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Abstract 

Two biological systems were studied using LC/ESI/MS/MS on a triple quadrupole operated in 

SRM (selected reaction monitoring) scan mode. The first bacterium system is aquatic and 

microscopic in size known as Roseobacter.  The second mammalian system is terrestrial and 

large in size relative to humans known as Holstein cows. 

Roseobacter is a clade of marine bacteria abundant in the ocean.  Roseophages are viruses that 

infect Roseobacter and cause viral lysis.  Sulfitobacter sp. 2047 was isolated and infected with 

Roseophages, and the fold change in the metabolic pool relative to a control was studied at 

discrete time points.  The absolute concentration of glutamate and glutamine in the infected and 

control was determined at each time point using an external calibration curve.  Flux analysis 

through the addition of 13C-acetate at early and late post infection was compared to the control.   

Holstein cows are a breed of cattle known to be the world’s highest producers of milk.  Twelve 

Holstein dairy cows were selected, and samples of blood and milk were taken at different weeks 

of lactation.  The fold change in the phospholipid pool relative to the first week of lactation was 

studied from early, mid, and late lactation.  The absolute concentration of lipids at each week of 

lactation was determined using isotope dilution mass spectrometry with the exception of GPC 

(glycerophosphocholine) where an external calibration curve was used due commercial 

unavailability of an isotope-labeled standard.  
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Introduction 

The TSQ Quantum Discovery MAX is a triple quadrupole capable of performing quantitative H-

SRM (Highly-Selected Reaction Monitoring) scans.  The additional selectivity is owed to the 

hyperquads, which have a hyperbolic profile compared to traditional quadrupoles that use round 

rods.  The increase in selectivity decreases the chance of a false positive.  The SRM scan results 

in two confirmation points of parent ion and product ion.  When used in conjunction with liquid 

chromatography an additional confirmation point of retention time is obtained.  These three 

confirmation points further decreases the chance of a false positive.  Another compound would 

need to have the same parent ion, product ion, and retention time to result in a false positive. 

Chapter 1 reports the metabolomics of an isolated Roseobacter, Sulfitobacter sp. 2047, in 

response to a Roseophage viral infection.  Metabolomics is the simultaneous study of a large 

number of individual metabolites to provide a wholistic understanding of metabolic pathways.  

To achieve this goal, discrete time points are chosen strategically to monitor the change in the 

metabolic pool.  Extraction solvent quenches the metabolism and provides a snapshot of the 

metabolic pools at each time point.  However, the metabolic pool concentrations alone do not 

provide the complete story of how the virus changes the metabolism of the host.  A difference in 

pool concentration can be the result of faster assembly of the metabolite or slower disassembly.  

A flux analysis is needed to complement the pool concentrations.  The appearance of labeled 

metabolite in the pool determines the rate of assembly, and the disappearance of unlabeled 

metabolite determines the rate of disassembly. 

Chapter 2 reports the lipidomics of twelve Holstein dairy cows after calving.  Lipidomics is 

similar to metabolomics except the subject of study is lipids.  The time points were chosen to be 

in week intervals extending to late lactation.  Plasma and milk samples were collected to 

correlate the differences between the two.  The idea is that the lipids in the milk are taken from 

the bloodstream.  An increase in concentration of a lipid in the milk can be correlated to a 

decrease in concentration of the lipid in plasma.  Isolating the week of lactation when a lipid is 

low in the plasma can provide insight on when supplementation of this lipid should be provided 

to the cow.  
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Chapter 1 

 

Metabolic Response of a Roseobacter to Phage Infection: Insights into the 

Influence of Viral Lysis on Ocean Biogeochemistry 
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Material for Abstract, Introduction, Roseobacter Biology, Roseophage, and Molecular Tools and 
Marine Virus Communities taken from: 
 
Ankrah, N. Y. D., May, A. L., Middleton J. L., Jones D. R., Hadden, M., Gooding, J. R., LeCleir, 
G. R. , Wilhelm S. W., Campagna, S. R. and Buchan, A. Metabolic response of a Roseobacter to 
phage infection: insights into the influence of viral lysis on ocean biogeochemistry, submitted. 

 

 

Abstract 
 

Viruses contribute significantly to the mortality of marine microbes and consequently alter 

species composition and influence biogeochemistry. While it is well established that host cells 

provide metabolic resources for virus replication, the extent to which the infection process 

reshapes host metabolism at a global level and the subsequent effect of this alteration on the 

quantity and quality of material released into the environment following viral lysis is less 

understood. To address this fundamental gap in knowledge, a LC/MS/MS metabolomics 

approach was used to quantify global intracellular metabolite changes in cultures and 

extracellular lysate profiles of phage infected Roseobacter. In contrast to a simple model in 

which all extracellular compounds were increased in concentration due to lysis, < 30% of the 

measured compounds displayed increased concentrations. The measurable extracellular 

metabolic profiles were significantly altered,  including enrichments in amino acids involved in 

stress responses and acyl-CoAs. We hypothesize that phage infection leads to a cellular 

stoichiometric imbalance of C:N due to the redirection of host metabolism towards the 

production of more nitrogen rich metabolites, needed to support new virion production. 

Intracellular concentrations for 83 core metabolites were also measured over an infection cycle 

and by the end of the experiment, the majority (80%) were significantly elevated in infected 

populations. Experiments that monitor metabolite turnover using 13C-acetate provide evidence 

that phage-infected populations have increased metabolic activity and directly scavenge 

metabolites released from lysed siblings, which offsets their increased need for nitrogen.  
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Background and Significance 

 

Introduction 

It is estimated that one billion tons of carbon are released in the world’s oceans each day as a 

result of virus lysis.1 The released dissolved organic matter (DOM) is a major contributor to 

marine microbial activity2, stimulating both primary and secondary productivity3-5.  Through 

their lytic activities, viruses influence the flow of carbon, nitrogen and other nutrients in the 

marine environments.1, 4, 6-10  While previous studies have revealed that viral lysates can be rich 

in free and combined amino acids3 and may be an important source of labile organic nitrogen,11 

we know relatively little of the distinct chemical character of viral-derived DOM. Furthermore, 

the extent to which viral redirection of host metabolism alters cellular constituents released as a 

result of lysis remains an open question.  

 

Although the majority of viruses in aquatic systems are thought to be phage,1, 12 relatively few 

environmentally relevant marine phage-host systems have been described. Bacteria belonging to 

the Roseobacter lineage are abundant in marine systems and carry out critical biogeochemical 

transformations.13-17  Their abundance and amenability to cultivation make Roseobacter a 

tractable model for investigating the influence of bacteriophage on both host metabolism and 

DOM release.13, 14
 

 

Although there have been numerous studies of the composition of biologically produced DOM in 

marine systems,3-5, 10, 18, 19 most  have focused on characterization of the material bulk properties, 

such as C:N or the size distribution of the particulate matter. Only recently has the technology 

necessary to allow identification of specific compounds within DOM become available.20, 21  

However, the compositional heterogeneity of DOM makes it difficult to extract and detect 

specific metabolites from seawater. To address this concern, we have implemented methods that 

identify and characterize metabolites in marine bacteria and their culture filtrates and can be 

extended to studies of natural marine systems. Specifically, targeted liquid chromatography-
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tandem mass spectrometry (LC-MS/MS) based metabolomics20, 21 were used to monitor both 

metabolite concentrations and turnover rates in these systems. Herein we report a study of a 

roseobacter-roseophage system that probed the effect of viral infection on composition of both 

the intra- and extracellular water-soluble, small molecule metabolites, thus giving insight into 

both the impact on ocean biogeochemistry and host metabolism. These results provide support 

for the hypothesis that virally infected cells are physiologically distinct from their uninfected 

counterparts.  

 

Roseobacter Biology  

The most abundant and biogeochemically important organisms in the world’s oceans are 

bacterioplankton.  The application of molecular tools to the study of picoplankton has enriched 

the understanding of the diversity of picoplankton, which in turn, developed an image of the 

distribution of picoplankton members in the last 20 years.22, 23   The target of this experiment is 

the Roseobacter lineage, which is one of the major marine bacterial lineages identified in 

independent cultivation surveys.  Members of this lineage are classified as “model marine 

heterotrophs” and are studied to extrapolate conclusions for other marine heterotrophs.  This 

lineage is considered as a model for the following three reasons.  Firstly, they are abundant in the 

world’s oceans.  Secondly, they are easily cultured and maintained in the lab.  Thirdly, they carry 

out relevant biogeochemical processes.  Their abundance in the ocean is demonstrated by 

molecular-based experiments targeting the 16S rRNA genes, which shows that the Roseobacter 

clade typically comprise ~20% of coastal and ~15% of mixed layer ocean of the total 

bacterioplankton community.15, 17, 22, 24  In conclusion, cultivated roseobacters serve as “model 

marine heterotrophs” to improve the understanding of marine bacterial ecology and physiology. 

 

Roseobacters have been linked to carbon and nutrient cycling in both culture and field-based 

studies.  The results from tracer studies determined that roseobacters are among the most active 

members in the bacterioplankton community in coastal and open ocean environments.25-28  

Isolated lab cultures and natural roseobacter populations have the capability of converting 

various aliphatic compounds containing carbon, nitrogen, and sulfur, in addition to, aromatic 
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compounds abundant in coastal environments.29-33  Cultured roseobacter in the Buchan lab 

provides evidence that Fe is scavenged to produce structurally diverse siderophores, thus making 

roseobacter a reservoir of the element Fe, which was previously unrecognized.  In addition to 

scavenging Fe, roseobacters appear to play a role in processes that affect sulfur cycling.  

Cultivated roseobacters are capable of converting inorganic sulfur and osmolyte 

dimethylsulfionio-propionate (DMSP).  The algal DMSP is either cleaved to form 

dimethylsulfide (DMS) or demethylated to form methanethiol (MeSH).  DMS readily fluxes to 

the atmosphere owing to its volatility where it affects cloud condensation nuclei and backscatters 

solar radiation.34  MeSH is likely to reside around the surface of ocean water where it is utilized 

by marine bacteria.  Therefore, the cleavage of DMSP, resulting in DMS formation, has 

important consequences on global climate regulation, while the demethylation of DMSP, 

resulting in MeSH, is importation in supplying carbon and sulfur to surface ocean marine 

bacteria.  Further evidence for the metabolic potential of roseobacters stems from the availability 

of ~40 roseobacter genome sequences which results in diverse metabolic functions of the 

Roseobacter lineage.  In conclusion, the abundance, activity, and diversity of the Roseobacter 

clade suggest that relatively high growth and proliferation rates would occur in high-nutrient 

niches.  The dense population of roseobacter in the high-nutrient niche could in turn support high 

Roseophage viral loads and activity.1 

 

Roseophage 
 

The importance of roseobacters in the biogeochemical cycling of elements has been recognized 

but, to date, there is a limited understanding of the phage that infects them.  Roseophages are 

tailed dsDNA viruses with modest genome sizes of ~50-75 kb that infect roseobacter.  

Information on latency and burst size for roseophages is limited, but the information available 

suggests that these phages have the potential for high productivity.  There are 9 roseophages 

described in the literature, while two are members of the Siphoviridae family, and the remaining 

seven belong to the Podoviridae family.  A roseophage in the Siphoviridae family, the 

roseophage RDJLɸ1, infects Roseobacter denitrificans and has an estimated latency period of 

~80 min and a burst size of ~200.35  The characterized members in the Podoviridae family 

belong to the T7-like or N4-like genera.  Two N4-like roseophages, DSS3ɸ2 and EE36ɸ1, were 
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isolated from the Chesapeake Bay area and have latency periods between 2-3 h and burst sizes 

that range from 350-1500.36  These burst sizes are in disagreement with the average of 24 for 

bacterioplankton.37  This can be explained because latency and burst size depend on the 

physiological status of the host and have been found to be shorter and larger, respectively, in 

cultured studies than in natural environments.38, 39  Regardless of the conflicting data, the data 

provides a step forward in the understanding of the potential of roseophage to cause viral lysis 

and change host metabolism, especially in high-nutrient niches where the host would be expected 

to have a higher metabolically active dense population.    

 

The N4-like group has become the model for studies of roseophage biology.  The abundance of 

N4-like roseophage is greater in coastal environments compared to open ocean.36  The sequences 

can be found in metagenome databases, and there is high sequence conservation between the two 

characterized N4-like roseophages, DSS3ɸ2 and EE36ɸ1, of the Podoviridae family.  Although 

the conservation in sequence is high, both phages infect different host.  Conservation in sequence 

is a poor predictor of preferred host as >85% of all ORFs share 80-94% sequence identity.36  The 

correlation between the abundance of phage and host is yet to be determined, but the available 

data suggests a greater abundance of  N4-like roseophages in habitats favored by their specific 

hosts. 

 

Molecular Tools and Marine Virus Communities 

Genetic diversity is a function of the total abundance of different virus types (richness), the 

numerical distribution of viruses within and across groups (evenness), and the differences in 

genetics within and across groups (relatedness).  The comparisons of whole genomes have 

proven that conserved genes exist among different viral genomes and can be used as 

phylogenetic markers.40  These genes have been used in diversity studies, and viruses that infect 

primary producers are targeted.  The genes of interest are typically the cyanophage g2041 and the 

Phycodnaviridae DNA polymerase genes.42  The majority of roseophages have not been isolated 

in lab cultures as was determined by direct studies that sequenced viral fractions from seawater.  

The diversity of viral metagenomes from the fractions confirmed previous hypotheses that 
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roseophages exist as a diverse community, and previously unrecognized viral entities were 

identified.43,44  To date much of the efforts to catalog the genetic diversity of marine viral 

communities have focused on richness and relatedness, while evenness, or specific 

quantification,45-47 has received less attention. 

 

Merits of Liquid Chromatography-Mass Spectrometry 

Liquid chromatography (LC) separates compounds from one another resulting in a confirmation 

point of retention time (RT) and separates compounds from ion suppression zones reducing ion 

suppression of target compounds when using Electrospray Ionization (ESI).  Direct infusion 

would result in all compounds and anything in the matrix present at the same time during 

ionization, in addition to, manually infusing each sample which is impractical for a high volume 

of samples.  An autosampler can automate injections using flow injection analysis (FIA), but will 

still result in ion suppression.  LC before ESI reduces ion suppression and produces the 

confirmation point of RT reducing false positives. 

 

Mass spectrometry (MS) detection applies a mass filter that can separate compounds based on 

their difference in m/z removing the requirement of baseline resolution of chromatographic peaks 

when using UV-Vis as a detector.  However, in some cases MS requires baseline resolution 

when the isotope of a compound passes through the mass filter of another compound.  It would 

be almost impossible to know if an impurity co-elutes with a target compound when a shoulder is 

not present and erroneous quantitation would result using UV-Vis whereas MS can mass filter 

the impurity.  The ability of MS to mass filter impurities also saves method development time as 

baseline resolution is not required and when switching from standards to samples the 

introduction of impurities does not require further method development to achieve baseline 

resolution of sample impurities.48   
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The detection limits of MS is generally lower than UV-Vis,  because UV-Vis uses one 

wavelength for all compounds in the analysis even though each compound has its own optimum 

lamba max and mobile phases have absorbance that results in background that changes when 

gradients are used.  MS/MS detection in Selected Reaction Monitoring (SRM) scan mode uses 

an optimized Collision Energy (CE) for each compound, and the background of mobile phases 

are mass filtered out of the chromatogram.  The advantage of MS detection is clear, but MS has 

its own challenge of needing an ion whereas UV-Vis needs a chromophore.  The ion is needed 

because neutrals are not affected by electric fields and cannot be guided to the detector nor mass 

filtered.  Many different ion sources utilizing different ionization mechanisms have been 

developed to circumvent this problem, and derivatization of target compounds to increase 

ionization efficiency has been used.49 

 

LC-MS results in two confirmation points of RT and m/z to identify a compound.  More 

confirmation points and higher selectivity is obtained when performing MS/MS.  The SRM scan 

mode on a triple quadrupole results in three confirmation points of RT, parent ion, and product 

ion.  Further confirmation points are obtained by monitoring the same parent ion at other product 

ions to reduce false positives.50  
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Triple Stage Quadrupole (TSQ) Quantum Discovery MAX 

ESI 

The choice of an ion source should consider flow rate, molecular weight, polarity, thermal 

stability, dynamic range, and resistance to ion suppression.51  An Electrospray Ionization (ESI) 

source is suitable for flow rates of 1 mL/min, molecular weights greater than 100,000 amu and 

multiple charging52 allows a mass analyzer with lower mass range, polar compounds, heat labile 

compounds, and has a linear range of 3 to 5 orders of magnitude though ESI is not resistant to 

ion suppression.53  ESI is stable and robust,54 performing the same throughout the duration of an 

experiment.  The merit of a large linear range in a multicomponent analysis is the ability to dilute 

the highest concentration compound to be in the linear range while still having the lowest 

concentrated compound in the linear range. 

 

The theory of ESI for positive mode is that positive ions are preformed55 in the solution 

controlled by the pH of the mobile phase, and then a positive charge is placed on the surface of 

the solvent using a spray voltage typically between 3 to 5 kV.  A small droplet is dried with 

nitrogen gas, and the positive charges are repelled from each other moving to the surface of the 

droplet.56  When the droplet is too small for the positive charges to move away from each other, 

a critical point is reached known as Rayleigh stability limit where electrostatic repulsions are 

greater than surface tension, and the droplet divides into small droplets.  The smaller droplets are 

further dried with nitrogen, and the Rayleigh stability limit is reached again and so on until the 

positive ion is ejected from the droplet into gas phase. 

 

ESI is a surface competition ionization mechanism, and when many ions are present not all ions 

will make it to the surface and be split into smaller droplets according to the charge residue 

process involving the formation of a Taylor Cone.57  Ion suppression exist because as the droplet 

dries the more volatile organics dry faster than water.  The more hydrophobic an ion is the more 

affinity it will have with the surface and the hydrophilic ions will be suppressed.  ESI works best 
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with high solvent volatility, optimized pH of the solvent system but less than 10 mM of salt 

when using a buffer, and with an initial small droplet meaning a small ID of fused silica tubing. 

 

The ESI probe of the Ion Max ion source is at a fixed 60˚ spray angle for best sensitivity and 

stability but can adjust side-to-side, front-to-back, and up-and-down for best signal.  Other ESI 

ion sources use a fixed 90˚ or 0˚ spray angle for the ESI probe.  The 90˚ spray angle is not best 

for sensitivity as gas phase ions are not vacuumed inside the ion transfer tube (ITT), and 0˚ spray 

angle is not best for stability as contamination of the inside of the MS results in an unstable 

environment for ion transmission.  The 60˚ spray angle is the compromise. 

 

Mass Analysis 

The choice of a mass analyzer should consider mass range and mass accuracy.58  A quadrupole is 

four rods evenly spaced at 90˚ to each other.  Rods opposite of each other are connected 

electrically sharing the same amplitude and sign of DC voltage while in the same phase of AC 

voltage.  The voltages applied to the different rod pairs are equal in amplitude but opposite in 

signs, the DC voltage and AC voltage are 180˚ out of phase.  A quadrupole is a mass analyzer 

when a specific DC/AC voltage is set allowing the transmission of a set m/z, and a quadrupole is 

an ion transmission device (ITD) when only RF voltage is applied allowing the transmission of 

all ions. 

 

In SRM scan mode Q1 and Q3 are mass analyzers and Q2 is an ITD.  A parent ion is monitored 

using Q1, and a product ion is monitored using Q3.  This results in MS/MS, and isomers of the 

same RT can be mass filtered if they have a unique product ion.  Ions from the ESI source are 

guided into the ion transfer tube by a decreasing pressure gradient, and ion guides focus and 

transmit all ions into Q1.  In Q1 the parent ion has oscillations that result in a stable trajectory 

and is transmitted to Q2.  Other m/z are unstable because they have oscillations that result in a 

trajectory in which they collide with a quadrupole rod thus becoming neutralized and are pumped 

out by vacuum or miss the quadrupole rods and are ejected from Q1.  The parent ion collides 
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with argon gas in Q2, and a product ion is transmitted to Q3.  The product ion achieves stable 

oscillations in Q3, and is transmitted to the detector. 

 

Q1 and Q3 have a large 12 mm ID hyperbolic profile that provides high ion transmission and 

good spectrum peak shape.59  These quadrupoles are often referred to as hyperquads because the 

rods are not round in shape but hyperbolic.54  The hyperquads are more selective without a loss 

in sensitivity at the same FWHM (full width at half max) because the theory expects a hyperbolic 

profile and round rods just approximate using the ratio of ID to spacing of the round rods to 

lessen field faults.60  Inferior round rod quadrupoles may be more selective than hyperquads at a 

lower set FWHM but at a loss of sensitivity.  A mass spectrometrist can achieve greater 

selectivity with inferior round rod technology by understanding the mass spectrometry 

parameters that affect selectivity.  The mass range of Q1 and Q3 is between 30 to 1500 m/z.  Q2 

has a smaller ID and square profile because an ITD does not require large stable oscillations.  Q2 

is bent 90˚ to take the ion source out of the line of sight with the detector.  This reduces noise 

because neutrals and photons do not take the 90˚ turn and interact with the detector.61   

 

High voltage is applied to Q2 in between SRM scans to eliminate cross talk.54  Crosstalk is when 

the product ion from the previous SRM scan remains in Q2 during the next SRM scan.  Crosstalk 

is only an issue when the next SRM scan shares the same product ion as previous SRM scans and 

the compound elutes at the same RT.  This is common for classes of compounds such as 

phosphatidylcholine as all share the same phosphocholine head group as a product ion and elute 

at similar RT in high throughput methods.62  The product ion in Q2 from the previous scan can 

pass through Q3 and interact with the detector.  If two SRM transitions share the same product 

ion crosstalk may not be observed if other SRM transitions are scanned between the two 

allowing Q2 to purge.  Using high voltage to avoid crosstalk  contributes to the pause time 

between SRM scans and is why SRM scans have a higher duty cycle than a full scan, but are 

more quantitative as interferences are removed for the next scan in addition to removing 

interferences through an additional mass analyzer.  
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Detector 

The choice of a detector should consider dynamic range, sensitivity, and discrimination.  The 

detector is an electron multiplier, and in positive mode a product ion is attracted to the 

conversion dynode by applying -15kV.  The product ion strikes the surface of the conversion 

dynode, and one or more secondary particles of negative ions or electrons are produced.  The 

secondary particles are now repelled by the -15kV on the conversion dynode, and the concave 

shape of the conversion dynode focuses the particles into the acceleration voltage of the electron 

multiplier of about +1kV.  The conversion dynode and electron multiplier are off axis in respect 

to Q3 to reduce background noise from neutrals.  The secondary particles strike the electron 

multiplier causing electrons to be ejected, and because of the funnel shape of the electron 

multiplier the ejected electrons do not travel far until striking the electron multiplier resulting in 

a cascade of electrons or gain.  The result is a measurable current that is converted to voltage 

before an analog-to-digital converter is used to display a number.63  Mass discrimination exists 

with electron multipliers because one product ion of a larger mass striking the conversion dynode 

will eject more secondary particles than one product ion of a smaller mass resulting in a stronger 

signal.64   

 

The gain of an electron multiplier is the measure of how many electrons are generated from a 

single ion.  During the first few months the gain from an electron multiplier is not stable and 

requires a gain procedure to reset a typical gain of 105 to avoid a higher gain that would result in 

saturation or a lower gain that would prevent low limits of detection.65  External calibration 

curves without an internal standard should be acquired in a similar timeframe during this time 

when the electron multiplier is new, and a gain procedure should not be conducted mid 

experiment.  The gain procedure uses direct infusion of the polytyrosine hexamer.  The ion 

optics are placed out of focus so that the ion beam is lost; then they are slowly refocused until the 

electron multiplier detects one ion at 1000 ions/sec.  Then the acceleration voltage of the electron 

multiplier is adjusted to achieve a gain.  The faster the acceleration of secondary particles into 

the electron multiplier, the more ejected electrons will result from the impact.  Any calibrant can 

be used for the gain procedure but it is important to use the same calibrant because of mass 

discrimination.  Equivalent gains from a low mass and high mass calibrant would result in higher 
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and lower acceleration voltages of the electron multiplier, respectively.  High ion transmission 

and high gain ages the electron multiplier faster as only a finite amount of electrons exist to be 

ejected, and once a gain of 105 cannot be achieved the electron multiplier needs to be replaced. 

 

High Performance Liquid Chromatography and Tandem Mass Spectrometry Method Transfer 

Routine 

Using an established method developed in another lab requires optimization of parameters.  

Many times the parameters are not reported, mistyped, or are for a different mass analyzer, ion 

source, and column.  Differences exist from one instrument to another even when parameters are 

provided for the same mass analyzer and ion source but different brand. Furthermore, differences 

exist across brands from the beginning when they are new and as they age.  Chromatographic 

differences in retention time and peak shape can exist from column to column of same geometric 

parameters, stationary phase, brand, and all of these can also change as the column ages.66 

 

Optimization of Chromatography 

Chromatography differences in retention times and peak shapes arise from differences in matrix, 

gradient delay volume, dead volume, loop size, pump proportioning, flow rate, and re-

equilibration.  The pressure limitations of the LC pump and carryover of an autosampler need 

also be considered.  In general, the chemical reactivity and pH stability of lines, rotor, columns, 

pump seals, and etc. should be considered before using a sample solvent, wash solvent, or mobile 

phase.  PEEK and stainless steel are common for lines while titanium is overall more inert67 but 

expensive. 

 

Matrix Effect 

Sample matrix is everything surrounding one molecule of target compound in the sample.  This 

includes particulates, salts, sample solvent, pH, other target or non-target compounds, and even 

other molecules of the target compound.  Sample preparation steps of centrifugation and solid 
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phase extraction (SPE) are common to remove matrix.  Centrifugation helps remove particulates, 

although use of a guard column is also preferred as band broadening and pressure increase is 

insignificant at installment.  However, the pressure will slowly increase as the guard column is 

contaminated.  The same steady increase in pressure is observed as the frit of a column entrance 

is contaminated, but a guard column can be replaced whereas a column must be flushed in 

reverse flow or replaced at a higher cost.  SPE removes interfering compounds and salts that also 

cause ion suppression of ESI.68  Sample solvent that is not identical to the initial mobile phase 

composition will change chromatography as the initial mobile phase composition is a 

combination of mobile phase and sample solvent.69  Temperature changes of the column may 

result from endothermic and exothermic reactions with the mobile phase and the mixing of 

sample temperature.  Precipitation may occur if the eluent strength of the sample solvent is 

stronger than the mobile phase or at a different in pH.  The effect depends on sample solvent, 

injection loop size, and flow rate. 

 

If a buffer is used as a mobile phase, the buffer capacity may need to be increased if a split peak 

is observed.  The protonation of analytes and stationary phase controls retention.70  Increasing 

the buffer capacity through the addition of more salt will cause ion suppression of ESI, and 

require testing the solubility of buffer in the highest organic percentage.71  The steepness of slope 

to re-equilibrate, and the column may also need to be altered, therefore first trying alternatives 

like buffering or adjusting the pH of the sample, injecting smaller loop sizes, and clarify the 

buffer preparation procedure is preferred. 

 

It is common for the preparation of buffers to not be reported, and adjusting for target pH in 

aqueous solution by adding organic solvent rather than adjusting for target pH in the final 

aqueous-organic mixture will result in a different pH affecting buffer capacity.72  The reason is a 

different pH scale due to a unique autoprotolysis constant (Kw) at every solvent composition and 

temperature in addition to a change in buffer pKa.
72  Preparation of a buffer by weights and 

volumes is the clearest way to report a buffer preparation, but is not used in chromatography 

literature.73   The pH controls the protonation of analytes, and ions formed by ESI are preformed 
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in the mobile phase resulting in a different response at a different pH.  The consequences of 

using a different pH outside of the range of column stability are cleaving the stationary phase 

resulting in column bleed or dissolving the support particles.  The pH stability range for polymer 

support particles is larger than silica though both are typically tested at a low temperature, and 

methods that use higher column oven temperatures will shorten the pH stability range.  Buffers 

greater than 10 mM are not recommended for ESI74 because of ion suppression, and some 

buffers even at low concentrations, such as phosphate buffers, result in significant ion 

suppression and should be replaced with an ESI compatible buffer.75, 76 

 

Gradient Delay Volume 

Gradient delay volume is the volume that exists after the proportioning valves of the pump and 

the inlet of the column.  This volume causes a delay in the time a gradient is received by the 

column from when it is entered in the instrument method.  The gradient delay volume is often 

not reported and is an important variable for gradient methods on different LC pumps.   

 

To maintain separation, the start of the gradient should be start earlier by the extra gradient delay 

volume or the start of the gradient should be delayed by the less gradient delay volume.  This 

may not be possible as pre run conditions in the line are from re-equilibration resulting in an 

initial isocratic.  If the gradient starts before the isocratic can clear the lines than lowering 

gradient delay volume by bypassing the thermal equilibrating tubing is an option though this 

allows mobile phase to enter the column at room temperature. Shorter analysis times are 

achieved by starting re-equilibration sooner accounting for gradient delay volume leaving one 

column and post column tubing volume as a safeguard to prevent a rapid change in gradient 

while samples are still in the system.   

 

The determination of gradient delay volume is traditionally achieved by spiking methanol with 

ethyl paraben, purging the lines, flushing the mixing chambers with water, then running 100% 

spiked methanol to a UV-Vis detector at 254 nm.77  The difference of the time it takes for 



17 

 

detection of ethyl paraben and the start of the run multiplied by the flow rate is the total gradient 

delay volume.  To get the gradient delay volume of the pump the dead volume of tubing and 

detector are subtracted.  An alternative to approximate the gradient delay volume is to use an 

acidic mobile phase and pH paper. 

 

Dead Volume 

Dead volume, also known as void volume, in the rotor slots, pre column tubing and post column 

tubing affects RT and band broadening.  In addition to the dead volume of tubing, factors such as 

bottoming out loops and tubing and cutting tubing at a 90˚ angle contribute dead volume.  The 

dead volume in rotor slots may be slightly different from the slots in another rotor and it is best 

not to change the rotor in mid analysis as the rotor slot used to fill the loop is the same slot used 

to inject sample onto the column which adds to the total amount of sample injected onto the 

column in addition to the loop.  The dead volume in stator ports contribute to loop injection, and 

the dead volume of another stator port will be different but more of a consequence would be the 

difference in port depths.  The ferrule of a stainless steel loop is swaged permanently setting the 

length of a nib which may not bottom out on another stator adding dead volume which adds to 

sample loop injection.  For this reason when the loop is removed the ends of the loop must be 

placed back in the original ports because the port depths vary within a stator. 

 

Loop Size Injections 

Loop size injections may need to be made larger if the concentration of sample is too low for 

detection78 or if broader peaks are desired for duty cycle considerations and smaller if the sample 

is limited or sample matrix affects chromatography. 

Full loop injections are the most precise because the loop is overfilled which removes error from 

syringe precision to meter sample into the loop, uptake of a sample, and from sample loss during 

transfer to loop.  Full loop is used when the sample amount is in excess as the formula for 

determining the needed sample amount is 3 times the nominal loop volume plus dead volume 

and some excess sample. 
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Partial loop injections are less precise than full loop because the sample is metered into the loop 

by the syringe motor, and like all motors the performance degrades with age until replacement.  

Partial loop uses less sample than full loop as the formula is the requested injection volume plus 

22 µL.  Partial loop allows the flexibility of injecting variable amounts and is useful in 

determining the optimum injection volume before switching to full loop for quantitation.79  

Partial loop injects mobile phase that remains in the loop onto the column adding gradient delay 

volume as the loop is back flushed.  This will cause slightly different chromatography when 

switching to full loop because the gradient delay volume is missing resulting in lower retention 

times.  To minimize this effect only use a loop large enough for maximum injection volume. 

 

No waste injections are the least precise because of syringe precision uptake, metering, and 

sample loss during transfer to loop.  The sample loss is decreased using a slower loop loading 

speed but any loss affects precision as only the requested injection volume is taken from the 

sample.  No waste injection is used when the sample is limited and diluting the sample, lowering 

dead volume of transfer tube, using smaller autosampler vial or insert, or commanding the auto 

sampler needle to find bottom is not an option.  The chromatography is affected as air and flush 

solvent is injected onto the column in addition to the sample.  Matching the flush solvent to the 

mobile phase will lessen the effect. 

 

Laminar flow in microfluidics80 and the differences in nominal loop volume determine how 

much sample is needed for full loop injection and the sample restrictions of partial loop 

injection.66  A 10 µL sample volume can occupy 20 µL of tubing volume due to laminar flow, 

and loops are ±20% of the nominal volume.81  The full loop formula uses 3 times the injection 

volume to account for laminar flow and actual loop volume.82  The injection volume for partial 

loop cannot be more than half of 80% the nominal loop volume.  The 80% assumes the shortest 

loop possible, and the half prevents overfilling the loop losing sample because of laminar flow.  

Since loops vary ±20% of the nominal volume, switching the current inline loop with a loop of 

same nominal value would deliver different sample volume to the column, and results could not 

be compared when using full loop. 
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Pump Proportioning and Flow Rates of LC Pump 

The pump proportioning and flow rates of LC pumps should be investigated if chromatography 

is significantly different.  Pump proportioning is port dependent and switching ports may resolve 

the issue.  Ethyl paraben and a UV-Vis detector are used to determine if two ports are 

proportioning correctly at a given flow rate.77  A flow rate test at a given flow rate is done using 

one port and a 10 mL volumetric flask   Differences in pump proportioning or flow rate may 

explain why the chromatography is different or if the pump is within specifications then one 

must question if the pump the LC method was developed with was out of specifications.  Product 

data supplied with the pump will have a certificate certifying a proportioning and flow rate test, 

but one should test the flow and proportioning at the flow and gradient of the LC method.  The 

proportioning and flow rate is less precise at low flow rates83 as the relative error is higher, and 

the proportioning is less reproducible at steep gradients due to gradient distortion84 meaning 

steep gradients at low flow rates are the least reproducible.  The flow rate for an isocratic is 

different if the mobile phase is hand-mixed or online mixed by the pump because the volumes of 

water and organic solvents are not additive.66  This means the flow rate changes during a 

gradient throughout the analysis. 

 

Re-equilibration 

Re-equilibration of a column ensures that each sequential injection of a sample experiences the 

same initial column conditions as the sample before.  This is accomplished by running the initial 

mobile phase composition at the end of a chromatographic run.  The duration of the re-

equilibration for typical packed columns is a time that allows for 10-30 column void volumes 

which is dependent on flow rate and column void volume.  The differences in matrices of 

samples, such as salts, may change the column void volumes required for re-equilibration.  To 

shorten analysis times, lower the column volumes to a minimum that maintains chromatographic 

reproducibility from sample to sample, increase the flow rate during re-equilibration within 

pressure limitations, and increase the steepness of the slope to initial mobile phase composition.  

Chromatographic irreproducibility may not be observed until several samples later when testing 

lower column volumes. The steepness of the slope from final mobile phase composition to initial 
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mobile phase composition depends on buffer solubility.  If no buffer is used then the steepness 

can be a vertical line, but if a buffer is used the solubility of the buffer in the organic mobile 

phase needs to be considered and a less steep approach to initial mobile phase compositions will 

prevent precipitation of salts. 

 

Pressure  

The backpressure limits of the LC pump limits the selection of columns.  HPLC pumps can 

handle pressures less than 400 bar, and UPLC pumps can handle pressures greater than 400 bar.  

Long columns, high flow rates, and sub-2 µm particles cause pressures too great for an HPLC 

pump.67  A method employing a sub- 2 µm column on a UPLC pump can be scaled up using a 

formula85 to a column suitable for a HPLC pump without significant further optimization.  This 

formula can also be used to scale down a HPLC method to UPLC.  A larger ID of a column 

allows for larger loop injections.  Longer length allow for further separation.  Smaller particle 

size is for better resolution, and pore size can be altered for selectivity.  Factors that can be 

changed to lower pressure without changing the column are higher ID of tubing and higher 

column temperature.  Though the ID of tubing should be chosen to properly load a column of a 

specific ID,67  and raising the column temperature may decrease pH stability of the column.  

Pressures that are under 400 bar but cause leaks can be addressed by selecting the proper ferrule.  

The ferrule clamps down on the PEEK tubing and prevents the line from slipping out of the 

ferrule resulting in a leak.  A stainless steel ferrule on PEEK tubing can handle higher pressures 

than PEEK ferrules.  The more viscous the mobile phases 86, 87 the higher pressure and increasing 

the column temperature will lower the viscosity though retention times may shift, and the 

stability of the column may decrease.  During a chromatographic run that uses a gradient, the 

pressure will change in response to the new viscosity, and the pressure at the most viscous 

mixture 81, 88 will determine pump suitability.  Lower pressure allows for higher flow rates, 

longer columns, and smaller particle size. 
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Carryover 

An autosampler is needed for large numbers of samples as it is impractical for a person to 

manually inject each sample, but each new sample shares the same plumbing as the previous 

sample resulting in carryover.  A wash solvent is used to clean the transfer tubing and wash the 

exterior of the needle between injections, and the sample loop is back flushed with mobile phase 

onto the column and remains in line during the entire chromatographic run for adequate flush.  

Typically 50:50 water:methanol is used as a flush but an alternative may be needed to remove 

certain compounds keepimg pH in mind if the sample is not neutral.  However, a 6 port injection 

valve is used to switch from load sample loop with sample to inject sample in loop onto the 

column.  During the switch the sample is deposited onto the stator face which can only be 

cleaned by turning the rotor seal, requiring blanks to be used in between samples to prevent false 

positives.89  The amount of blanks in between samples depends on compound and concentration, 

and a sufficient amount of test blanks is used after a sample to determine when carryover is 

insignificant. 

 

Tuning and Calibration 

The choice of tuning and calibration solution should include calibrants whose m/z are above and 

below all compounds in an analysis and not have a large range between calibrants. 

 

Direct infusion of Polytyrosine-1,3,6 tuning and calibration solution can be used to achieve a 

stable ion beam.90  The tuning procedure changes the voltages of the tube lens, ion guides, 

lenses, and quadrupole offset voltages on Q1 and Q3 to achieve optimum ion transmission.  The 

tube lens voltage is m/z dependent and guides ions into the opening of the skimmer while 

solvent, neutrals, photons, and other m/z ions collide with the skimmer and are pumped out by 

vacuum being skimmed from the ion beam.  The tube lens offset voltage, also known as skimmer 

offset voltage, additionally accelerates ions into atmospheric gas aiding in desolvation and 

increasing sensitivity.  The higher the voltage the more acceleration, and the collisions with 

atmospheric gas can result in fragmentation also known as ion source fragmentation.  The 
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optimum voltage balances desolvation and fragmentation, but is typically set to 0V, and only one 

value can be used for all compounds in an analysis.  The calibrating procedure corrects for any 

mass drift from true values setting mass accuracy and controlling mass resolution.  This low flow 

tune file can be used for direct infusion of compounds with little or no change, and for a LC 

experiment after optimizing ion source parameters for LC flow and modifying the file.  This 

same procedure should be applied for negative ion mode. 

 

Optimization of Ion Source Parameters at LC Flow 

ESI typically performs best with small droplets created by the small ID of fused silica tubing.  

However, high flow rates may require larger ID of fused silica tubing to slow the linear velocity 

of the spray.  In addition, replacing fused silica with a metal needle is known to result in higher 

ion efficiency of negative ions. 

 

Direct infusion into LC flow90 is used to mimic conditions during a chromatographic run.  This 

technique consists of filling a syringe with the most thermally labile analyte in the 

chromatographic method at approximately 10 µM, dissolved in LC flow solvent, to yield a signal 

of 105-107 intensity and changing ion source parameters for an optimum stable signal.  A tee 

union is used to connect the LC pump and syringe with LC flow passing through the tee union 

with no change in direction and syringe flow entering the LC flow at a 90˚ angle at 5 µL/min, 

which can be adjusted higher if needed while lowering the LC flow rate so that the addition of 

syringe flow and LC flow equals the method flow rate.  The highest percentage of water or the 

most nonvolatile solvent in the chromatographic method is used for LC flow to ensure 

evaporation at any point during a chromatographic run.  The ion source position, amount of 

drying gases, and ion transfer tube temperature is flow dependent.  The higher the flow, the 

further the ESI nozzle will be positioned from the orifice, more drying gases will be needed, and 

the higher the ion transfer tube temperature will be to get strong and stable signal.  Spray voltage 

at an initial setting of 4000V for positive mode and 3000V for negative mode is used until 

position of the ion source is set as well as all other parameters.  Negative mode typically uses 

less spray voltage than positive mode as arcing is more prone.91  Adjusting before setting ion 
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source position may cause arcing in the ion source as the ESI nozzle is too close to the MS 

orifice.  A setting of 90V for tube lens voltage is sufficient.  Set the ion source position to middle 

settings of all parameters and an initial ion transfer tube temperature of 290˚C.  Adjust the drying 

gases in the order of sheath, auxillary, and sweep.  Sheath gas is the nebulizing gas, auxillary is 

the drying gas, and sweep gas attempts to maintain a stable clean environment in the ion transfer 

tube to prevent loss of signal.  Sweep should be turned up as high as possible without losing 

signal intensity or stability.  Adjust the ion source position, then adjust the ion transfer tube 

temperature.  A thermally labile analyte was previously chosen to ensure that thermal 

decomposition of other analytes in the chromatographic method will not occur.  Adjust spray 

voltage up or down in increments of 500V then in increments of 100V to get optimum. 

 

SRM Optimization 

Identifying Parent and Product Ions 

Direct infusion of a standard at low flow rate of 5 to 20 µL/min is used to identify ions.   If no 

standard is available then the sample to be measured can be placed in a syringe and direct 

infused.  The solvent system should include the mobile phases used in chromatographic 

separations as the parent ion may be an adduct ion.92, 93, 94  Set Q1 at FWHM 0.7 to full scan a 

range that includes the parent ion and possible adduct ions at a scan time of 1s and set Q3 as an 

ion transmission device (ITD).  Then set Q1 as a mass analyzer on the identified parent ion, and 

set Q3 to full scan a range below the parent ion.  This is also known as product scan mode.  Start 

at a CE of 0 and increase in increments of 10 reaching 80 to observe all products at a collision 

gas pressure of 1.5 mtorr.  Perform the same procedure in negative ion mode. 

 

Tube Lens 

Tube lens voltage is not flow dependent, and direct infusion at low flow is appropriate.  Direct 

infuse compound and perform SRM optimization.  Tube lens voltage only depends on the parent 

ion and the same optimum can be applied to other SRM transitions of different product ions.  An 

optimized tube lens voltage will be found, and a percent increase to tuned tube lens voltage will 
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be stated.  If ran a second time, another optimum tube lens voltage will result as the maximum is 

not smooth and the percent increase may not be as much.  The tuning solution uses the monomer 

at 182 m/z, trimer at 508 m/z, and hexamer at 997 m/z of polytyrosine to determine the optimum 

tube lens voltage of all compounds by interpolating and extrapolating from the optimum value of 

the 3 compounds.  The m/z values are 2 units less in negative mode.  The improvement is 

typically no more that 10% and fluctuates, requires typing in instrument method and finding new 

value every 3 months as part of routine tuning; and for these reasons tuned tube lens voltage is 

preferred for high throughput analysis.  However, if necessary, a specific tuning and calibration 

solution containing the compounds in the analysis can be made, and sourcing this tune file in the 

instrument method would remove the requirement of manual typing with the added benefit of 

mass calibration.  If solubility issues are a problem, then make a solution that only contains 

compounds in a given MS acquisition segment as each requires their own tune file. 

