure the s i ze and s hape of the 

pl ast i c  h i nge at the notch tip , and to measure the transverse (i . e , , 

thi ckness ) stra i n  at  the notch ti p .  Some dupli cate specimens were 

run for data po i nts that i n i t i a l l y  d i d  not l i e  on a smooth curve of 

the max imum l oad versus specimen thickness, 

Specimens were prepared such that the rol l i ng plane was the 

specimen pl an vi ew and the l oad was appl i ed perpend i cu l ar to the 

rol l ing d irecti on (F igure 1 4 ) .  

I n  the i n iti al stage o f  the work an attempt was made t o  util ize 
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mi crohardness mea surements to define the pl asti c zone s hape and  the 

strai n  grad i ent wi thi n the zone, Microhardness  measu rements al so al l ow 

pl asti c zone s i zes  to be determined bel ow the surface of the specimen .  

Since thicknes ses were choosen so as to cover the brittl e to ductil e 

fracture reg i on , knowl edge of the s ubsurface pl asti c stra i n  g rad i ent 

was consi dered desi rabl e .  However, prel imi n ary resul ts u s i ng indentor 

l oads as l ow a s  ten grams were unabl e to g i ve a cl ear p i cture of 

ei ther the si ze of the zone or the stra i n  grad ient  w ith i n  the zone . 

Thi s was fel t to be at l east parti al l y due to the magn i tude of  the 

strain ha rden i ng coeffi c i ent  for this materi a l . Other author (1 0} has 

used the l ow l oad mi crohardness measurements to define pl asti c zones 

i n  front of growi ng cracks with some success .  Add i t i onall y,  the s i ze 

of the pl ast i c  zone was suffi cient ly  smal l due to the geometrtcal 

constra i nt that even at the l owest i ndentor l oads it was impossibl e 

to obta i n  a suffic ient number of read i ng wtthin the zone to defi ne the 

strain gradi ent i n  the ·thi cker speci mens. 

S i nce i t  was sti l l  cons i dered necessary to have some i nd i cation 

of the hi nge zone on  the s i de of the speci men, a metal l ographtc 

techn i que was devel oped wh i ch unfortunate l y  wou l d revea l  only the 

size of the hi nge zone and not the stra i n  gradient wi thin the hinges . 

Thi s add i ti o nal l y  precl uded determi nation of the h i nge zone bel ow 

the spec imen surface . As wil l be seen in the discussion, i t  wou l d  

have been desirabl e to have this i nformati on . The hinge zone was 

revealed by metal lographical ly pol ishing the test spectmen pri o r to 

l oading , and after l oadi ng to rub the specimen &cross  3/0 emergy 
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paper (Figures 15, 16} , 

Scann i ng El ectron Microscopy 

The SEM i s  the ideal tool  to use for the fractography because 

of the l arge depth of the f i el d avai l abl e in  SEM microscopy. Addi­

ti onall y ,  d i rect exami nation of the s ampl e incl udi ng the rough surface 

i s  pos s i bl e .  SEM was performed using an AMR�900 scann i ng el ectron 

microscope i n  order to observe changes i n  fracture mechan i sms wi th  

s pecimen thickness .  



Fi gure 1 5 .  Surface Po l i s hed 0 . 1 25 I nch Th ick  Spec i men 
Showi ng Su rface Pl a sti c Zone Format ion . 
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Fi gure 16 , Surface Pol i shed 0 . 477 Inch Thi ck  Spectmen 
Showi ng Surface P l asti c Zone Formatton . 
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CHAPTER IV  

RESULTS AND D ISCUSS ION 

Introducti on 

In order to draw concl us i ons wtth respect to the micro and . 
macroscopic trans i tions of ducti l e�bri ttl e behavior  wtth thicknes s ,  

al l l oad and d i spl acement data were pl otted i n  terms of the thickness 

parameter . I ni t i al l y ,  the experimental 1 oad-COD curves are d i scussed 

i n  terms of the observed proporti onal (Pp
) and maxtmum (Pm

) l oads . 

The second secti on of the d i scuss i on compares observed stra i n  measure­

ments w i t h  SEM resul ts .  Thi s sect i on conta i n s  remarks about the gross  

pl astic fl ow i n  terms of the number of chevron s haped crack arrest 

zones observed on the fracture s urface , s hear l i p area , l ateral con­

tract i on , and the correl ati on of these observati ons wi th  SEM micros­

copy . Fi na l l y ,  the last  porti on of the d i scus s ion consi ders the· 

i mpl i cati ons deri ved from th i s  s tudy regarding ASTM E�399 require� 

ments to cal cul ate a val i d  Kic from l oad-COD data , It i s  hoped that 

because of these res u l ts ,  a better knowl edge of fracture behavior 

can be obtai ned . 

Load-COD Data 

Fi gure 1 7  s hows the change i n  the observed max imum l oad (Pm
) , 

the proporti onal l oad (Pp
) , and the secant modul u s  i n tercept l oad 

(Pq
l used to ca l cul ate the fracture toughnes s  as spec imen thickness  

i s  i ncreased . CPq i s  the load i ntercept for a secant l tne havt ng a 
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sl ope f ive percent l es s  than the l i near port i on of the l oad�COD 

curve . ) I t  i s  noti ced that both Pm and Pp i ncrease l i nearl y wi th 

thi ckness i n  s p i te of i ncrea s i ng constra i n t .  PQ ' however , i ncreases 

nonl i nearl y w ith thickness ,  Data are al so pl otted i n F i gure 1 8  as  

the ratios  P p/Pm and  Pq/Pm. These  pl ots i nd icate that the ratio 

Pq/Pm i ncreases  wi th  thi ckness but that P
p
/Pm does not change wi th 

thickness ,  at  l east  for thicknesses  g reater than 0 ,232 i nches . The 

l ow val ue of P
p
/Pm (about 0 .32 } might wel l i ncorrectl y be taken to 

i nd i cate a 11 d ucti 1 e '' materi a 1 ,  or the 1 ack of s uffici ent constra i n  to 

cause pl ane s trai n fracture . There i s  some i n d icat i on that P p/Pm 

might decrease for th i nner s pecimens .  

