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Abstract

With increasing complexity in equipment, the failure rates are becoming a critical metric

due to the unplanned maintenance in a production environment. Unplanned maintenance

in manufacturing process is created issues with downtimes and decreasing the reliability

of equipment. Failures in equipment have resulted in the loss of revenue to organizations

encouraging maintenance practitioners to analyze ways to change unplanned to planned

maintenance. Efficient failure prediction models are being developed to learn about the

failures in advance. With this information, failures predicted can reduce the downtimes in

the system and improve the throughput.

The goal of this thesis is to predict failure in centrifugal pumps using various machine

learning models like random forest, stochastic gradient boosting, and extreme gradient

boosting. For accurate prediction, historical sensor measurements were modified into leading

and lagging indicators which explained the failure patterns in the equipment were developed.

The best subset of indicators was selected by filtering using random forest and utilized in

the developed model. Finally, the models give a probability of failure before the failure

occurs. Appropriate evaluation metrics were used to obtain the accurate model. The

proposed methodology was illustrated with two case studies: first, to the centrifugal pump

asset performance data provided by Meridium, Inc. and second, the data collected from

aircraft turbine engine provided in the NASA prognostics data repository. The automated

methodology was shown to develop and identify appropriate failure leading and lagging

indicators in both cases and facilitate machine learning model development.
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Chapter 1

Introduction

1.1 Overview

Organizations especially manufacturing industries strive to achieve system performance

excellence by providing higher quality products and services with reasonable costs and lead

times. Fleischer et al. (2006) stated that the performance of a production system mainly

depends on the equipment’s availability and productivity. Essential elements in achieving

high performance include identifying and anticipating disruptions in the delivery of products

and services.

Disruptions include any unexpected event that will affect the standard performance of the

system (Darmoul et al., 2013). In a manufacturing context, disruptions manifest in several

ways: material unavailability, unavailability of operators, failure of equipment, production

schedule overrides, etc. Reducing disruptions improves worker morale and focus (Aytug

et al., 2005; Dal et al., 2000), helps equipment run smoothly, reduces raw material waste,

and produces higher quality products (Ljungberg, 1998).

Identification of strategies to the improve performance of a system will depend on the

critical factors causing the disruptions. Ahmad et al. (2003) listed the most important

sources of disruptions in the manufacturing environments:

� Personnel
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� Materials

� Schedules

� Equipment

Personnel

Personnel include operators and their skills required to work with equipment, it is considered

as a critical factor as operators and equipment are in direct contact within in an environment

(Miller, 1953). Personnel is influenced by human error and further affects the performance

of a system. Most companies have stated that 8% of the disruption are caused by personnel

(Gertman and Blackman, 1994), but the source of causes go beyond just human error.

If manufacturing industry is embracing the new technology and advancements, then the

technology must be practiced in a manner that imports confidence. However, the industries

practice different methods, lagging behind in the skills to operate the technology results in

disruptions. Some of the personnel disruptions are inevitable as they can occur without any

warning during or after the operation of an equipment (Hopp and Spearman, 2011).

Materials

Materials refers to inventory comprising of raw materials, semi-finished material and finished

goods at the work stations in a manufacturing line. The stock pile level of inventory

correspond to the continuous operation of manufacturing line, if there were no inventory

of raw materials at the start of manufacturing line, the shortage will disrupt the normal

working condition leading to unscheduled downtime and reduce the performance of the

system (Sawhney et al., 2010). Jeziorek (1994) suggested that the high inventory level

may address the unscheduled downtime, however, they don’t completely get rid of them.

Multiple Japanese methodologies were testing to satisfy the inventory requirements but

they were sensitive to variations resulting in a fragile process (Bennett, 2009), where the

performance of the system decreased.
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Schedules

Scheduling comprises of the process of planning, controlling and scheduling work or workloads

in a production process. The planning process allows the organization to allocate resources

like personnel and inventory to the required machinery or plant to optimize the productivity

(Choi, 1997). The concept of scheduling helps improve the production efficiency by

optimizing the manufacturing time and costs. On the other hand, disruptions in the

operation schedule results in low levels of inventory which would lead to bad performance of

the system.

