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ABSTRACT 

 

Antibiotic growth promoters (AGP) use has been associated with the emergence of 

antibiotic-resistant human pathogens of animal origins. The global trend of restricting AGP 

necessitates the need to develop effective alternatives that will maintain safety and sustainability 

of food animals. Bile salt hydrolase (BSH) is an intestinal enzyme that is produced by diverse gut 

bacterial species and involved in host lipid metabolism. Recent studies suggest that BSH inhibitors 

are promising alternatives to AGP for enhanced growth performance and animal health. Using a 

high-purity BSH from a chicken Lactobacillus salivarius, a panel of BSH inhibitors has been 

identified. However, it is still unknown if these inhibitors also inhibit the function of the BSH from 

other bacterial species with significant sequence variation and substrate spectrum. In this study, 

we compared the BSH from L. salivarius to that from L. acidophilus BSH.  Sequence alignment 

and structure modeling indicated the two BSH enzymes contain conserved catalytically important 

amino acid residues and domain. Using a high-purity BSH from L. acidophilus, we demonstrated 

that the previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. 

acidophilus BSH. 

A large scale chicken experiment was conducted to examine the effect of dietary 

supplementation of riboflavin, a potent BSH inhibitor, on growth performance of broilers.  Briefly, 

300 one-day-old Hubbard broiler chicks were randomly assigned into three treatment groups (10 

pens per group, 10 birds per pen) that received one of following diets: 1) a basal diet with no 

riboflavin added (control); 2) a basal diet + low dose of riboflavin (20 mg/kg); and 3) a basal diet 

+ high dose of riboflavin (200 mg/kg).  Dietary supplementation of riboflavin, regardless of dose, 

significantly increased BW gain by day 21 (P < 0.0053).  Significantly improved FCR was only 
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observed for the chickens that received the low dose of riboflavin on day 21 (P < 0.030).  High 

performance liquid chromatography was used to determine the levels of riboflavin in various diets.  

The concentrations of total bile acids in the blood and ileal samples collected on day 14, 33, and 

42 were not significantly changed in response to riboflavin treatment.  
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CHAPTER I 

LITERATURE REVIEW 

 

Antibiotic Growth Promoters 

The therapeutic nature of penicillin was discovered in the 1920s and utilized in the 1940s, 

which lead to the discovery of other antibiotics from the 1930s to the 1960s  (Cantas, et al. 2013). 

In the early 1950’s, during the study of hepatic toxicity of alkaline hydrolyzed aureomycin 

scientists observed that a tetracycline antibiotic enhanced weight gain and altered the intestinal 

flora of rats (Gyorgy, et al. 1951). Subsequently, a group of subtherapeutic doses of antibiotics, 

referred as antibiotic growth promoters (AGP), were used to enhance feed efficiency and weight 

gain in food animals. Antibiotic growth promoters have been primarily used in the cattle, poultry, 

and swine industries (Laxminarayan, et al. 2015).  Effective AGPs used in food animals have low 

drug substitution and include a panel of diverse antibiotics, such as bacitracin (a polypeptide), 

avoparcin (a glycopeptide), bambermycin (a phosphoglycolipid), virginiamycin (a streptogramin) 

and tylosin (a macrolide) (Marshall, et al. 2011).  AGPs such as avoparcin, zinc bacitracin, 

virginiamycin, tylosin, and spiramycin have shown a 1.5 - 5% increase in weight gain and a 3-7% 

increase in feed efficiency in chickens and pigs (Buttery, et al. 1986; Hao, et al. 2014); while 

ionophores have shown an increased in feed efficiency of 1.6 - 7.5% in cattle (Jouany, et al. 2007).  

To date, many antimicrobials with different mechanisms of action have been found capable of 

improving weight gain and efficiency of feed utilization and have been widely used in food animal 

industry (Gaskins et al., 2002). Usually a combination of different AGPs is used in feeds during a 

complete production cycle to maximize the efficacy of AGPs.   
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At present, the precise mechanisms of growth promoting effect of AGPs are still unknown.  

However, it is widely accepted that the growth promoting effect of AGPs is mediated by the 

interaction between AGPs and the intestinal microbiota (Buttery, et al. 1986; Gaskins, et al. 2002; 

Dibner, et al. 2005). The use of AGPs may change the diversity and structure of microbial 

communities in the animal intestine and ultimately result in an optimal and balanced microbiota 

for increased energy harvest and better growth performance of food animals.  The proposed modes 

of action of AGPs include reduction of growth-depressing microbial products, defensive function 

against pathogens conferred by certain normal flora, and production of nutrients by microbiota for 

host utilization (Buttery, et al. 1986; Gaskins, et al. 2002; Dibner, et al. 2005). 

Precipitous AGP use caused the emergence of multiple drug resistant Escherichia coli, 

Enterococcus species, Salmonella enterica, as well as  methicillin/ oxacillin-resistant 

staphylococcus aureus (MRSA) in the 1950s and 1960s (Cantas, et al. 2013). Concerns of the 

impact of AGP usage on public health were documented early on by England’s Swann report to 

the British Parliament in 1967 and by USA’s two notices to the Food and Drug Administration 

(FDA)  in 1977 (Kux, et al. 2011). Epidemiological studies have linked AGP application to the 

emergence of antibiotic resistant bacteria (Bager, et al. 1997; Aarestrup, et al. 1999). Antibiotic-

resistant bacteria as well as resistance genes can therefore spread from animals to humans, which 

compromises the effectiveness of antibiotics for the treatment of human infections and poses a 

serious threat to public health (Levy, et al. 1976; Bager, et al. 1997; Dibner, et al. 2005; Akwar, 

et al. 2007; Khanna, et al. 2008; Ogata, et al. 2012; Ramos, et al. 2013). For this reason, there is 

a worldwide trend to reduce and even stop AGP use in animal production systems as described in 

the following section. 
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In the United States the FDA (2009) reported an increase in agricultural production and 

purchases of fifteen drug classes that have broad bactericidal effects and structural compatibility 

to other antibiotic classes. These AGPs such as cephalosporins, macrolides, penicillins, and 

tetracyclines are some medically relevant classes that are used to enhance the weight gain of food 

animals (FDA 2012). As of 2012, the FDA began encouraging the phasing out of sub-therapeutic 

antibiotics for weight gain efficiency, but it has not resubmitted an additional notice since 1977 

that aimed at prohibiting tetracycline and penicillins as AGPs (Dibner, et al. 2005; 2012; Cully 

2014).  

 

Current status of AGP 

The findings that linked AGP avoparcin usage to the emergence of the pathogens resistant 

to vancomycin, an analog of avoparcin for human therapeutic treatment, led to the ban of AGPs in 

Denmark in 1998. Altogether, EU initially banned polypeptide antibiotics (e.g. avoparcin and 

bacitracin), macrolides (e.g. spiramycin and tylosin), and virginiamycin combination.  In 2006, the 

EU completely reformed its agricultural practices and banned all AGP usage that led to a decrease 

in AGP usage. The impact of AGP limited usage is still tangible.  

For instance, Sweden and Denmark abstained from AGP use prior to the EU’s 2006 ban 

and has demonstrated a decrease in AGP. Overall, Sweden’s drug market has sold 10% less AGPs 

than in 1986 (Sweden 2012). However, in 2002, Sweden can still detect the presence of 

vancomycin resistance and reported incomplete recovery of swine production after their ban 

(Casewell, et al. 2003; Hao, et al. 2014; Jensen, et al. 2014). Denmark reported a decrease of 

avoparcin, macrolides and virginiamycin resistance after AGP ban. However, they have been 
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contending with an increase in morbidity (2.7- 3.5%) and mortality (11%) in their swine industry 

as well as resistance to tetracycline, vancomycin, and sulphonamide since the ban (Casewell, et al. 

2003; Hao, et al. 2014).  

The international antimicrobial market increased in value from $8.65 billion to 20.1 billion 

dollars, from 1992 to 2010 and a $42.9 billion dollars increase is predicted by year 2018.  The 

EU’s Veterinary Medicines Directory reported an increase of 383 tons to 437 tons in therapeutic 

drug sold from 1999 to 2000. Predominately, tetracycline (36 ton), sulphonamide (12 ton) and 

macrolide (12 ton) were sold to the swine and poultry industries, suggesting that these industries 

are most vulnerable to the ban (Casewell, et al. 2003). Thus, Demark monitors veterinary 

prescription allocation, oversight, and a depreciation of medication by using VETSTAT that 

censors over use and resistance to antibiotics (Jensen, et al. 2014).  With an increase in the 

antibacterial market a strict control of antibiotics may become a global trend.  

Meanwhile, some countries, such as China, that is the user of four times the AGPs than 

that used in the United States (U.S.) and Spain, which is the predominate AGP user in Europe, 

have detected all drugs in the manure and waste water of livestock (Hao, et al. 2014). In the U.S., 

cattle and swine have tetracycline and ampicillin (beta-lactam) resistant genes while steers have 

more tetracycline resistant genes in fecal flora than non-AGPs treated animals (Harvey, et al. 

