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ABSTRACT 
 

Digitized enhanced Feher quadrature phase-shift keying (EFQPSK) can be realized with 

a set of parameters that define its efficiency relative to analog EFQPSK and quadrature 

phase-shift keying (QPSK). Both sampling frequency and quantization play a significant 

role in developing an EFQPSK signal that resembles its analog counterpart in spectral 

efficiency, envelope fluctuation, and BER. Sampling frequency and quantization can be 

used to determine spectral efficiency as compared to analog EFQPSK and QPSK. 

Through simulation, this study compares and quantifies trade-offs between spectral 

efficiency, envelope fluctuation, and BER. By quantifying the trade-off between these 

parameters, system designers can quickly determine how to meet bandwidth efficiency 

and power efficiency requirements. 
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Chapter 1: INTRODUCTION 
 

1.1 Overview of the Problem 
 

For robust link designs, physical layer parameters such as spectral efficiency, power 

efficiency when transmitting over long distances, and bit-error rate (BER) are of major 

concern. Spectral efficiency defines the amount of power wasted given a certain 

bandwidth. Spectral efficiency can be classified by two terms: power spectral density 

(PSD) efficiency and out-of-band power efficiency. Power spectral density depicts the 

amount of power the side-bands of a given modulation scheme occupy. Out-of-band 

power measures the percentage of power outside of the bandwidth of interest. Power 

efficiency has to do with how much spectral re-growth can be expected when 

transmitting a signal over long distances using a non-linear amplifier. This aspect is 

dependent upon envelope fluctuation. Finally, BER measures the amount of errors 

expected with a given signal-to-noise ratio in a certain modulation scheme.  

 

There are many modulation schemes that achieve at least one of these at one time but 

few that achieve three of these at one time. For example, quadrature phase shift keying 

(QPSK) is a modulation scheme that provides good BER and good power efficiency but 

poor spectral efficiency [1], [2]. Interference and Jitter-Free QPSK (IJF-QPSK) is a 

modulation scheme that provides good spectral efficiency characteristics but slightly 

degraded BER compared to QPSK and poor power efficiency since it is not constant 

envelope [2].  

 

In this thesis, we study a type of modulation named enhanced Feher quadrature phase 

shift keying (EFQPSK) that offers excellent spectral efficiency characteristics, power 

efficiency characteristics comparable to that of constant envelope, and acceptable BER. 

More specifically, we study the effects that digitizing EFQPSK has on the performance of 

the aforementioned parameters. 
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1.2 Contributions 
 

In this study, we will show the effects digitization has on a bandwidth efficient and power 

efficient modulation scheme. Specifically we will show the degradation digitization has 

on the bandwidth and power efficiency and both the improvement and degradation 

digitization has on BER. This study makes several distinct contributions to the literature: 

 

1. We examine the impact digitization has on the spectrum, out-of-band power, and 

maximum envelope fluctuation of EFQPSK. 

2. We illustrate the impact soft-limiting has on the digitized EFQPSK signal in terms of 

spectrum and out-of-band power. 

3. We illustrate that digitizing EFQPSK can both improve and degrade BER over analog 

EFQPSK. 

 

This thesis is organized as follows: Section 2.1 of Chapter 2 discusses the spectrum, 

out-of-band power, and BER of QPSK. Section 2.2 discusses the improvement OQPSK 

has over QPSK when hard limiting the transmitted signal. Section 2.3 discusses the 

improved spectral efficiency IJF-QPSK has over both QPSK and OQPSK and also 

discusses the method in which an IJF-QPSK signal is generated. Section 2.4 further 

illustrates the improved spectral efficiency cross-correlated phase shift keying (XPSK) 

offers over IJF-QPSK and the method in which a XPSK signal is generated. Section 2.5 

introduces EFQPSK and how it is more spectrally efficient than the aforementioned 

modulation schemes and the method in which an EFQPSK signal is generated. 

 

In Chapter 3 we lay the foundation of the system model used in this study starting with a 

discussion of the analog-to-digital converter model used in digitizing EFQPSK and finish 

this section with the effects taking the discrete Fourier transform (DFT) has on the 

spectrum of a signal. Section 3.3 discusses the amplifier model used in this study. 

Section 3.4 discusses the type receiver model used in this study. Finally, Section 3.5 

summarizes the system model. 

 

Chapter 4 presents the results obtained using the system model of Chapter 3. Namely, 

Section 4.1 compares the spectra of various digitized EFQPSK signals versus the 
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spectrum of analog EFQPSK. Section 4.2 compares the out-of-band power of various 

digital EFQPSK signals versus the out-of-band power of analog EFQPSK. Section 4.3 

takes several digital EFQPSK signals and compares their respective maximum envelope 

fluctuations to that of analog EFQPSK. Section 4.4 analyzes BER of a variety of digital 

EFQPSK signals, comparing them to the BER of analog EFQPSK. Sections 4.5 and 4.6 

compare spectral efficiency of assorted digital EFQPSK signals that are soft limited to 

soft limited analog EFQPSK. Finally, Chapter 5 concludes this study and discusses 

future research that may be conducted utilizing this system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 



4  

Chapter 2: BACKGROUND 
2.1 QPSK 
 

QPSK is a modulation scheme that offers constant envelope and good BER but poor 

spectral efficiency. QPSK has twice the bandwidth efficiency as binary phase shift 

keying (BPSK) for the same energy because two bits are transmitted in QPSK instead of 

one [1]. A QPSK signal is described by 

4,3,2,10
2

)1(2cos
2

)( =≤≤



 −+= iTtitf

T
E

tS Sc
S

S
QPSK

ππ , (2.1) 

Where ST  is the symbol time and is equal to twice the bit period and SE  is the energy-

per-symbol and is twice the energy per bit. The variable i  in (2.1) describes the four 

different phases that QPSK can take. The phase of the I-channel and Q-channel is 

influenced by the incoming data bits and there can be a maximum of o180  discrete phase 

transition in the transmitted signal. If we assume QPSK uses binary data with 

rectangular pulse shaping, the PSD of QPSK is given by 
2

2
)2sin(

)( 







=

b

b
QPSK fT

fT
fP

π
π .      (2.2) 

Fig. 2.1 shows the PSD of conventional QPSK. Notice that the side-lobe power is rather 

high for higher frequencies, clearly not a desirable characteristic. Since the power in the 

side-lobes of QPSK is rather high for higher bandwidth, one would expect the out-of-

band power to be high as well. Fig. 2.2 shows the out-of-band power of QPSK, where 

the normalized bandwidth B  is [ ]bBT  and bT  is the bit period. Note the bandwidth that 

contains 90% of the power is located at Hz
Tb

1
 and the bandwidth that contains 99% of 

the power is located at Hz
Tb

8
[3]. 
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Fig. 2.1. Power spectral density of conventional QPSK. 
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Fig. 2.2. Out-of-band power of QPSK. 
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Finally, the BER of conventional QPSK is equivalent to that of binary phase shift keying 

(BPSK). Therefore, given the same energy efficiency, QPSK has twice the spectral 

efficiency as BPSK. The BER for QPSK is 











=

0

2
N
E

QP b
e ,     (2.3) 

Where 0N  is the additive white Gaussian noise (AWGN) power spectral density. Fig. 2.3 

plots the BER of conventional QPSK. Note the good error performance for mid-to-high 

0N
Eb  levels. As shown thus far, QPSK offers constant envelope and good BER. Both of 

these characteristics make it a good modulation scheme in a system that requires 

transmitting over long distances and in a system that must have lower BER. However, 

QPSK occupies a large amount of bandwidth for the given energy in the modulation 

scheme. The out-of-band power is considerably large for a given bandwidth. Overall, 

QPSK satisfies only two of the four parameters discussed previously in this document. 
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Fig. 2.3. BER of conventional QPSK. 
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2.2 OQPSK 
 

It is a well-known fact that conventional QPSK is ideally constant envelope. However if 

the signal is band-limited in this modulation scheme, the envelope is no longer constant. 

When the phase change is °180  for one-quarter of the time, the envelope crosses zero 

one quarter of the time, which means that the envelope is not constant during that 

instant [1]. When this happens during nonlinear amplification, the original frequency 

side-lobes will be restored to their original state prior to band limiting, thus negating the 

band-limiting carried out in the transmission of the QPSK signal [4].  

 

Offset QPSK (OQPSK) was introduced to limit the maximum amount of phase transition 

to °90 . By limiting the maximum phase transition to only °90 , band limiting the signal no 

longer causes the envelope to go to zero. Since the maximum phase transitions in 

OQPSK are much less than QPSK, nonlinear amplification of the envelope will not 

restore as many of the high frequency side-lobes [4]. However, since band limiting is 

performed, there will be some high frequency side-lobes generated at the maximum °90  

phase transition. 

OQPSK offers the same spectral efficiency, out-of-band power, and BER as QPSK 

because OQPSK and QPSK are of the same design, except with an offset of one of the 

channels in OQPSK. In other words, the delaying by a half symbol of one of the 

channels in OQPSK affects only the maximum phase transition, which in turn, only 

affects the envelope when band limiting and hard limiting is utilized.  

 

Fig. 2.4 is a conceptual block diagram of an OQPSK transmitter. The incoming data bits 

are assumed to be random and uniformly distributed. The serial-to-parallel converter 

separates the data bits into an in-phase and quadrature-phase channel. The quadrature-

phase channel is delayed by a half symbol. The in-phase branch is modulated onto a 

sinusoidal or co-sinusoidal carrier. The quadrature-phase branch is modulated on the 
o90  phase- shifted version of the in-phase carrier. Finally, the in-phase and quadrature-

phase channels are added to form the OQPSK signal. 
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Fig. 2.4. Conceptual block diagram of an OQPSK transmitter. 

 

 

2.3 IJF-QPSK 
 

The transmission scheme IJF-QPSK was developed as a means to improve spectral 

efficiency over conventional QPSK. The inherent transmitter architecture for IJF-QPSK is 

OQPSK and IJF-QPSK works according to the following: two waveforms are defined as 
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Where )(tse  is the even waveform, )(tso  is the odd waveform, and ST  is the symbol time 

[2]. During the interval SS TntTn ])2/1[(])2/1[( +≤≤− , the in-phase channel transmitted 

waveform, )(txI , is determined by 
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Where 1, −nId  is the previous bit, nId ,  is the present bit, and 4,3,2,1)( =ifortsi  are the 

four possible transmitted signals on the in-phase channel [2]. The equivalent quadrature-

phase transmitted signal, )(txQ , is selected the same way except 1, −nQd  and nQd ,  replace 

1, −nId  and nId ,  and the signaling interval is SS TntnT )1( +≤≤ , because the quadrature-

phase channel is delayed by a half symbol [2]. Fig. 2.5 depicts a conceptual block 

diagram of an IJF-QPSK transmitter. Note that the incoming data bits must be pulse 

shaped with non-return to zero (NRZ) pulse shaping. The IJF-QPSK modulation scheme 

is equivalent to staggered quadrature overlapped raised-cosine (SQORC) modulation 

scheme if we define the raised-cosine pulse shape 

 

Fig. 2.5. Conceptual block diagram of an IJF-QPSK transmitter. Reproduced from [2]. 
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The equivalent in-phase transmitted signal is given by 

( )∑
∞

−∞=

−=
n

SnII nTtpdtx ,)(       (2.7) 

And the equivalent quadrature-phase transmitted signal is given by 

∑
∞

−∞=
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n
SnQQ Tntpdtx

2
1)( , ,     (2.8) 

where )(txI  and )(txQ  in (2.7) and (2.8) are equivalent to )(txI  and )(txQ  given in (2.5), 

assuming the waveforms in (2.4) are utilized [5]. The power spectral density of SQORC 

is given by 

222
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)161(
)2(cos)sin(

)(
S

S

S

S
SQORC Tf

fT
fT

fT
fS

−







=

π
π
π

,    (2.9) 

where (2.9) is the combination of PSD’s for conventional QPSK and minimum shift 

keying (MSK) [2]. The cost for improving the spectral efficiency in this modulation 

scheme is a maximum of a dB3  fluctuation in the envelope. This amount of envelope 

fluctuation is not optimal in any sense because if this envelope were hard limited, a large 

amount of spectral re-growth would occur, causing interference between adjacent 

channels. Since the quadrature branch of the transmitted signal is delayed by a half-

symbol, the maximum phase transition on the modulated signal of OQPSK is °90 . Since 

the quadrature branch of IJF-QPSK is delayed by a half-symbol and both the in-phase 

and quadrature branches are band-limited, the maximum phase transition is slightly less 

than °90  because pulse-shaping smoothes the phase transitions in the modulated 

signal. However, since there is still a discrete phase transition in the envelope, there will 

be some spectral splatter. Fig. 2.6 shows the PSD of IJF-QPSK compared to the PSD of 

conventional QPSK. Note that the spectral efficiency of IJF-QPSK is much better than 

QPSK. Fig. 2.7 compares the out-of-band power of conventional QPSK to IJF-QPSK. 

Clearly IJF-QPSK is superior to QPSK in terms of spectral efficiency and out-of-band 

power, but the dB3  envelope fluctuation makes this  
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Fig. 2.6. Power spectral density of IJF-QPSK. 
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Fig. 2.7. Out-of-band power of IJF-QPSK. 
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modulation scheme a poor choice for a system that requires hard limiting. 

 
2.4 Cross-Correlated Phase Shift Keying (XPSK) 
 
Since QPSK does not yield good spectral efficiency characteristics, IJF-QPSK was 

introduced as a modulation scheme that does yield good spectral efficiency 

characteristics. Another topic of major concern is envelope fluctuation. Since IJF-QPSK 

exhibits a maximum of dB3  in envelope fluctuation, we have focused our attention on 

another modulation scheme.  

 

XPSK is a modulation scheme derived from IJF-QPSK for purposes of minimizing 

envelope fluctuation from dB3  to almost dB0 , while maintaining very good spectral 

efficiency characteristics [6]. The transmission scheme XPSK takes the IJF-QPSK 

modulation scheme and modifies it as follows: there are two channels in the modulation 

scheme, each of which contain up to four possibilities of transmitted waveforms. 

Therefore, there are 1624 =  possible signal components that can be input to the cross- 

correlator [2]. The cross-correlator was introduced as a means for reducing the 

maximum envelope fluctuation from dB3  to near dB0  [6]. Sixteen new signals are 

generated at the output of the cross-correlator and are given in Table 2.1. 

 

Table 2.1. I and Q cross-correlated signal combinations. Reproduced from [2]. 
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The transition functions )(tf i  for 4,3,2,1=i  from Table 2.1 are given by 
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,     (2.10) 

each of which are defined over the signaling interval 
2

0 ST
t ≤≤  [2]. The amplitude 

parameter, A , is used to control the amount of envelope fluctuation in XPSK. For 1=A , 

XPSK becomes IJF-QPSK and for 
2

1=A , the maximum envelope fluctuation is 

dB18.0 [6]. The cost of reducing the envelope fluctuation in XPSK is witnessed in the 

slight decrease in spectral efficiency. For the results of this study, the amplitude 

parameter is selected to be 
2

1=A . Fig. 2.8 is a conceptual block diagram of an XPSK 

transmitter. 

 

Feher-patented quadrature phase-shift keying (FQPSK) is a term that is interchangeable 

with XPSK if FQPSK is in its unfiltered state [2]. Hence, FQPSK will be used for the rest 

of the study since the results shown in this paper of FQPSK are of the unfiltered form. 

