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ABSTRACT 
 
 

Europium-doped-fluorochlorozirconate glass ceramics, known as ZBLAN, were 

produced in a glove box which has a controlled environment of argon gas. For imaging 

applications BaCl2 is used instead of BaF2. Their properties after different thermal 

processing and different amounts of europium-doping were investigated. After annealing 

the ZBLAN glass, BaCl2 nanoparticles are precipitated in the glass matrix. These glass 

ceramic storage phosphors are strong candidates for replacing traditional x-ray screen 

film system and commercial storage phosphors such as Agfa MD-30. 

 

 Differential scanning calorimetry (DSC) was used to determine the crystallization 

temperature of the hexagonal phase of BaCl2, and orthorhombic  BaCl2 this in turn 

determines the subsequent annealing temperature. X-ray diffraction (XRD) and 

photoluminescence (PL) show that the hexagonal phase of BaCl2 was formed upon 

annealing at temperatures between 250 °C and 280 °C for 5 minutes. The orthorhombic 

phase of BaCl2, which has storage properties, was formed at higher annealing 

temperatures, at approximately 290 °C and above. Secondary ion mass spectroscopy 

(SIMS) was used to determine adsorbed/diffused oxygen content of the glass. The weight 

loss of fluorine and chlorine is 3-5 % and was determined using ion chromatography 

(IC). The concentration of other cations was determined using inductively coupled 

plasma spectroscopy (ICP). Transmission electron microscopy (TEM) was used to take 

high resolution pictures and verify the composition of BaCl2 nanoparticles. The relative 

concentration of Eu2+ to Eu3+ of heated EuCl3 and ZBLAN was studied using Mössbauer 

spectroscopy.  The oxidation of Eu2+ to Eu3+ was also observed during the experiment.  

This study has reinforced the strong potential for application of glass-ceramic storage 

phosphors for medical imaging.  
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CHAPTER I 
INTRODUCTION AND BACKGROUND 

 
 

1.1 Introduction 
 

The medical and photovoltaic industries have great interest in fluorozirconate-

based glass ceramics. Fluorozirconate-based glass ceramics, which are doped with rare-

earths, could be used for medical imaging because of its storage properties, down-

converting top layers or up-converting back layers of solar cells for enhancing their 

efficiency.  Storage phosphor materials are the most successful digital detectors for 

replacing traditional film-screen systems in medical imaging applications [1]. The 

advantages of glass-ceramic storage phosphors are mostly due to their large dynamic 

range, easy portability, and lower cost [2]. Increased sensitivity of the glass-ceramic 

storage phosphor can reduce the x-ray dose to lower levels while maintaining the high 

image quality. The spatial resolution of the glass-ceramic storage phosphor is much 

higher compared to other methods due to the size of precipitated BaCl2 nanoparticles. 

Various studies have been developed to minimize light scattering during the readout 

process to improve the spatial resolution of glass-ceramic storage phosphor image plates.  

 

1.2 Commercial Storage Phosphor vs. Traditional Film-screen 
System 

 
 

Figure 1 below describes the principle difference between the traditional film-

screen system and the storage phosphor for medical imaging.  X-rays were first 

discovered in 1895 and were used immediately in conventional x-ray imaging. When a 

photographic film is x-irradiated, a special phosphor coating on the film glows and 

exposes the film. The x-ray image becomes visible after appropriate chemical processing 

of the film much like a regular photograph. The energy and wavelength of the x-rays 

allow them to pass through the soft tissue part of the body more easily, while passing 
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through bones, clogged blood vessels, or dense matter is more difficult. The differences 

in brightness and contrast create an image of internal body structures.  

 

Storage phosphors are commercially the most successful digital detectors for 

replacing film-screen systems before the innovation of its competitor, a glass-ceramic 

storage phosphor. X-ray storage phosphors contain crystallites embedded in an organic 

binder. When the storage phosphor is x-irradiated, it can convert ionizing radiation into 

stable electron-hole pairs in these crystallites [3]. The defects generated should be stable 

at room temperature to make sure the image information is stored until it is read out 

(approximately 4-6 hours). The digital images can be read out by scanning a laser beam 

to activate recombination of the electron-hole pairs, which leads to photostimulated 

luminescent emission (PSL). Furthermore, storage phosphor image plates are compatible 

with X-ray equipment already in place.  Reading devices are durable and can be centrally 

located to help increase access and reduce costs.  

 

In Figure 2a, an electron is stimulated from the valence band (VB) to the 

conduction band (CB) due to incoming x-rays. Its relaxed energy level traps and creates 

an electron-hole pair. In Figure 2b, the incoming laser beam helps an electron get out of 

the energy level trap to recombine with the hole. 

 

Figure 3 describes the cycle for using a storage phosphor plate. After the image is 

stored on a storage phosphor plate, it is sent to a reading device.  The signal is enhanced 

using a photo multiplier tube and the digital image is saved in the computer. The storage 

phosphor plate can then be erased under a halogen lamp. The whole process takes a few 

minutes and the storage phosphor plate is ready to be used for the next patient.  

 



 

 3 

 
Figure 1 Principle of film-screen system vs. BaFBr doped with Eu2+ [4] 

 

 
Figure 2 a) Schematic of electron hole pair generation, b) Schematic of 

photostimulated luminescent emission (PSL). 
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Figure 3 Cycle of re-use storage phosphor plate [5] 

 

1.3 Image Qualities of Glass-ceramic storage phosphor  
 
 

In Figure 4, the pictures were taken under several conditions to compare the 

image qualities of the traditional x-ray film vs. the glass-ceramic storage phosphor. 