 

Collision Energy 

Collision energy (CE) is the offset voltage on Q2 that results in acceleration of ions into the 

collision gas.  Offset voltages are DC voltages that control acceleration and deceleration of ions, 

quadrupole rod pairs are equal in amplitude and sign, whereas, ramping DC controls ion stability 

and quadrupole rod pairs are equal but opposite in sign.   The name offset is from a compared 

difference of applied voltage, in this case, the difference in voltage from the Q2 and the ion 

source resulting in acceleration of the parent ion as setting the translational kinetic energy 

(TKE).  Increasing offset voltage increases the TKE of a parent ion which increases the energy 

of a parent ion and molecule of argon gas collision, or collision energy.  An optimum exists at a 

balance as a low CE is only enough energy to cause the desired fragment in a higher energy 

population or from multiple collisions; and a high CE results in further fragmentation or 

scattering. 

 

Collision energy is not flow dependent.  Direct infuse compound and perform SRM optimization 

on observed product ions at 1.5 mtorr collision gas pressure.  A breakdown curve will show the 

optimum CE.  A breakdown curve is produced by monitoring the signal intensity as different CE 
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are applied and the parent ion is broken down into fragments producing signal.95  The CE that 

resulted in the highest signal is the optimum CE.  If the maximum is not smooth, a different 

optimum CE will result when the SRM optimization is ran a second time.  Choose the SRM 

transitions that have the most stable breakdown down curve at the maximum as any fluctuation 

left or right in CE will not result in a significant change in signal.  The maximum does not just 

result in the highest y value but also is the smallest slope so small movement in the x direction is 

essentially the same y value.   

 

Although other SRM transitions are not used for further optimization, the breakdown curves 

should be saved as a screenshot if these SRM transitions will be needed later to resolve 

interference with the chosen SRM transitions.  The approach now is to find the SRM transition 

that is most suitable for quantitation based on the sensitivity but later a less sensitive SRM 

transition but more selective may be used.  It is common for classes of compounds with varying 

R groups to have the same CE when losing the same product ion, and optimizing on one 

compound of this class may be sufficient.62  However, if in doubt optimize on the lowest m/z and 

the highest m/z to see if CE is conserved as CE controls the translational kinetic energy at which 

collisions take place, and heavier m/z would be predicted to accelerate slower at the same CE and 

result in less fragmentation shifting their optimum CE higher.  This is analogous to the principle 

that allows for m/z separations using a time of flight mass analyzer as ions are lined up and 

receive the same acceleration voltage but higher TKE results for low m/z and lower TKE results 

for higher m/z achieving separation. 

 

CE is compound dependent and does not depend on ion transmission.  Therefore parameters of 

scan time, scan width, and FWHM does not change optimum CE, but would only result in a 

higher intensity value at optimum CE on the breakdown curve as these affect ion transmission.  

The quadrupole offset voltages for Q1 and Q3 are adjusted during tuning, but CE stay the same 

within 1 unit before and after a tune suggesting that optimum CE does not need to be reacquired. 
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Collision Gas Pressure 

The collision gas is ultra high purity argon chosen for its inertness and mass.  It is important for 

the collision gas to not form ions or react with the parent ion, and for the mass to be heavy 

enough to transfer energy into the parent ion upon collision resulting in fragmentation and not to 

have energy transferred to it from the parent ion moving it out of the path.  The manifold which 

contains the mass analyzers Q1 and Q3 are under high vacuum of 10-6 torr as a long mean free 

path, preferably from ion source to detector, is desired to prevent collisions of ions resulting in 

scattering and lowering sensitivity.  However, Q2 is also in the manifold and an aluminum 

chamber called the collision cell covers Q2 and traps argon gas at mtorr pressure.  Lenses are 

used on both sides of Q2 to focus the ion beam, shield RF voltage applied to Q1 and Q3 from Q2 

and vice versa, and to act as a baffles to prevent argon from entering the high vacuum region of 

mass analyzers Q1 and Q3.  The lenses are named because they focus the ion beam that passes 

through them and must have a hole to allow the passage of the ion beam to the detector resulting 

in escape of argon gas into the high vacuum region.  The previous breakdown curves were 

obtained at a collision gas pressure of 1.5 mtorr as this pressure typically results in enough 

fragmentation to achieve a breakdown curve.  However, an optimum setting of collision gas does 

exist. 

 

Collection-induced dissociation (CID) is the process of a parent ion colliding with an argon 

molecule and converting its TKE into internal energy which fragments the parent ion.  The 

efficiency of the CID process is a balance between fragmentation and collection efficiency which 

both depend on the collision gas pressure.  The collection efficiency is the ratio of ions that exit 

the collision cell to those that enter the collision cell and assumes one fragment per parent ion.  

The collection efficiency is nearly 100% when the collision gas pressure is 0 as no ions were 

scattered upon collision with argon but with other gases present in high vacuum resulting in a 

collision of Q2.  Collection efficiency depends on the mass of the parent ion, as heavier masses 

are less prone to scatter than lighter masses when colliding with argon and the collision gas 

pressure as more pressure introduces more opportunities for collisions.  Fragmentation efficiency 

is the fraction of desired fragment ion to the remaining parent ion at the exit of the collision cell.  

The fragmentation efficiency approaches 100% as the pressure of the collision gas is increased as 
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multiple collisions occur, but the collection efficiency is decreased due to scattering.  

Fragmentation efficiency is inversely proportional to the stability of a parent ion as the more 

stable an ion is the less likely a fragment will result from a collision and to the mass as the 

vibrational energy from a collision is better distributed across many bonds of a larger and heavier 

ion.  The optimum CID efficiency will be at a collision gas pressure that is low enough to 

prevent scattering, but high enough for collisions to take place for fragmentation to occur. 

 

To find the optimum setting of collision gas, perform SRM optimization at collision gas 

pressures of 1, 2, 3, and 4 mtorr and obtain breakdown curves.  The optimum CE is typically 

within ± 2 units at any collision gas pressure, but it is the intensity that changes at different 

collision gas pressures.  Identify the collision gas pressure that has the highest signal and test 0.5 

mtorr higher and lower as the optimum could have been reached and decreased but still better 

than lower setting or the optimum was yet to be reached but decreased lower than previous 

setting.  The optimum collision gas pressure will result in the highest intensity of fragment ions.  

The pressure of collision gas is not able to change fast enough for an optimal gas pressure for 

individual SRM transitions like voltages such as CE.  In a multi component analysis the same 

collision gas pressure must be used for all compounds so it is best to choose a pressure that is 

best for all.  Higher collision gas pressure is needed for massive ions to fragment, and the 

scattering is negated because massive ions are less prone to scatter.  Therefore in a multi 

component analysis, it is best to have parent ions within a mass range and be careful not to 

confuse the m/z of a parent ion with its mass as a massive parent ion can exist as a low m/z when 

carrying multiple charges.  Small differences in tank to tank purity of argon may exist, and the 

tank should not be changed mid analysis as CID efficiency may change. 

 

FWHM 

Full width at half max (FWHM) is a measure of mass resolution that is the full width of a m/z 

peak at half its maximum in a profile view spectrum.  The peaks are of Gaussian shape because 

some population of the ion beam becomes stable as the scan enters a Mathieus stability 

triangle,60 then as the scan proceeds the highest population of ions are stable at the true m/z, and 
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as the scan leaves the stability triangle a lesser population is stable.  This is how a peak with 

width results from ions with no distribution in mass.65  The scan is a constant DC/AC ratio that 

increases in magnitude resulting in a linear line of positive slope for positive ions and negative 

slope for negative ions.  Alternating current (AC) is often referred to as radio frequency (RF) as 

the AC used in mass spectrometry is similar to the frequency of radio waves.  If one extends a 

vertical line upwards at any point of the slope, it will pass through the tip of a m/z stability 

triangle that is most stable at this DC/AC ratio and can pass through the mass filter.  This m/z 

stability triangle is the m/z on a profile spectrum when extending a vertical line downwards to 

intersect the m/z x-axis on a spectrum.  When the DC/AC ratio is at a point when the target m/z is 

most stable a vertical line extending upwards will pass through the tip of the target m/z stability 

triangle.  Then on the profile spectrum extending a line downwards will intersect the m/z x-axis 

of the target mass.  This extension downward is also known as a centroid and is viewed in 

centroid view. 

 

The idea for selectivity is for the DC/AC ratio slope to pass only through the tips of the stability 

triangles approaching a FWHM of 0 because at the tips only one m/z is stable.  The FWHM 

increases as the DC/AC ratio slope decreases becoming farther from the stability triangle tips.  

Selectivity is less at any point on the slope because ions will exist in more than one m/z stability 

triangle allowing other ions to pass through the mass filter in addition to the target m/z.  A SRM 

interference may be removed by decreasing the FWHM resulting in a smaller bandpass filter.59  

This increase in selectivity results in a loss of sensitivity.  A 0.1 FWHM is about 30% and a 0.2 

FWHM is about 60% of the signal of a 0.7 FWHM.65  Though sensitivity is lost, LOD (Limits of 

Detection) may increase as the S/N ratio might increase as noise is filtered out.  If sensitivity is 

too high, the linear range on a calibration curve will decrease as saturation of the electron 

multiplier occurs before a large linear range can be established and increasing selectivity by 

lowering FWHM will reduce ion transmission, prevent saturation of the electron multiplier, and 

increase linear range allowing samples to have greater range differences in concentrations.  High 

ion efficiency, high CID efficiency, and high mass will saturate the electron multiplier at lower 

concentrations than other compounds decreasing linear range. 
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Quadrupole mass resolution is not linear, meaning a setting of 0.7 FWHM does not result in all 

m/z having a 0.7 FWHM peak.  The mass resolution is less with higher m/z.  For example, at 0.7 

FWHM the 182 m/z of the tuning solution has baseline resolution of the +1 isotope peak but this 

baseline resolution is less with the 508 m/z isotope clusters and the 997 m/z has a valley height 

with the +1 isotope.  This valley can be resolved using 0.5 FWHM meaning lower FWHM is 

needed at higher m/z for the same resolution.  Each SRM transition may have its own FWHM 

values for Q1 and Q3 though typically the same setting for FWHM is placed on both Q1 and Q3 

in an SRM experiment; a compromise that balances sensitivity, selectivity, and mass resolution 

for all compounds in the analysis. 

 

Microscans 

Microscans are smaller scans within allotted scan time.  These microscans are averaged when 

determining accurate m/z, and in an SRM experiment where quantitation is the goal, smoothing 

points is used to average the chromatogram.   

 

Scan Time  

Scan time, otherwise known as dwell time, is the allotted time for transmission of ions for a 

given SRM transition.  The higher the scan time the more sensitive the SRM transition as the 

electron multiplier has longer time to collect ions.  The stability of an SRM transition signal also 

increases with scan time as small changes in scan time are less relative.  A scan time of 0.050 s is 

commonly used, but scan times as short as 0.010 s are used when duty cycle is an issue.  A 

balance between scan time and duty cycle is made for quantitative reproducibility.  The scan 

time can be optimized for each SRM transition, but typically the same scan time is used for all 

SRM transitions in an analysis. 
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Scan Width 

Scan width is the range of m/z that is scanned left and right of the specified m/z value in the SRM 

transition.  For example, a scan width of 1 m/z means the quadrupole will start the scan 0.5 m/z 

units to the left of the specified m/z value, increase in m/z, and finish 0.5 m/z units to the right of 

the specified m/z value summing the entire signal as one centroid reported as the specified m/z 

value.  A true SRM transition has no scan width as 100% of the scan time is spent on the apex of 

a peak allowing for maximum ion transmission.  The selectivity and sensitivity improves with 

narrower scan width but the instrument must remain in mass calibration or can miss the peak 

entirely especially when the FWHM is low.59  A small drift in mass calibration will not affect the 

sensitivity gain from a narrow scan width over a large scan width as the time spent near the apex 

results in a greater signal than the brief time a large scan width spent on the apex. 

 

The scan width should be narrower when FWHM is lower, as a scan width of 0.7 m/z will cover 

most of a peak at 0.7 FWHM but the same scan width at 0.1 FWHM will spend time where no 

peak exists as the peak is much thinner.  The easiest way to avoid this is to set the scan width 

equal to or less than the FWHM.   A scan width of 1 m/z at 0.7 FWHM is common and is used 

with nominal mass values to ensure enough ion transmission though this practice is not the best 

for selectivity and sensitivity.  The scan width can be optimized for each SRM transition but 

typically the same scan width is used for all compounds in an analysis. 

 

Duty Cycle 

Duty cycle is the time that elapses until a SRM transition can be scanned again, in other words, 

the time between data points on a SRM transition chromatogram.96  Each SRM transition 

consists of a scan time where ion transmission occurs and a pause time to purge the quadrupoles 

and allow ions in the detector region to finish flight to the electron multiplier to avoid crosstalk.  

The scan time and pause time for each SRM transition in a scan cycle added together is the duty 

cycle, but in practice an approximate duty cycle is calculated by neglecting the pause times as 

these are small relative to the scan time and often times not reported by the manufacturer.  A 
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scan cycle starts on the lowest parent mass and increases to the highest parent mass then the next 

scan cycle returns on the lowest parent mass never scanning in decreasing parent masses.  SRM 

scans are not a continuous signal, instead the signal collected during the scan time is plotted as 

discrete points on a chromatogram and connected by straight lines to approximate where other 

discrete points would be if the duty cycle was lower. 

The duty cycle should be low enough to for a chromatographic peak to have at least 10 points.  

The broadness of a peak in a chromatogram determines the maximum duty cycle allowed while 

maintaining 10 points per peak.  Broad peaks can have higher duty cycles whereas narrow peaks 

will require a lower duty cycle.  The peak is effectively traced with 10-15 points with an error in 

area of less than 10%.96  More than 15 points per peak does not significantly improve area 

reproducibility, and at less than 10 points results in poor area reproducibility, retention time 

shifts, broaden peaks, lower peak heights, and loss of sensitivity.97 

 

Time segments for MS acquisition are used to lower the duty cycle while maintaining a high 

throughput analysis.  It is unnecessary to scan for a SRM transition before and after its retention 

time.  A complete list of SRM transitions for an experiment can be divided into smaller lists of 

similar retention times and placed in a time segment.  The duty cycle for the time segment is 

only of the SRM transitions in the smaller list and not of the complete SRM transitions list.  If 

the retention time of a compound or the broadness of its peak is in between time segments, then 

it is placed in both time segments resulting in two duty cycles for one peak if the time segments 

do not have equivalent duty cycles.  This will not affect area reproducibility if each duty cycle 

when considered separately would result in at least 10 points per peak.  It is also unnecessary to 

scan for SRM transitions during column re-equilibration, and MS acquisition is typically stopped 

allowing eluent to drain out of the ion source an alternative to a divert valve which adds more 

dead volume resulting in peak broadening. This conserves ion sources drying gases, extends the 

life of the electron multiplier, and prevents contamination resulting in charging.  Charging is 

when ions form a capacitor and repel incoming ions of the same charge resulting in steady loss 

of signal that can be diagnosed by switching polarities, discharging the capacitor, and observing 

the signal return when returning the original polarity.  The solution is to sonicate or clean the 

contaminated part with Alcanox. 
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Profile and Centroid Data Type 

Profile data type is typically used for tune and calibration as the ion intensities at sampling 

intervals are connected to form a continuous line displaying the broadness of a peak that results 

from a set FWHM resolution. 

 

Centroid data type is typically used for data acquisition as scan speeds are faster and the disk 

space requirement to store the data is smaller than profile data type allowing faster data 

processing.  The sum of the sampling intervals across a peak are displayed as a single centroid 

causing peak height to be greater than profile data type. 

 

SRM m/z Values  

The theoretical m/z values for SRM transitions may be rounded to the tenths place for 0.7 

FWHM as the resolution of a quadrupole fluctuates beyond a tenth of a m/z value.  Each SRM 

transition should have a unique parent mass as Xcalibur will combine SRM transitions of the 

same parent mass but different product masses into one chromatogram.  To prevent this add a 

thousandth m/z value to SRM transitions that share the same parent masses.  The rounding may 

cause the apex of the mass spectrum peak or the entire peak to be missed within a defined scan 

width at a lower FWHM such as 0.1 FWHM. 

 

Conclusion 

The three merits of optimizing SRM parameters are selectivity, sensitivity, and reproducibility.  

Parameters that affect selectivity are FWHM and scan width that sometimes result in an increase 

in sensitivity as noise or an interference is removed increasing S/N ratio.  Parameters that affect 

sensitivity are those that increase ion transmission including tube lens voltage, collision energy, 

collision gas pressure, FWHM, scan time, scan width, and duty cycle.  Parameters that affect 

reproducibility are tube lens voltage, collision energy, scan time, and duty cycle.   
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Selectivity parameters may be adjusted to remove an interference in an SRM transition.  To mass 

filter an interference, first lower the scan width as this will increase selectivity and sensitivity 

then try in combination or separately lowering FWHM as this will increase selectivity but 

decrease sensitivity.  If this fails to remove the interference, then try a different SRM transition 

sufficient for quantitation utilizing the same parent mass but different product mass for the 

compound including SRM transitions in the other polarity mode.  Negative mode is typically less 

sensitive as a given concentration of a compound makes less negative ions than positive ions but 

more selective as the background also forms less negative ions than positive ions.  If mass 

filtering does not resolve the interference, then seek another developed LC method.  

Understanding the instrument allows one to know its limitations and not design an experiment 

outside of the limits or attempt to transfer an incompatible LC/MS method. 

 

Alternative Methods to Remove SRM Interference without Mass Filtering 

As discussed before, interferences can be mass filtered by increasing selectivity, adjusting 

FWHM, scan width, or using a different SRM transition.  Alternatives to mass filtering an 

interference are adjusting sample preparation, chromatography and ion source.  Suitable changes 

to sample preparation to remove interferences include solid phase extraction (SPE), liquid-liquid 

extraction, and derivatization.  Derivatization changes the parent mass which leads to a different 

SRM transition though many times the ionization efficiency, chromatographic peak shape, and 

RT changes.98  Chromatography modifications can be made which result in baseline resolution of 

interference and target compound in the chromatogram, and these include alteration in flow rate, 

gradient, geometrics of column, add modifier to mobile phase to form adduct ions,92, 93, 94 

changing mobile phases, couple columns, or a column of different stationary phase.  Several ion 

sources are available such as ESI (Electrospray Ionization), APCI (Atmospheric Pressure 

Chemical Ionization), and APPI (Atmospheric Pressure Photoionization).  Each have their own 

ionization mechanism, and the interference may not ionize efficiently with another ion source.  

These techniques rely more on method development than method optimization and will not be 

discussed in detail.  Method development is labor intensive whereas method optimization results 

from small changes to an existing method that require little time investment.   
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Absolute Quantitation using External Calibration Curves 

Absolute quantification is achieved by a calibration curve used to determine the unknown 

concentration of a compound in a sample by applying a fit and interpolating.  It is common for 

quality controls to be prepared to test the % accuracy of the fit to predict a known concentration 

and not rely solely on the R2 value to determine suitability of a fit.  Alternatively, the calibration 

levels can be used to determine % accuracy at each calibration level as the fit is better or worse 

at prediction of concentrations in discrete ranges due to an imperfect fit.   

 

Calibration curves using an external standard or an external standard plus internal standard is 

common.  The internal standard corrects for ion suppression and ion transmission losses due to 

the clogging of the ITT by the following formula: 
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This area ratio is used as the y-value on the calibration curve.  The percent loss due to ion 

suppression or transmission is equal for both external standard and internal standard.  The 

percent loss of ion suppression and transmission is applied to both the external standard and 

internal standard which cancels the percent loss factor.  For example, a 10% loss due to ion 

suppression and transmission at an area ratio of 200/100 becomes 180/90 which remains an area 

ratio of 2.  The benefit of a calibration curve using external standard with internal standard is 

significant when a target compound free matrix is unavailable.  The sample solvent is used in the 

absence of a target compound free matrix to mimic sample conditions,48 but ion suppression in 

the sample matrix results in a lower area of target compound compared to the area of external 

standard at the same concentration.   
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ESI calibration curves are sigmoidal, and when a target compound free matrix is unavailable 

standard addition is not an option.  Standard addition determines the amount of target compound 

in the matrix from the x-intercept assuming linearity to the origin and a y-intercept of 0 in a 

target compound free matrix which is not the case for ESI calibration curves.  Calibration curves 

are collected from low to high concentrations to prevent erroneous carryover, and sample vials 

are not overfilled that would result in a vacuum.  A rough calibration curve before sample 

analysis is useful to determine if sample levels fall in the linear range, then later a calibration 

curve is used for quantitation.  It is important to concentrate or dilute samples to fall in the linear 

range of a calibration curve for ease of data processing and to maintain sensitivity.  Furthermore, 

in high throughput analysis, it may not be possible for all compounds in a sample to be in the 

linear portion due to varying concentrations thus a decision must be made on which compound 

or compounds have priority and must be in the linear portion.   

 

Data Processing 

Xcalibur Quan Browser was used with the ICIS algorithm and 5 smoothing points.  The formula 

for smoothing was the moving average.  The effect of smoothing is more profound with more 

smoothing points or with chromatographic peaks of fewer data points.  A smoothing point setting 

of 15 may smooth a chromatographic peak of a few data points to baseline noise or distort data 

introducing false peaks.  Smoothing changes the area and RT, but no more than instrumental 

variation that would result if same sample was injected again.   

This means if two unsmoothed chromatograms were obtained by duplicate injections of the same 

sample then smoothed chromatograms could have areas and RT in between the unsmoothed 

chromatograms.  Smoothing is applied before the algorithm sweeps the chromatogram helping 

the algorithm identify a peak and perform automatic integration which eases data processing and 

increases reproducibility as manual integration is not needed.   
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Isotope Labeled SRM Transitions of 
13

C Flux Experiment 

To determine all of the possibilities for isotopologues and isotopomers for parent and product ion 

a systematic approach was used.  The system of numbers separated by a hyphen is used to 

represent the number of 13C in the parent ion and the number of 13C in the product ion (Tables 

12-15).  To find all SRM transitions first set the parent ion to a number and determine all product 

ions possible.    Starting with a fully labeled parent ion ask yourself if all the 13C from the parent 

ion show up in the fragment what will the number be for the product ion.  Then do the same 

thing but change the question to if all the 12C from the parent ion show up in the fragment what 

will the number be for the product ion.  Finally, do all integer values between the maximum and 

minimum numbers for the product ion.  Repeat this process with the next lower labeled parent 

ion and continuing to a fully unlabeled parent ion. 

 

 

Table 1: Isotope Labeled SRM Transitions of Aspartate in 
13

C Flux Experiment 
 Ion Formula  

Parent 

C4H8NO4+ 

# of 
13

C 

in parent 

Product 

C2H4NO2+ 

# of 
13

C 

in product 
 

Comment 

 

Comment 

Fully labeled 4 2 Fully labeled 
Next lower labeled 

parent ion 
3 
 
3 

2 
 
1 

Maximum # for product ion,   
all 13C from parent in fragment 

Minimum # for product ion,  
 all 12C from parent in fragment 

Next lower labeled 
parent ion 

2 
 
2 
 
2 

2 
 
1 
 
0 

Maximum # for product ion,   
all 13C from parent in fragment 
All integer values in between 

maximum and minimum 
Minimum # for product ion,  

 all 12C from parent in fragment 
Next lower labeled 

parent ion 
1 
 
1 

1 
 
0 

Maximum # for product ion,  
 all 13C from parent in fragment 

Minimum # for product ion,  
 all 12C from parent in fragment 

Fully unlabeled 0 0 Fully unlabeled 
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Material for Results and Discussion taken from: 
 
Ankrah, N. Y. D., May, A. L., Middleton J. L., Jones D. R., Hadden, M., Gooding, J. R., LeCleir, 
G. R. , Wilhelm S. W., Campagna, S. R. and Buchan, A. Metabolic response of a Roseobacter to 
phage infection: insights into the influence of viral lysis on ocean biogeochemistry, submitted. 
 

Results and Discussion 

 

Composition of Extracellular Small Molecule Components following Phage-Induced Cell 

Lysis 

As the water-soluble metabolite component of DOM is likely to be comprised of molecules that 

are more readily utilized than macromolecules, which often require processing prior to uptake 

and utilization,19 we set out to determine how viral infection affects these labile nutrients. Cell-

free filtrates of phage-amended and control cultures were collected 480 min post infection, 240 

min after initiation of phage-induced cell lysis, and were analyzed for the presence of a suite of 

317 metabolites, most of which are core components of carbon and nitrogen utilization as well as 

the biosynthesis of macromolecular inputs. Fifty-six of these metabolites were detected in 

filtrates from either or both treatments (Table 2). Interestingly, the metabolite concentrations in 

the infected cultures were not uniformly higher for every molecule. Instead, an increase in 29%, 

no change in 45%, and a decrease in 27% of the concentrations for the detected metabolites were 

noted (Table 2), indicating that phage infection altered the labile small molecule composition of 

the DOM. 

 

In general, the metabolites with decreased concentrations in the filtrates of the infected cultures 

were primarily those that are expected to be readily recycled, such as components of central C 

and N metabolism and small co-factors. This suggests intact cells in the virus-amended cultures 

remained active and were able to rapidly consume material from lysed cells to support their own 

metabolism, consequently depleting selected metabolites in the extracellular milieu (Table 2). 

Metabolites with increased relative concentrations in the filtrates were those typically related to 

cellular stress or those that are potentially too large or rarely encountered to be effectively 

transported into the cell. For example, the phosphatidylcholine, phosphatidylethanolamine, and 

ethanolamine pools in the filtrates of the phage treated culture were dramatically elevated. The 
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increase of these bacterial cell wall constituents in the phage-amended culture filtrates is 

consistent with a need for the cells to adapt to the physical stresses imposed from viral load as 

well as degradation of cell wall material from lysed cells. Of the amino acids that were detected 

in filtrates, several of those with the largest increases in concentration for the phage amended 

cultures are also part of the normal cellular stress response (e.g. asparagine, cysteine, homoserine 

and methionine).99 All detected CoA-activated carboxylic acids were elevated in the infected 

cultures. While these compounds serve as intermediates of the TCA cycle, amino acid 

metabolism and fatty acid biosynthesis,100 they may not be efficiently transported and 

assimilated due to their large size and/or low availability under normal conditions. However, 

urea, a nitrogen-rich byproduct of de novo nucleotide biosynthesis,100 was also elevated in 

infected cultures, despite being neither large nor rarely encountered. 
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Table 2: Metabolite Content of Filtrates of Infected Sulfitobacter sp. 2047 
Relative to Control Cultures at 480 min Post Infection 

Amino acids Fold change
a
 

Asparagine 2.37↑ 
Methionineb 1.83↑ 
Cysteine 1.74↑ 
Tryptophan 0.73 
Threonine 0.10↓ 
Homoserine 1.87↑ 
GABAb 1.45 
Betaine 1.29 
1-Methylhistidine 1.28 
O-Acetylserine 0.91 
S-Adenosylmethionine 0.88 
N-Acetylornithineb 0.56↓ 
TCA cycle 
Malonyl CoA 1000.00↑ 
Succinyl CoA 1.34 
Succinate  0.78 
[Fumarate, Maleate, & Isoketovalerate]c 0.72 
Citrate 0.70 
2-Oxoglutarateb 0.62↓ 
3-Phosphoglycerate 1.89↑ 
[1,3 & 2,3 Bisphosphoglycerate] 1.10 
Phosphoenolpyruvate 0.61↓ 
Lipids  
[Phosphatidylcholine, Phosphatidylethanolamine &     
          Ethanolamine]c 

1000.00↑ 

Propionyl CoA 79.81↑ 
Ethanolamine 2.93↑ 
Palmitate 0.97 
Farnesylpyrophosphate 0.57↓ 
Nucleic acids, Nucleosides and Nucleotides  
Deoxyadenosineb

 4.69↑ 

Thymineb 2.62↑ 
Cytosineb 1.55↑ 
dCDP 1.24 
UDP 1.12 
5'-Methylthioadenosine 1.05 
Orotate 0.95 
Dihydrooroate 0.87 
N-Acetylglucosamine-1-Phosphate 0.80 
TDP 0.57↓ 
GMP 0.42↓ 
5-Methyldeoxycytidineb 0.35↓ 
Pentose phosphate  
Fructose-1,6-Bisphosphate 0.99 
Sedoheptulose-7-Phosphate 0.71 
Erythrose-4-Phosphate 0.00↓ 
Cofactors, vitamins and electron carriers  
Acetyl CoA 35.17↑ 
Pyridoxine 4.63↑ 
Nicotinate 0.95 
5-Methyltetrahydrofolate 0.85 
Methylmalonic Acid 0.79 
Thiamine 0.29↓ 
FAD 0.00↓ 
NAD 0.00↓ 
Other  
Urea 2.78↑ 
DL-Pipecolic Acid 1.89↑ 
Acetyl Phosphate 0.92 
4-Hydroxybenzoate 0.81 
Citraconated 0.42↓ 
Phenylpyruvateb 0.37↓ 
Lactate 0.32↓ 
aMetabolite levels in infected cultures are expressed relative to levels in control 
cultures at 480 min. Elevated metabolites, ↑,(fold change ≥1.5) and depressed 
metabolites , ↓,( fold change ≤ 0.67). 
bNot detected in intact cells, detected in filtrates only 
cMetabolites are indistinguishable with the applied method 
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Alterations in Intracellular Metabolite Pools and Flux during Phage Infection  

The set of molecules released upon phage-induced cell lysis is in part a reflection of the 

intracellular metabolite pools of the host. Yet, surprisingly little is known of the influence of 

phage infection on host metabolism at a global level. Much of the knowledge concerning 

bacteriophage-host interactions comes from studies of T-even (T2, T4, and T6) viruses that 

infect Escherichia coli. Both lysogenic and lytic coliphages initially promote similar alterations 

in host metabolism101 that halt host cell DNA synthesis,102 degrade host DNA,103, 104, 105 and 

assemble the machinery for viral production.102, 105  These activities drastically alter aspects of 

host metabolism.102, 105, 106, 107  As the breakdown of host DNA may not fully supply precursors 

needed for phage DNA synthesis,108 an initial lag in E. coli metabolism is followed by rapid 

uptake of nutrients to be used for de novo synthesis of macromolecular building blocks.109  In 

fact, many viruses contain auxiliary metabolic genes (AMGs) that are present to overcome rate 

limiting steps in host biosynthesis18 and genes encoding enzymes involved in pyrimidine 

biosynthesis are encoded in the Φ2047B phage genome (Figure 1). It is possible that these 

enzymes are present to support the increasing need for viral DNA during infection. A dramatic 

example of host manipulation has been demonstrated in marine cyanophage which encode and 

express photosynthesis proteins homologous to those found in their hosts.110  The extent to which 

pathway specific alterations of host metabolism is a universal strategy among phages remains 

unknown.  

 

 

 

Figure 1: Phage 2047 genome. φ2047B is a N4-like lytic phage of the Podoviridae family. 
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As non-enveloped phage are comprised primarily of nucleic acid and protein, typically in an 

equal mass ratio,111 we reasoned that if major pathway specific influences of viral infection on 

host metabolism were present that they would be manifested in pathways that contribute to the 

synthesis of the biochemical building blocks for these macromolecules. To assess the effect of 

phage production on the metabolism of the host population, we measured the relative 

concentrations of 83 central pathway metabolites (the “core metabolome”) in infected and 

control populations at discrete time points throughout the infection cycle (Figure 2a). These data 

can be viewed in two ways: with the relative concentrations of intracellular metabolites either 

being evaluated with or without normalization to cell density. Without cell normalization, these 

data give a relative measure of the total pool of intracellular metabolites within an equal volume 

of the culture (Figure 3). Interestingly, the concentrations were nearly identical for the majority 

(~70%) of metabolites in phage-amended and control populations at all time points. However, 

significant temporal differences were evident in UDP-activated sugars (e.g. UDP-glucose, UDP-

glucuronate/galacturonate, and UDP-N-acetylglucosamine) that may reflect alterations in cell 

wall integrity in phage-infected bacteria. The relative concentration of UDP-glucose in the 

infected population was elevated 15 min after phage addition and remained fairly constant 

throughout the experiment. UDP-glucuronate/galacturonate became elevated over time with a 

13-fold spike in concentration at 120 min post infection, the time point preceding wide spread 

cell lysis. Conversely, the relative concentration of UDP-N-acetylglucosamine decreased by half 

at the 120 min time point. UDP-sugars are precursors of cell envelope components, including 

peptidoglycan and surface polysaccharides.112  Changes in the relative concentrations of these 

compounds in infected populations might be expected given that alterations in host cell envelope 

composition and architecture typically occurs following phage infection,3, 104 and this is 

consistent with an increase in cell wall components detected in the corresponding filtrates from 

the final time point (Table 2). As peptidoglycan is produced by actively growing and dividing 

cells,112 these data may also indicate alterations in the specific growth rate of infected bacteria 

which is not readily evident in the net cell densities. 
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Figure 2: a) Heatmap of intracellular metabolites of phage amended and control Sulfitobacter sp. 2047 populations. Metabolite concentrations 
are normalized to bacterial cell number, determined by microscope count, and expressed relative to levels measured in the uninfected host cells at 
the corresponding time point.  Columns correspond to minutes post infection. Values are average areas of duplicate biological and technical 
replicates. Ratios are log 2 transformed and plotted on a color scale.  b) Sulfitobacter sp. 2047 cell density (at OD540), control, phage amended, 
and phage concentration at each metabolite sampling time point reported in panel a. Turbidity declines are indicative of phage-induced lysis. 
Phage numbers were derived from qPCR assays. Averages and ranges of biological duplicates are reported. Absolute concentrations of glutamine 
and glutamate in c) control and d) phage amended Sulfitobacter sp. 2047 populations. Values represent duplicate biological and duplicate 
technical replicates. Error bars show the standard error of the mean. e) glutamate to glutamine ratios for control and phage amended populations 
throughout the experimental time course. f) Variation in intracellular metabolite concentrations between phage amended and control populations 
shown in panel a. Fold changes > 1.499 and p-values < 0.1 were considered significant. g) Biosynthesis of glutamate and glutamine is linked to 
TCA cycle intermediates and these two metabolites are interconverted. Data for selected metabolites are shown in heatmap format. 
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Figure 3:  Metabolome dynamics during 
levels during the course of phage infection expressed relative to levels measured in the 
uninfected  host cells at time t=0. Ratios are log
correspond to metabolites measured by LC
minutes post infection. The host cells and phage strains used in each time are indicated. Values 
are averages of duplicate independent biological and technical replicates.

Metabolome dynamics during phage infection. Heatmap of intracellular metabolite 
levels during the course of phage infection expressed relative to levels measured in the 
uninfected  host cells at time t=0. Ratios are log2 transformed and plotted on a color scale. Rows 

etabolites measured by LC-triple quadrupole MS/MS. Columns correspond to 
minutes post infection. The host cells and phage strains used in each time are indicated. Values 
are averages of duplicate independent biological and technical replicates. 
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Heatmap of intracellular metabolite 
levels during the course of phage infection expressed relative to levels measured in the 

transformed and plotted on a color scale. Rows 
triple quadrupole MS/MS. Columns correspond to 

minutes post infection. The host cells and phage strains used in each time are indicated. Values 
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To further assess the effect of phage amendment on cellular metabolism, the cell density 

normalized data were analyzed to evaluate the relative concentrations of metabolites within 

individual cells. These data highlight the distinct metabolic trajectories for, and provide insight 

into, the intracellular metabolic concentrations of infected versus control populations (Figure 2a). 

Dynamics in phage production and host population survival can be used to divide the time course 

of the experiment into two phases: an early infection period (0-120 min) and a later infection 

period (240-480 min). The per cell metabolite concentrations also support this division. During 

the early infection period, <25% of the measured metabolites were significantly different (p ≤ 

0.05 and at least 1.5 fold change) between the infected and control populations. During the 

second phase of the time-course, phage production had leveled off, the host population had 

dropped to half of its peak cell density (Figure 2b) and the variation in the core metabolome 

became more dramatic relative to the uninfected controls. In fact, 80% of metabolite 

concentrations were significantly elevated (p-value < 0.1) in phage-amended populations at 480 

min (Figure 2f). No significant decreases were noted for any metabolite. Thus, phage-amended 

populations transition to having an increased intracellular metabolite concentration during the 

infection cycle. The statistical differences within these 66 metabolites clearly point to the 

population of infected cells being physiologically distinct from those that are uninfected. 

 

Since the relative increase in pool size can result from either an increase or decrease in metabolic 

activity as concentrations can build up from enhanced biosynthesis or from depressed utilization 

of a molecule,113 we performed experiments with 13C-acetate and monitored the incorporation of 

the label into 14 select TCA cycle components, N assimilation intermediates, and amino acids to 

assess their turnover rates as well as general cellular metabolic activity. This was done for 

populations in both the early (immediately following virus addition) and late (240 min post 

infection) phases of the time course described above. While the generation time of the bacterium 

was ~6 hr, the incorporation of labeled substrates into metabolites occurred within minutes 

(Appendix, Tables 12-15). With the exception of glutamate and glutamine, the cell normalized 

turnover rates for all measured metabolites were indistinguishable between the control and viral 

treated cultures for both phases of the infection cycle.  As metabolite concentrations were largely 

similar between infected and control populations during these early time points (Figure 2f), the 

rate data further supports the observation that host metabolism was not dramatically altered 
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within the first hour following phage addition. However, the elevated metabolite concentrations 

in infected populations during the later phase of infection signifies an increase in metabolic 

activity as a greater concentration of metabolites were being utilized and replenished by these 

populations in the same period of time. Although the glutamate and glutamine pools were being 

turned over more slowly in the infected cultures (relative rates of 0.80 and 0.72 respectively 

(Figure 4), glutamine displayed a dramatic increase in concentration over the time course of the 

experiment culminating in a 6-fold excess in the phage amended cultures by the final time point. 

The magnitude of the glutamate pool increase was not as dramatic (1.37-1.67 fold) and 

concentrations of this metabolite remained fairly consistent throughout the experiment (Figure 

2d). As flux is proportional to both pool size and turnover rate, the higher cellular concentrations 

of these metabolites in the infected cultures results in a flux that is essentially equivalent to those 

of the control populations for glutamate and higher for glutamine during the late phase of the 

experiment, even though the entire pool is consumed more slowly (Figure 4). Collectively, these 

data indicate that in comparison to controls, cell metabolism is measurably higher during the 

later stages of the infection cycle. 

 

 

 

Figure 4: Incorporation of acetate derived 13C into glutamine and glutamate in phage amended 
and control populations during two distinct phases of infection (0 and 240 minutes post 
infection). The rate constant is determined by SigmaPlot (Methods and Materials). Flux is 
calculated by multiplying the fold change by the rate. Fold changes between 0.67 and 1.5 were 
considered as no change in concentration. Values are averages of duplicate biological and 
duplicate technical replicates. 
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Post Infection Post 13C Addition Fold Changea Rate Constanta, k Fluxa Fold Changea Rate Constanta, k Fluxa

0 0 1.16 0.91 1.06 1.18 0.91 1.08

30 30 1.46 0.91 1.34 1.07 0.91 0.98

240 0 2.09 0.72 1.50 1.06 0.80 0.84

270 30 3.64 0.72 2.62 1.24 0.80 0.99

acalculated as a ratio of Infected/Control per time point
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The small molecule composition of the filtrates as well as the intracellular metabolite 

concentrations and turnover rates suggest that the phage-amended cultures were incorporating 

nutrients from recycled sources, i.e. from small molecules that were liberated during viral lysis 

or from breakdown of unlabeled macromolecules. The strongest evidence for this phenomenon 

comes from the data for glutamate and glutamine, which despite showing high intracellular 

concentrations in infected populations were undetectable in the culture filtrates (Table 2). Given 

that these compounds are typically preferred sources of N (over ammonium) in bacteria 3, 4, 5, 114, 

115 it is likely that these compounds were released from lysed cells and then rapidly assimilated 

by metabolically active cells. Furthermore, these compounds typically have high intracellular 

concentrations in bacteria, with glutamate identified as the single most abundant metabolite in 

actively growing, acetate-fed E. coli.
116  To verify Sulfitobacter sp. 2047 also contained high 

concentrations of both of these metabolites, their absolute concentrations were determined for 

the “core metabolome” experiment and found to be similar to what has been reported for E. coli 

(1.5 x 10-14 g/cell and 1.1 x 10-15 g/cell for glutamate and glutamine, respectively;116 (Figure 2c-

d), further supporting the argument that these two compounds could serve as important sources 

of regenerated N in phage-amended cultures. Finally, the intracellular glutamate to glutamine 

ratio has been used as an indicator of nitrogen availability in many bacterial species, with an 

increased ratio indicating growth under nitrogen limiting conditions.117   An analysis of this ratio 

for both phage-amended and control cultures indicates that the control population, which shows a 

progressive increase in this ratio through the growth cycle, is likely experiencing decreased N 

availability as the cultures reach the end of exponential phase (Figure 2e). The shift in the ratio is 

primarily driven by a decrease in the glutamine concentration. In contrast, the phage-amended 

cultures maintained a constant C:N ratio throughout the experiment, and these cells were able to 

increase both their glutamate and glutamine concentrations. As sufficient ammonium was 

provided to supply the N required in both cultures, these data indicate that the liberation of 

higher quality C and N containing nutrient sources are likely beneficial to the remaining 

members of the infected population.  
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External Calibration Curves of Glutamine and Glutamate 

The calibration curves for glutamine and glutamate have a less than optimum R2 value due to the 

presence of salt.  When the calibration curves were collected with standards dissolved in 

extraction solvent without the added ratio of minimal media the reproducibility of duplicate 

injections and R2 value was improved along with an increase in slope affirming an online 

desalting column would improve quantitation. 68  The salt causes ion suppression, clogs the ITT, 

and affects shape of chromatographic peaks.  The reproducibility of duplicate biological and 

duplicate technical replicates in Figure 4 suggest the use of an internal standard would correct for 

irreproducibility of duplicate injections but the slope of the calibration curves would still be less 

than if salt was not present meaning a loss in sensitivity would remain.   
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Figure 5: External standard calibration curve of glutamine.  One dilution series and duplicate 
injections per calibration level.   
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Figure 6: External standard calibration curve of glutamate.  One dilution series and duplicate 
injections per calibration level.   
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Calculations 

Figure 2a and Figure 3 

Average areas of duplicate biological and duplicate technical replicates: 

 

����� �� ���. ���. 1 � ���� �� ����. ���.
���� # �� ���. ���. 1 � ���� �� ���. ���. 2 � ���� �� ����. ���.