The i ncrease of Pq/Pm wi th thickness i s  expected s i nce con­

stra i nt i s  i ncreased as thi ckness i s  i ncreased . That i s ,  the l oadi ng 

more cl osel y approaches the pl ane strai n cond it ion , The constancy of 

the rati o P
p
/Pm was not expected . 

I f  l oad aata are · norma l i zed wi th respect to the thickness  and 

repl otted aga i nst  COD d i spl acement (Figure 1 9 ) ,  these data i ndicate 

that both Pm/B and Pp/B  remai n  constant , but that Pq/B sti l l  i ncreases 

wi th th ickness . The constancy of P
p
/B  wi th thickness may be an 

i ndi cation of crack i n i t i ati on . I f  i t  i s  as sumed that pl astic  fl ow 

occurs i n  front of the notch t i p ,  one woul d expect the effecti ve s tress  

to be  red uced a s  the thickness i s  i ncreased . Thi s impl i es that fl ow 

wi l l  i n i ti ate at l arger and l arger val ues of the nomi nal  s tress .  

(P/B i s  d i rectl y equ i va l ent to the nomi nal stress  s i nce the width 

d imens i on is  constant for al l specimens . }  If,  on the other hand , 
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Fi gure 1 9 .  Normal i zed Load ( P/ B )  as a Funct ion  of COD Di spl acement ,  
Where 1 I nd i cates 1 . 00 i nch Speci men , 2 I nd i cates 0 . 477  
I nc h ,  3 I nd i cates 0 . 330 I nch , 4 I ndi cates 0 . 300 I nch , 
5 I nd i cates 0 . 27 5  I nch , 6 I ndi cate s 0 . 2 32 I nch , 7 
I ndi cates 0 . 1 25 I nch , and * I nd i cates pop- i n .  



sufficient constrai n  exi sts  to cause  the normal s tres s  on  the crack 

pl ane to become equal to the crack i n i tiat ion  stress ,  pri or to or 

s imul taneous ly  wi th the approach of the effective stress  to the fl ow 

stress , then Pp/B i s  i n  fact a measure of the crack i n i t i ation 
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stress .  Equat i on (4)  for the normal stress  acting on the fracture 

pl ane s hows that the normal component of the s tres s  acti ng  at the 

crack front depends on crack l ength , notch rad i us , and nomi nal stress . 

That i s ,  the normal stress on the fracture pl ane does not depend on 

constrai nt i n  the specimen , but does depend directl y on the nomi nal 

stress . Now the maximum nominal  s tress  that can be appl i ed to a 
materi al i s  the " breaki ng s tress , "  so that if  s uffici ent constra i nt 

i s  pre sent , the appl ied l oad reaches the val ue of the crack i n i tia­

ti on normal stress  before it  reaches the val ue of the effective 

stres s requi red to cause pl ast ic  fl ow , The resu l ti ng impl i ca t i on ts  

that thi s  cond i ti on exi sts for specimens 0 . 232  i nches thi ck and  

thi cker , and that the  proporti onal l imi t corresponds to crack i n i ti a­

ti on . The crack i n i ti ation  stress does not vary wi th th ickness once 

a cri tical amount of constra i nt i s  ach i eved i f  there is no pri or 

pl astic fl ow ,  or i f  crack i n i ti ati on i s  by a ducti l e  mechan i sm .  SEM 

data , however , i nd icate that the p l astic i n i t i ati on h i nge zone (P lZ ) 

i s  created by a ducti l e  mechani sm .  Thi s wou l d i mpl y that Pp/B  

s houl d i ncrease with th ickness , Consequentl y, thi s  d i l emma must  

remai n unresol ved , 

Gross  P l astic Fl ow and SEM Microscopy, 

For the purposes of anal ys i s ,  i t  i s  hel pful i f  the trends i n  the 
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observed resu l ts w i th an i ncrease in s pecimen thickness are l isted : 

1 .  A decrease i n  the rel ati ve amount of duct i l e  to bri ttl e 

fracture as  detenntned by ei ther macroscopic or microscopic  techn i ques . 

for exampl e ,  Figure 20 s hows that the ducti l e  area of the fracture 

surface , based on macrophotographic ev i dence , decreases from 33 . 5  

percent for the 0 . 1 25 i nch ' specimen to 2 , 2  percent for the 1 . 000 

s peci men . F i g ure 21 s hows the appearance of the macroscop ic  fracture 

surfaces and  i l l ustrates the appearance of the ducti l e  and bri ttl e 

port ion s  of the fracture surface i ncl udi ng the chevron chaped crack 

arrest  zones . 

2 .  A decrease  i n  the rat i o  of s hear l i p to total fracture area 

( Figure 22) . The s hear l i p  area decreases exponenti al l y  up  to a 

thickness of about 0 . 5  i nches and then rema i ns con stant . 

3 .  An exponentia l  decreas e  i n  the amount of l atera l  contrac­

ti on as measured by a poi nt  micrometer.  Lateral contracti on in the 

0 . 1 25 i nch  th ick s pecimen i s  about 9 . 5  percent and decreases to 0 . 77 

percent i n  the 1 . 00 i nch  specimen ( Fi gure 23 ) . (Note that  the 

reducti on i n  a rea observed i n  the unnotched tens i l e  s pecimens wa s 50 

percent . ) 
4 .  A decrease i n  t he l ength and an t ncrease  i n  the height of 

the p l ast ic  zone on the pl an  v i ew of the speci men (Fi gure 24} , 

Items (1 ) ,  ( 2 ) , and ( 3 }  cl early s how the tran s i tton from ducti l e  

or mi xed mode to bri ttl e behav ior  as  constrai nt  t s  i ncreased . Item 

(4 )  i s  con s i dered to be evi dence of a tran s i t i on from pl ane stres s  to 

pl ane stra i n  l oadi ng (5 ) , Cons i dering these four  observations ,  the 
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Fi gure 2 1 . Fracture Su rface Appearance as a Function  
of Specimen Thickness . 
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Fi gure 2 3 .  
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concl us i on may be drawn that the trans i tion from ductil e to bri ttl e 

behav ior  from a macroscopic point of v i ew i s  equ i val ent to the trans i �  

t i on from pl ane stress  to plane stra i n  behav ior .  

