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Abstract 
 

Plant biotechnology is a diverse field that is expanding from agricultural research 

towards environmental applications. The focus of this project was to exploit vegetative 

effects, such as photosynthesis and growth in genomic model organisms Arabidopsis 

thaliana and Chlamydomonas reinhardtii to 2,4,6-trinitrotoluene (TNT) with a goal to 

develop biomonitoring systems. Plants and algae have evolved with various biochemical 

pathways that have the potential to be exploited for the use of sensing explosives and 

chemical warfare agents in soil, water and air. The first part of the project involved 

characterizing the effects of TNT on germination and early seedling development of 

wild-type Arabidopsis thaliana. It was determined that 10 µM TNT was the tolerance 

level for Arabidopsis and was used to screen fast neutron irradiated mutant Arabidopsis 

to evaluate the phenotypic stress responses in the seedlings. TNT responsive mutant lines 

(lines 1, 2, 3, and 4) were selected on a basis of a leaf color change from dark green to 

pale green. The second part of the project was to determine the growth response of wild-

type and mutant Chlamydomonas reinhardtii to TNT. Growth response studies of wild-

type Chlamydomonas revealed that 3 µg/ml of TNT was the maximum TNT 

concentration that allowed growth. Insertional mutant lines were screened on 3 µg/ml 

TNT where one mutant (CL48) was selected on the basis of a color change from green to 

white. Growth response of CL48 in TNT indicated that this mutant line was 

hypersensitive to TNT compared with transformation recipient line and wild-type 

Chlamydomonas. The third part of the project involved using microarray technology to 

determine the differential gene expression of Chlamydomonas in response to TNT. 

Approximately 158 responsive genes were differentially expressed. Genes involved in 
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photosynthesis and energy metabolism were up-regulated in the presence of TNT. TNT 

may cause oxidative stress since many oxidative stress related genes were up-regulated. 

Among the down-regulated genes, the expression of cell wall-related genes was 

repressed. Several unidentified genes were also induced or repressed. The overall study 

promotes future work involving the identification of the genes that are involved in TNT 

response. 
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CHAPTER ONE 

 

Literature Review 

Introduction 

Explosives such as 2,4,6-trinitrotoluene (TNT) and other nitrated compounds are 

widely used in military ammunition. Their combustion and decomposition products can 

enter the environment from manufacturing activities, field usage and improper disposal 

(Best et al., 2001; Halasz et al., 2002). The presence of this compound in contaminated 

sites is a major concern. It is highly toxic to many organisms including humans by 

manifesting as aplastic anemia and hepatitis (Rosenblatt, 1980). One of the major field 

usages of TNT is in the use of anti-personnel landmines (APLs) in warfare. Landmines 

are small explosive devices that are placed underground and detonate upon activation. 

APLs can thus kill or injure combatants and non-combatants alike. Recently United 

Nations estimates placed the burden of landmine clearance at 33 billion dollars and 1100 

years using current detection technologies (Sylvia et. al., 2000). Humanitarian groups and 

several nations have called for the potential ban on landmines and thus, cost effective, 

and environmentally accepted detection systems are required. 

Anti-personnel mines come in various shapes and sizes and can be encased in 

metal, plastic, or wood containers. Typically they are shaped in the form of a disk with 

diameters from 20 to 125 mm, length from 50 to 100 mm and weighing only 30 g 

(Hussein & Waller, 2000). For TNT based landmines, TNT and its derivative, 2,4-

dinitrotoluene (2,4-DNT) permeate through the landmine components as well as cracks 
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and pores through the mine casing (Sylvia et al., 2000). Studies on the environmental 

effects of explosives and their transport through the soil indicate that a detectable amount 

of explosive reaches the surface soil (George et al., 1999). At the surface, some of the 

TNT degrades to 4-amino-2, 6-dinitrotoluene, but considering greater than 99% of the 

explosive material is TNT (Sylvia et al., 2000), the most effective sensor that samples the 

surface soil would detect a TNT signature.  

The broader concept of this project involves the development of biosensors based 

on using whole plant systems (phytosensors). The seeds can be sown over a minefield in 

a manner that would result in uniform coverage. The plants would germinate and those 

located over a landmine would exhibit a distinctive phenotypic change. This would allow 

the detection of TNT in the soil thereby locating the landmine areas. 

 

Phytotoxicity TNT and the transformation of TNT by plants  

 There are three main classes of high explosives that include the nitroaromatics 

(TNT), nitroamines (hexahydro-1, 3, 5,- trinitro- 1, 3, 5- triazine (RDX)) and nitrate 

esters (glyceroltrinitrite (GTN)). Historically, TNT is the most frequently used explosive 

and is associated with widescale soil contamination. It belongs to the nitroaromatic group 

which are characterized by an aromatic ring and three nitro groups (Esteve-Nunez et al., 

2001).  

The potential for a particular plant species to be a phytosensor is largely 

dependant on its ability to tolerate the contaminant; consequently many research groups 

have studied phytotoxicity thresholds for explosives (Burken et al., 2000). Research in 

cell culture, germination, and more recently mature plants has been explored. 
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 Phytotoxicity appears to be species-dependent and is also affected by factors such 

as growth stage and the bioavailability of the contaminant (Scheidemann et al., 1998). 

Recent studies conducted by Peterson et al., (1996) have reported the effect of TNT on 

the germination and seedling development of tall fescue (Festuca arundinacea) 

demonstrating a linear effect of TNT concentration on germination. Studies on two other 

species, switchgrass (Panicum virgatum) and smooth bromegrass (Bromus inermis) show 

differing results. Concentrations of up to 15 mg/L (66 µM) did not affect switchgrass 

germination rate but at lower concentrations (7.5 mg/L TNT (33 µM)) stunted root 

growth of smooth bromegrass (Peterson et al., 1998). These data suggest that 

phytotoxicity of TNT is species-dependant. 

The uptake of TNT has been documented for many plant species. Once the 

explosive compound has been uptaken and metabolized by the plant, both oxidation and 

reduction products are produced. Overall, studies have reported aerobic reduction 

products of TNT with the major products being monoaminated TNT metabolites (4-

amino-2, 6-dinitrotoluene, 2-amino-4, 6-dinitrotoluene) (Burken et al., 2000). Type I 

nitroreductase enzymes have also been proposed to catalyze the reduction of TNT 

(Medina & McCutcheon, 1996). Goheen et al., (1999) isolated a ferrodoxin NADP+ that 

is responsible for the conversion of TNT to 4-hydroxylamino-2, 6-dinitrotoluene. 

Thioredoxin reductase in Arabidopsis thaliana was shown to catalyze the redox cycling 

of TNT via a single electron reduction (Miskiniene et al., 1998).  

Oxidation processes in the metabolism of TNT in plants have also been observed. 

Bhadra et al., (1999) isolated six metabolites that were distinct from reduction products. 

These included 2,4-dinitro-6-hydroxy-benzyl alcohol, 2-amino-4, 6, dinitrobenzoic acid 
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and 2,4-dinitro-6-hydroxytoluene. These products may occur in plants because oxidation 

is the primary reaction in the detoxification of pesticides and herbicides (Bolwell et al., 

1994). 

It is well known that plants uptake and metabolize TNT into various compounds 

via enzymes and co-factors. Plants have many biochemical pathways that are affected by 

abiotic stress responses. Exploring gene expression in the presence of TNT has a 

potential to evaluate gene expression regulation and the corresponding biochemical 

pathways that are involved in TNT metabolism. 

 

Phytotoxicicty and plant metabolism of RDX and HMX 

Toxicity of these compounds is considerably less than that for TNT however, in 

general, nitroamines are toxic (Harvey et al., 1997, Hawari J, 2000) and are considered 

possible carcinogens. RDX is also known to have adverse effects on the central nervous 

system (Burken et al., 2000). The effects of RDX on plants have indicated that it is less 

toxic to plants than TNT. Research conducted by Lucero et al., 1999 determined the 

toxicity of both RDX and HMX to Datura innoxia. The cell cultures tolerated 

supersaturating concentrations up to 270 µM RDX and 17 µM HMX indicating that soils 

contaminated with HMX or RDX will not likely inhibit plant growth (Lucero et al., 

1999). 

As predicted, the uptake and metabolism of RDX is different from that of TNT in 

plants. Best et al, 1999 treated aquatic plants with [U-14C]-RDX in hydroponic 

incubations. The uptake of [U-14C]-RDX derived 14C in plants was slower than that of 

TNT and transport was significant where 23 % (sweet-flag, Acorus calamus) and 81 % 
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(parrot feather, Myriophyllum aqaticum ) of the total 14C located in the shoots. Higher 

concentration of RDX occurred at sites where new plant material was synthesized (Best 

et al., 1999). Concentration of up to 21 mg/L of RDX did not affect the growth or the 

transpiration rate of hybrid poplars in a hydroponic study (Thompson et al., 1999). 

Accumulation of RDX has also been studied in garden vegetables and agricultural crops 

(Larson, 1997) such as maize, lettuce and tomato. Uptake of RDX by maize (Zea mays), 

soybean (Glycine max), sorghum (Sorghum sudanese), and wheat (Triticum aestivum) 

was similar to other crops species (Burken et al, 2000). Concentrations of RDX in plant 

species were directly proportional to the RDX levels in the hydroponic solutions. 

Furthermore, properties of the soils have a considerable effect on plant uptake, limiting 

the uptake of RDX to the shoots.  

 HMX is another high explosive that has replaced TNT and RDX in numerous 

military applications because of its higher chemical yield and stability. Uptake and 

translocation of HMX in aquatic plants and hairy root cultures of Catharanthus roseus 

was studies by Bhadra et al., (2001). Plants were exposed to 5 mg/L of HMX where 

aquatic plants showed no transformation of HMX and minimal biological activity by 

axenic roots (Bhadra et al., 2001). Studies on the long-term fate of HMX in intact plant 

tissue were determined in hybrid poplar trees. HMX was not toxic to the hybrid poplar 

cutting at saturated concentrations. Radiolabelled [U-14C] HMX was translocated and 

accumulated in leaves and no metabolites were observed (Yoon et al., 2002). 
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Model organisms 

Arabidopsis thaliana 
 
 Arabidopsis thaliana is a small weed that belongs to the Brassicaceae family. It 

occurs throughout the temperate regions of Europe, Asia and North Africa and has been 

introduced to other areas including North America and Australia. Arabidopsis thaliana 

grows vegetatively as a small rosette of about 2-5 cm in diameter from which a flowering 

stem is produced. Flowers are typical of crucifers and produce four sepals, four petals, six 

stamens and a single ovary consisting of fused carpels. Arabidopsis thaliana is self-

fertile, producing several hundreds siliques that contain about 50 seeds and shatter upon 

ripening for seed dispersal (Anderson and Wilson, 2000). 

  Arabidopsis is an attractive experimental model. In comparison to other 

angiosperms, Arabidopsis has a relatively small genome of 125 MB in total (Arabidopsis 

Genome Initiative, 2000). Its genome has relatively little repetitive DNA, with over 60 % 

of nuclear DNA having a protein coding function (Meyerowitz, 1994). Arabidopsis has a 

relatively short life cycle of six to eight weeks.  

One of the advantages of Arabidopsis thaliana is the availability of mutants that 

have been generated via a range of mutagenesis strategies. Mutants are particularly 

important in the analysis of physiological and developmental specific pathways. Many 

genes are identified through generating abnormalities in gene function that results in a 

change in phenotype. Classical methods of mutagenesis have included the use of 

chemicals such as ethylmethane sulfonate, nitrosomethyl urea and irradiation with X-

rays, fast neutrons, or heavy charged particles (Anderson and Wilson, 2000). 
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 Fast neutron ionizing irradiation has been shown to be an effective mutagen for 

Arabidopsis. It induces chromosome breaks such as deletions and rearrangements 

(Dellaert, 1981). Roughly two thousand five hundred lines treated with fast neutrons at a 

dose of approximately 60 Gy (Grays of irradiation dose) are required to inactivate a 

particular gene. The Arabidopsis genome contains about 25 000 genes, therefore it is 

expected that about 10 genes are randomly disrupted in each line (Li et al., 2001).  

 

Chlamydomonas reinhardtii 

The green alga Chlamydomonas reinhardtii is an attractive model species for 

research because it is unicellular and has generation time of 5 hours. Growth can take 

place in liquid culture or on solid media where it forms single colonies. Cells can grow 

on simple medium of organic salts, using photosynthesis to provide energy. They can 

also thrive in the absence of light if acetate is provided as an alternative source of carbon 

(Harris, 1988). Chlamydomonas has a relatively small genome size of 100MB and has 17 

chromosomes. One major advantage of Chlamydomonas in research is the ease of 

creating mutants that allow identification of gene functions. The most common method 

used to create such mutants involves using plasmids to create gene knock-out insertional 

mutants. The plasmid pArg7.8 contains the arginosuccinate lyase (ASL) gene, which is 

the last enzyme of arginine biosynthetic pathway that converts arginosuccinate into 

arginine (Debuchy et al., 1989) which is required in cell growth. Insertional mutagenesis 

is used to generate mutants by the nuclear transformation of arg- cells with the pArg7.8 

vector that contains the ASL gene, thus, rescuing the arginine requirement. Since the 

introduced DNA integrates randomly into the nuclear genome, each event potentially 
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disrupts a gene that may alter the phenotype. These mutants can be rescued on arginine 

free media and further analyzed to determine the disrupted gene function.       

 Many studies have shown that algae display a response to environmental stress 

stimuli. The fluctuation of a number of different environmental factors including levels of 

specific nutrient or the presence of a xenobiotic will alter the growth rate of the 

photosynthetic organisms. The metabolic state of the organism alters the rate of growth. 