���� # �� ���. ���. 2 �
# �� ����  

 

The following Microsoft Excel formula was applied to calculate fold change: 

 

�IF( AND (Avg. Infected Area � “#DIV/0!”, Avg. Uninfected Area � “#DIV/0!” ), “N/A”, IF( 
Avg. Uninfected Area � “#DIV/0!”, 1000, IF( Avg. Infected Area � “#DIV/0!”, 0.001, Avg. 
Infected Area / Avg. Uninfected Area) ) ) 
 

Where Avg. Uninfected Area is at the relevant time point. 

 

Figure 2c and Figure 2d 

After interpolation of concentration using the linear equation of the external standard calibration 

curves the following formula was applied: 
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Material for Isolation of Bacterial and Phage Strains, Culture Conditions and Sample Collection, 

and Flux Analysis taken from: 

 
Ankrah, N. Y. D., May, A. L., Middleton J. L., Jones D. R., Hadden, M., Gooding, J. R., LeCleir, 
G. R. , Wilhelm S. W., Campagna, S. R. and Buchan, A. Metabolic response of a Roseobacter to 
phage infection: insights into the influence of viral lysis on ocean biogeochemistry, PNAS, in 

press. 
 

Methods and Materials 

 

General Methods 

The HPLC-ESI-MS-MS system used for detection of metabolites included a Finnigan Surveyor 

MS Pump Plus, a Finnigan Surveyor Autosampler upgraded to Autosampler Plus Specifications, 

an Ion Max API Source operating in ESI mode, and a Finnigan TSQ Quantum Discovery MAX.  

A Dell Precision 390 was used as the data system.  Xcalibur 2.0.7 was used for data acquisition 

and data processing.  HPLC separations were performed using two separate columns for 

detection of positive ions and negative ions.  Positive polarity separates in a Phenomenex Luna 

250 x 2.00 mm NP column packed with 5 µm pore size, 100 Å diameter aminopropyl particles at 

10.0°C column temperature and 150.0 µL/min flow rate.  Negative polarity separates in a 

Phenomenex Synergi 150 x 2.00 mm RP column packed with 4 µm pore size, 80 Å diameter C18 

particles at 25.0°C column temperature and 200.0 µL/min flow rate. 

 

Isolation of Bacterial and Phage Strains 

Sulfitobacter sp. 2047 was isolated from a mesocosm study in Raunefjorden, Norway in 2008 by 

enrichment with dimethylsufoniopropionate (DMSP). Agar plates (0.8% w/v Noble Agar [Difco, 

Sparks, MD, USA]) were made using 0.22 µm filtered fjord water and 10mM DMSP (kindly 

provided by J. Henrikson and W. Whitman UGA).  The strain was subsequently maintained on 

Artificial Seawater (ASW) 1.0% agar plates [230 mMNaCl, 5.3 mMKCl, 3.9 mM CaCl2, 0.1 

mM H3BO3, 11.8 mM MgSO4, 11.2 mM MgCl2, 0.8 mM NaHCO3, 5 mM NH4Cl, 75 µM 

K2HPO4, and 10 mMTris-HCl (pH 7.5)] supplemented with 0.25% yeast extract (Fisher, Fair 

Lawn, NJ, USA) and 0.4% tryptone (Fisher, Fair Lawn, NJ, USA) at 20°C. Filter-sterilized 
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(0.22µm) stock solutions were added to the autoclaved basal salt solution along with vitamins, 

iron, and trace metals. Unless otherwise stated, all further growth experiments with the 

bacterium, including infections, were performed in ASW at 20°C.  

 

Phage were isolated from viral concentrates of Raunefjorden seawater using standard 

bacteriophage enrichment. Viral (ca. 10X) concentrates were produced using a Labscale 

(tangential flow filtration) TFF System (Millipore, Billerica, MA) equipped with a Pellicon XL 

50 Ultrafiltration Cassette (Millipore).  Phage specific for Sulfitobacter sp. 2047 were enriched 

by adding early exponential phase host cells grown in ASW to an OD540 of 0.15-0.17 with the 

viral concentrate at a ratio of 2:1:2 of cell culture: ASW: Raunefjorden viral concentrate. 

Following incubation at 20°C for 48h, enrichments were centrifuged at 5000 x g for 10 min and 

then filtered through a 0.22 µm cellulosic filter (BD, Franklin Lakes, NJ, USA). Clarified phage 

enrichments were then subject to plaque assay using the same host. Plaques purification and 

preparation of phage stocks were based on standard methods.118 Isolated phage were plaque-

purified six times. Once purified, concentrated lysates were made by gently washing soft agar 

from 10 completely lysed plates of each phage strain using 7 mL of MSB buffer [230 mMNaCl, 

5.3 mMKCl, 3.9 mM CaCl2, 0.1 mM H3BO3, 11.8 mM MgSO4, 11.2 mM MgCl2, 0.8 mM 

NaHCO3, 5 mM NH4Cl, 75 µM K2HPO4, and 10 mMTris-HCl (pH 7.5)]. The final purified 

phage concentrate was 0.22 µm filtered and stored at 4°C in the dark. 

 

Culture Conditions and Sample Collection 

To carry out an analysis of the metabolite repertoire in phage infected Sulfitobacter sp. CB2047, 

the bacterium was grown in ASW supplemented with 10 mM sodium acetate (Fisher, Fair Lawn, 

NJ, USA) at 25°C in the dark with 200 rpm agitation. Once cultures reached an OD540 of ca. 

0.17, phage were added at a multiplicity of infection of 4 (4 phage cell-1). No phage added 

controls were run in parallel. Samples were collected for intracellular metabolites analysis prior 

to phage addition (t=0) and then 15, 30, 60, 120, 240, 360 and 480 min post phage addition.   

Sampling of the extracellular metabolites in the first cultures was performed after 480 min of 

growth in both the viral infected and control cultures. 
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Flux Analysis 

For flux analyses, 20mM 13C-acetate was added to a set of control and viral infected cultures at 

either 0 min or 240 min post infection.  Samples were then taken from each culture to which 13C-

acetate had been added at 0, 5, 15, 30 60, 120 post-addition.  To investigate any changes in 

central metabolic fluxes during infection we monitored the incorporation of 13C-labeled acetate 

into intracellular metabolites over the course of infection cycle. 13C-labeled sodium acetate (1,2-

13C2, 99%, Cambridge Isotope Laboratories, Andover, MA, USA) was added to both infected 

and uninfected cultures at two distinct time points: immediately prior to phage addition (t=0) and 

at the onset of phage proliferation (t=240 min). Samples were collected  ɸ 2 min following 

addition of 13C acetate at 5, 15, 30, 60, 120, and 240, 245, 255, 270, 300, 360, 480 min.  

 

Extraction Procedure 

Extraction of metabolites followed methods developed by Rabinowitz and coworkers119 with 

some modifications.  Filter culture aliquots of 10 mL using Magna Nylon Filters (Millipore, 

Billerica MA) and house the filters cell side down in 60 x 15 mm polystyrene petri dishes 

holding 1.3 mL of 0.1 M formic acid 2:2:1 acetonitrile:methanol:water extraction solvent for 15 

min at -20°C.  Relocate the petri dishes to a 4°C controlled climate, flip filters cell side up, and 

pipette extraction solvent over the surface for 60 s.  Transfer the solution into a 1.5 mL 

Eppendorf tube and centrifuge using an Eppendorf Centrifuge 5415 D set at parameters of 5 min, 

13.2 rpm or 16.1 rcf, and 4°C.  Aspire the supernatant and deliver 300 µL to each two 

autosampler vials.  Data acquisition of one autosampler vial begins immediately and the other is 

reserved at -80°C for the opposite polarity following completion of the first chosen polarity. 

 

Filtrates 

Freeze filtrate aliquots of 5 mL at -80°C then place in a VirTis 3.5 L DBTES Lyophilizer and 

relocate to a 4°C controlled climate.  Resuspend lyophilized filtrates in 300 µL of extraction 

solvent and centrifuge using an Eppendorf Centrifuge 5415 D set at parameters of 5 min, 13.2 

rpm or 16.1 rcf, and 4°C.  Aspire the supernatant and deliver to a 1.5 mL Eppendorf tube.  

Centrifuge again under same parameters.  Aspire the supernatant and deliver 100 µL to each two 

autosampler vials.   
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Chromatographic Details 

Partitioning of metabolites followed methods developed by Rabinowitz  and coworkers with 

some modifications.20, 120  A Finnigan Surveyor MS Pump Plus coupled to a Finnigan Surveyor 

Autosampler, upgraded to Autosampler Plus specifications, is used to perform high-performance 

liquid chromatography (HPLC) plumbed with 1/16 OD 0.003 in. ID polyether ether ketone 

(PEEK) tubing.  A 4°C autosampler tray temperature and partial loop injections of 10 µL 

utilizing a 25 µL sample loop is used for both polarities.   

 

Positive Mode 

Positive polarity separates in a Phenomenex Luna 250 x 2.00 mm NP column packed with 5 µm 

pore size, 100 Å diameter aminopropyl particles at 10.0°C column temperature and 150.0 

µL/min flow rate.  Mobile phases are 95% 20 mM ammonium acetate, 20mM ammonium 

hydroxide in water, 5% ACN at pH 9.4 (solvent C) and ACN (solvent D).  A 40 min gradient 

follows: t) 0 min, 15% solvent C : 85% solvent D; t) 15 min, 100% solvent C : 0% solvent D; t) 

28 min, 100% solvent C : 0% solvent D; t) 30 min, 15% solvent C : 85% solvent D; t) 40 min, 

15% solvent C : 85% solvent D. 

 

Negative Mode 

Negative polarity separates in a Phenomenex Synergi 150 x 2.00 mm RP column packed with 4 

µm pore size, 80 Å diameter C18 particles at 25.0°C column temperature and 200.0 µL/min flow 

rate.  Mobile phases are 97% 15mM acetic acid, 11mM tributylamine (TBA) in water, 3% 

methanol (solvent A) and methanol (solvent B).  A 50 min gradient follows: t) 0 min, 100% 

solvent A : 0% solvent B; t) 5 min, 100% solvent A : 0% solvent B; t) 10 min, 80% solvent A : 

20% solvent B; t) 15 min, 80% solvent A : 20% solvent B; t) 30 min, 35% solvent A : 65% 

solvent B; t) 33 min, 5% solvent A : 95% solvent B; t) 37 min, 5% solvent A : 95% solvent B; t) 

38 min, 100% solvent A : 0% solvent B; t) 50 min, 100% solvent A : 0% solvent B.   
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Mass Spectrometric Detection Parameters 

Eluent traversed through a 0.10 ID x 0.19 mm OD fused silica tube and into an Ion Max ion 

source housing of a Finnigan TSQ Quantum Discovery MAX operating in electrospray 

ionization (ESI) mode.  The polyimide sheath coating of fused silica tubing was removed from 

the spray tip to prevent elongation due to ACN.  The ion source was set at depth C, front-to-back 

1.30, and side-to-side 0. Positive polarity uses a 4500 ESI spray voltage and negative polarity 

uses a 3000 ESI spray voltage.  The ion transfer capillary temperature was 290°C.  Nitrogen was 

used as sheath, auxillary, and sweep gas set at 40, 5, and 1 arbitrary units, respectively, and 100 

psi from the source.  Ultra high purity argon was used as collision gas and was set to 1.5 mTorr 

in the collision cell and 20 psi from the source.  The scan type SRM was used with parameters 

0.05 s scan time, 1 m/z scan width, and Q1 & Q3 peak width (FWHM) 0.7 Da, 0V skimmer 

offset voltage, centroid data type, and 1 microscan.  Tuned tube lens voltage was used.  

Complete SRM parameters for the majority of metabolites have been reported by Rabinowitz 

and coworkers.20  All Finnigan instruments were operated using Xcalibur 2.0.7 from a Dell 

Precision 390.  All power systems were connected to a Toshiba 1600 EP Series UPS 

(Uninterruptible Power Supply). 

 

Data Processing 

Electronically stored chromatograms were viewed using Xcalibur 2.0.7 Quan Browser and peak 

area values were downloaded to Microsoft Excel 2007 where fold changes and p-values were 

calculated.  Heat maps were generated using Gene Cluster 3.0 and viewed using Java TreeView 

1.1.5.121  SigmaPlot was used for calculation of rate constants.  An exponential decay formula 

was obtained: 

 

y = Ae
-kx

 + c 

 

SigmaPlot solves for the rate constant k. 
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Sample Matrix for External Standards 

A 10 mL volumetric flask was zeroed and filled to its mark with minimal media thermally 

equilibrated at 22˚C.  The weight of 10 mL of minimal media was then used to calculate density: 

 

 

<���@�� @���� (D)    
>��?@� �� ��� I (@B) � J�� �
K �� @���@�� @���� (D/@B) 

 

 

Then the weight of a dry Magna Nylon Filter was recorded and the weight of a wet Magna Nylon 

Filter after filtering 10 mL of minimal media.  The difference was taken in the wet and dry 

weights to obtain the weight of minimal media on the filter.  This was repeated twice more and 

the average weight of minimal media on the filter was used for further calculations: 

 
 

Average weight of minimal media on filter (g) χ Density of minimal media (mL/g) � 
Average volume of minimal media on filter (mL) 

 
 

The average volume of minimal media on the filter was used to determine a ratio of extraction 

solvent to minimal media to reproduce the sample matrix.  The volume of extraction solvent is 

already determined by experimental design to be 1.3 mL and the average volume of minimal 

media on a filter was determined to be 0.1472 mL.  Due to limitations of pipettes the ratio was 

rounded to 1.3:0.147.  This ratio of extraction solvent to minimal media was used as the solvent 

in preparing glutamine and glutamate standards. 
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Data Processing for the Calculation of Absolute Quantitation using External Standard 

A calibration curve was used to calculate the absolute quantitation of glutamine and glutamate as 

all other metabolites are relative quantitation through fold changes of area ion counts. 

 

Glutamine 

Serial dilutions were made of glutamine standard.  35 mg of glutamine (+99% Sigma-Aldrich) 

was weighed on weighing paper then a 10 mL volumetric flask with a glass funnel was zeroed.  

The glutamine was then transferred into the glass funnel and the actual weight glutamine 

transferred was recorded.  1.3:0.147 extraction solvent:minimal media was used to wash the 

glutamine down and for dilution.  Then half log dilutions were performed using a pipette to 

transfer 750 µL x 2 from the stock to a 5 mL volumetric flask then to another 5 mL volumetric 

flask and so on until enough dilutions were obtained to produce a calibration curve where all 

measured values could be interpolated.  The sampling order for chromatographic injections was 

from lowest concentration to highest to prevent erroneous carryover.  One dilution series but 

each sample was injected in duplicate. 

 

The calibration curve was graphed on a log10 scale to display calibration levels equidistance 

apart.  A linear equation was obtained using least-squares linear regression of the data: 

 

Area of Glutamine � m ;Glutamine= � b 
 

The [Glutamine] in samples can be determined as Area of Glutamine is known. 

 

Glutamate 

Serial dilutions were made of glutamate standard.  35 mg of glutamate (+99% Sigma Aldrich) 

was weighed on weighing paper then a 10 mL volumetric flask with a glass funnel was zeroed.  

The glutamate was then transferred into the glass funnel and the actual weight glutamate 

transferred was recorded.  1.3:0.147 extraction solvent:minimal media was used to wash the 

glutamate down and for dilution.  Then half log dilutions were performed using a pipette to 

transfer 750 µL x 2 from the stock to a 5 mL volumetric flask then to another 5 mL volumetric 

flask and so on until enough dilutions were obtained to produce a calibration curve where all 
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measured values could be interpolated.  The sampling order for chromatographic injections was 

from lowest concentration to highest to prevent erroneous carryover.  One dilution series but 

each sample was injected in duplicate. 

 

The calibration curve was graphed on a log10 scale to display calibration levels equidistance 

apart.  A linear equation was obtained using least-squares linear regression of the data: 

 

Area of Glutamate � m ;Glutamate= � b 
 

The [Glutamate] in samples can be determined as Area of Glutamate is known. 
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Chapter 2 

Changes in Choline Esters in Blood and Milk during Early, Mid, and Late 

Lactation in Dairy Cows 
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Material for Abstract and Introduction taken from: 

 

Artegoitia, V. M., Middleton, J. L., Harte, F., Campagna, S. R., and de Veth, M. J. Changes in 

Choline Esters in Blood and Milk during Early, Mid, and Late Lactation in Dairy Cows, in 

preparation. 

 

Abstract 

 

Choline is an essential nutrient for humans and production animals. The ruminant is a unique 

animal model as almost all dietary choline is degraded in the rumen and the requirement for 

choline is not established for dairy cows. Therefore, understanding what choline forms are 

secreted by the mammary gland may provide an understanding of the lactation requirement for 

choline in the dairy cow. The objective of this study was to characterize the changes in choline 

and choline esters in blood and milk occurring in early, mid, and late lactation. Twelve Holstein 

cows were selected at calving and managed under the same diet, without choline 

supplementation. Throughout the study milk and blood samples were collected three times 

during early (wk 1, 2 and 3), mid (wk 4, 5 and 6), and late lactation (wk 7, 8, and 9).  Free 

choline (Cho) and choline esters, glycerophosphocholine (GPC), lysophosphatidylcholine (LPC), 

phosphatidylcholine (PtCho), phosphocholine (PCho) and sphingomyelin (SM), were analyzed 

using liquid chromatography-tandem mass spectrometry and quantified by using stable isotope-

labeled internal standards.  Fold changes reported are all P ≤ 0.01 for these compounds. The 

major choline forms in plasma were PtCho (79%) and SM (14%).  The main choline forms in 

milk were PCho (46%), PtCho (27%) and Cho (11%). The concentration of all esters decreased 

in milk, except PtCho and Cho (increased), and SM (remained the same).   In summary, the 2-

fold higher level of choline output by the mammary gland, combined with lower plasma levels, 

during early lactation suggest that there is a greater requirement for choline during this period. 
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Background and Significance 

 

Introduction 

Production animals require the essential nutrient of choline for optimal growth and performance.  

The primary importance of choline is the biosynthesis of phosphatidylcholine (PtCho), which has 

important roles in the body.  The phospholipid membrane in all cells is comprised of PtCho, 

making dietary choline especially important in growing animals.  Lipid metabolism in the liver 

requires choline since PtCho hastens the removal of fat and reduces fat accumulation.  

Triglycerides (TG) will accumulate in the liver of a lactating dairy cow during the periparturient 

period, which may lead to metabolic disorder known as ketosis and lower milk yield.  

Supplementing the diet with rumen protected (RP) choline during this period will reduce TG 

accumulation and improve milk yield.122  Until now the supplementation of RP choline has been 

during the periparturient period. 

 

Choline also participates in methylgenesis, in which the methyl groups on choline are used for 

the formation of methionine (Met) from homocysteine.  Oxidation of choline occurs when 

methyl groups are transferred to form up to three molecules of Met.  The first methyl group is 

transferred when the oxidative intermediate of choline, betaine, is metabolized to dimethyl 

glycine.  Then choline is further oxidized to release the remaining two methyl groups which may 

enter the folate pathway. 

 

The potential for choline to act as a surrogate for and provide Met has biological and economic 

importance, but choline has not been used as an alternative for Met as a supplementation for 

dairy cows.  The reasons for this may come from reliance of information from previous studies.  

The studies where RP choline was supplemented did not determine the level of choline absorbed 

at the small intestine after degradation in the rumen.  The alternative use of RP choline to 

provide RP Met as a feed additive must evaluate the actual choline availability to the dairy cow 

post rumen.  The development of RP amino acids studied the post rumen availability, and this 

must be done with RP choline.  Also, other studies have conflicting reports of the importance of 

methylgenesis in the lactating dairy cow.  In a classical study of methylgenesis, radio labeled 
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choline was injected in lactating goats, and no radio labeled methyl groups on Met were found, 

suggesting choline was not the source of methyl groups for Met.123  Another report stated the 

enzyme betaine-homocysteine methyl transferase (BHMT), which transfers the methyl group 

from betaine to homocysteine to form Met, had enzymatic activity 5 times lower in the sheep (a 

ruminant) than in rats.124  In contrast, a different report determined that BHMT enzymatic 

activity alters with changes in Met supplementation in steers.125  A more recent study126 

concluded changes in the methylation cycle due to methylgenesis is not the reason why folate 

and vitamin B12 increases milk production.  This experiment has another important research 

objective of elucidating the changes in choline metabolism and methylgenesis due to choline 

supplementation and evaluate if choline can provide Met as a supplement in the lactating dairy 

cow. 

 

Microbes in the rumen degrade the majority of naturally occurring choline in feed and choline 

chloride in supplements.127  Choline is absorbed at the small intestine of ruminants. For choline 

supplementation to be effective it must be RP choline, and when RP choline is supplemented to 

the lactating dairy cow a reduction in TG in the liver has been observed.122  A limiting factor in 

such studies is that they do not allow an understanding of the choline absorption at the small 

intestine or bioavailability to the animal.  This is problematic for the following two reasons.  

Firstly, there is no protocol for effectively evaluating the efficacy of various RP choline 

products.128, 129 Secondly, the importance of choline supplementation is established, but a 

requirement of choline supplementation could not be established due to variable responses of 

reduced TG in the liver in the lactating dairy cows.  This is possibly due to the uncertainty of 

bioavailable choline from different RP choline products meaning absorption at the small intestine 

or the various responses were due to inconsistent RP choline supplementation.127  

 

An approach to estimate bioavailability of choline in the lactating dairy cow is to measure 

choline levels in the blood when no supplementation is given and at various known amounts of 

RP choline supplementation, then comparing the increase in blood choline levels with the 

amount of RP choline supplementation.  This approach has been previously applied to evaluate 

the bioavailability of lysine in soybean meal and RP lysine.130, 131  An alternative approach is to 

evaluate bioavailability of choline through measurements of choline levels in milk and to 
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compare rises in milk choline levels against various known amounts of RP choline 

supplementation. 

 

The advantage of measuring choline levels in the milk over blood for evaluating bioavailability 

of choline is that the total amount of choline secreted in the milk is measured, whereas, blood 

only measures changes in choline concentration since choline is secreted in the milk.  A study 

used the approach of measuring choline levels in the milk after abomasally infusing four 

different levels of unprotected choline chloride and an increase in milk choline yield was 

correlated with increasing choline chloride dosages.132  However, the authors noted the response 

of choline infusion was curvilinear and the actual recovery of choline in the milk was ~20-fold 

lower than previous reports in lactating cows, in other words, <5% of the choline infused was 

recovered in the milk.  This concludes that this approach is not appropriate for quantitative 

evaluation of choline bioavailability.  In addition, other field evaluations of using milk choline 

levels to assess the bioavailability of choline from RP choline supplementation have been found 

to not be reproducible, but the lack of reproducibility may be in large part due to the sample 

preparation.132  It seems that they did not extract the choline from milk fat, which is a major 

choline containing component in milk,133 therefore, milk choline levels may still be a reliable 

indicator of bioavailability.  An LC/MS/MS method has been developed that is suitable for 

quantitation of choline and choline esters in blood and milk at different physiological states of 

the lactating cow such as early, mid, and late lactation.  Up until now there have been difficulties 

in quantifying the total bovine milk choline,133 and this approach will correlate milk choline and 

other milk components to determine if choline levels can be predicted form these components.   
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Internal Standard 

Internal standards (ISTD) may be an isotope of the target compound or a different compound 

typically used to correct for ion suppression and loss of signal due to the ITT clogging.  An ISTD 

works best when it shares the same RT as the target and is chemically similar to the target 

compound, in other words, an isotope of the target compound.  The forepump pressure decreases 

as the ID of the ITT is narrowed by accumulation of contaminants creating a better vacuum but 

decreasing ion transmission.  The loss of signal can be monitored by plotting the area of an ISTD 

and forepump pressure versus injection number.  Typically a two-fold decrease in ISTD area is 

observed before total loss of signal meaning target compounds in samples at the end of a high 

number sample analysis is subject to lower signal response even if they share the same 

concentration of target compound as the samples in the beginning of the analysis.  The correction 

for ion suppression is an estimation because no two SRM transitions can be measured at the 

same time.  An ISTD that has a different RT is affected by ion suppression during a 

chromatographic window that does not equally affect the target compound. 48, 134  The closer the 

RT to the target compound the more similar the ion suppression conditions are if the ion 

suppression zone is broad and encompasses both.  The signal loss due to ITT clogging is 

typically a slow change, and an ISTD does not need the same RT as a target compound to correct 

for signal loss. 

 

Impurities can be added to the sample when adding internal standard.134 The ISTD stock solution 

should screened for target compounds and the sample for ISTD compounds to ensure both 

solutions are free of each other’s compounds.  An isotope labeled target compound should be 

labeled enough to not have interference from the natural isotope of the target compound in the 

SRM transition and be pure enough that unlabeled target compound does not interfere with the 

target compound SRM transition.  If interferences exist, than a correction formula must be used 

that subtracts the contribution of area from the interference.135 

 

The concentration of ISTD must be constant in all samples.  The area of the target compound is 

divided by the area of the ISTD, and two samples with the same concentration of target 
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compound will yield two different area ratios if the concentration of the ISTD is different in 

both.134  Any factors resulting in differences in ISTD area are assumed to equally affect the 

target compound but the area ratios of samples are only valid for comparison when the 

concentration of ISTD is the same in samples.  A difference in ISTD area due to addition to 

samples will cause error in analysis as the differences in ISTD area do not equally affect the 

target compound area, and it is best to not use area ratios.134  To prevent this, one batch of ISTD 

with enough volume to last the entire experiment is prepared, and the same pipets are used.  

ISTD is also used to correct for transfer loss, degradation, loop injections, and is best added to 

the sample directly after collection and prior to storage. 

 

Classes of compounds usually elute at different RT due to the varying lengths of R groups.  To 

have an ISTD that covers the entire peak of a target compound, one would need an isotope 

labeled target compound of each.  This is unrealistic due to issues of solubility, introduction of 

contaminants, and the cost.  Typically one ISTD for each class of compounds is used in 

experiments where the RT of the compounds are similar. 

 

Foregoing the external standard calibration curve with internal standard and applying the formula 

for absolute quantitation using isotope dilution saves much lab work not preparing external 

standard curves but there are differences.  The formula assumes that double the area of a target 

compound to the area of an isotope standard is double concentration, only reports concentration 

of monoisotopic mass when an SRM scan is set for the monoisotopic parent mass, and neglects 

mass discrimination of the electron multiplier.    

 

Double the area of a target compound to the area of an isotope standard is double concentration 

when measurements are within the linear portion of the sigmoidal curve and the slope of the 

external calibration curve is 1 for both isotopomers.  Since ESI external calibration curves are ~1 

in slope at the set mass spectrometry parameters that affect sensitivity this is a good 

approximation.  A doubling  in scan time would increase the slope.  Signal is twice as much with 
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direct injection on a constant concentration, but with chromatographic peaks the concentration is 

changing over time and twice the scan time does not result in twice the signal in each individual 

scan.  Conversely, a loss in steepness of slope and linearity can be observed when increasing 

scan time as an increase in duty cycle can lead to a loss in signal due to missing the apex of the 

peak and irreproducible areas.   

 

The formula only reports the concentration of monoisotopic mass when an SRM scan is set for 

the monoisotopic parent mass.  The concentration reported using an external standard calibration 

curve is for all isotopic masses regardless that the SRM scan is for a monoisotopic parent mass.  

The actual concentration of the compound including all isotopic forms is larger and becomes 

more significant with much larger compounds as the largest peak in a full scan MS may not be 

the monoisotope.  Scanning for the most abundant isotope instead of the monoisotope would 

lower LOD in MS analysis, but in MS/MS analysis the LOD may not be lowered because the 

desired fragment is a combination of isotopes due to the random positions of isotopes in the 

parent mass which is not the case with a monoisotopic parent mass.  A theoretical correction 

factor136 would need to be applied to obtain the concentration of all isotopic masses.  An 

alternative is the empirical determination by direct infusion of the compound to obtain a full scan 

mass spectrum with a sufficient number of microscans then using the centroid peak heights to 

determine the percent abundance of the monoisotopic form compared to the total isotopic forms.  

The correction factor would be the multiplication of (100 / % abundance of monoisotope) to the 

entire formula. 

 

Mass discrimination of the electron multiplier is neglected in the formula.  The heavier isotope 

standard product ion will eject more electrons upon impact of the conversion dynode than the 

lighter target compound product ion resulting in a higher signal for the isotope standard at the 

same concentration.  The increase in signal for the isotope standard is higher at higher 

concentrations, but because a constant concentration of isotope standard is used the factor of 

mass discrimination remains constant.  The formula places the isotope standard area in the 

denominator and equal concentrations result in a ratio less than 1, which slightly underestimates 
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the concentration of target compound.  The mass discrimination of the electron multiplier is 

typically not disclosed, and an empirical determination can be made of the mass discrimination 

factor by direct infusion of a standard with a known isotopic ratio then obtaining a full scan mass 

spectrum with a sufficient number of microscans.  The centroid peak heights are used to 

determine the isotopic ratio of the monoisotope and the +1 isotope peak.  This isotopic ratio can 

be compared to an accepted value, and the error is from mass discrimination.  A typical value is 

0 to 6% increase64 in signal for each amu.  This means the heavier the product ion of the isotope 

standard compared to the product ion of the target compound the more significant the correction 

becomes. The correction factor would be the multiplication of (1 + % increase as a decimal) to 

the entire formula. 

 

The alternative of using an external calibration curve with internal standard has the same errors 

of neglecting thermal degradation, assuming a purity of 100% considering all weight to be from 

the compound, mass transfer into the first stock and analytical balance rounding error, dilution 

error, in addition to, neglecting changes in instrument response, ignoring SRM interferences 

from matrix when a target compound free matrix cannot be obtained,59 and an imperfect fit of the 

curve.  An error in dilution may be seen on the graph as a sharp change in pattern of calibration 

levels affecting the fit, but an error in mass transfer results in the entire curve to be lower and the 

fit is not affected.  Multiple dilution series are used to account for mass transfer error into stock 

and analytical balance rounding error.  An empirical comparison can be made by preparing an 

external standard calibration curve with the isotope standard as the internal standard.  Then 

compare the concentrations predicted by the fit to the concentrations predicted using the formula 

to determine the difference between the two techniques.  In conclusion, neither approach is 100% 

accurate but are within acceptable error when applied correctly.   

Please Refer to Chapter 1 for a Fuller Discussion on Analytical Techniques 
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Results and Discussion 

The concentrations were typically < 20% RSD for triplicate injections.  Classes of compounds 

eluted at slightly different RT depending on the length of their chains.  For example, a short 

chain PtCho has a higher RT than a long chain PtCho, and RT shifts were observed between milk 

samples but not plasma samples.  The time segmentation of MS acquisition placed PtCho close 

to the end of its time segment.  To ensure detection of an entire chromatographic peak, the 

shortest chain PtCho was monitored using Qual Browser throughout the analysis.  Other 

compounds that bordered their time segment were also monitored.  As the column aged time 

segmentation was shifted to the right due to an increase in RT of compounds.  If a comparison of 

milk samples to plasma samples is made at each corresponding week of lactation, then the 

following general statements can be made.  Milk has a higher concentration of AcCho, Cho, 

GPC, and Pcho than plasma.  Plasma has a higher concentration of PtCho, LPC, and SM.  

Betaine is in near equal amounts in both milk and plasma samples. 

 

Determination of Heatmap Log Scale 

Heatmaps were tested on log2 – log10 scales to determine a suitable log scale.  A lower base log 

is more sensitive than a higher base log and can show small differences more efficiently, 

whereas, the higher base log would be more efficient for large differences.  A log scale is needed 

to remove fraction bias.  A difference between two data sets would give two different fold 

changes depending on which set is selected for the numerator.  For example, if the larger data set 

is chosen for the numerator then (2x / x) = 2 which is 200% greater, whereas, if the smaller data 

set is chosen for the numberator then (x / 2x) = 0.5 which is 50% lower.  However, the log (2) = 

+Y and the log (0.5) = -Y which is the same distance from 0.  A compromise must be made for 

all compounds and a log3 scale was determined to be the most suitable to show differences in all 

compounds. 
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Changes in Milk and Plasma at Different Weeks of Lactation Relative to Week 1 

Milk samples displayed an overall decrease in AcCho, Pcho, and Bet.  An increase was observed 

for Cho and PtCho.  Sphingomyelin stayed nearly the same.  Acetylcholine was not detected in 

early lactation (Figure 7).  Plasma samples showed an overall increase in LPC, PtCho, and SM.  

Betaine and Cho remained nearly the same.  No decreases were observed (Figure 8).  

Phosphocholine had a %RSD greater than 20% for triplicate injections because the concentration 

was at LOD.  Acetylcholine was not detected but the recovery of AcCho ISTD was sporadic 

suggesting that AcCho may be present in significant amounts in plasma.  The addition of an 

enzyme inhibitor upon collection of plasma sample has been discussed for future work.  
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Figure 7: Heatmap of milk samples from 12 cows.  Rows are lipids detected and columns are weeks of lactation with each cow in 
staggered formation.  Each color square represents the fold change of average absolute concentration of triplicate injections.  Blue is 
decrease and red is increase in fold change relative to week 1 or 1st week of detection for each cow displayed on a log3 scale.  Black is 
no change and gray is undetected.  Cows #11 and #12 were unavailable for late lactation sampling.  
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Figure 8: Heatmap of plasma samples from 12 cows.  Rows are lipids detected and columns are weeks of lactation with each cow in 
staggered formation.  Each color square represents the fold change of average absolute concentration of triplicate injections.  Blue is 
decrease and red is increase in fold change relative to week 1 or 1st week of detection for each cow displayed on a log3 scale.  Black is 
no change and gray is undetected.  Cows #11 and #12 were unavailable for late lactation sampling. 
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Extraction Reproducibility of Milk and Plasma Samples 

To confirm that the color changes on the heatmaps (Figures 7 and 8) were not due to differences 

in extractions, three samples were selected and extracted twice.  The difference in extractions 

were no more than 30% for all compounds, and because the changes in the heatmaps (Figures 7 

and 8) at different weeks of lactation (WOL) are far greater than 30% the color changes shown 

are not induced from extraction irreproducibility.  To further prove this the extraction replicates 

were placed on a heatmap of the same log scale with fold changes relative to the first extraction. 

The heatmaps (Figures 9 and 10) appear black because the irreproducibility of extractions is not 

large enough to induce color changes on the chosen log scale. 
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Figure 9: Heatmap of duplicate extractions of milk samples.  Rows are lipids detected and 
columns are extractions with each milk sample in staggered formation.  Each color square 
represents the fold change of average absolute concentration of triplicate injections.  Blue is 
decrease and red is increase in fold change relative to extraction 1 for each milk sample 
displayed on a log3 scale.  Black is no change and gray is undetected.   
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Figure 10: Heatmap of duplicate extractions of plasma samples.  Rows are lipids detected and 
columns are extractions with each plasma sample in staggered formation.  Each color square 
represents the fold change of average absolute concentration of triplicate injections.  Blue is 
decrease and red is increase in fold change relative to extraction 1 for each plasma sample 
displayed on a log3 scale.  Black is no change and gray is undetected.   

 

 



75 

 

External Calibration Curve of GPC 

The GPC standard was dissolved in the same sample solvent used for resuspension and dilution 

of samples.  However, a target compound free matrix is not available such as milk or plasma free 

of GPC.  Therefore any matrix effects such as ion suppression that exist in samples do not exist 

when measuring the calibration curve.  This results in an inability to correct for ion suppression 

and ion transmission losses in real time as the target compound is being measured like the ISTD 

does. Using the fit to predict concentrations of GPC may explain why GPC does not develop a 

well-defined trend on the heatmaps (Figures 7 and 8). 

 

Internal Standard SRM Determination 

To determine the SRM transitions of the ISTDs a strategic approach was used.  The labeled 

parent ion was screened at the product ion used for the unlabeled parent ion and all +1 product 

ions up to a product ion that would result if all of the labels from the parent were included.  

Surprisingly, many other product ions were observed in addition to the product ion that results 

when the position of the labels are in the position stated by the distributor.  However, the 

strongest signal was the product ion from the parent ion with position of labels as stated by the 

distributor and was chosen for quantitation (Table 3).  This raises questions about unanticipated 

internal standard impurities as interferences will not just result from target compound and stated 

labeled compound but also from other labeled versions.  Only the labeled parent ion was scanned 

at different product ions to find the SRM transition of the ISTD, but if a scan for other parent 

ions may result in signal from a less labeled parent ion and then other product ions due to 

random labeling of the parent ion.  The ISTD stock solution was screened for target compounds 

and both plasma and milk samples were screened at the ISTD SRM transitions.  Samples and the 

ISTD stock solution were determined to be free of each other’s compounds, and no correction 

factors were applied. 
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Table 3: Internal Standard SRM Determination of AcCho-IS as AcCho-d13 

AcCho-d13 loss of quaternary amine 

Parent m/z Product m/z # of deuteriums in product ion Observed peak 

159.4 87.2 0 N 
159.4 88.2 1 N 
159.4 89.2 2 Y 
159.4 90.2 3 Y 
159.4 91.2 4 Y  
159.4 92.2 5 Y 
159.4 93.2 6 N 
159.4 94.2 7 N 
159.4 95.2 8 N 
159.4 96.2 9 N 
159.4 97.2 10 Y 
159.4 98.2 11 Y 
159.4 99.2 12 N 
159.4 100.2 13 N 
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Figure 11: External standard calibration curve of GPC.  One dilution series and triplicate 
injections per calibration level.   
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Calculations 

Determination of 5x LOD in Autosampler Vial 

To determine how much ISTD to add to the ISTD stock solution to result in a final concentration 

at 5x lower limit of linearity (LLOL), a retro calculation was done: 
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Figures 7-10 

After applying the formula for absolute quantitation using isotope dilution in methods and 

materials, the following formula was used to calculate the concentration in milk and plasma 

samples: 

 

;���D�
 ��@��?��=	 �� ? ��� ��� >��?@� (B)
>��?@� �� 
�@��� (B) � ;
�@���= 

 

Then the following was applied to calculate fold changes: 
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Methods and Materials 

General Methods 

The HPLC-ESI-MS-MS system used for detection of lipids included a Finnigan Surveyor MS 

Pump Plus, a Finnigan Surveyor Autosampler upgraded to Autosampler Plus Specifications, an 

Ion Max API Source operating in ESI mode, and a Finnigan TSQ Quantum Discovery MAX.  A 

Dell Precision 390 was used as the data system.  Xcalibur 2.0.7 was used for data acquisition and 

data processing.  HPLC separations were achieved using an Ascentis Express HILIC column 150 

x 2.1 mm, 2.7 µm particles at 25.0°C column temperature and a 200.0 µL/min flow rate.   

 

Extraction Procedure 

Blood was taken from the Coccygeal tail vein of each cow, and centrifugation was performed to 

remove the plasma from the blood sample and store at -80˚C until further analysis.  Milk was 

also stored at -80˚C until further analysis after initial collection from the specimen.  Aliquots of 

0.01% relative milk production of AM and PM consecutive milkings were mixed as one sample 

before the start of milk extractions.  Both plasma and milk samples were extracted following an 

extraction procedure developed by Zhao and coworkers.62  Samples were thawed and remained 

on ice throughout the extraction procedure.  Briefly, 1 mL of extraction solvent (chloroform, 

methanol, water 1:2:0.8) was added to 200 µL of sample and 40 µL ISTD stock solution in a 1.5 

mL eppendorf tube.  The samples were centrifuged at 16,000 rpm for 5 min at 4˚C.  The 

supernatant was transferred to a glass vial capable of holding 5 mL, and the extraction procedure 

was repeated twice transferring the supernatant to the same glass vial.  The combined extracts 

were dried under nitrogen while being kept on ice and resuspended with 5 mL of methanol kept 

on ice.  Then 300 µL of sample was transferred to an autosampler vial for analysis. 
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Internal Standard Stock Solution 

Internal standards in the methanol stock solution were prepared at concentrations that would 

result in a final concentration in the autosampler vial of approximately 5 times greater than lower 

limit of linearity62 of the target compound to ensure signal greater than 10:1 but not to suppress 

the target compound signal.137  Internal standards are as follows: 1,2 Distearoyl-sn-glycero-3-

phosphocholine-N, N, N-trimethyl-d9 (PtCho-IS, Avanti Polar Lipids, 860362), Sphingomyelin-

d13-c13 (SM-IS, Ricerca-custom made), Acetylcholine bromide-d13 (AcCho-IS, C/D/N Isotopes 

INC, D-1780), L-a-Lysophosphatidylcholine-palmitoyl-d3  (LPC-IS, Larodan, 71-2826), Choline 

chloride-trimethyl-d9 (Cho-IS, Cambridge Isotopes, DLM 549-1), Betaine-d11 (Bet-IS, 

Cambridge Isotopes, DLM 407), Phosphorylcholine chloride-d9 (PCho-IS, Cambridge Isotopes, 

DLM-298).  Solids were weighed on weighing paper, transferred to the stock solutions, and the 

weighing paper was weighed again.  The difference in weights was recorded as the mass 

transferred to the stock solution.  Liquids were delivered with a calibrated pipet.  The recorded 

weight on the vial was used when the entire contents were needed and the vial was rinsed 6 times 

with methanol.  The addition of volumes to the initial volume of stock was accounted for in 

calculating stock concentration.  

 

Chromatographic Details 

Chromatography followed methods developed by Zhao and coworkers with some 

modifications.62  A Finnigan Surveyor MS Pump Plus coupled to a Finnigan Surveyor 

Autosampler, upgraded to Autosampler Plus specifications, is used to perform high-performance 

liquid chromatography (HPLC) plumbed with 1/16 OD 0.003 in. ID polyether ether ketone 

(PEEK) tubing.  The autosampler tray temperature is 4°C and full loop injections of 10 µL.  

Separation is with an Ascentis Express HILIC column 150 x 2.1 mm, 2.7 µm particles at 25.0°C 

column temperature and 200.0 µL/min flow rate.  Mobile phases are ACN (solvent A) and 

10mM ammonium formate in water buffered to pH 3.0 with formic acid (solvent B).  A 30 min 

gradient follows: t) 0 min, 8% solvent B; t) 0.1 min, 8% solvent B; t) 10 min, 30% solvent B; t) 

15 min, 70% solvent B; t) 18 min, 70% solvent B; t) 18.01 min, 8% solvent B; t) 30 min, 8% 
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solvent B.  At the end of analysis the column was flushed with 100% ACN for 30 min prior to 

storage to prevent an increase in retention times. 

 

Mass Spectrometric Detection Parameters 

An Ion Max ion source equipped with an electrospray ionization (ESI) probe and plumbed with 

fused silica tubing 0.10 ID x 0.19 mm OD interfaced a Finnigan TSQ Quantum Discovery MAX.  