Because the glass-ceramic storage phosphor can store the image in a digital format, the 

image can be easily corrected for brightness and contrast by analysis software. On the 

other hand, the image qualities of the traditional films cannot be improved easily.   

 

The glass-ceramic storage phosphors with precipitated BaCl2 nanoparticles have 

increased spatial resolution when compared to the BaFBr: Eu2+ Agfa MD-30 storage 

phosphor in Figure 5.  The enhanced spatial resolution is attributed to the size of the 

BaCl2 nanoparticles, which are much smaller than the size of crystallites embedded in the 

organic binder. The size of nanoparticles BaCl2 can be observed with transmission 

electron microscopy. In Figure 5, both of the images were taken under the same 

condition. The parallel grids on the right image can be identified easily while the left 

image is blurred. The ceramic image plate outperforms the commercial product in spatial 

resolution.  
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Figure 4 Comparison of images qualities of traditional film on the left vs. the glass 

ceramic storage phosphor on the right [4]. 
 
 

 
Figure 5 Comparison of image qualities of glass ceramic storage phosphor vs. 

Commercial product Agfa MD-30 [6] 
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CHAPTER II 
EXPERIMENTAL DETAILS 

        
  

ZBLAN glasses were produced in a glove box which is filled with argon gas. 

Characteristics of the glasses were studied by differential scanning calorimetry (DSC), X-

ray diffraction (XRD), ion-chromatography, inductively coupled plasma spectroscopy, 

photoluminescence, and Mössbauer spectroscopy. Secondary ion mass spectrometry 

(SIMS) was used to further understand how the fluoride to oxygen ratio impacts the 

storage ability of the glasses. Transmission electron microscopy was used to study the 

growth of nanoparticles in the glass matrix.  

 

2.1 Sample Preparation 
 

Eu-doped fluorochlorozirconate glasses are based on a modified ZBLAN 

composition, listed in Table 1. Sealed chemical bottles (Aldrich Chemical Company, 

Milwaukee, WI) were opened inside the glove box (LABmaster SP, MBRUAN). The 

amount of oxygen and moisture in the glove box were monitored and maintained under 

0.1 ppm. Samples were prepared by a two-step method. In the first melt, ZrF4, NaF, AlF3, 

LaF3, and InF3 were mixed in a platinum crucible inside the glove box. The crucible was 

covered with a lid to reduce chemical vaporization and placed inside a tube furnace (OTF 

1220X, MTI Corporation) which is connected to the side of the glove box, as shown in 

Figure 7.  The batches were melted according to the steps in Table 2. At the end of the 

fifth step, the platinum crucible was taken out of the tube furnace, and then BaCl2, EuCl2, 

and EuCl3 were added for the second melt. At the end of the eighth step, the glass was 

then poured into a brass mold, which was pre-heated to 200°C. The melt in the pre-heated 

mold was then slowly cooled to room temperature over a time span of four hours. The 

two-step melting procedure has been shown to decrease the loss of chlorides in the glass 

and produce the desired phase transition. [7] 
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The glass samples were cut into pieces of about 1 cm × 1 cm × 1.6 mm 

(thickness) before they were annealed in a tube furnace filled with air to form BaCl2 

nanoparticles. The samples were annealed from 250°C to 300°C with 10°C steps. The 

annealing times were varied from 4, 5, 6 to 7 min for each annealing temperature to 

compare and study the optimal annealing temperature and time of each sample.  

 

Figure 9 shows the first attempt to scale-up the glass-ceramic storage phosphor to 

6.5 mm × 3.25 mm × 1.6 mm. It took more than one hour to anneal the large plate at 

290°C to form BaCl2 nanoparticles in the glass matrix. The glass-ceramic storage 

phosphor becomes translucent after annealing.  

 

Table 1 Composition of the ZBLAN glasses for 2 mole % europium series and 5 
mole % europium series. 

 

Sample ZrF4 BaCl2 NaF AlF3 LaF3 InF3 EuCl2 EuCl3 
JJ 071 51.00 20.00 20.00 3.00 3.50 0.50 2.00 0.00 
JJ 092 51.00 20.00 20.00 3.00 3.50 0.50 0.00 2.00 
JJ 093 51.00 20.00 20.00 3.00 3.50 0.50 1.60 0.40 
JJ 094 51.00 20.00 20.00 3.00 3.50 0.50 1.20 0.80 
JJ 095 51.00 20.00 20.00 3.00 3.50 0.50 0.80 1.20 
JJ 096 51.00 20.00 20.00 3.00 3.50 0.50 0.40 1.60 

                  
JJ 112 51.00 17.00 20.00 3.00 3.50 0.50 5.00 0.00 
JJ 113 51.00 17.00 20.00 3.00 3.50 0.50 0.00 5.00 
JJ 114 51.00 17.00 20.00 3.00 3.50 0.50 2.50 2.50 
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Table 2 Heating steps of the furnace  
 
 

Step Time/ 
min 

Temperature / 
°C 

1 15 400 
2 75 400 
3 115 800 
4 175 800 
5 195 745 
6 255 745 
7 260 700 
8 265 700 
9 265 RT 

 

 
Figure 6 Graph heating steps of furnace 
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Figure 7 Glove box connected to the furnace on the left 

 
 
 
 
 

  

 
Figure 8 Crucible is heated inside the furnace 
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Figure 9 Before annealing ZBLAN glass sample on the left, the same sample after 

annealing at 290 °C.  