Under extreme conditions, when essentially all growth stops, significant changes may be 

observed in pigmentation, activities of various metabolic processes and cell morphology. 

The growth response and toxicity effects of green algae in contaminated TNT water are 

important in designing algae-based detection systems. In addition to terrestrial pollution, 

TNT can also pollute water. Several studies have been reported on TNT toxicity to alga. 

Selenastrum capricornutum showed no effect on growth at concentrations up to 3 mg/l 

TNT but toxic effects were noticed at higher concentration (Smock et al. 1976, Tadros et 

al., 2000) The effect of TNT on Microcystis aeruginosa was much less pronounced than 

was on S. capricornutum. Cells growth was uniform through 15 mg/l of TNT but at 25 

mg/l TNT the cell culture growth was completely inhibited (Smock et al. 1976).  

 

Microarray analysis 

Microarray technology is a powerful tool that allows the analysis of genome-scale 

gene expression (Wiseman and Ohlrogge, 2000). It consists of a microarray chip on a 

glass slide that contain cDNA sequences or oligonucleotides representing individual 

genes. A series of arrays will thus contain all genes of a genome. These arrayed 

sequences are hybridized simultaneously to a two-color fluorescently labeled cDNA 

 8



probe pair prepared from mRNA samples of different tissue type or under differing 

conditions to allow direct comparative analysis of gene expression (Seki et al, 2001). 

Traditional methods of determining gene functions generally work on single gene 

analysis per experiment, which means that the throughput is very limited and the inter-

relation of gene function is hard to obtain. Alternatively, DNA microarrays can monitor 

the whole genome on a single chip which gives a better understanding of the interactions 

among thousands of genes simultaneously (Schena et al., 1998). The underlying principle 

of DNA microarray is hybridization. The array has orderly arranged ESTs (expressed 

sequence tag) and provides a medium for matching known and unknown DNA samples 

based on base-pairing. Samples are labeled with a reporter molecule that identifies their 

presence. The reporters currently used in comparative hybridization are fluorescent dyes 

such as rhodamine and fluorescein or Cy3 and Cy5. To observe the colors the fluors are 

stimulated with a specific frequency of light by a laser. The wavelength of emitted light is 

then used to measured by a detector which measures fluorescence (Schena et al., 1998, 

Seki et al., 2001) 

 Comparative hybridization experiments can reveal genes whose transcription 

changes in response to an environmental stimulus, such as TNT. In the simplest 

experiment, the sample is subjected to the stimulus, and allowed to reach a steady state of 

transcription. Transcription levels in the subjected samples can be compared to the 

controlled sample. Samples can also be subjected to a stimulus with removal of samples 

at successive points in time. This would reveal gene transcription patterns change from 

the old to the new steady state. Temporal studies can also identify the order of gene 
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expression providing evidence about which genes control the response directly and which 

genes are only indirectly affected (Schena et al., 1998).  
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CHAPTER TWO 

 

Phytotoxicity studies of wild-type Arabidopsis thaliana and the screening for leaf 

color response of mutant lines in TNT 

 

Abstract 

 The present study involves the development of a model plant-based biomonitoring 

system that responds to 2,4,6-trinitroluene (TNT) contaminated environments. This goal 

was advanced by determining the growth response of wild-type (Col 1) and mutant 

Arabidopsis thaliana plants to TNT. Growth analysis of wild-type Arabidopsis in TNT 

revealed that 10 µM TNT was the phytotoxicity tolerance threshold of Arabidopsis. 

Germination frequency was less sensitive to TNT than seedling development. Rosette 

diameter and the dark green leaf color of seedlings in 10 µM TNT was similar to the 

control seedlings growing in 0 µM TNT. Growth at concentrations higher than 10 µM 

TNT resulted in yellowing of the leaves, smaller rosette diameters and short root lengths. 

In order to select for TNT responsive mutants that exhibit a difference in leaf color, 

mutant lines from fast neutron irradiated seeds were screened on 10 µM TNT. Four 

putative TNT responsive mutant lines were isolated on the basis of a leaf color change 

from dark to pale green. Mutant line 1 did not have a distinct leaf color response in the 

subsequent generation, however lines 2, 3, and 4 exhibited pale green leaf color 

phenotype. TNT specificity of the leaf color response in the subsequent generation was 

determined by growth in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and high salinity 
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media. Results indicated that mutant line 4 exhibited a pale green leaf color in response to 

TNT but not in RDX or NaCl, while lines 1, 2, and 3 exhibited similar pale green leaf 

color phenotypes in RDX and TNT. The isolation of these mutant lines indicate that 

mutations in the genes may be involved in TNT responses. 

 

Introduction 

Explosive compounds such as 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-

trinitro-1,3,5-triazine (RDX) are major components in military ammunition (see Figure 

1). These compounds are disseminated into the environment through ammunition 

production plants, field usage and improper disposal (Best et al., 1997; Harvey et al., 

1997, Halasz et al., 2002). An estimated 0.82 million cubic meters of soil at former 

military installations throughout the US are contaminated with TNT (Peterson et al., 

1998). TNT is toxic and carcinogenic to many organisms including humans and it has 

been shown to cause liver injury and anemia (Won et al., 1974, Gong et al., 1999). 

A major source of TNT contamination in soil occurs through the existence of 

buried explosive devices such as anti-personnel landmines. Over time, the explosive 

material, TNT and its derivative 2,4-dinitrotoluene (2,4-DNT) permeates through the 

cracks and pores of the mine casing, thereby contaminating the soil and ground water 

(Sylvia et al., 2000). Landmines themselves are also a major threat as they can kill or 

injure combatants and non-combatants alike. It is estimated that there are more than 80 

million landmines buried worldwide and cause 15,000-20,000 casualties per year 

(Stephnié et al., 2003). Clearance of these landmines remains dangerous and 

underfunded, therefore the development of a cost effective and environmentally accepted  
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TNT RDX 

 
Figure 1: The structures of RDX and TNT.  
 

detection system is vital.  In addition, low-cost remediation systems need to be developed 

in order to clean landmine sites that are contaminated with TNT.  

A rapidly developing technology is phytoremediation, which is characterized by 

the use of vegetative species for in situ treatment of land areas polluted by a variety of 

hazardous substances (Cobbett and Meagher, 2002, Bizily et al., 2003). One of the first  

steps in developing a phytoremediation system involves phytoxicity studies of the desired 

plant species (Wang et al., 1995). Phytotoxicity studies are common methods used to 

evaluate the toxic range and tolerance threshold of the contaminant to the plant. It is one 

of several parameters established in order to determine the remediation potential of a 

particular plant species (Peterson et al., 1998). Phytotoxicity tests are also important tools 

in defining the criteria or reference values for ecological risk assessment and 

characterizing processes monitoring contaminated soils (Robidoux et al., 2003; Gong et 

al., 1999). 

Genetically engineered plants possessing the capabilities of other bioremediating 

organisms such as bacteria and yeast may constitute an efficient tool for removing 

contaminants in soil (Moffat, 1995; Thomas et al., 2003). For example, a mammalian 
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gene metallothionein (Gleba et al., 1995) and the bacterial gene organomercurial lyase 

(Bizily et al., 2003) have been engineered into Arabidopsis thaliana to assess the effect 

on the uptake of harmful heavy metals such as mercury by the plant. Studies conducted 

by Hannink et al (2001) have developed transgenic tobacco that remediate explosive 

contaminants such as TNT. The tobacco plants expressed nitroreductase enzyme from the 

bacteria, Enterobacter cloacae.  

In addition to phytotoxicity studies, research to understand the genetic basis for 

phenotypic responses to toxic substances may lead to the development of phytosensors. 

Phytosensors are plants that produce a phenotypic response to specific environmental 

stimuli. Responsive DNA elements described in phytotoxicity studies may be used in 

developing transgenic plants that respond to specific contaminants. The first step would 

involve conducting phytotoxicity studies to determine the tolerance of a contaminant to 

the plant and more importantly it would involve the isolation of plant genes that are 

responsive to TNT. Manipulations of these genes may result in a visible phenotype that 

would occur only in the presence of the contaminant.  

In this study, Arabidopsis thaliana (Arabidopsis) was used as a model system. It 

has a small size and short life cycle (Page and Grossniklaus, 2002) and the genome has 

been sequenced. Determination of function of all sequenced genes is the focus of current 

research (Scholl et al., 2000, Page and Grossniklaus, 2002). The success of Arabidopsis 

as a model organism is largely the result of its amenability to forward genetics screens.  

Forward genetics begins with the identification of a mutant phenotype, and follows the 

isolation of the gene involved in the mutation (Krysan et al., 1999). Endogenous genes 

may be disrupted by chemical treatments, irradiation or insertional mutagenesis. 
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Knockout techniques are powerful tools that allow the characterization of gene functions 

and the analysis of physiological and developmental pathways.  

In this study, commercially available mutagenized Arabidopsis seeds were used. 

The seeds had been mutagenized with fast neutrons, which is a highly efficient mutagen 

that produces deletion mutations or chromosomal rearrangements (Li and Zhang, 2002; 

Li et al., 2001). Optimal dosage with the fast neutron treatment (60 Gy) was used to 

saturate the Arabidopsis genome. According to Li et al., 2001, approximately 2500 

mutant lines should be screened in order to saturate 80 % of the genome. At a single 

dosage of 60 Gy, it is estimated that 10 genes are randomly deleted in each line.  

In this report the growth response of wild-type Arabidopsis to TNT was studied. 

Phytotoxicity studies determined the TNT tolerance concentration of Arabidopsis. This 

concentration was used to screen mutants that exhibited a change in leaf color in the 

presence of TNT. The subsequent generation of the putative TNT responsive mutants 

were further characterized for their stability and specificity to the leaf color response by 

comparing leaf color response in other abiotic stress conditions. 

 

Materials and Methods 

Phytotoxicity studies of wild-type Arabidopsis  

Plant material and TNT cultivation conditions 

Wild-type Arabidopsis thaliana (ecotype Columbia) were used for the 

phytotoxicity studies. Seeds were surface sterilized by treatment for 5 min in 20 % (v/v) 

commercial bleach (NaHClO) containing 2 % tween. Seed were periodically agitated and 

rinsed with sterile water. TNT (Chemical services, West Chester, PA) concentrations of 
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0, 1, 5, 10, 20 and 30 µM in MS media (Murashige and Skoog, 1962) solidified with agar 

was prepared from a 100 µM TNT/MS stock solution. The solutions were autoclaved at 

120 °C for 25 min and poured into sterile 10 cm diameter sterile polystyrene Petri dishes. 

Seeds were sown in a water suspension using a Pasteur pipette at density of 30 regularly 

spaced seeds per plate. Primary root length was determined by arranging seeds in a row 

in TNT supplemented growth media on a Petri dish, orienting this in a vertical position. 

Seed dormancy was broken by cold treatment at 4 °C for 2 days. Growth was encouraged 

at optimal Arabidopsis growth of 25 °C day and 23 °C night temperatures, under cool 

fluorescent lighting with an 18-hour photoperiod.  

 

Growth parameter measurements 

 Germination studies were conducted for each TNT treatment. Germination was 

quantified by recording the number of newly emerged radicles and converted to 

germination frequency (percentage of seed capable of completing germination in 14 

days). The rosette diameter was measured for each seedling 14-days post incubation and 

root lengths were measured 10 days post-incubation using a standard metric ruler (cm). In 

addition, leaf color was visually observed and recorded. Each TNT concentration was 

replicated in triplicate. The data was statistically analyzed by ANOVA, and the means 

were compared using Student-Newman-Keuls multiple comparison test at P<0.05 

(Graphpad Instat, San Diego, CA). 
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Mutant screening analysis 

Plant material and growth condition 

Mutant seeds of Arabidopsis were derived from mutagenesis with fast neutron 

irradiation (55Gy), carried out by a commercial supplier (Lehle Seeds, Round Rock, TX). 

Five screening experiments were conducted. Five parental groups that contained M2 

(second generation of seeds of a mutant line) seeds derived from approximately 1,358 M1 

parental lines were the seed source for each screening experiment. The mutant seeds were 

sown (equally spaced) by Pasteur pipette in a water suspension, in 15-mm Petri plates 

containing MS solid culture media supplemented with TNT to a final concentration of 10 

µM TNT. After a cold treatment (2 days at 4 °C) to break dormancy, seeds were grown in 

a controlled environment growth chamber at 25 °C day and 23 °C night temperatures, 

under cool fluorescent lighting with an 18-hour photoperiod. The change in the leaf color 

phenotype was observed 14 days after sowing. Putative TNT responsive mutants were 

identified on the basis of a difference in leaf color from the wild-type individuals. In 

addition, the number of non-germinating seeds, albino seedlings, sterile, and lethal 

mutants that exhibited a different color from the wild-type seedling were recorded for 

each experimental screen. All putative TNT responsive plants were transplanted to soil 

for M3 seed collection.  

 

Screening of putative TNT responsive M3 seeds in TNT and other stress 

conditions 

Putative TNT-responsive mutant lines (15 seeds per mutant line) were tested on 0, 

1, 5, 10, 20 and 30 µM TNT in order to confirm the leaf color response and to observe 
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segregation. Two weeks post germination, the seedlings were observed for their leaf color 

phenotype. In order to determine the specificity of the putative TNT leaf color response, 

the selected mutants were grown in two other abiotic stress environments. The selected 

mutants were grown on MS growth media supplemented with 0, 1, 5, 10, 20 and 30 µM 

RDX (Royal Demolition Explosive). The mutant lines were also treated with various 

concentrations of sodium chloride (NaCl) ranging from 50 mM to 200 mM NaCl, to 

induce salinity stress.  