The polyimide sheath coating of fused silica tubing was removed from the spray tip to prevent 

elongation due to ACN.  The ion source was set at depth C, front-to-back 1.30, and side-to-side 

0. Ion source parameters are 4500 ESI spray voltage and 290°C ion transfer capillary 

temperature.  Nitrogen was used as sheath, auxillary, and sweep gas set at 40, 5, and 1 arbitrary 

units, respectively, and 100 psi from the source.  Ultra high purity argon was used as collision 

gas and was set to 1.5 mTorr in the collision cell and 20 psi from the source.  The scan type SRM 

was used with parameters 0.05 s scan time, 1 m/z scan width, and Q1 & Q3 peak width (FWHM) 

0.7 Da, 0V skimmer offset voltage, positive polarity, centroid data type, and 1 microscan.  Tuned 

tube lens voltage was used.  Parent and product masses were rounded to a tenth m/z unit, 

collision energies (CE) to unit, and complete masses and CE are reported by Zhao and 

coworkers.62 SRM transitions of internal standards are: PtCho-IS 799.7 to 193, SM-IS 735.6 to 

188, AcCho-IS 159.4 to 91.2, LPC-IS 499.3 to 184, Cho-IS 113.2 to 69.1, Bet-IS 129.1 to 66.2, 

and PCho-IS 193 to 125.1.  Two segments were used to lower duty cycle.  Segment 1: 0-10.8 

min; PtCho and SM.  Segment 2: 10.8-30 min; SM, AcCho, LPC, Cho, Bet, GPC, and PCho.  

The TSQ was tuned and calibrated every 3 months by direct infusion at low flow of 

Polytyrosine-1,3,6 tuning and calibration solution provided by Fisher Scientific.  The ion source 

optimum sheath, auxillary, and sweep gases and optimum X, Y, Z positions were manually 

determined at method flow rate by infusing a 1:10 dilution of ISTD stock into LC flow at highest 

percentage of water in method.  All Finnigan instruments were operated using Xcalibur 2.0.7 

from a Dell Precision 390.  All power systems were connected to a Toshiba 1600 EP Series UPS 

(Uninterruptible Power Supply). 

 

 



82 

 

Data Processing 

Electronically stored chromatograms were integrated using Xcalibur 2.0.7 Quan Browser and 

peak area values were downloaded to Microsoft Excel 2007 to calculate absolute concentrations 

and fold changes.  Heat maps were generated using Gene Cluster 3.0 and viewed using Java 

TreeView 1.1.5.121 

 

Data Processing for the Calculation of Absolute Quantitation using Isotope Dilution 

The following equation was used: 

 

���� �� ���D�
 ��@��?��      
���� �� �
�J [ ;�
�J= � ;���D�
 ��@��?��= 

 

The ratio of Area of Target Compound and Area of ISTD and the known  [ISTD] was used to 

calculate the [Target Compound].  The purity of ISTDs are greater than 99% therefore no 

corrections for target compound introduced by ISTD addition are applied. 

 

Data Processing for the Calculation of Absolute Quantitation using External Standard 

A calibration curve was used to calculate the absolute quantitation of GPC (+99% Bachem) due 

to the lack of commercial availability of an isotopic labeled ISTD. 

 

Serial dilutions were made of GPC standard.  30 mg of GPC was weighed on weighing paper 

then a 10 mL volumetric flask with a glass funnel was zeroed.  The GPC was then transferred 

into the glass funnel and the actual weight GPC transferred was recorded.  Methanol was used to 

wash the GPC down and for dilution.  Then half log dilutions were performed using a pipette to 

transfer 790 µL x 2 from the stock to a 5 mL volumetric flask then to another 5 mL volumetric 
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flask and so on until enough dilutions were obtained to produce a calibration curve where all 

measured values could be interpolated.  The sampling order for chromatographic injections was 

from lowest concentration to highest to prevent erroneous carryover.  One dilution series but 

each sample was injected in triplicate. 

 

The calibration curve was graphed on a log10 scale to display calibration levels equidistance 

apart.  A linear equation was obtained using least-squares linear regression of the data: 

 

Area of GPC = m [GPC] + b 

 

The [GPC] in samples can be determined as Area of GPC is known. 

 

Calibration of Pipets 

Pipets used in analysis should be calibrated with the solvent that they will be dispensing.  A 

calibration solvent that is similar in viscosity and volatility can be used.  Viscosity accounts for 

solvent remaining in the tip and volatility accounts for evaporation.  Water is a suitable substitute 

here as milk and plasma is mostly water and any viscosity differences are negated by prewetting 

the tip. 
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The 5 mL pipet was calibrated using thermally equilibrated water.  Density was determined 

using a 10 mL volumetric flask.  Mass loss to evaporation was neglected because water was used 

as a solvent.  Then ten 5 mL aliquots were dispensed in a beaker, and the weight was measured.  

The average weight of water delivered in one aliquot was used with density to get the average 

volume delivered: 

 

�A���D� C��D�
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Rather than try to perfectly calibrate the pipet to 5 mL, 5.106 mL was used in the calculations to 

determine the final diluted concentration of internal standards.  The other pipets used to aliquot 

sample and add internal standard in this study were new out of the box and certified to deliver 

nominal values within error.   
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Conclusion 

The choice of analytical technique for quantitation and the experimental design are both strategic 

approaches that determine the success or failure or an experiment.  The capability of the TSQ to 

perform SRM scan mode in individual time segments to lower duty cycle allows for reliable and 

reproducible quantitation.  Achieving separation using liquid chromatography before the 

introduction of compounds into the ESI source prevents ion suppression and provides retention 

times for compounds.  The retention time is used to confirm the identity of the compound but 

also allows for time segmentation of MS acquisition.  The experimental design of both studies 

was based mostly on previous findings which are critical for informed decisions to the success of 

the experiment and some guesswork which is needed to explore new frontiers in science.  In 

addition, both can have individual compounds placed in respective pathways, and data 

interpretation can be made on how the imposed condition changed the biological system with 

respect to the control. 

Chapter 1 studied metabolomics of Rosebacter, and the time points are on the minute scale.  The 

ability to quickly quench the metabolism is most important when the next time point is a small 

addition in time and changes in the system are rapid.  The early time points of 0 and 5 minutes 

were the most difficult.  Each time point collection was clocked at ~2 minutes to finish with the 

division of labor amongst myself and my collaborator.  This means the sample collected first is 

~2 minutes different in time than the sample collected last even though both are represented as 

the same time in analysis.  The upside of working with bacteria and time points on the minute 

scale is that the time point of zero is controlled and all samples are collected in one day.  The 

absolute concentration of glutamate and glutamine was not previously known for Roseobacter. 

Chapter 2 studied lipidomics of Holstein cows, and the time points are on the week scale.  

Quenching the metabolism is within the hour because milk and plasma samples need to be taken 

from twelve Holstein cows.  Since the time scale is on the order of weeks a relaxed collection 

during one hour does not introduce significant error.  However, the samples are collected over 

months and the time point of zero is determined by Mother Nature. This results in multiple 

individual LC/MS/MS analysis to be performed and the risk of losing a subject to death or a 

technicality is present.  Change in absolute lipid concentrations in milk and plasma over weeks 

of lactation is now known for Holstein cows. 
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Table 4A: Fold Change of Intracellular Metabolites of Phage Amended and Control Sulfitobacter sp. 2047 Populations 

with Cell Normalization Used in Figure 2a 
      

 

Fold Change Relative to Control at Corresponding Time Point 

 

Time Point in Minutes Post Infection 

Metabolite 15 30 60 120 240 360 480 

1,3 & 2,3 Diphosphoglycerate 1.443 1.451 1.190 1.506 2.286 2.412 3.417 

1-Methylhistidine 2.844 1.865 1.520 1.912 2.808 2.588 3.480 

3-Phosphoglycerate 1.348 0.835 1.212 1.701 1.578 1.502 1.696 

4-Hydroxybenzoate 1.202 1.339 1.418 1.805 2.651 1.946 3.419 

5-Methyltetrahydrofolate 1.579 0.746 1.206 1.380 3.898 3.738 5.944 

5'-Methylthioadenosine 2.012 2.530 1.026 1.985 2.637 2.426 2.613 

Acetyl CoA 1.502 1.407 1.474 1.520 1.625 1.563 1.417 

Acetyl Phosphate 1.027 4.742 0.606 2.928 2.520 2.765 0.168 

ADP 2.109 0.983 1.490 1.321 1.422 1.517 1.740 

Alanine 2.288 1.699 1.568 1.598 1.615 2.886 3.728 

AMP 1.498 1.330 1.403 1.042 1.527 1.982 1.921 

Asparagine 0.000 1.572 2.093 1.241 1.855 2.303 3.236 

Aspartate 1.530 1.573 1.264 1.291 1.530 1.420 1.710 

ATP 0.000 0.000 0.000 1.500 1.765 1.141 1.585 

Betaine 2.958 1.435 1.284 1.475 1.931 2.500 3.003 

Ceramide 1.366 1.272 1.212 1.282 1.377 2.304 1.956 

Choline 1.582 1.501 1.316 1.445 2.044 2.664 3.422 

Citrate 1.777 1.683 1.688 2.220 2.795 1.514 2.413 

CoA 1.093 1.326 0.625 1.441 2.134 1.625 2.651 

Cysteine 1.834 1.636 1.329 1.352 2.063 2.788 2.500 

dCDP 1.473 1.391 1.384 1.428 2.313 2.280 3.545 

dGTP 2.543 0.639 1.145 1.873 1.736 1.139 1.492 

DL-Pipecolic Acid 0.000 1.435 1.289 1.172 1.761 2.596 3.316 

dUTP ‡0.001 ‡0.001 3.415 1.951 2.349 1.663 3.399 

Erythrose-4-Phosphate ‡0.001 1.075 2.706 1.461 †1000 †1000 1.329 

Ethanolamine 1.800 1.125 1.039 1.253 2.236 2.775 4.218 

FAD 1.298 1.484 1.310 1.294 1.633 1.186 1.889 

Farnesylpyrophosphate 0.000 1.408 0.774 2.459 4.983 6.030 4.424 

Fructose-1,6-Bisphosphate 1.165 1.958 1.185 1.941 2.965 2.342 3.559 

Fumarate, Maleate, & Isoketovalerate 1.180 1.102 1.046 1.649 1.588 3.030 3.729 

Glucono-1,5-Lactone-6-Phosphate 1.264 1.473 1.397 2.001 11.238 2.873 3.549 

Glutamate 1.419 1.371 1.403 1.519 1.672 1.597 1.575 

Glutamine 1.772 1.916 2.082 2.871 3.918 5.012 6.171 

Glycerophosphocholine 0.000 0.000 0.000 0.000 0.000 †1000 1.155 

GMP 1.526 0.891 1.283 1.962 2.727 1.849 2.406 

GTP 4.150 0.305 0.993 1.998 0.878 0.617 0.722 

Hexose Phosphate 3.782 1.121 2.398 1.370 1.330 2.062 2.953 

Histidinol 0.000 ‡0.001 0.000 1.443 0.875 1.070 0.670 

Homoserine 1.663 1.800 1.882 †1000 1.568 3.298 2.672 

Lysine 1.429 1.260 1.529 1.490 1.564 1.772 2.404 

Malate 1.192 1.212 1.214 1.552 1.506 1.510 1.779 

Malonyl CoA 1.699 1.593 2.279 1.211 1.520 1.537 1.669 

Methylmalonic Acid 1.261 1.204 1.258 1.931 1.615 1.864 3.243 

N-Acetylglucosamine-1-Phosphate 0.000 ‡0.001 ‡0.001 0.000 0.000 0.000 0.000 

N-Acetylglutamate 0.869 1.045 1.436 1.807 1.341 2.091 2.014 

N-Acetylglutamine 1.426 1.350 1.352 1.432 1.546 1.688 1.599 

N-Acetyllysine 1.427 1.330 1.419 1.394 1.653 1.664 1.638 

NAD 1.227 1.125 1.126 1.654 1.605 1.880 2.998 
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Table 4A: Continued       

 

Fold Change Relative to Control at Corresponding Time Point 

 

Time Point in Minutes Post Infection 

Metabolite 15 30 60 120 240 360 480 

NADH 1.226 1.508 0.844 2.585 1.557 1.584 6.889 

NADP 1.448 0.754 1.757 1.248 1.471 0.919 1.769 

NADPH 1.067 1.654 1.074 1.452 1.789 1.757 2.727 

Nicotinate 1.277 1.428 1.257 1.760 1.874 2.480 3.477 

O-Acetylserine 1.409 1.806 0.690 2.081 2.409 1.537 5.401 

Orotate 1.425 1.340 1.242 1.289 4.641 2.615 3.338 

Orotidine Phosphate ‡0.001 0.866 1.034 1.293 3.362 1.548 4.491 

Oxidized Glutathione (GSSG) 1.593 1.308 1.693 0.901 2.418 2.418 1.960 

Palmitate 0.865 0.786 0.922 4.763 1.455 2.461 2.806 

Pentose Phosphate 0.000 †1000 †1000 0.000 0.000 †1000 †1000 

Phenylpropiolic Acid 1.482 1.462 1.238 1.238 1.787 2.535 3.785 

Phosphatidylcholine & Phosphatidylethanolamine 1.311 1.039 1.093 2.080 1.466 1.449 1.575 

Phosphoenolpyruvate 1.496 0.926 1.166 1.874 1.644 1.273 1.546 

Proline 1.523 1.594 1.528 1.555 1.854 2.403 2.892 

Propionyl CoA 1.253 0.926 0.840 1.509 1.452 2.029 3.162 

Pyridoxine 1.898 1.690 1.436 1.555 2.147 2.931 3.562 

Reduced Glutathione (GSH) 1.185 0.872 1.528 1.800 2.155 2.231 2.087 

Ribulose-1,5-Bisphosphate 0.000 0.000 0.000 0.000 ‡0.001 1.178 ‡0.001 

S-Adenosylmethionine 1.531 2.326 1.552 1.136 2.012 3.280 3.923 

Sarcosine 0.000 0.000 0.000 1.706 1.868 2.958 3.108 

Sedoheptulose-7-Phosphate 0.956 0.956 1.664 3.502 2.901 1.752 3.756 

Serine 0.736 1.452 1.586 1.649 1.820 1.996 2.407 

Succinate  1.251 1.210 1.279 1.873 1.640 1.862 3.256 

Succinyl CoA 0.874 2.349 7.946 1.712 1.583 1.527 2.643 

TDP 0.951 0.711 1.864 4.242 4.068 2.441 3.508 

Thiamine 1.681 1.228 1.360 1.860 1.791 3.548 3.509 

Threonine 0.000 1.342 1.505 1.579 2.050 2.701 3.203 

Tryptophan 1.681 1.114 4.272 1.520 1.667 2.238 1.339 

UDP 1.356 1.241 1.898 3.058 2.242 2.521 3.922 

UDP-D-Glucose  2.681 2.337 1.947 1.655 1.461 1.637 1.997 

UDP-D-Glucuronate & Galacturonate 2.905 5.771 8.627 12.732 9.192 10.151 7.182 

UDP-N-Acetylglucosamine  1.601 0.502 0.550 0.466 0.452 0.536 0.902 

Urea 1.806 1.125 1.040 1.260 2.253 2.819 4.227 

UTP 5.382 0.740 1.352 2.121 1.913 1.135 1.396 

Valine 2.014 1.327 3.079 1.229 2.591 2.690 2.531 

†A value of 1000 is used when only measured in infected 

       ‡A value of 0.001 is used when only measured in control 
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Table 4B: P-value of Intracellular Metabolites of Phage Amended and Control Sulfitobacter sp. 2047 Populations 

with Cell Normalization Used in Figure 2a 
      

 

p-values 

 

Time Point in Minutes Post Infection 

Metabolite 15 30 60 120 240 360 480 

1,3 & 2,3 Diphosphoglycerate 5.81E-03 1.57E-02 1.47E-01 1.06E-01 1.32E-01 3.90E-03 1.75E-03 

1-Methylhistidine N/A 2.90E-01 3.35E-01 5.35E-04 1.80E-02 6.02E-02 3.36E-02 

3-Phosphoglycerate 1.16E-01 4.18E-01 3.40E-01 1.34E-01 3.95E-02 4.91E-02 5.74E-03 

4-Hydroxybenzoate 2.76E-01 1.90E-02 3.91E-02 4.79E-02 2.44E-01 9.04E-02 1.16E-04 

5-Methyltetrahydrofolate 3.72E-01 3.48E-01 7.07E-01 3.06E-01 1.28E-01 1.06E-01 7.06E-02 

5'-Methylthioadenosine 3.55E-01 1.45E-03 9.27E-01 1.26E-01 3.46E-02 4.80E-03 2.49E-02 

Acetyl CoA 2.50E-01 1.42E-02 2.73E-01 3.26E-02 2.54E-03 1.30E-02 3.47E-02 

Acetyl Phosphate 9.64E-01 1.34E-01 1.23E-01 3.08E-01 3.67E-02 4.33E-01 N/A 

ADP 2.80E-01 9.44E-01 2.46E-01 2.17E-02 1.02E-01 2.46E-02 8.34E-03 

Alanine 1.85E-02 1.12E-03 8.98E-03 6.43E-03 4.93E-02 2.45E-02 2.09E-04 

AMP 1.18E-01 1.13E-01 3.29E-02 7.56E-01 7.71E-02 3.25E-02 1.26E-03 

Asparagine N/A N/A 1.48E-01 6.18E-02 4.09E-03 4.90E-03 N/A 

Aspartate 2.07E-02 6.86E-03 2.66E-01 1.09E-01 2.16E-03 5.60E-02 4.09E-03 

ATP N/A N/A N/A 1.79E-02 1.67E-01 5.81E-01 1.51E-01 

Betaine 2.49E-01 6.58E-04 1.97E-02 4.05E-04 4.67E-05 3.52E-03 1.48E-04 

Ceramide 2.09E-01 1.30E-02 4.34E-02 6.29E-02 1.70E-01 1.85E-02 1.96E-02 

Choline 1.69E-01 1.38E-02 5.98E-03 9.19E-03 5.49E-04 1.56E-03 1.16E-03 

Citrate 1.08E-01 1.64E-02 2.02E-01 3.67E-01 3.25E-02 2.72E-01 2.79E-02 

CoA 7.54E-01 4.10E-01 1.91E-01 8.88E-02 7.27E-04 7.30E-02 5.13E-03 

Cysteine 1.55E-01 1.24E-01 2.20E-01 4.58E-02 4.70E-04 2.69E-04 1.19E-02 

dCDP 1.14E-01 6.06E-02 1.99E-02 4.27E-01 5.80E-02 5.18E-02 3.75E-06 

dGTP 2.21E-01 3.86E-01 6.55E-01 1.66E-01 1.13E-02 5.40E-01 1.26E-01 

DL-Pipecolic Acid N/A 3.21E-01 3.43E-01 4.65E-01 6.13E-02 6.75E-03 4.98E-04 

dUTP N/A N/A N/A 1.35E-01 1.10E-01 3.22E-01 3.46E-02 

Erythrose-4-Phosphate N/A N/A N/A 5.70E-01 N/A N/A N/A 

Ethanolamine 1.51E-01 6.71E-01 8.95E-01 1.60E-01 1.93E-02 6.87E-03 1.09E-02 

FAD 2.05E-01 1.07E-01 3.12E-01 1.10E-01 8.04E-03 4.32E-01 4.13E-03 

Farnesylpyrophosphate N/A N/A N/A 3.02E-01 2.85E-01 9.73E-02 1.64E-01 

Fructose-1,6-Bisphosphate 6.65E-01 7.22E-02 6.40E-01 1.81E-01 1.70E-02 1.56E-01 9.53E-03 

Fumarate, Maleate, & Isoketovalerate 5.32E-02 6.78E-01 8.29E-01 3.34E-02 1.98E-02 1.37E-01 5.42E-02 

Glucono-1,5-Lactone-6-Phosphate 8.99E-02 8.13E-03 4.84E-02 1.18E-01 3.56E-01 3.13E-03 1.66E-03 

Glutamate 5.51E-02 9.60E-03 7.60E-02 1.16E-02 1.17E-03 8.05E-03 3.07E-04 

Glutamine 2.40E-02 1.07E-03 3.52E-03 1.24E-04 9.99E-05 1.04E-06 4.22E-03 

Glycerophosphocholine N/A N/A N/A N/A N/A N/A N/A 

GMP 2.52E-01 7.40E-01 4.49E-01 1.23E-02 2.83E-02 2.19E-02 4.35E-03 

GTP 3.48E-01 2.87E-01 9.89E-01 2.56E-01 7.25E-01 4.19E-01 5.64E-01 

Hexose Phosphate 7.95E-02 8.38E-01 7.94E-02 5.52E-01 5.81E-01 1.50E-01 7.90E-02 

Histidinol N/A N/A N/A 5.03E-02 6.81E-01 8.86E-01 2.72E-02 

Homoserine 3.33E-01 2.46E-02 8.31E-02 N/A N/A 1.39E-01 N/A 

Lysine 1.74E-01 1.69E-01 1.41E-01 1.18E-02 2.39E-04 1.40E-02 2.01E-04 

Malate 1.17E-01 4.26E-02 7.02E-03 1.44E-01 1.34E-02 3.08E-02 6.98E-03 

Malonyl CoA 9.10E-02 1.72E-02 8.10E-02 5.06E-01 1.01E-02 2.23E-01 4.79E-02 

Methylmalonic Acid 3.10E-02 1.81E-03 4.47E-02 1.48E-01 1.25E-03 3.83E-03 6.58E-03 

N-Acetylglucosamine-1-Phosphate N/A N/A N/A N/A N/A N/A N/A 

N-Acetylglutamate N/A 4.17E-01 9.39E-02 2.10E-01 1.19E-02 1.57E-03 3.06E-03 

N-Acetylglutamine 6.33E-02 1.32E-02 8.98E-02 2.53E-02 2.12E-02 8.13E-03 2.48E-02 

N-Acetyllysine 4.86E-02 4.05E-02 9.74E-02 1.97E-02 3.72E-03 3.17E-03 2.16E-03 

NAD 3.51E-01 4.40E-01 4.60E-01 3.08E-02 1.56E-01 2.22E-01 2.63E-04 
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Table 4B: Continued       

 

p-values 

 

Time Point in Minutes Post Infection 

Metabolite 15 30 60 120 240 360 480 

NADH 5.60E-01 2.60E-01 5.79E-01 6.71E-02 5.98E-02 2.62E-01 4.07E-02 

NADP 4.64E-01 4.21E-01 1.85E-01 5.08E-01 2.57E-01 7.55E-01 5.66E-02 

NADPH 5.60E-01 1.20E-01 9.01E-01 2.83E-02 6.48E-03 8.08E-02 2.04E-04 

Nicotinate 1.51E-02 2.41E-03 2.11E-02 5.67E-02 2.48E-03 5.12E-03 7.08E-04 

O-Acetylserine 6.59E-01 1.29E-01 4.89E-01 N/A 2.54E-01 4.57E-01 1.65E-02 

Orotate 1.04E-02 7.70E-02 1.21E-01 1.57E-02 2.75E-01 5.73E-02 2.28E-03 

Orotidine Phosphate N/A 7.46E-01 9.27E-01 5.22E-01 2.59E-01 7.17E-02 N/A 

Oxidized Glutathione (GSSG) 4.57E-01 4.87E-01 2.48E-01 8.42E-01 9.51E-03 4.16E-03 1.23E-01 

Palmitate 7.85E-01 5.46E-01 8.44E-01 3.27E-01 4.15E-01 6.03E-02 2.75E-02 

Pentose Phosphate N/A N/A N/A N/A N/A N/A N/A 

Phenylpropiolic Acid 2.74E-03 1.60E-02 1.19E-01 6.37E-01 2.45E-02 5.91E-03 1.29E-04 

Phosphatidylcholine & Phosphatidylethanolamine 3.09E-01 8.68E-01 4.71E-01 2.89E-01 8.80E-04 1.33E-03 3.57E-03 

Phosphoenolpyruvate 1.04E-01 6.98E-01 4.95E-01 1.68E-01 1.52E-02 1.16E-01 1.08E-03 

Proline 1.33E-01 1.83E-02 6.43E-02 9.24E-03 4.50E-05 1.10E-03 1.09E-03 

Propionyl CoA 5.58E-01 7.72E-01 5.87E-01 2.14E-02 6.66E-02 3.31E-03 1.84E-03 

Pyridoxine 9.90E-02 4.14E-02 8.76E-02 6.67E-03 9.80E-03 1.59E-03 2.53E-04 

Reduced Glutathione (GSH) 8.02E-01 7.00E-01 4.17E-01 3.84E-03 9.53E-03 7.44E-02 1.22E-01 

Ribulose-1,5-Bisphosphate N/A N/A N/A N/A N/A N/A N/A 

S-Adenosylmethionine 3.80E-01 5.36E-02 5.78E-02 7.70E-01 2.95E-02 2.34E-02 2.82E-03 

Sarcosine N/A N/A N/A 2.19E-02 4.81E-03 2.21E-02 4.73E-04 

Sedoheptulose-7-Phosphate 9.26E-01 9.06E-01 3.74E-02 3.85E-01 9.97E-02 3.66E-01 1.40E-01 

Serine N/A 3.24E-01 N/A 1.08E-01 9.19E-02 1.88E-02 4.48E-03 

Succinate  4.84E-02 9.99E-04 2.35E-02 1.33E-01 5.94E-04 3.98E-03 6.84E-03 

Succinyl CoA 8.37E-01 1.78E-01 1.27E-01 2.23E-02 7.20E-03 2.24E-02 3.16E-02 

TDP 8.72E-01 3.72E-01 2.41E-01 3.34E-01 3.54E-01 2.57E-03 1.70E-02 

Thiamine 6.58E-02 2.15E-02 3.32E-02 2.84E-03 1.30E-01 1.49E-02 5.10E-02 

Threonine N/A N/A 2.13E-01 3.81E-02 7.40E-03 1.13E-03 3.28E-08 

Tryptophan 4.99E-01 7.55E-01 2.85E-01 2.08E-01 1.87E-01 6.75E-02 2.43E-01 

UDP 2.53E-01 4.61E-01 5.60E-02 1.75E-01 1.04E-01 1.04E-02 3.06E-03 

UDP-D-Glucose  2.83E-03 1.29E-03 8.71E-05 2.18E-01 1.51E-02 4.85E-03 1.47E-03 

UDP-D-Glucuronate & Galacturonate 6.70E-03 6.54E-03 4.19E-05 4.43E-02 2.85E-04 2.34E-03 1.02E-03 

UDP-N-Acetylglucosamine  9.75E-02 1.06E-02 9.66E-03 4.64E-02 5.03E-04 2.37E-02 4.15E-01 

Urea 1.42E-01 6.72E-01 8.91E-01 1.41E-01 2.27E-02 5.49E-03 1.07E-02 

UTP 1.46E-01 5.89E-01 6.07E-01 2.96E-01 3.77E-02 6.73E-01 1.90E-01 

Valine 1.50E-01 1.68E-02 1.20E-01 3.09E-01 6.01E-03 2.18E-04 2.64E-03 

N/A is result of an insufficient number of measurements  
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Table 5A: Virus (Φ2047) Counts Used in Figure 2b 

 

Virus Counts  

Time Post Infection in Minutes Replicate 1 Replicate 2 Average Range 

15 1.40E+09 1.79E+09 1.60E+09 3.90E+08 

30 1.09E+09 1.95E+09 1.52E+09 8.60E+08 

60 9.07E+08 1.38E+09 1.15E+09 4.80E+08 

120 1.13E+10 1.41E+10 1.27E+10 2.40E+09 

240 9.91E+10 1.13E+11 1.06E+11 1.40E+10 

360 1.99E+11 2.41E+11 2.20E+11 4.10E+10 

480 3.62E+11 3.47E+11 3.55E+11 1.50E+10 

          

 

    

     Table 5B: Sulfitobacter sp. CB2047 Grown on 10mM Acetate Infected With Virus Used in Figure 2b 

 

Cell Density at OD540 

Time Post Infection in Minutes  Replicate 1  Replicate 2 Average  Range 

0 0.144 0.157 0.151 0.013 

15 0.158 0.162 0.160 0.004 

30 0.153 0.168 0.161 0.015 

60 0.179 0.156 0.168 0.023 

120 0.185 0.208 0.197 0.023 

240 0.212 0.254 0.233 0.042 

360 0.208 0.191 0.200 0.017 

480 0.181 0.180 0.181 0.001 

     

      

 

    Table 5C: Sulfitobacter sp. CB2047 Controls Grown on 10mM Acetate Used in Figure 2b 

 

Cell Density at OD540 

Time Post Infection in Minutes  Replicate 1  Replicate 2 Average  Range 

0 0.157 0.163 0.160 0.003 

15 0.155 0.158 0.157 0.003 

30 0.184 0.155 0.170 0.029 

60 0.173 0.166 0.170 0.007 

120 0.196 0.197 0.197 0.001 

240 0.228 0.239 0.234 0.011 

360 0.262 0.266 0.264 0.004 

480 0.305 0.336 0.321 0.031 
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Table 6: Glutamate and Glutamine Concentrations in Control (fg/cell) Used in Figure 2c 

 

Glutamate Glutamine 

Time Post Infection in Minutes Control STDev Control STDev 

15 56.66 10.85 3.19 1.01 

30 69.50 8.38 5.32 1.16 

60 62.70 2.79 5.02 0.63 

120 54.88 8.89 3.67 0.94 

240 65.72 2.54 3.61 0.33 

360 66.45 14.93 2.67 0.72 

480 70.84 3.42 2.03 0.19 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

Table 7: Glutamate and Glutamine Concentrations in Infected (fg/cell) Used in Figure 2d 

 

Glutamate Glutamine 

Time Post Infection in Minutes Infected STDev Infected STDev 

15 77.14 3.61 5.58 1.18 

30 96.68 2.20 10.12 0.64 

60 86.13 14.68 10.35 1.58 

120 81.67 1.05 10.36 0.45 

240 112.54 10.00 13.90 1.05 

360 119.39 16.61 13.15 0.78 

480 137.99 8.01 12.27 2.58 
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Table 8: Glutamate to Glutamine Ratios for Control and Infected Used in Figure 2e 

 

Time Post Infection in Minutes Control Infected 

   15 17.76 13.82 

   30 13.07 9.56 

   60 12.49 8.32 

   120 14.94 7.88 

   240 18.21 8.10 

   360 24.89 9.08 

   480 34.97 11.25 
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Table 9: % Significantly Different Metabolites Used in Figure 2f 

Time Post Infection in Minutes % Significantly Different 

15 12.05 

30 19.28 

60 14.46 

120 25.30 

240 61.45 

360 65.06 

480 75.90 
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Table 10: Fold Change of Intracellular Metabolites of Phage Amended and Control Sulfitobacter sp. 2047 Populations without Cell Normalization Used in Figure 3 

Fold Change Relative to Control at Time Point 0 

Time Point in Minutes Post Infection 

Metabolite 0 15 30 60 120 240 360 480 0 15 30 60 120 240 360 480 

1,3 & 2,3 Diphosphoglycerate 1.000 0.742 0.763 0.699 1.031 1.581 1.245 1.227 0.929 0.835 0.775 0.628 1.082 1.962 1.199 1.211 

1-Methylhistidine 0.000 1.000 1.876 2.412 3.103 4.282 4.742 5.729 0.000 1.921 2.332 2.800 4.112 6.521 4.897 5.777 

3-Phosphoglycerate 1.000 0.924 1.166 0.773 0.912 1.115 1.304 1.207 0.851 0.965 0.671 0.712 1.097 0.968 0.775 0.595 

4-Hydroxybenzoate 1.000 0.972 0.987 0.834 0.710 0.714 0.745 0.663 1.025 0.921 0.921 0.892 0.888 1.014 0.586 0.656 

5-Methyltetrahydrofolate 1.000 1.543 2.100 1.743 0.990 0.436 0.347 0.363 1.438 1.854 1.117 1.607 0.952 0.950 0.504 0.631 

5'-Methylthioadenosine 0.000 1.000 2.613 7.541 2.582 11.057 15.220 29.534 0.000 1.415 4.601 5.937 3.543 16.266 14.445 22.044 

Acetyl CoA 1.000 4.542 4.921 3.392 3.692 4.650 6.403 7.141 2.813 5.362 4.863 3.783 3.961 4.171 3.993 2.909 

Acetyl Phosphate 1.000 0.908 0.670 1.232 0.510 0.490 0.683 11.034 1.691 0.727 2.053 0.588 1.033 0.674 0.618 0.607 

ADP 1.000 0.670 1.052 0.678 0.855 1.239 1.789 1.795 1.142 1.099 0.717 0.771 0.787 0.961 1.085 0.893 

Alanine 1.000 2.965 4.007 2.376 1.434 1.576 1.526 1.831 1.397 3.936 4.575 2.675 1.324 1.828 1.669 1.596 

AMP 1.000 0.739 0.713 0.665 0.912 1.134 1.575 1.728 0.856 0.867 0.662 0.712 0.663 0.950 1.234 0.943 

Asparagine 0.000 0.000 1.000 0.655 1.084 1.086 1.105 1.333 0.000 0.000 1.150 1.029 0.949 1.108 1.054 1.181 

Aspartate 1.000 1.745 2.371 2.574 1.970 3.041 4.228 5.432 0.991 2.041 2.624 2.442 1.782 2.577 2.423 2.663 

ATP 0.000 0.000 0.000 0.000 1.000 1.487 1.807 1.724 0.000 0.000 0.000 0.000 1.039 1.407 0.870 0.789 

Betaine 1.000 5.751 9.519 10.653 9.901 10.041 10.981 13.354 1.351 12.932 9.522 10.363 10.143 10.714 10.908 11.703 

Ceramide 1.000 0.851 0.812 0.667 0.515 0.417 0.363 0.404 1.026 0.911 0.723 0.613 0.456 0.322 0.333 0.226 

Choline 1.000 3.363 5.769 6.629 5.581 6.161 7.497 8.026 0.854 4.049 6.055 6.610 5.629 6.969 8.084 7.859 

Citrate 1.000 0.191 0.219 0.176 0.276 0.364 0.578 0.616 0.659 0.274 0.257 0.233 0.422 0.553 0.342 0.425 

CoA 0.000 1.000 0.866 1.017 0.885 0.865 1.382 1.048 0.000 0.872 0.806 0.476 0.898 1.013 0.875 0.798 

Cysteine 1.000 4.443 7.033 7.547 8.372 9.118 9.732 14.429 1.525 6.300 7.966 7.542 7.857 10.389 11.167 10.556 

dCDP 1.000 0.848 0.869 0.884 2.146 2.668 3.175 3.261 1.020 1.007 0.849 0.940 2.105 3.354 2.872 3.358 

dGTP 1.000 1.056 1.759 0.719 1.902 4.333 7.569 8.536 0.675 2.129 0.758 0.632 2.528 4.129 3.459 3.699 

DL-Pipecolic Acid 0.000 0.000 1.000 0.938 1.665 1.637 1.568 1.760 0.000 0.000 1.024 0.914 1.358 1.584 1.680 1.688 

dUTP 1.000 1.636 0.441 0.276 2.728 2.510 2.902 2.313 0.380 ‡0.001 ‡0.001 0.754 3.799 3.247 1.961 2.256 

Erythrose-4-Phosphate 1.000 0.461 0.684 0.305 0.537 ‡0.001 ‡0.001 1.373 0.673 ‡0.001 0.495 0.566 0.575 0.937 0.950 0.459 

Ethanolamine 1.000 15.356 50.442 48.352 43.922 47.158 68.012 56.188 1.453 20.916 40.467 38.939 38.279 58.687 76.596 68.785 
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Table 10: Continued 

Fold Change Relative to Control at Time Point 0 

Time Point in Minutes Post Infection 

Metabolite 0 15 30 60 120 240 360 480 0 15 30 60 120 240 360 480 

FAD 1.000 0.411 0.344 0.340 0.377 0.528 0.755 0.750 0.480 0.416 0.352 0.337 0.342 0.474 0.357 0.402 

Farnesylpyrophosphate 1.000 ‡0.001 0.624 0.670 1.507 3.879 3.527 4.732 0.671 ‡0.001 0.699 0.376 2.313 10.072 8.467 6.049 

Fructose-1,6-Bisphosphate 1.000 0.819 0.843 0.545 0.802 0.668 1.286 0.751 1.119 0.752 1.122 0.497 1.078 1.125 1.131 0.763 

Fumarate, Maleate, & Isoketovalerate 1.000 0.988 0.825 0.869 0.671 0.552 0.467 0.592 0.874 0.892 0.640 0.695 0.775 0.486 0.550 0.627 

Glucono-1,5-Lactone-6-Phosphate 1.000 0.777 0.746 0.652 0.905 1.093 0.954 0.973 0.889 0.768 0.766 0.687 1.276 6.342 1.098 0.987 

Glutamate 1.000 1.657 2.345 2.171 1.905 2.967 4.084 4.799 0.908 1.815 2.254 2.293 2.024 2.736 2.619 2.172 

Glutamine 1.000 2.129 3.585 3.568 2.717 3.015 2.795 2.238 0.693 2.861 4.821 5.615 5.452 6.527 5.690 3.950 

Glycerophosphocholine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.337 

GMP 1.000 0.438 0.474 0.507 0.369 0.290 0.670 0.559 0.845 0.514 0.297 0.508 0.499 0.434 0.512 0.392 

GTP 1.000 1.100 2.908 0.247 1.210 4.391 9.699 11.537 0.446 3.875 0.592 0.196 1.725 2.164 2.456 2.436 

Hexose Phosphate 1.000 0.966 2.175 1.427 2.396 2.537 2.906 1.881 0.748 2.977 1.611 2.559 2.303 1.782 2.395 1.642 

Histidinol 0.000 0.000 1.000 ‡0.001 1.061 1.863 2.620 4.759 0.000 0.000 ‡0.001 ‡0.001 1.075 0.883 1.102 0.936 

Homoserine 0.000 1.000 1.989 1.245 ‡0.001 1.822 1.573 1.948 0.000 1.278 2.519 1.847 1.904 1.447 2.169 1.544 

Lysine 1.000 2.263 2.862 2.955 2.460 3.301 3.988 4.540 1.015 2.498 2.560 3.419 2.573 2.853 2.830 3.112 

Malate 1.000 0.947 0.959 0.950 0.975 0.958 1.038 1.002 0.961 0.881 0.810 0.875 1.049 0.793 0.630 0.511 

Malonyl CoA 1.000 5.065 7.568 3.575 5.445 7.410 9.601 10.223 3.846 6.637 8.441 6.079 4.656 6.250 5.958 4.968 

Methylmalonic Acid 1.000 0.849 0.896 0.869 0.735 0.723 0.865 0.698 0.913 0.830 0.750 0.828 0.984 0.645 0.650 0.651 

N-Acetylglucosamine-1-Phosphate 1.000 ‡0.001 1.451 0.702 ‡0.001 ‡0.001 ‡0.001 ‡0.001 0.905 ‡0.001 ‡0.001 ‡0.001 ‡0.001 ‡0.001 ‡0.001 ‡0.001 

N-Acetylglutamate 1.000 2.677 4.079 3.150 3.451 5.305 4.973 5.927 1.283 1.791 3.006 3.388 4.456 3.950 4.126 3.461 

N-Acetylglutamine 1.000 2.046 3.087 2.835 2.754 3.921 4.758 5.842 0.987 2.247 2.910 2.889 2.764 3.325 3.250 2.671 

N-Acetyllysine 1.000 2.242 3.362 3.095 3.074 4.261 5.352 6.639 0.987 2.454 3.142 3.304 3.000 3.885 3.591 3.128 

NAD 1.000 1.341 1.518 1.031 0.682 0.861 0.745 0.662 0.976 1.303 1.202 0.886 0.771 0.765 0.539 0.572 

NADH 1.000 0.335 0.318 0.322 0.196 0.286 0.255 0.074 0.573 0.331 0.334 0.205 0.355 0.247 0.163 0.142 

NADP 1.000 0.644 1.143 0.545 0.582 0.828 1.224 1.063 1.087 0.727 0.610 0.722 0.519 0.671 0.446 0.561 

NADPH 0.000 1.000 0.656 0.520 0.934 1.017 1.123 1.059 0.000 0.833 0.754 0.427 0.939 1.001 0.781 0.836 

Nicotinate 1.000 0.957 0.979 0.940 0.873 0.897 0.922 0.872 1.005 0.950 0.977 0.897 1.071 0.925 0.920 0.871 

O-Acetylserine 1.000 1.363 1.753 1.718 1.061 1.358 2.261 2.121 0.544 1.623 2.158 0.882 1.695 1.777 1.211 3.259 



110 

 

Table 10: Continued 

Fold Change Relative to Control at Time Point 0 

Time Point in Minutes Post Infection 

Metabolite 0 15 30 60 120 240 360 480 0 15 30 60 120 240 360 480 

Orotate 1.000 0.952 1.039 1.012 1.122 0.876 0.923 0.914 1.134 1.051 0.983 0.951 1.004 2.137 0.930 0.889 

Orotidine Phosphate 1.000 0.769 0.914 0.813 4.940 3.780 3.543 3.137 1.533 ‡0.001 0.522 0.634 4.420 6.680 2.409 3.993 

Oxidized Glutathione (GSSG) 1.000 0.711 0.681 0.433 0.233 1.132 1.287 1.483 1.309 0.841 0.598 0.580 0.150 1.505 1.257 0.850 

Palmitate 1.000 0.844 0.897 0.747 1.781 2.901 1.810 1.820 0.874 0.578 0.487 0.518 5.796 2.278 1.817 1.488 

Pentose Phosphate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 †1000 †1000 0.000 0.000 †1000 †1000 

Phenylpropiolic Acid 1.000 0.903 0.888 0.860 1.354 1.445 1.449 1.297 0.890 1.040 0.911 0.803 1.171 1.411 1.492 1.413 

Phosphatidylcholine & Phosphatidylethanolamine 1.000 0.717 0.794 0.537 0.590 0.831 1.078 1.023 0.792 0.749 0.574 0.447 0.856 0.675 0.621 0.462 

Phosphoenolpyruvate 1.000 1.036 1.231 0.854 0.969 1.056 1.259 1.250 0.842 1.182 0.788 0.751 1.286 0.952 0.634 0.556 

Proline 1.000 2.476 3.972 4.146 4.621 5.668 5.890 6.113 1.123 2.846 4.410 4.870 5.008 5.812 5.681 5.079 

Propionyl CoA 1.000 5.687 5.705 5.114 4.166 7.057 9.247 9.019 3.932 5.711 3.704 3.241 4.384 5.688 7.698 8.140 

Pyridoxine 1.000 4.484 7.257 8.325 11.577 12.499 12.520 14.524 1.220 6.544 8.514 9.112 12.477 14.700 14.642 14.799 

Reduced Glutathione (GSH) 1.000 1.219 1.624 1.264 2.891 2.209 3.260 2.694 0.083 1.224 1.007 1.399 3.619 2.608 2.889 1.585 