Fig. 2.9 shows the PSD of FQPSK compared with the PSD’s of QPSK and IJF-QPSK. 

Note that the spectrum of FQPSK is slightly worse than that of IJF-QPSK. From Fig. 2.9, 

there is an almost dB50  decrease in side-band power compared to QPSK at higher 

frequencies. This clearly is a better modulation scheme than QPSK for systems in which 

bandwidth is very limited and efficient amplification for long distance transmission is 

required. Fig. 2.10 shows the out-of-band power of FQPSK compared to that of QPSK 

and IJF-QPSK. Note that the out-of-band power of FQPSK is about 1.5 orders of  
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Fig. 2.8. Conceptual block diagram of an XPSK transmitter. Reproduced from [2]. 
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Fig. 2.9. The PSD of FQPSK as opposed to that of QPSK and IJF-QPSK. 

 

 

Fig. 2.10. The out-of-band power of FQPSK as opposed to that of QPSK and IJF-QPSK. 
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magnitude greater than that of IJF-QPSK at higher frequencies. This is a fair trade since 

the envelope of FQPSK is about 3 orders of magnitude smaller than that of IJF-QPSK.  

 

Another major topic concerning the quality of a given modulation scheme is BER. Fig. 

2.11 plots the BER of conventional QPSK with FQPSK. Note that at 410−=eP , the BER 

of QPSK is almost 2 dB better than that of FQPSK. In a system in which BER must be 

very low, FQPSK is not a choice modulation scheme. However, in a system in which 

bandwidth is limited, efficient long distance transmission is required, and relaxed BER 

requirements exist, then FQPSK is a modulation scheme that could be considered. 

 

 

 

Fig. 2.11. BER of FQPSK compared to that of QPSK. 
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2.5 Enhanced FQPSK (EFQPSK) 
2.5.1 Pulse Shaping 
 
Many transmitter architectures modulate data bits that are rectangular in pulse shape. 

Other transmitter architectures use raised-cosine pulse shaping, Gaussian pulse 

shaping or some other type of pulse shaping. EFQPSK shapes polar NRZ data with 16 

waveforms. These waveforms provide two distinct benefits for the transmitted signal. 

One benefit is good spectral efficiency characteristics and the other is a “quasi” constant 

envelope property. First we will describe the mapping of these 16 waveforms with the 

incoming data stream. From [7], the 16 waveforms are given in (2.10), where ST  is the 

symbol period and for the results of this thesis, sTS
4102 −×= . The variable A  in (2.10) is 

the amplitude parameter that was designed to range from 1
2

1 ≤≤ A  [6]. The results of 

this thesis have 
2

1=A  in order to approach constant envelope as closely as possible. 

All of the waveforms in (2.10) have continuous slopes at their respective midpoints and 

have zero slopes at their endpoints [7]. Having zero slopes at their endpoints allows for 

the concatenation of any waveform to any other waveform without any discontinuities [7]. 

Having a continuous slope at their midpoints means fewer high frequency components in 

the spectrum. Fig. 2.12 plots the 16 full-symbol waveforms of EFQPSK. 
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Fig. 2.12. 16 Full-symbol waveforms of EFQPSK. 
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For our study we categorize digital EFQPSK in terms of sampling frequency and 

quantization bits. Of the 8 waveforms, 4 of them in (2.10) have two parts: the first part 

contains a waveform defined only for the first half of the symbol period and the second 

part contains a waveform defined only for the second half of the symbol period. The 

model used for the results of this study take every ( )tsi  that has two parts and 

concatenates the two parts into one waveform defined over the symbol period. After all 

( )tsi  have been combined to form one waveform for one symbol period, digitization is 

performed. The sampling process takes X  samples over the period 
22
SS T

t
T

≤≤− , where 

{ }100,50,20,10,5,3∈X  for the results of this study. In QPSK two bits make one symbol, 

where one I-channel bit is added with one Q-channel bit. However, for the digitized 

versions of EFQPSK in this study, X  samples are taken over one symbol period, where 

the symbol containing the samples is not one I-channel bit added with one Q-channel bit, 

but rather is two concatenated I-channel bits or two concatenated Q-channel bits. For 

example if 10=X  then 10 samples are taken over the symbol period 
22
SS T

t
T

≤≤−  for 

each I-channel symbol and each Q-channel symbol. In essence, for one EFQPSK 

symbol we have taken 20 samples because the 10=X samples of the I-channel are 

added with the 10=X  samples of the Q-channel. To eliminate confusion while being 

precise, we will refer to the sampling frequency simply as “ X  sample” instead of “ X  

sample-per-symbol”. For example if we have a 10=X sample-per-symbol EFQPSK 

signal, the “sample-per-symbol” term is misleading. However, if we say we have a 

10=X sample EFQPSK signal, we can more easily identify that this signal contains 10 

samples (per pulse shape). 

 

2.5.2 Trellis Code 
 
In Section 2.5.1 we talked about the type of pulse shaping used in EFQPSK. In this 

section we talk about the methods used for shaping data with the 16 waveforms.  

 

EFQPSK uses a type of Trellis-coded modulation (TCM) to map any of the 16 

waveforms to each data bit. In terms of waveform selection, the operations performed on 

the I-channel are equivalent to the operations performed on the Q-channel. In selecting 
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a particular waveform to be mapped to a data bit given a certain signaling interval, the 

channel of interest depends on the most recent data transition on that channel and the 

two most recent and consecutive data transitions on the other channel [7]. For example, 

if the previous bit on the I-channel 11, =−nId , the present bit on the I-channel 1=Ind , and, 

from the two previous transitions on the Q-channel, if the transitions 02, =−nQd , 01, =−nQd , 

and 01, =−nQd , 0=Qnd , then the waveform )(0 ts  is selected during the signaling interval 

SS TntTn ])2/1[(])2/1[( +≤≤− . From [7], Tables 2.2a and 2.2b list all the possible waveform 

mappings for the I-channel and the Q-channel. We can represent Tables 2.2a and 2.2b 

with a set of equations that simplify the model. InD  and QnD  replace Ind  and Qnd , 

namely,  
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Table 2.2a. Mapping of I-channel base-band signal during interval 
SS TntTn ])2/1[(])2/1[( +≤≤− . Reproduced from [7]. 
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0 1 0 )(2 SIn nTtsd −  

0 1 1 )(3 SIn nTtsd −  

1 0 0 )(4 SIn nTtsd −  

1 0 1 )(5 SIn nTtsd −  

1 1 0 )(6 SIn nTtsd −  

1 1 1 )(7 SIn nTtsd −  
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Table 2.2b. Mapping of Q-channel base-band signal during interval SS TntnT )1( +≤≤ . 
Reproduced from [7]. 
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where i  and j  are binary-coded decimal (BCD) representations of the I-channel and Q-

channel mapping signals where 
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From (2.13), the I-channel and Q-channel base-band signals are each chosen from the 

set of 16 waveforms as dictated by the indices i  and j  [7]. Therefore, the new I-channel 

signal is )(tsi  and the new Q-channel signal is )(ts j . Fig. 2.13 plots various outputs 

within the transmitter starting with the bits from each channel, InD  and QnD , the  
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Fig. 2.13. I and Q-channel data bits, waveform selection indices, and pulse shaped I-
channel and Q-channel over 20 symbols. 

 

waveform mapping indices, i  and j , and the new I-channel and Q-channel streams of 

pulse shaped data bits. The plots of Fig. 2.13 are 20 symbols long in duration. For 

example, look at Fig. 2.13: when 1=InD  the index 1=i  and therefore )()( 1 tstsi =  for one 

symbol duration. Fig. 2.14 plots the EFQPSK transmitted signal, where the envelope 

appears constant but is deviating by a maximum of dB28.0 . Note that the phase 

transition is slow enough that it is not noticeable. In other words, the phase transitions 

are continuous and not discrete. EFQPSK is actually a form of continuous-phase 

frequency shift keying (CPFSK) with minimum frequency deviation, because the 

transmitter architecture is OQPSK with sinusoidal pulse shaping [8]. 

 

Fig. 2.15 is a block diagram of an EFQPSK transmitter. From Fig. 2.15, i  and j  feed 

the read-only memory (ROM) blocks inside the waveform mapping block in Fig. 2.15. 

The details of the TCM and waveform mapping blocks of Fig. 2.15 are given in Fig. 2.16 

and 2.17. The signals ID  and QD  from Fig. 2.16 are equivalent to I and Q in Fig. 2.15. 

The ROM blocks of Fig. 2.17 store the 16 waveforms of EFQPSK. 
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Fig. 2.14. Transmitted EFQPSK signal with 5 symbols and 20 symbols. 

 
 
 

 
 

Fig. 2.15. Block Diagram of an EFQPSK Transmitter. 
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Fig. 2.16. TCM block from Fig. 2.15. 

 
 
 

 
Fig. 2.17. Waveform mapping block of Fig. 2.15. 
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FQPSK is a modulation scheme that exhibits good spectral efficiency characteristics, is 

nearly constant envelope, and has tolerable BER. EFQPSK is the same as FQPSK 

except that 2 of the 8 waveforms in FQPSK are replaced for EFQPSK. From [7], the 

purpose of replacing 2 of the 8 waveforms is to eliminate the slope discontinuity inherent 

in 2 of the waveforms of FQPSK. Replacing 2 of these waveforms results in less spectral 

splatter in EFQPSK than FQPSK, because the derivative of anything discontinuous 

results in higher frequencies. The by-product of reducing the spectral splatter is a slight 

increase in maximum envelope fluctuation to about dB28.0 . Fig. 2.18 compares the 

PSD of EFQPSK to that of FQPSK. Note that the side-band power in EFQPSK is almost 

dB20 less than that of FQPSK at higher frequencies. Substituting the EFQPSK 

modulation scheme for the FQPSK modulation scheme yields a 2 order of magnitude 

reduction in side-band energy with only a tenth of a magnitude increase in maximum 

envelope fluctuation. Fig. 2.19 shows the out-of-band power of EFQPSK compared to 

that of FQPSK. Note the out-of-band power of EFQPSK is about dB20  lower than that of 

FQPSK at higher bandwidths. 

 

Thus far we have seen that EFQPSK exhibits better spectral efficiency than FQPSK in 

terms of PSD and out-of-band power. We have noted that the cost for increasing the 

spectral efficiency in EFQPSK is an dB1.0  increase in envelope fluctuation as opposed 

to FQPSK. The last major issue of concern in EFQPSK is BER. According to [7], 

substituting 2 of the waveforms in FQPSK with 2 improved waveforms, the spectral 

efficiency increases and the BER remains the same. In other words, the BER of 

EFQPSK is equivalent to the BER of FQPSK. To conclude, EFQPSK offers increased 

spectral efficiency over FQPSK, equivalent BER, and only a slight increase in envelope 

fluctuation. 

 

2.6 Summary 
 
Thus far in this study we have presented various modulation schemes that exhibit a 

multitude of both useful and degrading characteristics. The BER of QPSK is very good 

and has constant envelope while the spectral efficiency of it is poor.  
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Fig 2.18. The PSD of EFQPSK compared to that of FQPSK. 

 

 

Fig 2.19. Out-of-band power of EFQPSK versus FQPSK. 
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One advantage OQPSK has over QPSK when hard-limiting the transmitted signal, no 

high frequency components are generated from the envelope crossing zero in the x-axis. 

The modulation scheme IJF-QPSK exhibits excellent spectral efficiency characteristics 

but does not have constant envelop. The modulation scheme FQPSK has good spectral 

efficiency characteristics and constant envelope with only a modest degradation in BER. 

Overall, EFQPSK is modulation scheme displays good spectral efficiency, “quasi” 

constant envelope, and tolerable BER.  
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Chapter 3: SYSTEM MODEL FOR DIGITAL EFQPSK 
 

3.1 Introduction 
 
In this chapter, we will outline in detail the system model used for this study. We will 

begin with a discussion about the fundamentals of analog-to-digital conversion (ADC). 

We will discuss in detail the fundamentals of the sampling operation, the quantization 

operation, and interpolation. Following the description of the ADC there will be an 

introduction to the type amplifier model used in this study. Section 3.4 will describe the 

type of receiver used in generating BER for EFQPSK. 

 
3.2 Analog-to-Digital Conversion 
 
This study was conducted to show the degradation of digital EFQPSK when compared 

to analog EFQPSK. Therefore a simple model of an analog-to-digital converter (ADC) 

will be presented. 

 

The first operation performed in the ADC is the sampling operation. The sampled signal 

is expressed as 

( ) ( ) ∞≤≤−∞= nnTXnx a ,    (3.1) 

where aX  is the analog signal and T  is the sampling period [9]. The type of sampling 

used in this study is uniform sampling, which takes an integer number of samples at 

uniformly spaced intervals within the analog signal. If aX  has period PT , then )(nx  must 

have period PTT < , which implies that at least two samples must be taken from aX . For 

simplicity, we express the sampling period T  as the number of samples taken, X . For 

the results of this study, the various cases taken were { }100,50,20,10,5,3=X  samples 

each for the in-phase and quadrature phase channels. Fig. 3.1 shows the effect only the 

sampling operation has on a 10 symbol long sequence of EFQPSK pulse shaped bits of 

the in-phase channel. The x-axis of Fig. 3.1 shows the time duration of the 10 symbols. 

Note the sharp discontinuities in the 3-sample signal. The 10-sample signal appears to 

have no discontinuities. However, the results in Chapter 4 prove that the 10-sample 

signal has some discontinuities. 
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Fig. 3.1. The effect sampling has on the in-phase channel of an EFQPSK signal. 

 

The 100-sample signal has no noticeable discontinuities and is a reasonable 

approximation to the analog signal. It should be noted that the resulting spectra of any 

signals with discontinuities has higher frequency components, thus increasing the 

bandwidth of these signals. 

 

The next operation is the quantization operation. The effects of quantization on the 

signal may be studied by 

∑ ∫

∫

=

∞

∞−

−

−

==
n

k

X

X
axka

axa
a

avg k

k

dxXfXX

dxXfX

D
XE

N
S

1

2

2
2

1

)()(

)(
][ ,   (3.2) 

where aX  is the analog signal, kX  is the discrete signal at time instant k , D  is the 

distortion, and )( ax Xf  is the probability density function (PDF) of aX . For the results of 

this study uniform quantization is assumed and  
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where b  is the number of quantization bits and FSV  is the full scale signal voltage at the 

output of the ADC. In uniform quantization, a power of 2 integer number of quantization 

levels is utilized to map the analog voltages to a new voltage equal to the quantization 

levels. In this study, )(nx  from (3.1) replaces aX  in (3.2) and (3.3) and the new average 

signal-to-noise ratio is described by 
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where the PDF of )(nx  is still assumed to be uniform and is given by 
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Fig. 3.2 shows the effect quantization has after the signal has been sampled. All signals 

in Fig. 3.2 have 4 quantization bits. The various sampling periods are the same as those 

in Fig. 3.1. Note that for the 3-sample plot the effects of quantization are not immediately 

evident because the quantization operation has few samples to distort. However, 

comparing Figs. 3.1 and 3.2, we can see that certain voltages in the 3-sample plot of 

Fig. 3.2 are different than corresponding voltages of Fig. 3.1. The quantization operation 

has distorted the original signals. Looking at Fig. 3.2 alone we see that for the 10 and 

100 sample signals, the distortion from quantization has created sharp and jagged 

discontinuities in the waveforms. This is immediately evident because the quantization 

operation has many samples to distort. For example, if 20 samples are taken then the 

quantization operation has distorted a block of 20 samples, which is quite noticeable. 
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Fig. 3.2. The effect quantization after sampling has on the in-phase channel of an 
EFQPSK signal.  