 

Results 

Germination and seedling growth of wild-type Arabidopsis 

After analyzing the data it was apparent that germination frequency was less 

sensitive to TNT than was seedling development. There was no significant difference 

(P<0.05, Student-Newman-Keuls multiple comparison test) in the germination frequency 

between TNT treatment concentrations (0 µM – 30 µM TNT) with germination 

percentages ranging from 91 % - 93 % (see Figure 2). At TNT concentrations of 0, 1, and 

5 µM TNT, there was no significant difference (P<0.05, Student-Newman-Keuls multiple 

comparison test) in rosette diameter 14 days after the start of the experiment and the 

seedlings had a rosette diameter of 1.4 ± 0.04 (means ± standard deviations), 1.3 ± 0.3,  

and 1.5 ± 0.2 cm respectively (see Figure 2). However, higher concentrations of TNT 

resulted in significant differences between rosette diameter (P<0.05, Student-Newman-

Keuls multiple comparison test), where the diameters at 10 µM, 20 µM and 30 µM TNT  
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Figure 2: The growth parameters of wild-type Arabidopsis in TNT. A: The germination 

frequency. B: The effect of TNT on rosette diameter. C: The root length in the presence 

of TNT. Columns denoted by differing letters are significantly different (P<0.05). 

Vertical bars represent standard deviations. 
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were 0.9 ± 0.08, 0.3 ± 0.04, and 0.2 ± 0.001 cm respectively. Primary root growth of 

wild-type Arabidopsis was determined 10 days post incubation (see Figure 2). The root 

lengths at each TNT concentration differed significantly between each other (P<0.05, 

Student-Newman-Keuls multiple comparison test). Root lengths at 0 µM TNT and 10 

µM TNT were 3.9 ± 0.1 cm and 0.6 ± 0.04 cm respectively and indicated a considerable 

decrease in root growth in the presence of TNT. Seedlings growing in 20 µM TNT 

resulted in a 95 % decrease in root length with a root length of 0.2 ± 0.11 cm compared to 

4.0 ± 0.05 cm to that of control. The highest TNT concentration (30 µM TNT) resulted in 

excessively short roots with root length measurements of < 0.1 cm. The effect of TNT on 

Arabidopsis leaf color phenotype was also visually observed. TNT concentrations up to 

10 µM TNT did not affect leaf color and were similar to the seedlings growing in 0 µM 

TNT, however at 20 µM and 30 µM TNT, the seedlings indicated signs of leaf necrosis 

and yellowing (see Figure 3). 

To determine the TNT tolerance level for Arabidopsis, the growth parameters of 

the wild-type Arabidopsis in TNT were analyzed collectively. Growth response studies 

revealed that the TNT tolerance level for Arabidopsis was 10 µM TNT. At 10 µM TNT 

there was a significant difference in the rosette diameter to the seedlings growing in 0 µM 

TNT (P<0.05) however the seedlings had a green leaf color. Concentrations above this 

resulted in the inhibition of growth. In order to isolate TNT responsive mutants, the 

mutants were screened on 10 µM TNT. Wild-type seedlings growing in this 

concentration did not exhibit a change in leaf color to that of the seedlings growing in   
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Figure 3: Wild-type Arabidopsis growing in MS growth media supplemented with TNT. 

A: Control, 0 µM TNT. B, C, D: 1. 5. 10 µM TNT respectively; seedlings had similar 

leaf color to the control plant. E, F: 20 and 30 µM TNT; seedlings growth was stunted 

and exhibited a yellow leaf color phenotype. 
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0 µM TNT and thus mutants that displayed a different leaf color at 10 µM TNT enabled 

the selection of TNT responsive mutants. 

 

Screening of mutant Arabidopsis that respond to TNT  

M2 seeds were sown and mutants that exhibited visual differences in the leaf color 

phenotype to the control were selected (see Figure 4A). Five screening experiments were 

conducted, where mutants that showed variation in leaf color phenotype were assigned 

into phenotypic classes (see Table 1). The putative TNT responsive mutants were 

selected from these classes.  

A total of 11,250 M2 seeds originating from the five parental groups were sown on 

growth media supplemented with 10 µM TNT. Out of the 11,250 M2 seeds sown,  

 

Table 1: Quantitive profile of the screening process of fast neutron irradiated mutants 

grown in 10 µM TNT supplemented growth media. 

 

Screening     Parental     M2 seeds              Early lethals              Mutants exhibiting variation in         Putative TNT  

Experiments    group         sown                                                     leaf color from the control               responsive       

                                        No germination      Albino                   Sterile         Lethal               mutants (fertile)  

1      P1              3000            295              ND                        1                5                  2 

2                 P2              1500            121               39                         1                2                   1 

3                 P3              3450            288               63                         2                9                   1   (line 1)      

4                 P4              1320            139               37                         1                7                   1   (line 2) 

5                 P5              1980            198               48                         1                6                   2 (line 3, line 4) 
Total                           11,250         1,041             187                      21              22                  7 
 

ND: not determined 
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9.25 % did not germinate and approximately 107 albino plants were isolated (see 

Table1). Each screening experiment yielded Arabidopsis mutant seedlings that did not 

have green leaves. These colors included white (albino), yellow and pale green. The 

selected mutants were further classified into fertile TNT – responsive mutants, sterile and 

lethal mutant seedlings. More than half of the selected mutants bore lethal-effect 

mutations dying before completing their life cycle, or were sterile and did not produce 

seeds. Putative TNT responsive mutants that exhibited a change in leaf color are shown 

in Figure 4C-F. Out of the seven putative TNT responsive mutants, only four were 

selected for further analysis. These were line 1 and line 2 which originated from M2 lines 

found in parental groups 3 and 4 respectively. Line 3 and line 4 were derived from M2 

lines found in parental group 5. Putative TNT responsive mutant lines 2, 3, and 4 

exhibited a pale green color in their leaves when grown in 10 µM TNT, whereas wild-

type Arabidopsis had a dark green leaf color ( see Figure 4D-F). Mutant line 1 exhibited 

pale green petioles with dark green leaf color similar to wild-type (see Figure 4C). This 

phenotypic response was not visually distinctive. 

M3 seeds from the putative TNT-responsive mutants were further analyzed for 

their leaf color response. In this study, these mutant lines 2, 3, and 4 did not segregate in 

the leaf color phenotype and the M3 progeny exhibited pale green leaf color phenotype in 

response to TNT (see Figure 5). It was noted that line 1 did not have a distinct pale green 

stem color. 

To determine the specificity in the TNT leaf color phenotype, the putative TNT 

responsive M3 seedlings were screened on two other abiotic stress environments. The  
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Figure 4 A: Screening of fast neutron irradiated M2 Arabidopsis seeds on 10µM TNT. 

The circled seedlings (orange) were selected on the basis of color difference to that of the 

control wild-type plant (yellow circle). B: Wild-type Arabidopsis (ecotype Columbia) C: 

Putative TNT responsive mutants, Line 1 D: Line 2, E: Line 3, F: Line 4. These 

seedlings exhibited a pale green leaf color response in the presence of TNT. 
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Figure 5: M3 seedlings of the putative TNT – responsive mutant lines selected from the 

screening experiments. Panel A, C, E, G, I are seedlings growing in 0 µM TNT and panel 

B, D, F, H, J are seedlings growing in 10 µM TNT. A and B: Wild-type Arabidopsis 

exhibit dark green leaf color phenotype in both TNT environments. C and D: Line 1 

seedlings did not exhibit a distinct leaf color change from wild-type. E and F: Line 2, G 

and H: Line 3 and I and J: Line 4, all seedlings exhibited a pale green leaf color 

response in the presence of TNT. 
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response of the mutant seedlings to RDX and NaCl is illustrated in Figure 6. At 10 µM 

RDX line 1, 2, and 3 exhibited a pale green leaf color phenotype, which was similar to 

the response of wild-type Arabidopsis. Both line 2 and 3 had similar leaf color 

phenotypes in TNT and RDX. Seedlings growing in these conditions resulted in a pale 

green leaf color. 

It was interesting to note that line 4 displayed a pale green leaf color growing in 

TNT, however in RDX the leaf color was similar to the seedlings growing in 0 µM TNT 

and RDX, indicating some signs of specificity. At 50 mM NaCl the mutant lines and 

wild-type exhibited a dark green leaf color phenotype similar to wild-type. 

 

Discussion 

 The initial experiments conducted in this study described the phytotoxicity of 

wild-type Arabidopsis to TNT. It was determined that 10 µM was the phytotoxicity 

threshold concentration that allowed growth of seedlings. Screening mutant Arabidopsis 

seeds on this concentration allowed the isolation of TNT responsive mutants that have a 

difference in leaf color from the dark green wild-type seedlings. Four mutant lines were 

isolated that exhibited a pale green leaf color in response to TNT. Specificity studies 

indicate that line 4 exhibits a TNT specific leaf color response. 

The germination frequency of wild-type Arabidopsis in TNT environments was notably 

less sensitive than was seedling growth. A high percentage of germination was achieved 

at the highest concentration of TNT. The process of seed germination depends largely on 

the energy reserves in the cotyledons, and this may make germination less 
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Figure 6: Specificity studies conducted on M3 putative TNT - responsive mutant lines. 

Lines were grown in RDX and NaCl stress environments. Panels A, C, E, G, I are 

seedlings growing on 10 µM RDX and panel B, D, F, H, J are seedlings growing on 50 

mM NaCl. A: Wild-type Arabidopsis C: Line 1, E: Line 2, G: Line 3, exhibited a pale 

green leaf color phenotype in RDX. I: Line 4 exhibits a dark green leaf color response 

similar to wild-type seedlings grown in 0 µM TNT. B, D, F, H and J: wild-type and all 

mutant lines exhibited dark green leaf color phenotype.  
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sensitive to environmental pollution (Gong et al., 1999). As a result, seed germination 

was not a good indicator of phytotoxicity in this study. However, damage that occurred 

during seed germination in TNT environments could be accumulative and may become 

apparent during seedling growth (Gong et al., 1999). Studies conducted by other 

researchers have indicated that TNT does indeed affect germination of certain plants 

species. According to Peterson et al., 1996 the germination of tall fescue (Festuca 

arundinacea) decreased with increasing TNT concentrations, with substantial reductions 

at 45 and 60 mg/l TNT. 

Smooth bromegrass (Bromus inermis) germination decreased with an increase in 

TNT, however switchgrass (Panicum virgatum) germination was unaffected by TNT 

(Peterson et al., 1998). These results indicate that the effect of TNT on germination is 

species dependent.  

The effects of TNT on Arabidopsis seedling development allowed the 

phytotoxicity tolerance threshold to be determined. Arabidopsis seedlings were able to 

tolerate 10 µM TNT. It was noted that root growth was more sensitive to TNT than 

rosette size and leaf color response. Root length exhibited a negative growth relationship 

with TNT where exposure to a low concentration of TNT such as1 µM TNT resulted in a 

considerable decrease in root growth. Rosette diameter decreased at TNT concentrations 

greater than 5 µM TNT.   

According to Peterson et al., (1996), early seedling development (roots and 

shoots) of tall fescue (F. arundinacea) decreased linearly with the increase of TNT 

concentration when grown in sterile growth media. Plants were able to maintain at 
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concentrations of 30 mg/l TNT (44 µM TNT). Concentrations up to 15 mg/l (22 µM) of 

TNT did not affect the root growth of switchgrass, however, the root growth of 

bromegrass was reduced at concentrations above 7.5 mg/l TNT (11 µM TNT). Gong et 

al., (1999), reported the phytotoxicity of two monocotyledons, Avena sativa (oat) and 

Triticum aestivum (wheat) and two dicotyledons, Lepidium sativum (cress) and Brassica 

rapa, (turnip) growing in soil spiked with TNT. They concluded that oat and wheat were 

more tolerant of TNT than the dicotyledons. Oat was capable of tolerating 1600 mg TNT 

kg-1of soil. Earlier studies, however, showed differing trends of phytotoxicity to 

monocotyledons. Görge et al., (1994) reported that the dicotyledon alfalfa growing in 

hydroponic cultures was more tolerant to TNT than the monocotyledon chives (Allium 

schoenoprasum). In more recent studies, Robidoux et al., (2003), studied the toxicity of 

TNT using two terrestrial plant species, lettuce (Lactuca sativa) and barley (Hordeum 

vulgare) growing in forest soil and silica. The results indicated that TNT was toxic to 

both lettuce and barley at concentrations greater than 55.9 mg/kg however TNT is more 

toxic to barley seeds in forest soil than in silica. The precise mechanism of TNT toxicity 

is currently not well characterized (Spain et al., 2000), but species dependant 

phytotoxicity on wild-type species is well known. 

There are no previous reports on screening mutagenized plants in TNT growth 

conditions. If these mutant plants that have mutations in genes involved in TNT 

responses cause viable phenotypes, distinguishable from the wild-type by leaf color traits, 

a search for such mutants based on observation may be worthwhile. The advantage of this 

study is that mutants are readily available for screening, however the screening process 

can be very slow, since plants are studied one at a time under conditions that do not limit 
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or prevent wild-type seedlings. In addition, lethal mutants and mutations that affect genes 

of redundant functions would be excluded in the search for viable and visible mutants 

(Berná et al., 1999). In this study, the result of screening mutant Arabidopsis in TNT 

isolated seedlings that possess a different leaf color to the wild-type. These mutant 

seedlings fall into three mutational classes. One class of mutants that may exhibit a 

different leaf color in the screening process would include the lethal mutants. The lethal 

alleles would probably include null mutations and hypomorphic mutants that have 

mutations in housekeeping genes or those involved in developmental pathways (Berná et 

al., 1999). The second class of mutants corresponds to mutations in genes of redundant 

functions (Berná et al., 1999; Page and Grossniklaus, 2002). These mutations would not 

cause phenotypes distinguishable from the control wild-type. The third class may involve 

mutations in genes that exhibited a difference their leaf color phenotype. The mutations 

in these seedlings may have genes that are involved TNT stress response, which may be 

associated with pigment development, however this class also includes mutations that 

affect the leaf color (Budziszeski et al., 2001) but have no response to TNT.  