 

2.2 Differential Scanning Calorimetry (DSC) 
 
 

Differential scanning calorimetry was designed to have two heating plates, one is 

for heating the empty aluminum crucible and the other for heating crucible containing 

sample. The two crucibles are heated to the sample temperature, the different amount of 

heat required for each crucible are plotted as function of temperature. The glass transition 

temperature, crystallization temperature and melting temperature were measured using 

the DSC 200 F3 Maia® (Netzsch) Differential Scanning Calorimeter with temperature 

range of room temperature to 600°C. The weight of the samples, crucibles and lids were 

recorded.  A typical DSC measurement is performed with a constant heating rate of 10 

K/min.  
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Figure 10 DSC 200 F3 Maia®, Differential Scanning Calorimeter [8] 

 

 
Figure 11 Crucible sealing press with exchangeable inserts and crucible 
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2.3 X-Ray Diffraction  
 
 

X-ray diffraction (XRD) was performed on ZBLAN glasses to obtain structural 

information such as lattice structure, chemical composition. The experiment follows 

Bragg’s Law. Waves scattered from the two Bragg planes in phase will create 

constructive and destructive interference. The interatomic spacing and distance between 

the lattice planes, d, can be calculated using the Bragg equation. 

 

𝒏 ∙ 𝝀 = 𝟐 ∙ 𝒅 ∙ 𝐬𝐢𝐧 𝜽 

 
 

 

The experiments were performed by the Philips X’Pert XRD instrument with an 

x-ray tube using a tungsten anode and Copper Kα target. The instrument was set to 

collect the counts from an angle of 20 degrees to 80 degrees, with step size 0.01 degrees 

and time per step, 4s. The total time for the measurement is around 12 hours. JADE 9.1 

Software and Crystallography Database were used to analyze the lattice structure and 

chemical composition of the glasses.  
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Figure 12 Bragg scattering from two successive planes.  

 
 
 
 

 
Figure 13 Philips X’Pert sample chamber 
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2.4 Secondary Ion Mass Spectroscopy 
 
 

Secondary ion mass spectroscopy is one of the most sensitive techniques to detect 

impurities on the surface of bulk samples. In Figure 14, the surface of a sample is 

bombarded with heavy and high energy gallium ions. The beam sputters neutral and 

charged species from the surface; including atoms, clusters of atoms and molecular 

fragments. The pressure inside the sample chamber is maintained around 10−10 Torr to 

ensure a clean working environment.  In our system, the quadrupole mass analyzer was 

used as a detector. The quadrupole mass analyzer is known to be more sensitive in a 

lower mass range.  

 

The ratio of fluorine to oxygen in our ZBLAN glass samples were calculated from 

the areas under the curves of secondary ion mass spectroscopy. Samples were cut into 

plates with dimensions of 4 mm × 3 mm × 1.6 mm (thickness). The samples were cleaned 

using anhydrous ethanol and placed inside a vacuum oven for two hours to eliminate 

ambient moisture from the samples. Samples were prepared by two different methods to 

ascertain which method would yield the best results. In the first method, the samples were 

attached to the sample holder by carbon tape.  The top surface of each of the samples was 

sputter coated with a thin layer of platinum to increase the ability of a specimen to 

conduct electricity and emit secondary ions. In the second method, a conducting collar 

was placed on top of uncoated samples. An electron beam is directed to the edge of the 

collar to offset the samples acquiring a positive charge due to Gallium ion bombardment.   

 

The presence of oxygen and fluorine was measured on the surface and inside the 

samples after fracturing. Data was collected at five different areas per sample to obtain a 

more representative result.  
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Figure 14 Gallium beam bombarding the sample surface [9] 

 
Figure 15 SIMS samples holder  

 
Figure 16 Secondary Ion Mass Spectroscopy 



 

 16 

2.5 Phosphorimetry  
  
 

Luminescence spectra of europium doped glasses were obtained using a PTI QM3 

spectrofluorimeter (Birmingham, NJ). The data was analyzed using FeliX32 Version 1.2.  

Samples varied by different annealing conditions that included time of annealing and 

concomitant temperatures to further understand the optimal annealing condition. The 

higher annealing temperature and the longer annealing time are, the higher the degree of 

nucleation of BaCl2 crystallites inside the glass matrix. As a result, more crystallites 

incorporate Eu2+ and hence increase the fluorescence intensity [10]. However, a higher 

annealing temperature and a longer annealing time also lead to a larger degree of crystal 

growth and result in bigger nanoparticles.  It also leads to a decrease in spatial resolution 

of the ceramic-glass storage phosphor.   

 

2.6 Ion Chromatography and Inductive Coupling Plasma 
 
 

The process of preparing the sample requires a high heating temperature, 

therefore vaporization of chemical elements is inevitable. An Ion chromatography 

Dionex-ICS 100 and Dionex Automated Sampler (Sunnyvale, CA) were utilized to 

measure concentration of fluoride and chloride ions of as made samples. Inductively 

coupled plasma spectroscopy was performed using Perkin Elmer Plasma 40 Emission 

Spectrometer to determine the concentration of aluminum, barium, europium, indium, 

aluminum, lanthanum, sodium and zirconium.  

 

Solutions for ion chromatography measurements were prepared following these 

steps. 5 g of anhydrous sodium carbonate and 0.5 g of powered ZBLAN glass sample 

were mixed inside a platinum crucible [11]. The crucible was placed in a furnace with a 

controlled argon gas atmosphere which was heated to 450°C for 30 min, and then the 

temperature was raised to 950°C in an inert argon atmosphere. The crucible was removed 

from the furnace after 30 min at 950°C and cooled down to room temperature. 
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Figure 17 Dionex Automated Sampler  
 

The final product was ground into a fine power. The powder was digested in a one 

liter bottle of high-purity water and was stirred overnight in order to allow all the sodium 

fluoride to pass through the solution. The solution was filtered through a 1.5 μm 

membrane and diluted into different concentrations for the ion chromatography 

measurement. A Dionex chloride standard, 1000 g/l, and fluoride standard, 1000 g/l, were 

used for calibration.  