 

However, if 3 samples are taken then only a block of 3 samples is distorted from 

quantization, which may be less noticeable. 

 

The final operation performed in this study’s ADC is the interpolation operation. When a 

lower sampling frequency is used fewer samples are taken; therefore, the length of the 

discrete signal becomes shorter than the length for the analog signal. For example, 

when comparing the spectra of the sampled signals with the spectra of the analog 

signals, it is convenient to make the sampled signals long enough to allow a comparison 

between the two sets of signals, given a certain bandwidth of interest. If the sampled 

signals are not of sufficient length, then the corresponding spectrum will not be defined 

over the entire certain bandwidth of interest. If the sampled signal is not of sufficient 

length, then the corresponding spectrum of the sampled signal will not be defined over 

the entire bandwidth of interest. A zero-insertion interpolation was performed to achieve 

the aforementioned goal. This type of interpolation inserts zeros in between samples of a 
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signal and then low-pass filters the up-sampled signal [10]. Fig. 3.3 illustrates the effect 

interpolation has on the in-phase channel of a 10 symbol long EFQPSK signal. The 

software used for this operation requires a signal with a length of at least 9 samples for 

the signal to be interpolated. Because of this limitation, the only signals that are 

interpolated are signals whose length consists of 10, 20, and 50 samples. For the 100 

sample signals, the lengths are sufficient to allow a comparison between the spectra of 

the 100 sample signals with the spectrum of the analog signal, given the bandwidth of 

interest. Note the discontinuities in the 10 and 20 sample signals of Fig. 3.3. These 

discontinuities exist at certain intervals in the interpolated waveforms. However, these 

discontinuities have a more degrading effect on the in-phase or quadrature-phase 

channel at the points of concatenation of one waveform to another waveform. This is 

because the interpolated value of the last sample in the previous waveform does not 

always equal the interpolated value of the first sample in the present waveform. The 50 

 

0 0.5 1 1.5 2
x 10-3

-1

-0.5

0

0.5

1

Time (s)

A
m

pl
itu

de
 (V

)

Analog

0 0.5 1 1.5 2
x 10-3

-2

-1

0

1

2

Time (s)

A
m

pl
itu

de
 (V

)

10 samples/symbol

0 0.5 1 1.5 2
x 10-3

-2

-1

0

1

2

Time (s)

A
m

pl
itu

de
 (V

)

20 samples/symbol

0 0.5 1 1.5 2
x 10-3

-1

-0.5

0

0.5

1

Time (s)

A
m

pl
itu

de
 (V

)

50 samples/symbol

 

Fig. 3.3. The effect interpolation has on the in-phase channel of an EFQPSK signal. 
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sample signal has some discontinuities but with a lower magnitude than those of the 10 

and 20 sample signals; which is why it is not evident that there are discontinuities in the 

50-sample signal from Fig. 3.3. When taking samples of the analog signal aX  using 

(3.1), it is important to analyze the spectrum using 

( )[ ]∑
∞

−∞=

−=
k

SaS FkfXFfX )( ,     (3.4) 

illustrating the periodicity of the digital signal’s spectrum [9]. The variable SF  is the 

sampling frequency. The DFT of the sampled signal )(nx  in (3.1) is given by 

∑
∞

−∞=

−=
n

fnjenxfX π2)()( ,      (3.5) 

which suggests that the signal )(nx  is discrete and aperiodic [9]. Since the sampled 

signal is discrete and aperiodic its spectrum is continuous and periodic. From (3.4), if the 

sampling frequency is qS NF 2< , where qN  is the Nyquist frequency, the side-bands of 

one replicated adjacent spectrum of aX  will be added to the side-bands of the next 

adjacent replicated spectrum of aX . However, if qS NF 2>>  then this problem is minor 

enough without much effect on the outcome of the spectrum. Figs. 3.4 and 3.5 illustrate 

the effect SF  has on the spectrum of )(nx . Figs. 3.4 and 3.5 are representations of a 

generic spectrum. If signals with spectra other than those shown in Figs. 3.4 and 3.5, SF  

may have to be adjusted to achieve the same effects as those in Figs. 3.4 and 3.5. Note 

that if the signal is sampled with qS NF 2< , the side-bands interfere with each another as 

in Fig. 3.5. However, if the signal is sampled with qS NF 2>>  then the interference 

between the side-bands does not occur. 

 

Chapter 4 deals with the spectrum of analog and digital EFQPSK. However, before 

presenting the results of Chapter 4 it is important to note that if the in-phase and 

quadrature-phase signals of EFQPSK are shaped from random data not independently 

and identically distributed, then spectrum of the EFQPSK signal will have a direct current 

(DC) term. This DC term will distort the spectrum, causing the corresponding side-band 

power to be larger in magnitude than the true spectrum of any version of EFQPSK. In 

other words, to witness the true spectrum of any version of EFQPSK we  
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Fig. 3.4. DFT with qS NF 2>> . 

 
 

 
Fig. 3.5. DFT with qS NF 2< . 
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must ensure the correlation between the in-phase and quadrature-phase bits before 

pulse shaping is zero. 

 
3.3 Limiter Model 
 

To amplify the transmitted EFQPSK signal with an amplifier operating in saturation, 

which is the most efficient state in which the amplifier can operate, the waveforms of 

EFQPSK are tailored to produce an envelope that is almost constant. An amplifier 

operates in saturation in the following manner. If the magnitude of the input signal is 

larger than the magnitude of the of the amplifier’s maximum output voltage,, then the 

amplifier rounds that input voltage to the maximum allowable voltage in the amplifier. In 

contrast, an ideal amplifier is an amplifier that clips or cuts off the maximum input voltage 

when that voltage exceeds the maximum allowable output voltage of the amplifier. A 

typical model of this type of amplifier is the hard limiter model, or clipper.  

 

The model used for the amplifier in this thesis is the soft limiter model, which can be 

described by the function 

( ) ( )( )

( )
ss

tx
m

txMty 1

1

sgn




















+

= ,      (3.6) 

where m  is the input limiting value, M  is the output limiting value, ( )tx  is the transmitted 

EFQPSK signal, and s  is the shaping factor [11]. Fig. 3.6 plots (3.6) for various values of 

s . Comparing the plots for 5.0=s  and 10=s , we see that the plot for 5.0=s  corresponds 

to a harder limiter while the plot for 10=s  corresponds to a softer limiter. As s  

approaches ∞  the characteristic of the limiter becomes soft [11]. Therefore, the s  

selected for the model in this study is 100=s  because it is reasonably large compared to 

the soft limiting shaping parameter of 10=s . The input and output limiting voltages were 

both selected to be one since those are peak amplitudes of the envelope of conventional 

QPSK. In the remainder of this study, the term “amplification” will be used as a reference 

to non-linear amplification or soft limiting.  
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Fig. 3.6. Plot of the limiter model with various shaping parameters. Reproduced from 
[11]. 

 

Since our amplifier, or more equivalently soft limiter, is operating in saturation the 

amplitude modulation (AM) of the input may produce a change in AM in the output 

(AM/AM conversion).  There is also a possibility that a change in the input signal’s AM  

can create a change in phase modulation (PM) or phase drift in the output (AM/PM 

conversion) [12]. Suppose our complex envelope signal is described by 

)()()( tj
x

xetAtx φ= ,     (3.7) 

where )(tAx  is the AM of the signal and )(txφ  is the PM of the signal [12]. If the signal 
)(tx  is hard limited, then the output envelope will be  

 
)()()()( tjAig

xA eeAgty x φφ= ,    (3.8) 
 

where )(•Ag  is the new AM and )(•φg  is the new PM [12]. Neither one of these two 

phenomena will exist if the envelope of the signal has no AM and continuous phase 

transitions, assuming we are operating in the linear portion of Fig. 3.6. Since the 

magnitude of AM in EFQPSK is only dB28.0  and with a continuous phase modulation 

scheme, we should expect that very little if any AM/AM conversion and AM/PM 

conversion will exist. However, when the magnitude of the input voltage is close to 1, 
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there will always be some AM/AM and AM/PM conversion because that part of the 

limiter is not linear. Fig. 3.7 illustrates the typical effect the soft limiter has on 10-sample 

EFQPSK signals with 2-bit and 14-bit quantization. Note that for the 14-bit quantization 

signal the top left AM/AM plot is almost linear and the top right AM/PM plot shows the 

same phase shape as that of a true 10-sample EFQPSK signal. The top right plot 

expresses some phase drift. The bottom 2 plots show a 10-sample EFQPSK signal with 

2-bit quantization. Note that the bottom left AM/AM plot is not close to linear at higher 

voltages. The bottom right AM/PM plot expresses some phase drift. Note that for the 2-

bit quantization case, the envelope is far from constant. 

 

Fig. 3.8 shows typical AM/AM and AM/PM characteristics of 20-sample EFQPSK signals 

with 2-bit and 14-bit quantization. For both the 2-bit and 14-bit quantization signals, the 

non-constant envelopes coupled with the non-linear portions of the limiter have 

significantly changed both the output voltage and output phase of the EFQPSK signals. 
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Fig. 3.7. Typical AM/AM and AM/PM conversion characteristics of 10-sample EFQPSK 
signals with 2-bit and 14-bit quantization. 
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Fig. 3.8. Typical AM/AM and AM/PM conversion characteristics of 20-sample EFQPSK 
signals with 2-bit and 14-bit quantization. 

 

Fig. 3.9 shows typical AM/AM and AM/PM characteristics of 50-sample EFQPSK signals 

with 2-bit and 14-bit quantization. The envelope of the 14-bit quantization signal does not 

fluctuate as much as those for the 10-sample and 20-sample signals, which is why the 

output voltage is almost linearly proportional to the input voltage. For this same reason, 

the output phase does not jitter as much as the sample signals’ phases.. The amount of 

phase jitter describes how suddenly the phase jumps from one value to another. For the 

50-sample, 2-bit quantization signal the output voltage is no longer linearly proportional 

to the input voltage and the phase jitter is unpredictable. Both of these characteristics 

are due to the ample envelope fluctuation of this particular signal. 
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Fig. 3.9. Typical AM/AM and AM/PM conversion characteristics of 50-sample EFQPSK 
signals with 2-bit and 14-bit quantization. 

 
Fig. 3.10 shows typical AM/AM and AM/PM characteristics of 100-sample EFQPSK 

signals with 2-bit and 14-bit quantization. Looking at the 14-bit quantization signal, we 

see that the relationship between the input voltage and the output voltage is idenitical to 

the shaping parameter 100=s  from Fig. 3.6. Looking at the top right AM/PM plot, we see  

no phase jitter. Both phenomena are due to very little envelope fluctuation in this signal. 

The 2-bit quantization signal of Fig. 3.10 expresses a linear relationship between the 

input voltage and the output voltage inside the maximum voltage range. However, 

outside of this range, i.e. V2.1 , we notice a large amount of AM/AM conversion. Looking 

at the bottom right AM/PM, we see a considerable amount of phase jitter. These two 

characteristics are due to the large amount of envelope fluctuation in this signal. 

 

Fig. 3.11 shows typical AM/AM and AM/PM characteristics of an analog EFQPSK signal. 

Note that the left AM/AM plot takes the shape of the shaping parameter 100=s  from Fig. 

3.6. In the right plot we see no phase jitter. Both of these results are due to the fact that 

there is only dB28.0  of envelope fluctuation in the signal. It should be noted that the 100- 

sample, 14-bit quantization signal has almost the same envelope fluctuation as the 

analog signal, which is why the plots of Figs. 3.10 and 3.11 appear similar. 
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Fig. 3.10. Typical AM/AM and AM/PM conversion characteristics of 100-sample 
EFQPSK signals with 2-bit and 14-bit quantization. 
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Fig. 3.11. Typical AM/AM and AM/PM conversion characteristics of an analog EFQPSK 
signal. 
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3.4 Reception 
 
Although a conventional OQPSK receiver can be used to retrieve data from a 

transmitted EFQPSK signal, this is not an optimal choice for reception due to lower 

quality BER than in an average matched filter receiver of EFQPSK [2]. Since EFQPSK 

can be implemented with TCM, it can also be received using a Viterbi receiver [7]. 

However, while the Viterbi receiver of EFQPSK is the optimal receiver in terms of BER it 

is not the best choice for the model in this study because its computational complexity is 

large. Therefore, this study uses the average matched filter receiver of EFQPSK for  

better BER and smaller computational complexity. Before discussing a specific matched 

filter receiver of EFQPSK, we present the fundamental architecture of a matched filter 

receiver. 

 

A matched filter is one in which the impulse response is given by 

( )tTsth −=)( ,      (3.9) 

where )(ts  is the input signal after demodulation and low-pass filtering defined over the 

interval Tt ≤≤0  [13]. When the signal )(ts  passes through the filter in (3.9), the response 

is given by 

( ) τττ dtTssty
t

∫ +−=
0

)()( ,    (3.10) 

which is basically the autocorrelation function of )(ts  [13]. There is an important property 

that makes this matched filter tremendously useful and is stated as follows: if the signal 

)(ts  is corrupted by additive white Gaussian noise (AWGN) and if the impulse response 

of the filter in (3.9) matches the signal )(ts , then the filter maximizes the signal-to-noise 

ratio [13]. Another important property of this filter is that it depends only on the energy of 

the signal )(ts , not on other any characteristics of )(ts  [13]. Fig. 3.12 is a block diagram 

of an average matched filter receiver of EFQPSK. The term “average matched filter” 

describes a matched filter that matches the incoming signal, )(ts , with the average 

shape of that signal. More will be said about this shortly. The variable ( )trc  in  
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Fig. 3.12. Block diagram of an average matched filter receiver of EFQPSK. 
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Fig. 3.12 is the transmitted EFQPSK signal with carrier frequency cF , and ( )tn  is AWGN. 

The variables ( )tI bb  and ( )tQbb  in Fig. 3.12 are the base-band in-phase and quadrature-

phase bits, respectively.  In this study for analog EFQPSK the results are analytical, 

taken from [14], while the results for digital EFQPSK are semi-analytical because the 

equations in [14] are digitized and simulated in software. From [14], 
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BER of analog EFQPSK is obtained as in [14]. The variable SSC  in (3.11) is the product 

after the correlation between the received signal and average matched filter signal. For 

QPSK, the average matched filter signal is one (rectangular pulse shaping), and the 

correlations of each of the waveforms in )(tSi  are simply the integral of )(tSi  over one 

symbol period divided by the symbol period ST . For an average matched filter receiver of 

EFQPSK, )(tS  is the average pulse shape of EFQPSK. The correlations for each of the 

waveforms in an average matched filter receiver of EFQPSK are larger in magnitude 

than the correlations of a QPSK receiver of EFQPSK because in 

 

)](cos)1()sin()1()1[(
2
1)( 2

SS T
tAT

tAAtS ππ −−+++= ,   (3.13) 

where 
2

1=A , the magnitude of (3.13) is larger than the magnitude of a one for 

rectangular pulse shaping in QPSK. This produces a superior BER since the magnitude 

inside erfc  in (3.11) is larger for an average matched filter receiver of EFQPSK than it is 

for a QPSK receiver of EFQPSK. 
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3.5 Summary 
 

Thus far we have explained the main blocks used in the system model of this study. We 

started with the corrupting effects analog-to-digital conversion has on the resulting 

signals. Next we laid the foundation of the soft limiter model used in this study and 

discussed the effects soft-limiting can have on the transmitted signal. Finally, we 

described the type of receiver used in generating BER for EFQPSK with a presentation 

of typical receiver structures of an average matched filter receiver of EFQPSK and the 

corresponding eP  derivations for this receiver. 
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Chapter 4: SIMULATION RESULTS FOR DIGITAL EFQPSK 
 

4.1 Power Spectral Density (PSD) for Digital EFQPSK 
 
This chapter focuses on comparing the PSD, out-of-band power, envelope fluctuation, 

and BER of digital EFQPSK to those of analog EFQPSK and QPSK. More specifically, 

we consider 3, 5, 10, 20, 50, and 100 sample EFQPSK signals with varying quantization 

bits. Note that in several cases, we did not present the 3-sample and 5-sample signals 

because these signals are not of sufficient length for comparison to analog EFQPSK or 

QPSK. 