From the present study, the three selected mutant lines had a difference in leaf 

color in response to TNT. Segregation of the leaf color phenotype was not observed in 

the M3 generation. Since Arabidopsis are diploid, the mutant phenotypes are rarely seen 

in the M1 generation. Allowing the M1 Arabidopsis to self fertilize, 25 % of the M2 seed 

generation are homozygous for the mutant allele and thus express the mutant phenotype 

(Berná et al., 1999). These mutants are recessive. It was assumed that the selected 

mutants were homozygous recessive for the mutant allele and therefore segregation was 

not expected. Line 2 and line 3 exhibited distinct pale green leaf color in the M3 
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generation of the plants, however line 1 did not have a distinct leaf color differences in 

the M3 generation in the presence of TNT. In particular line 4 had a pale green leaf color 

growing in TNT, however in RDX the leaf color was similar to the seedlings growing in 

0 µM TNT and RDX. This indicates that the leaf color response to TNT may be specific 

but further specificity experiments using other stress environments need to be conducted 

in order to extend the result.  

The cause of the leaf color in response to TNT in this study was not determined. 

However, studies conducted with other xenobiotic compounds have revealed that 

herbicides affect the production of carotenoids by inhibiting desaturase enzymes (Devine 

et al., 1993). In this way, the leaves of the plants appeared yellow and white. At high 

concentrations of TNT (30 µM TNT) Arabidopsis seedlings appear white and show signs 

of chlorosis. TNT may be responding to the plants in a similar manner as herbicides. The 

mutants growing on lower concentrations of TNT may have mutations in the carotenoid 

related genes thereby resulting in light green leaf color in response to TNT. The leaf color 

response could also be a result of the disturbance in the electron transport chain. Similar 

results have been reported where the mechanisms of herbicide actions affect the 

photosynthetic electron transport chain (Devine et al., 1993). Certain herbicides such as 

atrazine block the electron transport chain. The inhibition of the electron flow leads to 

excessive radiative excitation in the blocked photosynthetic pigment. The result of this 

includes photooxidation and phytotoxicity at the organelle, cell and tissue level (Pallett 

and Dodge, 1980). 

Phenotypic leaf color response of TNT in Arabidopsis has the potential of being 

useful in developing plant-based TNT biomonitoring systems. The eventual goal of the 
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phytosensor project would be to develop phytosensors that detect landmines by 

responding to TNT. In this study three-candidate mutants lines that possess leaf color 

responses to TNT were isolated. The isolation of these mutant lines, forms the basis for 

future work involving the identification of the genes that are involved in the leaf color 

response.  
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CHAPTER THREE 

 

Differential growth response of wild-type and mutant strains of Chlamydomonas 

reinhardtii to TNT 

 

Abstract 

In order to develop an aquatic biomonitoring model system for explosives, the 

growth response of wild-type and mutant strains of Chlamydomonas reinhardtii 

(Chlamydomonas) to 2,4,6-trinitrotoluene (TNT) was studied. TNT is a commonly used 

explosive compound in military stockpiles. Contamination of groundwater by TNT is 

widespread and is caused by various activities such as manufacturing, military testing, 

and training. Growth analysis of wild-type Chlamydomonas in 0 to 5 µg/ml TNT 

revealed that 3 µg/ml of TNT was the maximum TNT concentration that allowed growth. 

Mutant lines were generated via insertional mutagenesis by the nuclear transformation of 

arginine deficient cells with the pArg7.8 plasmid. This plasmid contains the 

arginosuccinate lyase gene, thus, rescuing the arginine requirement in the transformants. 

Out of 1000 transformants analyzed on 3 µg/ml TNT, one mutant cell line (CL48), was 

selected on the basis of a color change from green to white. Growth analysis revealed that 

cell line 48 exhibited a negative concentration dependent growth response. Specifically, 

growth of CL48 at 3 µg/ml TNT was 146 ± 21 (x104) cells/ml compared to the cell 

concentrations of the arg- transformation recipient which was 588 ± 30 (x104) cells/ml. 

The growth response of CL48 in TNT indicated that the mutant CL48 is hypersensitive to 
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TNT compared with the transformation recipient line and wild-type Chlamydomonas. In 

order to determine the specificity of TNT growth response, the growth response of CL48 

in thiodiglycol (TDG) was determined. CL48 was not sensitive to TDG and the growth 

response was similar to the wild-type and the transformation recipient arg- line.  

 

Introduction 

Polluted water can disrupt the ecology of normal aquatic environments and can be 

hazardous to many organisms. Heavy metal (Rubinelli et al., 2002, Prasad et al., 1998) 

and chemical pollution (Shehata et al., 1993) enter ground water systems through 

industrial waste effluents. One of the major sources of groundwater contamination results 

from the production and military use of 2,4,6-trinitrotouene (TNT). TNT is a well-known 

explosive compound that has been used as ammunition since the early part of the 20th 

century (Tadros et al., 2002). It is persistent and resistant to degradation, and constitutes a 

major environmental pollutant (Snellinx, 2002). In the past few decades, wastes from 

TNT manufacturing, loading and packing facilities were routinely released into artificial 

holding lagoons, natural ponds, or freshwater streams (Smock et al., 1976; Boopathy et 

al., 1994). As a result, significant amounts of TNT and their breakdown products now 

persist at these sites and pose a serious environmental hazard to a wide variety of 

organisms (Hwang et al., 2000).  

In order to monitor pollutants in contaminated water, both field and laboratory 

phytotoxicity tests have been conducted using algal species (Boyle, 1984; Whitton, 

1984). The growth response of many algal species including Chlamydomonas reinhardtii 

(Chlamydomonas), on various abiotic stresses has been extensively studied (Dodard et 
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al., 1999; Rioboo et al., 2001; Hanikenne et al., 2001). These algae have been subjected 

to a myriad of different types of laboratory studies and have been measured by using 

different biological responses. For example, the effect of pH on the growth of C. 

acidophila was assessed by the measuring chlorophyll content (Visviki and Palladino, 

2001). Suzuki et al., 2000, determined the stimulatory effects of the local anesthetic, 

procaine, on the growth of Danaliella primolecta by measuring cell concentration over a 

period of time. Metal ions and other common abiotic stress on the growth of algae have 

been studied. Toxicity studies of cadmium and copper were determined for 

Chlamydomonas by measuring the growth as a function of cell density (Prasad et al., 

1998).  

In this study, Chlamydomonas was used as the model organism. It is a commonly 

used laboratory algal species and is amenable to biochemical, genetic and molecular 

analysis. (Lefebvre and Silflow, 1999; Debuchy et al., 1989). In nature, the 

Chlamydomonas genus is distributed worldwide and is found in a diversity of habitats. 

Chlamydomonas has been isolated from freshwater ponds, lakes, sewage ponds, marine 

waters, snow, garden and agricultural soil and forests (Harris, 1988). The use of 

Chlamydomonas as a model system in stress response studies is useful because of the vast 

genetic information that is publicly available (Lefebvre and Silflow, 1999). The isolation 

of distinct phenotypes in mutant Chlamydomonas can be used for the identification of 

gene function under certain stress conditions and can be possibly linked to the uptake and 

metabolism of the contaminant. Further, genes that may be involved in these processes 

may be cloned and engineered into other organisms and used for biomonitoring and 

bioremediation systems.  

 35



The most commonly used method for assaying the growth of algae over a period 

of time is the batch culture system (Madigan et al., 1997). This is a closed-system, which 

contains an algal culture in a fixed volume of growth media. This method was developed 

to detect nutrient status of culture media in response to cell growth (Merril and Walsh, 

1984). Growth of cells in this system may be divided into three phases; the lag phase, 

exponential phase, and stationary phase. When an inoculum is first transferred into the 

growth medium, the lag phase begins. During this period the cells must first adjust 

metabolically and establish their cellular synthesis machinery (Madigan et al., 1997) in 

preparation for the next phase. The exponential phase involves cellular division, where 

cell number doubles during each unit time period. In batch culture, exponential growth 

cannot occur indefinitely due to the limitation of nutrients and the accumulation of 

metabolic wastes in the growth media. The cells enter into stationary phase where there is 

no net increase in cell number. Increasing accumulation of toxic wastes and nutrient 

availability can cause cell death (Madigan et al., 1997).  

In addition to studying the growth response of wild-type strains to abiotic stresses, 

the study of the growth response of mutant lines is useful in isolating mutants that are 

sensitive to these stresses. In addition, mutational studies also allow opportunities for 

forward genetic analysis. Classical forward genetics involves two steps, the first is the 

isolation of a distinct phenotype and the second is determining the genotype of the 

corresponding phenotype. Forward genetics begins with the phenotypic screening of 

mutant populations. These mutants can be generated by random insertional mutagenesis. 

This method involves the disruption of gene functions by the insertion of a foreign DNA 

into the genome. The isolation of a distinct phenotype through the mutated gene can then 
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facilitate the identification and isolation of the disrupted gene (Grossniklaus and Page, 

2002).  

In Chlamydomonas, DNA can be introduced into the nuclear genome by glass 

bead agitating method (Kindle, 1990), via the biolistic delivery system (Blowers et al., 

1989) and electroporation delivery system (Tang et al., 1995). The most commonly used 

method of transformation of Chlamydomonas involves using a strain (arg- cells) that has 

a mutation in the arginosuccinate lyase gene. In the arginine biosynthetic pathway 

arginosuccinate lyase is the last enzyme needed to convert arginosuccinate into arginine. 

To generate mutant lines, the auxotrophic arg- cells are transformed with plasmid 

pArg7.8, which encodes arginosuccinate lyase. The auxotrophic mutants are unable to 

survive in arginine- deficient medium. As a result only those cells that have successfully 

integrated the plasmid into the host genome, and thus express the arginosuccinate lyase 

gene, would grow and survive on the minimal media (Kindle, 1990).  

In the following report, a model algal-based TNT biomonitoring system was 

developed using Chlamydomonas. TNT growth response was studied on wild-type strains 

to determine the maximum TNT concentration that allowed growth. Mutant strains were 

generated via insertional mutagenesis using the arg- deficient strains. TNT sensitive 

mutants were further characterized for their growth response in 1, 5, 10, 20 and 30 µM 

TNT concentrations. 
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Materials and Methods 

Chlamydomonas strains and culture conditions 

Wild-type Chlamydomonas reinhardtii (Utex 89, The Culture Collection of Algae 

at the University of Texas, Austin) were maintained on Tris-acetate-phosphate (TAP) 

agar (Harris, 1988). Chlamydomonas strain CC-1617 (cw-15 arg-2 mt-; cell wall-less, 

The Chlamydomonas Genetics Center, Duke University, Durham, NC), were used for 

transformation and were maintained on TAP medium supplemented with 100mg/l 

arginine. The arg-2 mutation affects the ARG2 gene encoding arginosuccinate lyase. 

Cells were maintained at 24°C under continuous light (65 µmol m-2s-1). 

 

TNT growth analysis 

Growth curves of Chlamydomonas were obtained for a range of TNT 

concentrations (0, 1, 2, 3, 4, 5 µg/ml TNT) to determine the effects of TNT on growth 

rates. The stock solution of 500 µg/ml was prepared by dissolving crystalline TNT 

(Chemical Services, West Chester, PA) in TAP medium. A serial dilution of the TNT 

stock solution into TAP growth medium was conducted to obtain the range of TNT 

concentrations for growth analysis. The Chlamydomonas inoculum was concentrated to 

6.8 x104 cells and harvested by centrifugation (5000x g for 5 min) and inoculated in 50 

ml of the 0, 1, 2, 3, 4, 5 µg/ml TAP/TNT growth media. Growth was analyzed by 

determining cell concentrations (cells/ml). Cells were counted at seven time points (24, 

48, 72, 96, 120, 144, 168 hours) using a hemacytometer. Each TNT concentration was 

replicated in triplicate and data was analyzed statistically by ANOVA (Graphpad Instat 
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San Diego, CA). The means per harvest and time period were compared using the 

Student-Newman-Keuls multiple comparison test at P<0.05.  

 

Transformation of arg- Chlamydomonas strain  

Nuclear transformation of a Chlamydomonas strain lacking a cell wall was 

performed by the glass-bead method (Kindle, 1990). Cells were transformed with 2 µg 

pArg7.8 plasmid. This plasmid is composed of pUC19 and of a 7.8-kb Chlamydomonas 

nuclear DNA fragment bearing the wild-type gene coding arginosuccinate lyase (ASL) 

(Debuchy et al, 1989). Transformants contained the ASL gene to correct for arginine 

auxotrophs. The transformed colonies were selected on TAP agar plates, while 

untransformed lines were unable to grow without the endogenous expression of ASL 

gene. 