Ribulose-1,5-Bisphosphate 0.000 0.000 0.000 0.000 0.000 1.000 2.354 2.114 0.000 0.000 0.000 0.000 0.000 ‡0.001 0.920 ‡0.001 

S-Adenosylmethionine 1.000 3.541 4.984 3.721 4.983 5.659 4.162 5.945 0.891 4.124 7.890 4.373 4.118 6.332 5.220 6.733 

Sarcosine 0.000 0.000 0.000 0.000 1.000 1.467 1.663 2.196 0.000 0.000 0.000 0.000 1.184 1.508 1.942 1.961 

Sedoheptulose-7-Phosphate 1.000 0.715 1.040 0.412 0.816 0.550 0.630 0.477 1.192 0.555 0.690 0.514 2.038 0.885 0.419 0.498 

Serine 1.000 1.937 2.076 3.124 3.045 3.298 3.547 3.498 ‡0.001 1.264 2.222 3.483 3.133 3.292 2.927 2.449 

Succinate  1.000 0.849 0.887 0.853 0.729 0.723 0.856 0.691 0.918 0.823 0.746 0.827 0.947 0.655 0.642 0.647 

Succinyl CoA 0.000 1.000 0.136 0.055 1.438 1.618 1.683 1.005 0.000 0.687 0.225 0.336 1.735 1.420 1.060 0.769 

TDP 1.000 1.353 1.277 0.680 6.777 7.335 6.186 5.877 1.329 1.004 0.612 0.960 20.703 15.680 6.222 5.918 

Thiamine 1.000 3.821 6.323 6.679 5.809 0.681 0.779 1.383 0.888 4.952 5.427 6.900 7.477 0.658 1.033 1.470 

Threonine 0.000 0.000 1.000 1.927 3.704 6.660 8.489 10.229 0.000 0.000 0.820 2.212 4.067 7.493 9.148 9.443 

Tryptophan 1.000 2.271 3.449 4.546 3.629 5.722 6.194 11.444 0.738 3.079 2.791 15.541 3.855 5.190 5.343 4.457 

UDP 1.000 0.830 0.745 0.565 1.986 3.258 2.715 2.243 0.991 0.907 0.635 0.813 4.235 3.945 2.742 2.538 

UDP-D-Glucose  1.000 0.737 0.882 0.838 1.051 1.621 1.813 2.085 0.865 1.533 1.438 1.241 1.205 1.302 1.186 1.202 

UDP-D-Glucuronate & Galacturonate 1.000 0.735 0.642 0.381 0.398 0.650 0.699 1.051 0.982 1.701 2.594 2.508 3.550 3.313 2.841 2.178 

UDP-N-Acetylglucosamine  1.000 0.701 1.017 0.975 1.347 1.967 2.229 2.355 0.815 0.846 0.358 0.414 0.439 0.489 0.485 0.615 
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Table 10: Continued 

Fold Change Relative to Control at Time Point 0 

Time Point in Minutes Post Infection 

Metabolite 0 15 30 60 120 240 360 480 0 15 30 60 120 240 360 480 

Urea 1.000 16.511 55.658 52.759 47.722 51.333 73.039 60.296 1.512 22.529 44.657 42.526 41.784 64.429 83.592 73.935 

UTP 1.000 0.737 1.647 0.450 1.604 4.411 7.665 7.838 0.562 3.241 0.810 0.456 2.430 4.623 3.511 3.198 

Valine 1.000 3.313 6.455 4.403 5.900 4.869 5.372 6.343 0.772 5.019 6.001 10.463 5.027 6.912 5.792 4.601 

†A value of 1000 is used when only measured in infected 
 

‡A value of 0.001 is used when only measured in control   
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Table 11: Expanded Table Used in Figure 4 

    Time in Minutes Glutamine Glutamate 

Post Infection 

Post 13C 

Addition 

Fold 

Changea 

Rate 

Constanta, k Fluxa 

Fold 

Changea 

Rate Constanta, 

k Fluxa 

0 0 1.16 0.91 1.06 1.19 0.91 1.08 

5 5 1.08 0.91 0.99 1.09 0.91 1.00 

15 15 1.34 0.91 1.22 1.14 0.91 1.04 

30 30 1.46 0.91 1.34 1.07 0.91 0.98 

60 60 1.90 0.91 1.74 1.19 0.91 1.09 

120 120 2.17 0.91 1.98 1.09 0.91 0.99 

240 0 2.09 0.72 1.50 1.06 0.80 0.84 

245 5 2.13 0.72 1.53 0.97 0.80 0.77 

255 15 2.78 0.72 2.00 0.99 0.80 0.78 

270 30 3.64 0.72 2.62 1.24 0.80 0.99 

300 60 3.20 0.72 2.30 1.23 0.80 0.98 

360 120 3.20 0.72 2.30 1.24 0.80 0.98 

aCalculated as a ratio of infected / uninfected per time point 
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Table 12A:  Average Percent of Glutamine Flux Early Post Infection Used in Figure 4a 

        

  

Average Percent at Time Point 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  2-2  3-2  3-3  5-4  0-0  2-2  3-2  3-3  5-4 

0 0 91.06 8.55 0.00 0.00 0.39 90.93 8.73 0.00 0.00 0.34 

5 5 62.82 26.61 0.00 4.02 6.55 66.95 23.76 0.00 4.64 4.66 

15 15 21.24 25.68 0.00 18.24 34.84 25.39 27.80 0.00 16.84 29.97 

30 30 0.00 14.59 18.04 14.93 52.44 0.00 15.11 18.23 15.03 51.62 

60 60 0.00 8.85 21.88 12.85 56.42 0.00 11.74 19.61 13.81 54.83 

120 120 0.00 7.22 19.46 13.60 59.72 0.00 9.46 15.85 13.69 61.00 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 

                               

 

 

 

 

 

Table 12B:  Range of Glutamine Flux Early Post Infection Used in Figure 4a 

        

  

Range 

Time in Minutes Control Infected  

Post Infection  Post 13C Addition  0-0  2-2  3-2  3-3  5-4  0-0  2-2  3-2  3-3  5-4 

0 0 0.27 0.66 0.00 0.00 0.39 0.34 0.00 0.00 0.00 0.34 

5 5 1.39 0.30 0.00 1.01 0.08 1.33 1.53 0.00 0.25 0.05 

15 15 1.39 1.33 0.00 1.26 3.98 1.12 0.01 0.00 0.52 1.65 

30 30 0.00 2.44 1.45 2.63 1.26 0.00 1.75 3.19 2.40 2.54 

60 60 0.00 1.80 2.64 0.26 0.58 0.00 0.08 1.24 0.53 0.63 

120 120 0.00 0.40 1.02 0.26 0.36 0.00 2.55 0.49 0.18 2.86 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 
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Table 13A:  Average Percent of Glutamine Flux Late Post Infection Used in Figure 4b 

        

  

Average Percent at Time Point 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  2-2  3-2  3-3  5-4  0-0  2-2  3-2  3-3  5-4 

240 0 95.33 4.67 0.00 0.00 0.00 93.94 5.73 0.00 0.00 0.32 

245 5 66.99 24.96 0.00 2.77 5.29 74.50 17.90 0.00 3.17 4.43 

255 15 23.69 26.16 0.00 16.90 33.26 44.99 26.79 0.00 9.96 18.27 

270 30 0.00 8.67 15.88 11.21 64.24 12.99 18.04 10.55 14.85 43.57 

300 60 0.00 5.46 14.59 12.49 67.46 4.12 12.23 14.56 12.33 56.76 

360 120 0.00 4.75 13.64 8.81 72.80 2.20 7.87 14.13 13.38 62.42 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 

                               

 

 

 

 

 

Table 13B:  Range of Glutamine Flux Late Post Infection Used in Figure 4b 

        

  

Range 

Time in Minutes Control Infected  

Post Infection  Post 13C Addition  0-0  2-2  3-2  3-3  5-4  0-0  2-2  3-2  3-3  5-4 

240 0 1.59 1.59 0.00 0.00 0.00 0.68 1.00 0.00 0.00 0.32 

245 5 0.67 1.46 0.00 0.08 2.05 0.17 0.43 0.00 1.20 1.79 

255 15 2.02 6.08 0.00 0.19 4.25 0.24 1.48 0.00 0.58 2.29 

270 30 0.00 2.72 1.30 0.68 2.10 1.87 1.40 1.37 0.78 2.63 

300 60 0.00 1.18 1.72 1.30 1.83 0.43 0.41 0.76 0.74 0.01 

360 120 0.00 0.50 0.83 1.17 0.83 0.04 0.57 2.90 2.50 1.01 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 
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Table 14A:  Average Percent of Glutamate Flux Early Post Infection Used in Figure 4c 

      

  

Average Percent at Time Point 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  3-2  3-3  5-4  0-0  3-2  3-3  5-4 

0 0 93.88 1.20 2.39 2.52 92.45 1.64 3.29 2.62 

5 5 64.95 6.42 12.60 16.03 65.69 6.34 13.22 14.74 

15 15 18.36 15.01 21.25 45.38 21.57 15.75 21.29 41.39 

30 30 5.72 18.52 17.49 58.27 6.14 18.31 17.72 57.83 

60 60 3.13 18.98 16.05 61.83 2.97 18.37 16.37 62.28 

120 120 2.06 20.05 15.20 62.69 2.34 19.54 15.02 63.10 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 

                         

 

 

 

 

 

Table 14B:  Range of Glutamate Flux Early Post Infection Used in Figure 4c 

      

  

Range 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  3-2  3-3  5-4  0-0  3-2  3-3  5-4 

0 0 0.47 0.14 0.25 0.08 1.62 0.28 0.81 0.53 

5 5 1.05 0.04 0.44 0.66 0.54 0.05 0.39 0.10 

15 15 0.40 0.38 0.58 0.20 0.40 0.38 0.03 0.80 

30 30 0.21 0.85 0.29 0.93 0.53 0.19 0.22 0.94 

60 60 0.42 0.40 0.21 0.23 0.13 0.09 0.29 0.25 

120 120 0.14 0.85 0.30 0.41 0.03 0.37 0.13 0.48 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 
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Table 15A:  Average Percent of Glutamate Flux Late Post Infection Used in Figure 4d 

Average Percent at Time Point 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  3-2  3-3  5-4  0-0  3-2  3-3  5-4 

240 0 96.29 0.56 1.39 1.76 94.04 1.01 2.28 2.67 

245 5 69.56 4.21 11.13 15.10 70.40 4.41 11.34 13.84 

255 15 23.50 10.34 20.64 45.51 32.21 11.23 19.01 37.55 

270 30 4.51 14.30 14.90 66.29 9.44 16.03 17.51 57.02 

300 60 2.21 14.48 11.87 71.44 4.29 15.78 15.36 64.57 

360 120 1.50 13.56 10.71 74.23 2.32 16.07 13.38 68.23 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 

                    

 

 

 

 

 

Table 15B:  Range of Glutamate Flux Late Post Infection Used in Figure 4d 

Range 

Time in Minutes  Control Infected 

Post Infection  Post 13C Addition  0-0  3-2  3-3  5-4  0-0  3-2  3-3  5-4 

240 0 0.32 0.01 0.10 0.21 0.03 0.03 0.05 0.02 

245 5 0.15 0.02 0.71 0.59 0.73 0.06 0.45 0.34 

255 15 0.39 0.49 0.37 1.24 0.54 0.29 0.44 0.19 

270 30 0.02 0.13 0.63 0.51 0.81 0.26 0.86 1.41 

300 60 0.18 0.76 0.06 0.88 0.24 0.18 0.48 0.41 

360 120 0.03 0.19 0.24 0.40 0.13 0.45 0.05 0.37 

X-Y : Where X is the number of 13C in the parent ion and Y is the number of 13C in the product ion 
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Table 16: Glutamine External Calibration Curve Used in Figure 5 

Calibration Level M Injection # Area 

1 2.42E-02 
1 1.41E+08 

2 1.70E+08 

2 7.26E-03 
1 2.42E+07 

2 2.14E+07 

3 2.18E-03 
1 9.01E+06 

2 1.02E+07 

4 6.53E-04 
1 1.82E+06 

2 2.07E+06 

5 1.96E-04 
1 3.80E+05 

2 4.37E+05 

6 5.88E-05 
1 6.46E+04 

2 8.79E+04 

7 1.76E-05 
1 5.30E+04 

2 6.29E+04 

8 5.29E-06 
1 9.05E+03 

2 1.18E+04 

9 1.59E-06 
1 0.00E+00 

2 0.00E+00 

10 4.76E-07 
1 0.00E+00 

2 0.00E+00 

11 1.43E-07 
1 0.00E+00 

2 0.00E+00 

12 4.29E-08 
1 0.00E+00 

2 0.00E+00 
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Table 17: Glutamate External Calibration Curve Used in Figure 6 

Calibration Level M Injection # Area 

1 2.40E-02 
1 2.22E+08 

2 2.28E+08 

2 7.20E-03 
1 6.71E+07 

2 6.20E+07 

3 2.16E-03 
1 1.66E+07 

2 1.71E+07 

4 6.48E-04 
1 1.61E+06 

2 3.76E+06 

5 1.94E-04 
1 3.48E+05 

2 3.08E+05 

6 5.83E-05 
1 8.62E+04 

2 1.06E+05 

7 1.75E-05 
1 3.01E+04 

2 3.81E+04 

8 5.25E-06 
1 7.67E+03 

2 3.54E+03 

9 1.57E-06 
1 1.99E+02 

2 2.79E+02 

10 4.72E-07 
1 0.00E+00 

2 0.00E+00 

11 1.42E-07 
1 0.00E+00 

2 0.00E+00 

12 4.25E-08 
1 0.00E+00 

2 0.00E+00 
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Table 18A: Cow #1 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.02 0.04 0.02 0.01 0.00 0.01 

Bet  27.84 18.32 19.15 11.71 12.22 12.40 26.93 40.23 44.11 

Cho  72.28 47.07 75.61 113.20 121.22 109.17 187.96 175.14 175.57 

LPC 16:0 0.64 0.53 0.66 0.90 1.01 0.88 1.27 1.37 2.12 

LPC 18:2 0.28 0.14 0.29 0.36 0.16 0.25 0.33 0.22 0.24 

LPC 18:1 0.77 0.57 0.78 0.53 0.33 0.32 0.55 0.63 0.71 

LPC 18:0 0.23 0.21 0.26 0.28 0.33 0.26 0.57 0.38 0.58 

LPC Total 1.91 1.45 1.99 2.06 1.82 1.71 2.72 2.61 3.64 

PtCho 16:0/16:1 6.43 7.23 7.14 10.64 10.87 8.30 104.92 92.97 69.70 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.47 0.51 0.59 0.61 0.60 0.56 6.86 4.51 2.53 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 2.00 1.76 2.55 1.82 1.85 1.59 20.44 14.45 7.91 

PtCho 18:0/20:4 1.28 1.43 1.53 1.89 1.94 1.41 19.18 15.37 8.97 

PtCho 18:0/20:3 0.67 0.74 0.79 1.05 1.14 0.79 10.48 7.77 4.49 

PtCho 18:1/22:6 0.22 0.23 0.24 0.22 0.20 0.23 2.46 1.61 0.81 

PtCho 18:0/22:6,18:1/22:5 0.40 0.38 0.37 0.29 0.32 0.38 3.50 2.20 1.21 

PtCho 18:0/22:5 0.47 0.36 0.54 0.32 0.27 0.23 2.68 1.98 1.23 

PtCho 16:0/16:0 19.10 19.41 23.48 34.20 40.26 29.57 394.24 359.20 216.93 

PtCho 16:0/18:2 13.38 14.67 17.89 26.20 28.17 21.71 317.19 281.24 155.11 

PtCho 16:0/18:1 41.43 46.96 50.93 63.10 66.76 46.50 749.96 669.74 422.56 

PtCho 16:0/20:5,16:1/20:4 0.42 0.43 0.55 0.55 0.54 0.44 5.18 4.27 2.77 

PtCho 16:0/20:4 2.93 3.28 4.18 5.07 5.10 3.74 49.93 38.95 22.97 

PtCho 16:0/20:3 11.23 12.61 14.85 17.18 17.29 12.22 158.67 127.61 72.93 

PtCho 18:0/18:2,18:1/18:1 25.76 29.30 30.72 32.59 30.60 21.42 290.07 253.47 140.49 

PtCho 18:0/18:1 13.87 16.24 15.57 17.64 16.93 10.96 158.24 149.10 83.28 

PtCho Total 140.08 155.53 171.92 213.35 222.83 160.04 2293.98 2024.46 1213.90 

Pcho 490.11 331.22 393.95 147.73 115.49 68.35 25.63 21.77 50.22 

SM  45.73 50.07 52.23 31.59 35.57 26.26 44.60 42.15 44.12 

GPC  78.07 49.84 57.72 42.15 57.77 49.77 95.92 155.10 144.54 

Average of triplicate injections 
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Table 18B: Cow #1 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 1.71 1.04 0.40 0.14 0.36 

Bet  1.00 0.66 0.69 0.42 0.44 0.45 0.97 1.45 1.58 

Cho  1.00 0.65 1.05 1.57 1.68 1.51 2.60 2.42 2.43 

LPC 16:0 1.00 0.83 1.04 1.41 1.58 1.38 2.00 2.15 3.32 

LPC 18:2 1.00 0.48 1.01 1.29 0.57 0.90 1.19 0.79 0.84 

LPC 18:1 1.00 0.74 1.01 0.69 0.42 0.42 0.71 0.83 0.92 

LPC 18:0 1.00 0.94 1.15 1.22 1.44 1.13 2.51 1.69 2.55 

LPC Total 1.00 0.76 1.04 1.08 0.95 0.89 1.42 1.36 1.90 

PtCho 16:0/16:1 1.00 1.12 1.11 1.65 1.69 1.29 16.32 14.46 10.84 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.08 1.23 1.28 1.27 1.18 14.45 9.51 5.33 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.88 1.27 0.91 0.93 0.79 10.21 7.22 3.95 

PtCho 18:0/20:4 1.00 1.11 1.19 1.47 1.51 1.10 14.94 11.98 6.99 

PtCho 18:0/20:3 1.00 1.10 1.18 1.57 1.70 1.18 15.59 11.56 6.68 

PtCho 18:1/22:6 1.00 1.05 1.10 0.99 0.91 1.05 11.29 7.39 3.72 

PtCho 18:0/22:6,18:1/22:5 1.00 0.94 0.94 0.74 0.79 0.96 8.76 5.51 3.04 

PtCho 18:0/22:5 1.00 0.76 1.14 0.68 0.58 0.48 5.68 4.20 2.62 

PtCho 16:0/16:0 1.00 1.02 1.23 1.79 2.11 1.55 20.64 18.81 11.36 

PtCho 16:0/18:2 1.00 1.10 1.34 1.96 2.11 1.62 23.70 21.01 11.59 

PtCho 16:0/18:1 1.00 1.13 1.23 1.52 1.61 1.12 18.10 16.16 10.20 

PtCho 16:0/20:5,16:1/20:4 1.00 1.03 1.31 1.33 1.28 1.04 12.41 10.23 6.63 

PtCho 16:0/20:4 1.00 1.12 1.43 1.73 1.74 1.28 17.03 13.28 7.83 

PtCho 16:0/20:3 1.00 1.12 1.32 1.53 1.54 1.09 14.12 11.36 6.49 

PtCho 18:0/18:2,18:1/18:1 1.00 1.14 1.19 1.27 1.19 0.83 11.26 9.84 5.45 

PtCho 18:0/18:1 1.00 1.17 1.12 1.27 1.22 0.79 11.41 10.75 6.00 

PtCho Total 1.00 1.11 1.23 1.52 1.59 1.14 16.38 14.45 8.67 

Pcho 1.00 0.68 0.80 0.30 0.24 0.14 0.05 0.04 0.10 

SM  1.00 1.09 1.14 0.69 0.78 0.57 0.98 0.92 0.96 

GPC  1.00 0.64 0.74 0.54 0.74 0.64 1.23 1.99 1.85 
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Table 19A: Cow #2 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.03 0.05 0.06 0.00 0.00 0.00 

Bet  78.38 48.15 21.99 14.95 27.62 25.23 20.42 35.60 39.50 

Cho  32.09 54.22 79.72 72.51 122.30 118.21 67.30 80.41 60.54 

LPC 16:0 0.75 0.77 0.67 0.71 1.14 0.79 1.08 1.44 2.57 

LPC 18:2 0.37 0.88 0.81 0.24 0.39 0.22 0.24 0.26 0.36 

LPC 18:1 1.03 1.22 1.09 0.39 0.75 0.35 0.53 0.67 0.85 

LPC 18:0 0.26 0.33 0.22 0.30 0.56 0.42 0.44 0.39 0.83 

LPC Total 2.41 3.20 2.79 1.63 2.84 1.78 2.29 2.76 4.61 

PtCho 16:0/16:1 6.67 6.38 6.21 8.59 15.28 7.84 22.74 33.62 54.87 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.45 0.53 0.72 0.57 0.84 0.54 1.04 1.33 1.89 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.95 2.04 2.52 1.66 2.40 1.82 3.36 4.08 5.15 

PtCho 18:0/20:4 1.01 1.00 1.21 1.56 2.62 1.65 3.39 4.60 5.08 

PtCho 18:0/20:3 0.45 0.45 0.52 0.86 1.71 0.99 2.00 2.46 3.05 

PtCho 18:1/22:6 0.16 0.17 0.26 0.21 0.29 0.19 0.27 0.46 0.59 

PtCho 18:0/22:6,18:1/22:5 0.36 0.35 0.44 0.32 0.39 0.33 0.44 0.76 0.74 

PtCho 18:0/22:5 0.46 0.45 0.48 0.27 0.37 0.35 0.43 0.39 0.67 

PtCho 16:0/16:0 17.22 18.65 19.08 22.08 43.68 26.73 53.74 76.96 109.20 

PtCho 16:0/18:2 20.68 20.72 18.85 22.75 43.85 23.76 69.23 100.73 113.62 

PtCho 16:0/18:1 58.09 53.05 45.31 49.70 87.29 52.81 137.31 212.85 266.21 

PtCho 16:0/20:5,16:1/20:4 0.51 0.49 0.58 0.46 0.76 0.47 1.25 1.48 2.02 

PtCho 16:0/20:4 3.46 4.42 4.54 4.58 8.00 4.11 9.81 12.89 16.60 

PtCho 16:0/20:3 13.75 15.19 14.94 14.67 25.73 14.35 33.34 42.07 47.92 

PtCho 18:0/18:2,18:1/18:1 35.50 33.02 27.91 28.84 51.19 28.77 63.94 81.59 94.75 

PtCho 18:0/18:1 18.17 15.23 13.29 15.89 28.94 15.73 33.85 44.84 49.73 

PtCho Total 178.87 172.14 156.86 172.99 313.36 180.45 436.13 621.12 772.07 

Pcho 490.45 560.79 403.12 166.30 222.55 142.75 94.82 147.89 119.04 

SM  58.92 54.80 48.70 30.88 47.97 33.23 40.58 42.04 41.66 

GPC  104.01 79.12 53.50 25.10 61.28 43.77 156.52 157.11 155.01 

Average of triplicate injections 
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Table 19B: Cow #2 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 1.63 1.94 0.07 0.03 0.04 

Bet  1.00 0.61 0.28 0.19 0.35 0.32 0.26 0.45 0.50 

Cho  1.00 1.69 2.48 2.26 3.81 3.68 2.10 2.51 1.89 

LPC 16:0 1.00 1.03 0.89 0.95 1.52 1.05 1.44 1.92 3.43 

LPC 18:2 1.00 2.37 2.19 0.63 1.04 0.60 0.63 0.70 0.95 

LPC 18:1 1.00 1.18 1.06 0.38 0.73 0.34 0.52 0.65 0.82 

LPC 18:0 1.00 1.30 0.85 1.15 2.17 1.65 1.71 1.50 3.24 

LPC Total 1.00 1.33 1.16 0.68 1.18 0.74 0.95 1.15 1.91 

PtCho 16:0/16:1 1.00 0.96 0.93 1.29 2.29 1.18 3.41 5.04 8.23 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.19 1.59 1.26 1.87 1.19 2.32 2.96 4.22 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.05 1.29 0.85 1.23 0.94 1.73 2.09 2.64 

PtCho 18:0/20:4 1.00 1.00 1.20 1.55 2.60 1.64 3.37 4.58 5.05 

PtCho 18:0/20:3 1.00 0.99 1.14 1.91 3.78 2.19 4.41 5.45 6.73 

PtCho 18:1/22:6 1.00 1.06 1.63 1.29 1.81 1.21 1.67 2.87 3.66 

PtCho 18:0/22:6,18:1/22:5 1.00 0.98 1.20 0.87 1.08 0.92 1.21 2.11 2.04 

PtCho 18:0/22:5 1.00 0.97 1.03 0.57 0.80 0.75 0.93 0.85 1.45 

PtCho 16:0/16:0 1.00 1.08 1.11 1.28 2.54 1.55 3.12 4.47 6.34 

PtCho 16:0/18:2 1.00 1.00 0.91 1.10 2.12 1.15 3.35 4.87 5.49 

PtCho 16:0/18:1 1.00 0.91 0.78 0.86 1.50 0.91 2.36 3.66 4.58 

PtCho 16:0/20:5,16:1/20:4 1.00 0.96 1.15 0.91 1.51 0.93 2.47 2.93 3.99 

PtCho 16:0/20:4 1.00 1.28 1.31 1.32 2.31 1.19 2.83 3.72 4.80 

PtCho 16:0/20:3 1.00 1.10 1.09 1.07 1.87 1.04 2.42 3.06 3.48 

PtCho 18:0/18:2,18:1/18:1 1.00 0.93 0.79 0.81 1.44 0.81 1.80 2.30 2.67 

PtCho 18:0/18:1 1.00 0.84 0.73 0.87 1.59 0.87 1.86 2.47 2.74 

PtCho Total 1.00 0.96 0.88 0.97 1.75 1.01 2.44 3.47 4.32 

Pcho 1.00 1.14 0.82 0.34 0.45 0.29 0.19 0.30 0.24 

SM  1.00 0.93 0.83 0.52 0.81 0.56 0.69 0.71 0.71 

GPC  1.00 0.76 0.51 0.24 0.59 0.42 1.50 1.51 1.49 
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Table 20A: Cow #3 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 

Bet  83.89 48.68 32.34 14.47 14.45 35.27 45.53 53.81 46.54 

Cho  13.02 28.45 38.12 62.02 91.37 88.82 139.17 151.54 121.20 

LPC 16:0 0.69 0.47 0.61 0.65 0.87 1.36 2.39 2.20 1.98 

LPC 18:2 0.26 0.20 0.25 0.29 0.18 0.17 0.35 0.33 0.91 

LPC 18:1 0.51 0.37 0.46 0.45 0.41 0.32 0.87 0.94 1.85 

LPC 18:0 0.28 0.18 0.22 0.32 0.75 0.84 0.98 0.80 0.68 

LPC Total 1.74 1.23 1.54 1.72 2.21 2.70 4.59 4.27 5.42 

PtCho 16:0/16:1 5.09 2.81 3.48 5.81 5.91 11.10 49.98 43.42 23.22 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.71 0.29 0.49 0.51 0.41 0.89 1.54 1.28 0.55 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 2.77 0.95 1.78 1.60 1.14 2.05 5.70 5.00 2.71 

PtCho 18:0/20:4 1.50 0.62 0.96 1.52 1.21 2.49 5.38 4.89 2.88 

PtCho 18:0/20:3 0.64 0.29 0.43 0.87 0.76 1.45 2.80 2.75 1.64 

PtCho 18:1/22:6 0.30 0.11 0.18 0.18 0.15 0.33 0.52 0.41 0.19 

PtCho 18:0/22:6,18:1/22:5 0.60 0.24 0.31 0.28 0.23 0.50 1.14 0.87 0.39 

PtCho 18:0/22:5 0.60 0.20 0.37 0.24 0.20 0.34 0.97 0.70 0.36 

PtCho 16:0/16:0 18.04 9.77 12.86 18.30 15.94 38.36 127.17 101.39 57.87 

PtCho 16:0/18:2 19.20 8.10 10.24 17.92 16.37 38.49 89.69 79.82 43.15 

PtCho 16:0/18:1 45.37 20.84 25.89 40.87 34.48 78.31 270.47 237.43 120.89 

PtCho 16:0/20:5,16:1/20:4 0.48 0.18 0.30 0.36 0.36 0.69 2.01 1.67 0.81 

PtCho 16:0/20:4 3.78 1.97 2.52 4.13 3.31 6.29 13.43 12.53 5.99 

PtCho 16:0/20:3 13.82 6.80 8.55 14.16 11.12 22.91 47.03 43.15 22.42 

PtCho 18:0/18:2,18:1/18:1 30.18 14.18 17.20 26.79 22.19 44.01 90.95 86.25 45.01 

PtCho 18:0/18:1 15.02 7.37 8.66 13.99 11.67 24.37 52.03 49.59 26.72 

PtCho Total 158.11 74.72 94.22 147.52 125.45 272.57 760.80 671.15 354.80 

Pcho 435.44 629.19 496.41 164.91 105.86 81.55 67.89 86.39 77.06 

SM  42.80 33.80 28.33 30.28 24.95 34.37 38.15 39.32 35.60 

GPC  137.63 83.86 100.46 71.10 698.19 540.64 167.72 170.33 128.08 

Average of triplicate injections 
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Table 20B: Cow #3 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 0.00 0.00 0.88 0.78 0.34 

Bet  1.00 0.58 0.39 0.17 0.17 0.42 0.54 0.64 0.55 

Cho  1.00 2.18 2.93 4.76 7.02 6.82 10.69 11.64 9.31 

LPC 16:0 1.00 0.68 0.88 0.94 1.26 1.97 3.46 3.18 2.86 

LPC 18:2 1.00 0.78 0.97 1.12 0.67 0.66 1.35 1.27 3.49 

LPC 18:1 1.00 0.73 0.90 0.89 0.81 0.63 1.70 1.85 3.63 

LPC 18:0 1.00 0.65 0.80 1.16 2.68 3.02 3.51 2.86 2.43 

LPC Total 1.00 0.70 0.89 0.99 1.27 1.55 2.64 2.45 3.11 

PtCho 16:0/16:1 1.00 0.55 0.68 1.14 1.16 2.18 9.81 8.52 4.56 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.41 0.69 0.72 0.57 1.25 2.18 1.80 0.78 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.34 0.64 0.58 0.41 0.74 2.06 1.81 0.98 

PtCho 18:0/20:4 1.00 0.41 0.64 1.01 0.81 1.66 3.58 3.25 1.92 

PtCho 18:0/20:3 1.00 0.46 0.67 1.35 1.18 2.25 4.35 4.27 2.54 

PtCho 18:1/22:6 1.00 0.36 0.60 0.60 0.50 1.08 1.73 1.37 0.64 

PtCho 18:0/22:6,18:1/22:5 1.00 0.39 0.52 0.47 0.38 0.83 1.89 1.45 0.65 

PtCho 18:0/22:5 1.00 0.34 0.61 0.39 0.34 0.56 1.60 1.16 0.59 

PtCho 16:0/16:0 1.00 0.54 0.71 1.01 0.88 2.13 7.05 5.62 3.21 

PtCho 16:0/18:2 1.00 0.42 0.53 0.93 0.85 2.01 4.67 4.16 2.25 

PtCho 16:0/18:1 1.00 0.46 0.57 0.90 0.76 1.73 5.96 5.23 2.66 

PtCho 16:0/20:5,16:1/20:4 1.00 0.38 0.62 0.75 0.75 1.44 4.18 3.47 1.69 

PtCho 16:0/20:4 1.00 0.52 0.67 1.09 0.87 1.66 3.55 3.31 1.58 

PtCho 16:0/20:3 1.00 0.49 0.62 1.02 0.80 1.66 3.40 3.12 1.62 

PtCho 18:0/18:2,18:1/18:1 1.00 0.47 0.57 0.89 0.74 1.46 3.01 2.86 1.49 

PtCho 18:0/18:1 1.00 0.49 0.58 0.93 0.78 1.62 3.46 3.30 1.78 

PtCho Total 1.00 0.47 0.60 0.93 0.79 1.72 4.81 4.24 2.24 

Pcho 1.00 1.44 1.14 0.38 0.24 0.19 0.16 0.20 0.18 

SM  1.00 0.79 0.66 0.71 0.58 0.80 0.89 0.92 0.83 

GPC  1.00 0.61 0.73 0.52 5.07 3.93 1.22 1.24 0.93 
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Table 21A: Cow #4 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.02 0.02 0.01 0.00 0.00 0.01 

Bet  93.41 31.75 15.23 11.55 10.23 16.44 23.30 37.11 42.10 

Cho  27.84 42.42 30.91 111.00 83.91 125.24 111.53 93.51 124.21 

LPC 16:0 1.48 1.16 0.94 0.87 0.67 0.67 0.90 1.32 1.19 

LPC 18:2 0.35 0.42 0.37 0.32 0.19 0.12 0.31 0.25 0.28 

LPC 18:1 0.77 0.74 0.53 0.53 0.22 0.18 0.45 0.54 0.74 

LPC 18:0 0.56 0.56 0.46 0.24 0.28 0.32 0.44 0.39 0.36 

LPC Total 3.16 2.89 2.29 1.96 1.37 1.30 2.11 2.51 2.58 

PtCho 16:0/16:1 7.92 5.03 5.95 15.57 7.92 5.65 20.89 41.76 40.00 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.22 0.78 0.72 0.91 0.55 0.46 1.42 1.65 1.56 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 4.63 2.57 3.03 2.77 1.73 1.55 3.82 4.89 5.13 

PtCho 18:0/20:4 3.00 1.57 1.83 2.66 1.61 1.31 3.61 4.60 5.32 

PtCho 18:0/20:3 1.25 0.73 0.94 1.58 0.95 0.71 2.06 2.49 3.00 

PtCho 18:1/22:6 0.37 0.34 0.26 0.34 0.16 0.20 0.49 0.63 0.57 

PtCho 18:0/22:6,18:1/22:5 0.81 0.62 0.63 0.55 0.25 0.32 1.06 0.86 0.86 

PtCho 18:0/22:5 1.02 0.67 0.79 0.42 0.27 0.34 0.82 0.63 0.70 

PtCho 16:0/16:0 29.72 20.61 24.68 47.83 28.51 27.98 71.50 108.68 130.68 

PtCho 16:0/18:2 31.02 21.95 23.39 38.17 24.57 18.84 64.80 87.93 89.26 

PtCho 16:0/18:1 65.08 48.25 50.23 90.46 46.48 38.63 130.96 231.79 237.75 

PtCho 16:0/20:5,16:1/20:4 1.24 0.58 0.55 0.75 0.48 0.35 1.05 2.01 2.06 

PtCho 16:0/20:4 6.40 5.32 4.45 7.43 4.83 3.40 10.15 15.41 15.35 

PtCho 16:0/20:3 18.36 16.89 16.63 24.53 15.14 10.93 32.03 47.32 44.53 

PtCho 18:0/18:2,18:1/18:1 36.70 33.05 34.19 46.27 27.37 21.46 63.69 90.65 89.09 

PtCho 18:0/18:1 18.61 17.23 18.24 25.36 14.37 12.55 34.65 49.65 49.17 

PtCho Total 227.35 176.17 186.51 305.60 175.21 144.67 442.99 690.95 715.03 

Pcho 413.00 498.11 254.66 143.67 127.30 94.80 56.90 39.92 71.16 

SM  66.61 42.57 47.98 31.92 24.07 17.86 30.13 29.52 29.50 

GPC  151.43 110.50 36.89 46.72 44.96 25.78 69.48 141.17 124.83 

Average of triplicate injections 
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Table 21B: Cow #4 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 0.78 0.66 0.23 0.14 0.33 

Bet  1.00 0.34 0.16 0.12 0.11 0.18 0.25 0.40 0.45 

Cho  1.00 1.52 1.11 3.99 3.01 4.50 4.01 3.36 4.46 

LPC 16:0 1.00 0.79 0.64 0.59 0.45 0.46 0.61 0.89 0.81 

LPC 18:2 1.00 1.18 1.04 0.91 0.55 0.35 0.87 0.72 0.80 

LPC 18:1 1.00 0.96 0.68 0.68 0.29 0.23 0.58 0.70 0.96 

LPC 18:0 1.00 1.00 0.82 0.43 0.51 0.58 0.79 0.71 0.65 

LPC Total 1.00 0.91 0.72 0.62 0.43 0.41 0.67 0.79 0.82 

PtCho 16:0/16:1 1.00 0.63 0.75 1.96 1.00 0.71 2.64 5.27 5.05 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.64 0.59 0.75 0.45 0.37 1.17 1.35 1.28 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.56 0.65 0.60 0.37 0.33 0.83 1.06 1.11 

PtCho 18:0/20:4 1.00 0.52 0.61 0.89 0.54 0.44 1.21 1.54 1.78 

PtCho 18:0/20:3 1.00 0.59 0.75 1.26 0.76 0.57 1.65 2.00 2.40 

PtCho 18:1/22:6 1.00 0.91 0.71 0.91 0.44 0.53 1.30 1.68 1.53 

PtCho 18:0/22:6,18:1/22:5 1.00 0.76 0.78 0.68 0.31 0.40 1.31 1.06 1.06 

PtCho 18:0/22:5 1.00 0.65 0.78 0.41 0.27 0.33 0.80 0.61 0.69 

PtCho 16:0/16:0 1.00 0.69 0.83 1.61 0.96 0.94 2.41 3.66 4.40 

PtCho 16:0/18:2 1.00 0.71 0.75 1.23 0.79 0.61 2.09 2.83 2.88 

PtCho 16:0/18:1 1.00 0.74 0.77 1.39 0.71 0.59 2.01 3.56 3.65 

PtCho 16:0/20:5,16:1/20:4 1.00 0.47 0.44 0.61 0.39 0.28 0.85 1.63 1.66 

PtCho 16:0/20:4 1.00 0.83 0.69 1.16 0.75 0.53 1.59 2.41 2.40 

PtCho 16:0/20:3 1.00 0.92 0.91 1.34 0.82 0.60 1.74 2.58 2.43 

PtCho 18:0/18:2,18:1/18:1 1.00 0.90 0.93 1.26 0.75 0.58 1.74 2.47 2.43 

PtCho 18:0/18:1 1.00 0.93 0.98 1.36 0.77 0.67 1.86 2.67 2.64 

PtCho Total 1.00 0.77 0.82 1.34 0.77 0.64 1.95 3.04 3.15 

Pcho 1.00 1.21 0.62 0.35 0.31 0.23 0.14 0.10 0.17 

SM  1.00 0.64 0.72 0.48 0.36 0.27 0.45 0.44 0.44 

GPC  1.00 0.73 0.24 0.31 0.30 0.17 0.46 0.93 0.82 
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Table 22A: Cow #5 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.16 0.04 0.04 0.00 0.00 0.00 

Bet  97.75 26.97 14.82 22.16 9.90 20.59 35.43 43.53 40.23 

Cho  14.68 37.63 45.36 85.40 83.73 116.89 129.14 119.46 135.44 

LPC 16:0 0.69 0.63 0.77 0.76 0.69 0.60 0.78 1.37 1.10 

LPC 18:2 0.18 0.38 0.53 0.20 0.12 0.20 0.35 0.26 0.23 

LPC 18:1 0.46 0.78 0.99 0.38 0.14 0.29 0.55 0.68 0.49 

LPC 18:0 0.30 0.29 0.43 0.28 0.23 0.23 0.27 0.51 0.34 

LPC Total 1.63 2.08 2.72 1.63 1.18 1.31 1.96 2.82 2.17 

PtCho 16:0/16:1 4.90 3.34 4.60 11.48 6.63 8.97 30.89 47.68 40.75 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.78 0.59 0.73 0.71 0.38 0.50 1.68 1.61 1.48 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 3.04 1.96 2.84 2.23 1.25 1.74 4.49 3.89 4.58 

PtCho 18:0/20:4 2.05 1.09 1.49 2.31 0.92 1.23 4.00 3.48 3.82 

PtCho 18:0/20:3 0.88 0.54 0.69 1.29 0.50 0.70 2.02 2.07 2.15 

PtCho 18:1/22:6 0.26 0.24 0.28 0.25 0.11 0.20 0.56 0.49 0.44 

PtCho 18:0/22:6,18:1/22:5 0.51 0.45 0.55 0.46 0.24 0.29 0.63 0.71 0.71 

PtCho 18:0/22:5 0.72 0.46 0.64 0.37 0.30 0.33 0.57 0.49 0.52 

PtCho 16:0/16:0 22.08 14.01 19.82 39.19 26.08 28.47 96.37 113.89 115.41 

PtCho 16:0/18:2 21.45 14.68 21.14 33.91 18.21 24.13 96.52 101.24 88.02 

PtCho 16:0/18:1 50.87 37.49 51.97 74.31 36.58 52.69 214.58 268.38 219.17 

PtCho 16:0/20:5,16:1/20:4 0.91 0.46 0.60 0.59 0.31 0.42 1.45 1.82 1.81 

PtCho 16:0/20:4 5.45 3.90 5.24 6.04 3.11 4.19 13.46 15.23 12.55 

PtCho 16:0/20:3 16.48 13.61 18.52 21.41 10.33 13.98 48.96 45.97 39.64 

PtCho 18:0/18:2,18:1/18:1 33.01 27.41 36.11 40.34 18.98 25.30 95.04 91.36 78.33 

PtCho 18:0/18:1 17.27 13.40 18.21 22.94 10.03 13.54 47.84 46.89 43.57 

PtCho Total 180.64 133.62 183.43 257.83 133.96 176.67 659.06 745.20 652.93 

Pcho 725.52 480.33 390.18 161.91 81.92 69.56 31.68 38.90 63.86 

SM  61.23 36.98 49.53 34.75 16.86 21.88 42.97 44.07 36.10 

GPC  64.79 67.36 52.75 71.21 34.16 37.61 177.52 139.90 144.50 

Average of triplicate injections 
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Table 22B: Cow #5 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 0.23 0.28 0.01 0.02 0.02 

Bet  1.00 0.28 0.15 0.23 0.10 0.21 0.36 0.45 0.41 

Cho  1.00 2.56 3.09 5.82 5.70 7.96 8.80 8.14 9.23 

LPC 16:0 1.00 0.92 1.12 1.11 1.00 0.87 1.13 1.99 1.60 

LPC 18:2 1.00 2.09 2.97 1.13 0.68 1.10 1.97 1.45 1.27 

LPC 18:1 1.00 1.70 2.15 0.83 0.30 0.62 1.21 1.49 1.07 

LPC 18:0 1.00 0.98 1.45 0.94 0.77 0.76 0.91 1.70 1.16 

LPC Total 1.00 1.28 1.68 1.00 0.72 0.81 1.20 1.74 1.33 

PtCho 16:0/16:1 1.00 0.68 0.94 2.34 1.36 1.83 6.31 9.74 8.32 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.75 0.94 0.90 0.48 0.64 2.14 2.06 1.89 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.65 0.93 0.73 0.41 0.57 1.48 1.28 1.50 