2009). Resistant genes in the fecal flora is a major concern because the AGPs belonging to 

tetracyclines, lincosamides, macrolides, beta-lactam, sulfas, and aminoglycosides have similar 

medically relevant drugs that are used as therapeutics in animals and humans. According to the 

FDA’s total report on antibiotic sales in the United States in 2012 the two most produced and 
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purchased antibiotic are tetracycline (41%) and ionophores (31%) in the food animal industry 

(FDA 2012).  

In December of 2013, US FDA issued Guidance 209 and 213 that outline the voluntary 

phasing out of medically important antibiotics, which are used in healthy animals.  In response to 

this trend, Tyson and Perdue, the two major poultry producers, announced removal of human-

related antibiotics from its broiler chicken feed in fall 2014 (Teillant, et al. 2015).  In September 

of 2014, President Barack Obama signed an executive order that promotes the cooperation of 

industry, academia, government, the general public, and agriculture community. Aims of the 

executive order are to generate novel stewardship approaches, to regulate antibiotic use, and to 

monitor general public and agricultural community use of antibiotics (Jooma, 2015).  

 

Development of alternatives to AGP 

Successful AGP removal will depend on effective alternatives that are practical, cost 

effective, and capable to maintain enhanced weight gain and feed efficiency. Developing effective 

alternatives to AGP is urgently needed of maintaining current animal production level without 

threatening public health. Several classes of alternatives to AGPs, such as probiotics, prebiotics, 

and organic acids, are briefly summarized below (Jouany, et al. 2007; Cheng, et al. 2014).  

Probiotics, generally consisting of Bacillus, Lactobacillus, Streptococcus, Enterococcus, 

Bifidobacterium, and Bacteriodes, have been observed to improve growth performance of 

monogastrics and ruminates (Cheng, et al. 2014).  Live microbe supplementation in ruminants is 

hypothesized to promote a lowered pH that decrease pathogenic bacteria and in monogastrics the 
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microbes are postulated to produce bacteriocins and acids that decrease level pathogenic bacteria 

(Jouany, et al. 2007; Cheng, et al. 2014). The probiotic supplementations have led to enhanced 

weight gain in post weaning caves (Cruywagen, et al. 1996; Sun, et al. 2010). Unfortunately, these 

results have been inconsistent. For instance, supplementation of probiotics in growing ruminants 

did not enhance weight gain (Morrill, et al. 1977; Schwab, et al. 1980; Zhang, et al. 2015). The 

poultry industry has also observed inconsistency with the use of probiotics. They have observed 

improved weight gain (Mountzouris, et al. 2007), stimulated immune response (Zhang, et al. 

2012), and improved food safety (Gaggìa, et al. 2010); however due to complicated interactions 

and low numbers of birds for statistical power more studies are urgently needed (Alloui, et al. 

2013). Probiotic use in swine has shown an increase in weight gain that is comparable to AGP 

usage (Kyriakis, et al. 2003; Kritas, et al. 2005). Conversely, data from swine studies exist to 

suggest that probiotic do not improve weight gain nor feed efficiency (Harper, et al. 1983; 

Lähteinen, et al. 2014).  Altogether, inconsistent results on growth performance of food animals 

have been observed following probiotic administration, thus warranting rationale design and 

development of effective probiotic products. 

Prebiotics are nondigestible oligosaccharides that sustain some beneficial bacterial 

populations, such as Bifidobacterium and Lactobacillus, in the gut (Pharmaceutiques 1995). 

Probiotics have been shown to bolster the microbiota, to prime the immune system of the host, and 

to portray antiviral traits (Cheng, et al. 2014). Combination of probiotic and prebiotics has shown 

to increase weight gain and decrease feed cost in broilers (Saiyed, et al. 2015). Prebiotic 

supplementation in heat stressed broilers resulted in greater weight gain than those without 

prebiotics (Hasan, et al. 2014). Additionally, probiotic with prebiotic (mannanoligosaccharides) 
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decreased the E. coli load by adhering to E. coli and merging with the fecal mass (Baurhoo, et al. 

2007). Even with these benefits, prebiotics are not permitted in the European Union as they may 

cause bloating and diarrhea in food animals. Additionally, the symbiotic mixture of prebiotic and 

probiotics are still not well understood and need further perusal for use of them as weight enhancers 

(Cheng, et al. 2014).  

Acids, such as acetic, propionic, butyric and formic acids (Partanen, et al. 1999) are 

enticing AGPs alternatives. The acids can generate a low pH environment that enhance pepsin 

proteolytic activity and likely reduce the population of pathogenic bacteria in the gastrointestinal 

tract (Knarreborg, et al. 2002; van der Eijk 2002). Benzoic acid and some essential oils (extracts 

of rosemary, sage, thyme, oregano and tea) provide improved weight gain in poultry and an 

increase in lactic acid and coliform bacteria (Giannenas, et al. 2014). Acids have improved feed 

conversion ratio in piglets and, in adult pigs, weight gain and digestibility of feed (Partanen, et al. 

1999). However, fumaric acid supplementation in young pigs diet did not show improvements in 

weight gain and ileal digestibility (Giesting, et al. 1991). Studies have shown weight enhancement 

due to  fumaric acid supplementation, but no improvements were reported with citric acid 

supplementation (Radecki, et al. 1988). However, other studies have shown that pure citric acid or 

acidifiers blend did not cause weight gain but improved immunity in piglets infected with 

Salmonella, (Ahmed, et al. 2014). More studies are needed to elucidate how specific acid treatment 

could enhance weight gain and immune response.   

Natural extracts such as saponins, tannins, and essential oils appear to be another class of 

alternatives to replace AGPs. Saponins are bactericidal in that they bind to membrane steroidal 

units and compromise the bacteria’s cell membrane in monogastrics. In ruminants, the use of 
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saponins has lowered protein degradation by protozoa which has resulted in increase in weight 

gain and feed efficiency. Unfortunately, protozoa impediment has not been observed with use of 

saponins (Milgate, et al. 1995; Cheeke 1996). Tannins provide protection from helminthes and 

some antibacterial effects when placed inside the rumen; in non-ruminants they reduce iron 

available for bacterial metabolic purposes (Aerts, et al. 1999; Barry, et al. 1999; Jouany, et al. 

2007). Essential oils have shown to be bactericidal; however, like the other natural extracts, the 

mechanisms, toxicity effects, upper level concentration, and particulars of harvesting period are 

not well understood (Jouany, et al. 2007; Cheng, et al. 2014). 

Enzyme supplementation is being explored as a potential effective alternative to AGPs. 

The addition of enzymes in feedstuff of ruminants and monogastrics has increased foodstuff 

digestibility as well as bioavailability of minerals. However, the potential of the enzyme 

supplementation to increase nutrient for gut microbiota make them less desirable (Jouany, et al. 

2007; Cheng, et al. 2014). The combination of probiotics with phytases has shown an increase in 

weight gain in broilers when compared to those given adequate phosphate diet. Although enzyme 

supplementation is a promising non-antibiotic alternative approach, more studies are needed to 

better justify and understand the mechanism of this strategy (Askelson, et al. 2014).  

Altogether, there are significant challenges for developing effective non-antibiotic 

alternatives to AGPs. Therefore, examination of gut microbiota in response to AGP treatment 

would provide science-based information into the modes of action of AGP and facilitate the 

development of novel alternatives to AGP (Collier, et al. 2003; Knarreborg, et al. 2004; Kim, et 

al. 2012; Lin, et al. 2013). 
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The effect of AGP usage on intestinal microbiota and microbiota-derived factors 

The microbiota includes bacteria, archaea, and fungi populations that work symbiotically 

with the host. In the last sixty-four years, subtherapeutic doses of antibiotics or AGPs have 

exhibited improved weight gain in food animals (Feighner, et al. 1987; Dumonceaux, et al. 2006; 

Cully 2014; Hao, et al. 2014). With the aid of culture-independent molecular approaches, the 

investigations of the effect of AGP on intestinal microbiota have been initiated in different food 

animals, including poultry, and swine. For example, the 16S rRNA sequencing of two pig herds at 

separate farms identified Firmicutes and Bacteroidetes as dominate bacterial groups, with E. coli 

population having a relatively low concentration of 0.12% (Kim, et al. 2011). Experimentation of 

the pig’s intestines identified the following bacteria: Streptococcus, Lactobacillus, Eubacterium, 

Fusobacterium, Bacteriodes, Peptostreptococcus, Bifidobacterium, Selenomonas, Clostridium, 

Butyrivibrio, and Escherichia, with the order showing rate of occurrence (Gaskins, et al. 2002). A 

16S rRNA clone library sequencing system showed Lactobacillus and Streptococcus vulnerability 

to AGP treatment (Gaskins, et al. 2002; Dibner, et al. 2005). Another swine study illustrated a 

preferential dominance of Lactobacillus, Clostridiaceae, and Turicibacter spp. in the ileum of 

control and a decrease in L. johnsonii and L. amylovorus in chlortetracycline treatment (Rettedal, 

et al. 2009). A multiple AGP formulations such as, chlortetracycline, sulfamethazine, and 

penicillin in swine feed, has shown a decrease in Bacteroidetes in comparison to Firmicutes and 

an increase in Proteobacteria for instance, E. coli, and Salmonella (Looft, et al. 2012). Bacterial 

vulnerability during weeks of multiple AGP treatment, such as week one exposure: 

chlortetracycline, sulfathiazole, penicillin; week two exposure: tylosin, bacitracin, and roxarsone; 
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and third through the fifth week exposures: lincomyocin, carbadox and virginiamycin respectfully 

have shown diminish of Lactobacillus, Streptococcus, and Bacillus spp. (Collier, et al. 2003).   