 

Phenotypic analysis and growth response assays 

To select sensitive mutants, the arg+ clones were transferred onto fresh TAP agar 

medium (0 µg/ml TNT), and onto TAP media containing 3 µg/ml TNT (~80 colonies per 

plate). Colonies were exposed to TNT for 14 days before observation for phenotypic 

comparison. TNT sensitive colonies were selected on the basis of a difference in color 

change to that of the control. Colonies that grew with a different phenotype were selected 

and further analyzed using liquid culture phytotoxicity studies. To evaluate the growth 

response of TNT putative mutants that demonstrate a response to TNT, liquid cultures 

were prepared from the colonies grown on the control plates. For the phytotoxicity 

studies, 6.7x104 cells were harvested by centrifugation and inoculated into 50 ml of TAP 

 39



supplemented with a range of TNT. Cell cultures were grown for 7 days and final cell 

concentrations were determined using a hemacytometer. 

To compare the level of sensitivity of the putative TNT mutant, the cell growth 

was also determined for WT, the arg- cells, and two unresponsive arg+ lines. The cell 

growth was determined in a range of TNT concentrations from 0 µg/ml to 5 µg/ml TNT. 

Comparison of the final cell concentration in each Chlamydomonas line was used to 

evaluate the sensitivity to TNT of the putative mutants. Each TNT concentration was 

replicated in triplicate. The data was statistically analyzed by ANOVA and the means per 

harvest was compared using the Student-Newman-Keuls multiple comparison test. The 

one tail t-test was used to compare two groups and assess which group had the larger 

mean (Graphpad Instat). In order to determine the specificity of the TNT growth 

response, the selected mutants cell lines were exposed to another xenobiotic chemical, 

2,2-thiodiethanol (thiodiglycol, TDG) and similar growth assays were conducted. 

 

Results 

The growth response of wild-type Chlamydomonas in TNT 

The growth response of Chlamydomonas was determined by conducting a time-

based growth study on a range of TNT concentrations (see Figure 7). There was a 

negative relationship of the growth of Chlamydomonas and the concentration of TNT. 

When compared to the control (0 µg/ml TNT) culture, there was no significant difference 

(P<0.05, Student-Newman-Keuls multiple comparison test) in cell concentration at 1 

µg/ml TNT on the final day of cell counts (t =168 hours). 
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Figure 7: Time course analysis of wild-type Chlamydomonas growing in TAP media 

supplemented with TNT. Cell concentrations were measured every 24 hours. Final counts 

were determined at day seven for phytotoxicity comparison (inset, bar graph). Columns 

denoted by differing letters are significantly different (P<0.05). Vertical bars represent 

standard deviations. 
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The cell concentration in 0 µg/ml TNT was 730 ± 22 (x 104 cells/ml; all 

Chlamydomonas cell concentrations) and cell concentration at 1 µg/ml TNT was 739 ± 

17 cells/ml. At 168 hours (day 7) post inoculation, there was no significant difference 

between the cell concentration in growth medium containing 2 and 3 µg/ml TNT, but 

were significantly difference to the cell counts at 0, 1, 4, and 5 µg/ml TNT concentrations 

(P< 0.05, Student-Newman-Keuls multiple comparison test). At 72 hours (3 days) post 

inoculation, significant toxicity to Chlamydomonas was observed at 3 µg/ml TNT, where 

the cell concentration was 38 ± 9 cells/ml. Growth of cells at 2 µg/ml TNT, however was 

116 ± 9 cells/ml. The concentration of Chlamydomonas growing in 4 and 5 µg/ml TNT 

was significantly less than the growth in the lower TNT concentrations, where 

Chlamydomonas cell counts after 168 hours reached 28 ± 3 cells/ml, while control 

cultures had final cell counts of 730 ± 22 cells/ml. 

TNT treatments from 0 µg/ml TNT to 3 µg/ml TNT resulted in growth population 

trends that were relatively sigmoidal, indicating the three growth phases present in batch 

culture systems. However, at higher concentrations growth was inhibited indicating TNT 

concentrations above Chlamydomonas tolerance threshold levels (see Figure 7). Thus, 3 

µg/ml TNT was considered the growth threshold concentration of Chlamydomonas and 

was used to screen for TNT responsive Chlamydomonas mutants in further experiments.  

 

Isolation of TNT-responsive mutants 

Approximately 1000 arg+ transgenic events were isolated following 

transformation of the arg- cells with the pArg7.8. These lines were analyzed for their 
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ability to grow on TNT containing media. After 10 days, colonies were screened for 

phenotypic changes to that of the control plates. One mutant cell line (CL48) sensitive to 

TNT was isolated on the bases of its phenotypic discoloration to white at 3 µg/ml TNT 

(see Figure 8). Cells from the same mutant line appeared green on TAP media containing 

0 µg/ml TNT.  

The putative TNT-sensitive transformed mutant (CL48), together with wild-type 

Chlamydomonas, the arg- cells, and two other transformed mutants that did not exhibit 

phenotypic responses to TNT (CL42 and CL800), were grown in liquid culture to 

quantify cell growth (cells/ml). Liquid cultures were used to determine Chlamydomonas  

growth response for a range of TNT concentrations (0 to 5 µg/ml TNT) (see Figure 9). 

Transformant CL48 exhibited a negative TNT concentration dependant growth response. 

There was a significant difference between the cell growth at 3 µg/ml TNT of CL48 and 

arg- cells (P<0.05). At 3 µg/ml TNT, the cell concentrations of CL48 was 146 ± 21 

cells/ml compared to the cell concentrations of the arg- cells which was 588 ± 30 cells/ml 

(P<0.05, one tailed t-test). At concentrations lower than 3 µg/ml TNT, growth of CL48 

was higher (793 ± 21 cells/ml at 1µg/ml TNT) compared to the arg- cells (673 ± 23 

cells/ml at 1µg/ml TNT). 

 To determine the specificity of the TNT response for CL48, the selected cell lines 

were treated with a hydrolysis product of sulfur mustard, thiodiglycol (TDG) (see Figure 

10). For each cell line there was a decrease in cell growth with an increase in TDG 

concentration. In particular, CL48 did not exhibit cell growth trends as did in TNT. These 

results indicate that the growth response of CL48 may be specific to TNT. 
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Figure 8: Chlamydomonas arg+ transformants. Panels A, C and E contain colonies 

growing in 0µg/ml TNT and panel B, D, F are the same cell lines growing on 3 µg/ml 

TNT. A and B: CL48 exhibited a phenotypic discoloration from green to white after 14 

days of exposure to TNT. C and D: CL800 exhibited no response when exposed to TNT. 

E and F: Non-responsive transformants exhibiting a white phenotype in both 0 µg/ml 

TNT and 3 µg/ml TNT. 
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Figure 9: TNT phytotoxicity studies of Chlamydomonas cell lines (wild-type, arg- cells, 

and transformed arg+ mutant lines (CL48, CL800). Cell concentrations were determined 

seven days post inoculations. Asterisc represents a significant difference in growth 

(p<0.05). The growth of CL48 at 3µg/ml TNT is significantly different from all the cell 

lines tested. 
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Figure 10: Thiodiglycol phytotoxicity studies of the Chlamydomonas cell lines. Cell 

concentrations were determined seven days post inoculations. CL48 did not display 

hypersensitivity response as did in the TNT phytotoxicity studies. 
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Further specificity experiments using other stress compounds are needed to 

extend the results. Transformants CL42 (data not shown) and CL800 were selected to 

compare growth between TNT responsive (CL48) and non-responsive transgenic lines. 

These cell lines appeared as green colonies in both 3 µg/ml TNT and 0 µg/ml TNT. It 

should be noted that the transformed cell lines exhibited the highest cell counts than all 

the cell lines after seven days in the absence and presence of TNT and TDG. 

 

Discussion  

The present study describes the differential growth response of wild-type and 

mutant strains of Chlamydomonas to TNT. The growth response of wild-type 

Chlamydomonas revealed that 3 µg/ml TNT is the maximum dosage of TNT. Screening 

the mutants on 3 µg/ml TNT isolated one mutant that was sensitive to TNT.  

The study of algal growth response in TNT is limited to a few species such as 

Selenastrum capricornutum (Dodard et al., 1999; Tadros et al., 2000) and Microcystis 

aeruginosa (Smock et al., 1976). In this study growth response analysis of wild-type 

Chlamydomonas revealed that concentrations up to 1 µg/ml of TNT did not decrease the 

overall cell concentrations after seven days of TNT exposure. In similar studies, Smock 

et al., (1976), reported that S. capricornutum exhibited no growth effects at 

concentrations up to 3 µg/ml TNT. In further studies, Smock et al., (1976) also 

reported that M. aeruginosa was able to tolerate concentrations up to 15 µg/ml TNT. 

These comparisons indicate that Chlamydomonas is more sensitive to TNT than these 

two species. Chlamydomonas can tolerate up to 1 µg/ml TNT and toxic effects were 
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noticeable at 2 µg/ml and 3 µg/ml TNT. However, growth inhibition was not permanent 

at the latter concentrations and the growth of the cells in batch culture produced a typical 

growth curve resulting in lag, log and stationary phases.  

There have been no previous reports on the uptake and metabolism of TNT in 

Chlamydomonas, however several reports have used other organisms to evaluate the 

phytotoxicity of TNT derivatives, which are aerobic metabolites of microbial 

degradation. Tadros et al., (2000) reported the toxic effects of hydroxylamino 

intermediates from microbial degradation of TNT on S. capricornum but concluded that 

the hydroxylamino intermediates were much less toxic than the parent compound (TNT). 

Recent ecotoxicity studies of TNT derivatives indicate that many metabolites of TNT 

reduction are less toxic to the bacteria Vibrio fischeri than TNT and suggest that TNT 

degradation by microbial reduction may be associated with the detoxification process 

(Dodard et al., 1999). For several years, many plant species have been studied for their 

capacity to uptake and metabolise explosives. Mueller et al., (1993) observed that plant 

cells (Datura innoxia) in cell suspension culture can remove TNT from solution through 

actively internalizing the TNT and breaking it down into a variety of TNT derivative 

products. Studies of whole plants of Datura quercofolia and Lycopersion peruvianum in 

soil contaminated with 14C-labeled TNT and analysis of plants extracts show that most of 

the stored radioactivity is in the form of TNT metabolites.  

 The growth response study of Chlamydomonas revealed 3 µg/ml as the maximum 

TNT threshold concentration that still allowed growth. This concentration was used in 

screening mutant lines for their sensitivity to TNT. The use of mutant Chlamydomonas 

lines in past research has led to the isolation of mutant lines that are sensitive or resistant 
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to specific heavy metals. Hanikenne et al., (2001) isolated Chlamydomonas mutant lines 

that were hypersensitive to heavy metals and to oxidative stress. Research studies 

conducted by Collard and Matagne, (1994) revealed cadmium resistant mutant strains of 

Chlamydomonas, and McHugh and Spanier, (1993) isolated cadmium sensitive mutants. 

Adam et al., (1993) used insertional mutagenesis to isolate acetate-requiring 

Chlamydomonas mutants.  

The variation in the response of TNT between the wild-type Chlamydomonas and 

arg- deficient mutants may be due to the lack of a cell wall barrier in the transformation 

recipient. Many studies have indicated that the presence of a cell wall can play a role in 

conferring tolerance to toxic metals (Macfie and Welbourn, 2000; Prasad et al., 1998). 

Macfice and Welbourn, (2000) suggested that metal tolerance may be due to the ions 

binding onto cell wall surfaces, however they also stated that tolerance to specific ion 

may also involve other mechanism. This was indicated by the significant amounts of 

cadmium and copper removed from the surface of the wall-less cells. Thus, it is 

interesting to note that in this study, CL800 and CL42 were also cell wall deficient but 

were able to grow notably better than all the other cell lines, indicating that tolerance may 

not be limited only to the cell wall barrier. The reason transformants grew significantly 

higher than the non-transformed Chlamydomonas cells is not clear. Although Debuchy et 

al., (1989) reported that transformants generally contain multiple inserts of the 

arginosuccinate lyase gene, the specific activity of the enzyme is not increased relative to 

the wild-type. The regulation of arginine synthesis occurs primarily at two steps and is 

catalyzed by N-acetylglutamate-5-phosphotransferase and ASL respectively. N-

acetylglutamate-5-phosphotransferase is inhibited by arginine (Harris, 1988) and ASL 
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appears to be feedback regulated by other arginine products (Debuchy et al., 1989). This 

feedback regulation should prevent a significant increase of ASL activity in the 

transformants. 

The study of algal growth responses to chemical stress pollutants has the potential 

to be useful in developing biomonitoring and phytoremediation systems. The 

development of algal-based TNT biosensors through mutational screening has isolated at 

least one candidate Chlamydomonas cell line that atypically responds to 3 µg/ml TNT.  

The isolation of this mutant lays the foundation of further work in the cloning of the 

knocked out gene to determine how this gene product is involved in TNT response. Using 

this model system, genetic tools can be used to develop algae based biosensors, which 

include promoters of TNT sensitive genes fused to biomarkers such as green fluorescent 

protein.  
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CHAPTER FOUR 
 

Differential gene expression of Chlamydomonas reinhardtii in response to TNT using 

microarray analysis 

 

Abstract 

The acclimatization of Chlamydomonas reinhardtii to environmental stress, such 

as the exposure to 2,4,6-trinitrotoluene (TNT) is related to expression of various genes. 