 

In this study, the 10, 20, 50, and 100-sample signals satisfy Nyquist’s theorem. 

However, for practical purposes, we limit the duration of the discrete sequence ( )nx  to L  

samples, where ( )nx  contains samples in the interval 10 −≤≤ Ln  [12]. This operation is 

equivalent to multiplying the discrete sequence ( )nx  by a rectangular window )(nw  of 

length L  where 



 −≤≤

=
else

Ln
nw

,0
10,1

)( ,      (4.1) 

creating a new sequence 

)()()(ˆ nwnxnx = .        (4.2) 

Assuming )(nx  is a sequence of EFQPSK pulse shaped bits, the Fourier transform of 

)(nw  is given by 

( )
( )

2)1(

2sin
2sin

)( −−= Lje
L

W ω

ω

ω
ω       (4.3) 

and the Fourier transform of ( )nx  is given by 

∫− −=
π

π
θθωθ

π
ω dWXX )()(

2
1)(ˆ .      (4.4) 

Finally, the DFT of the windowed sequence )(ˆ nx  is a sampled version of )(ωX  and is 

given by 

∫−=
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where N  is the number of points in the DFT [12]. Fig. 4.1 illustrates how windowing the 

sequence )(nx  creates spectral leakage. The signals presented are for conventional 

QPSK, analog EFQPSK, and 10, 20, 50, and 100-sample versions of EFQPSK. The 10-

sample EFQPSK signal is windowed with a window of length 10=L .  The spectrum of 

the 10-sample signal has reduced resolution and the spectrum of this signal has retained 

many of the characteristics of the spectrum of )(nw . This leakage characterizes how 

much power in the original sampled sequence )(nx  has been spread out by windowing. 

The 20-sample signal retains many of the spectral characteristics of the window, but the 

leakage is not as prominent as that of the 10-sample signal. The 50-sample signal 

retains some of the characteristics of the spectrum of the window, but leakage is not as 

prominent. For the 50-sample signal, the spectral resolution is increased. The 100-

sample signal is windowed by a window of length 100 and therefore there appears to be 

no spectral leakage and the 100-sample signals converges to the analog signal. 

Therefore, as the length of )(nw  and )(nx  increases, the amount of spectral leakage 

decreases and the spectral resolution increases. The x-axis of all spectral plots in this 

study characterizes the total bit rate for a QPSK signal. For instance, at 1=
bR

f , the 

frequency is 
bTf 2= . 

 

 

Fig. 4.1. Illustration of spectral leakage in discrete EFQPSK. 
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Section 4.1 focuses on comparing sample signals with varying quantization bits to 

analog EFQPSK and QPSK. Fig. 4.2 shows the effect that a 10-sample EFQPSK signal 

with varying quantization bits has on the power spectrum compared to the spectrum of 

analog EFQPSK. For the results in this study, the base-band bandwidth for pulse-

shaping was selected to be kHz5.2 , the bit period is s4104 −× , and the Nyquist 

frequency is kHz5 . According to [13], a signal must be sampled at a minimum of twice 

the Nyquist frequency ( )qN  to reconstruct a band-limited waveform without error. Since 

the 10 sample EFQPSK spectra in Fig. 4.1 have a sampling interval of sT 5104 −×=  the 

signals are sampled at qS NF 5= , where SF  is the sampling rate. Therefore, the highest 

frequency that can be reconstructed without error is kHzFS 5.122 = . Since the range of 

frequencies shown in Fig. 4.2 is kHzR
fkHz

b
5.125.12 ≤≤− , the aliasing of the 2.5 kHz is 

present at 5≥
bR

f  in Fig. 4.2. Therefore, only two factors contribute to the degradation of 

the digital spectra compared to the analog spectrum: the quantization operation, which 

will be discussed shortly; and the other is in taking the discrete Fourier transform (DFT). 

Since ( )nx  from (3.1) is discrete and aperiodic, the DFT can be expressed as 

( ) ( )∑
∞

−∞=

−=
n

njenxX ωω ,     (4.6) 

and ( )ωX  is the DFT of ( )nx  [12]. The DFT takes a finite discrete sequence, ( )nx , and 

transforms this sequence into a sequence of frequency samples, ( )kX  [12]. In other 

words, the DFT takes the sampled spectrum and replicates it at intervals equal to the 

inverse of the sampling interval used with the original analog waveforms. Looking 

at 7.0≈
bR

f , we see that all the 10-sample spectra start to deviate from the analog 

EFQPSK spectrum. As stated previously, the sampling period of the 10-sample signal is 

sT 5104 −×= , which is of relatively long duration. Due to a long duration in the time 

domain this interval is short in the frequency domain. This means that the corresponding 

spectra of the 10-sample signal will be closely spaced in the frequency domain. In other 

words, some of the side-lobes of the 10-sample spectra will be bunched together with 

side-lobes of other replicated 10-sample spectra. This is an expected artifact from taking 

the DFT of a signal with such a large sampling interval. There is limit as to how good the  
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Fig. 4.2. The effect a 10-sample EFQPSK signal with various quantization bits has on 
the spectrum of EFQPSK. 

 

spectral efficiency of the 10-sample signal can become. This limit is dictated by the 

artifact of taking the DFT of the 10-sample signal. Since there are so many side-lobes 

with high power, packed closely together over the frequency range 

kHzR
fkHz

b
5.125.12 ≤≤− , the spectra of the 10-sample signals will never be as good as 

that of analog EFQPSK. Hence, this study will refer to this as spectral leakage. The 

spectral leakage of the 10-sample signal is high for two reasons: a) in taking the DFT, 

the side-lobes of one replica of the spectrum are added, or more appropriately, interfere 

with the side-lobes of another replica of the spectrum; and, b) the side-lobes that 

interfere with one another are high in power, leaving the power in the side-lobes 

especially high compared to the side-lobes of analog EFQPSK. 
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From Fig. 4.2, there are four cases of the 10-sample EFQPSK power spectrum: 2-bit, 3-

bit, 4-bit, and, 5-bit quantization signals. From [12], the signal-to-quantization noise ratio 

is 

 

bdBSQNR 02.625.1)( += ,     (4.7) 

 

where b  is the number of quantization bits. According to (4.7), for a 2-bit quantization 

case, the SQNR (dB) is dB8.13 . Since dB8.13  from quantization is much higher than the 

power in the spectral leakage, the distortion from 2-bit quantization in the 10-sample 

case is quite noticeable. The 2-bit quantization only distorts the spectrum at instances 

where side- lobes interfere with one another, as seen in Fig. 4.2. This is because the 

distortion brought on by quantization changes the shapes of the interfering side-lobes. 

Since the SQNR is 13.8 dB, which is low for quantization, the distortion swells the 

spectral content of the extra side-lobes that are packed tightly together. 

 

 

 

 
Looking at Fig. 4.2, the other cases show that the interfering side-lobes do not swell as 

much as the 2-bit case. The SQNR’s of the 3-bit, 4-bit, and 5-bit cases are dB8.19 , 

dB8.25 , and dB8.31 , respectively. As the number of quantization bits increases the side-

band power decreases with each respective case. This is because as the distortion 

becomes smaller and smaller, it will have a much lower effect on the shape of the 

spectra. In other words, as the distortion approaches zero so does the the spectra as it 

changes shape. 

 

Fig. 4.3 illustrates the effect a high number of quantization bits has on the spectrum of a 

10-sample EFQPSK signal. Looking at Fig. 4.3, we notice that the 6-bit quantization and 

14-bit quantization cases are similar. The SQNR for the 6-bit case is dB9.37~ , and for 

the 14-bit case it is  
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Fig. 4.3. The effect quantization with a higher number of bits has on a 10-sample 
EFQPSK signal. 

 
dB86~ . The fact that there is a large difference between these two values is irrelevant 

because when 6 or more bits are used for quantization, the corresponding SQNRs fall at 

or below the power in spectral leakage. Once the SQNRs fall below the power in the 

spectral leakage, there is no longer any effect on changing the spectra since the power 

in the spectral leakage dominates all else in the system. Comparing Figs. 4.2 and 4.3, 

we notice that the 10- sample EFQPSK signal no longer exhibits a reduction in side-

band power, as a moderate-to-high number of quantization bits are utilized. Once a 6-bit 

quantization is used, the spectrum of the 10-sample signal has converged to its best 

spectral state. Although it is obvious that quantization with 14 bits produces a much 

better effect on a signal in general, for the 10-sample case quantization with more than 

six bits is not advantageous when trying to reduce the side-band power because the 

power in the spectral leakage has a more dominant effect on the spectrum than does 

quantization. 

 
Fig. 4.4 illustrates the effect a low-to-moderate number of quantization bits have on the 

spectrum of a 20-sample EFQPSK signal. The sampling interval for this signal is one-

half of the 10-sample signal, and is sT 5102 −×= .  
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Fig. 4.4. The effect quantization with a low number of bits has on a 20-sample EFQPSK 
signal. 

 
This is a shorter sampling interval than that of the 10-sample signal and we should 

expect the period of the spectrum to be twice that of the 10-sample spectrum. The 

sampling frequency of this signal is qS NF 10=  and the highest represented frequency 

without error is kHz25 . Therefore, there is no aliasing present in Fig. 4.3. Only two 

reasons exist for the degradation of the digital EFQPSK spectra: the quantization 

operation and the artifact from taking the DFT. In Fig. 4.4, there are four cases of digital 

EFQPSK spectra: 2-bit, 3-bit, 4-bit, and 5-bit quantization cases. The SQNRs are the 

same for the 20-sample cases as in the 10-sample cases. Comparing Figs. 4.2 and 4.4, 

we notice that as the number of quantization bits increases, the degradation of spectra 

decreases. While evident for the 10-sample cases, in the 20-sample cases as each bit is 

added to quantization the roll-off rate becomes higher than that of the 10-sample cases. 

This is because in taking the DFT of the 20-sample cases, the side-lobes that are 

bunched together from replicas of the spectrum exist at twice the frequency of those in 

the 10-sample signal. In looking at the spectrum of analog EFQPSK, we notice that a 

decrease of decadedB20~  is witnessed in side-band power. The same characteristic 
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holds for the 20-sample signal. As each bit is added to quantization, the power in the 

side-bands at a given frequency in the aforementioned frequency range is one-half that 

of the 10-sample side-bands for the same number of quantization bits. Therefore, the 

spectral leakage of the 20-sample signal is one-half of that of the 10-sample signal. 

Even though the 20-sample signal has a much lower spectral leakage it is relatively 

large, as will be shown herein. 

 

Fig. 4.5 plots the spectra of 20-sample signals with a moderate-to-high number of 

quantization bits. Note that the 6-bit quantized signal is almost as efficient as the 14-bit 

quantized signal. This is because once 6 bits of quantization are used the power in the 

distortion of the 6-bit quantization process is approximately equivalent to the power in 

spectral leakage. When more than 6 bits of quantization are used, the power in the 

distortion from quantization is lower than the power in the spectral leakage. Once the 

power in the spectral leakage has become larger than the power in the distortion from 

quantization, the signal has converged to its best spectral case. Therefore, when trying 

to reduce side-band power in a 20-sample EFQPSK signal it is not beneficial to use 

more than 6 quantization bits. 

 
Fig. 4.5. The effect quantization with a moderate-to-high number of bits has on a 20-
sample EFQPSK signal. 
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Fig. 4.6 illustrates the effect a low-to-moderate amount of quantization bits has on the 

spectrum of a 50-sample EFQPSK signal. The sampling interval for this signal is 

sT 6108 −×= and the sampling frequency is qS NF 25= . The highest frequency 

represented without error is kHz5.62 , which is outside the range of the plot. Therefore, 

as with the 20-sample case, the only two reasons the spectra of 50-sample cases are 

worse than the spectrum of the analog case is quantization and the leftover artifact in 

taking the DFT. The period of the spectra in Fig. 4.6 is ×5.2 , the same as in the 20- 

sample case. Since the spectra of 50-sample cases are replicated at frequencies ×5.2 , 

the side-bands that interfere with each other are even lower in power than the 20-sample 

case. Therefore, the power in spectral leakage of the 50-sample case is much lower 

than that of the 20-sample case. Fig. 4.6 plots a 2-bit quantization case, 3-bit 

quantization case, 4-bit quantization case, and a 6-bit quantization case. The SQNRs of 

each of these cases is the same as those for the 10-sample and 20-sample cases. Note 

that the side-band power of the 6-bit quantized case for the 50-sample spectrum is lower 

than in the 10-sample and 20-sample cases. This is due to the power in distortion from 

6-bit quantization for the 50-sample case is higher than the spectral leakage, whereas in 

the 10-sample and 20-sample cases the power in the distortion from 

 
Fig. 4.6. The effect quantization with a low-to-moderate number of bits has on a 50-
sample EFQPSK signal. 
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quantization is approximately equivalent to or higher than the spectral leakage. As with 

the 20-sample spectra, the 50-sample spectra experience the same effects when the 

number of quantization bits increases in the spectrum at about the same rate as the 20- 

sample cases. 

 

Fig. 4.7 shows the effect a high number of quantization bits has on a 50-sample 

EFQPSK signal. Note that spectra from Fig. 4.6 are almost as acceptable as FQPSK 

from Fig. 2.9. Looking at Fig. 4.7, the 8-bit quantization case is approximately the same 

as the 14-bit quantization case. This results when more than 7 bits of quantization are 

used in the 50 sample EFQPSK signal, causing power in the distortion of the 

quantization process to become approximately equivalent to or less than the power in 

the spectral leakage. Therefore, it is not practical to use more than 8 quantization bits for 

a 50-sample EFQPSK signal when trying to reduce side-band power. 

 

 
Fig. 4.7. The effect quantization with a high number of bits has on a 50-sample EFQPSK 
signal. 
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Fig. 4.8 illustrates the effect on a 100-sample EFQPSK signal from quantization with a 

moderate amount of bits. The cases presented are a 2-bit quantization case, 3-bit 

quantization case, 4-bit quantization case, 5-bit quantization case, and a 6-bit 

quantization case. The sampling interval for this signal is sT 6104 −×=  and the sampling 

frequency is qS NF 50= . Therefore, the highest represented frequency without error is 

kHz125 . Looking at Fig. 4.8, it does not appear evident that side-lobes of one replica of 

the spectrum avoid interfering with the side-lobes of another replica of the spectrum. The 

reasons for this will be given shortly. Since no aliasing is present in Fig. 4.8, the only two 

factors that degrade the spectra are quantization and the leftover artifact in taking the 

DFT. Since the sampling interval is small, the period of the spectrum is large and 

therefore the side-bands that interfere with other side-bands in successive periods of the 

spectrum are very low in power.  As a result, in the 100-sample signal the spectral 

leakage is very small, and all the undesirable spectral plots of EFQPSK in Fig. 4.8 are a 

result of quantization. Note that as the number of quantization bits increases, the roll-off 

rate decreases in a fashion comparable to the 50-sample cases from Fig. 4.6. In Fig. 