 

2.7 Transmission Electron Microscopy 
 

In-situ transmission electron microscopy was used to further understand the 

growth mechanism of nanoparticles inside the ZBLAN glass matrix under various 

heating conditions. The size of the nanoparticles was also analyzed. 

 

Samples were prepared with great care and patience.  A diamond saw was used to 

cut samples into small rectangles of 3 mm  ×  3 mm  ×  1.6 mm (thickness), which were 

then mounted on a metal block using an adhesive. The sample was mechanically polished 

to approximately 50 μm using successively finer grades of silicon carbide polishing 

paper, ending with hand polishing on 1200/2500P grade diamond polishing paper. The 

sample was removed from the metal block and glued on a 3 mm diameter SPI copper grid 
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to give mechanical stability. The sample and the grid were mounted on top of a block of 

glass and further thinned down to approximately 20 μm using the Original Dimpler 500i 

(VCR Group). The slowest rotation mode and the gentle force were used to dimple the 

sample. Knowing the refractive index of ZBLAN glass is around 1.5  [12], optical 

microscopy (Zeiss Axioskop) was used to determine the thickness of the samples. In the 

final step, the sample was removed from the glass block by soaking in acetone for 2 

hours. Low temperature ion milling XLA 2000 (VCR Group) was used to mill down the 

sample until holes were created. The temperature was maintained at -50°C, with a voltage 

of 5000 to 6000 V and the current of gun A and B was approximately 2-3 mA. The 

sample was kept in the membrane box inside a nitrogen glove box until the TEM 

experiment was conducted.  

 

 
Figure 18 South Bay Technology polishing tool.  
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Figure 19 Rectangular sample and copper grid   

 
 
 

 
Figure 20 Original Dimpler 500i [13] 
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2.8 Mössbauer Spectroscopy 
 
 

The Mössbauer Effect was discovered in 1957 by R. Mössbauer. He discovered 

that a nucleus of Ir in a solid can sometimes emit and absorb gamma rays without recoil. 

Since his discovery, there have been a number of other isotopes exhibiting the same 

properties including Eu and Fe. This discovery was rewarded with the Nobel Prize in 

Physics in 1961. Mössbauer spectroscopy is generally not an appropriate technique for 

measuring the total concentration of a certain nuclide. However, the relative 

concentration of different chemical forms of the Mössbauer atom can frequently be 

obtained, such as the relative concentration of oxidation states for one element [14]. The 

relative concentration of Eu2+ to Eu3+ in ZBLAN glass samples was investigated using a 

SEE Co (Minneapolis, MN) Mössbauer Spectrometer (Figure 48, Figure 49). Mössbauer 

spectra were acquired by W302 software and analyzed by Mössbauer spectral analysis 

software which uses simple Lorentzian functions.  
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CHAPTER III 
 

Results and Analysis 
 

3.1 Differential Scanning Calorimetry 
 
 

DSC was used to determine the temperature of the hexagonal to orthorhombic 

transitions of BaCl2 crystallites in ZBLAN glasses. A typical DSC measurement of 

ZBLAN glass with a constant heating rate of 10 K/min is shown in Figure 21. The glass 

transition temperature, Tg, is correlated to the melting temperature, Tm, by the “two-thirds 

rule” Tg/Tm = 2/3 which applies for a large volume of liquid [15].  The crystallization of 

BaCl2, Tx1, the crystallization of the glass matrix, Tx2, and the melting temperature Tm are 

identified by the intersection of two tangential lines which is also known as the onset 

method of the crystallization [16-18].  

 
 

 
Figure 21 Plot of typical DSC data with the heating rate 10 K/min 
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The DSC data results are shown in Figure 22 and Table 3 for the europium 2 mole 

% series Tg is around 210 ± 5°C. In the europium 2 mole % series, higher Eu3+-doping 

leads to an increase in the crystallization temperature of the second peak. 

 

Figure 23 shows that for the europium 5 mole % series Tg is around 213 ± 2°C. In 

the europium 5 mole % series, the higher Eu2+-doping, the higher the crystallization 

temperature (Tx2) and peak temperature of the second peak (Tp2) are. 

 

The crystallization temperature of BaCl2, Tx1, does not change much with the 

increasing of Eu2+ -doping. The second crystallization peak (Tx2) is associated with 

crystallization of the whole glass matrix.  

 
 Table 3, the orthorhombic peak of BaCl2 (Tp-orth) is around 300 ± 10 °C for both 

the 2 mole % and 5 mole % europium doping series.  
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Figure 22 DSC graphs: the series of ZBLAN glass samples with 2 mole % of mixture 

EuCl2 and EuCl3 doping;(a) 2 mole % of EuCl2 (b) 1.6 mole % of EuCl2 and 0.4 
mole % of EuCl3 (c) 1.2 mole % of EuCl2 and 0.8 mole % of EuCl3 (d) 0.8 mole % of 

EuCl2 and 1.2 mole % EuCl3 (e) 0.4 mole %EuCl2 and 1.6 mole % of EuCl3 (f) 2 
mole % of EuCl3 
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Figure 23 DSC graphs: the series of ZBLAN glass samples with 5 mole % of mixture 

EuCl2 and EuCl3 doping; ; (a) 5 mole % of EuCl2 (b) 2.5 mole % of EuCl2 and 2.5 
mole % of EuCl3 (c) 5 mole % of EuCl3 

 
Table 3 DSC data: glass transition, crystallization and peak temperature of 2 series 

2 mole % and 5 mole % europium doping  
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3.2 X-Ray Diffraction 
 
 

The crystallographic structure of the nanoparticles is determined by x-ray 

diffraction. At a critical annealing temperature, the orthorhombic phase of BaCl2 is 

formed inside the glass matrix. The storage phosphor effect was attributed to the 

orthorhombic phase of BaCl2 [1, 3].  X-ray diffraction verifies the existence of the 

hexagonal and orthorhombic phase of BaCl2 in ZBLAN glasses matrix after annealing.  