To provide a broad range of gene expression in response to this common ordnance 

compound, microarray analysis was conducted on 3079 Chlamydomonas EST clones. To 

determine TNT treatment conditions, growth analysis of Chlamydomonas in 0 to 5 µg/ml 

TNT was conducted. One microgram per milliliter of TNT did not decrease the cell count 

after seven days of treatment, while 3 µg/ml of TNT was the maximum TNT 

concentration that allowed normal growth, thus cells were treated with both 1 and 3 

µg/ml of TNT for microarray analysis. Transcriptional profiling revealed approximately 

158 responsive genes that were differentially expressed. Many of the up-regulated genes 

were further classified into functional categories. Genes responsible for photosynthesis 

and energy metabolism genes were induced in the presence of TNT. TNT may result in 

oxidative stress since many oxidative stress related genes, such as glutathione-S-

transferase were up-regulated. Among the down-regulated genes, the expression of cell 

wall related genes were repressed. Several unidentified genes were also induced or 

repressed. The possible involvement of the differentially expressed genes in the respone 

to TNT is discussed. 
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Introduction 

Trinitrotoluene (TNT) has been extensively used as an explosive since 1902 

(Tadros et al., 2000). Its use in military bases and in the production, purification and 

loading of ammunitions has resulted in large amounts of wastes being generated. As a 

result of improper disposal, it has entered the environment and contaminated both soil 

and groundwater systems. TNT and its degradative products are known to be toxic to 

many organisms such as algae (Smock et al., 1976, Nipper et al., 2001, Tadros et al., 

2000), bacteria (Gorontzy et al., 1993), plants (Gong et al., 1999, Lucero et al., 1999, 

Paterson et al., 1996, Peterson et al., 1998, Scheidemann et al., 1998) and invertebrates 

(Robidoux et al., 2002, Dodard et al., 2003). One of the major concerns about TNT’s 

environmental presence is its potential risk to humans. Aside from unexpected and 

unintended explosions of landmines filled with TNT that can cause injury to humans, the 

ingestion of this compound can result in the formation of carcinogenic derivatives and 

can cause anemia and hepatitis (Won et al., 1974). As a result, research in the field of 

detection and remediation has been driven by the need to clean up contaminated 

environments on a global scale. The extent of the toxicity of TNT varies from organism 

to organism and consequently they can be exploited for their use in biomonitoring and 

bioremediating contaminated sites. Current detection systems monitoring surface and 

sub-surface contamination rely on frequent soil and water sampling which is expensive 

and labor intensive. Other traditional methods include chemical and bioanalytical 

analysis of contaminated samples to assess the level of pollution (Halasz et al., 2002). 

Traditional methods of controlling TNT pollution include costly incineration processes 

(Bradley et al., 1995). An attractive alternative technology, may involve organisms such 
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as plants and algae that can be developed as phytosensors and phytoremediation systems, 

which is a perfect marriage where the organisms perform both functions.  

The potential use of plants to attenuate TNT contaminated sites has lead to the 

study of TNT uptake and the metabolic mechanism of TNT transformation in plants. 

Once the explosive compound has been taken up and metabolized by the plant, both 

oxidation and reduction products are produced. Overall, studies have reported aerobic 

reduction products of TNT with the major product being monoaminated TNT metabolites 

(4-amino-2, 6-dinitrotoluene, 2-amino-4, 6-dinitrotoluene) (Burken et al., 2000). Type I 

nitroreductase enzymes have also been proposed to catalyze the reduction of TNT 

(Medina & McCutcheon, 1996). Goheen et al., (1999) isolated a ferrodoxin NADP+ that 

was responsible for the conversion of TNT to 4-hydroxylamino-2, 6-dinitrotoluene. 

Thioredoxin reductase in Arabidopsis thaliana was shown to catalyze the redox cycling 

of TNT via a single electron reduction (Miskiniene et al., 1998). Oxidation processes in 

the metabolism of TNT in plants have also been observed. Bhadra et al., (1999) isolated 

six metabolites that were distinct from reduction products. These included 2,4-dinitro-6-

hydroxy-benzyl alcohol, 2-amino-4, 6, dinitrobenzoic acid and 2,4-dinitro-6-

hydroxytoluene. These products may occur in plants because oxidation is the primary 

reaction in the detoxification of other xenobiotics such as pesticides and herbicides 

(Bolwell et al., 1994). 

The use of plants and algae as a cleanup technology for contaminated soils and 

water is both low–tech and cost effective. The limitation of using certain plant species to 

remediate pollutants is their relatively low biomass compared to other crops. Further 

some plants acclimatize poorly to particular climates and soil conditions (Rubinelli et al., 
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2002, Cobbett et al., 2002). These restrictions may be evaded by the used of molecular 

techniques that may reveal the functions of certain genes which may be transferred to 

other plants to enhance the remediation process. In addition, promoters that are induced 

by the contaminant may be revealed. These promoters may be fused with marker genes 

such as green fluorescent proteins that can be used as biological sensors that detect the 

pollutant.  

In order to better understand gene regulation patterns in response to TNT, we 

have investigated the use of Chlamydomonas reinhardtii (Chlamydomonas), a unicellular 

green alga as a model organism. With the completion of the Chlamydomonas genome 

project and the recent availability of microarray chips, several genes that are involved in 

the response to TNT could be identified. Chlamydomonas has several advantages as a 

model organism for stress response. Growth is rapid with cells attaining logarithmic 

growth phase in 2-3 days. They are also sensitive and respond to small changes in the 

environment by regulating transcription by the activation or repression of genes 

(Kanesaki et al., 2002). Genes identified in Chlamydomonas may also be transformable 

to common green algae ubiquitous to the environment. 

In order to specifically investigate the transcriptional profile of Chlamydomonas 

in response to TNT, microarray analysis was conducted. This technique allows 

monitoring of changes in levels of transcripts of almost all genes in a specific organism 

(Watson et al., 1998, Richmond and Somerville, 2000, Schena et al., 1995). The 

differential expression of Chlamydomonas after a 24 hour treatment with 1 µg/ml and 3 

µg/ml of TNT has been determined and the possible involvement of these genes in TNT 

response has been discussed. 
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Materials and Methods 

Chlamydomonas strain and culture conditions 

Chlamydomonas reinhardtii (Utex 89, The Culture Collection of Algae at the 

University of Texas at Austin) were maintained on tris-acetate-phosphate (TAP) agar 

(Harris, 1989) at 24 °C under continuous light (65 µmol m-2s-1). Growth curves of 

Chlamydomonas were obtained for a range of TNT concentrations (0, 1, 2, 3, 4, 5 µg/ml 

TNT) to determine the TNT treatment concentrations for the microarray experiments. 

The stock solution of 100 µg/ml was prepared by dissolving crystalline TNT (Chemical 

Services, West Chester, PA) in TAP media. To obtain the desired TNT growth media, a 

serial dilution of the TNT stock solution and TAP growth media was conducted. The 

Chlamydomonas inoculum was concentrated to 40 x 107 cells and harvested by 

centrifugation (5000x g for 5 min) and inoculated in the 50 ml of the various TAP/TNT 

growth media. Cells were counted at seven time points (24, 48, 72, 96, 120, 144, 168 

hours) using a hemacytometer. Growth curve analysis was conducted in triplicate and 

statistical analysis (ANOVA) was used to determine the multiple comparisons between 

the treatments.  

For RNA extraction, 100 ml of sample culture was inoculated in 500 ml of TAP 

media and allowed to attain logarithmic growth (1x107 cells/ml) by growing under 

continuous light as on a rotary shaker (140 rpm). Approximately 10x107 cells were 

harvested by centrifugation (5000x g for 5 min) and inoculated in 50 ml of the desired 

culture medium and grown for 24 hours before RNA isolation. The three culture media 

used for RNA isolation were supplemented with 0 µg/ml, 1 µg/ml and 3 µg/ml of TNT. 
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RNA extraction and preparation of fluorescent probes 

For each sample (treated and control) 1.5x107 cells were harvested and treated 

with 1 ml of Tri-Reagent (Molecular Research Center, Cincinnati OH). Cells were 

disrupted by three freeze/thaw reactions in liquid nitrogen and 37 °C waterbath. The total 

RNA was extracted with chloroform and precipitated with isopropanol. RNA pellets were 

washed with 75 % ethanol, air dried and resuspended in 50 µl RNase free H20. After 10 

min incubation at 55 °C the isolated RNA was stored at –70 °C until further use. 

Fluorescently labeled Cy3 and Cy5 cDNA probes were generated from 10 µg total RNA 

using direct labeling with reverse transcription that incorporates aminoallyl nucleotide 

analogs. This allows direct labeling of cDNA molecules by reacting the aminoallyl group 

with the fluorescent dyes. Each experiment (control versus treated sample) was replicated 

three times and each starting material was completely independent, including a dye swap 

per experiment. The labeling was performed using the CyScribe post-labeling kit 

(Amersham Biosciences, Birmingham UK) and the labeling procedure according to the 

manufacturer. Labeled cDNA was purified through PCR purification columns (Qiagen, 

Valencia, CA) and eluted with 100 µl of RNAse free H2O. Corresponding Cy3 and Cy5 

samples were combined and lyophilized. Pellets were resuspended in 70 µl DIG Easy 

Hyb hybridization buffer (Roche, Indianapolis, IN), denatured at 65 °C for 2 min and 

allowed to cool at room temperature for 2 min before adding the probe to the microarray 

slide. 
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Hybridization reaction and microarray analysis 

The Chlamydomonas microarray slides (chip 1.1v, Carnegie Institute, CA) 

contained 3079 unique ESTs each represented four times. The probes solution was 

applied to the microarray slides under a 22 mm x 50 mm lifter slip (Erie Scientific 

Company, Portsmouth NH) and placed in a humidified hybridization chambers (Corning 

Microarray Technology, Corning, NY). Ten microliters of water was placed inside each 

chamber before sealing. Hybridization was performed in a 50 °C waterbath for 

approximately 16 hours. After hybridization, the slides were removed and placed in a 

slide rack submerged in washing solution (2x SSC, 0.03 % (w/v) SDS), with the array 

face of the slide tilted down so that the lifterslip would drop off without scratching the 

slide. Once the lifterslip was removed, the slide rack was plunged up and down for 

approximately 2 min and then transferred to 1x SSC for 2 min and finally to 0.05x SSC 

for 30 s. All washing steps were carried out at 42 °C. Slides were tapped dry before they 

were scanned. 

Hybridized microarrays were scanned sequentially for Cy3 and Cy5- labeled 

probes with the GenePix microarray scanner (Axon Instruments, Union City, CA). 

Separate images were acquired for each flour at a resolution of 10 µm per pixel. To 

normalize the two channels with respect to signal intensity the photomultiplier was 

adjusted such that the pixel ratio was as close to 1.0 as possible.  
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Data analysis 

For data analysis, spot intensities from scanned slides were quantified using 

Scanalyze software (version 2.32; M. Eisen, Standford University http://genome-

ww4.stanford.edu/MicroArray/SMD/restech.html). Microarray grids were predefined and 

manually adjusted to ensure optimal spot recognition. Data spots with abnormal shapes or 

high local background were discarded manually. To ensure that only data from spots of 

high quality were used in the analysis, quality control measurements produced by the 

Scanalyze software were used. Intensity values below 1.5 times their local background 

were deemed non-significant and excluded from the data analysis. Each microarray 

image was uploaded on the UT Microarray Database (c.f. Stanford Microarray Database; 

SMD) at genome.ws.utk.edu. The criteria used for selection of the up-regulated genes 

were based on: (a) normalized channel intensities greater than 150 with greater than a 

1.7-fold increase in mRNA abundance, and (b) a regression correlation of greater than 

0.5. To select for down-regulated genes, normalized channel intensities of greater than 

150 with less than 0.6-fold decrease in mRNA and a regression correlation of greater than 

0.5 was used. Average ratios and standard deviations were calculated for the three 

replicates. For Chlamydomonas expressed sequenced tag (EST) identification, the 

BLASTN program was used to generate the entire list of known or putative gene 

functions (www.duke.edu/chlamy/_genome/).  
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Results 

Chlamydomonas TNT treatment conditions 

TNT growth response studies were conducted in order to determine the 

Chlamydomonas treatment conditions for the microarray experiments. The growth 

response of Chlamydomonas was determined by conducting a time-based growth study 

on a range of TNT concentrations (see Figure 11). There was a negative correlation 

between growth of Chlamydomonas and the concentration of TNT. When compared to 

the control (0 µg/ml TNT) culture, there was no significant difference (P<0.05, Student-

Newman-Keuls multiple comparison test) in cell concentration at 1 µg/ml TNT on the 

final day of cell counts (t = 168 hours). The cell concentration in 0 µg/ml TNT was 730 ± 

22 (x 104 cells/ml; all Chlamydomonas cell concentrations) and cell concentration at 1 

µg/ml TNT was 739 ± 17 cells/ml. Growth response studies indicated that 3 µg/ml TNT 

was the maximum TNT tolerance threshold concentrations. The concentration of 

Chlamydomonas growing in 4 and 5 µg/ml TNT was considerably less than the growth in 

the lower TNT concentrations, where Chlamydomonas cell counts after 168 hours 

reached 28 ± 3 cells/ml, while control cultures had final cell counts of 730 ± 22 cells/ml. 

The TNT concentrations used for the microarray experiments were 1 µg/ml TNT 

and 3 µg/ml TNT. At 1 µg/ml the growth response in terms of cell counts was not 

apparent since there was no significant difference in cell counts from the control cultures, 

thus in order to determine the response of TNT at a genetic level Chlamydomonas cells 

were treated with 1 µg/ml TNT. The second TNT concentrations were used because it 

was the maximum TNT tolerance threshold concentration for Chlamydomonas.  
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Figure 11: The growth response of wild-type Chlamydomonas to TNT. Cell 

concentrations were measured every 24 hours. Differing letters indicate significantly 

different (P<0.05). Vertical bars represent standard deviations. 
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Microarray analysis 

 The Carnegie institute microarray contains unique 3079 ESTs representing 

approximately 30 % of the genome. A global representation of the changes in expression 

of all the expressed sequence tags (ESTs) on the microarray is illustrated in Figure 12. 