4.8, power in the distortions of each quantization case is much larger than the power in 

the spectral leakage. The  

 

Fig. 4.8. The effect quantization with a low-to-moderate amount of bits has on a 100-
sample EFQPSK signal. 
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100-sample, 6-bit quantization case is not much better than a 6 quantization bit, 20-

sample or 50-sample signal. This is because the ratio of the distortion power to the 

power in the spectral leakage is much higher in the 100-sample signal than for the 20-

sample and 50-sample signals. In other words, the distortion power has a more 

dominant effect on the 100-sample signal. 

 
Fig. 4.9 illustrates the effect quantization with a high number of bits has on the spectrum 

of a 100-sample EFQPSK signal. Comparing Figs. 4.8 and 4.9 we see that the 8 

quantization bit signal is about 20 dB lower in power than the 6-bit case. This is due to 

the SQNR of the 8-bit quantization process, which is almost 50 dB compared to the 37 

dB of the 6-bit quantization process. The 8-bit quantization, 100-sample spectrum of 

EFQPSK yields lower power than the analog FQPSK spectrum of Fig. 2.9. The 10-bit 

and 12-bit cases have SQNRs of 62 dB and 74 dB. In Fig. 4.8 we compared a 6 

quantization bit version of a 10-sample signal to a 14 quantization bit, 10-sample signal 

to show that quantization with greater than six bits is not advantageous when trying to 

reduce side-band power. In Fig. 4.9, the same concept is considered. A 12-bit quantized 

case of a 100-sample EFQPSK signal nearly matches that of its analog counterpart in 

the frequency range discussed previously. This is because the power in the distortion 

from quantization is  

 
Fig. 4.9. The effect quantization with a high number of bits has on a 100-sample 
EFQPSK signal. 
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approximately equal to the power in the spectral leakage. In other words, since the 

distortion power is so close to zero, the shape of the signal hardly changes and the 

spectral leakage is approximately zero. Therefore, if a system designer is limited by very 

stringent bandwidth requirements then it is not advantageous to use more or less than 

12 bits of quantization. However, if a system designer has slightly more relaxed 

bandwidth requirements, then the designer can afford to utilize 8 to 10 quantization bits 

in a 100 sample signal, both of which are clearly better in spectral efficiency that analog 

FQPSK. 

 
Fig. 4.10 emphasizes that with certain sampling intervals, it is not advantageous to use 

the maximum number of quantization bits. The plots of Fig. 4.10 show a 10-sample, 6 

quantization bit spectrum, a 20-sample, 6-bit spectrum, a 50-sample, 8 quantization bit 

spectrum, and a 100-sample, 12 quantization bit spectrum. Each signal converges to its 

best spectral state in the frequency range shown. If computational complexity is of 

concern and bandwidth is limited, then a designer may choose any of the signals in Fig. 

4.10 knowing that the spectral efficiency will increase negligibly if at all. 

 
Fig. 4.10. Optimized plot of digital EFQPSK with various sampling frequencies and 
quantization bits. 
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4.2 Out-of-Band Power for Digital EFQPSK 
 
The signals simulated in this section are QPSK, analog EFQPSK and digital EFQPSK 

with varying sized samples and quantization bits. Fig. 4.11 illustrates the effect 2-bit, 3-

bit, and a 4-bit quantization has on the out-of-band power of a 10-sample EFQPSK 

signal. As stated previously, the 10-sample signal is sampled at qN5 , where the highest 

represented frequency without error is kHz5.12 . Looking at 3.≈B , the equivalent 

frequency is kHz5.2 , and the 10-sample signal starts to deviate from analog EFQPSK. 

The reason the digital signal deviates from the analog signal at this point is because the 

artifact from taking the DFT is present at this point in frequency. The results of Fig. 4.11 

show an out-of-band power that is high for the 10-sample case compared to the analog 

case because of quantization, the leftover artifact of taking the DFT, and the aliasing of 

the kHz5.2 . Similar to what was stated in Section 4.1 of this study, the 2-bit quantization 

signal experiences a swelling effect in the side-band power due to the distortion of the 

leftover artifact of taking the DFT. Since the side-bands expand in power, the out-of-

band power is increased. Looking at the 3-bit and 4-bit quantization cases, the out-of-

band power plot for 3-bit quantization is much better than the 2-bit quantization plot 

because the side-bands in the PSD of the 3-bit quantization signal are lower in power 

than the 2-bit case.  This is due in large part to the 6 dB difference in SQNRs between 

the 2-bit and 3-bit cases. The 4-bit case is slightly better than the 3-bit case in both PSD 

and out-of-band power, as one would expect; but, since the SQNR of the 4-bit case does 

not dominate as much as a case with fewer quantization bits, the out-of-band power 

does not decay as much as going from 2-bits to 3-bits. This is because the SQNR of the 

4-bit case is large enough that it starts to approach the spectral leakage, as discussed 

previously. 

 
Fig. 4.12 shows the effect a moderate-to-high amount of quantization bits has on the 

out-of-band power of a 10-sample EFQPSK signal. Looking at the 5-bit quantization 

case, the out-of-band power is comparable to that of the 4-bit quantization case from  
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Fig. 4.11. The effect a low amount of quantization bits has on the out-of-band power of a 
10-sample EFQPSK signal. 

 
Fig. 4.12. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 10-sample EFQPSK signal. 
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Fig. 4.11. As stated above, this is because the SQNR of the 5-bit case is large enough 

that it no longer dominates the signal because the spectral leakage of the signal is 

almost reached. The 6-bit quantization case is slightly better than the 5-bit quantization 

case as one would expect since the SQNR of the 6-bit case is ~38 dB as opposed to the 

5-bit SQNR of ~32 dB. Note that the 6-bit quantization case converges to the 14-bit 

quantization case. The fact that the SQNR of the 14-bit quantization case is much larger 

than the SQNR of the 6-bit case is irrelevant because the spectral leakage has been 

reached with the 6-bit case so there is no advantage in utilizing more than 6 bits of 

quantization when trying to reduce out-of-band power. When utilizing more than 6 bits of 

quantization, the effects of distortion are no longer witnessed in the 10 sample EFQPSK 

signal, but instead, only the effects of the leftover artifact in taking the DFT and aliasing 

are observed. Since high power side-bands in the PSD are bunched together, the out-of-

band power is also high compared to analog EFQPSK. 

 
Fig. 4.13 illustrates the effect a low amount of quantization bits has on the out-of-band 

power of a 20-sample EFQPSK signal. Comparing Figs. 4.11 and 4.13, note the striking 

similarities in the 2-bit, 3-bit, and 4-bit quantization cases of the 10-sample and 20- 

sample signals. For all practical purposes, these sample signals are approximately the  

 
Fig. 4.13. The effect a low amount of quantization bits has on the out-of-band power in a 
20-sample EFQPSK signal. 
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same in terms of out-of-band power at these quantization levels. The only difference 

between the two signals is that the 20-sample signal deviates from analog EFQPSK at 

twice the bandwidth the 10- sample signal does for a 5 quantization bit case, as 

witnessed when comparing Fig. 4.13 with Fig. 4.12. Since the sampling interval for the 

20-sample signal is one-half as long as it is for the 10-sample signal, the period of the 

PSD for the 20-sample signal is twice the period for the 10-sample signal. This means 

the sidebands that a bunched together in the 20-sample signal are lower in power than 

the sidebands bunched together in the 10- sample signal. The lower side-band power 

does not contribute to the degradation of the 20-sample signal’s out-of-band power until 

the side-band power becomes greater than the side-band power of analog EFQPSK. 

Another reason for the degradation of out-of-band power in the 20-sample signal is 

aliasing. Quantization is the final reason for the degradation of the 20-sample signal in 

Fig. 4.13. The SQNRs of  these signals are equivalent to the SQNRs of the 10-sample 

signals.  

 

Fig. 4.14 shows the effect a moderate-to-high amount of quantization bits has on the 

out-of-band power of a 20-sample signal. 

 
Fig.  4.14. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 20-sample EFQPSK signal. 
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Note that the 6 quantization bit and 14 quantization bit cases are about the same 

because the 6-bit quantization case has converged to its best state. The spectral 

leakage has been reached for the 6-bit quantization case and aliasing plays a minor part 

compared to the spectral leakage in the degradation of the 20-sample out-of-band 

power. Looking at Fig. 4.12 and 4.14, we notice that the 10-sample and 20-sample 

signals have about the same out-of-band power for the 6-bit and 14-bit quantization 

cases at higher bandwidths. The only improvement the 20-sample signal offers over the 

10-sample signal in terms of PSD and out-of-band power is a lower amount of power at 

lower frequencies. However, because the sampling intervals of the 10-sample and 20-

sample signals are still relatively long, the two signals demonstrate many similarities in 

terms of PSD and out-of-band power. Therefore, with a 10-sample and 20-sample 

EFQPSK signal, it is not advantageous to use more than 6 bits of quantization when 

required to reduce out-of-band power. 

 

Fig. 4.15 shows the effect a low-to-moderate amount of quantization bits has on the out-

of-band power of a 50-sample EFQPSK signal. Note that this signal is nearly the same 

as the 10-sample and 20-sample signals for the 2-bit, 3-bit, and 4-bit quantization  

 
Fig. 4.15. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 50-sample EFQPSK signal. 
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cases from Figs. 4.11 and 4.13. The reason the 50-sample signal has high out-of-band 

power for these cases of quantization bits is because the power of the distortion is very 

large compared to the power in the spectral leakage. Looking at the 6-bit quantization 

case, we notice that the 50-sample signal is better than the 10-sample and 20-sample 

signals in terms of out-of-band power, and that the 50-sample signal deviates from 

analog EFQPSK at a higher bandwidth. This results because the sampling interval is 

much shorter, meaning the side-bands that bunch together are lower in power than the 

side-bands that bunch together in the 10-sample and 20-sample cases. Aliasing in the 

50-sample signal occurs at kHzf 5.62≥ , which is not represented in Fig. 4.15. With the 

50-sample case, aliasing is not present and the power in the spectral leakage is small 

enough that quantization plays the largest role in the degradation of the out-of-band 

power of the digital signal compared to the out-of-band power of the analog signal in Fig. 

4.15.  

 

Fig. 4.16 illustrates the effect a high amount of quantization bits has on the out-of-band 

power of a 50-sample EFQPSK signal. Notice that the 8-bit quantization signal has 

converged to the 14-bit quantization signal. In Fig. 4.16, the power in the spectral 

leakage is the most dominant factor contributing to the degradation of the out-of-band 

power of the digital signal as compared to the out-of-band power of the analog signal. 

The power in the distortion of the 8-bit quantization case is much larger than the power 

in the distortion of the 14-bit quantization case, but in both cases the power in the 

distortion is lower than the power in the spectral leakage. To conclude, for a 50-sample 

signal, the power in the distortion for a low amount of quantization bits plays a larger role 

than does the power in the spectral leakage. However, for a high amount of quantization 

bits, the power in the distortion plays an insignificant role compared to the power in the 

spectral leakage in the degradation of the out-of-band power of a 50-sample signal. 

From Fig. 4.16, there is no advantage in using more than 8 quantization bits when trying 

to reduce out-of-band power in a 50-sample EFQPSK signal. 
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Fig. 4.16. The effect a high amount of quantization bits has on the out-of-band power of 
a 50-sample EFQPSK signal. 

 
Fig. 4.17 illustrates the effect quantization with a low-to-moderate amount of bits has on 

the out-of-band power of a 100-sample EFQPSK signal. Looking at the 2-bit and 4-bit 

quantization, 100-sample signal in Fig. 4.17 and comparing it to all of the 10-sample 

signals of Figs. 4.11 and 4.12, the 100-sample signals are worse in terms of out-of-band 

power than the 10-sample signals. The distortion power from the 2-bit and 4-bit 

quantization dominates the signal in the 100 sample signals more than in the 10-sample 

signal because the power in the spectral leakage plays a more significant role compared 

to the distortion power from 2-bit and 4-bit quantization.  In the 100-sample signal the 

distortion is the more dominant factor in the degradation of the PSD and out-of-band 

power than the power in the spectral leakage. The sampling interval for the 100-sample 

signal is relatively short. Since this is small compared to the bit period, the frequency 

spacing of the replicated spectra of the 100-sample signals is large. Therefore, the 

leftover artifact in taking the DFT of the signal is much smaller because the side-lobes 

that do interfere with one another are very low in power. So, the 100-sample cases 

deviate from analog at much lower power than do 10-sample cases. The 6-bit 

quantization case shows a better improvement in out-of-band power over the 2-bit and 

4-bit cases because the SQNR for the 6-bit case is much larger than those of the 2-bit 

and 4-bit cases. 
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Fig. 4.17. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 100-sample EFQPSK signal. 

 
The frequencies at which aliasing occurs are greater than kHz125 . Therefore, aliasing is 

not a factor in the degradation of the digital signal compared to the analog signal in the 

frequency ranges specified. Therefore, at higher frequencies, the out-of-band power of 

the 100-sample EFQPSK signal is affected by both the distortion from quantization and 

the power in the spectral leakage. 

 

Fig. 4.18 shows the effect a high number of quantization bits have on the out-of-band 

power of a 100-sample EFQPSK signal. Looking at the 8-bit quantization case, the 

distortion of the signal is low enough that it becomes a good approximation to analog 

EFQPSK. At low frequencies, the 8-bit signal nearly matches the analog signal. At 

higher frequencies, especially at 0.3≥B , the out-of-band power is somewhat higher than 

analog EFQPSK. The distortion from quantization changes the shapes of the side-bands 

that are bunched together, and as stated previously, swells the spectral content of those  
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Fig. 4.18. The effect a high amount of quantization bits has on the out-of-band power of 
a 100-sample EFQPSK signal. 

 

artifacts. The 12-bit case starts to deviate from analog EFQPSK before adjacent side-

lobe interference occurs. This means that there is very little spectral leakage in the 100-

sample signal and that the SQNR of the 12-bit quantization process still plays a 

significant role in the out-of-band power. In other words, in order to witness only the 

effect that power in the spectral leakage has on the 100-sample signal, one would have 

to raise the SQNR of the quantization process to match that of the spectral leakage in 

the frequency ranges discussed previously. The signal that shows this effect is the 100- 

sample, 14-bit quantization EFQPSK signal. The 14-bit quantization has a distortion 

power that has reached the power in the spectral leakage and therefore the only reason 

the digital signal deviates from the analog signal is due to the spectral leakage. In the 

frequency range of Fig. 4.18, there is negligible degradation. Although Fig. 4.9 indicates 

it is not advantageous to use more than 12 quantization bits for a 100-sample EFQPSK 

signal when trying to reduce side-band power at lower frequencies, it is beneficial to use 
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14-bit quantization when trying to reduce out-of-band power at higher frequencies. In 

other words, if very stringent bandwidth requirements force the system designer to 

space channels closely and the system designer can only have negligible interference 

for a bandwidth of kHz25 , then the designer will want to use 14 quantization bits. 

Otherwise, if more interference is tolerable, the 12-bit quantization will do. 