 

Figure 24 shows the x-ray diffraction patterns of 5 samples with different 

composition of EuCl2 and EuCl3 which were annealed at 300°C for 5 min. The XRD line 

pattern of the crystal BaCl2 hexagonal phase (PDF # 45-1313) is shown at the top of the 

graph. The XRD line pattern of the crystal BaCl2 orthorhombic phase (PDF # 24-0094) is 

at the bottom of the graph. The software analysis Materials Dada Jade 9.1 was used to 

find and match the structural phase for the spectra. The BaCl2 orthorhombic phase was 

the best possible match for the spectra. 

 

 Figure 25 shows the x-ray diffraction of sample JJ 092 at 5 different annealing 

temperatures from 250 °C to 290 °C in order to find the critical temperatures where most 

of the BaCl2 nanoparticles convert from the hexagonal to orthorhombic phase. The higher 

the annealing temperature, the more BaCl2 transforms from the hexagonal phase into the 

orthorhombic phase.  

 

 The XRD results show that the higher the annealing temperature, the more BaCl2 

nanoparticles in hexagonal phase convert into orthorhombic phase. The results are 

consistent with the DSC analysis.  
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Figure 24 X-ray diffraction patterns of 5 different samples at 300°C.  
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Figure 25 X-ray diffraction of sample JJ 092 with 2% of EuCl3 annealing from 250 

°C to 290 °C for 5 min 
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3.3 Secondary Ion Mass Spectroscopy 
 
 
 The presence of oxygen may oxidize Eu2+ and reduce the performance of ZBLAN 

glass as an image plate. Secondary ion mass spectroscopy was utilized to estimate the 

presence of oxygen and calculate the ratio of fluorine to oxygen content in the glass 

samples. Samples were selected from four different groups. Sample JJ083 was prepared 

at the University of Tennessee Space Institute using a glove box which was filled with 

argon gas. The amount of oxygen and moisture in the glove box atmosphere was 

maintained below 0.1 ppm. Sample ZBLAN 76 was prepared in Germany using a glove 

box that was filled with nitrogen gas. Sample Pour 5 was prepared by Dr. Richard Weber 

from Illinois using a glove box which is filled with nitrogen gas. Sample N04.02.22 was 

prepared in Australia and was exposed to oxygen gas for 15 minutes to reduce the black 

precipitates in the sample and improve the quality of the glass.  

 

 The approach of using uncoated samples with a conducting collar gave better 

results [19, 20]. Each sample was scanned in negative ion mode from 2 to 50 amu with 

step size 0.1 and dwell time 0.05 s. Figure 26 shows the distribution of fluoride content 

both on the surface and inside sample JJ083. The brighter region (inside the sample), 

where the surface layer was scraped off, shows relatively more fluoride than oxygen. 

Figure 27 shows a strong peak at 16 amu (oxygen), 19 amu (fluorine) and 35.5 amu 

(chlorine) for the mass spectrum of the surface of the sample. This shows there is more 

oxygen on the surface of the sample than inside the sample. The ratio of fluorine to 

oxygen was calculated by using the ratio of the area under of the curves. The intensity of 

the peak for the surface is not as strong as the intensity for the peak inside. These reasons 

were attribute to the contact of the glass surface to the brass mold during the cooling 

process. Analogous results are shown in Figure 28, Figure 30, Figure 32 and Figure 29, 

Figure 31, Figure 33.  

 

 Table 4 shows that the results are consistent with sample preparation. Sample 

JJ083 shows the least amount of oxygen due to the procedure in which the sample was 
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prepared in a highly monitored atmosphere with less than 0.1 ppm of oxygen and 

moisture. Sample N04.02.22 shows the most oxygen due to the introduction of oxygen 

flow during synthesis to improve the quality of the glass. Sample ZBLAN 76 and Pour 5 

show higher oxygen due to the nitrogen gas environment and a less sophisticated glove 

box. Most of the oxygen of those samples concentrates on the surface; it is attributed to 

the contact of the sample on the molds. Also, ZBLAN glasses are somewhat hydrophilic 

and absorb ambient moisture.  

 
 

Table 4 Fluorine to oxygen ratio on the surface and inside 4 glass samples 
 
 
Ratio F/O JJ 083 ZBLAN 76 Pour 5 N04.02.22 
Surface 2 7 6 6 
Inside 18 18 13 10 
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Figure 26 Fluorine distribution both inside and on the surface of sample JJ083 

 
Figure 27 SIMS spectra of sample JJ083 for both surface (top) and inside (bottom) 
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Figure 28 Fluorine distribution both inside and on the surface of sample ZBLAN 76 

 
Figure 29 SIMS spectra of sample ZBLAN 76 for both surface (top) and inside 

(bottom) 
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Figure 30 Fluorine distribution for both inside and on the surface of sample Pour 5 

 
Figure 31 SIMS spectra of sample Pour 5 for both surface (top) and inside (bottom) 
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Figure 32 Fluorine distribution for both inside and on the surface of sample 

N04.02.22 
 

 
Figure 33 SIMS spectra of sample N04.02.22 for both surface (top) and inside 

(bottom) 
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3.4 Phosphorimetry 
 
 

Annealed ZBLAN glass samples were tested under UV light as shown in Figure 

34. This study helps to determine the performance of the glass as an imaging plate. The 

samples on the left are annealed at 300°C and glow violet as they are mostly ceramics. 