F i g ure 25 shows the chevron shaped arrest zones that were 

observed i n  the thi nner specimens .  These zones are assumed to i nd i ­

cate a tran s i t i on from microscopic br ittl e to duct i l e  behavior . 

Fi gure 26 s hows the number of chevron arrests decrease as  the thick­

nes s is i ncreased . The fractograph for the 0 . 232 i nch specimen 

(Fi gures  27 , 28 ) s how that crack propagation i nvo l ves  vo i d  generation 

around the carbi de parti cl es presumably  i n  front of the growing crack 

front .  

For thi n specimens , s hear o n  pl anes i nc l tned 45° to the l oad 

axi s  can penetrate through the thi ckness as we l l  as a l ong the width 

di rect ion ( F i gure 29 ) . Th i s  form of relaxation cannot support a 

stress  normal to the speci men surface . Thus , the peak  stress  t n  th i s  

reg i on cannot tie greate� than the fl ow stress . A s  the l oad i s  
i ncreased to a va l ue that creates a l ocal s tress  equa l to  the cri ti ca l  

stress for crack i n i ti at i on , the bri ttl e crack forms and  s tarts to 

p.ropagate . S i nce the e last ic  stra i n  energy used i n  the creation of 

the pl asti c zone i s  a l a rge fracti on of the total stored el asttc 

strai n energy ( Fi gure 30 } ,  l i ttl e energy i s  ava i l abl e to propagate 

the crack and arrest  soon occurs . S i nce the stra i n  energy remaini ng 

in the specimen after each  a rrest i s  l es s  than that at t he prtor 

arrest , the d i stance between arres t zones decreases a s  the crack 

propagates across  the width of the specimen . 



Figure 25 . Fracture Surface of the 0 . 1 25 ,  0 . 232 , and  0 . 330 
I nch Thick Spec imens Showi ng  the Presence of . 
Shear L i ps and Fracture Arrest Zones . 

47  



48 

c QJ 
E •r-
u QJ c. 

(./) 
� 0 
c 0 •r-

-+-I u 
� c ::I • LL.. 

z m 
....._.... til 

m 
m 
til 
QJ c 
0 N 

-+-I til 
QJ s-s-

� 
c 0 s-
> QJ 

...c 
u 

4- til 
0 til 

QJ s- c  
QJ �  ..c u  
E •r-
:::I ...C 

z: 1-

I.D N 
(}) QJ s-::I 0'1 •r-

N LL.. 



fi gure 27 . SEM Fractograph of the 0 . 232 I nch Specimen . 
Area Shows P l asti c Di mpl ed Fracture . Mag . : 
l 600X . 
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F i gure 28 .  SEM  Fractograph of the  I nd i cated Reg ion  i n  
Fi gure 27 . Area Shows Carbi de Parti cl es 
I n s i de Voi ds . Mag . : BOOOX . 
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Fi gure 29 . Schemati c I l l ustrati on Showi ng Shear Stress 
I ncl i ned 45 Degrees Penetrated Through the 
Thi ckness . 
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For the th ick  s pec imens , there is  a l most  no stra in  tn the 

thickness  d i rect ion as measured by a po i nt m i crometer (F igure 23 } , 

For these specimens , the pl ane stra in pl astic hinge zone ts quite 

na rrow and is kept smal l by the constra i nt imposed on the zone by 

the surroundi ng matrix .  Constra int produces a tria�ial s tress state 

i n  the i n terior of the s pecimen wh ich can support normal stresses as  

h i gh as  270 percent of the nomi nal yiel d stress  (5 } .  In thi s  zone , 

because of the constraint , the effecti ve stre s s  i s  too l ow to a l l ow 

creati on of a l arge fl owed vol ume . Th i s  i s  d ue i n  part to the 

vol ume of the suffici ently constrained zone , and al so due to the 

rapi d ri se  i n  fl ow stres s  w ith  stra i n . Once the crack does start 

5 3  

to grow , i t  i s  imposs i bl e  t o  stop i t  s i nce a l arge portion  o f  the 

total e lastic  stra in  energy i s  avail abl e for propagat ion (Figure 30 } .  

Thus , for a plane stra i n  s peci men , there s houl d be no chevron arrest .  

Thi s impl i es that the number of chevron arrest zones observed on· the 

fracture surface may be a way to defi ne the pl ane stress - pl ane stra i n  

trans i t i on ;  and therefore a way to determine  i f  a va l i d  plane stra i n  

fracture toughness  has been ca l cu l ated . Fi gures  3 1  and 3 2  s how the 

fractography of s hear l i p and chevron arrest which i s  ducti l e .  

As seen i n  Fi gure 33 , the s ha pe , ori entat ion , and s i ze o f  the 

chevron arrest zones change with specimen th ickness . The changes 

observed in these zones with an i ncrease i n  th icknes s are :  

1 .  T he number of arrests decreases exponentia l ly ,  chang i ng 

from n i ne at  0 , 1 25 inches to one at 0 , 477 i nches and no arrest for 

thi cker s pecimens , 



Fi gure 31 . SEM fractograph of 0 . 1 25 I nch Specimen . Area 
Shows the Shear L i p  Whi ch Cons i sts of Ducti l e  
Di mp l ed Fracture . Mag . : l 600X . 
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F i gure 32 . SEM fractograph of 0 . 232 Inc� Specimen . Area 
Shows the Chevron Shaped Fracture Arrest Zone 
Whi ch Cons i sts of Ducti l e  Dtmpl es . Mag . l 
1 700X .  
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Fi gure 33 . I l l ustrati on of Changes i n  Shape of the 
Fracture Arrest Zone from C i rcu l ar  to 
El l i pti cal  to Degenerate a s  Thi ckness i s  
I ncreased . BA < B8 < Be < B0 
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2 .  The  crack l ength prior to the appearance of the ftrst 

arrest zone i ncreases . 

3 ,  The d i s tance between the nth and (n + l ) th arrest zone 

decreases as the th i ckness i ncreases . 