In regards to birds, bacterial colonization occurs in the crop, gizzard, duodenum, jejunum, 

ileum and cecum (Buttery, et al. 1986; Walter 2008). L. furmenta and L. salivarius populate the 

crop and L. salivarius dominates the jejunum and ileum (Fuller, et al. 1974; Buttery, et al. 1986; 

Gong, et al. 2007). Tylosin and penicillin AGPs have caused decreases in Lactobacillus spp. in 

the ileum of fowls while penicillin treatments can also decrease Bacteroidetes, Bacteriaceae, 

Enterococcus, Streptococcus spp. (Lin 2011; Singh, et al. 2013). Multiple combinations of AGPs, 

such as virginiamycin and bacitracin methylene, cause an increase in Enterococcus spp. and a 

decrease in the L. salivarius in the ileum (Zhou, et al. 2007). Interestingly, preparation of either 

non-AGP wheat or medium chain fatty acids diets have improved feed efficiency and caused a 

shift in the microbiota in broilers. The microbiota shift suppressed gram positive Firmicutes such 

as Lactobacillus, Enterococcaceae and Micrococcaceae and promoted gram negative bacteria 

such as Enterobacteriaceae (van der Hoeven-Hangoor, van der Vossen et al. 2013). 

Lactobacillus and Bacteroidetes vulnerability to AGP underscore these species and related 

derived factors as targets for developing alternatives to AGP. Some microbiota-derived proteins 

in the intestinal tract may be implicated in growth promotion, such as bile salt hydrolase (BSH). 

Both bacterial population produce BSH that hydrolyzes conjugated bile salts, the strong 

emulsifiers of lipids and play an important role in lipid metabolism. An inverse relationship with 

BSH activity and AGPs have been observed in chickens as early as in 1987 (Feighner and 

Dashkevicz 1987). Together, these findings indicate that the body weight gain in food animals is 

inversely related to the activity of BSH enzymes as well as the abundance of corresponding 
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bacterial producers, which provides a strong rationale for us to examine if BSH inhibitors are 

promising alternatives to AGP as described in our recent studies (Wang et al, 2012; Smith et al, 

2014; Lin et al. 2014) and in this project.  

 

Molecular and biochemical features of bile salt hydrolase  

Bile salt hydrolase enzyme is specific to many commensal bacteria species such as 

Bacteriodes, Clostridium, Enterococcus, Bifidobacterium, and Lactobacillus in the intestines 

(Gilliland, et al. 1977; Ferrari, et al. 1980; Gopal-Srivastava, et al. 1988; Coleman, et al. 1995; 

Grill, et al. 2000; Elkins, et al. 2001; Franz, et al. 2001; Knarreborg, et al. 2002; Begley, et al. 

2006). A single bacterium can have more than one BSH gene in its genome. Studies have 

elucidated three BSH (BSHA/1, BSHB/2, and BSHC/3) genes in Bifidobacterium spp. and two 

(bshA/1 and bshB/2) for Lactobacillus acidophilus (Kim, et al. 2004; Begley, et al. 2006). 

Interestingly, the homology of the two BSH genes from L. acidophilus is very low, likely attributed 

to horizontal gene transfer during evolution (McAuliffe, et al. 2005; Begley, et al. 2006).  

Bile salt hydrolase, penicillin G acylases, and penicillin V acylases are N terminal 

nucleophiles that have a cysteine residue, visible post transcriptional modifications at the N-

terminus (Suresh, et al. 1999). The N-terminal can begin with either cysteine, threonine, or serine 

and is the beginning of the BSH’s catalytic site that has key amino acid residues such as Cys-2, 

Arg-16, Asp-19, Asn-79, Asn-171, and Arg 224 (Begley, et al. 2006).  These conserved amino 

acid residues can play a role in providing a universal target within the BSH’s catalytic site.  
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Bile salt hydrolase is thought to benefit the bacteria’s nutrition and membrane integrity 

(Begley, et al. 2006). Clostridium isolates from rats demonstrated colony growth after 

unconjugation of taurine’s sulfur containing bile salts, while sulfur compounds and sulfhydryl 

containing amino acid did not stimulate growth (Huijghebaert, et al. 1982).  Membrane integrity 

can be bolstered as low pH can cause precipitation of the unconjugated cholesterol that may initiate 

host’s cholesterol integration into bacteria membrane; the cholesterol integration can decrease the 

host’s immune-recognition of the bacterial cell (Taranto, et al. 1997; Taranto, et al. 2003). 

Though BSH appears to be an adaptation mechanism of bacteria in the presence of 

detergent like bile salts they can have advantageous and harmful effects on the host.  Post 

unconjugation, additional modification such as dehydroxylation and dehydrogenation of bile salt 

by BSH have been associated with an increase in gall stone formation and colon cancer in humans 

(Marcus, et al. 1986; Begley, et al. 2006). However, some bacteria can only hydrolyze the 

conjugated bile salt and have not evolved the capabilities to further modify the acid, thus these 

BSH producers can be critical in preventing cholesterolemia (Kim, et al. 2004).  

 

Role of BSH in lipid metabolism and host energy harvest  

The BSH enzyme is produced by gut bacteria and catalyzes the deconjugation of 

conjugated bile acids, an essential gateway reaction in the metabolism of bile acids (Begley, et al. 

2006). The intestinal BSH activity, the widely distributed function of the gut microbiota, has been 

demonstrated to play an important role in host fat metabolism, energy harvest, and body weight 

gain. Previous studies have shown that oral administration of BSH-producing lactobacilli could 
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affect lipid metabolism, which consequently lowered cholesterol level in humans. The cholesterol-

lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 

30242 in yoghurt formulation was reported in hypercholesterolaemic adults (Jones, et al. 2012). 

Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-

producing Lactobacillus plantarum strains in Sprague-Dawley rats (Kumar, et al. 2011); and in 

pigs (Smet, et al. 1998) showed cholesterol lowering effects through enhanced bacterial bile salt 

hydrolase activity, which is likely mediated through BSH activity of the tested probiotics. 

Recently, Joyce et al analyzed the impact of in situ BSH activity on host metabolism and weight 

gain, and provided compelling direct evidence that showed the critical role of intestinal BSH in 

regulating host weight gain and lipid metabolism. Colonization of germ-free mice or conventional 

mice with a BSH-producing E. coli strain elevated intestinal BSH activity, consequently reducing 

body weight, reducing serum cholesterol level, changing bile acid profiles in feces and plasma, 

and influencing both local and systemic gene-expression profiles in pathways governing lipid 

metabolism in this animals (Joyce, et al. 2014). This work clearly identifies BSH as a mechanism 

through which the microbiota modulates host lipid metabolism and demonstrates that BSH 

represents a key target for developing novel alternatives to AGPs for enhanced animal production 

and feed efficiency.  

As described above, population of intestine Lactobacillus species, the major intestinal 

BSH-producer, was significantly reduced in response to AGP use (Knarreborg, et al. 2002; 

Dumonceaux, et al. 2006; Guban, et al. 2006). Consistent with this finding, growth-promoting 

effect of AGP was highly correlated with the decreased activity of BSH enzyme in the chicken 

intestine (Feighner, et al. 1987).  
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Bile salt hydrolase catabolizes the bile salt into amino acid and cholesterol moieties that 

produces a primary bile acid. This structure is not readily reabsorbed and can stimulate nuclear 

receptor farnesoid X receptor (FXR) in the host’s intestinal lumen. The FXR stimulation causes 

the up regulation of Cyp7A1 that promote de novo synthesis of bile salts by the removal of 

cholesterol from the blood (Lu, et al. 2000; Watanabe, et al. 2006; Joyce, et al. 2014). Further 

modifications of primary bile acids into secondary and tertiary structure are associated with colon 

cancer and gallstone formation. However, the Lactobacillus and Bifidobacterium BSH enzymes 

cannot modify primary bile acids, this consequentially lowers cholesterolemia and the occurrence 

of colon cancer in humans (Choi, et al. 2014). In summary, hydrolysis of conjugated bile salts 

leads to less amphiphilic molecules (unconjugated bile acids), which compromises fat digestibly 

and absorption. The primary structures stimulate FXR that ultimately leads to the liver 

sequestering cholesterol from the blood to synthesize bile salts de novo. When the primary bile 

salt is modified into secondary bile salt it can accumulate and cause cancer of epithelial tissue due 

to DNA damage. However, if additional modifications do not occur, the primary molecule merges 

with the fecal mass and is excreted, and this potentiates a promising therapeutic measure in obesity 

and hypercholesterolemia therapy. 
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CHAPTER II 

INTRODUCTION 

 

The food animal industry has manipulated the  gut microbiota to increase body weight and 

feed efficiency through the use of sub-therapeutic level of antibiotics, called antibiotic growth 

promoters (AGP), as feed additives for more than 60 years (Dibner, et al. 2005).  However, AGP 

usage has been linked to the emergence of antibiotic resistant bacteria (Wegener 2003). Thus, a 

worldwide trend to limit AGP use in food animals in order to protect public health and improve 

food safety has created challenges for the animal industries (Wegener 2003; Turnidge 2004). 