PtCho 18:0/20:4 1.00 0.53 0.73 1.13 0.45 0.60 1.95 1.70 1.86 

PtCho 18:0/20:3 1.00 0.61 0.78 1.46 0.57 0.79 2.30 2.35 2.44 

PtCho 18:1/22:6 1.00 0.92 1.09 0.99 0.44 0.77 2.18 1.91 1.71 

PtCho 18:0/22:6,18:1/22:5 1.00 0.88 1.09 0.90 0.47 0.58 1.25 1.41 1.41 

PtCho 18:0/22:5 1.00 0.64 0.90 0.51 0.42 0.46 0.79 0.69 0.72 

PtCho 16:0/16:0 1.00 0.63 0.90 1.77 1.18 1.29 4.36 5.16 5.23 

PtCho 16:0/18:2 1.00 0.68 0.99 1.58 0.85 1.13 4.50 4.72 4.10 

PtCho 16:0/18:1 1.00 0.74 1.02 1.46 0.72 1.04 4.22 5.28 4.31 

PtCho 16:0/20:5,16:1/20:4 1.00 0.50 0.66 0.65 0.35 0.46 1.60 2.01 1.99 

PtCho 16:0/20:4 1.00 0.72 0.96 1.11 0.57 0.77 2.47 2.80 2.30 

PtCho 16:0/20:3 1.00 0.83 1.12 1.30 0.63 0.85 2.97 2.79 2.41 

PtCho 18:0/18:2,18:1/18:1 1.00 0.83 1.09 1.22 0.58 0.77 2.88 2.77 2.37 

PtCho 18:0/18:1 1.00 0.78 1.05 1.33 0.58 0.78 2.77 2.71 2.52 

PtCho Total 1.00 0.74 1.02 1.43 0.74 0.98 3.65 4.13 3.61 

Pcho 1.00 0.66 0.54 0.22 0.11 0.10 0.04 0.05 0.09 

SM  1.00 0.60 0.81 0.57 0.28 0.36 0.70 0.72 0.59 

GPC  1.00 1.04 0.81 1.10 0.53 0.58 2.74 2.16 2.23 
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Table 23A: Cow #6 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.10 0.07 0.05 0.00 0.01 0.01 

Bet  184.34 65.43 28.29 21.36 15.81 13.10 41.29 62.71 138.70 

Cho  19.55 24.73 37.25 132.13 53.18 53.25 51.29 72.74 175.80 

LPC 16:0 0.86 0.88 0.93 0.71 0.75 0.79 1.82 1.68 0.89 

LPC 18:2 1.12 1.20 0.51 0.35 0.30 0.19 0.26 0.23 0.16 

LPC 18:1 2.01 1.63 1.01 0.47 0.45 0.24 0.58 0.59 0.33 

LPC 18:0 0.23 0.39 0.42 0.31 0.21 0.27 0.48 0.53 0.28 

LPC Total 4.22 4.11 2.86 1.85 1.71 1.50 3.14 3.03 1.66 

PtCho 16:0/16:1 3.34 4.13 5.22 7.14 8.49 8.47 27.10 29.68 27.74 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.67 0.82 0.68 0.75 0.61 0.90 1.32 3.06 2.10 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 2.58 2.07 2.51 2.41 1.81 2.36 3.63 6.44 6.70 

PtCho 18:0/20:4 1.35 1.22 1.40 1.53 1.76 1.75 4.03 4.70 6.51 

PtCho 18:0/20:3 0.62 0.67 0.72 0.74 0.95 1.01 2.36 3.03 3.41 

PtCho 18:1/22:6 0.27 0.32 0.30 0.26 0.20 0.40 0.44 0.76 0.85 

PtCho 18:0/22:6,18:1/22:5 0.54 0.76 0.51 0.48 0.29 0.74 0.52 3.15 1.41 

PtCho 18:0/22:5 0.62 0.64 0.52 0.39 0.22 0.41 0.54 2.57 1.09 

PtCho 16:0/16:0 15.10 15.92 19.79 38.67 30.49 29.75 72.30 83.39 100.92 

PtCho 16:0/18:2 13.00 19.30 21.07 29.50 30.98 27.90 84.83 80.79 98.60 

PtCho 16:0/18:1 33.73 45.74 51.92 86.95 61.38 55.53 161.54 171.71 242.73 

PtCho 16:0/20:5,16:1/20:4 0.47 0.39 0.45 0.48 0.48 0.59 1.51 2.00 2.63 

PtCho 16:0/20:4 3.39 4.04 4.46 7.31 5.81 5.14 12.20 12.69 15.97 

PtCho 16:0/20:3 10.56 15.50 15.77 23.77 18.91 16.90 42.84 40.35 51.18 

PtCho 18:0/18:2,18:1/18:1 22.17 33.77 32.59 46.36 33.49 30.43 74.35 75.41 91.15 

PtCho 18:0/18:1 12.20 17.44 16.83 22.87 18.77 17.54 40.63 41.10 50.23 

PtCho Total 120.60 162.75 174.75 269.59 214.62 199.84 530.14 560.83 703.22 

Pcho 502.10 488.35 270.37 158.49 109.41 48.99 15.99 33.68 46.65 

SM  45.69 48.41 50.78 45.08 28.29 24.74 29.64 29.53 33.92 

GPC  135.38 114.92 120.29 53.88 79.71 54.98 234.12 223.67 261.53 

Average of triplicate injections 
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Table 23B: Cow #6 Fold Change in Milk Used in Figure 7 

Fold Change Relative to Week 1 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 0.71 0.49 0.01 0.09 0.07 

Bet  1.00 0.35 0.15 0.12 0.09 0.07 0.22 0.34 0.75 

Cho  1.00 1.26 1.90 6.76 2.72 2.72 2.62 3.72 8.99 

LPC 16:0 1.00 1.03 1.09 0.83 0.87 0.93 2.12 1.96 1.04 

LPC 18:2 1.00 1.07 0.45 0.31 0.27 0.17 0.23 0.21 0.15 

LPC 18:1 1.00 0.81 0.50 0.23 0.22 0.12 0.29 0.29 0.16 

LPC 18:0 1.00 1.68 1.77 1.33 0.89 1.15 2.06 2.26 1.19 

LPC Total 1.00 0.97 0.68 0.44 0.40 0.36 0.74 0.72 0.39 

PtCho 16:0/16:1 1.00 1.24 1.56 2.13 2.54 2.53 8.10 8.87 8.29 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.23 1.02 1.13 0.92 1.36 1.98 4.59 3.15 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.80 0.97 0.93 0.70 0.92 1.41 2.50 2.60 

PtCho 18:0/20:4 1.00 0.91 1.04 1.14 1.31 1.30 2.99 3.49 4.83 

PtCho 18:0/20:3 1.00 1.08 1.16 1.20 1.53 1.63 3.82 4.90 5.51 

PtCho 18:1/22:6 1.00 1.17 1.11 0.97 0.73 1.49 1.64 2.82 3.15 

PtCho 18:0/22:6,18:1/22:5 1.00 1.41 0.95 0.88 0.53 1.37 0.96 5.84 2.62 

PtCho 18:0/22:5 1.00 1.04 0.85 0.63 0.35 0.66 0.87 4.17 1.77 

PtCho 16:0/16:0 1.00 1.05 1.31 2.56 2.02 1.97 4.79 5.52 6.68 

PtCho 16:0/18:2 1.00 1.49 1.62 2.27 2.38 2.15 6.53 6.22 7.59 

PtCho 16:0/18:1 1.00 1.36 1.54 2.58 1.82 1.65 4.79 5.09 7.20 

PtCho 16:0/20:5,16:1/20:4 1.00 0.83 0.96 1.02 1.03 1.26 3.22 4.26 5.61 

PtCho 16:0/20:4 1.00 1.19 1.32 2.15 1.71 1.52 3.60 3.74 4.71 

PtCho 16:0/20:3 1.00 1.47 1.49 2.25 1.79 1.60 4.06 3.82 4.85 

PtCho 18:0/18:2,18:1/18:1 1.00 1.52 1.47 2.09 1.51 1.37 3.35 3.40 4.11 

PtCho 18:0/18:1 1.00 1.43 1.38 1.87 1.54 1.44 3.33 3.37 4.12 

PtCho Total 1.00 1.35 1.45 2.24 1.78 1.66 4.40 4.65 5.83 

Pcho 1.00 0.97 0.54 0.32 0.22 0.10 0.03 0.07 0.09 

SM  1.00 1.06 1.11 0.99 0.62 0.54 0.65 0.65 0.74 

GPC  1.00 0.85 0.89 0.40 0.59 0.41 1.73 1.65 1.93 
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Table 24A: Cow #7 Average µM in Milk Used in Figure 7 

Average µM 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.01 

Bet  88.68 57.17 43.43 17.74 20.64 12.41 45.95 50.98 53.49 

Cho  14.59 30.54 58.31 113.24 202.25 113.45 132.57 123.23 107.18 

LPC 16:0 0.84 0.54 0.55 0.70 1.17 1.07 2.40 2.38 2.12 

LPC 18:2 0.69 0.44 0.37 0.24 0.32 0.14 0.33 0.25 0.87 

LPC 18:1 1.35 0.57 0.51 0.42 0.57 0.35 0.80 0.74 1.63 

LPC 18:0 0.38 0.26 0.12 0.28 0.96 0.62 0.83 0.91 0.64 

LPC Total 3.26 1.81 1.56 1.64 3.02 2.17 4.35 4.28 5.27 

PtCho 16:0/16:1 3.87 3.56 1.96 4.67 5.36 14.39 48.24 44.70 31.41 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.64 0.89 0.37 0.46 0.58 1.02 1.41 1.35 0.90 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 3.15 2.71 2.07 1.34 1.37 2.48 5.53 5.16 3.39 

PtCho 18:0/20:4 1.27 1.11 0.54 0.97 1.31 2.58 5.57 5.91 3.52 

PtCho 18:0/20:3 0.52 0.45 0.19 0.47 0.73 1.37 3.18 2.85 2.00 

PtCho 18:1/22:6 0.20 0.25 0.10 0.15 0.22 0.35 0.49 0.39 0.18 

PtCho 18:0/22:6,18:1/22:5 0.55 0.66 0.29 0.26 0.35 0.43 0.90 0.72 0.40 

PtCho 18:0/22:5 0.70 0.58 0.40 0.25 0.25 0.24 0.82 0.69 0.44 

PtCho 16:0/16:0 20.31 22.41 12.80 24.52 25.83 61.90 152.52 141.50 101.74 

PtCho 16:0/18:2 17.87 16.29 8.21 19.45 20.75 48.83 89.46 87.43 55.39 

PtCho 16:0/18:1 50.64 45.28 22.69 57.37 49.82 108.34 249.63 248.50 157.10 

PtCho 16:0/20:5,16:1/20:4 0.42 0.42 0.23 0.31 0.41 0.92 1.92 1.78 1.09 

PtCho 16:0/20:4 3.36 4.79 2.13 4.80 4.69 8.93 13.49 13.38 8.19 

PtCho 16:0/20:3 13.43 14.49 6.83 16.29 14.65 30.41 45.80 44.19 28.39 

PtCho 18:0/18:2,18:1/18:1 32.14 29.42 13.01 30.41 26.25 51.92 86.55 79.97 52.29 

PtCho 18:0/18:1 17.05 14.36 6.27 14.85 13.73 27.96 53.02 51.63 32.03 

PtCho Total 166.12 157.68 78.10 176.55 166.29 362.10 758.53 730.14 478.48 

Pcho 520.96 575.07 524.05 132.94 113.72 69.25 70.05 59.70 62.32 

SM  42.46 41.41 24.29 38.92 38.75 40.27 32.06 28.26 25.76 

GPC  87.91 71.21 70.57 65.31 429.65 418.06 194.39 81.55 180.07 

Average of triplicate injections 
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Table 24B: Cow #7 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 0.00 0.00 0.20 0.17 0.11 

Bet  1.00 0.64 0.49 0.20 0.23 0.14 0.52 0.57 0.60 

Cho  1.00 2.09 4.00 7.76 13.86 7.78 9.09 8.45 7.35 

LPC 16:0 1.00 0.65 0.66 0.84 1.40 1.28 2.86 2.85 2.54 

LPC 18:2 1.00 0.63 0.54 0.34 0.46 0.20 0.48 0.36 1.26 

LPC 18:1 1.00 0.42 0.38 0.31 0.42 0.26 0.59 0.54 1.21 

LPC 18:0 1.00 0.69 0.33 0.73 2.53 1.63 2.17 2.38 1.68 

LPC Total 1.00 0.55 0.48 0.50 0.92 0.67 1.33 1.31 1.61 

PtCho 16:0/16:1 1.00 0.92 0.51 1.20 1.38 3.72 12.45 11.54 8.11 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.39 0.57 0.72 0.90 1.59 2.20 2.11 1.39 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.86 0.66 0.43 0.43 0.79 1.76 1.64 1.08 

PtCho 18:0/20:4 1.00 0.87 0.43 0.76 1.03 2.03 4.38 4.65 2.77 

PtCho 18:0/20:3 1.00 0.86 0.36 0.90 1.40 2.64 6.12 5.47 3.85 

PtCho 18:1/22:6 1.00 1.25 0.52 0.77 1.10 1.75 2.43 1.96 0.89 

PtCho 18:0/22:6,18:1/22:5 1.00 1.19 0.52 0.46 0.63 0.78 1.63 1.30 0.73 

PtCho 18:0/22:5 1.00 0.83 0.58 0.36 0.36 0.35 1.18 0.98 0.63 

PtCho 16:0/16:0 1.00 1.10 0.63 1.21 1.27 3.05 7.51 6.97 5.01 

PtCho 16:0/18:2 1.00 0.91 0.46 1.09 1.16 2.73 5.01 4.89 3.10 

PtCho 16:0/18:1 1.00 0.89 0.45 1.13 0.98 2.14 4.93 4.91 3.10 

PtCho 16:0/20:5,16:1/20:4 1.00 1.00 0.56 0.73 0.98 2.19 4.60 4.26 2.61 

PtCho 16:0/20:4 1.00 1.43 0.63 1.43 1.40 2.66 4.02 3.99 2.44 

PtCho 16:0/20:3 1.00 1.08 0.51 1.21 1.09 2.26 3.41 3.29 2.11 

PtCho 18:0/18:2,18:1/18:1 1.00 0.92 0.40 0.95 0.82 1.62 2.69 2.49 1.63 

PtCho 18:0/18:1 1.00 0.84 0.37 0.87 0.81 1.64 3.11 3.03 1.88 

PtCho Total 1.00 0.95 0.47 1.06 1.00 2.18 4.57 4.40 2.88 

Pcho 1.00 1.10 1.01 0.26 0.22 0.13 0.13 0.11 0.12 

SM  1.00 0.98 0.57 0.92 0.91 0.95 0.76 0.67 0.61 

GPC  1.00 0.81 0.80 0.74 4.89 4.76 2.21 0.93 2.05 
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Table 25A: Cow #8 Average µM in Milk Used in Figure 7 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.03 0.04 0.02 0.01 0.01 0.01 

Bet  265.91 81.08 46.79 24.24 15.64 14.33 30.43 32.18 67.53 

Cho  9.73 28.31 40.07 59.92 79.79 51.63 65.69 127.19 227.72 

LPC 16:0 1.07 1.06 1.25 1.08 1.00 1.00 1.81 1.70 0.94 

LPC 18:2 0.13 0.67 0.71 0.32 0.34 0.32 0.55 0.50 0.39 

LPC 18:1 0.28 1.06 1.32 0.61 0.61 0.42 1.00 0.94 0.96 

LPC 18:0 0.28 0.28 0.53 0.21 0.23 0.33 0.58 0.76 0.41 

LPC Total 1.74 3.07 3.81 2.21 2.17 2.06 3.93 3.90 2.70 

PtCho 16:0/16:1 7.78 3.95 6.37 10.00 7.99 9.82 34.52 44.29 37.30 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.02 0.52 0.69 0.58 0.45 0.56 1.49 1.49 1.05 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 4.97 2.77 3.52 2.13 1.71 1.95 4.17 5.10 4.30 

PtCho 18:0/20:4 3.23 0.83 1.19 1.53 1.23 1.36 3.30 4.16 4.43 

PtCho 18:0/20:3 1.73 0.29 0.51 0.80 0.63 0.77 1.77 2.51 2.38 

PtCho 18:1/22:6 0.31 0.15 0.16 0.25 0.17 0.18 0.55 0.57 0.37 

PtCho 18:0/22:6,18:1/22:5 0.80 0.45 0.47 0.47 0.32 0.38 0.68 0.88 0.84 

PtCho 18:0/22:5 1.18 0.57 0.81 0.40 0.27 0.50 0.49 0.86 0.61 

PtCho 16:0/16:0 31.53 15.43 23.75 24.96 20.14 15.43 47.21 86.51 86.32 

PtCho 16:0/18:2 21.17 11.82 22.95 28.22 18.46 28.42 98.06 81.10 110.23 

PtCho 16:0/18:1 61.89 36.04 60.73 76.34 49.03 54.89 223.19 234.90 325.04 

PtCho 16:0/20:5,16:1/20:4 0.87 0.35 0.54 0.42 0.34 0.43 1.49 2.02 1.53 

PtCho 16:0/20:4 4.94 2.30 3.98 4.18 3.02 3.56 11.49 13.76 11.99 

PtCho 16:0/20:3 13.87 9.24 14.72 17.82 11.16 14.59 41.36 42.68 55.54 

PtCho 18:0/18:2,18:1/18:1 33.66 21.79 34.20 39.46 23.73 26.02 75.41 89.34 120.60 

PtCho 18:0/18:1 19.88 10.83 18.14 19.95 13.25 12.71 36.58 44.34 69.09 

PtCho Total 208.82 117.32 192.76 227.49 151.89 171.60 581.75 654.52 831.62 

Pcho 660.40 519.24 472.54 139.12 104.34 20.20 19.09 74.92 117.77 

SM  56.34 36.00 57.23 35.73 25.30 22.87 30.46 29.80 45.81 

GPC  182.38 48.33 67.16 85.52 71.90 85.67 220.95 171.65 130.58 

Average of triplicate injections 
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Table 25B: Cow #8 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 1.29 0.70 0.34 0.19 0.18 

Bet  1.00 0.30 0.18 0.09 0.06 0.05 0.11 0.12 0.25 

Cho  1.00 2.91 4.12 6.16 8.20 5.31 6.75 13.08 23.41 

LPC 16:0 1.00 0.99 1.18 1.01 0.94 0.94 1.69 1.60 0.88 

LPC 18:2 1.00 5.24 5.53 2.49 2.63 2.47 4.29 3.94 3.04 

LPC 18:1 1.00 3.85 4.80 2.21 2.20 1.51 3.61 3.39 3.48 

LPC 18:0 1.00 1.03 1.93 0.76 0.83 1.20 2.12 2.74 1.50 

LPC Total 1.00 1.76 2.19 1.27 1.24 1.18 2.25 2.24 1.55 

PtCho 16:0/16:1 1.00 0.51 0.82 1.29 1.03 1.26 4.44 5.69 4.80 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.52 0.68 0.57 0.44 0.55 1.46 1.47 1.03 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.56 0.71 0.43 0.34 0.39 0.84 1.03 0.87 

PtCho 18:0/20:4 1.00 0.26 0.37 0.47 0.38 0.42 1.02 1.29 1.37 

PtCho 18:0/20:3 1.00 0.17 0.29 0.46 0.36 0.44 1.02 1.45 1.38 

PtCho 18:1/22:6 1.00 0.48 0.53 0.81 0.56 0.57 1.78 1.83 1.20 

PtCho 18:0/22:6,18:1/22:5 1.00 0.57 0.59 0.59 0.41 0.48 0.86 1.10 1.06 

PtCho 18:0/22:5 1.00 0.49 0.69 0.34 0.23 0.43 0.41 0.73 0.52 

PtCho 16:0/16:0 1.00 0.49 0.75 0.79 0.64 0.49 1.50 2.74 2.74 

PtCho 16:0/18:2 1.00 0.56 1.08 1.33 0.87 1.34 4.63 3.83 5.21 

PtCho 16:0/18:1 1.00 0.58 0.98 1.23 0.79 0.89 3.61 3.80 5.25 

PtCho 16:0/20:5,16:1/20:4 1.00 0.41 0.63 0.48 0.39 0.50 1.71 2.34 1.76 

PtCho 16:0/20:4 1.00 0.46 0.81 0.85 0.61 0.72 2.33 2.79 2.43 

PtCho 16:0/20:3 1.00 0.67 1.06 1.28 0.80 1.05 2.98 3.08 4.00 

PtCho 18:0/18:2,18:1/18:1 1.00 0.65 1.02 1.17 0.70 0.77 2.24 2.65 3.58 

PtCho 18:0/18:1 1.00 0.54 0.91 1.00 0.67 0.64 1.84 2.23 3.48 

PtCho Total 1.00 0.56 0.92 1.09 0.73 0.82 2.79 3.13 3.98 

Pcho 1.00 0.79 0.72 0.21 0.16 0.03 0.03 0.11 0.18 

SM  1.00 0.64 1.02 0.63 0.45 0.41 0.54 0.53 0.81 

GPC  1.00 0.26 0.37 0.47 0.39 0.47 1.21 0.94 0.72 
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Table 26A: Cow #9 Average µM in Milk Used in Figure 7 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.05 0.07 0.08 0.00 0.01 0.01 

Bet  143.86 58.51 33.91 19.66 30.06 34.74 58.31 77.38 89.38 

Cho  26.39 39.35 68.82 105.56 159.58 171.55 107.30 155.72 129.83 

LPC 16:0 0.23 1.37 0.67 0.45 0.41 0.55 1.23 1.42 1.45 

LPC 18:2 0.08 2.30 0.41 0.13 0.14 0.27 0.20 0.22 0.21 

LPC 18:1 0.11 4.21 0.73 0.21 0.23 0.43 0.51 0.69 0.62 

LPC 18:0 0.08 0.42 0.23 0.12 0.12 0.20 0.42 0.70 0.55 

LPC Total 0.49 8.30 2.04 0.90 0.90 1.45 2.36 3.02 2.83 

PtCho 16:0/16:1 3.64 4.87 5.31 6.76 6.47 6.36 35.91 52.42 35.88 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.69 0.90 0.74 0.48 0.45 0.49 1.53 2.38 1.96 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 3.04 3.00 2.35 1.43 1.37 1.47 4.79 8.07 6.38 

PtCho 18:0/20:4 1.36 1.88 1.53 1.29 1.18 1.31 5.56 8.37 6.95 

PtCho 18:0/20:3 0.63 1.01 0.80 0.72 0.64 0.74 3.08 5.23 4.33 

PtCho 18:1/22:6 0.18 0.35 0.28 0.20 0.17 0.20 0.62 0.95 0.67 

PtCho 18:0/22:6,18:1/22:5 0.49 0.60 0.43 0.26 0.28 0.35 0.80 1.56 1.18 

PtCho 18:0/22:5 0.70 0.70 0.45 0.18 0.22 0.25 0.56 1.28 1.03 

PtCho 16:0/16:0 16.19 22.19 19.79 21.34 19.18 19.67 98.40 130.50 97.76 

PtCho 16:0/18:2 10.38 19.45 16.84 18.60 15.60 17.41 73.58 89.12 68.56 

PtCho 16:0/18:1 25.81 49.67 39.78 40.53 35.97 40.73 183.69 269.46 186.21 

PtCho 16:0/20:5,16:1/20:4 0.54 0.64 0.53 0.39 0.33 0.32 1.75 2.62 1.91 

PtCho 16:0/20:4 2.51 5.88 4.34 3.65 3.19 3.36 12.34 17.13 13.14 

PtCho 16:0/20:3 7.27 19.04 14.64 12.59 10.47 11.81 39.85 53.53 40.35 

PtCho 18:0/18:2,18:1/18:1 15.26 36.17 26.42 21.68 18.62 20.94 78.64 106.30 76.36 

PtCho 18:0/18:1 8.25 20.05 14.46 11.63 10.14 12.45 45.27 62.44 50.57 

PtCho Total 96.95 186.40 148.68 141.70 124.27 137.86 586.37 811.36 593.24 

Pcho 629.92 575.52 438.25 90.33 31.67 26.13 14.61 18.96 16.42 

SM  44.47 46.75 39.64 23.79 23.67 27.83 30.43 37.06 32.17 

GPC  49.97 80.08 69.68 49.47 31.42 50.49 133.11 78.75 133.71 

Average of triplicate injections 
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Table 26B: Cow #9 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 1.41 1.80 0.04 0.28 0.19 

Bet  1.00 0.41 0.24 0.14 0.21 0.24 0.41 0.54 0.62 

Cho  1.00 1.49 2.61 4.00 6.05 6.50 4.07 5.90 4.92 

LPC 16:0 1.00 5.97 2.95 1.98 1.81 2.41 5.39 6.21 6.36 

LPC 18:2 1.00 29.54 5.26 1.61 1.78 3.44 2.51 2.80 2.69 

LPC 18:1 1.00 38.90 6.70 1.92 2.11 4.01 4.69 6.36 5.76 

LPC 18:0 1.00 5.43 2.95 1.50 1.55 2.60 5.48 9.00 7.07 

LPC Total 1.00 16.86 4.14 1.83 1.83 2.96 4.79 6.14 5.76 

PtCho 16:0/16:1 1.00 1.34 1.46 1.86 1.78 1.75 9.86 14.39 9.85 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.30 1.06 0.69 0.65 0.70 2.21 3.43 2.82 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.98 0.77 0.47 0.45 0.48 1.57 2.65 2.10 

PtCho 18:0/20:4 1.00 1.38 1.12 0.94 0.87 0.96 4.07 6.14 5.09 

PtCho 18:0/20:3 1.00 1.61 1.28 1.15 1.01 1.18 4.91 8.34 6.90 

PtCho 18:1/22:6 1.00 1.88 1.51 1.07 0.92 1.06 3.38 5.16 3.64 

PtCho 18:0/22:6,18:1/22:5 1.00 1.24 0.88 0.54 0.57 0.72 1.64 3.20 2.41 

PtCho 18:0/22:5 1.00 1.00 0.64 0.25 0.31 0.35 0.81 1.83 1.47 

PtCho 16:0/16:0 1.00 1.37 1.22 1.32 1.18 1.21 6.08 8.06 6.04 

PtCho 16:0/18:2 1.00 1.87 1.62 1.79 1.50 1.68 7.09 8.58 6.60 

PtCho 16:0/18:1 1.00 1.92 1.54 1.57 1.39 1.58 7.12 10.44 7.22 

PtCho 16:0/20:5,16:1/20:4 1.00 1.19 0.98 0.72 0.61 0.60 3.25 4.86 3.54 

PtCho 16:0/20:4 1.00 2.35 1.73 1.45 1.27 1.34 4.92 6.83 5.24 

PtCho 16:0/20:3 1.00 2.62 2.01 1.73 1.44 1.62 5.48 7.36 5.55 

PtCho 18:0/18:2,18:1/18:1 1.00 2.37 1.73 1.42 1.22 1.37 5.15 6.96 5.00 

PtCho 18:0/18:1 1.00 2.43 1.75 1.41 1.23 1.51 5.49 7.57 6.13 

PtCho Total 1.00 1.92 1.53 1.46 1.28 1.42 6.05 8.37 6.12 

Pcho 1.00 0.91 0.70 0.14 0.05 0.04 0.02 0.03 0.03 

SM  1.00 1.05 0.89 0.53 0.53 0.63 0.68 0.83 0.72 

GPC  1.00 1.60 1.39 0.99 0.63 1.01 2.66 1.58 2.68 
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Table 27A: Cow #10 Average µM in Milk Used in Figure 7 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 0.08 0.08 0.09 0.03 0.01 0.01 

Bet  80.70 52.83 44.23 17.17 17.72 25.60 55.63 68.79 69.73 

Cho  60.26 84.33 92.17 120.47 150.37 158.80 157.98 151.18 171.23 

LPC 16:0 0.98 1.04 0.76 0.65 0.61 0.92 1.49 1.91 1.81 

LPC 18:2 0.29 0.27 0.27 0.26 0.17 0.16 0.29 0.26 0.29 

LPC 18:1 1.05 0.83 0.85 0.46 0.30 0.28 0.56 0.65 0.76 

LPC 18:0 0.39 0.36 0.31 0.23 0.24 0.35 0.67 0.46 0.45 

LPC Total 2.71 2.49 2.19 1.60 1.32 1.71 3.02 3.27 3.32 

PtCho 16:0/16:1 4.82 4.58 4.50 5.98 6.16 6.44 26.40 55.77 53.97 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.57 0.46 0.57 0.53 0.42 0.43 1.35 2.14 1.80 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 2.46 2.23 2.41 1.49 1.35 1.25 3.79 6.19 5.90 

PtCho 18:0/20:4 1.43 1.17 1.39 1.42 1.42 1.18 3.72 5.61 6.05 

PtCho 18:0/20:3 0.68 0.57 0.67 0.76 0.83 0.79 2.20 2.69 2.95 

PtCho 18:1/22:6 0.19 0.20 0.20 0.18 0.15 0.16 0.58 0.77 0.54 

PtCho 18:0/22:6,18:1/22:5 0.53 0.47 0.55 0.31 0.24 0.26 0.65 0.96 0.80 

PtCho 18:0/22:5 0.64 0.60 0.57 0.28 0.23 0.21 0.55 0.75 0.63 

PtCho 16:0/16:0 15.28 15.24 16.52 23.97 24.62 25.97 94.14 175.01 183.31 

PtCho 16:0/18:2 16.51 12.70 14.52 18.97 17.97 18.24 80.74 116.15 112.74 

PtCho 16:0/18:1 51.75 41.38 47.46 51.65 44.50 42.55 202.44 298.32 314.78 

PtCho 16:0/20:5,16:1/20:4 0.52 0.37 0.43 0.41 0.38 0.37 1.23 2.00 2.39 

PtCho 16:0/20:4 3.48 2.53 3.10 3.78 3.58 3.15 9.86 17.65 16.92 

PtCho 16:0/20:3 13.61 10.76 13.08 14.34 12.73 10.33 36.60 51.67 50.87 

PtCho 18:0/18:2,18:1/18:1 34.88 28.26 31.90 29.55 25.32 21.20 72.51 94.06 96.21 

PtCho 18:0/18:1 18.91 15.29 16.86 15.49 14.28 12.97 41.09 49.23 50.09 

PtCho Total 166.25 136.79 154.73 169.10 154.16 145.52 577.85 878.97 899.96 

Pcho 819.63 690.67 637.94 240.00 139.79 131.56 22.84 12.43 38.10 

SM  56.77 54.24 50.38 35.77 30.26 30.86 38.66 37.74 41.18 

GPC  72.75 49.61 69.84 37.81 53.55 32.26 99.52 133.32 148.59 

Average of triplicate injections 

 

 

 

 

 

 



138 

 

Table 27B: Cow #10 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

AcCho  0.00 0.00 0.00 1.00 1.02 1.10 0.37 0.14 0.08 

Bet  1.00 0.65 0.55 0.21 0.22 0.32 0.69 0.85 0.86 

Cho  1.00 1.40 1.53 2.00 2.50 2.64 2.62 2.51 2.84 

LPC 16:0 1.00 1.07 0.78 0.67 0.63 0.94 1.53 1.96 1.86 

LPC 18:2 1.00 0.91 0.93 0.90 0.58 0.55 1.00 0.88 1.00 

LPC 18:1 1.00 0.79 0.80 0.44 0.29 0.26 0.53 0.61 0.72 

LPC 18:0 1.00 0.92 0.79 0.58 0.61 0.90 1.72 1.18 1.16 

LPC Total 1.00 0.92 0.81 0.59 0.49 0.63 1.11 1.21 1.23 

PtCho 16:0/16:1 1.00 0.95 0.93 1.24 1.28 1.34 5.48 11.57 11.20 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.81 1.01 0.93 0.75 0.76 2.39 3.78 3.19 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.91 0.98 0.61 0.55 0.51 1.54 2.51 2.40 

PtCho 18:0/20:4 1.00 0.82 0.97 0.99 0.99 0.83 2.60 3.92 4.23 

PtCho 18:0/20:3 1.00 0.83 0.98 1.11 1.22 1.16 3.23 3.95 4.33 

PtCho 18:1/22:6 1.00 1.06 1.09 0.98 0.80 0.84 3.09 4.12 2.91 

PtCho 18:0/22:6,18:1/22:5 1.00 0.87 1.02 0.59 0.45 0.49 1.22 1.80 1.50 

PtCho 18:0/22:5 1.00 0.95 0.90 0.43 0.36 0.33 0.86 1.17 0.99 

PtCho 16:0/16:0 1.00 1.00 1.08 1.57 1.61 1.70 6.16 11.45 12.00 

PtCho 16:0/18:2 1.00 0.77 0.88 1.15 1.09 1.11 4.89 7.04 6.83 

PtCho 16:0/18:1 1.00 0.80 0.92 1.00 0.86 0.82 3.91 5.76 6.08 

PtCho 16:0/20:5,16:1/20:4 1.00 0.72 0.83 0.80 0.73 0.71 2.38 3.88 4.62 

PtCho 16:0/20:4 1.00 0.73 0.89 1.09 1.03 0.91 2.84 5.08 4.87 

PtCho 16:0/20:3 1.00 0.79 0.96 1.05 0.94 0.76 2.69 3.80 3.74 

PtCho 18:0/18:2,18:1/18:1 1.00 0.81 0.91 0.85 0.73 0.61 2.08 2.70 2.76 

PtCho 18:0/18:1 1.00 0.81 0.89 0.82 0.76 0.69 2.17 2.60 2.65 

PtCho Total 1.00 0.82 0.93 1.02 0.93 0.88 3.48 5.29 5.41 

Pcho 1.00 0.84 0.78 0.29 0.17 0.16 0.03 0.02 0.05 

SM  1.00 0.96 0.89 0.63 0.53 0.54 0.68 0.66 0.73 

GPC  1.00 0.68 0.96 0.52 0.74 0.44 1.37 1.83 2.04 
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Table 28A: Cow #11 Average µM in Milk Used in Figure 7 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   AcCho  0.00 0.00 0.00 0.03 0.16 0.13 

   Bet  24.41 45.55 23.06 27.16 38.47 29.33 

   Cho  16.08 31.18 38.63 81.80 69.39 65.77 

   LPC 16:0 0.57 0.89 0.83 0.52 0.75 0.61 

   LPC 18:2 0.20 0.34 0.32 0.14 0.21 0.10 

   LPC 18:1 0.46 0.83 0.65 0.27 0.41 0.28 

   LPC 18:0 0.24 0.25 0.26 0.23 0.41 0.21 

   LPC Total 1.47 2.31 2.05 1.16 1.79 1.20 

   PtCho 16:0/16:1 6.97 4.86 8.97 7.16 8.30 5.90 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.78 0.52 0.93 0.29 0.74 0.37 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 3.74 2.36 3.50 1.08 2.50 1.30 

   PtCho 18:0/20:4 1.78 1.18 2.20 1.24 2.23 1.38 

   PtCho 18:0/20:3 0.73 0.51 0.97 0.73 1.33 0.93 

   PtCho 18:1/22:6 0.35 0.19 0.34 0.12 0.27 0.15 

   PtCho 18:0/22:6,18:1/22:5 0.80 0.47 0.75 0.21 0.58 0.26 

   PtCho 18:0/22:5 0.96 0.59 0.73 0.20 0.63 0.23 

   PtCho 16:0/16:0 22.91 16.19 31.85 24.77 30.85 21.04 

   PtCho 16:0/18:2 22.71 15.43 33.08 21.16 24.71 16.07 

   PtCho 16:0/18:1 67.07 45.84 93.62 50.99 57.84 36.92 

   PtCho 16:0/20:5,16:1/20:4 0.50 0.37 0.69 0.26 0.48 0.28 

   PtCho 16:0/20:4 4.94 3.32 7.09 3.19 4.29 2.74 

   PtCho 16:0/20:3 19.90 13.45 26.44 13.42 16.54 10.23 

   PtCho 18:0/18:2,18:1/18:1 46.03 30.47 58.29 29.32 34.17 21.24 

   PtCho 18:0/18:1 23.68 15.54 32.48 17.90 22.03 13.51 

   PtCho Total 223.85 151.28 301.91 172.04 207.49 132.53 

   Pcho 270.34 541.90 331.67 130.56 108.61 67.11 

   SM  53.08 40.37 49.96 29.45 34.68 24.16 

   GPC  29.37 121.96 95.78 43.25 73.01 51.85 

   Average of triplicate injections 
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Table 28B: Cow #11 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   AcCho  0.00 0.00 0.00 1.00 4.69 3.90 

   Bet  1.00 1.87 0.94 1.11 1.58 1.20 

   Cho  1.00 1.94 2.40 5.09 4.31 4.09 

   LPC 16:0 1.00 1.57 1.47 0.91 1.33 1.07 

   LPC 18:2 1.00 1.70 1.58 0.72 1.06 0.52 

   LPC 18:1 1.00 1.80 1.40 0.59 0.90 0.60 

   LPC 18:0 1.00 1.04 1.07 0.96 1.72 0.89 

   LPC Total 1.00 1.57 1.40 0.79 1.22 0.82 

   PtCho 16:0/16:1 1.00 0.70 1.29 1.03 1.19 0.85 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.67 1.20 0.37 0.94 0.47 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.63 0.94 0.29 0.67 0.35 

   PtCho 18:0/20:4 1.00 0.66 1.23 0.70 1.25 0.77 

   PtCho 18:0/20:3 1.00 0.69 1.32 1.00 1.81 1.27 

   PtCho 18:1/22:6 1.00 0.55 0.96 0.35 0.76 0.44 

   PtCho 18:0/22:6,18:1/22:5 1.00 0.59 0.95 0.27 0.73 0.32 

   PtCho 18:0/22:5 1.00 0.61 0.76 0.21 0.66 0.24 

   PtCho 16:0/16:0 1.00 0.71 1.39 1.08 1.35 0.92 

   PtCho 16:0/18:2 1.00 0.68 1.46 0.93 1.09 0.71 

   PtCho 16:0/18:1 1.00 0.68 1.40 0.76 0.86 0.55 

   PtCho 16:0/20:5,16:1/20:4 1.00 0.74 1.36 0.51 0.96 0.56 

   PtCho 16:0/20:4 1.00 0.67 1.44 0.65 0.87 0.56 

   PtCho 16:0/20:3 1.00 0.68 1.33 0.67 0.83 0.51 

   PtCho 18:0/18:2,18:1/18:1 1.00 0.66 1.27 0.64 0.74 0.46 

   PtCho 18:0/18:1 1.00 0.66 1.37 0.76 0.93 0.57 

   PtCho Total 1.00 0.68 1.35 0.77 0.93 0.59 

   Pcho 1.00 2.00 1.23 0.48 0.40 0.25 

   SM  1.00 0.76 0.94 0.55 0.65 0.46 

   GPC  1.00 4.15 3.26 1.47 2.49 1.77 
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Table 29A: Cow #12 Average µM in Milk Used in Figure 7 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   AcCho  0.00 0.00 0.00 0.09 0.09 0.14 

   Bet  108.32 41.08 22.76 13.68 17.78 12.65 

   Cho  26.80 61.97 83.11 153.99 129.56 225.94 

   LPC 16:0 0.98 1.03 1.21 1.17 0.72 0.87 

   LPC 18:2 0.24 0.36 0.64 0.97 0.37 0.35 

   LPC 18:1 0.73 0.84 1.13 1.17 0.49 0.48 

   LPC 18:0 0.43 0.48 0.59 0.48 0.35 0.41 

   LPC Total 2.38 2.71 3.58 3.80 1.93 2.11 

   PtCho 16:0/16:1 5.50 6.36 8.95 9.90 7.84 9.33 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 0.68 0.80 1.31 0.89 0.95 0.79 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 2.66 2.69 4.58 2.35 2.89 2.25 

   PtCho 18:0/20:4 1.65 1.59 2.52 2.15 1.91 1.89 

   PtCho 18:0/20:3 0.85 0.74 1.25 1.25 1.08 1.18 

   PtCho 18:1/22:6 0.25 0.32 0.51 0.36 0.47 0.28 

   PtCho 18:0/22:6,18:1/22:5 0.57 0.72 1.05 0.48 0.98 0.40 

   PtCho 18:0/22:5 0.69 0.70 1.17 0.50 0.77 0.32 

   PtCho 16:0/16:0 20.31 21.57 30.80 34.12 31.99 30.79 

   PtCho 16:0/18:2 26.76 22.30 31.83 28.37 25.01 27.97 

   PtCho 16:0/18:1 71.59 63.77 84.30 63.70 68.83 55.96 

   PtCho 16:0/20:5,16:1/20:4 0.69 0.70 0.94 0.70 0.57 0.62 

   PtCho 16:0/20:4 5.46 6.02 8.59 6.95 4.70 6.21 

   PtCho 16:0/20:3 21.69 21.13 30.27 22.74 18.99 18.73 

   PtCho 18:0/18:2,18:1/18:1 51.27 47.02 61.88 42.92 39.48 34.76 

   PtCho 18:0/18:1 28.05 25.51 32.12 23.20 21.06 18.19 

   PtCho Total 238.66 221.94 302.07 240.57 227.55 209.67 

   Pcho 608.80 659.05 508.15 237.88 249.31 60.33 

   SM  58.88 52.94 52.18 37.32 37.55 29.75 

   GPC  132.65 112.53 112.19 64.48 36.59 39.29 

   Average of triplicate injections 
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Table 29B: Cow #12 Fold Change in Milk Used in Figure 7 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   AcCho  0.00 0.00 0.00 1.00 1.02 1.60 

   Bet  1.00 0.38 0.21 0.13 0.16 0.12 

   Cho  1.00 2.31 3.10 5.75 4.84 8.43 

   LPC 16:0 1.00 1.04 1.23 1.19 0.73 0.89 

   LPC 18:2 1.00 1.53 2.71 4.10 1.56 1.46 

   LPC 18:1 1.00 1.15 1.56 1.61 0.68 0.66 

   LPC 18:0 1.00 1.11 1.36 1.11 0.82 0.95 

   LPC Total 1.00 1.14 1.50 1.59 0.81 0.89 

   PtCho 16:0/16:1 1.00 1.16 1.63 1.80 1.43 1.70 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.17 1.93 1.31 1.40 1.16 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.01 1.72 0.88 1.09 0.85 