 
Fig. 4.19 is a plot that shows varying sized sample signals with 6-bit, 6-bit, 8-bit, and 14-

bit quantization, respectively. The plot illustrates the concept that it is not advantageous 

to use more bits of quantization for these signals when trying to reduce out-of-band 

power. System designers can study Fig. 4.19 and quickly determine which signal best 

suits the needs of the system given certain bandwidth requirements and certain 

computational limits. For example, if a system designer has very limited computational 

resources and relaxed bandwidth requirements, then the 10-sample, 6-bit quantization 

case will probably suit the designer’s needs. On the other hand, if computational 

resources are ample and bandwidth requirements are strict, then the 100-sample, 14-bit 

quantization case will probably suffice. 

 

 

Fig. 4.19. Optimized out-of-band power of a 10, 20, 50, and 100-sample EFQPSK signal 
with 6-bit, 6-bit, 8-bit, and 14-bit quantization, respectively. 
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4.3 Maximum Envelope Fluctuation for Digital EFQPSK 
  
The results of this section show simulations of analog EFQPSK and digital EFQPSK for 

10, 20, 50, and 100 samples with varying quantization bits. There are two factors that 

contribute to the degradation of the envelope of digital EFQPSK compared to the 

envelope of analog EFQPSK: sampling and quantization. When the sampling interval is 

long, a large amount of data is lost and the sampled waveforms are jagged and 

discontinuous. When the last value of the present waveform )(tsi  is concatenated with 

the first value of the next waveform, )(1 tsi+ , the two values will not always equal one 

another, and shape discontinuity will exist at that point. Modulating the in-phase and 

quadrature phase channels, and adding the two together, create large fluctuations in the 

envelope. Quantization with a low amount of bits introduces both overload noise and 

granularity noise [15]. Overload noise is noise created when the value of the highest 

quantization interval is less than the value of the original signal [15]. Modulating this 

overloaded signal creates a distorted envelope in the transmitted signal. Granularity 

noise is noise introduced when the quantization spacing is too large [15]. Modulating this 

signal also creates a distorted envelope but does not affect the envelope as much as 

overload noise affects the envelope. 

 

Fig. 4.20 is a plot that shows the effect the number of quantization bits has on the 

envelope fluctuation of a 10-sample EFQPSK signal. Sampling the underlying 

waveforms at 10 samples-per-bit creates jagged and sharp discontinuities in the newly 

sampled waveforms because the sampling interval is relatively large. These 

discontinuities also contribute to the spectral splatter in the PSD of the 10-sample signal 

because the derivative of these discontinuities creates higher frequencies within the 

signal. These are not the only places where the 10-sample EFQPSK signal expresses 

higher envelope fluctuation. The parts of the waveforms that are interpolated to create 

deviations from their analog counterparts also create larger envelope fluctuations. 

Looking at Fig. 4.20, the 2-bit quantization case expresses an almost 4 dB amount of 

envelope fluctuation. This makes sense because there are only four levels of 

quantization and, the 10 sample, 2-bit quantization signal hardly resembles its analog 

counterpart. Thus, for the 10 sample, 2-bit quantization case, there are interpolated 

values of the original waveform that did not exist before; there are discontinuities at of  



69  

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Quantization Bits

M
ax

im
um

 E
nv

el
op

e 
Fl

uc
tu

at
io

n 
(d

B)

Analog EFQPSK
Digital EFQPSK with 10 Samples

 
Fig. 4.20. The effect the number of quantization bits has on the envelope fluctuation of a 
10-sample EFQPSK signal. 

 

concatenation points in the string of bits; and, there is distortion from quantization. 

Together, these three factors create the ~4 dB envelope fluctuation. Notice as the 

number of quantization bits increases, the maximum envelope fluctuation decreases. 

This is because as the number of quantization bits increases the distortion decreases by 

dB6  per bit of quantization. With a 3 or more bits of quantization, the signal starts to 

resemble its analog counterpart. When 8 or more bits of quantization are used the 

maximum amount of envelope fluctuation is practically stationary. Similar to what was 

stated previously, the distortion from quantization with 8 or more bits no longer plays a 

significant role in the envelope fluctuation of this signal. So, with 8 or more bits of 

quantization, the distortion for all practical purposes is negligible and the only two factors 

that contribute to envelope fluctuation are: the interpolated values between samples that 

do not exist in analog EFQPSK, and the discontinuities at concatenation points in the 

string of pulse-shaped bits. If a system designer 
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is required to design a transmitter that must communicate with a satellite, then it needs 

to be amplified with a nonlinear amplifier and this signal will not meet the specifications 

(this last clause isn’t clear within the context of the sentence). However, if the 

requirements do not advocate a need for long distance transmission, then the designer 

may want to use fewer quantization to save power or to decrease computational 

complexity. 

 

Fig. 4.21 illustrates the effect the number of quantization bits has on the envelope of a 

20-sample EFQPSK signal. The sampling interval of this signal is shorter than the 

sampling interval of the 10-sample signal and therefore fewer discontinuities exist when 

modulating the signal. However, when the waveforms are concatenated, the magnitudes 

of the discontinuities are larger than the magnitudes of the discontinuities for the 10- 

sample signal. When only 2-bit quantization is used, the quantization operation 

penalizes larger magnitudes more than it does smaller magnitudes. This is evident for 

the 2-bit quantization case of the 20-sample signal of Fig. 4.21 by comparing it to the 

same quantization case of Fig. 4.20. However, when more quantization bits are used in 

the 20-sample signal, the maximum envelope fluctuation falls below that of the 

fluctuation of the 10-sample signal. Once 8 or more bits of quantization is used for the 

20- sample signal, the maximum envelope fluctuation converges to about dB088.1 . The 
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Fig. 4.21. The effect the number of quantization bits has on the envelope fluctuation of a 
20-sample EFQPSK signal. 
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distortion from quantization with 8 or more bits plays an insignificant role and the only 

the long sampling interval and interpolation degrade the envelope of this case of 

EFQPSK. 

 

Fig. 4.22 shows the effect the number of quantization bits has on the envelope of a 50- 

sample EFQPSK signal. With 2-bit quantization, the 50-sample signal has almost the 

same magnitude of envelope fluctuation as the 20-sample case for the same reasons. 

Note that for the 50-sample, 3-bit quantization case, the magnitude of the maximum 

envelope fluctuation is larger than in the 10 and 20 sample, 3-bit quantization cases. The 

magnitude of the distortion for the 50-sample, 3-bit quantization case is larger than the 

sum of the magnitudes of the discontinuities from the sampling interval. Using 4 or more 

bits of quantization in the 50-sample case yields lower envelope fluctuation than either of 

the 10-sample or 20-sample cases for the same number of quantization bits. Once 8 or 

more bits of quantization is used in the 50-sample signal, the maximum envelope 

fluctuation converges to about dB44.0 . Since the sampling interval is relatively short, the 

sum of the magnitudes of the discontinuities is relatively small and therefore a small 

magnitude in envelope fluctuation is witnessed in Fig. 4.22.  

 

Fig. 4.23 illustrates the effect the number of quantization bits has on the envelope 

fluctuation of a 100-sample EFQPSK signal. Again, as in the 10-sample case, the 

maximum envelope fluctuation of the 2-bit quantization case is almost 4 dB. This can be 

expected for any EFQPSK signal that uses 2 bits of quantization and is samples sized 

100 or less. This is because the distortion from 2-bit quantization is extremely high. In 

other words, the shape of the signal is completely changed as compared to its analog 

counterpart. From Fig. 4.23, the maximum envelope fluctuation decreases considerably 

with each bit added to quantization. As the number of quantization bits increases the 

maximum envelope fluctuation converges to that of analog EFQPSK. For all practical 

purposes, a 10-bit quantization, 100-sample EFQPSK envelope is equivalent to an 

analog EFQPSK envelope. 
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Fig. 4.22. The effect the number of quantization bits has on the envelope fluctuation of a 
50-sample EFQPSK signal. 
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Fig. 4.23. The effect the number of quantization bits has on the envelope fluctuation of a 
100-sample EFQPSK signal. 
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The 100-sample EFQPSK signal does not need to be interpolated because the space 

between samples is small. When the previous waveform is concatenated with the 

present waveform, there are negligible discontinuities because the last sample of the 

previous waveform is approximately equivalent to the first sample of the present 

waveform. Therefore, the only dominant variable that contributes to the degradation of 

envelope fluctuation in a 100-sample EFQPSK signal is the distortion from quantization. 

 
Fig. 4.24 plots the maximum envelope fluctuations of 10, 20, 50, and 100 sample 

EFQPSK signals. A system designer can refer to Fig. 4.24 to quickly determine what 

signal best suits the designer’s needs. For example, if the systems designer is 

transmitting only over short distances, then the 10-sample signals may suffice. However, 

if the designer is restricted to deep space communications, then the designer may find 

the 100-sample signals with a high amount of quantization bits more beneficial. 
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Fig. 4.24. Optimized plot of the maximum envelope fluctuation of 10, 20, 50, and 100-
sample EFQPSK signals with varying quantization bits. 
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4.4 Bit-Error-Rate (BER) for Digital EFQPSK 
 
The BER results of this section are of OQPSK, analog EFQPSK, and digital EFQPSK 

with 3, 5, 10, 20, 50, and 100 samples with varying quantization bits. The reason the 3 

and 5 sample signals were simulated in this section and not in other sections is because 

for BER, the length of the digital signal does not have to equal the size of the analog 

signal when comparing BER plots. 

 

Fig. 4.25 illustrates the effect the number of quantization bits has on the BER of a 3- 

sample EFQPSK signal. The signal has been sampled at qS NF 5.1=  and the equivalent 

sampling interval is sT 410333.1 −×= . Since the Nyquist theorem is not met for this signal, 

much of the information in this signal is lost. Therefore we can expect the BER to be 

much worse than analog EFQPSK. Looking at Fig. 4.25 we see a 3-sample signal with 

2, 3, and 4 quantization bits. For analog EFQPSK, we note that at dB
N
Eb 3.10

0
≈  a 

resulting BER of 410−=eP is expected. Looking at the 2 quantization bit case, we see that 

for a BER of 410−=eP , an dB
N
Eb 05.11

0
≈  is required. The only one reason why the BER 

of this case is worse than the BER of analog EFQPSK is the low sampling frequency. 

Much of the information is lost in sampling the signal at qN5.1 and therefore much of bE  

is also lost. Looking at Fig. 4.25, the BER for the 3 sample, 2-bit quantization signal is 

deceiving because one might assume that by sampling only at qN5.1 , less than dB1  of  

bE  is lost. The 2 bits in the quantization process restore much of the energy lost in the 

sampling operation. While the 2-bit quantization operation has only four levels of 

precision, this is more than enough precision for a signal that has only one analog 

voltage value. However, for a sinusoid with an infinite number of voltages in the range 

VamplitudeV 11 ≤≤− , four levels of precision offer an inadequate representation of the 

signal. At certain instances in the quantization process, some of the positive analog 

voltages are mapped to a positive quantization level that is larger than the voltage being 

mapped, which adds to bE . At other instances, some of the negative analog voltages 

are mapped to a negative quantization level that is smaller than the  
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Fig. 4.25. The effect a low number of quantization bits has on the BER of a 3-sample 
EFQPSK signal. 

voltage being mapped, which subtracts from bE . By inspection of Fig. 3.2, more positive 

analog voltages are mapped to quantization levels that are larger than the voltage being 

mapped than negative analog voltages mapped to quantization levels that are smaller 

than the voltage being mapped. Therefore, on the average, more energy will be added to 

than subtracted from bE  when a low amount of quantization bits are used. The 

correlation coefficients of (3.6) behave the same way as bE  does when various 

sampling frequencies and quantization bits are used, and this has a significant effect on 

the BER. The average magnitude of the correlations of each waveform for digital 

EFQPSK is computed as 
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Assuming that SSC  has larger magnitude than bE , SSC  has a more significant effect on 

the BER than does bE . For the remainder of this study, the variables bE  and SSC  are 

combined to form the variable SSbCE  for the sake of simplicity. So, for the 3-sample 

signal with 2-bit quantization, the low sampling frequency subtracts more SSbCE  than the 

2-bit quantization adds to SSbCE . The same concept applies to the 3-bit and 4-bit 
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quantization cases. However, with 3-bit and 4-bit quantization, less energy is added to 

SSbCE  because there are 8 and 16 quantization levels, respectively. Note that the 4-bit 

quantization signal is about dB5.1  worse than the analog signal for 410−=eP . 

 

Fig. 4.26 shows the effect a moderate-to-high number of quantization bits have an 

EFQPSK signal with 3 samples-per-bit. The cases shown are for 5-bit, 6-bit, and 8-bit 

quantization. Note that the BER of all the digital cases are particularly close to one 

another. When 5 or more quantization bits are used, the BER deviation from analog 

EFQPSK is negligible and the BER converges to its worst state. This is because the 

energy gained in using 5 or more bits of quantization is very small compared to the 

energy lost in sampling with only 3 samples-per-bit. 

 

In conclusion, if a system designer requires a bandwidth and power efficient modulation 

scheme with good BER, then the designer will want to use the 2-bit quantization signal 

 

 

Fig. 4.26. The effect a moderate-to-high number of quantization bits have on the BER of 
a 3-sample EFQPSK signal. 
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over any of the other signals of Figs. 4.25 and 4.26 if BER is of utmost importance. 

However, if the same requirements exist for the designer but BER is of no concern, then 

the designer would want to use the 8-bit quantization signal because that signal has the 

best power and bandwidth efficient characteristics over all the digital signals presented 

in Figs. 4.25 and 4.26. 

 

Fig. 4.27 shows the effect a low number of quantization bits have on the BER of a 5- 

sample EFQPSK signal. BER for 2-bit, 3-bit, and 4-bit quantization is presented. The 

signal has qS NF 5.2=  and sT 5108 −×= . Although Nyquist’s theorem is met for this 

signal, SF  is too low a frequency to represent the various sinusoids of this signal. For 

example, if a sinusoid is sampled at qS NF 2= , the samples taken may be at zero 

crossings or at the peaks of the magnitudes of the sinusoids, depending on the phase of 

the sinusoid. If the sinusoid is sampled at qS NF 4= , then the worst case scenario would 

be that the samples taken are from the magnitudes of the peaks and the zero crossings 

of the sinusoid, both of which contain the bulk of the information. Therefore, it is desired 

in practice to sample at a minimum of qS NF 4= . Clearly the 5-sample signal exhibits a 

considerable loss of information, which is the reason BER is worse than the BER for the 

analog case. Note that the BER for all of the quantization cases are vary close to one 

another. The energy lost in SSbCE  when increasing the quantization bits from 2-4 is a 

minute Hz
W0671.0 . The small loss in energy is due to the the loss of data in sampling at 

5 samples-per-bit is large enough that the loss of energy in adding quantization bits is 

negligible.  Note that the digital BER is dB70.0~  worse than BER for analog EFQPSK. 

Therefore, if using a 5-sample signal with low quantization bits, the amount of 

information lost in the transmitter is equivalent to the amount of power saved in the 

transmitter, and vice versa for the receiver. 
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Fig. 4.27. The effect a low number of quantization bits has on the BER of a 5-sample 
EFQPSK signal. 