Effective alternatives to AGP are urgently needed to maintain current animal production levels 

without threatening public health. 

The examination of AGP effects on intestinal microbiota in food animals could enhance 

understanding of the mode of action of AGP and facilitate the development of novel alternatives 

to AGP. Although reduction of gut pathogens due to AGP usage is potentially a mechanism 

contributing to growth promotion, it has been widely accepted that use of AGP would restructure 

the complex gut microbial environment for optimal host growth performance from a nutrition 

standpoint. Recent independent food animal studies (Feighner, et al. 1987; Knarreborg, et al. 2002; 

Knarreborg, et al. 2004; Guban, et al. 2006) have shown that growth-promoting effects of AGP 

were highly correlated with the decreased activity of bile salt hydrolase (BSH), a gut bacterial 

enzyme that has negative impact on host fat digestion and energy harvest (Dibner, et al. 2005; 

Begley, et al. 2006). Notably, using both gnotobiotic and conventionally raised mice, Joyce et al 

recently obtained direct supporting evidence that BSH activity, the widely distributed function of 
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the gut microbiota, significantly influences host lipid metabolism and weight gain.  Based on these 

extensive supporting evidence, we have proposed that BSH is a promising microbiome target for 

developing novel alternatives to AGP; specifically, BSH inhibitors are promising feed additives 

that may replace AGP for enhanced host lipid metabolism and growth performance (Lin 2014). 

The BSH enzyme produced by gut bacteria catalyzes deconjugation of conjugated bile 

acids, an essential gateway reaction in the metabolism of bile acids. The natural functions of this 

BSH-mediated metabolic activity in the producing bacteria are still not clear despite various 

theories with contradictory findings (Begley, et al. 2006). However, it has been increasingly 

recognized that intestinal BSH plays an important role in host metabolism and energy harvest 

(Begley, et al. 2006; Jones, et al. 2008; Joyce, et al. 2014; Lin 2014). Because conjugated bile 

acids function as a more efficient “biological detergent” than unconjugated bile acids to emulsify 

and solubilize lipids for fat digestion (Begley, et al. 2006), BSH activity has significant impact on 

host physiology by reducing fat digestion and lipid metabolism, consequently affecting body 

weight gain (Begley, et al. 2006; Jones, et al. 2008; Joyce, et al. 2014).  Recently, we have 

identified and characterized a powerful BSH enzyme with broad substrate specificity from a 

Lactobacillus salivarius strain that was isolated from a chicken (Wang, et al. 2012).  In addition, 

with the aid of the purified L. salivarius BSH, we have identified a panel of BSH inhibitors through 

targeted screening (Wang, et al. 2012) as well as high-throughput screening procedures (Smith, et 

al. 2014). The L. salivarius BSH displayed potent hydrolysis activity towards both 

glycoconjugated and tauroconjugated bile salts; the broad substrate specificity nature of this BSH 

may make it an ideal candidate for screening desired BSH inhibitors that can targeting various 

BSH enzymes (Wang, et al. 2012; Smith, et al. 2014).  
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However, given different types of BSH enzymes present in the intestine (Begley, et al. 

2006; Jones, et al. 2008), a significant question is raised: can these identified inhibitors also 

effectively inhibit the function of the BSH from other bacterial species with significant sequence 

variation and substrate spectrum? Addressing this issue is critical for us to identify desired BSH 

inhibitors using the established L. salivarius BSH-based high-throughput screening system (Smith, 

et al. 2014). In this study, comparative genomic, structural, and biochemical analysis of a BSH 

from a different strain L. acidophilus were performed. The inhibitory effect of previously identified 

BSH inhibitors on the purified BSH from different species was determined.  

In addition, using a well-established HTS system, a panel of novel BSH inhibitors with 

potential as alternative to AGP was successfully identified.  Riboflavin is of particular interest 

because it has potent inhibitory effect on BSH (Smith, et al. 2014). Riboflavin, a yellow compound 

harvested from milk, eggs, and cereals as free or bound compound and in most other foods found 

as coenzyme flavin adenine dinucleotide or flavin mononucleotide. It can become hydrogenated 

and hydroxylated among other forms (Massey 2000). Notably, riboflavin is a vitamin that has been 

used as feed additive in poultry to treat the hypovitaminosis B2. However, long-term dietary 

supplementation of riboflavin for growth promotion in broilers has never been explored. While 

our in vitro studies support the feasibility of using riboflavin as an alternative to AGPs, a large 

animal trial is needed to determine the effect of dietary supplementation of riboflavin on growth 

performance and host lipid metabolism. Notably, a recent swine study has shown that the dietary 

supplementation of high-level riboflavin (20 mg/kg feed) significantly increased feed efficiency 

and body weight gain in the pigs with high lean growth although underlying mechanisms are still 

not clear (Stahly, et al. 2007). Therefore, in this study, a large chicken nutritional trial was 
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conducted that determined the effects of dietary supplementation of riboflavin on chicken growth 

performance. Weekly body weight gain, feed intake, and feed conversion ratio were assessed. 

Furthermore, total bile acids in serum and ileal content were measured in response to riboflavin 

treatment.  
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CHAPTER III 

MATERIALS AND METHODS 

 

 

Bioinformatics analysis of BSH  

A BSH gene from L. acidophilus PF01 has been identified and characterized Oh, et al. 

(2008); the nucleotide sequence of this BSH gene was deposited in the GenBank database 

(Accession No. EF536029).  The BSH gene from the L. acidophilus PF01 strain (Oh, et al. 2008) 

was compared to those identified from L. salivarius NRRL B-30514 (Wang, et al. 2012) and to 

other diverse bacteria using the BLASTP program from the National Center for Biotechnology 

Information (NCBI, http://www.ncbi.nlm.nih.gov/). To reveal the phylogenetic relationship, 

multiple sequence alignment of BSH sequences from different bacterial species and penicillin V 

acylase from Bacillus sphaericus (BPVA) were performed with the use of the ClustalW program 

in MEGA 6.0 (Tamura, et al. 2013). The dendrogram was constructed by neighbor-joining 

methods. To identify the conserved amino acid motifs that potentially is involved in BSH activity, 

multiple sequence alignment of BSH enzymes were performed with the use of the ClustalW2 

program (http://www.ebi.ac.uk/Tools/clustalw2/index.html).  

The modeling of BSH was performed in the Molecular Operating Environment (MOE), 

version 2008.10 (Chemical Computing Group, Montreal, QC). The BSH from Clostridium 

perfringens (Rossocha, et al. 2005) was chosen as template. Total 10 models were generated in 

the MOE homology module, using the AMBER99 force field. The one with highest packing score 

was chosen to superimpose with the C. perfringens BSH (Rossocha, et al. 2005), by way of the 

substitution matrix blosum62.  

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/clustalw2/index.html
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Purification of recombinant BSH (rBSH)  

A pET-21b (+) vector-derived recombinant plasmid encoding recombinant L. acidophilus 

BSH (Oh, et al. 2008) was kindly provided by Dr. Dae-Kyung Kang (Dankook University, Korea).  

This recombinant plasmid bears a histidine-tagged rBSH gene with a full-length of BSH gene that 

was cloned from Lactobacillus acidophilus PF01, a commensal strain isolate from swine intestine 

(Oh, et al. 2008).  In this study, this recombinant plasmid was introduced into the E. coli BL21 

(DE3) host strain via transformation. The desired transformants were selected after an overnight 

incubation at 37 oC with the use of Luria-Bertani (LB) agar plates that were supplemented with 

ampicillin (100 μg/ml). The recombinant plasmid in one transformant, designated as JL1139, was 

extracted and subsequently sequenced; no mutations in the coding sequence of the BSH gene were 

detected. Expression and purification of the His-tagged rBSH from JL1139 were performed by the 

procedure described in previous publications (Lin, et al. 2005; Oh, et al. 2008; Wang, et al. 2012). 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 12% (wt/vol) 

polyacrylamide separating gel was performed to monitor production and purification of the rBSH. 

The purified rBSH was finally dialyzed against PBS buffer with 10% glycerol (pH 7.0) and stored 

in -80 oC freezer prior to use. Protein concentration was measured by BCA protein assay kit 

(Pierce).  