As  the spec imen th i c kness i ncreases � the constrai nt at mid­

thicknes s on the crack pl ane i ncreases due to the triaxial stress 

s tate . Add i ti onal l y ,  the amount of constra i nt at any di stance from 

mi dthi ckness  on the c rack pl ane a l so i ncreases as the thi ckness 

i ncreases . Therefore , s i nce a crtttcal amount of constra i nt i s  
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requi red to cause the effecti ve stress to drop bel ow the  fl ow stress  

and to cause the normal stress  to approach the break ing stress , the 

area on each s i de of the midthtckness unabl e to fl ow increases wi th 

speci men th i ckness  (F igure 34 ) .  I n  the l im i t i ng case , the 

suffi ci ently  cons tra i ned zone becomes equal to the thickness of the 

spec imen . T herefore , the chevron arrest zone v i s i bl e  on the fracture 
. . 

surface--whi ch i s  the i ntersecti on of the pl asti c hinge and the 

macroscopi c fracture pl ane--must be absent . A l te rnati vel y ,  for total 

ducti l e  fracture , the hi nge zone i n  Fi gure 29 penetrates to mi d­

th i ckness . For i ntermedi ate cases , s uffic ient  constra i n t  i s  present 

so that the h i nge does not penetrate to mi dthi c kness , That i s ,  the 

chevron arrest  zone does not penetrate to mi dth i ckness on the 

fractur e pl ane . T h i s  causes the arrest zone to change s hape from a 

ci rcul ar  to an el l i pti cal front and fina l ly to degenerate to the 

shear zone on  the s i de of t he spec imen . SEM fractography has been 

used to veri fy the absence of a h i nge zone at mi dthi ckness 1 n  the 
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thicker specimens . F igures 35 , 36 , and  37 s how the microscop i c  frac­

ture s urface at midthtckness as  the th i ckness  i ncreases from 0 . 1 25 

i nches to 1 , 00 i nches . The fracture i n  thi s reg ion changes from 

total  ducti l e  fracture to mixed mode to total bri tt l e  fracture a s  

the thi c kness i s  i ncrea sed , 

Specimens were not sectioned perpendi cu lar  to the crack p lane 

to mea sure the percent s l ant fracture with th i ckness , but equiva l ent 

resu l ts  are obtai n ed from macrophotographs of the fractu re surface . 

They s how ( F i g ure 38) that the s hear l i p  to total th i c kness ratio  

a l so drops i nversel y  w ith  th i ckness , decreas i ng  from 20 , 8  percent at  

0 . 1 25 i n ches to  2 , 5  percent at 0 , 33 inches to  0 . 94 percent at 1 . 00 

i nches . 

Uti l i z i ng fractographs obtai ned by SEM mi croscopy , i t  i s  

poss i bl e  to i den tify the mi cromechan i sms respon s i bl e  for fracture . 

F i gure 39 ta ken on  the 1 1 fl at1 1  portion  of the one i nch spectmen , i' s 

typ i cal  of bri ttl e fracture and i s  characteri zed by c l eavage (e i ther 

steps or ri ver patterns ) ,  or  by facets . F i g ure 40 cl ear ly  shows 

the steps , ri ver patterns and mi crocracks ( 1 1 } .  The bri ttl e frac­

ture of the thi nner spec imens is somewhat d i fferent from that 

observed i n  the th icker s pecimen s , F i gure 41 s hows the fl at frac­

ture i n the 0 , 232 i nch s pec imen . It  i s  noti ced that there are! some 

ducti l e  d impl es  i n  add i tion to the faceti ng ,  ri ver
.
patterns , and  

steps .  The  d impl es are caused by the  teari ng due  to  no�un iform stra in , 

and these reg i ons are cons idered to be the last  portion connecting 

the two fracture surfaces before total fracture , Examinati on of the 



Fi gure 35 . SEM Fractograph of the 0 . 1 25 I nch Specimen . 
Area Photographed I s  Reg i on ( 1 ) i n  Fi gure 
33 , That I s , at the Juncture of Two 
Arrest  Zones at Mi dthi ckness . Mag . : l OOOX . 
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Fi gure 36 . SEM Fracto� raph of the 0 . 2 32 I nch  Speci men . 
Same Area ( i ) i n  Fi gure 35 . Mag . : 1 600X .  

6 1  



f i gure 37 . SEM ·Fractograph of the 1 . 00 I nch Spec imen , 
Same Area ( i ) a s  i n  Fi gure 35 . Mag . : 1 600X . 

6 2  
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fi gure 39 . SEM fraetograph of 1 �00 i n  Speci'men , Area 

Shows " Fl at" S urface of Bri ttl e Fractu re , 

Mag . : l 600X .  
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Fi g ure 40 . SEM fractograph of I ndi cated Reg i on i n  Fi gure 
39 . Area Shows Deta i l of the Bri ttl e 
Fracture . Mag . : 8000X . 
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F i gure 41 . SEM Fractograph of the 0 . 232 !nch Specin1en . 
Area Shows a Macroscopi cal l y  Fl at  Fracture 
Surface Wh ich  Con ta i ns D i mpl es . 

66 
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th i nner s pecimens (e . g . , a t  0 . 1 25 i nches in  Ftgure 42 } reveal s that 

the fracti on of d impl es in  the thtnner specimens i s  h i gher than i s  

i nd icated by the macrophotograph o f  the fracture s urface tn F i gure 

20 . That i s , data from Fi gure 20 was obtai ned by cutt i ng and  

we i gh i ng port ions of the macrophotographs correspondi ng  to  the  macro­

scopic ducti l e  and bri ttl e reg i on s . However ,  SEM data i n d icate some 

d i mpl es wi th  the bri ttl e area which cannot be resol ved i n  the macro� 

photographs . 