   PtCho 18:0/20:4 1.00 0.97 1.52 1.30 1.15 1.14 

   PtCho 18:0/20:3 1.00 0.87 1.47 1.47 1.27 1.39 

   PtCho 18:1/22:6 1.00 1.26 2.05 1.44 1.89 1.10 

   PtCho 18:0/22:6,18:1/22:5 1.00 1.26 1.85 0.85 1.73 0.71 

   PtCho 18:0/22:5 1.00 1.01 1.70 0.72 1.12 0.46 

   PtCho 16:0/16:0 1.00 1.06 1.52 1.68 1.58 1.52 

   PtCho 16:0/18:2 1.00 0.83 1.19 1.06 0.93 1.05 

   PtCho 16:0/18:1 1.00 0.89 1.18 0.89 0.96 0.78 

   PtCho 16:0/20:5,16:1/20:4 1.00 1.01 1.35 1.02 0.83 0.90 

   PtCho 16:0/20:4 1.00 1.10 1.57 1.27 0.86 1.14 

   PtCho 16:0/20:3 1.00 0.97 1.40 1.05 0.88 0.86 

   PtCho 18:0/18:2,18:1/18:1 1.00 0.92 1.21 0.84 0.77 0.68 

   PtCho 18:0/18:1 1.00 0.91 1.14 0.83 0.75 0.65 

   PtCho Total 1.00 0.93 1.27 1.01 0.95 0.88 

   Pcho 1.00 1.08 0.83 0.39 0.41 0.10 

   SM  1.00 0.90 0.89 0.63 0.64 0.51 

   GPC  1.00 0.85 0.85 0.49 0.28 0.30 
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Table 30A: Cow #1 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  22.07 16.05 13.10 12.81 14.08 15.85 26.86 23.76 36.14 

Cho  2.23 3.79 4.48 3.82 4.05 2.26 4.15 4.29 3.31 

LPC 16:0 22.50 26.13 59.41 55.59 118.14 45.91 32.67 19.03 31.15 

LPC 18:2 58.39 73.36 154.15 181.13 443.43 154.22 109.94 67.67 128.84 

LPC 18:1 26.58 32.97 70.39 57.20 135.33 47.85 43.30 25.47 43.11 

LPC 18:0 22.95 28.85 65.68 69.29 163.18 56.85 59.57 35.50 67.89 

LPC Total 130.42 161.31 349.63 363.21 860.07 304.83 245.48 147.68 270.99 

PtCho 16:0/16:1 8.07 25.36 19.90 42.58 52.35 46.54 53.89 84.27 63.81 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 6.82 25.85 16.67 34.05 41.66 36.48 47.96 63.46 52.00 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 25.16 90.20 56.40 118.91 145.76 127.06 171.92 227.82 190.76 

PtCho 18:0/20:4 41.40 198.49 115.87 309.20 384.10 334.33 496.30 705.37 649.73 

PtCho 18:0/20:3 42.49 188.60 118.75 329.40 451.46 374.52 542.86 744.33 748.50 

PtCho 18:1/22:6 0.95 4.82 2.69 6.63 9.41 8.33 9.46 10.87 9.15 

PtCho 18:0/22:6,18:1/22:5 5.00 29.12 15.11 37.24 50.34 43.25 58.25 80.47 59.75 

PtCho 18:0/22:5 11.47 62.93 34.37 76.82 99.02 86.08 112.14 163.88 141.58 

PtCho 16:0/16:0 7.74 29.21 21.21 57.44 70.28 63.38 79.48 123.26 83.91 

PtCho 16:0/18:2 287.97 760.42 635.38 1498.72 1661.95 1547.56 1624.76 2281.37 2222.20 

PtCho 16:0/18:1 140.90 333.85 275.60 465.31 493.50 454.88 513.70 773.62 628.20 

PtCho 16:0/20:5,16:1/20:4 9.30 23.99 19.40 43.00 53.47 46.19 57.29 86.13 78.41 

PtCho 16:0/20:4 36.34 118.59 96.75 216.93 247.51 232.61 272.65 355.74 340.29 

PtCho 16:0/20:3 98.67 239.71 199.92 471.69 573.83 554.80 511.45 682.19 744.72 

PtCho 18:0/18:2,18:1/18:1 264.55 641.88 519.95 1481.34 1685.39 1560.55 1634.29 2303.34 2448.04 

PtCho 18:0/18:1 110.92 275.84 216.19 468.75 508.12 469.03 533.38 859.75 723.73 

PtCho Total 1097.75 3048.86 2364.15 5658.03 6528.15 5985.59 6719.79 9545.89 9184.78 

Pcho 0.55 0.98 0.55 1.62 3.46 1.43 0.00 0.00 0.00 

SM  244.63 365.87 381.13 621.85 762.34 604.09 416.23 472.39 332.02 

GPC  2.75 0.81 6.95 2.92 14.15 1.40 2.72 4.36 3.97 

Average of triplicate injections 
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Table 30B: Cow #1 Fold Change in Plasma Used in Figure 8 

  
 Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.73 0.59 0.58 0.64 0.72 1.22 1.08 1.64 

Cho  1.00 1.70 2.01 1.71 1.82 1.02 1.86 1.92 1.48 

LPC 16:0 1.00 1.16 2.64 2.47 5.25 2.04 1.45 0.85 1.38 

LPC 18:2 1.00 1.26 2.64 3.10 7.59 2.64 1.88 1.16 2.21 

LPC 18:1 1.00 1.24 2.65 2.15 5.09 1.80 1.63 0.96 1.62 

LPC 18:0 1.00 1.26 2.86 3.02 7.11 2.48 2.60 1.55 2.96 

LPC Total 1.00 1.24 2.68 2.78 6.59 2.34 1.88 1.13 2.08 

PtCho 16:0/16:1 1.00 3.14 2.46 5.27 6.48 5.76 6.68 10.44 7.90 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 3.79 2.44 4.99 6.11 5.35 7.03 9.30 7.62 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 3.58 2.24 4.73 5.79 5.05 6.83 9.05 7.58 

PtCho 18:0/20:4 1.00 4.79 2.80 7.47 9.28 8.08 11.99 17.04 15.70 

PtCho 18:0/20:3 1.00 4.44 2.79 7.75 10.63 8.82 12.78 17.52 17.62 

PtCho 18:1/22:6 1.00 5.06 2.82 6.95 9.86 8.74 9.92 11.40 9.59 

PtCho 18:0/22:6,18:1/22:5 1.00 5.82 3.02 7.45 10.07 8.65 11.65 16.09 11.95 

PtCho 18:0/22:5 1.00 5.49 3.00 6.70 8.64 7.51 9.78 14.29 12.35 

PtCho 16:0/16:0 1.00 3.78 2.74 7.43 9.08 8.19 10.27 15.93 10.85 

PtCho 16:0/18:2 1.00 2.64 2.21 5.20 5.77 5.37 5.64 7.92 7.72 

PtCho 16:0/18:1 1.00 2.37 1.96 3.30 3.50 3.23 3.65 5.49 4.46 

PtCho 16:0/20:5,16:1/20:4 1.00 2.58 2.09 4.62 5.75 4.97 6.16 9.26 8.43 

PtCho 16:0/20:4 1.00 3.26 2.66 5.97 6.81 6.40 7.50 9.79 9.36 

PtCho 16:0/20:3 1.00 2.43 2.03 4.78 5.82 5.62 5.18 6.91 7.55 

PtCho 18:0/18:2,18:1/18:1 1.00 2.43 1.97 5.60 6.37 5.90 6.18 8.71 9.25 

PtCho 18:0/18:1 1.00 2.49 1.95 4.23 4.58 4.23 4.81 7.75 6.52 

PtCho Total 1.00 2.78 2.15 5.15 5.95 5.45 6.12 8.70 8.37 

Pcho 1.00 1.78 1.00 2.96 6.31 2.61 0.00 0.00 0.00 

SM  1.00 1.50 1.56 2.54 3.12 2.47 1.70 1.93 1.36 

GPC  1.00 0.29 2.53 1.06 5.14 0.51 0.99 1.59 1.44 
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Table 31A: Cow #2 Average µM in Plasma Used in Figure 8 

 

 

 

 

 

 

 

 

 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  19.38 14.63 11.88 50.55 28.00 16.37 20.72 23.13 34.50 

Cho  2.73 2.31 1.96 4.51 3.32 2.04 3.42 2.49 3.25 

LPC 16:0 8.68 14.36 29.89 37.90 41.39 41.99 34.01 54.65 32.81 

LPC 18:2 21.50 30.50 73.75 137.74 141.20 130.89 122.18 211.26 119.06 

LPC 18:1 11.71 13.63 32.55 40.33 40.67 46.18 45.42 76.35 41.79 

LPC 18:0 8.91 12.96 30.05 51.31 57.30 46.89 61.91 94.01 67.07 

LPC Total 50.81 71.46 166.24 267.28 280.57 265.95 263.52 436.27 260.73 

PtCho 16:0/16:1 12.46 5.73 16.02 39.02 41.09 48.61 154.37 102.40 107.38 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 12.84 6.91 16.98 29.35 28.21 32.32 116.43 72.00 62.88 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 43.54 20.76 51.77 101.74 94.72 109.28 372.75 246.46 237.17 

PtCho 18:0/20:4 72.40 29.00 88.52 264.06 248.39 248.06 928.54 643.87 723.09 

PtCho 18:0/20:3 35.60 15.47 74.12 289.81 246.36 244.10 1081.53 875.27 911.22 

PtCho 18:1/22:6 1.94 0.71 2.29 5.07 4.61 5.76 21.62 11.96 12.62 

PtCho 18:0/22:6,18:1/22:5 11.83 5.43 14.51 33.76 31.52 34.61 148.76 79.93 86.06 

PtCho 18:0/22:5 25.50 11.30 29.14 70.90 64.34 70.04 234.68 154.80 163.63 

PtCho 16:0/16:0 12.30 5.50 14.04 46.98 55.70 49.52 167.23 94.52 120.00 

PtCho 16:0/18:2 339.08 262.87 588.39 1260.77 1296.12 1343.99 3551.43 3221.07 2604.69 

PtCho 16:0/18:1 202.51 135.95 266.93 375.37 392.69 470.10 1002.86 973.84 719.76 

PtCho 16:0/20:5,16:1/20:4 12.11 6.41 16.32 37.38 34.32 38.39 130.71 95.39 90.83 

PtCho 16:0/20:4 49.62 33.64 83.16 177.76 173.91 185.52 522.68 415.29 355.50 

PtCho 16:0/20:3 113.94 70.06 171.70 393.48 363.88 423.84 1029.59 984.61 833.99 

PtCho 18:0/18:2,18:1/18:1 361.99 222.92 493.47 1437.87 1472.68 1327.49 3376.44 3309.32 2740.90 

PtCho 18:0/18:1 159.98 89.45 197.36 450.47 463.64 455.94 1034.83 1010.11 831.95 

PtCho Total 1467.65 922.10 2124.71 5013.77 5012.18 5087.58 13874.47 12290.83 10601.67 

Pcho 0.97 0.00 0.30 1.16 0.50 0.36 0.00 0.00 0.00 

SM  233.57 166.75 338.97 579.76 576.95 655.86 482.30 412.51 453.20 

GPC  0.39 0.03 0.20 1.12 1.21 0.99 2.01 6.96 2.66 

Average of triplicate injections 
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Table 31B: Cow #2 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.76 0.61 2.61 1.44 0.84 1.07 1.19 1.78 

Cho  1.00 0.85 0.72 1.65 1.22 0.75 1.25 0.91 1.19 

LPC 16:0 1.00 1.65 3.44 4.36 4.77 4.84 3.92 6.29 3.78 

LPC 18:2 1.00 1.42 3.43 6.41 6.57 6.09 5.68 9.82 5.54 

LPC 18:1 1.00 1.16 2.78 3.44 3.47 3.94 3.88 6.52 3.57 

LPC 18:0 1.00 1.46 3.37 5.76 6.43 5.26 6.95 10.55 7.53 

LPC Total 1.00 1.41 3.27 5.26 5.52 5.23 5.19 8.59 5.13 

PtCho 16:0/16:1 1.00 0.46 1.29 3.13 3.30 3.90 12.39 8.22 8.62 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.54 1.32 2.28 2.20 2.52 9.06 5.61 4.90 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.48 1.19 2.34 2.18 2.51 8.56 5.66 5.45 

PtCho 18:0/20:4 1.00 0.40 1.22 3.65 3.43 3.43 12.82 8.89 9.99 

PtCho 18:0/20:3 1.00 0.43 2.08 8.14 6.92 6.86 30.38 24.59 25.60 

PtCho 18:1/22:6 1.00 0.37 1.18 2.62 2.38 2.97 11.16 6.17 6.51 

PtCho 18:0/22:6,18:1/22:5 1.00 0.46 1.23 2.85 2.66 2.93 12.57 6.76 7.27 

PtCho 18:0/22:5 1.00 0.44 1.14 2.78 2.52 2.75 9.20 6.07 6.42 

PtCho 16:0/16:0 1.00 0.45 1.14 3.82 4.53 4.03 13.60 7.68 9.76 

PtCho 16:0/18:2 1.00 0.78 1.74 3.72 3.82 3.96 10.47 9.50 7.68 

PtCho 16:0/18:1 1.00 0.67 1.32 1.85 1.94 2.32 4.95 4.81 3.55 

PtCho 16:0/20:5,16:1/20:4 1.00 0.53 1.35 3.09 2.83 3.17 10.79 7.88 7.50 

PtCho 16:0/20:4 1.00 0.68 1.68 3.58 3.50 3.74 10.53 8.37 7.16 

PtCho 16:0/20:3 1.00 0.61 1.51 3.45 3.19 3.72 9.04 8.64 7.32 

PtCho 18:0/18:2,18:1/18:1 1.00 0.62 1.36 3.97 4.07 3.67 9.33 9.14 7.57 

PtCho 18:0/18:1 1.00 0.56 1.23 2.82 2.90 2.85 6.47 6.31 5.20 

PtCho Total 1.00 0.63 1.45 3.42 3.42 3.47 9.45 8.37 7.22 

Pcho 1.00 0.00 0.31 1.20 0.51 0.37 0.00 0.00 0.00 

SM  1.00 0.71 1.45 2.48 2.47 2.81 2.06 1.77 1.94 

GPC  1.00 0.08 0.52 2.86 3.10 2.55 5.14 17.82 6.83 
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Table 32A: Cow #3 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  23.34 22.85 18.19 11.84 13.15 13.62 37.03 33.98 37.18 

Cho  3.90 5.60 6.54 2.40 5.98 3.82 5.96 2.43 1.78 

LPC 16:0 14.99 27.70 24.70 32.00 27.16 36.32 31.56 30.57 24.71 

LPC 18:2 27.29 62.90 62.89 98.28 63.69 112.46 116.31 106.35 67.59 

LPC 18:1 15.81 34.41 34.26 39.35 31.42 43.34 57.02 51.13 30.99 

LPC 18:0 14.06 30.21 29.59 40.57 50.30 66.25 68.79 66.36 42.05 

LPC Total 72.15 155.23 151.45 210.20 172.57 258.38 273.68 254.41 165.33 

PtCho 16:0/16:1 4.51 9.39 15.68 48.16 48.80 82.93 156.44 214.19 199.66 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 3.52 8.83 10.09 38.22 32.03 70.44 70.19 93.31 87.68 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 10.75 26.86 38.42 144.89 105.32 248.20 344.98 462.42 417.69 

PtCho 18:0/20:4 17.35 46.71 78.90 372.85 240.31 539.36 992.71 1322.74 1282.06 

PtCho 18:0/20:3 11.91 37.67 75.46 350.54 258.19 695.11 1285.81 1779.35 1679.89 

PtCho 18:1/22:6 0.42 1.62 1.54 7.55 4.81 12.85 13.29 19.37 15.39 

PtCho 18:0/22:6,18:1/22:5 3.44 8.92 9.60 48.25 26.10 68.31 53.69 79.69 64.13 

PtCho 18:0/22:5 6.37 15.84 21.46 111.50 51.07 136.55 278.38 347.23 321.21 

PtCho 16:0/16:0 4.19 12.20 13.26 52.75 51.46 83.06 163.41 239.15 203.18 

PtCho 16:0/18:2 167.26 326.83 492.80 1368.46 1630.42 3153.70 3252.94 4067.13 3951.00 

PtCho 16:0/18:1 97.53 179.10 253.80 529.97 514.83 928.50 1170.13 1413.01 1362.69 

PtCho 16:0/20:5,16:1/20:4 3.15 6.88 11.20 35.93 39.07 83.98 139.69 189.06 165.34 

PtCho 16:0/20:4 18.83 44.05 69.44 201.97 225.86 462.98 501.41 672.73 638.59 

PtCho 16:0/20:3 55.76 115.13 183.80 455.97 469.72 1093.04 1262.48 1558.98 1489.91 

PtCho 18:0/18:2,18:1/18:1 168.41 358.56 516.78 1394.79 1585.59 3465.67 3636.49 4565.53 4479.44 

PtCho 18:0/18:1 80.02 170.12 238.96 561.57 491.87 1021.48 1446.54 1690.68 1658.13 

PtCho Total 653.43 1368.71 2031.19 5723.37 5775.46 12146.17 14768.56 18714.55 18015.99 

Pcho 0.13 0.92 0.16 1.11 3.31 1.88 0.00 0.00 0.00 

SM  110.91 230.09 265.90 654.36 502.72 527.82 412.52 424.40 497.76 

GPC  0.15 0.32 0.13 3.07 1.55 5.06 4.05 1.89 0.42 

Average of triplicate injections 
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Table 32B: Cow #3 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.98 0.78 0.51 0.56 0.58 1.59 1.46 1.59 

Cho  1.00 1.44 1.68 0.62 1.53 0.98 1.53 0.62 0.46 

LPC 16:0 1.00 1.85 1.65 2.13 1.81 2.42 2.11 2.04 1.65 

LPC 18:2 1.00 2.30 2.30 3.60 2.33 4.12 4.26 3.90 2.48 

LPC 18:1 1.00 2.18 2.17 2.49 1.99 2.74 3.61 3.23 1.96 

LPC 18:0 1.00 2.15 2.10 2.89 3.58 4.71 4.89 4.72 2.99 

LPC Total 1.00 2.15 2.10 2.91 2.39 3.58 3.79 3.53 2.29 

PtCho 16:0/16:1 1.00 2.08 3.48 10.69 10.83 18.40 34.71 47.52 44.30 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 2.51 2.87 10.87 9.11 20.04 19.97 26.54 24.94 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 2.50 3.57 13.47 9.79 23.08 32.08 43.00 38.84 

PtCho 18:0/20:4 1.00 2.69 4.55 21.49 13.85 31.09 57.22 76.24 73.89 

PtCho 18:0/20:3 1.00 3.16 6.34 29.43 21.68 58.36 107.95 149.39 141.03 

PtCho 18:1/22:6 1.00 3.86 3.68 18.02 11.47 30.67 31.72 46.21 36.73 

PtCho 18:0/22:6,18:1/22:5 1.00 2.59 2.79 14.04 7.60 19.88 15.62 23.19 18.66 

PtCho 18:0/22:5 1.00 2.49 3.37 17.49 8.01 21.42 43.68 54.48 50.40 

PtCho 16:0/16:0 1.00 2.91 3.16 12.58 12.27 19.80 38.96 57.02 48.44 

PtCho 16:0/18:2 1.00 1.95 2.95 8.18 9.75 18.86 19.45 24.32 23.62 

PtCho 16:0/18:1 1.00 1.84 2.60 5.43 5.28 9.52 12.00 14.49 13.97 

PtCho 16:0/20:5,16:1/20:4 1.00 2.18 3.55 11.39 12.39 26.63 44.29 59.94 52.42 

PtCho 16:0/20:4 1.00 2.34 3.69 10.73 11.99 24.59 26.63 35.73 33.91 

PtCho 16:0/20:3 1.00 2.06 3.30 8.18 8.42 19.60 22.64 27.96 26.72 

PtCho 18:0/18:2,18:1/18:1 1.00 2.13 3.07 8.28 9.41 20.58 21.59 27.11 26.60 

PtCho 18:0/18:1 1.00 2.13 2.99 7.02 6.15 12.77 18.08 21.13 20.72 

PtCho Total 1.00 2.09 3.11 8.76 8.84 18.59 22.60 28.64 27.57 

Pcho 1.00 7.24 1.27 8.76 26.13 14.85 0.00 0.00 0.00 

SM  1.00 2.07 2.40 5.90 4.53 4.76 3.72 3.83 4.49 

GPC  1.00 2.19 0.92 20.98 10.59 34.57 27.68 12.93 2.88 
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Table 33A: Cow #4 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  25.77 14.06 7.66 18.21 8.75 17.62 17.13 24.05 45.59 

Cho  2.70 4.62 2.56 5.59 2.40 4.93 2.80 2.21 4.86 

LPC 16:0 18.31 19.63 22.80 103.88 32.53 52.57 37.06 30.31 33.51 

LPC 18:2 35.55 42.48 55.18 430.04 117.63 187.10 141.65 128.21 125.77 

LPC 18:1 18.22 17.13 23.16 127.03 36.32 51.55 47.25 44.35 45.33 

LPC 18:0 14.93 20.15 24.95 176.56 44.08 70.21 70.65 73.81 77.10 

LPC Total 87.01 99.39 126.08 837.50 230.56 361.43 296.61 276.68 281.71 

PtCho 16:0/16:1 11.88 7.13 8.34 38.20 33.03 26.65 107.91 72.93 140.85 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 11.23 6.56 7.04 28.26 28.02 23.17 99.40 56.66 81.37 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 37.27 21.01 22.03 100.96 95.50 79.08 336.00 216.56 336.50 

PtCho 18:0/20:4 62.94 34.01 38.50 273.37 231.23 212.52 835.45 627.04 1044.66 

PtCho 18:0/20:3 41.49 29.28 36.68 271.61 251.20 211.00 949.90 748.24 1194.03 

PtCho 18:1/22:6 1.76 1.06 1.13 5.63 5.89 4.40 23.07 11.93 17.68 

PtCho 18:0/22:6,18:1/22:5 12.55 6.79 7.29 32.91 31.42 24.40 133.06 71.59 88.42 

PtCho 18:0/22:5 28.17 14.65 14.86 70.77 67.76 55.57 212.36 138.92 248.97 

PtCho 16:0/16:0 16.32 8.69 9.06 60.66 39.63 39.83 152.51 99.82 198.88 

PtCho 16:0/18:2 322.56 295.23 330.87 1182.17 1210.42 1086.51 3184.13 2137.23 3068.55 

PtCho 16:0/18:1 174.55 125.02 143.10 363.85 359.65 311.94 786.07 561.57 891.46 

PtCho 16:0/20:5,16:1/20:4 10.97 7.02 7.15 38.41 35.88 31.77 121.87 79.53 143.49 

PtCho 16:0/20:4 45.44 38.55 42.17 183.59 189.78 166.26 547.35 344.96 527.54 

PtCho 16:0/20:3 95.59 101.99 116.90 393.80 455.32 350.40 935.02 786.77 1123.92 

PtCho 18:0/18:2,18:1/18:1 277.34 334.00 378.94 1474.00 1449.71 1214.74 3202.85 2513.75 3442.45 

PtCho 18:0/18:1 132.38 128.07 149.37 452.07 436.65 360.99 966.23 730.88 1072.56 

PtCho Total 1282.44 1159.05 1313.44 4970.28 4921.10 4199.23 12593.20 9198.38 13621.31 

Pcho 1.11 0.00 0.20 2.26 0.33 0.94 0.00 0.00 0.00 

SM  229.58 220.63 209.67 486.74 358.45 438.08 375.47 309.35 415.02 

GPC  1.38 0.04 0.39 14.50 0.56 18.67 3.26 4.44 2.58 

Average of triplicate injections 
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Table 33B: Cow #4 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.55 0.30 0.71 0.34 0.68 0.66 0.93 1.77 

Cho  1.00 1.71 0.95 2.07 0.89 1.83 1.04 0.82 1.80 

LPC 16:0 1.00 1.07 1.24 5.67 1.78 2.87 2.02 1.65 1.83 

LPC 18:2 1.00 1.19 1.55 12.10 3.31 5.26 3.98 3.61 3.54 

LPC 18:1 1.00 0.94 1.27 6.97 1.99 2.83 2.59 2.43 2.49 

LPC 18:0 1.00 1.35 1.67 11.83 2.95 4.70 4.73 4.94 5.16 

LPC Total 1.00 1.14 1.45 9.62 2.65 4.15 3.41 3.18 3.24 

PtCho 16:0/16:1 1.00 0.60 0.70 3.22 2.78 2.24 9.09 6.14 11.86 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.58 0.63 2.52 2.49 2.06 8.85 5.04 7.24 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.56 0.59 2.71 2.56 2.12 9.01 5.81 9.03 

PtCho 18:0/20:4 1.00 0.54 0.61 4.34 3.67 3.38 13.27 9.96 16.60 

PtCho 18:0/20:3 1.00 0.71 0.88 6.55 6.05 5.09 22.90 18.04 28.78 

PtCho 18:1/22:6 1.00 0.60 0.64 3.19 3.34 2.49 13.08 6.76 10.02 

PtCho 18:0/22:6,18:1/22:5 1.00 0.54 0.58 2.62 2.50 1.95 10.61 5.71 7.05 

PtCho 18:0/22:5 1.00 0.52 0.53 2.51 2.40 1.97 7.54 4.93 8.84 

PtCho 16:0/16:0 1.00 0.53 0.56 3.72 2.43 2.44 9.35 6.12 12.19 

PtCho 16:0/18:2 1.00 0.92 1.03 3.66 3.75 3.37 9.87 6.63 9.51 

PtCho 16:0/18:1 1.00 0.72 0.82 2.08 2.06 1.79 4.50 3.22 5.11 

PtCho 16:0/20:5,16:1/20:4 1.00 0.64 0.65 3.50 3.27 2.90 11.11 7.25 13.08 

PtCho 16:0/20:4 1.00 0.85 0.93 4.04 4.18 3.66 12.04 7.59 11.61 

PtCho 16:0/20:3 1.00 1.07 1.22 4.12 4.76 3.67 9.78 8.23 11.76 

PtCho 18:0/18:2,18:1/18:1 1.00 1.20 1.37 5.31 5.23 4.38 11.55 9.06 12.41 

PtCho 18:0/18:1 1.00 0.97 1.13 3.41 3.30 2.73 7.30 5.52 8.10 

PtCho Total 1.00 0.90 1.02 3.88 3.84 3.27 9.82 7.17 10.62 

Pcho 1.00 0.00 0.18 2.04 0.29 0.84 0.00 0.00 0.00 

SM  1.00 0.96 0.91 2.12 1.56 1.91 1.64 1.35 1.81 

GPC  1.00 0.03 0.28 10.51 0.41 13.53 2.37 3.22 1.87 
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Table 34A: Cow #5 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  19.56 11.83 10.85 10.99 13.24 25.86 28.19 30.84 40.75 

Cho  2.94 3.44 5.21 4.28 3.12 3.92 2.17 3.82 2.85 

LPC 16:0 20.12 20.16 62.94 67.80 39.81 63.33 29.03 28.30 21.64 

LPC 18:2 43.47 56.81 188.35 236.58 135.13 250.91 115.28 116.64 90.54 

LPC 18:1 25.45 27.87 92.75 81.61 45.46 78.61 45.58 47.91 38.38 

LPC 18:0 21.09 24.73 82.70 91.15 52.88 98.63 56.15 71.29 50.79 

LPC Total 110.13 129.57 426.74 477.15 273.29 491.48 246.04 264.13 201.36 

PtCho 16:0/16:1 8.12 9.84 16.34 48.25 47.56 57.61 105.96 114.09 74.89 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 4.80 7.44 12.25 34.66 33.99 40.12 87.42 74.84 44.19 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 18.44 27.43 45.16 118.47 115.61 137.12 276.99 255.31 175.39 

PtCho 18:0/20:4 24.74 43.61 77.43 274.93 263.26 349.06 663.22 712.72 509.52 

PtCho 18:0/20:3 18.12 44.97 72.95 297.44 265.09 383.97 732.53 855.92 681.12 

PtCho 18:1/22:6 0.81 1.37 2.12 7.22 7.27 9.33 18.24 14.02 8.67 

PtCho 18:0/22:6,18:1/22:5 4.42 7.32 12.23 44.08 40.90 49.86 105.47 106.84 49.14 

PtCho 18:0/22:5 12.64 18.22 33.37 102.64 92.09 109.39 176.37 190.98 123.01 

PtCho 16:0/16:0 6.68 10.16 16.81 56.46 53.91 65.46 112.99 128.98 81.05 

PtCho 16:0/18:2 217.64 316.93 548.54 1545.16 1688.11 1833.97 2991.79 2793.08 2014.05 

PtCho 16:0/18:1 124.33 163.48 259.76 501.91 514.54 554.01 933.52 890.86 678.33 

PtCho 16:0/20:5,16:1/20:4 7.05 8.30 13.92 40.01 40.02 49.77 89.45 93.39 68.22 

PtCho 16:0/20:4 24.49 38.01 69.09 200.44 223.39 262.27 431.75 386.49 276.46 

PtCho 16:0/20:3 79.01 120.70 180.81 512.43 617.72 689.50 960.46 1011.76 720.14 

PtCho 18:0/18:2,18:1/18:1 206.53 367.35 569.20 1637.87 1908.31 2260.48 3072.45 3530.87 2424.81 

PtCho 18:0/18:1 99.20 160.49 254.93 565.02 609.78 696.90 1112.18 1252.63 883.02 

PtCho Total 857.03 1345.62 2184.90 5987.00 6521.56 7548.82 11870.79 12412.79 8812.01 

Pcho 0.11 0.66 0.97 2.76 0.58 1.66 0.00 0.00 0.00 

SM  145.25 229.58 298.58 723.43 675.67 746.99 446.12 356.67 290.70 

GPC  1.76 1.10 5.93 34.39 1.02 22.52 1.77 2.98 2.63 

Average of triplicate injections 
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Table 34B: Cow #5 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.60 0.55 0.56 0.68 1.32 1.44 1.58 2.08 

Cho  1.00 1.17 1.77 1.46 1.06 1.33 0.74 1.30 0.97 

LPC 16:0 1.00 1.00 3.13 3.37 1.98 3.15 1.44 1.41 1.08 

LPC 18:2 1.00 1.31 4.33 5.44 3.11 5.77 2.65 2.68 2.08 

LPC 18:1 1.00 1.10 3.64 3.21 1.79 3.09 1.79 1.88 1.51 

LPC 18:0 1.00 1.17 3.92 4.32 2.51 4.68 2.66 3.38 2.41 

LPC Total 1.00 1.18 3.87 4.33 2.48 4.46 2.23 2.40 1.83 

PtCho 16:0/16:1 1.00 1.21 2.01 5.94 5.86 7.10 13.05 14.05 9.22 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.55 2.55 7.23 7.09 8.36 18.23 15.60 9.21 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.49 2.45 6.42 6.27 7.43 15.02 13.84 9.51 

PtCho 18:0/20:4 1.00 1.76 3.13 11.11 10.64 14.11 26.80 28.81 20.59 

PtCho 18:0/20:3 1.00 2.48 4.02 16.41 14.63 21.18 40.42 47.22 37.58 

PtCho 18:1/22:6 1.00 1.70 2.63 8.95 9.02 11.57 22.62 17.38 10.75 

PtCho 18:0/22:6,18:1/22:5 1.00 1.66 2.77 9.98 9.26 11.28 23.87 24.18 11.12 

PtCho 18:0/22:5 1.00 1.44 2.64 8.12 7.29 8.65 13.95 15.11 9.73 

PtCho 16:0/16:0 1.00 1.52 2.52 8.45 8.07 9.80 16.92 19.31 12.13 

PtCho 16:0/18:2 1.00 1.46 2.52 7.10 7.76 8.43 13.75 12.83 9.25 

PtCho 16:0/18:1 1.00 1.31 2.09 4.04 4.14 4.46 7.51 7.17 5.46 

PtCho 16:0/20:5,16:1/20:4 1.00 1.18 1.97 5.67 5.67 7.06 12.68 13.24 9.67 

PtCho 16:0/20:4 1.00 1.55 2.82 8.19 9.12 10.71 17.63 15.78 11.29 

PtCho 16:0/20:3 1.00 1.53 2.29 6.49 7.82 8.73 12.16 12.81 9.11 

PtCho 18:0/18:2,18:1/18:1 1.00 1.78 2.76 7.93 9.24 10.95 14.88 17.10 11.74 

PtCho 18:0/18:1 1.00 1.62 2.57 5.70 6.15 7.03 11.21 12.63 8.90 

PtCho Total 1.00 1.57 2.55 6.99 7.61 8.81 13.85 14.48 10.28 

Pcho 1.00 5.82 8.56 24.41 5.11 14.71 0.00 0.00 0.00 

SM  1.00 1.58 2.06 4.98 4.65 5.14 3.07 2.46 2.00 

GPC  1.00 0.62 3.36 19.52 0.58 12.78 1.00 1.69 1.49 
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Table 35A: Cow #6 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  35.77 19.60 11.92 14.61 14.20 12.91 28.70 45.88 84.16 

Cho  3.40 2.91 4.45 2.31 4.68 3.28 2.38 2.57 3.61 

LPC 16:0 22.07 19.30 25.82 45.81 20.99 50.87 34.14 30.15 20.46 

LPC 18:2 49.33 44.69 69.64 161.90 72.16 195.21 136.98 116.21 40.88 

LPC 18:1 20.40 23.30 30.67 46.78 21.67 53.72 41.83 35.34 18.44 

LPC 18:0 17.23 20.50 30.83 56.80 19.66 72.01 72.68 61.50 27.83 

LPC Total 109.03 107.78 156.97 311.29 134.47 371.82 285.64 243.21 107.59 

PtCho 16:0/16:1 5.06 6.02 8.97 29.63 31.65 25.92 64.00 103.71 44.76 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 4.16 6.01 8.89 26.79 31.40 22.39 54.38 80.66 42.86 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 12.15 17.83 27.99 89.45 99.82 78.05 184.02 290.50 162.88 

PtCho 18:0/20:4 19.08 32.73 58.57 224.75 232.93 206.61 525.90 899.39 488.87 

PtCho 18:0/20:3 12.76 25.27 63.08 232.45 228.51 239.75 622.96 1026.29 456.57 

PtCho 18:1/22:6 0.63 1.03 1.45 4.96 5.54 4.39 12.64 15.99 7.05 

PtCho 18:0/22:6,18:1/22:5 3.28 5.81 8.72 31.30 37.64 25.08 95.50 106.37 61.37 

PtCho 18:0/22:5 6.15 11.07 16.46 59.92 74.29 49.96 145.77 225.94 134.02 

PtCho 16:0/16:0 6.36 7.22 9.80 33.22 37.66 32.19 90.04 143.37 59.40 

PtCho 16:0/18:2 260.15 257.86 413.56 1184.50 1246.03 1093.28 1936.70 3045.52 1013.72 

PtCho 16:0/18:1 115.27 134.00 181.81 351.27 416.09 311.25 501.07 807.91 408.38 

PtCho 16:0/20:5,16:1/20:4 4.33 4.83 8.52 29.27 28.39 26.02 60.56 104.16 56.92 

PtCho 16:0/20:4 25.88 30.61 53.77 162.63 167.81 151.97 280.75 444.36 233.52 

PtCho 16:0/20:3 75.71 87.35 140.53 392.62 374.98 395.63 642.40 1063.12 361.95 

PtCho 18:0/18:2,18:1/18:1 200.38 255.46 435.45 1256.31 1072.98 1288.50 2187.35 3447.39 890.15 

PtCho 18:0/18:1 72.64 115.17 174.59 369.24 370.85 360.07 591.93 931.74 324.54 

PtCho Total 824.00 998.27 1612.16 4478.34 4456.55 4311.07 7995.95 12736.42 4746.96 

Pcho 0.50 0.09 0.54 0.55 0.70 0.98 0.00 0.00 0.00 

SM  162.53 166.13 253.82 581.60 609.13 531.58 366.15 303.72 325.30 

GPC  2.62 1.37 1.98 17.87 0.37 12.16 5.95 4.34 0.49 

Average of triplicate injections 
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Table 35B: Cow #6 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.55 0.33 0.41 0.40 0.36 0.80 1.28 2.35 

Cho  1.00 0.86 1.31 0.68 1.38 0.96 0.70 0.76 1.06 

LPC 16:0 1.00 0.87 1.17 2.08 0.95 2.31 1.55 1.37 0.93 

LPC 18:2 1.00 0.91 1.41 3.28 1.46 3.96 2.78 2.36 0.83 

LPC 18:1 1.00 1.14 1.50 2.29 1.06 2.63 2.05 1.73 0.90 

LPC 18:0 1.00 1.19 1.79 3.30 1.14 4.18 4.22 3.57 1.61 

LPC Total 1.00 0.99 1.44 2.86 1.23 3.41 2.62 2.23 0.99 

PtCho 16:0/16:1 1.00 1.19 1.77 5.85 6.25 5.12 12.65 20.49 8.84 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.44 2.14 6.44 7.54 5.38 13.06 19.38 10.30 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.47 2.30 7.36 8.22 6.42 15.15 23.91 13.41 

PtCho 18:0/20:4 1.00 1.72 3.07 11.78 12.21 10.83 27.57 47.15 25.63 

PtCho 18:0/20:3 1.00 1.98 4.94 18.21 17.90 18.79 48.81 80.41 35.77 

PtCho 18:1/22:6 1.00 1.63 2.29 7.84 8.75 6.94 19.97 25.26 11.13 

PtCho 18:0/22:6,18:1/22:5 1.00 1.77 2.66 9.55 11.48 7.65 29.13 32.45 18.72 

PtCho 18:0/22:5 1.00 1.80 2.68 9.75 12.08 8.13 23.71 36.75 21.80 

PtCho 16:0/16:0 1.00 1.13 1.54 5.22 5.92 5.06 14.15 22.53 9.33 

PtCho 16:0/18:2 1.00 0.99 1.59 4.55 4.79 4.20 7.44 11.71 3.90 

PtCho 16:0/18:1 1.00 1.16 1.58 3.05 3.61 2.70 4.35 7.01 3.54 

PtCho 16:0/20:5,16:1/20:4 1.00 1.11 1.97 6.76 6.55 6.01 13.98 24.04 13.14 

PtCho 16:0/20:4 1.00 1.18 2.08 6.28 6.48 5.87 10.85 17.17 9.02 

PtCho 16:0/20:3 1.00 1.15 1.86 5.19 4.95 5.23 8.48 14.04 4.78 

PtCho 18:0/18:2,18:1/18:1 1.00 1.27 2.17 6.27 5.35 6.43 10.92 17.20 4.44 

PtCho 18:0/18:1 1.00 1.59 2.40 5.08 5.11 4.96 8.15 12.83 4.47 

PtCho Total 1.00 1.21 1.96 5.43 5.41 5.23 9.70 15.46 5.76 

Pcho 1.00 0.17 1.07 1.10 1.41 1.96 0.00 0.00 0.00 

SM  1.00 1.02 1.56 3.58 3.75 3.27 2.25 1.87 2.00 

GPC  1.00 0.52 0.76 6.82 0.14 4.64 2.27 1.66 0.19 

           

 

 

 

 

 

 

 

 

 



155 

 

Table 36A: Cow #7 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  18.85 16.83 13.41 16.41 19.49 14.42 42.20 47.13 56.08 

Cho  4.70 5.78 4.76 2.78 4.25 4.04 3.64 3.02 3.44 

LPC 16:0 21.41 29.87 41.02 57.73 38.39 38.97 56.79 37.72 28.03 

LPC 18:2 48.75 78.36 97.31 142.84 100.53 94.60 224.26 137.14 74.16 

LPC 18:1 24.76 33.78 39.53 54.87 42.90 45.22 108.10 57.48 33.51 

LPC 18:0 23.95 32.69 42.98 55.99 49.71 73.52 143.32 88.44 51.49 

LPC Total 118.87 174.71 220.85 311.44 231.52 252.32 532.47 320.78 187.18 

PtCho 16:0/16:1 7.72 9.88 9.83 38.80 52.78 160.50 239.58 115.20 192.18 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 6.91 10.28 10.42 46.53 41.77 132.93 114.93 55.40 95.50 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 25.95 36.43 38.94 153.22 123.83 446.23 589.16 293.24 490.30 

PtCho 18:0/20:4 54.22 83.37 86.15 396.80 255.22 1020.56 1691.26 879.35 1476.86 

PtCho 18:0/20:3 29.67 47.32 43.69 259.15 235.15 1129.22 2172.36 1174.61 1907.81 

PtCho 18:1/22:6 1.05 1.42 1.45 6.80 5.96 26.71 21.98 11.00 17.97 

PtCho 18:0/22:6,18:1/22:5 6.27 8.94 9.03 49.90 33.03 179.73 112.10 51.35 84.50 

PtCho 18:0/22:5 14.59 20.63 23.19 120.11 63.35 262.61 431.17 205.42 350.79 

PtCho 16:0/16:0 9.92 14.77 13.06 55.83 67.86 256.70 314.90 156.77 251.88 

PtCho 16:0/18:2 332.52 465.24 559.11 1845.79 1758.32 4411.23 4450.93 2445.42 4220.76 

PtCho 16:0/18:1 176.42 218.03 223.77 692.10 628.88 1386.92 1535.81 791.86 1455.35 

PtCho 16:0/20:5,16:1/20:4 6.69 8.80 10.90 39.62 44.52 142.88 193.55 99.43 155.66 

PtCho 16:0/20:4 47.22 67.80 84.73 276.32 265.69 696.94 683.93 380.26 648.48 

PtCho 16:0/20:3 100.74 119.16 138.19 421.17 431.14 1346.47 1691.31 940.95 1642.59 

PtCho 18:0/18:2,18:1/18:1 346.84 430.97 457.09 1422.80 1474.78 4578.13 5306.64 2865.96 5109.72 

PtCho 18:0/18:1 143.85 166.90 160.53 537.88 480.66 1433.49 1917.79 948.46 1738.58 

PtCho Total 1310.57 1709.94 1870.08 6362.82 5962.93 17611.27 21467.41 11414.67 19838.92 

Pcho 0.48 1.12 0.93 0.84 2.90 2.45 0.00 0.00 0.00 

SM  193.63 218.60 253.47 806.07 571.10 526.52 393.89 393.38 584.86 

GPC  1.91 1.60 5.77 9.42 5.04 4.50 19.51 6.56 0.50 

Average of triplicate injections 
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Table 36B: Cow #7 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.89 0.71 0.87 1.03 0.77 2.24 2.50 2.98 

Cho  1.00 1.23 1.01 0.59 0.90 0.86 0.77 0.64 0.73 

LPC 16:0 1.00 1.40 1.92 2.70 1.79 1.82 2.65 1.76 1.31 

LPC 18:2 1.00 1.61 2.00 2.93 2.06 1.94 4.60 2.81 1.52 

LPC 18:1 1.00 1.36 1.60 2.22 1.73 1.83 4.37 2.32 1.35 

LPC 18:0 1.00 1.36 1.79 2.34 2.08 3.07 5.98 3.69 2.15 

LPC Total 1.00 1.47 1.86 2.62 1.95 2.12 4.48 2.70 1.57 

PtCho 16:0/16:1 1.00 1.28 1.27 5.02 6.83 20.78 31.01 14.91 24.88 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.49 1.51 6.74 6.05 19.25 16.64 8.02 13.83 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.40 1.50 5.90 4.77 17.19 22.70 11.30 18.89 