 

Effect of identified BSH inhibitors on the activity of BSH   

The following three groups of compounds that have been identified as inhibitors for the L. 

salivarius BSH (Wang, et al. 2012; Smith, et al. 2014) were used in standard BSH assay in this 

study: 1) the approved feed additives used in food animals including CuCl2, CuSO4, ZnCl2, ZnSO4, 
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NaHIO3, KIO3 and NaIO4; 2) the novel BSH inhibitors identified using high-throughput screening, 

which include caffeic acid phenethyl ester, riboflavin, epicatechin monogallate, gossypetin, 

menadione, and purpurogallin (Smith, et al. 2014); 3) the antibiotics that can inhibit BSH activity 

including oxytetracycline, demeclocycline hydrochloride, methacycline hydrochloride, 

doxycycline hydrochloride, roxarsone, and lincomyocin (Smith, et al. 2014).   

A modified two-step standard BSH assay (Wang, et al. 2012) was performed to determine 

the inhibitory effect of the selected BSH inhibitors on the activity of the rBSH from L. acidophilus.  

Briefly, 10 µl of specific inhibitor, 10 µl of rBSH (1.20 µg/ul), 168 µl of reaction buffer (0.1 M 

sodium-phosphate, pH 6.0) and 2 μl of 1 M DTT were mixed gently and incubated at 37oC for 30 

min. Then 10 μl of glycocholic acid (100 mM) was added in the 190 μl of reaction mix and the 

final reaction mix (total volume of 200 µl) was incubated at 37 oC for another 30 min. A 50-μl 

aliquot of the reaction mixture was then immediately mixed with 50 μl of 15% (w/v) trichloroacetic 

acid for stopping the reaction, followed by centrifugation for 5 min at 12,000 × g at room 

temperature to remove the precipitate. The supernatant was used in the second step, in which 50 

μl of supernatant was thoroughly mixed with 950 μl of ninhydrin reagent mix (0.25 ml of 1% 

[wt/vol] ninhydrin in 0.5M sodium-citrate buffer, pH 5.5; 0.6 ml of glycerol; and 0.1 ml of 0.5 M 

sodium-citrate buffer, pH 5.5). A positive control (with BSH enzyme, without BSH inhibitor) and 

a negative control without BSH added were set up in each independent experiment. All assays 

were performed in triplicate. Percentage inhibition was calculated by dividing the inhibited activity 

(mean activity of positive control – mean residual activity of presence of a compound) relative to 

the mean activity of positive control and then multiplied by 100.  
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Chicken experiment: husbandry, diets, growth measurements and sample collection 

Three hundred mixed sex day old broilers from the hatchery at Hubbard in Pikeville, TN 

were brought to Joseph E. Johnson Animal Research and Teaching Unit (JARTU). Ten broilers 

were randomly selected and placed in each of thirty floor pens with approximately12.5 square feet 

floor space per pen. Shredded papers were used as litter material. The chickens were randomly 

assigned into three treatment groups (10 pens per group) that received one of following diets: 1) a 

basal diet with no riboflavin added (control); 2) a basal diet + low dose of riboflavin (20 mg/kg of 

diet); and 3) a basal diet + high dose of riboflavin (200 mg/kg of diet). The riboflavin was 

purchased from http://www.BulkSupplements.com (99% purity). The diet formulations for a 

common starter, grower, and finisher corn-soybean diet were described in Table 1. Water and feed 

were available for ad libitum consumption during the experiment. Weights of birds, feed 

consumption per pen and feed conversion ratio (gain/intake) were determined at age of 7, 14, 21, 

33, and 42 days and recorded. On days 14, 33, and 42, one average sized bird per pen was further 

selected for sample collection. Following blood collection from the wing vein, the birds were 

euthanized with carbon dioxide gas and ileal content collected. Each ileal sample was transferred 

into 1.5 ml microcentrifuge tubes and then put on ice, while at JARTU and during transportation. 

The blood samples were centrifuged at 11,337 × g for 5 min and serum was pipetted into sterile 

microcentrifuge tube. The collected serum and ileal samples were stored in -20 °C freezer.  

 

Riboflavin analysis in feed using high performance liquid chromatography (HPLC) 

The level of riboflavin in the formulated feeds was analyzed with HPLC technique. Feed 

samples from each growth phase (starter, grower, and finisher) and treatment (control, low dose 

http://www.bulksupplements.com/
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of riboflavin, and high dose of riboflavin) were collected immediately following on site 

preparation in JARTU and stored in -20 °C freezer prior to analysis. Initially, the feed samples 

were dried at 55 °C for 24 hr with in an oven (Thermo Fisher Scientific Inc.). Each sample was 

grounded using a Wiley Mill grinder that was thoroughly cleaned between samples. The grounded 

sample was mixed with 0.1 M HCl, vortexed for 1 min followed by incubation at room temperature 

for 30 min. The homogenized solution was then centrifuged at room temperature at 2,504 × g for 

15 min.  Subsequently, 1 ml of the supernatant was pipetted into 3 ml of 25 mM NaH2PO4 (pH 

2.5). This mixture was vortexed and centrifuged at room temperature for 15 min at 2,504 × g. The 

supernatant was filtered using 0.2 µm filter, and stored in 4°C (up to 24 hr) for chromatographic 

analysis. Riboflavin standards (1 ppm, 2 ppm, and 5 ppm) were prepared using 25 mM NaH2PO4 

(pH 2.5) and the riboflavin was purchased from SIGMA (catalogue number PHR1054). Riboflavin 

levels from each of the treatments in the starter, grower, and finisher paradigms were tested in two 

independent HPLC experiments with single sample used in each independent experiment.  

The HPLC procedure was performed with the use of an Agilent Technologies liquid 

chromatography equipped with an auto sampler (model: G1329A). The analytical column was a 5 

µm Zorbax Eclipse Pluse C18 in 4.5 mm x 150 mm column. A Quatemary pump (model: G1311A), 

diode array detector (model: G1315P), and a multiple wavelength detector (model: G1315D) were 

used. The mobile phase was 25 mM of NaH2PO4 (pH 2.5). The samples were injected by the auto 

sampler by way of a mobile phase with delivery rate of 1 ml/min. UV was detected at 280 nm.  
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Determination of total bile salts concentration  

 Total bile salt levels in the collected serum and ileal samples were detected with Diazyme® 

kit (San Diego, California). Principally, the enzyme, 3-α-hydroxysteroid dehyrogrenase, oxidizes 

bile salts with the coenzyme Thio-NAD that was converted into Thio-NADH. The Thio-NADH is 

a colorimetric label that can be read at the absorbance of 405 nm. Briefly, 3.6 ul of collected sample 

or the standard along with 243 ul of Reagent 1 were added into each well of a 96 well plate then 

incubated for 3 min at 37 °C. Subsequently, 81 ul of Reagent 2 was added to each well and 

immediately placed in the plate reader, BioTek Instrucments ®ELX808. Readings were performed 

at one minute interval for a total of two minutes with the Gen 5® version 2.03.1 software. The 

opacity difference between the two readings was used to determine the total bile salt concentration 

(µmol/L) with the use of a Diazyme kit equation. Total bile salt levels were detected in the serum 

and ileum samples that were collected from ten chickens per treatment on sample collection days 

(14, 33, and 42).  

 

Statistical Analysis 

Feed intake, bird weight gain, feed conversion ratio, and total bile salt levels from serum 

and ileal samples have been analyzed by mix model analysis of variance with statistical program 

SAS 3.9. The large scale chicken experiment’s independent variables were riboflavin 

concentrations and dependent variables were weight gain, feed intake, and feed conversion ratio. 

All variance were detected by least square means that compared least significant difference at 5% 

level of confidence.  
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CHAPTER IV 

RESULTS 

 

Phylogenetic and structural analysis of BSH  

The complete BSH genes from diverse bacteria species were retrieved from database for 

analysis. As shown in Figure 1A, the BSH produced by L. acidophilus PF01 (LaciP) shared high 

homology (93% aa identity) to a BSH from L. gasseri (Lgass) but is phylogenetically distant from 

the BSH that was identified in many other bacteria, such as the BSH from L. salivarius NRRL B-

30514 (LsalN1). Although the BSH enzymes from various bacterial species showed significant 

sequence variation (Figure 1A), multiple sequence alignment indicated that these BSH enzymes 

contain all conserved catalytically important amino acid residues in the proposed active site of 

BSH (Cys-2, Arg-16, Asp-19, Asn-79, Asn-171, and Arg 224) (Begley, et al. 2006) (Data not 

shown). This conservativeness of catalytically important motifs suggests that previously identified 

BSH inhibitors may effectively inhibit diverse BSH enzymes. 

Structural modelling of the L. acidophilus BSH (LaciP) and the L. salivarius BSH (LsalN1) 

was performed with the use of the only known crystal structure of the Clostridium perfringens-

produced BSH (Rossocha, et al. 2005) (Cperf in Figure 1A).  The models indicated that the L. 

acidophilus BSH and the L. salivarius BSH shared similar structure with the evidence of the 

typical canonic αββα-folding pattern (Figure 1B). Consistent with the structural similarity between 

the two different BSH enzymes (Figure 1B), the critical amino acids are also superimposed very 

well, particularly with respect to the typical Cys2, which served as an N-terminal nucleophile, and 

the Arg16, which plays a potentially essential role in catalytic functioning of the enzyme 
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(Rossocha, et al. 2005). This structure modeling provides further evidence that supports the 

feasibility of using the L. salivarius BSH for screening desired BSH inhibitors. 