The samples on the right are annealed at lower temperature, 280°C, and glow blue. The 

samples on the right still look transparent.   

 

Figure 35 shows photoluminescence of sample JJ 093 prepared with 1.6 mole % 

EuCl2 and 0.4 mole % EuCl3 doped fluorochlorozirconate based glass excited at 285 nm. 

The peak around ~ 410 nm is shifted to around ~ 400 nm when the annealing temperature 

is increased. This shift is attributed to the transformation of a hexagonal phase of BaCl2 

into an orthorhombic phase of BaCl2 [16, 21].  The peak around ~ 470 nm is attributed to 

the mixture of hexagonal and orthorhombic phases [22, 23]. The intensity of the peak 

around ~ 400 nm increased when the annealing temperature is increased. The same effect 

is also observed with sample JJ094, JJ095, and JJ096, which are shown in Figure 36- 38 
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Figure 34 Photoluminescence test under UV light on ZBLAN glass sample doped 
with 2 % Eu2+ after annealing at different temperatures for 5 min.  
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Figure 35 Photoluminescence spectroscopy of sample JJ 093 (a), (b) and (c) 

annealed at 280°C, 290°C, and 300°C respectively for 5 min. 

 
Figure 36 Photoluminescence spectroscopy of sample JJ 094 (a), (b) and (c) 

annealed at 280°C, 290°C, and 300°C respectively for 5 min. 
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Figure 37 Photoluminescence spectroscopy of sample JJ 095 (a), (b) and (c) 

annealed at 280°C, 290°C, and 300°C respectively for 5 min. 

 
Figure 38 Photoluminescence spectroscopy of sample JJ 096 (a), (b) and (c) 

annealed at 280°C, 290°C, and 300°C respectively for 5 min. 
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Figure 39 Photoluminescence spectroscopy of samples JJ092, JJ093, JJ094, JJ095, 

and JJ096, annealed at 300 °C for 5 min. 
 
 

Figure 39 shows the comparison of photoluminescence for 5 different samples. 

The intensity of the peak around ~ 400 nm strongly depends on the annealing time and 

amount of Eu2+ in the samples. The peak around ~ 470 nm diminishes when the annealing 

temperature reaches 300 °C. That is explained by the hexagonal phase transforming into 

the orthorhombic phase at a high enough temperature. The five samples have different 

ratios of Eu2+ and Eu3+ but they do not show a difference in intensity for the fluorescence. 

The conclusion is that part of the Eu3+ reduces to Eu2+.  Even a low concentration of Eu2+ 

can give a high fluorescence intensity.  
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3.5 Ion Chromatography – Inductive Coupling Plasma 
 
 

During the sample preparation process, the crucible was heated to high 

temperatures. Vaporization of the chemical elements is inevitable. Ion chromatography 

and inductively coupled plasma (ICP) spectroscopy were used to determine the weight 

loss of each element. The concentration of aluminum, barium, europium, indium, 

aluminum, lanthanum, sodium and zirconium were determined by ICP atomic emission 

spectrometry. The concentration found in the sample was compared with the expected 

values from Table 1. This comparison helps to detect whether any component is partially 

volatilized during manufacturing [11]. Furthermore, the uniformity of the glass can be 

evaluated by measuring different parts of the sample. Tables 5- 8 shows the cationic 

concentration in the samples JJ 093, JJ 094, JJ 095 and JJ096 that were measured using 

ICP, respectively. The mole percentage was found to be very close to the expected value. 

The weight loss of cations is very small.   

 
 
 
 

Table 5 Concentrations of aluminum, barium, europium, indium, aluminum, 
lanthanum, sodium and zirconium of in ZBLAN glass sample JJ093 

 
 

Element Found (mg/g) Found 
(millimole/gram) 

Found             
(moles %) 

Expected 
(moles %) 

Al 4.134 0.15 2.3 3.0 
Ba 198.65 1.45 21.7 20.0 
Eu 23.595 0.16 2.3 2.0 
In 0.5023 0.00 0.1 0.5 
La 35.845 0.26 3.9 3.5 
Na 34.97 1.52 22.8 20.0 
Zr 284.5 3.12 46.8 51.0 

    6.66 100.0 100.0 
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Table 6 Concentrations of aluminum, barium, europium, indium, aluminum, 
lanthanum, sodium and zirconium of in ZBLAN glass sample JJ094 

 
 
 

Element Found (mg/g) Found 
(millimole/gram) 

Found             
(moles %) 

Expected 
(moles %) 

Al 3.985 0.15 2.2 3.0 
Ba 196.9 1.43 21.8 20.0 
Eu 22.53 0.15 2.3 2.0 
In 0.5102 0.00 0.1 0.5 
La 35.28 0.25 3.9 3.5 
Na 34.555 1.50 22.9 20.0 
Zr 280.75 3.08 46.9 51.0 

    6.57 100.0 100.0 
 
 
 
 
 
 

Table 7 Concentrations of aluminum, barium, europium, indium, aluminum, 
lanthanum, sodium and zirconium of in ZBLAN glass sample JJ095 

 
 

Element Found (mg/g) Found 
(millimole/gram) 

Found             
(moles %) 

Expected 
(moles %) 