Fi gures  43 , 44 , and 45 s how the PIZ h i nge zone of di fferent 

magn i fications at  0 , 477 i nch  specimen . The two photographs at  l ower 

magnification  show a wel l def i ned trans i ti on from ducti l e  to bri ttl e 

fracture , and  the hi ghest magni fication shows the deta tl of the 

ducti l e  dimpl e fracture , Fi gure 46 shows the i ntersection of s hear 

l i p and chev ron arrest at l ow magn i fication . Figure 47  shows the 

pl an v i ew surface i n  the v i c i n i ty of shear l i p and i nd icates that 

the voi d� l ike hol es were formed as  the stress i ncreased , and then 

connected to each other by break i n g  through the pl an v i ew surface , 

Fi gure 48 s hows another mixed mode fracture for the 0 , 232 i nch 

spec imen . Fi gure 49 i s  at  a hi gher magni ficat ion and s hows a mixture 

of vo i ds format i on and cl eavage , F i gure 50 s hows a tearing r idge 

from the 0 . 477  i nch  specimen , and wh i ch shows the bri ttl e fracture in 

the background . Fi gure 51 s hows the tear ri dge i tsel f i s  one of 

ducti l e  dimpl es , 

Based on  s hear l ip data , the mtxed mode to bri ttl e tNnst tton 

essenti al l y  occurs in the 0 , 330 tnch s peci men . SEM data tnd1cate , 



Fi gure 42 .  SEM 'Fratograph of the 0 . 1 25 I nch Spec i men , 
Area i n  Fl at Reg i on ,  but Aga i n  Shows D impl es . 
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Fi gure 43 . SEM fractograph of the 0 . 477  I nch Specimen . 
Photograph Shows the Pl asti c I n i t i ation 
Zone Adj acent to the Crack Starter Notch . 
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F igure 44 . SEM Fractograph at the Center of Fi gure 43 
Showi ng the Trans i ti on from Ducti l e  to Bri ttl e 
Fracture . The Reg ion I ndi cated I s  an Arti fact . 
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Fi gure 45 .  SEM ·Fractograph at the Center of F tgure 44 
Showi ng Deta i l s of the Observed Duct i l e  
Fracture . 
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Fi g ure 46 . SEM . Fractograph of the 0 . 1 25 I nch Spec i men . 
Photograph Taken at the I ntersecti on of the 
Shear Li p and an  Arrest Zone . Mag . : 45X . 
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Fi gure 47 . SEM Fractograph of the 0 . 1 25 I nch  Specimen . 
P hotograph Taken at the Pl an V i ew Su rface 
i n  the Vi ci n i ty of the Shear L i p .  Mag . : 
2000X . 
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Fi gure 48 . SEM Fractograph of the 0 . 232 Inch  Spec imen , 
Area Photographed Near the Intersect i on of 
Two Arrest Zones at  Specimen Mi dthi cknes s .  
Mag . : 450X . 
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F i gure 49 . SEM Fractograph of  the Center Reg i on i n  
Fi g ure 48 , Showi ng  Mi xed Mode Fracture . 
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Fi gure 50 .  SEM  Fractograph of the 0 . 477  Inch  Specimen . 
Photograph Taken i n  the Fl at Fracture 
Reg i on Away from Shear L i p Zone , P l asti c 
I n i ti at i on Zone , and Arrest  Zone . Mag . : 
450X . 
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F i gure 51 . SEM Fractograph at the Center of Fi gure 50 
Showi ng  a Tear Ri dge Structure . Mag . : 1 800X . 
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however , that even though the fracture surface i s  fl at at 0 , 477 

i nches , crack propagat ion was part i a l l y  ducti l e .  Th i s  may not be 

i ncons i stent s i nce F i gure 38 does i nd icate about one percent s hear 

for the 0 , 323 and 0 , 477 specimens . 

Compari son of fracture Transi tions Based on P-COD Data and 
Stra i n  Measurements 

78 

Al l s tra i n  measurements recorded and d i scussed in the previous  

secti on , a s  wel l as  SEM data , i n d icate that a fracture trans it io� from 

mi xed mode to bri ttl e mode occurs wi thi n the s pecimen thickness range 

u sed i n  thi s work . Yet , l oad-COD data do not i nd icate pop- tn for 

these s pec imen s , a nd i n  fact , wel l def i ned pop-i n  d i d  not occur i n  

the 1 , 00 i nch th ick  s pecimen , Of · the four one i nch speci mens tested , 

two s pec imens gave an i nd ication of pop-i n .  

· These are observed i n  spi te of the l i nearl y i ncreas i ng va l ues 

of Pp and Pm fracture mode tran s i t ions  from the th i nnest to th ickest 

s pecimens . These observations are not in agreement wi th the general 

observati on that ducti l e  fracture absorbs more energy than brittl e 

fracture ( i . e . , l arge l oads are requ i red for ducti l e  fracture ) such 

as s hown in Fi gure 1 7 .  Furthermore , these res u l ts imply that total 

bri ttl e fracture on a mi croscopic  sca l e (as  reveal ed by SEM} may not 

correspond to macroscopic  defi n i ti ons  of pl ane stra i n  l oadi ng for a 

materi al that s hows a 25 percent el ongation and 50 percent reduction 

in area (i . e , , not an i n herently bri ttl e materi a l } . 

Fracture Tou9hness Data and ASTM E�399 Test Regu i rements • • 4 • ; q ' .. 
Based on the l oad-COD data , the equation used to cal cul ate 
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fracture toughness i s  g i ven as (9 } : 

(7 )  

where : 

f ( a/w) � 29 , 6  (a/w} 1 12  � 1 85 , 5  (a/w) 312 
+ 655 , 7 (a/w) 5/2 

- 1 01 7 , 0  (a/w) 712 + 638 . 9  (a/w )9/2 

As menti oned before , Pq i s  the secant modul us i ntercept l oad . 

The vari at ion  of Kq wi th thi ckness i s  s hown i n  Fi gure 52 . The 

apparent fracture toughness based on maximum l oad (�) and proportional  

l oad (Kp ) are a l so shown in  Fi gure 52 . Al l data i nd i cate that the 

apparent fracture toughness is  constant i f  pop- i n  d id  not occ u r ,  and 

i s  i ncreased wi th thickness i f  pop- i n  occurred . Thi s resul t ts  qu i te 

surpri s i ng s i nce i t  argues that the mi n imum energy for crack i n i tia­

tion i ncreases �s the f�acture mode changes from mixed to 98 percen t 

bri ttl e fracture ( as i nd i cated by SEM ) , and bri ttl e fracture pre� 

sumably abso rbs l es s  energy than ducti l e  fracture . 