PtCho 18:0/20:4 1.00 1.54 1.59 7.32 4.71 18.82 31.19 16.22 27.24 

PtCho 18:0/20:3 1.00 1.59 1.47 8.74 7.93 38.06 73.22 39.59 64.30 

PtCho 18:1/22:6 1.00 1.35 1.38 6.47 5.67 25.40 20.90 10.46 17.09 

PtCho 18:0/22:6,18:1/22:5 1.00 1.43 1.44 7.96 5.27 28.68 17.89 8.19 13.48 

PtCho 18:0/22:5 1.00 1.41 1.59 8.23 4.34 18.00 29.55 14.08 24.04 

PtCho 16:0/16:0 1.00 1.49 1.32 5.63 6.84 25.88 31.75 15.81 25.40 

PtCho 16:0/18:2 1.00 1.40 1.68 5.55 5.29 13.27 13.39 7.35 12.69 

PtCho 16:0/18:1 1.00 1.24 1.27 3.92 3.56 7.86 8.71 4.49 8.25 

PtCho 16:0/20:5,16:1/20:4 1.00 1.31 1.63 5.92 6.65 21.36 28.93 14.86 23.27 

PtCho 16:0/20:4 1.00 1.44 1.79 5.85 5.63 14.76 14.48 8.05 13.73 

PtCho 16:0/20:3 1.00 1.18 1.37 4.18 4.28 13.37 16.79 9.34 16.31 

PtCho 18:0/18:2,18:1/18:1 1.00 1.24 1.32 4.10 4.25 13.20 15.30 8.26 14.73 

PtCho 18:0/18:1 1.00 1.16 1.12 3.74 3.34 9.97 13.33 6.59 12.09 

PtCho Total 1.00 1.30 1.43 4.86 4.55 13.44 16.38 8.71 15.14 

Pcho 1.00 2.33 1.93 1.74 6.03 5.09 0.00 0.00 0.00 

SM  1.00 1.13 1.31 4.16 2.95 2.72 2.03 2.03 3.02 

GPC  1.00 0.84 3.01 4.92 2.63 2.35 10.20 3.43 0.26 
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Table 37A: Cow #8 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  30.73 27.41 20.02 17.22 15.45 11.40 14.37 18.37 29.37 

Cho  2.84 4.59 6.73 3.55 4.24 1.92 2.30 2.34 2.34 

LPC 16:0 8.68 25.92 15.13 49.59 43.70 50.04 25.13 24.34 24.71 

LPC 18:2 14.84 57.39 31.86 126.92 131.00 146.56 56.24 80.13 53.89 

LPC 18:1 7.78 30.39 16.89 58.28 56.01 62.87 25.36 32.36 35.14 

LPC 18:0 6.49 22.75 15.69 42.93 48.57 58.46 39.19 45.31 36.74 

LPC Total 37.79 136.46 79.57 277.72 279.28 317.93 145.92 182.15 150.49 

PtCho 16:0/16:1 3.08 5.29 5.63 40.63 44.64 41.05 155.65 120.79 93.83 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 3.36 4.76 5.72 28.70 32.65 32.68 117.86 86.97 61.37 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 8.40 13.42 18.70 94.65 113.22 118.84 412.67 318.02 239.94 

PtCho 18:0/20:4 12.32 21.59 31.87 205.53 270.62 285.44 1036.05 872.61 606.92 

PtCho 18:0/20:3 10.35 13.47 21.60 196.42 301.86 298.76 1007.48 995.16 707.54 

PtCho 18:1/22:6 0.36 0.74 0.75 4.97 6.87 7.66 26.75 16.83 8.95 

PtCho 18:0/22:6,18:1/22:5 2.51 3.62 4.16 25.67 33.90 40.19 177.84 94.43 64.75 

PtCho 18:0/22:5 4.26 5.88 8.17 56.29 74.42 84.94 297.93 224.95 181.26 

PtCho 16:0/16:0 3.32 7.91 8.16 36.75 43.69 37.25 161.32 128.50 102.03 

PtCho 16:0/18:2 128.25 210.94 245.08 1104.24 1265.77 1078.53 3326.69 2971.68 1666.66 

PtCho 16:0/18:1 63.37 120.30 132.43 479.36 502.75 413.08 1065.66 914.01 1003.73 

PtCho 16:0/20:5,16:1/20:4 2.56 3.88 5.60 28.79 35.15 32.82 132.25 133.34 78.08 

PtCho 16:0/20:4 13.78 25.76 35.95 152.00 189.82 169.29 554.81 519.08 277.55 

PtCho 16:0/20:3 47.18 71.73 88.22 360.55 475.10 444.03 1186.20 1073.68 520.34 

PtCho 18:0/18:2,18:1/18:1 110.71 197.43 245.03 841.07 1161.10 1103.91 3430.63 3121.33 1665.63 

PtCho 18:0/18:1 43.79 83.57 102.04 353.85 438.37 417.02 1168.35 1011.41 803.59 

PtCho Total 457.61 790.30 959.14 4009.46 4989.92 4605.48 14258.13 12602.80 8082.18 

Pcho 0.00 0.36 0.00 1.11 0.54 1.53 0.00 0.00 0.00 

SM  91.62 150.29 180.94 606.99 516.86 608.75 490.45 307.81 387.77 

GPC  0.05 0.45 0.03 9.83 0.74 7.11 0.39 1.07 1.52 

Average of triplicate injections 
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Table 37B: Cow #8 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.89 0.65 0.56 0.50 0.37 0.47 0.60 0.96 

Cho  1.00 1.61 2.37 1.25 1.49 0.67 0.81 0.82 0.82 

LPC 16:0 1.00 2.99 1.74 5.71 5.04 5.77 2.90 2.80 2.85 

LPC 18:2 1.00 3.87 2.15 8.55 8.83 9.87 3.79 5.40 3.63 

LPC 18:1 1.00 3.91 2.17 7.49 7.20 8.08 3.26 4.16 4.52 

LPC 18:0 1.00 3.51 2.42 6.62 7.49 9.01 6.04 6.99 5.66 

LPC Total 1.00 3.61 2.11 7.35 7.39 8.41 3.86 4.82 3.98 

PtCho 16:0/16:1 1.00 1.71 1.83 13.18 14.48 13.32 50.49 39.18 30.44 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.42 1.70 8.53 9.71 9.72 35.04 25.86 18.25 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.60 2.23 11.27 13.49 14.16 49.15 37.88 28.58 

PtCho 18:0/20:4 1.00 1.75 2.59 16.68 21.96 23.16 84.06 70.80 49.25 

PtCho 18:0/20:3 1.00 1.30 2.09 18.97 29.16 28.86 97.31 96.12 68.34 

PtCho 18:1/22:6 1.00 2.07 2.09 13.81 19.09 21.29 74.36 46.77 24.87 

PtCho 18:0/22:6,18:1/22:5 1.00 1.44 1.66 10.24 13.52 16.03 70.95 37.67 25.83 

PtCho 18:0/22:5 1.00 1.38 1.92 13.21 17.46 19.93 69.91 52.79 42.53 

PtCho 16:0/16:0 1.00 2.38 2.46 11.07 13.16 11.22 48.59 38.70 30.73 

PtCho 16:0/18:2 1.00 1.64 1.91 8.61 9.87 8.41 25.94 23.17 13.00 

PtCho 16:0/18:1 1.00 1.90 2.09 7.56 7.93 6.52 16.82 14.42 15.84 

PtCho 16:0/20:5,16:1/20:4 1.00 1.51 2.19 11.23 13.71 12.80 51.58 52.01 30.45 

PtCho 16:0/20:4 1.00 1.87 2.61 11.03 13.78 12.29 40.26 37.67 20.14 

PtCho 16:0/20:3 1.00 1.52 1.87 7.64 10.07 9.41 25.14 22.76 11.03 

PtCho 18:0/18:2,18:1/18:1 1.00 1.78 2.21 7.60 10.49 9.97 30.99 28.19 15.04 

PtCho 18:0/18:1 1.00 1.91 2.33 8.08 10.01 9.52 26.68 23.10 18.35 

PtCho Total 1.00 1.73 2.10 8.76 10.90 10.06 31.16 27.54 17.66 

Pcho 0.00 1.00 0.00 3.06 1.50 4.20 0.00 0.00 0.00 

SM  1.00 1.64 1.97 6.63 5.64 6.64 5.35 3.36 4.23 

GPC  1.00 8.90 0.61 193.10 14.62 139.63 7.62 20.94 29.91 
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Table 38A: Cow #9 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  32.67 26.98 13.72 20.48 31.74 42.64 53.84 77.63 56.22 

Cho  5.77 2.72 3.07 3.98 5.66 7.46 3.99 4.39 3.08 

LPC 16:0 27.58 26.17 32.05 46.93 56.98 86.88 28.70 21.30 36.65 

LPC 18:2 55.17 75.37 96.36 175.25 205.15 347.95 106.80 59.28 142.46 

LPC 18:1 32.09 32.61 41.07 59.77 69.42 110.95 38.17 23.20 56.52 

LPC 18:0 25.36 26.31 43.87 76.86 86.06 151.01 68.42 39.33 85.29 

LPC Total 140.21 160.46 213.35 358.81 417.60 696.79 242.09 143.11 320.92 

PtCho 16:0/16:1 10.78 18.92 14.78 45.16 49.52 59.00 188.01 112.36 101.73 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 6.21 14.75 9.87 35.43 41.07 51.83 130.73 72.77 62.03 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 21.25 50.96 34.12 127.49 134.27 186.41 469.39 304.56 268.74 

PtCho 18:0/20:4 33.08 90.84 66.64 304.21 329.37 500.20 1439.08 1014.00 893.23 

PtCho 18:0/20:3 29.80 75.47 80.04 341.35 358.00 544.81 1958.46 1399.89 1202.59 

PtCho 18:1/22:6 1.06 2.44 1.84 7.46 9.54 12.13 27.72 14.76 12.17 

PtCho 18:0/22:6,18:1/22:5 5.02 12.72 9.13 38.41 46.21 60.76 215.62 97.57 69.79 

PtCho 18:0/22:5 10.71 28.25 18.03 79.72 80.88 123.97 349.71 237.16 225.14 

PtCho 16:0/16:0 8.92 17.86 12.27 51.36 58.54 77.21 253.96 138.47 129.66 

PtCho 16:0/18:2 295.65 547.36 478.50 1449.26 1607.99 1919.10 4218.00 2826.42 2391.08 

PtCho 16:0/18:1 158.62 220.92 188.74 443.25 510.86 571.14 1214.97 937.32 785.04 

PtCho 16:0/20:5,16:1/20:4 8.72 18.58 13.46 44.98 47.14 61.57 170.67 120.72 109.40 

PtCho 16:0/20:4 34.32 81.63 66.30 221.50 243.51 307.66 653.31 450.73 379.75 

PtCho 16:0/20:3 102.74 183.64 184.57 558.42 585.74 691.87 1475.20 1011.31 852.61 

PtCho 18:0/18:2,18:1/18:1 251.70 485.92 532.12 1709.17 1912.59 2348.45 4994.55 3386.50 2755.61 

PtCho 18:0/18:1 119.44 194.30 201.68 540.91 631.04 735.40 1582.63 1088.06 910.85 

PtCho Total 1098.01 2044.57 1912.10 5998.07 6646.26 8251.54 19342.02 13212.63 11149.40 

Pcho 1.07 0.86 0.52 1.25 1.59 2.75 0.00 0.00 0.00 

SM  204.88 268.94 236.89 537.31 572.58 747.95 444.48 458.86 300.41 

GPC  3.04 0.21 2.92 1.01 1.79 4.09 2.97 0.44 11.64 

Average of triplicate injections 
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Table 38B: Cow #9 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.83 0.42 0.63 0.97 1.30 1.65 2.38 1.72 

Cho  1.00 0.47 0.53 0.69 0.98 1.29 0.69 0.76 0.53 

LPC 16:0 1.00 0.95 1.16 1.70 2.07 3.15 1.04 0.77 1.33 

LPC 18:2 1.00 1.37 1.75 3.18 3.72 6.31 1.94 1.07 2.58 

LPC 18:1 1.00 1.02 1.28 1.86 2.16 3.46 1.19 0.72 1.76 

LPC 18:0 1.00 1.04 1.73 3.03 3.39 5.95 2.70 1.55 3.36 

LPC Total 1.00 1.14 1.52 2.56 2.98 4.97 1.73 1.02 2.29 

PtCho 16:0/16:1 1.00 1.76 1.37 4.19 4.59 5.47 17.44 10.42 9.44 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 2.38 1.59 5.71 6.62 8.35 21.06 11.72 9.99 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 2.40 1.61 6.00 6.32 8.77 22.09 14.33 12.65 

PtCho 18:0/20:4 1.00 2.75 2.01 9.20 9.96 15.12 43.51 30.66 27.00 

PtCho 18:0/20:3 1.00 2.53 2.69 11.45 12.01 18.28 65.71 46.97 40.35 

PtCho 18:1/22:6 1.00 2.31 1.74 7.05 9.02 11.46 26.19 13.94 11.49 

PtCho 18:0/22:6,18:1/22:5 1.00 2.53 1.82 7.65 9.20 12.10 42.92 19.42 13.89 

PtCho 18:0/22:5 1.00 2.64 1.68 7.44 7.55 11.58 32.65 22.14 21.02 

PtCho 16:0/16:0 1.00 2.00 1.38 5.76 6.56 8.66 28.47 15.52 14.53 

PtCho 16:0/18:2 1.00 1.85 1.62 4.90 5.44 6.49 14.27 9.56 8.09 

PtCho 16:0/18:1 1.00 1.39 1.19 2.79 3.22 3.60 7.66 5.91 4.95 

PtCho 16:0/20:5,16:1/20:4 1.00 2.13 1.54 5.16 5.41 7.06 19.58 13.85 12.55 

PtCho 16:0/20:4 1.00 2.38 1.93 6.45 7.10 8.96 19.04 13.13 11.07 

PtCho 16:0/20:3 1.00 1.79 1.80 5.44 5.70 6.73 14.36 9.84 8.30 

PtCho 18:0/18:2,18:1/18:1 1.00 1.93 2.11 6.79 7.60 9.33 19.84 13.45 10.95 

PtCho 18:0/18:1 1.00 1.63 1.69 4.53 5.28 6.16 13.25 9.11 7.63 

PtCho Total 1.00 1.86 1.74 5.46 6.05 7.51 17.62 12.03 10.15 

Pcho 1.00 0.80 0.49 1.16 1.49 2.57 0.00 0.00 0.00 

SM  1.00 1.31 1.16 2.62 2.79 3.65 2.17 2.24 1.47 

GPC  1.00 0.07 0.96 0.33 0.59 1.34 0.98 0.15 3.82 
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Table 39A: Cow #10 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  22.02 19.66 20.55 16.65 18.93 24.11 45.06 56.38 66.89 

Cho  6.01 4.15 5.18 4.18 3.43 3.79 3.94 2.62 4.06 

LPC 16:0 22.16 27.35 28.14 65.34 34.80 49.11 29.68 24.78 30.02 

LPC 18:2 41.97 62.94 64.00 163.71 79.17 136.54 76.09 54.20 85.88 

LPC 18:1 28.63 34.99 32.52 78.69 32.82 53.26 32.48 23.63 43.17 

LPC 18:0 23.98 27.34 30.46 76.87 39.37 66.81 48.35 45.09 62.38 

LPC Total 116.75 152.61 155.12 384.61 186.16 305.72 186.60 147.71 221.45 

PtCho 16:0/16:1 8.14 10.97 13.62 61.61 30.96 69.51 218.04 132.63 127.09 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 8.65 8.98 12.36 50.88 19.48 55.82 161.61 88.37 73.54 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 31.36 30.63 44.53 183.13 72.31 218.20 537.40 357.45 309.92 

PtCho 18:0/20:4 42.25 47.47 76.60 398.72 155.73 524.69 1435.77 1041.15 961.16 

PtCho 18:0/20:3 29.36 43.99 64.64 322.32 180.54 504.68 1533.81 1240.86 1058.84 

PtCho 18:1/22:6 1.21 1.51 2.00 8.87 2.57 10.36 32.00 16.28 14.92 

PtCho 18:0/22:6,18:1/22:5 7.84 8.39 11.72 63.77 18.20 68.85 221.80 109.26 81.66 

PtCho 18:0/22:5 19.11 17.85 27.37 137.30 41.88 156.15 370.07 226.53 219.09 

PtCho 16:0/16:0 8.52 10.80 14.78 69.79 35.48 83.18 292.50 158.78 133.11 

PtCho 16:0/18:2 268.24 359.99 475.15 1500.32 1145.92 1932.27 4211.84 3417.46 2555.70 

PtCho 16:0/18:1 189.00 210.04 244.67 652.49 491.93 695.69 1512.97 1094.71 1028.83 

PtCho 16:0/20:5,16:1/20:4 10.44 11.98 16.73 58.35 30.06 68.68 198.37 135.37 132.15 

PtCho 16:0/20:4 40.67 50.40 72.89 241.84 152.89 298.49 721.23 542.06 468.12 

PtCho 16:0/20:3 81.90 116.37 142.31 420.40 345.74 600.61 1388.08 1213.40 937.15 

PtCho 18:0/18:2,18:1/18:1 256.36 345.98 429.20 1274.83 1262.16 1999.35 4679.70 4022.69 2843.38 

PtCho 18:0/18:1 139.77 165.68 195.22 557.74 502.97 741.46 1873.85 1337.24 1120.92 

PtCho Total 1142.82 1441.03 1843.80 6002.35 4488.82 8027.99 19389.04 15134.25 12065.58 

Pcho 0.42 0.62 0.57 0.65 1.11 1.43 0.00 0.00 0.00 

SM  188.00 251.01 285.41 565.74 710.89 799.23 550.67 510.08 396.41 

GPC  0.23 0.95 0.35 1.42 0.26 0.72 1.27 0.48 1.44 

Average of triplicate injections 
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Table 39B: Cow #10 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 7 8 9 

Bet  1.00 0.89 0.93 0.76 0.86 1.09 2.05 2.56 3.04 

Cho  1.00 0.69 0.86 0.70 0.57 0.63 0.66 0.44 0.68 

LPC 16:0 1.00 1.23 1.27 2.95 1.57 2.22 1.34 1.12 1.35 

LPC 18:2 1.00 1.50 1.52 3.90 1.89 3.25 1.81 1.29 2.05 

LPC 18:1 1.00 1.22 1.14 2.75 1.15 1.86 1.13 0.83 1.51 

LPC 18:0 1.00 1.14 1.27 3.21 1.64 2.79 2.02 1.88 2.60 

LPC Total 1.00 1.31 1.33 3.29 1.59 2.62 1.60 1.27 1.90 

PtCho 16:0/16:1 1.00 1.35 1.67 7.57 3.80 8.54 26.79 16.29 15.61 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.04 1.43 5.88 2.25 6.45 18.68 10.21 8.50 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.98 1.42 5.84 2.31 6.96 17.14 11.40 9.88 

PtCho 18:0/20:4 1.00 1.12 1.81 9.44 3.69 12.42 33.98 24.64 22.75 

PtCho 18:0/20:3 1.00 1.50 2.20 10.98 6.15 17.19 52.25 42.27 36.07 

PtCho 18:1/22:6 1.00 1.25 1.65 7.36 2.13 8.59 26.54 13.50 12.38 

PtCho 18:0/22:6,18:1/22:5 1.00 1.07 1.50 8.14 2.32 8.78 28.30 13.94 10.42 

PtCho 18:0/22:5 1.00 0.93 1.43 7.18 2.19 8.17 19.36 11.85 11.46 

PtCho 16:0/16:0 1.00 1.27 1.73 8.19 4.17 9.77 34.34 18.64 15.63 

PtCho 16:0/18:2 1.00 1.34 1.77 5.59 4.27 7.20 15.70 12.74 9.53 

PtCho 16:0/18:1 1.00 1.11 1.29 3.45 2.60 3.68 8.01 5.79 5.44 

PtCho 16:0/20:5,16:1/20:4 1.00 1.15 1.60 5.59 2.88 6.58 19.00 12.96 12.66 

PtCho 16:0/20:4 1.00 1.24 1.79 5.95 3.76 7.34 17.74 13.33 11.51 

PtCho 16:0/20:3 1.00 1.42 1.74 5.13 4.22 7.33 16.95 14.82 11.44 

PtCho 18:0/18:2,18:1/18:1 1.00 1.35 1.67 4.97 4.92 7.80 18.25 15.69 11.09 

PtCho 18:0/18:1 1.00 1.19 1.40 3.99 3.60 5.30 13.41 9.57 8.02 

PtCho Total 1.00 1.26 1.61 5.25 3.93 7.02 16.97 13.24 10.56 

Pcho 1.00 1.47 1.35 1.54 2.61 3.39 0.00 0.00 0.00 

SM  1.00 1.34 1.52 3.01 3.78 4.25 2.93 2.71 2.11 

GPC  1.00 4.17 1.55 6.26 1.14 3.18 5.58 2.12 6.34 
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Table 40A: Cow #11 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   Bet  42.29 18.67 13.15 21.45 32.90 37.71 

   Cho  5.18 2.57 4.89 4.83 3.06 5.14 

   LPC 16:0 53.19 19.88 27.03 73.06 37.00 57.24 

   LPC 18:2 137.37 54.97 59.77 175.76 100.42 186.87 

   LPC 18:1 68.69 28.95 27.92 76.04 32.59 61.62 

   LPC 18:0 56.58 21.26 24.40 83.83 47.38 84.55 

   LPC Total 315.82 125.05 139.12 408.68 217.39 390.28 

   PtCho 16:0/16:1 16.61 20.10 11.62 65.19 48.66 52.47 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 12.19 15.87 14.20 60.51 41.19 42.63 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 43.75 56.07 33.95 190.31 145.95 149.83 

   PtCho 18:0/20:4 90.24 129.47 62.10 502.29 430.36 455.56 

   PtCho 18:0/20:3 65.13 88.93 52.59 385.26 443.79 469.10 

   PtCho 18:1/22:6 2.05 2.91 2.66 9.91 8.41 8.98 

   PtCho 18:0/22:6,18:1/22:5 11.46 18.03 13.89 77.13 56.07 58.61 

   PtCho 18:0/22:5 26.44 40.84 21.29 161.56 111.48 114.41 

   PtCho 16:0/16:0 16.50 20.83 12.45 90.72 67.06 74.09 

   PtCho 16:0/18:2 562.33 576.51 456.59 2141.18 1694.69 1742.78 

   PtCho 16:0/18:1 257.67 283.33 223.37 882.42 513.77 540.70 

   PtCho 16:0/20:5,16:1/20:4 14.49 14.13 9.69 51.84 45.55 49.37 

   PtCho 16:0/20:4 80.86 84.35 63.89 285.42 245.26 254.28 

   PtCho 16:0/20:3 161.60 166.95 146.44 505.61 545.22 582.47 

   PtCho 18:0/18:2,18:1/18:1 458.84 493.81 466.87 1851.60 1756.89 1960.67 

   PtCho 18:0/18:1 195.40 232.83 204.91 853.25 558.74 614.94 

   PtCho Total 2015.54 2244.94 1796.50 8114.20 6713.10 7170.87 

   Pcho 0.96 1.15 0.57 2.64 2.16 2.57 

   SM  313.55 293.04 354.35 1041.48 703.55 771.51 

   GPC  10.74 0.75 0.24 13.12 0.42 3.70 

   Average of triplicate injections 
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Table 40B: Cow #11 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   Bet  1.00 0.44 0.31 0.51 0.78 0.89 

   Cho  1.00 0.50 0.94 0.93 0.59 0.99 

   LPC 16:0 1.00 0.37 0.51 1.37 0.70 1.08 

   LPC 18:2 1.00 0.40 0.44 1.28 0.73 1.36 

   LPC 18:1 1.00 0.42 0.41 1.11 0.47 0.90 

   LPC 18:0 1.00 0.38 0.43 1.48 0.84 1.49 

   LPC Total 1.00 0.40 0.44 1.29 0.69 1.24 

   PtCho 16:0/16:1 1.00 1.21 0.70 3.93 2.93 3.16 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 1.30 1.17 4.97 3.38 3.50 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.28 0.78 4.35 3.34 3.42 

   PtCho 18:0/20:4 1.00 1.43 0.69 5.57 4.77 5.05 

   PtCho 18:0/20:3 1.00 1.37 0.81 5.92 6.81 7.20 

   PtCho 18:1/22:6 1.00 1.43 1.30 4.84 4.11 4.39 

   PtCho 18:0/22:6,18:1/22:5 1.00 1.57 1.21 6.73 4.89 5.11 

   PtCho 18:0/22:5 1.00 1.54 0.81 6.11 4.22 4.33 

   PtCho 16:0/16:0 1.00 1.26 0.75 5.50 4.06 4.49 

   PtCho 16:0/18:2 1.00 1.03 0.81 3.81 3.01 3.10 

   PtCho 16:0/18:1 1.00 1.10 0.87 3.42 1.99 2.10 

   PtCho 16:0/20:5,16:1/20:4 1.00 0.97 0.67 3.58 3.14 3.41 

   PtCho 16:0/20:4 1.00 1.04 0.79 3.53 3.03 3.14 

   PtCho 16:0/20:3 1.00 1.03 0.91 3.13 3.37 3.60 

   PtCho 18:0/18:2,18:1/18:1 1.00 1.08 1.02 4.04 3.83 4.27 

   PtCho 18:0/18:1 1.00 1.19 1.05 4.37 2.86 3.15 

   PtCho Total 1.00 1.11 0.89 4.03 3.33 3.56 

   Pcho 1.00 1.20 0.60 2.75 2.24 2.67 

   SM  1.00 0.93 1.13 3.32 2.24 2.46 

   GPC  1.00 0.07 0.02 1.22 0.04 0.34 
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Table 41A: Cow #12 Average µM in Plasma Used in Figure 8 

 

Average µM 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   Bet  13.12 12.43 9.69 8.22 13.25 11.58 

   Cho  2.49 4.47 3.77 2.70 5.64 5.45 

   LPC 16:0 14.16 21.39 28.74 30.59 52.35 51.25 

   LPC 18:2 29.74 53.87 75.56 87.88 158.46 162.47 

   LPC 18:1 15.65 25.24 33.59 31.84 59.18 53.14 

   LPC 18:0 14.52 23.47 33.14 32.82 66.58 72.86 

   LPC Total 74.07 123.97 171.03 183.14 336.58 339.72 

   PtCho 16:0/16:1 6.27 9.09 10.81 40.86 36.92 38.01 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 4.32 9.05 9.65 33.14 26.65 31.09 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 17.04 32.99 36.09 120.15 92.11 106.86 

   PtCho 18:0/20:4 25.30 51.04 65.01 256.82 212.75 270.20 

   PtCho 18:0/20:3 14.22 34.69 53.75 227.61 177.07 259.99 

   PtCho 18:1/22:6 0.52 1.48 1.66 5.86 5.49 5.75 

   PtCho 18:0/22:6,18:1/22:5 3.39 9.04 10.46 39.82 28.85 34.45 

   PtCho 18:0/22:5 9.04 23.30 26.70 91.34 67.34 74.19 

   PtCho 16:0/16:0 7.80 9.91 12.21 49.81 60.86 56.69 

   PtCho 16:0/18:2 219.15 386.49 423.29 1299.41 1184.80 1266.00 

   PtCho 16:0/18:1 115.72 179.55 186.67 452.33 434.38 406.45 

   PtCho 16:0/20:5,16:1/20:4 7.78 10.50 11.78 37.81 30.42 36.51 

   PtCho 16:0/20:4 27.60 49.31 57.25 175.74 156.15 183.75 

   PtCho 16:0/20:3 68.16 120.28 128.06 380.97 372.96 384.20 

   PtCho 18:0/18:2,18:1/18:1 204.19 364.16 415.25 1241.61 1291.88 1411.68 

   PtCho 18:0/18:1 86.58 157.28 168.82 455.77 486.91 483.13 

   PtCho Total 817.07 1448.18 1617.44 4909.06 4665.54 5048.94 

   Pcho 0.45 1.08 0.68 0.66 3.12 3.52 

   SM  155.31 215.23 223.80 568.74 561.01 558.46 

   GPC  1.09 2.07 4.02 0.79 18.70 17.23 

   Average of triplicate injections 
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Table 41B: Cow #12 Fold Change in Plasma Used in Figure 8 

 

Fold Change Relative to Week 1 

 

Week of Lactation 

Lipid 1 2 3 4 5 6 

   Bet  1.00 0.95 0.74 0.63 1.01 0.88 

   Cho  1.00 1.79 1.51 1.08 2.26 2.19 

   LPC 16:0 1.00 1.51 2.03 2.16 3.70 3.62 

   LPC 18:2 1.00 1.81 2.54 2.96 5.33 5.46 

   LPC 18:1 1.00 1.61 2.15 2.03 3.78 3.39 

   LPC 18:0 1.00 1.62 2.28 2.26 4.59 5.02 

   LPC Total 1.00 1.67 2.31 2.47 4.54 4.59 

   PtCho 16:0/16:1 1.00 1.45 1.72 6.52 5.89 6.07 

   PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 2.09 2.23 7.67 6.17 7.20 

   PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 1.94 2.12 7.05 5.41 6.27 

   PtCho 18:0/20:4 1.00 2.02 2.57 10.15 8.41 10.68 

   PtCho 18:0/20:3 1.00 2.44 3.78 16.00 12.45 18.28 

   PtCho 18:1/22:6 1.00 2.84 3.18 11.23 10.53 11.03 

   PtCho 18:0/22:6,18:1/22:5 1.00 2.67 3.09 11.75 8.51 10.16 

   PtCho 18:0/22:5 1.00 2.58 2.96 10.11 7.45 8.21 

   PtCho 16:0/16:0 1.00 1.27 1.57 6.39 7.80 7.27 

   PtCho 16:0/18:2 1.00 1.76 1.93 5.93 5.41 5.78 

   PtCho 16:0/18:1 1.00 1.55 1.61 3.91 3.75 3.51 

   PtCho 16:0/20:5,16:1/20:4 1.00 1.35 1.51 4.86 3.91 4.69 

   PtCho 16:0/20:4 1.00 1.79 2.07 6.37 5.66 6.66 

   PtCho 16:0/20:3 1.00 1.76 1.88 5.59 5.47 5.64 

   PtCho 18:0/18:2,18:1/18:1 1.00 1.78 2.03 6.08 6.33 6.91 

   PtCho 18:0/18:1 1.00 1.82 1.95 5.26 5.62 5.58 

   PtCho Total 1.00 1.77 1.98 6.01 5.71 6.18 

   Pcho 1.00 2.41 1.52 1.49 6.99 7.88 

   SM  1.00 1.39 1.44 3.66 3.61 3.60 

   GPC  1.00 1.89 3.68 0.72 17.09 15.74 
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Table 42A: Average µM in Milk Used in Figure 9 

 

 

 

 

 

 

Average µM 

 

Sample #1 Sample #2 Sample #3 

Lipid Extraction 1 Extraction 2 Extraction 1 Extraction 2 Extraction 1 Extraction 2 

AcCho  0.00 0.00 0.00 0.00 0.01 0.02 

Bet  50.29 43.99 20.64 18.68 14.47 14.99 

Cho  37.48 32.25 202.25 178.59 62.02 62.08 

LPC 16:0 2.04 1.44 1.17 1.01 0.65 0.60 

LPC 18:2 3.63 2.59 0.32 0.32 0.29 0.33 

LPC 18:1 4.33 3.68 0.57 0.47 0.45 0.33 

LPC 18:0 1.11 0.59 0.96 0.92 0.32 0.38 

LPC Total 11.11 8.29 3.02 2.73 1.72 1.64 

PtCho 16:0/16:1 8.19 8.13 5.36 5.00 5.81 5.76 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 2.96 1.80 0.58 0.72 0.51 0.49 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 5.88 3.68 1.37 1.38 1.60 1.52 

PtCho 18:0/20:4 5.91 3.57 1.31 1.24 1.52 1.62 

PtCho 18:0/20:3 5.14 2.40 0.73 0.70 0.87 1.03 

PtCho 18:1/22:6 0.94 0.61 0.22 0.27 0.18 0.18 

PtCho 18:0/22:6,18:1/22:5 3.08 1.45 0.35 0.54 0.28 0.27 

PtCho 18:0/22:5 2.68 1.14 0.25 0.31 0.24 0.25 

PtCho 16:0/16:0 36.95 37.26 25.83 24.51 18.30 20.19 

PtCho 16:0/18:2 76.99 47.81 20.75 18.93 17.92 18.39 

PtCho 16:0/18:1 120.99 114.69 49.82 44.52 40.87 39.14 

PtCho 16:0/20:5,16:1/20:4 1.55 1.05 0.41 0.37 0.36 0.40 

PtCho 16:0/20:4 13.53 11.38 4.69 4.20 4.13 4.09 

PtCho 16:0/20:3 47.52 41.52 14.65 13.22 14.16 14.01 

PtCho 18:0/18:2,18:1/18:1 141.22 91.61 26.25 25.15 26.79 27.29 

PtCho 18:0/18:1 72.01 53.40 13.73 12.79 13.99 14.34 

PtCho Total 545.54 421.51 166.29 153.86 147.52 148.97 

Pcho 642.96 564.68 113.72 99.09 164.91 160.64 

SM  45.79 33.76 38.75 37.87 30.28 29.57 

GPC  212.12 224.23 429.65 410.09 71.10 44.31 

Average of triplicate injections 
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Table 42B: Fold Change in Milk Used in Figure 9 

 

 

 

 

 

 

Fold Change Relative to Extraction 1   

 

Sample #1 Sample #2 Sample #3 

Lipid Extraction 1 Extraction 2 Extraction 1 Extraction 2 Extraction 1 Extraction 2 

AcCho  0.00 0.00 0.00 0.00 1.00 1.35 

Bet  1.00 0.87 1.00 0.91 1.00 1.04 

Cho  1.00 0.86 1.00 0.88 1.00 1.00 

LPC 16:0 1.00 0.70 1.00 0.86 1.00 0.92 

LPC 18:2 1.00 0.71 1.00 1.01 1.00 1.12 

LPC 18:1 1.00 0.85 1.00 0.84 1.00 0.73 

LPC 18:0 1.00 0.53 1.00 0.96 1.00 1.18 

LPC Total 1.00 0.75 1.00 0.90 1.00 0.95 

PtCho 16:0/16:1 1.00 0.99 1.00 0.93 1.00 0.99 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.61 1.00 1.25 1.00 0.95 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.63 1.00 1.01 1.00 0.95 

PtCho 18:0/20:4 1.00 0.60 1.00 0.95 1.00 1.06 

PtCho 18:0/20:3 1.00 0.47 1.00 0.96 1.00 1.18 

PtCho 18:1/22:6 1.00 0.65 1.00 1.21 1.00 0.99 

PtCho 18:0/22:6,18:1/22:5 1.00 0.47 1.00 1.54 1.00 0.95 

PtCho 18:0/22:5 1.00 0.42 1.00 1.22 1.00 1.04 

PtCho 16:0/16:0 1.00 1.01 1.00 0.95 1.00 1.10 

PtCho 16:0/18:2 1.00 0.62 1.00 0.91 1.00 1.03 

PtCho 16:0/18:1 1.00 0.95 1.00 0.89 1.00 0.96 

PtCho 16:0/20:5,16:1/20:4 1.00 0.68 1.00 0.92 1.00 1.10 

PtCho 16:0/20:4 1.00 0.84 1.00 0.90 1.00 0.99 

PtCho 16:0/20:3 1.00 0.87 1.00 0.90 1.00 0.99 

PtCho 18:0/18:2,18:1/18:1 1.00 0.65 1.00 0.96 1.00 1.02 

PtCho 18:0/18:1 1.00 0.74 1.00 0.93 1.00 1.03 

PtCho Total 1.00 0.77 1.00 0.93 1.00 1.01 

Pcho 1.00 0.88 1.00 0.87 1.00 0.97 

SM  1.00 0.74 1.00 0.98 1.00 0.98 

GPC  1.00 1.06 1.00 0.95 1.00 0.62 
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Table 43A: Average µM in Plasma Used in Figure 10 

 

 

 

 

 

 

 

Average µM 

 

Sample #1 Sample #2 Sample #3 

Lipid Extraction 1 Extraction 2 Extraction 1 Extraction 2 Extraction 1 Extraction 2 

Bet  16.05 15.18 15.09 11.84 12.24 13.15 

Cho  3.79 3.80 2.98 2.40 6.00 5.98 

LPC 16:0 26.13 26.39 47.29 32.00 29.60 27.16 

LPC 18:2 73.36 77.37 148.70 98.28 73.43 63.69 

LPC 18:1 32.97 34.42 60.47 39.35 32.75 31.42 

LPC 18:0 28.85 29.23 60.26 40.57 44.92 50.30 

LPC Total 161.31 167.42 316.73 210.20 180.69 172.57 

PtCho 16:0/16:1 25.36 19.92 61.65 48.16 54.75 48.80 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 25.85 19.66 47.95 38.22 36.98 32.03 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 90.20 69.01 185.79 144.89 122.89 105.32 

PtCho 18:0/20:4 198.49 152.03 480.17 372.85 268.25 240.31 

PtCho 18:0/20:3 188.60 142.53 447.67 350.54 269.70 258.19 

PtCho 18:1/22:6 4.82 3.68 9.62 7.55 5.80 4.81 

PtCho 18:0/22:6,18:1/22:5 29.12 22.06 63.19 48.25 32.31 26.10 

PtCho 18:0/22:5 62.93 48.38 146.74 111.50 61.44 51.07 

PtCho 16:0/16:0 29.21 22.96 69.63 52.75 66.11 51.46 

PtCho 16:0/18:2 760.42 580.80 1713.90 1368.46 1695.37 1630.42 

PtCho 16:0/18:1 333.85 257.52 678.88 529.97 543.14 514.83 

PtCho 16:0/20:5,16:1/20:4 23.99 18.35 46.38 35.93 42.98 39.07 

PtCho 16:0/20:4 118.59 90.58 255.23 201.97 238.12 225.86 

PtCho 16:0/20:3 239.71 184.51 574.45 455.97 471.58 469.72 

PtCho 18:0/18:2,18:1/18:1 641.88 489.90 1763.36 1394.79 1564.10 1585.59 

PtCho 18:0/18:1 275.84 211.58 704.78 561.57 494.84 491.87 

PtCho Total 3048.86 2333.48 7249.42 5723.37 5968.38 5775.46 

Pcho 0.98 1.28 1.32 1.11 2.48 3.31 

SM  365.87 358.26 925.85 654.36 451.18 502.72 

GPC  0.81 1.01 6.38 3.07 3.66 1.55 

Average of triplicate injections 
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Table 43B: Fold Change in Plasma Used in Figure 10 

 

 

 

 

 

 

 

Fold Change Relative to Extraction 1   

 

Sample #1 Sample #2 Sample #3 

Lipid Extraction 1 Extraction 2 Extraction 1 Extraction 2 Extraction 1 Extraction 2 

Bet  1.00 0.95 1.00 0.78 1.00 1.07 

Cho  1.00 1.00 1.00 0.81 1.00 1.00 

LPC 16:0 1.00 1.01 1.00 0.68 1.00 0.92 

LPC 18:2 1.00 1.05 1.00 0.66 1.00 0.87 

LPC 18:1 1.00 1.04 1.00 0.65 1.00 0.96 

LPC 18:0 1.00 1.01 1.00 0.67 1.00 1.12 

LPC Total 1.00 1.04 1.00 0.66 1.00 0.96 

PtCho 16:0/16:1 1.00 0.79 1.00 0.78 1.00 0.89 

PtCho 16:0/22:6,18:1/22:5,18:2/20:4 1.00 0.76 1.00 0.80 1.00 0.87 

PtCho 18:1/20:4,18:0/20:5,16:0/22:5 1.00 0.77 1.00 0.78 1.00 0.86 

PtCho 18:0/20:4 1.00 0.77 1.00 0.78 1.00 0.90 

PtCho 18:0/20:3 1.00 0.76 1.00 0.78 1.00 0.96 

PtCho 18:1/22:6 1.00 0.76 1.00 0.78 1.00 0.83 

PtCho 18:0/22:6,18:1/22:5 1.00 0.76 1.00 0.76 1.00 0.81 

PtCho 18:0/22:5 1.00 0.77 1.00 0.76 1.00 0.83 

PtCho 16:0/16:0 1.00 0.79 1.00 0.76 1.00 0.78 

PtCho 16:0/18:2 1.00 0.76 1.00 0.80 1.00 0.96 

PtCho 16:0/18:1 1.00 0.77 1.00 0.78 1.00 0.95 

PtCho 16:0/20:5,16:1/20:4 1.00 0.77 1.00 0.77 1.00 0.91 

PtCho 16:0/20:4 1.00 0.76 1.00 0.79 1.00 0.95 

PtCho 16:0/20:3 1.00 0.77 1.00 0.79 1.00 1.00 

PtCho 18:0/18:2,18:1/18:1 1.00 0.76 1.00 0.79 1.00 1.01 

PtCho 18:0/18:1 1.00 0.77 1.00 0.80 1.00 0.99 

PtCho Total 1.00 0.77 1.00 0.79 1.00 0.97 

Pcho 1.00 1.31 1.00 0.84 1.00 1.34 

SM  1.00 0.98 1.00 0.71 1.00 1.11 

GPC  1.00 1.25 1.00 0.48 1.00 0.42 
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Table 44: GPC External Calibration Curve Used in Figure 11 

  Calibration Level M Injection # Area 

1 1.19E-02 

1 3.88E+09 

2 3.93E+09 

3 3.85E+09 

2 3.75E-03 

1 2.73E+09 

2 2.74E+09 

3 2.82E+09 

3 1.18E-03 

1 1.86E+09 

2 1.90E+09 

3 1.89E+09 

4 3.74E-04 

1 1.17E+09 

2 1.19E+09 

3 1.13E+09 

5 1.18E-04 

1 6.38E+08 

2 6.28E+08 

3 6.28E+08 

6 3.74E-05 

1 3.49E+08 

2 3.28E+08 

3 3.59E+08 

7 1.18E-05 

1 1.40E+08 

2 1.50E+08 

3 1.55E+08 

8 3.73E-06 

1 5.56E+07 

2 6.23E+07 

3 5.58E+07 

9 1.18E-06 

1 1.73E+07 

2 1.74E+07 

3 1.63E+07 

10 3.73E-07 

1 4.67E+06 

2 4.49E+06 

3 5.29E+06 

11 1.18E-07 

1 1.61E+06 

2 1.52E+06 

3 1.48E+06 

12 3.72E-08 

1 2.39E+05 

2 2.38E+05 

3 3.93E+05 

13 1.18E-08 

1 1.40E+05 

2 1.40E+05 

3 1.25E+05 

14 3.71E-09 

1 2.94E+04 

2 4.45E+04 

3 5.37E+04 

15 1.17E-09 

1 1.96E+04 

2 2.30E+04 

3 2.49E+04 
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