Al 3.996 0.15 2.2 3.0 
Ba 197.5 1.44 21.8 20.0 
Eu 22.745 0.15 2.3 2.0 
In 0.4711 0.00 0.1 0.5 
La 35.34 0.25 3.9 3.5 
Na 34.67 1.51 22.9 20.0 
Zr 282.5 3.10 46.9 51.0 

    6.60 100.0 100.0 
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Table 8 Concentrations of aluminum, barium, europium, indium, aluminum, 
lanthanum, sodium and zirconium of in ZBLAN glass sample JJ096 

 
 

Element Found (mg/g) Found 
(millimole/gram) 

Found             
(moles %) 

Expected 
(moles %) 

Al 4.735 0.18 2.7 3.0 
Ba 195.1 1.42 21.7 20.0 
Eu 22.54 0.15 2.3 2.0 
In 0.613 0.01 0.1 0.5 
La 35.24 0.25 3.9 3.5 
Na 34.53 1.50 22.9 20.0 
Zr 278.85 3.06 46.6 51.0 

    6.56 100.0 100.0 
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Figure 40 shows a typical graph of an ion chromatography measurement for 

anionic concentrations of fluorine and chlorine. The expected value for fluorine and 

chlorine were calculated based on the Table 1.  Figure 40 shows a typical graph of ion 

chromatography measurement for concentrations of fluoride and chloride. The 

concentrations of fluorine and chlorine were measured using ion chromatography and 

compared to expected values. For a typical ZBLAN glass sample, the weight loss of 

fluorine is between 3-5 %, and the same for chlorine. 

 

 
Figure 40 A typical graph of an ion chromatography measurement for 

concentrations of fluoride and chloride.  
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3.6 Transmission Electron Microscopy 
 
  

Transmission electron microscopy was used to observe the formation and the 

propagation of BaCl2 nanoparticles under various heating conditions. The results were 

consistent with other techniques.  

 

During subsequent ion milling, the amorphous matrix may undergo partial 

crystallization (phase transition). For this reason, special precautions were taken to 

prevent crystallization during the ion milling. Figure 41 shows how the relative uniform 

contrast indicates that the sample is in amorphous state before the in situ experiment. The 

detailed formation of the nanostructure of BaCl2 in the glass matrix was examined using 

high-resolution transmission electron microscopy.  

 

The sample was slowly heated from room temperature to 300 °C to observe the 

BaCl2 nanoparticles formation. It was found that the nanoparticles start to form when the 

annealing temperature is around 250-260 °C which is in agreement with the DSC and 

XRD study. The crystallization propagates to larger areas when the annealing 

temperature increases which corresponds to higher photoluminescence intensity. As a 

result, larger BaCl2 nanoparticles are formed.  Figure 42 shows small crystal areas inside 

the white square box, which were observed under high-resolution TEM. Figure 43 shows 

sample N05.02.41 after annealing and the formation of a crystal area of ~500 nm.  
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Figure 41 (a) dark field image, (b) amorphous diffraction rings, and (c) bright field 

image of ZBLAN glass sample JJ 094.  
 
 

 
Figure 42 High resolution image of ZBLAN JJ 094 after heat treatment 
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Figure 43 High resolution image of ZBLAN N05.02.41 after heat treatment 
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3.7 Mössbauer Spectroscopy 
 
 

Eu3+ is the stable oxidation state of europium. Eu2+ easily oxidizes to Eu3+ in the 

presence of moisture or oxygen. EuCl2 and EuF2 are important in the formation of glass-

ceramic storage phosphors, but they are around twenty times more expensive than EuCl3 

and EuF3. Mössbauer spectroscopy was able to demonstrate the ability of producing 

EuCl2 from EuCl3 in the laboratory environment.  

 

Sealed bottles of 99.9% purity EuCl3 (Aldrich Chemical Company, Milwaukee, 

WI) were opened inside the glove box (LABmaster SP, MBRUAN). Europium (III) 

chloride, when heated under argon gas at 750 °C for one hour, allowed the following 

reaction to occur [24] 

 

 
 

The melting point of EuCl3 is 625 °C [25, 26] which is lower than the heating 

temperature. After heating EuCl3, the final product changed from a white to dark grey 

color.  Eu3+
 and Eu2+ are known to have an isomer shift around 0 mm/s and -13 mm/s, 

respectively [27]. The relative area under the peaks represents the relative presence of 

Eu2+ and Eu3+ in samples. The longer the samples were exposed to air, the more Eu2+ 

oxidized to Eu3+. Figure 44 shows the increasing concentration of Eu3+ and the 

decreasing concentration of Eu2+ in the sample over time. The lower the concentration of 

Eu2+, the weaker the interaction between Eu2+-Eu2+ is leading to an increased linewidth of 

Eu2+ over time. 
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Figure 44 Mössbauer spectra of EuCl3 heated at 700 °C for an hour as a function of 

time.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 48 

 
Figure 45 shows the decrease in concentration of Eu2+ in heated EuCl3 fine 

powder. The oxidation rate of Eu2+ follows a negative exponential curve 

 𝑦 = 64.3 exp �− 𝑡
6.9
�, which is consistent with our hypothesis that the less Eu2+ on a 

surface layer and the thicker the oxide layer is the longer and the more difficult it is for 

moisture and oxygen to penetrate the samples. Moreover, the fitting shows that 

eventually all the Eu2+ will be oxided to Eu3+ which is in agreement with our 

expectations.  