Several authors have reported i ncreas i ng fracture toughness 

val ues wi th  an  i ncrease i n  pl ate thi ckness (6 , 7 ,  for exampl e ) . How-. 

ever ,  these resul ts are i denti f ied as ducti l e  mode , and occur for 

thi cknesses l ess  than that  speci fi ed by ASTM E-399 (i . e , , B ,  a <  2 , 5  
K 

{.J£}2 ) ' ays 
May (1 2 )  has reported , however ,  an tncrease  i n  Kq wi th th i ck­

ness for Hy1 1 te 50 (a t itan i um a l l oy}  for th i c knesses and starter 
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crack 1 engths ·meeti ng ASTM thickness and crack 1 ength criteri a .  

Unfortunatel y May does not report macro or mi croscopic  evidence of 

crack growth mode . Kaufman (1 3 )  has reported s tmil ar resu l ts fo r a 

harden i ng  al umi num al l oy (7075-T7351 ) ,  but aga i n  the fracture mode 
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i s  not reported . Consequently resu l ts of thi s work (and poss i bl y  

those o f  May and Kaufman )  tmply that the general l y  accepted criterion 

that the crack l ength and pl ate thickness be g reater than 2 , 5  

( K1 cloys ) 2 may be i nval i d ,  even for materi a l s that show unnotched 

tens i l e  ducti l i ty .  

A p l ausi bl e expl anation for resul ts of the present work  does 

exi s t , S i nce specimens were produced such that al l dimens ions were 

the same except th i ckness , and on ly  the one i nch spec i-men met ASTM 

standards , then onl y data obtai ned from the one i nch specimen can 

l eg it imate ly  be uti l i zed tn  Equation  (7 ) to cal cul ate KQ ' Thi s 

equati on s houl d not app ly  di rectly to th i nner s pec imens unl ess a 

correct i on factor i s  added to obtai n the appropri ate val ue of �·  
I n  order to obtai n  thi s correction facto r ,  the crack l ength 

of those thi nner speci mens shou l d  be comparabl e to the thi c kness�B , 

or a �  B .  Thi s  i s  equ i val ent to movi ng  the l oad ing  pi n posi t ion (d ) 

to (f )  (Fi gure 53 ) . 

I f  we assume the moment from the p i n  ho l e  to the crack t i p i s  

constant ,  M ,  then : 

(8 } 
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(9 )  

Then subst i tuti ng Equati on (8) and Equat ion (9) i nto Equation (7 ) , 

we obta in  

( 1  0 ) 

lf Equati on (1 0 ) i s  then appl ted to ca 1 cu1 ate the Kq va 1 ue for those 

th i nner s pecimens ,  we obta i n  the resu l t s hown in Figure 54 . Thi s  

corrected pl ot of Kq i s  then i n  agreement wi th SEM data as wel l  as  

al l stra i n  i nd i cations of the fracture trans i t ion . Howeve r ,  it  
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s houl d be  noted that the wi dth of the thinner s pecimens i s  sti l l  too 

l arge for the thi ckness . Thi s i s  expected to have an effect on frac� 

ture mode , only i f  the wi dth i s  i n sufficient to hol d the pl ast ic  

zone s i ze to l ess  than the wi dth of the s pecimen . For s pecimens used 

i n  thi s study , the wi dth of the th i nner specimens was greater than 

the requi red rat i o  of 2a  � w .  Therefore , th i s  parameter i s  not 

expected to affect cal cu l ated resul ts based on equ iva l ent moment arms . 

Wi th the l arge amount of i nterest i n  the pa st few years i n  

measuri ng fracture to ughnes s ,  ASTM spec i fi cat ions  for standard i zed 

eva l uation procedures have seen a l most  yearl y c hanges . Several 

cri ter i a  have been proposed to deci de whether a val i d  pl ane stra i n  

experiment has  been performed : 

(9 ) 

(9 } 
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3 , The occurrence of " pop ... i n "  i n  the course  of the test 

( 9 )  

( 9 )  

5 . The a bsence of shear l i p formation and a crack pl ane 

norma l to the appl i ed l oad . (1 ) 

85 

These fi ve cri teria  are al l attempts to insure that the state of s tress  

created by geometri cal constra int  i s  adequate to  make a potenti al l y  

duct i l e material  fa i l  i n  a brittl e manner . Impl i ed ,  but not stated 

d i rectl y i s  that the fracture mechani sm be bri ttl e .  It i s  a l so  

i n herent ly  assumed that a bri ttl e mechani sm of  crack propagation 

requ ires l es s  energy than a ducti l e  mechanism .  Stated d i fferentl y ,  

cri teri a for a val i d  pl ane s tra i n  test are based on macroscopic 

obs ervations  that are supposed to guarantee a mi croscopic mode of 

crack growth . For exampl e ,  cri terion (5 ) i nherentl y assumes that 

the presence of l i ps o� the s i de of the fracture s urface are evi dence 

of ducti l e  fl ow--the ori g i n  of the term 1 1 S hear l i ps ; 11 so that i t  i s  

i mpos s i b l e for bri ttl e fracture to occur on any pl ane other than that 

one whi ch i s  normal to the l oad . Th is  bri ngs to m i nd i nherent 

d i ffi cul t i es in descri b i ng fati gue fracture . From a macroscopi c 

v i ewpo i nt ,  l i ttl e or no gross pl astic  stra i n  i s  a ssoci ated wi th  the 

fa i l ure , so that the fracture m i ght be descri bed as  bri ttl e .  Yet on 

a mi croscop i c  scal e ,  there ts ampl e evi dence of tntense l ocal i zed 

pl asti c deformation , so that the fail ure i s  at  l east  accompanted by , 

or  tn i ttated due to , ducti l e  mechanisms . 