Equipment

Typically manufacturing environments are subjected to one or more disruptions due to

their dynamic nature. The disruptions mentioned above are referred to as real-time events,

which can arbitrarily change system status and degrade its performance (Gholami et al.,

2009). Equipment disruption is a key factor in the performance of the system which

leads to different kinds of breakdowns, and equipment breakdown results in 80% of the

downtime in manufacturing systems whether it can be controlled or not (Jabal Ameli

et al., 2008). Some of the equipment breakdowns result in disruptions are power outages

(Wu et al., 2008), short on equipment consumables (Hopp and Spearman, 2011), failure

of equipment (Godinho Filho and Uzsoy, 2011), equipment tools goes out of adjustment

(Veeger et al., 2010), tools wearing out (Hopp and Spearman, 2011), etc. This research seeks

to identify which indicators contribute to system disruptions in the critical bottleneck area

and therefore help organizations perform at higher levels by eliminating disruptions with

improved equipment reliability and throughput.

The biggest problem equipment disruptions cause are truly unplanned equipment

breakdowns. The breakdowns may occur at any point of time in the job, during or in-

between them. In August 2001, a crude distillation unit malfunction in the Citgo Petroleum

Co. resulted in shutdown of the refinery for 12 months, and estimated total value of loss

of $230 million (Marsh, 2014). Failure of a pump in an oil refinery in West Texas led to a
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massive fire explosion incurring a loss of over $380 million and shut down for a year (Marsh,

2014). According to a study by Emerson (2016), unplanned outages in data centers results

in a loss of nearly $9000 per minute. An analysis by Tucker et al. (2013) of 190 US Gulf

of Mexico asset producers in Ziff’s Energy Group revealed an opportunity to improve the

production efficiency by reducing the downtime. Total (planned and unplanned) production

efficiency of these assets was 88%. Out of the 12% efficiency loss, 8% was relatively caused

due to unplanned maintenance. If this loss were prevented, the organization would have saved

close to $600 million per year. It is challenging to analyze and repair the equipment within

a short period for a human being during the unplanned maintenance since the disruptions

are unpredictable resulting in long downtimes. Further leading to fragment loss, facility

failures and operational upsets. Therefore, if the breakdowns were known in advance, the

organizations can avoid the costly downtimes.

Equipment disruptions can cause unplanned delays in the production process. The

delays result in downtime affecting the planned schedule; the process takes extra time than

previously planned. Unplanned events like downtime negatively effect the intended capacity’s

ability to meet the demand (Melnyk, 2007). The delay in one piece of equipment affects the

entire process and creates variations in the performance of the production process. Variations

caused by equipment breakdowns can be minimized if breakdowns can be anticipated and

corrective measures are applied in time. Therefore, when the effects of breakdowns are

previously determined, it is possible to develop a methodology to predict the breakdowns

and schedule a planned maintenance to reduce downtime. By doing this, high reliability and

targeted performance of the system can be achieved.

Planned maintenance results in reliable and safe to operate equipment, therefore

influencing the quality, manpower, material, tools and cost (Pintelon and Gelders, 1992;

Ahuja and Khamba, 2008). Albino et al. (1992), Savsar et al. (1993) and Vineyard and

Meredith (1992) developed simulation models to study the relationship between maintenance

and production, and identified the different effect of planned versus unplanned maintenance

strategies. Planned maintenance strategies resulted in optimal inventory level and satisfied

demand when compared unplanned maintenance, which failed to meet demand. Mosley
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et al. (1998) developed a predictive model with the objective to reduce equipment downtime

by scheduling maintenance and obtained 20% increase in production. Therefore, planned

equipment maintenance is a vital step in the manufacturing process (Ahmad et al., 2003).

The literature study shows that mathematical models have been developed to setup

planned maintenance activities that mitigate the effect of downtime between the process.

Such improvements can be achieved through transitioning from unplanned to planned

maintenance.