 

 
Figure 45 Percentage of Eu2+ in heated EuCl3 over time. The data was fitted by 

𝒚 = 𝟔𝟒.𝟑𝐞𝐱𝐩�− 𝒕
𝟔.𝟗
� with t is the number of days.  
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Figure 46 Mössbauer spectra of (a) pure EuCl3, (b) pure EuCl2, (c) EuCl2 after 

heating contains EuCl2+EuCl3, (d) Heated EuCl2 after30 days contains a mixture of 
Eu2O3+EuCl3, and (e) pure Eu2O3 

 
 

The initial pure EuCl3 is shown in Figure 46a and has a chemical shift 0 mm/s, the 

initial pure EuCl2 is shown in Figure 46b and has a chemical shift of 1 mm/s, in 

agreement with to reference [27]. Figure 46c shows the mixture of Eu2+ and Eu3+ after 

heated EuCl3. Figure 46d shows the oxidation of EuCl2 to a mixture of EuCl3 and Eu2O3. 

EuCl2 is in the unstable state and has the tendency to oxidize to Eu3+. Eu2+ oxidizes to 

Eu3+ when it comes into contact with the oxygen and moisture from the atmosphere and 

becomes Eu2O3. The chemical shift of Eu2O3 is known to be around +1 mm/s. The 

chemical shift of EuCl3 is known to be around 0 mm/s [27]. In Figure 46d, the chemical 

shift of the peak is around 0.8 mm/s. It is consistent with our hypothesis that the peak was 

made up of EuCl3 with a chemical shift of 0 mm/s and Eu2O3 with a chemical shift of 1 

mm/s. 
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Figure 47 Mössbauer spectra of ZBLAN glass with 5 mole % Eu-doping. The 

sample of the top spectrum was doped with 5 mole % EuCl2. The sample of the 
bottom spectrum was doped with 2.5 mole % EuCl2 and 2.5 mole % EuCl3 

 
 

The more europium doping in the ZBLAN glass samples, the easier it is to 

observe the Mössbauer effect. However it is also more difficult to form a glass and excess 

europium reduces the quality of the glass samples. The less europium doping in ZBLAN 

glass samples, the harder it is to observe Mössbauer effect, as heavy Zirconium in the 

glass sample blocks most of the gamma rays. The 5 mole % doped of Eu sample was 

synthesized in order to study the ratio of Eu2+/Eu3+ in the glass samples.  

 

Figure 47 shows Mössbauer spectra of ZBLAN glass plates with 5 mole % Eu-

doping. The ZBLAN glass samples were cut into plates of 10 mm × 10 mm × 1.6 mm 

(thickness). The plates were mechanically polished to a thickness of ~ 150 μm. Thin glass 
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plates were inserted in polythene bags and mounted on the sample holder in the 

Mössbauer instrument.  

 

The top spectrum shows a sample that was doped with 5 mole % EuCl2. The ratio 

of the areas under the peaks for Eu2+ and Eu3+ is 78:22. This indicates that 22% of Eu2+ 

was oxidized to Eu3+. The bottom spectrum shows a sample that was doped with 2.5 mole 

% EuCl2 and 2.5 mole % EuCl3. The ratio of the areas under the peaks for Eu2+ and Eu3+ 

is 37:63, indicating 13% of the Eu2+ was oxidized to Eu3+. The study shows that Eu2+ can 

exchange electrons with other elements to be oxidized to Eu3+ even during the careful 

sample preparation procedure.   
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CHAPTER IV 
CONCLUSIONS AND RECOMMENDATIONS 

 
 

Europium-doped ZBLAN glasses were studied to optimize the performance as an 

image plate for medical application. For this study, the Europium-doping level, the 

annealing time and temperature were varied. BaCl2 nanoparticles were formed upon 

annealing. The annealing temperature was determined based on DSC measurements. 

XRD measurements show the formation of hexagonal BaCl2 nanoparticles within the 

glass matrix of all samples at low annealing temperature and for short annealing time. 

The hexagonal BaCl2 nanoparticles convert into orthorhombic BaCl2 nanoparticles at 

higher temperature and longer annealing time.  

 

Photoluminescence confirms the transformation from hexagonal phase BaCl2 

nanoparticles to the orthorhombic phase. As a result, the peak around ~ 410 nm shifts to 

~ 400 nm and the peak around ~ 480 nm moves to lower energies. The study of 

secondary ion mass spectroscopy showed that the samples made at UTSI contained low 

amounts of oxygen. Oxygen which was found on the surface of those samples was 

attributed to contact with the brass mold obtained from the atmosphere outside the glove 

box. The study of ion chromatography and inductively coupled plasma showed that the 

loss of fluoride, chloride and other cations does not impair the plate performance.  

 

Transmission electron microscopy was used to observe the growth of BaCl2 

nanoparticles. The size of BaCl2 nanoparticles is bigger at longer annealing time. BaCl2 

nanoparticles were formed uniformly across the samples.  

 

 

The Mössbauer spectroscopy study confirmed that part of the Eu2+ doping in 

ZBLAN glass was oxidized to Eu3+, which reduces the luminescence of the image plate. 

EuCl3 (99.99% purity) was heated to convert Eu3+ into Eu2+.  After one hour heating 
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EuCl3 at 700°C, around 60% of Eu2+ and 40% of Eu3+ were observed. Eu2+ can be 

produced from Eu3+ in the laboratory environment to reduce the cost.  

 

Future studies should include in situ x-ray diffraction should be considered to 

study the phase transformation of BaCl2 nanoparticles. In situ XRD would help to 

determine the best annealing time and temperature. An “In situ” Mössbauer study would 

help to determine the ratio of Eu2+/ Eu3+ as a function heating temperature. Low 

temperature Mössbauer spectroscopy would help to determine the ratio of Eu2+/ Eu3+  

under very low oxidation conditions.   
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Figure 48 Mössbauer Apparatus 
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Figure 49 Mössbauer sample holder 
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