For the majority of the transcripts, expression appeared unchanged with TNT treatment 

(see Figure 12). Using the selection criteria outlined in “Materials and Methods,” and 

accounting for the ESTs that correspond to similar genes in the BLASTN search, 158 

ESTs were differentially expressed in response to TNT. Of these, expression of 38 ESTs 

were up-regulated and 43 ESTs were down-regulated at 1 µg/ml TNT. At 3 µg/ml TNT, 

35 genes were up-regulated and 42 genes were down-regulated. The expression data 

based on EST description and BLAST homologies for 1 µg/ml TNT-responsive ESTs are 

described in Table 2 and 4. Differentially expressed genes in 3 µg/ml TNT are 

represented in Table 3 and 5. 

 

Functional classification of up-regulated genes 

 Genes involved in several processes are differentially expressed in the presence of 

TNT. One of these functional processes is photosynthesis and energy metabolism. 

Microarray studies revealed that genes encoding photosystem I, photosystem II, 

plastocyanin, cytochrome b6f, and the light-harvesting complex genes are up-regulated 

after 24 hours of TNT treatment (see Table 2 and 3). These complexes constitute the 

photosynthetic electron transport chain, which primarily generates NADPH and ATP, 

required for the reduction of carbon and other chloroplast activities (Hopkins, 1999).  
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Figure 12: Scatter plot of signal intensities for all ESTs on the microarray. Normalized 

log channel intensities for each clone on the microarray are plotted with signals from the 

control and the TNT-treated on the x and y-axis, respectively. In general the values fall 

near the line x=y. This indicates that most of the genes are unaffected by the treatment 

conditions. Values that fall outside the general x=y lines are the differentially expressed 

genes.  
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Table 2: Genes up-regulated by 1 µg/ml TNT.  
  
EST 
Genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
894092D12 Unknown Unclassified  2.68 ± 0.86 
BE726502 Unknown Unclassified 2.66 ± 0.2 
BI722534 Succinoglycan biosynthesis like-

protein 
Exopolysaccharide used as reserve 
material 

2.62 ± 1.63 

BE12221 Phosphatase like protein Involved in dephosphorylation of 
protein 

2.51 ± 0.55 

BU648787 Unknown Unclassified 2.58 ± 1.67 
BE453626 Unknown Unclassified 2.29 ± 0.17 
BE452532 Photosystem I polypeptide 

precursor 
Photosynthetic electron transport 
chain  

2.26 ± 0.06 

BU654212 Putative ubiquitin specific 
protease 

Involved in the removal of abnormal 
protein using the Ub/26S 
proteasome pathway 

2.26 ± 0.0 

BQ816253 Unknown Unclassified 2.20 ± 0.09 
AV642759 Putative chaperone protein Involved in protection against heat 

induced protein aggregates 
2.19 ± 0.37 

BE452532 Polypeptide 35 precursor Unclassified 2.17 ± 0.25 
BE453562 Unknown Unclassified 2.12 ± 0.51 
BG848114 Unknown Unclassified 2.11 ± 0.22 
BE725903 30S ribosomal protein Chloroplast located protein 2.07 ± 0.24 
BE352272 Unknown Unclassified 2.06 ± 0.29 
BE724272 Chloroplast 50S ribosomal 

protein 
Chloroplast located protein 2.01 ± 0.15 

BE725909 Light harvesting complex of 
Photosystem I 

Involved in gathering light energy 
during photosynthesis 

1.97 ± 0.14 

BF862205 50S ribosomal like protein Chloroplast located protein 1.95 ± 0.22 
BF860102 Expressed protein Unclassified 1.93 ± 0.18 
BU654085 Agglutinin Hydroxyproline-rich glycoprotein 

found in cell wall of C. reinhardtii 
1.93 ± 0.14 

BE122147 27S ribosomal protein Cystolic located protein 1.93 ± 0.08 
BM003222 Putative lycopene beta-cyclase  Carotenoid production associated 

with photosynthesis and antioxidant 
agent 

 

BU651578 NADH malate dehydrogenase Regulatory enzyme involved in an 
energy-dependant assimilation of 
carbon dioxide. 

1.92 ± 0.17 

BE351986 Unknown Unclassified 1.92 ± 0.19 
BE122147 Putative zinc finger protein Transcription factor 1.90 ± 0.12 
BF864612 Cytochrome b6f Electron transfer and proton-

translocating enzyme  
1.90 ± 0.11 

BE453268 Plastocyanin Photosynthetic electron transport; 
small copper binding protein that 
accepts electrons from cytrochrome 
b6f. 

1.87 ± 0.11 

BI727105 Disulphide isomerase like 
protein 

Assists in protein folding by 
formation of disulphide bridge 

1.86 ± 0.12 
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Table 2: Continued 
 
EST 
Genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
BE237654 25S ribosomal like protein Cystolic located protein 1.84 ± 0.01 
BF860102 60S ribosomal like proteins Cystolic located protein 1.83 ± 0.11 
BE212030 Putative component of vesicle-

mediated transport 
Transport of proteins in vesicles to 
compartments in the cells; putative 
transport protein containing proteins 
which fuse to membrane. 

1.81 ± 0.05 

BE024336 40S ribosomal like protein Involved in protein synthesis 1.81 ± 0.03 
BE237659 Putative chloroplast 50S 

ribosomal protein 
Chloroplast located protein 1.80  ±0.03 

BE726790 Putative acyl carrier protein Small acidic proteins that carry acyl 
chains during lipid synthesis 

1.80 ± 0.08 

BE352263 Unknown Unclassified 1.76 ± 0.06 
BM518983 60S ribosomal protein L12 Cystolic translation protein 1.75 ± 002 
BE761412 Cytochrome b6f-associated 

phospoprotein precursor 
Electron transfer and proton-
translocating enzyme  

1.75 ± 0.05 
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Table 3: Genes that are up-regulated at 3 µg/ml TNT 
 
EST 
genebank or 
Clone id 

Gene description Putative functional category Fold ratio ± SD 

    
BE725473 Unknown Unclassified 6.09 ± 3.84 
BU 648787 Hypothetical protein Unclassified protein; similar to an 

expressed protein in Arabidopsis 
thaliana 

3.05 ± 0.67 

   2.69 ±0.87 
AV643891 Heat shock protein Cell defense 2.52 ± 0.48 
BI728129 Sulfate transport system 

permease protein 
Sulfate transport into cells 2.3 ±0.48 

 Peroxiredoxin like protein Antioxidative enzyme catalyze the 
reduction  

2.26 ± 0.12 

AV642759 Putative chaperone protein Involved in protection against heat 
induced protein aggregates 

2.22 ± 0.52 

BE453199  Plastid ribosomal like protein Chloroplast located  2.19 ± 0.12 
BF864539 Light harvesting complex 

protein precursor 
Involved in gathering light energy 
during photosynthesis 

2.16 ± 0.22 

BE121746 30S ribosomal like protein Chloroplast located protein 2.14 ± 0.15 
BE237902 Unknown Unclassified 2.12 ± 0.21 
BM002900 Unknown Unclassified 2.10 ± 0.24 
BF862306 DegP protease like protein Involved in thermal and oxidative 

tolerance; degrades misfolded and 
aggregated proteins in the periplasm 

2.10 ± 0.36 

Stern: A03 Unknown  Unclassified 2.05 ± 0.2 
BF864539 Light harvesting complex II 

precursor protein 
Intercept light energy in 
photosynthesis 

2.04 ± 0.21 

BE453412  Thioredoxin A disulphide-reducing redox protein 
involved in antioxidant functions. 

2.03 ± 0.26 

BE337707 Unknown Unclassified 2.00 ± 0.20 
BF863557 Unknown Unclassified 1.99 ± 0.11 
Olivier/ClpC2 Unknown Unclassified 1.98 ± 0.21 
BI726314 Sulfotransferase Involved in sulfur metabolism 1.94 ± 0.05 
BM003222 Putative lycopene beta-cyclase Carotenoid production associated 

with photosynthesis and antioxidant 
agent 

1.93 ± 0.16 

BE024621 Unknown Unclassified 1.92 ± 0.35 
BE212144 Unknown Unclassified 1.92 ± 0.19 
BM002822 Nitrate reductase Primary enzyme that catalyzes 

reduction of nitrate to nitrite 
1.90 ± 0.16 

BE724272 Chloroplast 50 S ribosomal 
like protein 

Chloroplast located ribosomal 
protein involved in translation 

1.89 ± 0.12 

BE129393 Glutathione- S -transferase like 
protein 

Primary enzyme in oxygen 
detoxification (oxidative stress) 

1.89 ± 0.12 

BI529617 Putative purple acid 
phosphatase  

Primary enzyme of cell walls and 
involves the mobilization of 
phospohorus  from organic 
compounds in soil 

1.89 ± 0.09 
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Table 3: Continued 

EST 
genebank or 
Clone id 

Gene description Putative functional category Fold ratio ± SD 

    
BE352248 16S ribosomal like protein  Chloroplast located protein 1.86 ± 0.13 
BE024560 Putative phenlyalanine t-RNA 

synthetase 
Protein synthesis 1.85 ± 0.11 

BM519278 Expressed protein Unclassified 1.83 ± 0.06 
BE453407 50S ribosomal protein Chloroplast located  1.80 ± 0.13 
BE056399 Unknown Unclassified 1.80 ± 0.12 
BF862787 QM family protein Involved in cell growth and 

differentiation 
1.80 ± 0.06 

BE024692 Unknown Unclassified 1.77 ± 0.07 
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Table 4: Down-regulated genes at 1 µg/ml TNT. 
 
EST 
genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
BI529617 Unknown Unclassified 0.28 ± 0.12 
BG848114 Unknown Unclassified 0.30 ± 0.10 
894058C1 Unknown Unclassified 0.31 ± 0.13 
BE212109 Expressed protein Protein similar to a Arabidopsis thaliana 

protein 
0.31 ± 0.09 

BE129394 Unknown Unclassified 0.33 ± 0.15 
BU646281 Unknown Unclassified 0.33 ± 0.12 
Olivier/Clp Unknown Unclassified 0.33 ± 0.10 
BM519195 Unknown  Unclassified 0.34 ± 0.14 
BE129407 Unknown Unclassified 0.34 ± 0.14 
BE122216 Unknown Unclassified 0.34 ± 0.15 
BE352103 Unknown Unclassified 0.35 ± 0.16 
894030A0 Unknown Unclassified 0.35 ± 0.16 
894044A0 Hypothetical protein Unclassified 0.36 ± 0.11 
BE23786 Unknown Unclassified 0.37 ± 0.02 
BE452608 Unknown Unclassified 0.38 ± 0.14 
BE724681 Porphorin I precursor Chlorophyll structural component 0.38 ± 0.12 
BE12210 Unknown Unclassified 0.39 ± 0.15 
BE227716 Unknown Unclassified 0.40 ± 0.09 
BE726019 Unknown Unclassified 0.40 ± 0.06 
Stern:C12 Unknown Unclassified 0.41 ± 0.09 
894004H1 Unknown Unclassified 0.44 ± 0.15 
BE337577 Putative membrane protein Unclassified; component of cell 

membrane 
0.44 ± 0.03 

BE726560 Putative protein Third enzyme in the porphyrin 
biosynthetic pathway 

0.46 ± 0.05 

963082D0 Unknown Unclassified 0.46 ± 0.07 
BF860436 Hypothetical protein Unclassified 0.46 ± 0.06 
BM518930 Unknown Unclassified 0.47 ± 0.08 
BI725674 Multicopper ferroxidase Involved in iron uptake  0.47 ± 0.07 
BI999281 Unknown Unclassified 0.49 ± 0.05 
BM003014 p60 katanin Protein that binds to microtubules and 

severs then in an ATP-dependant manner 
0.51 ± 0.07 

BI722399 Gametolysin  0.52 ± 0.09 
BE453108 Putative selenoprotein Protein family that contain selenium 0.53 ± 0.05 
BE351855 Unknown Unclassified 0.55 ± 0.04 
BE725812 Unknown Unclassified 0.55 ± 0.02 
BM518939 Unknown Unclassified 0.55 ± 0.03 
BF865887 Unknown Unclassified 0.55 ± 0.02 
BI723489 Putative zeta-carotene 

desaturase precursor 
Involved in carotene biosynthetic 
pathway 

0.55 ± 0.04 

BE725245 Expressed protein Similar to a Arabidopsis thaliana protein 0.55 ± 0.03 
BE724263 Unknown Unclassified 0.57 ± 0.02 
BE726116 Unknown Unclassified 0.57 ± 0.03 
 

 67



Table 4: Continued 

EST 
genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
BM518836 Putative indole-3-glycerol 

phosphates synthase  
Metabolic enzyme in the productionof 
indol-3- glycerol phosphate 

0.58 ± 0.01 

BE725843 Putative sterol-
methyltransferase 

Involved in the sterol biosynthetic 
pathway 

0.59 ± 0.01 

BE453183 Unknown Unclassified 0.59 ± 0.01 
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Table 5: Down-regulated genes at 3 µg/ml TNT. 
 