 
Fig. 4.28 shows the BER of a 5-sample EFQPSK signal with a 5-bit and 6-bit 

quantization case. Both plots show that for 4101 −×=eP , the 5-bit and 6-bit quantization 

cases are  dB80.0~  worse than analog EFQPSK. Practically speaking, for the 6-bit 

quantization case, the BER has converged to its worst possible state. As with the 2-bit, 

3-bit, and 4-bit quantization cases, the loss of information with the large sampling 

interval is more dominant than the loss of energy in using more quantization bits for the 

5-bit and 6-bit cases. The constant SSbCE  is approximately the same for the 5-bit and 6-

bit cases. Therefore, the BER of the 5-bit and 6-bit cases is approximately the same. 
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Fig. 4.28. The effect a moderate number of quantization bits has on the BER of a 5-
sample EFQPSK signal. 

 

Fig. 4.29 shows the effect a moderate number of quantization bits has on the BER of a 

10-sample EFQPSK signal. The digital BER shown is for a 2-bit and 6-bit quantization 

case. Note that the BER of the 2-bit signal is dB20.0~  better than the BER for analog 

EFQPSK. This is because the 4-level quantization process adds energy to SSbCE  for the 

same reasons stated at the beginning of the chapter. Hence, SSbCE  is higher for the 2-

bit quantization case than SSbCE  for the analog case. Sampling the signal at 10 

samples-per-bit generally decreases SSbCE , but for a 2-bit quantization case the 

distortion from quantization adds more to SSbCE  than the loss from sampling with 10- 

samples subtracts from SSbCE . That is, the distortion of the 2-bit quantization case is 

high enough that it dominates more than the loss of information in the sampling process. 

Notice that the 6-bit quantization case exhibits a worse BER than does its analog 

counterpart. This is because SSbCE  of the 10-sample EFQPSK signal is lower than its 

analog counterpart. The 6-bit quantization has 64 levels of quantization, which means 

that the analog waveforms voltages can be relatively accurately mapped to these 64 

levels without any sudden gains in SSbCE  from large quantization spacing. The distortion 
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Fig. 4.29. The effect a low-to-moderate number of quantization bits has on the BER of a 
10-sample EFQPSK signal. 

 

of the 6-bit quantization is low enough that it does not dominate SSbCE  as much as the 

sampling operation does.   

 
Fig. 4.30 shows the effect a large number of quantization bits have on the BER of a 10- 

sample EFQPSK signal. Looking at Figs. 4.29 and 4.30, the BER for the 6-bit and 8-bit 

quantization cases are nearly identical since the energy added to SSbCE  is negligible 

compared to the energy lost in the sampling operation. The difference in BER between 

the 6-bit and 8-bit quantization cases for 4101 −×=eP  is dB03.0~ . Therefore, BER for the 

8-bit quantization case has converged to the worst case BER for a 10-sample EFQPSK 

signal. Note that the BER of the 8-bit quantization case is dB345.0~  worse than the BER 

of the analog case and dB67.3~  worse than the BER of conventional QPSK at 

4101 −×=eP . This is a small price to pay given that the spectral efficiency from Fig. 4.3 for 

the 10-sample signal is dB30~  better than that of QPSK. 
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Fig. 4.30. The effect a high number of quantization bits has on the BER of a 10-sample 
EFQPSK signal. 

 
Fig. 4.31 illustrates the effect a low number of quantization bits have on the BER of a 20-

sample signal. The cases presented are for 2-bit, 3-bit, and 4-bit quantization. Note that 

the BER of the 2-bit quantization case, 3-bit quantization case, and 4-bit quantization 

case are dB35.0~  , dB24.0~ , and dB05.0~  worse than the BER of analog EFQPSK, 

respectively. For all of these digital cases, more energy is added to SSbCE  in the 

quantization process than is subtracted from SSbCE  in the sampling process. 

 
Fig. 4.32 shows BER for a 20-sample signal with 5-bit and 6-bit quantization. Note that 

the 5-bit quantization case has approximately the same BER as that of the analog case. 

For this case, the energy added to SSbCE  in the quantization process is about the same 

as the energy lost in the sampling procedure. For the 6-bit quantization case, the BER is 

dB12.0~  worse than that of analog EFQPSK. Slightly more energy is lost in the 

sampling operation than is gained in the quantization operation. For this case, the BER 

has converged to the worst-case BER for a 20-sample EFQPSK signal. Therefore, a 

system designer may use more than six bits of quantization to improve maximum 

envelope fluctuation with virtually no penalty in BER. 
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Fig. 4.31. The effect a low number of quantization bits has on the BER of a 20-sample 
EFQPSK signal. 

 
Fig. 4.32. The effect a moderate-to-high number of quantization bits have on the BER of 
a 20-sample EFQPSK signal. 
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Fig. 4.33 illustrates the effect a low number of quantization bits have on the BER of a 50- 

sample EFQPSK signal. The digital cases shown are for 2-bit, 3-bit, and 4-bit 

quantization. In the 2-bit, 3-bit, and 4-bit cases, the BER is dB60.0~ , dB375.0~ , and 

dB15.0~  better than analog EFQPSK for 4101 −×=eP , respectively. As in cases with 

lower sampling frequencies, more energy is added to SSbCE  with the 2-bit, 3-bit, and 4-

bit quantization process than is subtracted from SSbCE  in the sampling process. For the 

50-sample signal, very little information is lost in the sampling process and therefore the 

quantization process has the most significant impact on BER. It is important to point out 

that %99~  of the signal energy is contained within the null-to-null bandwidth of digital 

EFQPSK. By inspection of Figs. 4.6 and 4.7, we can see that vary little of that energy is 

lost in the null-to-null bandwidth of the 50-sample EFQPSK signal. The energy that is 

lost is contained outside of that bandwidth, which is the same energy that is lost in the 

BER of Fig. 4.32. Although in Fig. 4.33 it is not evident that any energy is lost in the 

sampling process, we will show that in fact an insignificant amount of energy is lost in 

the sampling process in terms of BER. 

 

 
Fig. 4.33. The effect a low number of quantization bits has on the BER of a 50-sample 
EFQPSK signal. 
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Fig. 4.34 shows the effect a moderate number of quantization bits have on the BER of a 

50-sample EFQPSK signal. The cases shown are for 5-bit and 6-bit quantization. Note 

that the BER of the 5-bit quantization case is slightly better than the BER of the analog 

case and that the BER of the 6-bit case is slightly worse than the BER of the analog 

case. For the 5-bit quantization case, a little more energy is added to SSbCE  in the 

quantization process than is subtracted from SSbCE  in the sampling operation. In the 6-

bit quantization case, the reverse is true. The BER of the 6-bit quantization case has 

converged to the worst case BER for a 50-sample EFQPSK signal.  

 

Fig. 4.35 illustrates the effect a low-to-moderate number of quantization bits have on the 

BER of a 100-sample signal. The cases presented are for 2-bit, 3-bit, and 6-bit 

quantization. The BER of the 2-bit and 3-bit cases are dB60.0~  and dB35.0~  better 

than the BER of analog EFQPSK. As with the 50-sample case, the energy added to  

 

 
Fig. 4.34. The effect a moderate number of quantization bits has on the BER of a 50-
sample EFQPSK signal. 
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Fig. 4.35. The effect a low-to-moderate number of quantization bits has on the BER of a 
100-sample EFQPSK signal. 

 
SSbCE  in the quantization process is greater than the energy subtracted from SSbCE  in 

the sampling process. As a matter of fact, virtually no energy is lost in the sampling 

process because the signal is sampled with sampling frequency qS NF 50= , which 

greatly exceeds the required qS NF 4=  for accurate recovery of a signal. Since the 100- 

sample signal is over-sampled, the quantization process has the most dominant effect 

on the BER of the signal. Note that the BER of the 6-bit quantization case is 

approximately the same as the BER of the analog case. The BER for this case has 

converged to the worst case BER for a 100-sample EFQPSK signal. This further 

supports the fact that hardly any energy is lost in sampling the signal with qS NF 50= . 

 

Figs. 4.36 and 4.37 are best-case and worst-case BER curves for digital EFQPSK 

signals with various sampling frequencies. Both plots show BER for 3, 5, 10, 20, 50, and 

100 sample EFQPSK signals. All cases for Fig. 4.36 are for 2-bit quantization and all 

cases for Fig. 4.37 are for 6-bit quantization, except for the 3 sample signal which has 8-

bit quantization. A system designer can study these figures to quickly decide which 

signal best meets the designer’s needs in terms of BER. For PSD, out-of-band power, 

and envelope fluctuation, the best-case scenarios often translate to the worst-case 

scenarios for BER in digital EFQPSK. 
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Fig. 4.36. Best case BER for signals with various sampling frequencies. 

 
Fig. 4.37. Worst case BER for signals with various sampling frequencies. 
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Tables 4.1 and 4.2 shows bE  and SSC  versus various sampling frequencies and 

quantization bits of digital EFQPSK compared to analog EFQPSK. The purposes of the 

tables are to show the effect bE  and SSC  have on the BER of the figures presented in 

Section 4.4 of this study. The value of bE  for analog EFQPSK is Hz
WEb 4973.0= . The 

value of SSC  for analog EFQPSK is 8792.0=SSC . Keep in mind that these are statistically 

averaged values of these parameters. A system designer can quickly look at the values 

for bE  and SSC  and make a conclusion as to the approximate outcome of BER for any 

case not shown in the figures of Section 4.4. As technology permits, we can greatly 

increase the sampling frequency and decrease the number of quantization bits to study 

the values of bE  and SSC  and compare them to Tables 4.1 and 4.2 to see if a tradeoff 

can be made between high sampling frequency and low quantization bits. 

 

 

Table 4.1. Various sampling frequencies and quantization bits versus bE . 

 
Number of 

quantization 
bits 

3-
sample

5-
sample

10-
sample

20-
sample

50-
sample 

100-
sample

2 0.4583 0.5125 0.5824 0.5893 0.6029 0.6083 

3 0.4505 0.4844 0.5385 0.5513 0.5610 0.5634 

4 0.4485 0.4832 0.5140 0.5304 0.5347 0.5386 

5 0.4251 0.4599 0.4897 0.5027 0.5098 0.5127 

6 0.4250 0.4572 0.4855 0.4979 0.5029 0.5062 

8 0.4194 0.4509 0.4782 0.4889 0.4957 0.4980 

10 0.4173 0.4486 0.4755 0.4863 0.4932 0.4956 

12 0.4168 0.4480 0.4750 0.4857 0.4926 0.4950 

14 0.4167 0.4479 0.4749 0.4856 0.4925 0.4949 
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Table 4.2. Various sampling frequencies and quantization bits versus SSC . 

 
Number of 

quantization 
bits 

3-
sample 

5-
sample 

10-
sample 

20-
sample 

50-
sample 

100-
sample 

2 0.5801 0.8384 1.0569 1.1496 1.2254 1.2442 

3 0.5647 0.7875 0.9595 1.0145 1.0695 1.0815 

4 0.5572 0.7503 0.8846 0.9535 0.9817 0.9957 

5 0.4967 0.6777 0.8132 0.8731 0.9095 0.9212 

6 0.4950 0.6650 0.8028 0.8566 0.8872 0.8995 

8 0.4804 0.6485 0.7818 0.8329 0.8647 0.8758 

10 0.4752 0.6424 0.7746 0.8257 0.8582 0.8694 

12 0.4739 0.6407 0.7732 0.8241 0.8566 0.8678 

14 0.4752 0.6404 0.7729 0.8238 0.8563 0.8675 

 
4.5 PSD for Digital EFQPSK with Soft Limiting 
 
The fundamental transmitter architecture for EFQPSK is OQPSK. When OQPSK 

undergoes band limiting, the envelope fluctuates slightly from constant envelope [4]. 

However, since o90  is the maximum discrete phase transition, the envelope does not go 

to zero and therefore when the signal is hard-limited, the phase is preserved [4]. Since 

the phase is preserved, no high frequency content will be generated in the spectrum, 

rendering the spectrum of hard-limited OQPSK virtually the same as the spectrum of 

OQPSK without amplification [4].  

 

Since the envelope of analog EFQPSK does not go to zero and there are no discrete 

phase transitions in the envelope, we should expect that the spectrum of amplified 

analog EFQPSK to be about the same as that of the spectrum of analog EFQPSK 

without amplification. Fig. 4.38 illustrates this effect and also illustrates the effect a 

nonlinear amplifier has on the spectrum of a 10-sample EFQPSK signal with various 

quantization bits. The cases presented are for 2-bit, 3-bit, 4-bit, and 5-bit quantization. 

Comparing Figs. 4.2 with 4.38, we see that there is virtually no spectral re-growth in the 

spectrum of amplified analog EFQPSK. Comparing the two figures for the 10-sample, 2- 
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Fig. 4.38. The effect a low-to-moderate number of quantization bits have on the 
spectrum of a 10-sample EFQPSK signal with amplification. 

 
bit quantization case we see some spectral re-growth at 5.2~≥

bR
f  in the amplified 

case. This re-growth is introduced only by the limiting of the non-constant envelope of 

this particular signal. Comparing Fig. 4.2 and 4.38, the same degradation exists between 

signals with 3-bit, 4-bit, and 5-bit quantization with and without amplification. The 

maximum envelope fluctuation of the 10-sample signals with 2-bit, 3-bit, 4-bit, and 5-bit 

quantization ranges from dB75.3~  to dB2~ , respectively. Since this large amount of 

fluctuation is filtered through the limiting process, the resulting AM/AM conversion and 

AM/PM conversion introduces spectral re-growth in all of the cases of digital EFQPSK 

presented in Fig. 4.38 at 5.2~≥
bR

f . 

 

Fig. 4.39 illustrates the effect amplification has on the spectrum of a 10-sample EFQPSK 

signal with quantization bits of 6 and 14. Comparing Fig. 4.3 and 4.39, we see that there 

is some spectral re-growth in both the 6-bit and 14-bit quantization cases at higher 
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Fig. 4.39. The effect a moderate-to-high number of quantization bits have on the 
spectrum of a 10-sample EFQPSK signal with amplification. 

 

frequencies. However, there is very little re-growth because the maximum envelope 

fluctuation ranges from dB75.1~  to dB6.1~  when increasing quantization bits from 6 to 

14. However, the spectral re-growth has increased the power in the side-lobes of the 6-

bit and 14-bit quantization cases by dB0.1~  at 0.5=
bR

f . Similar to the conclusion 

drawn from Fig. 4.3, the spectrum of the 6-bit quantization case of the 10-sample signal 

has converged to the best spectral state of a 10-sample EFQPSK signal. 

 

Fig. 4.40 illustrates the effect amplification has on a 20-sample EFQPSK signal with 

quantization bits of 2, 3, 4, and 5. Note that for all of the digital cases, some spectral re-

growth is witnessed compared to the results of Fig. 4.4. Overall, at higher frequencies, 

the side-band power is only slightly higher for the amplified cases compared to the cases 

without amplification. The maximum envelope fluctuation in the cases presented in Fig. 

4.40 ranges from dB75.4~  to dB40.1~  when increasing the quantization bits from 2 to 

5. As with the 10-sample cases, the resulting AM/AM conversion and AM/PM conversion 

in the 20-sample cases creates the spectral re-growth witnessed in Fig. 4.40. 
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Fig. 4.40. The effect a low-to-moderate number of quantization bits have on the 
spectrum of a 20-sample EFQPSK signal with amplification. 

 
Fig. 4.41 shows spectral plots of amplified 20-sample EFQPSK signals with quantization 

bits of 6 and 14. The maximum envelope fluctuations in these two cases are dB2.1~  

and dB1.1~ , respectively. Although these amounts of envelope fluctuation are not 

comparatively large, it is great enough that the resulting AM/AM conversion and AM/PM 

conversion in the limiting process creates some spectral re-growth. Note that for both the 

6-bit and 14-bit quantization cases, there is a significant amount of re-growth in the 

frequency range 50.2~75.0~ ≤≤
bR

f . However, at frequencies greater than this, the re-

growth is minor. For the 20-sample EFQPSK signal with 6-bit quantization, the spectrum 

has converged to the best spectral state with amplification.   
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Fig. 4.41. The effect a moderate-to-high number of quantization bits have on the 
spectrum of a 20-sample EFQPSK signal with amplification. 