 

Expression and purification of L. acidophilus recombinant BSH (rBSH) 

A pET-21b(+) vector that was bearing the full length of a L. acidophilus BSH gene, was 

transformed to an E. coli BL21 (DE3) host strain for production of recombinant BSH (rBSH). 

Upon induction by 0.5 mM of IPTG for as short as 1 hr, the recombinant E. coli construct 

significantly produced an additional protein with approximate molecular mass of 32 kDa on SDS-

PAGE, which was consistent with the calculated molecular mass from the deduced amino acid 

sequence of the rBSH (Figure 2). The high-purity of the C-terminal His-tagged rBSH was 

subsequently obtained from the E. coli culture with the use of a one-step Ni-NTA agarose affinity 

chromatography.  As shown in Figure 2, the high-purity of rBSH was predominantly present in 

the eluted fractions number 3 to 6.  Interestingly, a band with slightly smaller molecular mass was 

co-present with the rBSH; this band likely represents a partially degraded rBSH (Figure 2). 

Approximately 25 mg of the rBSH was consistently purified from 1 liter of induced culture. 

 

The identified BSH inhibitors also inhibited the activity of the L. acidophilus BSH 

As shown in Table 2, almost all of previously identified BSH inhibitors using the L. 

salivarius BSH (Wang, et al. 2012; Smith, et al. 2014) also exerted potent inhibitory effect on the 

phylogenetically distant BSH from L. acidophilus, which strongly supported the hypothesis that 

the L. salivarius BSH is an ideal candidate for screening desired BSH inhibitors and can target 

various BSH enzymes in the intestine. Only limited BSH inhibitors, such as ZnSO4 and roxarsone, 
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displayed weaker inhibitory effect for the L. acidophilus BSH (Table 2) when compared to the L. 

salivarius BSH. Based on these findings, the L. salivarius BSH in conjunction with an efficient 

high-throughput screening system (Smith, et al. 2014) would serve as a solid platform for us to 

identify desired BSH inhibitors with potential to replace AGP for enhanced host lipid metabolism 

and growth performance.  

A recent study (Smith, et al. 2014) has suggested that two novel BSH inhibitors, riboflavin 

and caffeic acid phenethyl ester (CAPE), have high potential as novel alternative to AGP.  In the 

current study, potent inhibitory effect of these two compounds on the L. acidophilus BSH (Table 

2) was also observed. Since we are particularly interested in CAPE and riboflavin as AGP 

alternatives, subsequent dosing experiments were conducted to examine BSH activity at lower 

concentrations. As shown in Figure 3, CAPE still inhibited rBSH activity by more than 50% at a 

final concentration of 0.625 mM (Fig. 3A) and riboflavin by more than 50% at a final concentration 

as low as 0.03125 mM (Fig. 3B).   

 

Growth performance of broilers in response to riboflavin treatment 

As shown in Table 3, the BW did not differ significantly (P > 0.05) in response to dietary 

treatment of riboflavin regardless of dosage.  However, BW gain significantly increased (P = 

0.0053) for the birds receiving riboflavin (either low or high level) at 21 days of age.  In addition, 

the birds on the 20 ppm of riboflavin treatment had lower feed intake than those in control group. 

However, dietary supplementation of high level of riboflavin (200 ppm) led to inconsistent feed 

intake pattern compared to the control group.  For example, feed intake at day 14 in high-level 

riboflavin group (0.3759 kg/bird per week) was significantly lower than control group (0.4101 
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kg/bird per week) (P = 0.0393); however, feed intake significantly increased (P = 0.0001) in the 

200 ppm riboflavin treatment when compared to control group on day 21 (Table 3).  In terms of 

feed conversion efficiency (BW gain over feed intake), only low riboflavin treatment led to 

significantly increased feed conversion efficiency on day 21 (Table 3). 

 

HPLC determination of riboflavin in feed 

In this study, all chicken feed were prepared on site in JARTU.  Given small amount of 

riboflavin supplemented in various feeds (Table 1), it is important to ensure that riboflavin was 

mixed within the feed evenly so that desired level was achieved.  To determine the level of 

riboflavin in the feed, a HPLC method was established for this project.  As shown in Figure 4A, a 

sharp peak was observed for the standard riboflavin.  The riboflavin that was extracted from the 

feed, was successfully detected at similar eluent phase (Figure 4B).  Based on comparison of peak 

intensity, the riboflavin level was determined in various feeds. Due to the trace presence of 

riboflavin in basal feed, it is not surprising that approximately 26-34 ppm of riboflavin were 

determined in the Control feed.  The addition of low level riboflavin (20 ppm) led to the increase 

of riboflavin in all starter, grower and finisher feeds (Table 4).  As expected, the riboflavin level 

in High group (200 ppm riboflavin supplementation) was higher than those in Control and Low 

group (20 ppm riboflavin supplementation). 

 

The level of bile salts in serum and intestine 

A totally of 90 serum samples and 90 ileal samples from individual chickens were 

subjected to determination of bile salt levels.  As expected, the level of total bile in blood is much 
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lower than that in ileum (Table 5).  However, there is no significant difference between the control 

and treatment (P > 0.05) (Table 5), mainly due to significant variation among individual chickens. 
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CHAPTER V 

DISCUSSION 

 

 

The development of alternative feed additives is urgently needed to maintain enhanced 

weight gain and feed conversion ratio levels while phasing out the use of AGPs. The understanding 

of the AGP mechanism is essential to the development of an effective and sustainable alternatives 

to AGP.  It is widely accepted that the use of AGPs changes the ecology of gut microbiota, which 

leads to enhanced weight gain and feed efficiency (Collier, et al. 2003; Knarreborg, et al. 2004; 

Dumonceaux, et al. 2006; Guban, et al. 2006; Kim, et al. 2012; Lin, et al. 2013). Our lab recently 

found the correlation between AGP-mediated growth promotion and the decreased L. salivarius 

population, a major BSH-producer, in the chicken intestine (Lin, et al. 2013; Lin 2014). Given that 

the usage of AGPs is also strongly associated with the decreased BSH activity (Feighner, et al. 

1987; Knarreborg, et al. 2004; Guban, et al. 2006), we hypothesized that BSH is an attractive 

microbiome target for developing alternatives to AGP and have made significant progress in 

obtaining additional compelling evidence to support this hypothesis (Wang et al, 2012; Lin et al., 

2013; Smith et al, 2014: Lin 2014).  In particular, we recently have developed an efficient High 

Throughput Screening (HTS) system that identifies BSH inhibitors using a BSH from a chicken 

L. salivarius strain (Smith et al, 2014).  In this project, with the use of a L. acidophilus BSH, we 

obtained more evidence that demonstrated the feasibility of this HTS system. 

Bile salt hydrolase is part of the choloylglycine hydrolase enzyme family that has a 

conserved cysteine N-terminal residue. It is produced by various commensal bacteria, such as 

Lactobacillus, Bacteriodes, Clostridium, Enterococcus, and Bifidobacterium (Begley, et al. 2006). 
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The natural function of BSH for these commensal bacteria is still controversial and not clear; 

however, the BSH enzyme plays an important role in host physiology by affecting host lipid 

metabolism and energy harvest (Coleman, et al. 1995; Jones, et al. 2008; Chae, et al. 2013). 

Although the research in BSH is still in its infancy (Patel, et al. 2010; Joyce, et al. 2014), previous 

BSH studies have shown that intestinal BSH displayed significant sequence variation and 

specificity for substrate choice (Begley, et al. 2006; Jones, et al. 2008; Chae, et al. 2013).  Notably, 

a recent functional metagenomics work (Jones et al, 2008) identified functional BSH in all major 

bacterial divisions and archaeal species in the gut and demonstrated the BSH enrichment in the gut 

microbiome. Phylogenetic analysis illustrates that selective pressure in the form of conjugated bile 

acid has driven the evolution of members of the Ntn_CGH-like family of proteins toward BSH 

activity in gut-associated species. 

In this study, we chose the BSH from L. acidophilus PF01 (Oh, et al. 2008) for validation 

work because of the following several reasons. First, the BSH enzyme from L. salivarius that was 

used for screening BSH inhibitors (Wang, et al. 2012; Smith, et al. 2014), is comparatively 

different than the BSH produced by different bacterial species.  Second, the BSH-producing L. 

acidophilus PF01 and L. salivarius NRRL B-30514 strains were originally isolated from the 

intestine of two different food animals, swine and chicken, respectively.  Finally, the L. acidophilus 

BSH (316 amino acids, aa) and the L. salivarius BSH (324 aa) displayed significant sequence 

variation (only 35% aa identity) and different substrate specificity (Oh, et al. 2008; Wang, et al. 