EST 
genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
BE453282 Unknown Unclassified 0.35 ± 0.10 
BF863625 Putative porphorin precursor Chlorophyll structural component 0.35 ± 0.04 
BF761376 Unknown Unclassified 0.35 ± 0.04 
BF863773 Unknown Unclassified 0.37 ± 0.05 
Stern: B10 Unknown Unclassified 0.37 ± 0.06 
BE724871 Unknown Unclassified 0.38 ± 0.13 
BE452945 D-beta-hydroxybutyrate 

dehydrogenase 
Enzyme found in the mitochondria 
membrane  

0.41 ± 0.09 

BF863761 Alpha-tubulin like protein Microtubule protein 0.43 ± 0.09 
BM519086 Unknown Unclassified 0.44 ± 0.11 
BE227503 Putative alpha-2-chain  0.45 ± 0.07 
BE352141 Unknown Unclassified 0.45 ± 0.07 
BF863819 Putative sulfated surface 

glycoprotein 
Surface protein  0.46 ± 0.07 

BE024783 Unknown Unclassified 0.48 ± 0.04 
BF860856 Unknown Unclassified 0.48 ± 0.1 
BE725330 Putative hydroxyproline rich 

glycoprotein 
Component of cell wall proteins 0.48 ± 0.12 

BE238331 ATP synthase Energy evolving enzyme 0.48 ± 0.04 
BE725207 Unknown Unclassified 0.49 ± 0.05 
BE453150 Expressed protein Similar to Arabidopsis thaliana 

expressed protein 
0.49 ± 0.07 

BE352179 Unknown Unclassified 0.49 ± 0.07 
BE725344 Putative transketolase Enzyme that catalyzes the transfer of 

two carbon fragment from a ketose 
to a aldose 

0.49 ± 0.09 

BE238314 Unknown Unclassified 0.49 ± 0.07 
BE725502 Unknown Unclassified 0.50 ± 0.04 
BE237914 Translation elongation factor 

like protein 
Involved in translation 0.50 ± 0.09 

963104B1 ATP dependant protease Energy related enzyme 0.50 ± 0.06 
BE726129 Inorganic pyrophosphatase 

precursor 
Vacuolar proton translocating 
protein 

0.51 ± 0.05 

BF860319 Unknown Unclassified 0.51 ± 0.05 
BF863295 Putative vegetative cell wall 

protein 
Component of the cell wall  0.51 ± 0.05 

BE725158 Putative ATP synthase alpha 
chain 

Energy evolving protein 0.51 ± 0.06 

BF860406 Hypothetical protein Similar to protein in Desulfovibrio 
desulfuricans 

0.51 ± 0.06 

BF861408 Unknown Unclassified 0.52 ± 0.08 
BE725556 Unknown Unclassified 0.52 ± 0.03 
BE724687 Unknown Unclassified 0.52 ± 0.04 
BE122081 Unknown protein Protein similar to Arabidospis 

thaliana 
0.53 ± 0.02 
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Table 5: Continued 

EST 
genbank or 
clone ID 

Gene description Putative functional category Fold ratio ± SD 

    
BF860682 Unknown Unclassified 0.56 ± 0.02 
BE351718 Unknown Unclassified 0.56 ± 0.05 
BI999544 Putative ABC transporter 

subunit 
Involved in the active movement in 
a wide variety of substrates across 
cell membranes. 

0.57 ± 0.02 

BM518842 14-3-3 protein (G-box binding 
factor) 

Signal transduction 0.57 ± 0.01 

BM518842 Unknown Unclassified 0.57 ± 0.01 
BE725268 S-adenosylmethionine 

decarboxylase proenzyme 
Enzyme involved in the polyamine 
synthetic pathway 

0.58 ± 0.02 

BE726480 BBC1like protein Involved in activation of 
transcription  

0.58 ± 0.02 

BF859990 Unknown Unclassified 0.59 ± 0.02 
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 In addition to the up-regulation of photosynthetic genes, many ribosomal proteins 

were up-regulated by TNT. Ribosomal proteins are involved in protein synthesis. Both 

small and large subunit ribosomal proteins that are found in the chloroplast and cytosol 

were identified. There was approximately 2-fold increase in the expression of 50S and 

30S chloroplast ribosomal proteins in 1 µg/ml TNT (see Table 2). In 3 µg/ml TNT the 

expression level of the large 50S subunit was 1.89 ± 0.12-fold induction, while the small 

30S subunit protein expression was approximately 2.14 ± 0.15-fold higher (see Table 3). 

Another major category of differentially regulated genes encode for cell defense 

proteins which include anti-oxidative stress proteins and heat shock proteins. The 

majority of these proteins were up-regulated in 3 µg/ml TNT. The anti-oxidative stress 

proteins include peroxiredoxin like proteins, DegP protease like protein, thioredoxin and 

glutathione-S-transferase. Peroxiredoxin-like protein, DegP protease and thioredoxin 

were up-regulated at least 2-fold in TNT treatment. Peroxiredoxins form a group of 

peroxidases found in bacteria (Tartaglia et al., 1990), yeast (Chae et al., 1993), animals 

and higher plants (Goyer et al., 2002). 

At the lower concentration of TNT very few known cell defense genes were over-

expressed. Both TNT treatment conditions resulted in the up-regulation of a putative 

lycopene beta cyclase. This enzyme is involved in the synthesis of carotenoid 

compounds. Often these compounds are associated with photosynthesis and many also 

act as antioxidant agents (Hemmi et al., 2003). In addition, putative chaperone proteins 

were expressed 2.2 ± 0.37 fold greater at 1 µg/ml TNT. In general, many of the proteins 

were unknown and may be involved in cell defense regulation.  
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 One interesting gene that is up-regulated at 3 µg/ml TNT is the nitrate reductase 

gene. There is a 1.9 ± 0.16-fold increase in gene expression. Nitrate reductase is the 

primary enzyme that catalyzes the reduction of nitrate to nitrite (Llamas et al., 2002). 

Other metabolic genes that are up-regulated in TNT are the sulfotranferase gene and the 

sulfate transport system gene. These genes are involved in sulfur assimilation in 

Chlamydomonas (Harris, 1988). 

 The final classifications of upregulated genes are those whose functions are not 

yet known. Some of these genes include hypothetical proteins and expressed protein that 

are similar to those found in other organisms. Approximately 26 % and 40 % of 

responsive genes had unknown functions in 1 and 3 µg/ml TNT respectively. For both 

TNT treatment concentrations, the highest amount of up-regulation was observed for a 

gene whose functional category was unclassified. Among the up-regulated genes at 3 

µg/ml TNT treatment is an unknown gene that has a 6.0 ± 3.84-fold ratio increase. In 

addition, the highest increase in fold ratio after 1 µg/ml TNT is an unknown protein 

which had a 2.68 ± 0.86 fold ratio increase. 

 

Functional classification of the down-regulated genes 

 This study, which was intended to ultimately develop phytosensors and 

phytoremediation application, focused less on the expression of genes that were down-

regulated by TNT, however it was determined that a few genes had reduced mRNA 

levels. Compared to the up-regulated genes the majority of the down-regulated genes 
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were unknown. At 1 µg/ml TNT approximately 74 % of the unknown genes were 

repressed and 3 µg/ml TNT 50 % of the unknown genes were down-regulated 

Among the down-regulated genes, many genes associated with cell wall 

components of Chlamydomonas were repressed in the presence of 3 µg/ml TNT. 

Hydroxyproline rich proteins constitute a major structural component of the 

Chlamydomonas cell wall. Another set of genes that were down–regulated were the ATP 

related genes. ATP is involved in the expenditure of energy that drives various cellular 

processes in the cell (Hopkins, 1999).  

 

Discussion 

The focus of this study was identifying Chlamydomonas genes that were up-

regulated in the presence of TNT. Among these up-regulated genes several functional 

categories were analyzed for their putative role in TNT response. 

  The data suggest that TNT regulates genes involved in photosynthesis and 

therefore, may affect the redox regulation of Chlamydomonas. It has been reported that in 

green algae and higher plants, transcription (Pfannsschmidt et al., 1999), mRNA stability 

(Alexciev and Tullberg, 1997), translation (Dannon and Mayfield, 1994) and protein 

phosphorylation (Rintamäki, 2000) are regulated by the redox state of the photosynthetic 

electron transport chain. In addition, other reports suggest that the thioredoxin gene 

(Navarro et al., 2000), some nitrogen-related genes (Alfonso et al., 2001) and heat shock 

genes (Glatz et al., 1997) were under the control of the photosynthetic electron transport. 

In this study thioredoxin, nitrate reductase and putative heat shock proteins were up-

regulated in TNT indicating that TNT is affecting the regulation of the electron transport 
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chain and thereby affecting genes under the control of the electron transport chain. 

Studies conducted by Nocter and Foyer (1998) have characterized the antioxidant defense 

network in plants where they suggest that the disturbances of the photosynthetic electron 

transport chain can result in oxidative stress. 

 Oxidative stress can occur as a result of a number of abiotic and biotic stresses. 

These stress environments include drought stress, osmotic stress, ionic stress, the 

presence of pollutants, and intense light, (Méndez-Álvarez et al., 2000). During aerobic 

metabolism under these stress conditions, reactive oxygen species (ROS) are produced as 

a result of partial reduction of oxygen. ROS were originally considered to be detrimental 

to cells, but recently it has been shown that it is involved in redox regulation by adjusting 

cellular activities (Desikan et al., 2001). There are many research studies that have 

indicated that the generation of ROS during oxidative burst is one of the first cellular 

responses to potential pathogens and elicitor molecules (Lamb and Dixon, 1997). These 

ROS induce the expression of defense-related genes such as glutathione S-transferase 

(Desikan et al., 1998), peroxidases such as ascorbate peroxidase and superoxide 

dismutase (Méndez-Álvarez et al., 2000). In this study, both glutathione S-transferase, 

and peroxidase enzyme were overproduced in the presence of 3 µg/ml TNT. Glutathione 

acts as a redox sensor and is involved in the multiple regulatory systems coordinating the 

expression of defense genes (Wagner et al., 2002). Arisi et al., 1998 and Zhue et al., 

1999, suggested that the increasing glutathione biosynthetic capacity could enhance 

resistance to oxidative stress. Transgenic plants that overexpress glutathione gene were 

found to grow better under salinity and chilling stress (Foyer et al., 1995). 
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The up-regulation of ribosomal proteins in the presence of TNT is apparent by the 

identification of several putative and confirmed ribosomal proteins. Ribosomes regulate 

the protein synthesis in the cytosol and in the chloroplast. Studies conducted by Mendez-

Alvarez et al., (2000) suggest that certain ribosomal proteins may be involved in 

oxidative stress. Cloning and engineering the Chlamydomonas 60S ribosomal protein 

cDNA into oxidative stress sensitive Saccharomyces cerevisiae resulted in restoration of 

the oxidative stress resistance capacity of S. cerevisiae. This oxidative resistance capacity 

was induced by the synthesis of carotenoids. The increased carotenoid production may be 

the result of the overproduction of the Chlamydomonas 60S ribosome which regulates the 

translation of proteins. Carotenoids are a group of polyene pigments produced by 

photosynthetic organism and some types of fungi and bacteria (Bohne and Linden, 2002). 

A majority of carotenoids are synthesized from lycopene. Beta-carotene is synthesized 

directly from lycopene and catalyzed by lycopene-beta-cyclase. A putative lycopene-

beta-cyclase was up-regulated in Chlamydomonas after the treatment of TNT, indicating 

that this protein may play a role in oxidative stress resistance. ROS produced during 

oxidative stress have been demonstrated to act as a novel class of second messengers 

mediating high carotenoid synthesis during chromoplast differentiation in pepper 

(Bouvier et al., 1998). 

 The up-regulation of nitrate reductase at 3 µg/ml TNT indicates that this enzyme 

may be associated with TNT metabolism. Hannink et al., (2001) engineered plants that 

express the nitrate reductase enzyme from Enterobacter cloacae and described the 

phytodetoxification of TNT. Nitrate reductase utilizes NADPH as a source of reducing 
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equivalents to catalyze a two-electron reduction of TNT to hydroxyaminodinitoluene, 

which is subsequently reduced to aminodinitrotoluene derivatives. 

  Among the down-regulated genes cell wall related genes were repressed. It is 

interesting to note that in some research studies hydroxy-proline rich glycoproteins aid in 

the resistance to metal ions (Macfie and Welbourn, 2000). The cell walls of algae have 

the capacity to bind metal ions in negatively charged sites. The anion carboxylate groups 

of pectin and glycoprotein have a strong binding affinity for metal ions (Crist et al., 

1994). In this study, the repression of cell wall genes indicates that TNT resistance may 

not be cell wall related but may interfere with cell wall maintenance. TNT may affect the 

expression of hydroxyproline rich proteins, hence the genes are down-regulated.  

 Several of the genes discussed here were not analyzed because their functions 

have not yet been described. Many hypothetical genes are indeed transcribed and some of 

them responded strongly to TNT treatment suggesting that they have a significant role, 

yet to be unraveled in further studies. 

 In order to extend the microarray data, the expression of selected genes would 

need to be confirmed. Many studies have used various techniques to confirm the data 

such as northern blot analysis (Hihara et al., 2001) or real-time PCR (Sebert et al., 2002). 

When considering the relative expression of the 3079 clones it is important to realize that 

the expression profile by itself does not define critical genes required for stress response. 

In some instances changes in mRNA may not correlate with changes in protein or 

enzyme activity level (Gygi et al., 1999). Expression profiles however, do provide a 

useful starting point for a more in depth analysis of stress response in a particular 

organism. For example candidate gene lists can be created to assign putative functions to 
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genes in response to a particular stress. In this study, TNT responsive genes were 

identified. Candidate genes can be further analyzed for their response in the resistance to 

TNT. These genes can be cloned and overexpressed into other organisms to assess 

tolerance to TNT. In addition, promoters that were induced in the presence of TNT can 

be fused to reporter genes such as GFP to serve as biomonitoring systems. 
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