The motivation behind planned and scheduled maintenance is to improve equipment

health, or at least system reliability. It is a vital part of the asset management. Moreover,

planned maintenance if done efficiently with proper policies may reduce equipment downtime

and other undesirable effects of downtime. Maintenance evidently affects equipment

components and its reliability: if little is performed, this may lead to expensive failures and

higher downtime, and therefore, reliability is low; performed often, reliability will improve

but will result in a linear increase in maintenance cost (Endrenyi et al., 2001).

In a system, if the maintenance is focused on the right equipment at the right time, then

a significant impact is made regarding system reliability. Especially if the equipment is the

bottleneck of the system, planned maintenance focuses on decreasing downtime by improving

the component availability. Taking care of the bottleneck equipment improves the system

reliability, production costs are cut, buffer inventories are cut, effective capacity is increased,

and moreover, a significant improvement is made in the throughput.

1.2 Problem Statement

Traditionally maintenance practitioners used failure rates, mean time to failure, vibration

measurements, oil analysis and a variety of other models which predict failures, but each

one of them requires a particular set of equipment. This thesis examines sensors that are

typically measured to monitor and evaluate the health of pumps. The sensor measurements

are analyzed instead of the failure rates, and a model is developed to predict failure allowing

unplanned maintenance to transition into planned maintenance. Sensor measurements
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themselves are not sufficient, and therefore, will be modified to obtain relevant information

and then filtered bringing the leading and lagging indicators. This is used in the machine

leaning models to predict failure rate in centrifugal pumps at a very high probability. The

reduction in failure rates using planned maintenance will result in higher reliability of the

equipment. This potentially will help eliminate the bottleneck equipment in the process

leading to improvement in the throughput of the system.

1.3 Approach

The variables utilized in this thesis were obtained from an extensive database within

Meridium (2017), an asset performance management organization. The database consists

of a combination of equipments records and its sensor readings at hourly intervals. The

equipment considered for research is centrifugal pumps with seven sensor measurements:

suction pressure, discharge pressure, flow, temperature, power, rotations per minute (rpm),

and vibration.

With the extensive amount of data available and limited data-driven approaches, machine

learning models chose the ideal method to be used on the sensor data. Initially, a pilot model

is developed using the raw sensor measurements to predict failure. However, the raw sensor

data did not contain quality information to predict failure accurately. Therefore, indicators

were developed which consisted of encoded information from the raw sensors that improves

the machine learning methods to classify the failures (Anderson et al., 2013).

For the methods to work at peak performance and obtain high accuracy, development

and selection of the indicators is an important step. The methodology to develop indicators

from the sensor data, and build good prediction models using these indicators, as applied

here, consists of three steps (see Figure 1.1).

The approach as shown in Figure 1.1 is briefly explained followed by a detailed

explanation. The first step in the failure prediction methodology involves development

of failure indicators which requires merging the different data sources. This data is used

to engineer new leading and lagging indicators that relate to the working condition of

6



Figure 1.1: Approach: First, the indicators are developed and passed through filters.
Second, the model is built using the indicators. Third, the model is used on testing data to
predict the probability of failure

an equipment and the best indicators are selected for prediction using filter and wrapper

indicator selection methods. In the second step, a machine learning algorithm is trained

using the data obtained from the selected indicators. The third step includes the training

process which optimizes the objective function and regularizes the model parameters. Since

the data sources are historical, the data set is divided into training and testing dataset,

where the training data will be used to choose the best model parameters while the testing

dataset will be used to evaluate the prediction quality of the algorithm. The tuned and

trained model will be later used to predict failures.

The first step is the most important step and the most time consuming, as domain

specific knowledge is required for data acquisition, merging it, cleaning and data wrangling,

and many iterations of indicator engineering go into it. Specifically, the raw data is imported

from three different sources: equipment records, failure and maintenance history and sensor

measurements data. The data sources include sensor reading data collected from centrifugal

pumps, as well as failure-prone historical maintenance and repair records that detail failure
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description and type. The data sources are combined using spatial and time relationship

between equipment and sensor readings. Next, the failure indicators are developed; they

relate to the working condition of equipment and failure patterns. The indicators obtained

from the raw data may not be directly useful or relate to the equipment. Hence, in this case,

new indicators or a set of indicators holding the same information as the historical sensor

measurements are developed to obtain the leading and the lagging indicators. Sensor data

is tagged with a timestamp which helps to calculate the lagging indicators. Some of the

indicators developed are:

� Binned indicators

� Frequency domain indicators - Fast Fourier Transform

� Time domain indicators - mean, standard deviation, range, peak, etc.