2012; Smith, et al. 2014).  Therefore, the L. acidophilus BSH makes an appropriate candidate 

enzyme that can be used to determine if previously identified BSH inhibitors (Wang, et al. 2012; 
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Smith, et al. 2014), which is based on the L. salivarius BSH, could effectively inhibit the activity 

of diverse BSH enzymes in the intestine. 

Our laboratory’s recent work (Smith, et al. 2014) indicated that riboflavin and caffeic acid 

phenethyl ester (CAPE), two BSH inhibitors, are promising alternative to AGP. In this study, using 

a BSH from a different bacterial species, we further demonstrated that riboflavin and CAPE are 

effective BSH inhibitors (Figure 3 and Table 2).  Riboflavin is a vitamin that has been used as feed 

additive in poultry feed stuff to treat the hypovitaminosis of B2. However, long-term dietary 

supplementation of riboflavin for growth promotion in broilers has never been explored.  Notably, 

a recent swine study has showed that the dietary supplementation of high-level riboflavin (20 

mg/kg feed) significantly increased feed efficiency and body weight gain in the pigs with high lean 

growth, however underlying mechanisms are still not clear (Stahly, et al. 2007). CAPE has 

antioxidant/anti-inflammatory effects and is an emerging natural food additive that recently has 

drawn extensive attention for human and animal application. Therefore, a standard large pen trial 

is highly warranted to determine if dietary supplementation of such BSH inhibitors could enhance 

feed efficiency and growth performance in chickens.   

In this study, riboflavin was formulated in the feed at low (20 ppm) and high (200 ppm) 

doses for a large chicken experiment (Table 3).  However, we only observed significant body 

weight gain due to riboflavin treatment by day 21. This finding is consistent with an early report 

by Olkowski et al (1998) in which enhanced growth was observed in broilers receiving riboflavin-

supplemented feed (5 mg/kg of fee) during the first 21 days.  In addition, in this study the 

significantly enhanced feed efficiency (P < 0.05) was only observed for the birds receiving low 

level of riboflavin at 21 days of age (Table 3). However, in general, dietary supplementation of 
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riboflavin, a BSH inhibitor, did not significantly improve broiler growth performance in this 

project as expected, which may be attributed to following several factors. First, we incorporated 

male and female Hubbard broilers in this chicken study. Statistically significantly higher weight 

gain in male than female broilers have been observed in previous studies (Lowe, et al. 1986; López, 

et al. 2011; Salim, et al. 2012). In the future, we may address this issue by the use of same sex 

broilers, such as male Cobb broilers. Using male broilers will eliminate any confounding factors 

that involve hormones such as estrogen, which has shown to decrease weight enhancement 

(Mohammadrezaei, et al. 2014). In future chicken trial, we may also remove the broilers with 

significantly impaired growth (the outlier chicken) within the first week for proper statistical 

analysis. Second, intestinal bioavailability of riboflavin may have been low because it is 

moderately water soluble 0.07 g/L in water. In addition, it has been reported that there are three 

different transporters present in rat’s intestines and kidneys to maintain homeostasis. Riboflavin 

does not have an upper toxicity level as the kidneys could filter excess riboflavin (Yonezawa, et 

al. 2008; Yonezawa, et al. 2013). Thus, similar transporters in chickens may make riboflavin be 

quickly taken up by gut epithelial cells, which can lead to undesired low concentration of riboflavin 

in the intestine. To address this potential problem, encapsulation of riboflavin may achieve a 

targeted and steady release of riboflavin that would increase intestinal lumen exposure time as well 

as the probability of interaction with the microbiota (Khansari, et al. 2013; Bou, et al. 2014; 

O’Neill, et al. 2015).  

We hypothesized that riboflavin, a BSH inhibitor, would inhibit BSH activity and 

consequently change the relative proportion of conjugated bile salts.  However, determination of 

profiles of different bile salts in the intestine and blood is technically demanding (Joyce et al. 
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2014).  It has been reported that BSH activity may also influence total bile salt concentration in 

addition to directly reducing conjugated bile salts (Joyce et al. 2014). Thus, in this study, using a 

commercially available kit, we determined total bile acid concentration in ileum and blood; 

however, no significant difference was observed among treatment groups (Table 5). This is likely 

due to the significant variation among chickens and because of complex bile metabolism in 

chicken host. In the future, a more accurate technology, such as ultra-performance liquid 

chromatography mass spectronomy (UPLCMS) (Joyce et al. 2014), should be used to measure 

specific conjugated and unconjugated bile salts in the intestine in conjunction with chicken growth 

performance evaluation.     

Though the pilot HTS process has identified some potent BSH inhibitors (Smith, et al. 

2014), a larger scale HTS with an extensive compound library is still needed to identify BSH 

inhibitors with potential as alternatives to AGP.  To identify desired BSH inhibitors, in conjunction 

with HTS screening and in vitro assay, we must perform extensive review of relevant material 

safety data sheet and literature for the hits with emphasis on availability, stability, intestinal 

absorption, toxicity, cost, and environmental impact. In addition, the FDA Food Additive Listings 

(http://www.fda.gov/Food/) will be used to choose priority candidates that may be quickly 

approved for practical application.  More importantly, a single BSH inhibitor such as riboflavin, 

as in this project, may have multiple impacts on animal host physiology and complex interaction 

with gut microbiota (Burgess, et al. 2006; Arena, et al. 2014; Russo, et al. 2014). Thus, 

comprehensive animal trials are always highly warranted for promising BSH inhibitors.    

Notably, BSH inhibitors may be used to optimize current probiotics (the BSH producers). 

In animal industry, probiotics have been used to enhance growth and over all animal welfare 

http://www.fda.gov/Food/
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(Fajardo, et al. 2012; Roodposhti, et al. 2012; Amerah, et al. 2013; Sadrasaniya, et al. 2013; 

Lähteinen, et al. 2014).  Despite multiple beneficial effects of probiotics, probiotics can have side 

effects in the animal host, such as decreased fat digestibility due to production of BSH (Dibner, et 

al. 2005). Therefore, not surprisingly, the results on animal growth performance following 

probiotic administration have been inconsistent. For instance, supplementation of probiotics in 

growing ruminants did not enhance weight gain (Morrill, et al. 1977; Schwab, et al. 1980; Zhang, 

et al. 2015). In poultry, probiotics administration have been reported to improve weight gain 

(Mountzouris, et al. 2007), to stimulate immune response (Zhang, et al. 2012), and to improve 

food safety (Gaggìa, et al. 2010).  However, due to complicated interactions and low numbers of 

birds for statistical power more studies are urgently needed (Alloui, et al. 2013). Probiotic use in 

swine has also suggested that probiotics do not improve weight gain nor feed efficiency (Harper, 

et al. 1983; Lähteinen, et al. 2014).  Taken together, probiotics could negatively impact host 

growth performance due to the production of BSH enzymes. BSH inhibitor together with 

probiotics could mitigate negative features of probiotics and optimize probiotic products for 

enhanced growth performance of food animals and profitability of feed additive industry. 
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Figure 1. Sequence and structural analysis of BSH.  

(A) Phylogenetic relationship of BSH from different bacteria. The amino acid-based dendrogram 

was constructed in MEGA 6.0 by using neighbor-joining methods. LaciP, L. acidophilus PF01 

(ABQ01980.1); LsalN1, L. salivarius NRRL B-30514 BSH1 (JX120368); LsalN2, L. salivarius 

NRRL B-30514 BSH2 (JX120369); LsalU1, L. salivarius UCC118 BSH1(ACL98201.1); LsalU2, 

L. salivarius UCC118 BSH2 (ABD99327.1); LsalJ, L. salivarius JCM1046 BSH1 (ACL98203.1); 

LaciN, L. acidophilus NCFM (AAV42923.1); Lgass, Lactobacillus gasseri (EFQ47028.1); Ljohn, 

L. johnsonii (EGP12391.1); Lplan, L. plantarum (AAA25233.1); Bbifi, B. bifidum (AAR39435.1); 

Blong, B. longum (AAF67801.1); Efaec, Enterococcus faecium (AAP20760.1); LmonM7, Listeria 

monocytogenes M7(AEH93162.); Cperf, Clostridium perfringens (AAC43454.1); BPVA, 

Bacillus Sphaericus PVA (YP_001698896). The number in parentheses is GenBank accession 

number. Furthermore, the following sequences of BSH homologs were extracted from IMG 

database (https://img.jgi.doe.gov/cgi-bin/w/main.cgi) based on similarity (>30%): Elimo, 

Eubacterium limosum KIST612; Bprod, Blautia producta ATCC 27340; Sbovis, Streptococcus 

bovis SN033; Panta, Planococcus antarcticus DSM 14505; Mbark, Microbacterium barkeri 2011-

R4; Prumi, Pseudobutyrivibrio ruminis HUN009; Cmalt, Carnobacterium maltaromaticum MX5; 

Molle, Methanobrevibacter olleyae DSM 16632. (B) Structural modeling of BSH. Using C. 

perfringens BSH as a template, the structures of L. acidophilus BSH (green backbone) and L. 

salivarius BSH (red backbone) were predicted and superimposed. The RMSD value is 2.749 A. 