 

Fig. 4.42 illustrates the effect amplification has on the spectrum of a 50-sample EFQPSK 

signal with 2-bit, 3-bit, 4-bit, and 5-bit quantization. The maximum envelope fluctuation of 

these signals ranges from dB75.4~  to dB75.0~ , respectively. Note that for these signals, 

the spectral re-growth is about the same as the re-growth for the 10-sample and 20- 

sample signals. 

 

Fig. 4.43 shows an amplified 50-sample EFQPSK signal with 6-bit, 8-bit, and 14-bit 

quantization. The maximum envelope fluctuations of these signals are dB6.0~ , 

dB50.0~ , and dB45.0~ , respectively. The spectra of these signals are considerably 

better than the spectra of the 10-sample and 20-sample EFQPSK signals with the same 

number of quantization bits, even with amplification. Note that from Figs. 4.7 and 4.423, 

the convergence of the best spectral state of a 50 sample EFQPSK signal occurs with 8-

bit quantization. 
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Fig. 4.42. The effect a low-to-moderate number of quantization bits have on the 
spectrum of a 50-sample EFQPSK signal with amplification. 

 
Fig. 4.43. The effect a moderate-to-high number of quantization bits have on the 
spectrum of a 50-sample EFQPSK signal with amplification. 
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Fig. 4.44 illustrates the effect amplification has on the spectrum of a 100-sample 

EFQPSK signal with 2-bit, 3-bit, 4-bit, and 5-bit quantization. Comparing Fig. 4.8 and 

4.44 we see some spectral re-growth between the amplified signals and the signals 

without amplification. The maximum envelope fluctuation ranges from dB0.4~  to 

dB75.0~ , respectively. Note that for a low number of quantization bits in a 100-sample 

EFQPSK signal with amplification, the spectral re-growth is of minor significance 

compared to the quantization operation in the degradation of the spectrum. The 

quantization operation for a low number of bits has drowned out most of the effects 

AM/AM conversion has on a 100-sample EFQPSK signal with amplification. 

 

Fig. 4.45 illustrates the effect amplification has on the spectrum of a 100-sample 

EFQPSK signal with 6-bit, 8-bit, 10-bit, and 12-bit quantization. Note there is some 

spectral re-growth in the 6-bit quantization case and somewhat more spectral re-growth 

in the 8-bit quantization case. However, since the maximum side-band power in these 

cases is below dB60 , this re-growth has little effect on the degradation of the spectra. 

The maximum envelope fluctuation of all the digital cases presented in Fig. 4.45 ranges 

from dB5.0~  to dB28.0~ , where dB28.0~  is the maximum envelope  

 
Fig. 4.44. The effect a low-to-moderate number of quantization bits have on the 
spectrum of a 100-sample EFQPSK signal with amplification. 
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Fig. 4.45. The effect a moderate-to-high number of quantization bits have on the 
spectrum of a 100-sample EFQPSK signal with amplification. 

 
fluctuation of analog EFQPSK. Once 10-bit quantization is used in the 100-sample 

EFQPSK signal, the envelope has reached the best state of the envelope of EFQPSK. 

That is why when comparing Figs. 4.9 with 4.45, there is no evidence that spectral re-

growth occurs in the 100-sample, 10-bit and 12-bit quantization cases. 

 

In conclusion, due to no discrete phase transitions in the envelope of EFQPSK, high 

frequency components are not generated when limiting the envelope. However, with 

many versions of digital EFQPSK, the resultant envelope fluctuation creates a large 

amount of AM/AM and AM/PM conversion in the limiting process. The digital cases 

where this phenomenon is most prevalent are when fewer number of quantization bits is 

used. When the maximum envelope fluctuation of digital EFQPSK is much greater than 

that of analog EFQPSK and both are soft-limited, the resulting spectral re-growth 

coupled with the quantization operation of the digital case significantly distorts the 

spectrum. When the envelope fluctuation of digital EFQPSK is very close to that of 

analog EFQPSK, spectral re-growth is not evident. 
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Fig. 4.46 is an optimized plot showing the effects soft-limiting has on the spectrum of 

digital EFQPSK with varying sampling frequency and quantization bits. The cases shown 

are for 10, 20, 50, and 100 samples with quantization bits of 6, 6, 8, and 12, respectively. 

By looking at Fig. 4.46, we can see that the spectrum of digital EFQPSK becomes less 

affected by non-linear amplification with increasing sampling frequency and increasing 

quantization bits. The spectrum becomes less affected by non-linear amplification with 

decreasing envelope fluctuation. Fig. 4.46 allows a system designer to make a quick 

conclusion as to which signal best suits the designer’s needs. 

 

4.6 Out-of-Band Power of Digital EFQPSK with Soft Limiting 
 

The results of this section compare the out-of-band power of digital EFQPSK to the out-

of-band power of QPSK and analog EFQPSK. Since the spectrum of analog EFQPSK is 

virtually unaffected by amplification, the out-of-band power is likewise virtually unaffected 

by amplification. The results of this section present digital EFQPSK signals with 

sampling frequencies of 10, 20, 50, and 100 samples-per-bit, each of which vary in the 

number of quantization bits. 

 
Fig. 4.46. Optimized plot showing the effects amplification has on the spectrum of digital 
EFQPSK with various sampling frequencies and quantization bits. 
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Fig. 4.47 illustrates the effect amplification has on the out-of-band power of a 10-sample 

EFQPSK signal with quantization bits of 2, 3, 4, and 5. Note that for the 2-bit, 3-bit, 4-bit, 

and 5-bit quantization cases, the out-of-band power is approximately the same for the 

amplified cases as it is for the cases without amplification. This is because the spectrum 

of these cases exhibits very little spectral re-growth with amplification. The spectral re-

growth contributes a minimal amount of power to the total out-of-band power of the 

cases presented in Fig. 4.47. 

 

Fig. 4.48 demonstrates the effect amplification has on the out-of-band power of a 10 

sample EFQPSK signal with quantization bits of 6 and 14. Note that for both cases the 

out-of-band power is dB4~  worse for the amplified cases at higher bandwidths. This is 

because the total power of the spectral re-growth is higher than the power of the 

distortion from the quantization operation. In other words, for the low-to-moderate 

quantization bit cases, the distortion power is the most dominant factor in the 

degradation of the spectrum of the 10 sample signal. For 6-bit to 14-bit quantization, the 

total power of the spectral re-growth is more significant than the distortion power from  

 

 
Fig. 4.47. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 10-sample EFQPSK signal with amplification. 
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Fig. 4.48. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 10-sample EFQPSK signal with amplification. 

 
the quantization operation. For example, in the 2-bit quantization case the total power of 

the spectral re-growth is a small fraction of the distortion power from the quantization 

operation, which is why an increase in out-of-band power is not witnessed in Fig. 4.47. 

However, for the 6-bit quantization case the total power of the spectral re-growth is 

larger than the distortion power from the quantization operation, resulting in out-of-band 

power slightly higher for the case with amplification. 

 

Fig. 4.49 depicts the effect amplification has on the out-of-band power of a 20-sample 

EFQPSK signal with quantization bits of 2, 3, 4, and 5. For each of these cases the out-

of-band power is approximately the same for cases with amplification as cases without 

amplification. As with the cases for the 10-sample signal, the 20-sample signal with 2, 3, 

4, and 5-bit quantization has approximately the same spectrum with amplification as the 

spectrum without amplification. 
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Fig. 4.49. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 20-sample EFQPSK signal with amplification. 

 
Fig. 4.50 shows the effect amplification has on the out-of-band power of a 20-sample 

EFQPSK signal with quantization bits of 6 and 14. Since the spectrum of each of these 

two cases exhibit a slight increase in side-band power compared to their counterparts 

without amplification, the total out-of-band power of each of these cases is slightly 

higher. As with the 10-sample cases, the total power of the spectral re-growth is larger 

than the power from the distortion in the quantization process, which is why the 

spectrum and out-of-band power is slightly larger for the 20-sample, 6-bit and 14-bit 

quantization cases with amplification than the cases without amplification. 
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Fig. 4.50. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 20-sample EFQPSK signal with amplification. 

 
Fig. 4.51 depicts the effect amplification has on the out-of-band power of a 50 sample 

EFQPSK signal with quantization bits of 2, 3, 4, and 5. Note that the total out-of-band 

power of each of the cases is about the same with amplification than without 

amplification. The total power of the spectral re-growth is a fraction of the power of the 

distortion, which is why the out-of-band power exhibits a negligible change compared to 

the cases without amplification. 

 

Fig. 4.52 shows the effect amplification has on the out-of-band power of a 50-sample 

EFQPSK signal with quantization bits of 6 and 14. Comparing Figs. 4.16 and 4.52, we 

notice that the out-of-band power of each of these cases is about the same for the cases 

with and without amplification. This is due to negligible AM/AM and AM/PM conversion 

from the limiting process, which translates to approximately the same spectra for these 

two particular cases. As discussed in the previous section, for a 50-sample EFQPSK 

signal with quantization bits ranging from 6-14, when the signal is limited the resulting 

total power of the spectral re-growth is about the same as the power in the distortion 

from the quantization process.  This is why the spectra and out-of-band power of the 

cases with amplification are about the same as the spectra and out-of-band power 

without amplification.  
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Fig. 4.51. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 50-sample EFQPSK signal with amplification. 

 
Fig. 4.52. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 50-sample EFQPSK signal with amplification. 
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Fig. 4.53 illustrates the effect amplification has on the out-of-band power of a 100 

sample EFQPSK signal with quantization bits of 2, 3, 4, 5, and 6. Note that the out-of-

band power appears to decrease at a uniform rate with each increasing quantization bit. 

The total out-of-band power of each of these cases is slightly worse with amplification 

than without amplification. This is expected because the spectra of each of these cases 

are slightly worse with amplification than without amplification. 

 

Fig. 4.54 shows the effect amplification has on the out-of-band power of a 100-sample 

EFQPSK signal with quantization bits of 8, 10, 12, and 14. Comparing Figs. 4.18 with 

4.54, we notice that with 8-bit quantization, the total out-of-band power is slightly better 

with amplification than without amplification. However, considering the statistical average 

of the spectra of these two cases, they are about the same. For the cases of 10, 12, and 

14-bit quantization, the total out-of-band power is about the same for each case with 

amplification as without amplification. This is because the envelope fluctuation of each of 

these three cases has approached that of analog EFQPSK. 

 
Fig. 4.53. The effect a low-to-moderate amount of quantization bits has on the out-of-
band power of a 100-sample EFQPSK signal with amplification. 
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Fig. 4.54. The effect a moderate-to-high amount of quantization bits has on the out-of-
band power of a 100-sample EFQPSK signal with amplification. 

 

Fig. 4.55 shows an optimized plot of the out-of-band power of amplified cases of 10, 20, 

50, and 100 sample EFQPSK signals with 6, 6, 8, and 14-bit quantization. Note that the 

total out-of-band power of the 10, 20, and 50 sample cases are very close to one 

another. Comparing Fig. 4.55 to Fig. 4.19, we notice that the 10-sample and 20-sample 

cases are slightly worse with amplification than without amplification. However, for the 

50-sample case the out-of-band power is about the same with and without amplification. 

For the 100-sample case, the out-of-band power is the same for both cases because the 

maximum envelope fluctuation is approximately the same as that of analog EFQPSK. A 

system designer can take a quick look at this plot and easily determine that it is best to 

use a 100-sample EFQPSK signal if required to transmit over long distances. 
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Fig. 4.55. Optimized out-of-band power plot of amplified 10, 20, 50, and 100-sample 
EFQPSK signals with 6, 6, 8, and 14-bit quantization, respectively. 

 
 

4.7 Summary 
 
In this chapter we have studied the effects sampling frequency and quantization has on 

four aspects of value in EFQPSK: PSD, out-of-band power, maximum envelope 

fluctuation, and BER. By varying the sampling frequency and the number of quantization 

bits we have both degraded and enhanced these four aspects of EFQPSK. Utilizing a 

poorly digitized signal we have shown that BER is the only aspect in EFQPSK that can 

experience an enhancement compared to its analog counterpart. Next we studied the 

effects soft-limiting a digital EFQPSK signal has on the spectral efficiency of EFQPSK. 

Overall, this chapter allows a system designer to quickly decide which digital signal is 

sufficient to fulfill the designer’s requirements. The next chapter will conclude this work 

and present possible future research utilizing the system of this study.  
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Chapter 5: CONCLUSIONS 
 
5.1 Conclusions of Results 
 
In our study we characterized the merit of analog EFQPSK in terms of spectral 

efficiency, envelope fluctuation, and BER. For spectral efficiency, we have shown that 

analog EFQPSK is an especially spectral efficient modulation scheme and that EFQPSK 

can be digitized in such a way that the spectral efficiency of the digital signal is 

approximately the same as that of the analog signal, given a certain bandwidth. Through 

simulation we have shown that superior spectral efficiency over conventional QPSK can 

be achieved utilizing a poorly digitized EFQPSK signal. Finally, we have shown that a 

range of digitized EFQPSK signals gives a variety of results, each of which showing an 

improvement over conventional QPSK in terms of spectral efficiency. 

 

Envelope fluctuation for analog EFQPSK was shown to be minimal. Through simulation, 

this study indicates that digital EFQPSK can approach minimum envelope fluctuation 

with a feasible sampling frequency and viable number of quantization bits. We have 

demonstrated that as the sampling frequency and number of quantization bits become 

smaller, the maximum envelope fluctuation becomes larger. However, because this is a 

continuous phase modulation scheme no discrete phase transitions are possible in the 

envelope in which case, no new high frequency components will be generated when soft 

limiting the signal. We have also shown that as the sampling frequency and number of 

quantization bits increase, the maximum envelope fluctuation decreases; and, when the 

maximum envelope fluctuation is small very little spectral re-growth will take place if the 

signal is soft-limited. 

 

The BER of analog EFQPSK was revealed to be worse than conventional QPSK. We 

have demonstrated that an EFQPSK signal with a high sampling frequency and high 

number of quantization bits will exhibit approximately the same BER as analog 

EFQPSK. In this study we have also shown that as the sampling frequency decreases, 

the BER of digital EFQPSK increases; whereas when the number of quantization bits 

decreases the BER of digital EFQPSK decreases. 
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5.2 Future Research 
 

Additional work can be done studying the effects digitization has on EFQPSK: 

1. BER of digital EFQPSK after soft-limiting can be studied. 

2. We used an average matched filter receiver of EFQPSK in this study. Further 

study of various eP  with a range of digital cases utilizing a Viterbi receiver 

would expand upon this work. 

3. It would also be interesting to investigate the effects digital EFQPSK has in a 

multi-user environment. 

4. In this study we assumed an AWGN channel for the BER . However, it would 

be useful to study the BER of digital EFQPSK over a Rayleigh fading channel 

5. Lastly, we never studied the tradeoff between over-sampling and a low 

number of quantization bits. As technology advances, it would be interesting 

to study the effects from increasing the sampling frequency by a couple 

orders of magnitude and decreasing the quantization bits on the four aspects 

of EFQPSK studied herein. 
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