Some materi a l s are i ncapabl e of ducti l e  fracture whether 
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geometri c constraint i s  imposed or not , and for these material s ,  the 

l ower bound crack propagati on energy is measured whether or not the 

above cri teria are met . However , for al l other cl asses of materi a l s ,  

i t  i s  important to guarantee that the mi nimum energy for crack pro­

pagati on i s  measured . and that the cri terion fot' thi s deci s i on i s  

val i d .  Agai n ,  wi th reference to cri terion (5 } ,  i t  must be l<.no\�.tn 

whether the appearance of a macroscopic fracture pl ane i ncl i ned to 

the l oad axts impl ies a ducti l e  mode of crack propagation , or that a 

flat pl ane guarantees bri ttl e  mode , 

I tems (1 ) and (2} are based on experimental resu1 ts· whi ch have 

i ndi cated that i f  crack l ength and thi ckness were approximately 50 

times the radi us of the theoreti ca l  pl asti c  zone , rei atively high 

assurance exi sted that pl ane stra i n  I . e . , »brittl ea ) condi ti ons had 

been achi eved . Th i s  imposes a severe experimental l imttatton s tnce 

it requi res very thi ck specimens to measure Krc in inherently tough 

materi a l s .  From our data , i f  we assume that the correction factor 

obtai ned from an adjusted moment arm method i s  correct , then 2 . 5  
(Krclcry5 )2 

= 1 . 6 i nches whi ch i s  l arger than the Ki c thtckness of 

present work (l es s than on i nch ) . Other references (5 , 13 , for 

exampl e)  al so s upport the op in ion  that cri teria ( 1 ) and (2) are too 

severe . I t  i s  now accepted that thi s criterion i s  conservative and 

attention has been focused o n  procedur�s that mtght al l ow the test­

i ng of thinner specimens . I f  temporary l oad i nstabi l tty occurs 

duri ng l oadi ng so that the crack propagates i nstantaneousl y for 
some dt stance (i . e , � " pop- i n � 11 see Fi g u re 1 ,  page 6 ) , i t  i s  accepted 



that data for the test i s  val i d  to calcul at� Krc ·  However ,  i t  i s  

al so pos s i bl e  to measure Krc wi thout pop-i n based on empi ri cal and 

experimental observations ( F i gure 2 , page 8 ) . The i mpl i cati on i s  
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that pop- i n  woul d occur i n  a thi cker specimen . From the present 

resul ts obta i ned i n  thi s work , the occurrence of pop- i n  only i ncreases 

the apparent fracture toughness ! 

Macroscopi c toughness cal cul ations based on ASTM E�399 predi ct 

an apparent fracture toughness dependance on crack l ength and speci -
. 

men thickness as shown i n  F i gure 6 .  The mi·n'fmum value at B > Be or 

a > ac 1 s  taken to be the pl ane stra i n  (bri ttl e }  val ue , whi l e  the 

maximum apparent val ue i s  taken to be the pl ane stress (ductt l e l  

val ue.  Cons iderabl e data exi st to argue that the p l ane stress  v�1 ue 

1s accompani ed by 1 00 percent obl i que fracture , that the Krc val ue i s  

accompani ed by no obl i que fracture , that the fracture appearance 

varies conti nuous ly  between Kc and K1c (mi xed-model and that fra¢ture 

for 8 < Be or a < ac i s  1 00 percent obl i que . As previously ment1 oned , 

these macroscopic  observation� assume mi crosco p i c  modes of crack 

propagati on . Fl at fracture occurs onl y  by a bri ttl e mechantsm and 

s l ant (obl i que ) fracture occurs only by a ductil e  mechan i sm ,  

There are i n  fact tvto mi croscopic rr1odes o f  crack propagatton 

which  coul d resul t i n  an apparent macroscopi c brittl e fracture-.. 

general cl eavage and Yoi d  coa l escence and/or microcrack formatto� 
on the crack pl ane i n  advance of the ma1 n  crack front , Thilt 1 s ,  
fracture coul d occur by advanc� of the crack front from the sta r�er 

notch , or by the primary crack jumping  across non�fa t l ed a reas 



connecting mi crocracks or vo ids  i n  front of the primary crack t i p .  

S EM data i n  th i s  work does s how that i t  i s  pos s i bl e for 

ducti l e  mechan i sms to operate on a macroscopica1 l y  fl at fractu1e 

pl ane . 
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It was observed that thi s  fl at fracture pl ane was al way, normal  

to  the  app l i ed l oad , Fracture that occurred on macroscoptc ob� i que 

pl anes was observed to occur on ly by a ducti l e  mechanism .  That i s , 

macroscop i c  obl ique fracture occurred on ly  by duct i l e mechani�s but 

fracture on the macroscop i c  pl ane norma l to the l oad occurred �Y both 

duct i l e and bri tt1 e mechan i sms . Fracture arrest on the fl at  pl ane 

occurs by a ducti l e  mechan i sm ,  but thi s i s  vi s i bl e  to the nal<e� eye 

on the macroscopi c pl ane normal to the l oad . The point ts  tha� , 

even i n  the absence of vi s i bl e arrest on th i s  pl ane , fracture �ay 

parti al l y  occur by ducti l e  mechan i sm .  The rel ative amount of 

ducti l e  fracture on the normal pl ane does decrease as  the thi ckness 

i s  i n creased . Th i s  i mpl i es that m in imum thi cknesses requ i red to 

produce "fl at" fracture are not s uffi cient to guarantee total l y  

bri ttl e fracture o n  a mi croscopic  scal e .  Th i s  in  turn impl i es that 

m in imum th i cknesses to obta i n  a val i d  Kic fracture toughness  are 

l arger than that pred i cted by pl ots of percent fl at  fracture versu s  

thickness .  

Pel l i n i  ( 1 4 )  suggests that voi d  coa l escence to fo rm micrp� 

cracks in front of the matn crack ti p ts more l i kel y  as opposed to 

general  cl eavage for l ow rat ios of Krcla
ys ' but gives no numeri ca l 

va l ues  of thi s rati o ,  S EM data i n  this  work substantiate Pel l tn 1 ' s  



argument and i nd i cate voi d  nucl eati on on the crack pl ane adjacent to 

carbi de parti cl es . Krcl(jys for thts work i s  0 . 8  for moment arm 

corrected data , or between about 0 . 55 and 1 . 3 for the uncorrected 

drtta . 