The side chains of critical residues C2 and R16 were denoted.  

 

  

https://img.jgi.doe.gov/cgi-bin/w/main.cgi
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Figure 1. Continued 
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Figure 1. Continued 
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Figure 2. Production of purification of the L. acidophilus BSH enzyme.  

 

Lane M, EZ RunTM prestained molecular mass marker (Fisher Bioreagent); Lane 1-12, eluted 

fractions during Ni-nitrilotriacetic acid affinity chromatography purification; 0 hr, whole-cell 

lysate of noninduced E. coli.; 1 hr, whole-cell lysate of E. coli induced with 0.5mM IPTG for 1 hr; 

2 hr, whole-cell lysate of E. coli induced with 0.5mM IPTG for 2 hr. 
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Figure 3. Dose-dependent effects of selected BSH inhibitors on the activity of the L. 

acidophilus BSH.  

 

(A) Inhibition of BSH activity by CAPE. (B) Inhibition of BSH activity by riboflavin.   
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(A)  

 
(B)  

 
 

Figure 4. High-performance liquid chromatography analysis of riboflavin compound in 

standard solution and in feed sample.  
 

(A) Standard riboflavin (5 ppm) detected by HPLC (Peak 16.044: Riboflavin). (B) The riboflavin 

detected in the treated Starter feed supplemented with high level of riboflavin (200 ppm) (Peak 

16.066: Riboflavin)  
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Figure 5. L. acidophilus BSH Substrate Preference. 

 

Relative rBSH activity for various substrates when compared to the activity for 

glycochenodeoxycholate (GCDC).  GC: Glycocholate, GDC: Glycodeoxycholate, GCDC: 

Glycochenodeoxycholate, TC: Taurocholate, TDC: Taurodeoxycholate, and TCDC: 

Taurochenodeoxycholate              
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Table 1. Composition of basal feed (Control) and the feed supplemented with low level of 

riboflavin (20 ppm, Low) or high level of riboflavin (200 ppm, High) during the starter, 

grower, and finisher phases. 

 
 Starter 

0 to 14 d (as fed basis) 

Grower 

15 to 32 d 

Finisher 

33 to 42 d 

 (%) 

 Control Low  High Control Low  High Control Low  High 

Corn, grain 53.700 53.700 53.700 61.2 61.2 61.2 65.5 65.5 65.5 

Soybean meal 33.300 33.300 33.300 25.8 25.8 25.8 21.5 21.5 21.5 

Alfalfa meal 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960 

Fish meal 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

Vitamin Premix1 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 

Sand* 0.020 0.018 0.000 0.020 0.018 0.000 0.020 0.018 0.000 

DL Methionine 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

Salt 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350 

Limestone 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 

Dicalcium 

phosphate 

1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 

Trace Mineral 

Premix
2
 

0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

Fat, animal 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

Riboflavin* 0.000 0.002 0.020 0.000 0.002 0.020 0.000 0.002 0.020 

Calculated 

Nutrition 

Composition 

         

ME, kcal/kg 3,133 3,133 3,133 3,201 3,201 3,201 3,240 3,240 3,240 

Crude protein 22.990 22.990 22.990 19.990 19.990 19.990 18.270 18.270 18.270 

 

The corn-soybean formulation (reported in percentage) was used in the starter, grower, and finisher 

diets for the 42 day large scale chicken experiment. Metabolizable energy increased as crude 

protein decreased from the starter diet to the finisher.  

*Riboflavin was supplemented at low (20 ppm) or high (200 ppm) levels at the expense of sand. 

1Supplied per kilogram of Starter diet: Vitamin A, 3,751 IU; Vitamin D, 1,191 ICU; Vitamin E 9 

IU; Vitamin B12, 0.0048 mg; Menadione, 0.595 mg; Vitamin B2, 2.98 mg; Pantothenic Acid, 5 mg; 

Niacin, 15 mg; Folic Acid, 0.298 mg; Vitamin B6, 0.893 mg; Thiamine, 0.417 mg. 

2Supplied per kilogram of Starter diet: Cobalt, 0.020 mg; Iodine, 2 mg; Selenium, 0.6 mg. 
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Table 2. Effect of identified BSH inhibitors on the activity of the L. acidophilus BSH enzyme. 

Compound Category BSH Inhibitor % Inhibition 
aThe approved feed 

additives used in food 

animal industry (Wang, 

et al. 2012)  

KIO3 99.1          

NaHIO3 99.3          

NaIO4 99.0          

CuSO4 94.7          

CuCl2 97.2          

ZnSO4 27.4 

ZnCl2 38.4 
bThe novel BSH 

inhibitors identified 

using high-throughput 

screening (Smith, et al. 

2014)  

Menadione 97.9           

Riboflavinc 96.5          

Gossypetin 96.1          

Caffeic Acid Phenethyl Ester (CAPE) 71.8          

Epicatechin monogallate 52.8 

Purpurogallin 36.1 
dThe antibiotics that 

can inhibit BSH 

activity (Smith, et al. 

2014)  

Oxytetracycline 99.6          

Demeclocycline Hydrochloride 99.6          

Methacycline Hydrochloride 99.2          

Doxycycline Hydrochloride 98.3          

Roxarsone 48.6 

Lincomycin 26.8 

 

a The final concentration of dietary compound in the reaction mix was 5mM to achieve optimal 

resolution with the quantitative BSH activity assay. 

b Unless specified, the final concentration of specific BSH inhibitor was 2.5 mM. 

c The final concentration of riboflavin in reaction mix was 0.5 mM. 

d The final concentration of specific antibiotic was 2.5 mM. 
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Table 3. Summary of the growth performance of broiler in response to riboflavin treatment.  

 

BW Gain (kg/bird per week) 

Chicken Age 

(Day) 

Control Low High Standard 

Error 

P value 

14 0.3369 0.3381 0.3099 ±0.010 0.1137 

21 0.4605 a 0.4966 b 0.5103 b ±0.010 0.0053 

28 0.6847 0.6592 0.6443 ±0.020 0.1825 

33 0.4588 0.4490 0.4199 ±0.020 0.1893 

42 0.7943 0.8053 0.8274 ±0.030 0.7786 

Feed Intake (kg/bird per week) 

Chicken Age 

(Day) 

Control Low High Standard 

Error 

P value 

14 0.4101 a 0.3964 ab 0.3759 b ±0.010 0.0393 

21 0.7799 a 0.7601 a  0.8847 b ±0.020 0.0001 

28 1.0536 1.0448 1.0384 ±0.020 0.7765 

33 0.8196 0.8067 0.7810 ±0.170 0.2701 

42 1.7548 1.7505 1.7946 ±0.050 0.7965 

Feed Conversion Ratio (kg of gain/ kg of feed per bird) 

Chicken Age 

(Day) 

Control Low High Standard 

Error 

P value 

14 0.8217 0.8560 0.8261 ±0.020 0.5638 

21 0.5925 a 0.6546 b 0.5789 a ±0.010 0.0030 

28 0.6504 0.6313 0.6206 ±0.010 0.2744 

33 0.5591 0.5569 0.5364 ±0.010 0.4039 

42 0.4519 0.4614 0.4657 ±0.020 0.8774 

Average BW (kg/bird) 

Chicken Age 

(Day) 

Control Low High Standard 

Error 

P value 

07 0.1753 0.1739 0.1695 ±0.002 0.2431 

14 0.5122 0.5062 0.4794 ±0.010 0.0842 

21 0.9727 1.0027 0.9897 ±0.010 0.1849 

28 1.6813 1.6867 1.6340 ±0.010 0.0968 

33 2.1204 2.1357 2.0539 ±0.030 0.0655 

42 2.9147 2.9409 2.8861 ±0.040 0.6225 
 

ab
 Effects means within columns with no common superscript differ significantly (P < 0.05) 
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Table 4. Determination of riboflavin level in feed using high performance liquid 

chromatography. 

Feed Concentration of Riboflavin (mg/kg of feed) ±SD 

 Control Low High 

Starter 39.15  ±20.11 51.55  ±21.42 128.87  ±37.90 

Grower 34.06  ±6.20 40.57  ±11.12 144.55  ±28.27 

Finisher 26.79  ±4.31 31.86  ±15.74 116.44  ±15.74 

 

Riboflavin levels were detected in each of the starter, grower, and finisher treatment paradigms 

in two independent HPLC experiments.  
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Table 5. Total bile salt levels in serum and ileal samples of chickens. 

 

Sample 

Type 

Age 

(Day) 

 

Levels of Total Bile  

Pooled 

Standard 

Error 

 

P value 

  Control Low  High    

Serum 

(umole/L) 

14 27.01    27.24   31.23   ±3.64 0.6810 

33 17.16    15.00   16.88   ±2.06 0.7268 

42 16.98    21.43   15.71   ±2.77 0.3248 

 

Ileal 

(umole/g) 

14 256.64   113.39    208.50 ±104.55 0.6202 

33 87.90     108.60    140.85    ±32.21 0.4638 

42 149. 15  361.81 334.54 ±126.05 0.4481 
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