As Pe1 1 i ni c l ea rl y  poi nts out , crack i n i tiati on s hou l d be 

consi dered a stra i n  1 imi ttng rather than stress 1 i·mtting criteri on ,  

and that Krc i s  an attempt to descri be the i ni ti atton of a crack tn  

a constrai ned vol ume . If crack i ni ti ation does not resul t tn pro­

pagati on across the total cross section , the s tra in energy rel ease 

rate (Gc ) i s  better abl e to descri be crack propagation . 

The use of Kl c to descri be fracture res i stance i s  popul ar 

s i nce i t  predi cts toughnes s 1 n  terms of a stress  parameter whtch can 

be treated analyti cal ly .  Analyti cal mechani cs is pres ently unabl e 
to treat a stra i n  cri terton for fracture i n  a material whi ch s hows 

I 

el asto-pl asti c behavi o r .  
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In practi ce , measurement of Krc requi res a s ertes of spectmen s  

o f  varyi ng thi cknes s , the maximum th i c kness bei ng 1 tm1 ted by the 

machine l oad capaci ty ,  the d i fficu l ties  inherent in handl i n g  tht k 

secti ons , and the d i ffi cul ty i n  obta i ning  a constant mic rostructure 

wf th section thi ckness (wh i c h  may approach s ix inches , etght tnches , 

or even greater) .  

Present data indtcate that  the Kic val ue ts not necessari ly 

accompanied by zero percent obl i que (ducti l e } fracture (al though i t  

is  l ess than one percent )  i f  the a s s umed correction factot� method i s  

right,  



90 

Wi th res pect to cri teri on ( 4 ) , the rati o  of Pm/Pq i n  thi s  work 

i s  c l ose to 1 . 5 i nstead of 1 . 1 .  



CHAPTER V 

CONCLUS IONS AND RECOMMENDAT IONS 

Concl us i on s  

The fol l owi ng concl us i ons can be drawn from the present work : 

1 .  The transi tion from ducti l e  to brittl e behav i or on the 

mi croscopi c  s cal e of the material  i s  equ ival ent to the trans i tion  

from pl ane s tress  to  pl ane stra i n  behavior  on the macroscopi c sca l e 

for al l cri teri on except the criterion that the PZS on the pl an v i ew 

be two percent of the thi ckness . A correct i on factor has been appl i ed 

to the data from thi s work , based on proportional moment arms , tn 

order to force Klc to decrease w ith  th i cknes s , rather than to i ncrea s e .  

Add i t i onal  substant i ation  o f  thi s behav ior  s houl d b e  obta i ned . How� 

ever , these trans i ti ons occur for t h i cknes ses  con s i derabl y l es s  than 

that requ i red by ASTM E- 399 cri teri on . 

2 .  The changes o f  the number o f  the chevron arrests , the 

pl ast ic  zone s i zes , s hear l i ps area , duct i l e  fract i on of fracture sur� 

face wi th chang i ng specimen th i ckness are good i nd i cations of the 

mi croscop i c duct i l e-bri ttl e tran s i t i on .  

3 .  The apparent fracture toughness  i ncreases or  remai ns con­

stant a s  the thi c kness i s  i ncreased i f  cal cul ated by Equation (7 ) 

but 1 t  decreases as  the thi ckness ts i ncreased if  a correctton 

factor is appl i ed by u s i ng Equat i on (1 0 ) . 

4 ,  The existing  crtterta for a val i d  Kl c test have been shown 
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to be overl y conservati ve ,  except those cri teri a uti l i zing t he PZS 

on the pl an v iew and the percent fl at fracture versus thi cknes s . 

The l atter two cri teria have been s hown to be i nadequate . The PZS 

cri terion need not be met to produce total bri ttl e fracture on a 

microscopic  scal e .  SEM data i nd i cate that the mi n imum thi ckness 

to g i ve 1 00 percent " fl at"  fracture is l es s  than the mi n imum thi ck­

ness requi red to g ive 1 00 percent bri ttl e fracture on a microscop i c  

scal e .  

Recorrrnendati ons  

A number of  recommendations can be  made  at th i s  time for the 

understand i ng of fracture behavior and through whi ch more refi ned 

cri teri a for val i d  Krc testing  may be devel oped . 

1 .  S i nce the fracture testing i s  notch sen s i tive , the three 

mi l notch rad i us i s  s uffi c i ent ly  l arge that i t  may requtre more 

energy to i ni ti ate cracks than a smal l er notch rad i u s . Therefore , 

i t  i s  recommended that s pecimens be pre-fatigue cracked to mi n imi ze 

the notch effect . Ki c i s  i n  real i ty a measure of  the requ i rements 

of mi n imum energy for crack i n itiati on fal l  owed by propagatio n .  

Therefore , i t  i s  neces sary to obta i n  a mi n i mum notch rad i u s , whi ch 

must be standard i zed , if  the apparent stress i ntens i ty required to 

obtai n a fracture surface (i , e , ,  after propagati on and whi ch  i s  

mi croscopi ca l l y  bri ttl e ) i s  to b e  a true materi a l  constant , Current  

mi n imum (and standard i zed ) notch radi t are prepared by fati gue 

l oadi ng , 

2 .  SEM mi croscopy must be appl ied more i ntens i ve ly  by 
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workers to j usti fy mi croscopi c mechani sms wi th observed macroscop i c  

behavi or to assure that a duct i l e  mode o f  propagat i on does not occur 

on the macroscopi c crack pl ane normal to the l oad . Thi s  i mpl i es ,  

agai n ,  the importance of a stra i n  cri teri on for fracture . 

3 .  An eval uati on program us i ng materi a l s of con stant K
rc  but 

d i fferent s tra i n  harden i ng coeffi c i ents wou l d  c l a ri fy the importance 

of stra i n  on the fracture pl ane i n  control l i ng the mode of propaga­

ti on . Thi s i s  of cri ti cal  i mportance s i nce macroscopi c appearance 
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of the fracture pl ane i s  used to deci de the val i d i ty of an i n i t i a t i on 

even t .  
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