� Normalized indicators - standard core and silly pins

� Time-Frequency indicators - wavelet transforms

� Lagged indicators - lagged rolling average

� Interaction indicators

Other indicators include a non-linear combination of primary indicators and decomposi-

tion transforms. However, not all the indicators are effective enough to predict the failure at a

certain stage, and the irrelevant indicators will induce higher computational time. Therefore,

important indicators are selected using random forest with specified iterations by optimizing

the error parameters and obtaining the importance of each indicator.

When the dataset is preprocessed, and the important indicators are obtained, the next

step in the methodology is to select a machine learning algorithm and train an appropriate

model. The dataset from the previous step is divided into training and test dataset, where

the training data is used for model development, and the testing data is used to evaluate

the model. Since the dataset is timestamped data, regular k-fold cross-validation will result
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in overfitting the model. Therefore, a time-dependent splitting strategy is used to get a

cross-validation statistic and obtain the testing data that are subsequently compared to the

training period (Arlot et al., 2010). The approach for selecting the model depends on the

equipment iterating failure patterns. These failure events are triggered by the dependency

of equipment on the succession of other error events, but not all these events lead to failure.

After researching the different mechanisms and dependencies, the following reasons were

considered in selected a failure prediction model:

� Equipment health depend on the change in error patterns

� These error patterns have innumerable conditions, where some patterns relate to the

equipment leading to failure, and some are just false positives

� To learn and record those patterns which result in failure

� The machine learning techniques are used to train the model based using the recorded

patterns

Decision tree learning algorithms such as boosted trees and random forest classifier

have been proved to be effective in pattern recognition tasks like automatic recognition

of handwritten letters (Polikar, 2006), human emotions (Horn, 2001) and fraud detection

(Bishop, 2006). The above being one of the reasons to choose decision tree learners and

the second reason being able to differentiate between miscued events, failures and non-

failures. Miscued events go unobserved but later deteriorate and become failures which can

be detected. This action can be compared to the functioning of tree classifiers in decision

trees; the initial states can go unattributed but are later dynamically introduced to the lower

stages of the tree structure. The probability of occurrence of failure is predicted by learning

the different stages down the line of the decision tree.

The objective of decision learning algorithms is to regularize the hyper-parameters to

learn the patterns that lead to failure. To treat the imbalance of classes, i.e., failure and

not failures, oversampling techniques are used along with tuning the classifiers to handle the
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data. The indicators behave capriciously at different points of time when a failure occurs.

Therefore, separate trees are developed in the decision trees to learn the various scenarios of

failure sequences. In the prediction phase, the model learns all the different patterns using

the training dataset.

The final step of the methodology is to select the best model. Since the failure

dataset faces the imbalance problem, various classification evaluations are compared to the

benchmarked metrics which are calculated at different scenarios. The comparison of the

models using evaluation metrics will help obtain the better performing decision tree model

resulting in the accurate prediction of failures. Also, the models are stacked together by

combining the outputs using ensembling. Ensembling is relevant when there is a chance of

model over-fitting or under-fitting.

1.4 Assumptions

After examining the equipment and sensor records, some characteristics have been deter-

mined which result in assumptions based on which the failure indicators and prediction

model are developed. The assumptions are:

1. The number of records for failure is less due to rare occasion of failures. The period

from the end of failure to the start of next failure is assumed to be non-failures and

the sensor records as labeled appropriately.

2. The duration of failure is unavailable in the dataset. Therefore, the end of the

maintenance period for that equipment is assumed as the end of the failure period.

3. The equipment running for an extended period and multitasking can sometimes result

in sudden increase or decrease in the sensor measurements. For this reason, such

scenarios are assumed to be noise in the data.

4. All the data sources are timestamped. The sensor data contains hourly interval

timestamp with sensor measurements while the failure and maintenance records have

10



timestamp corresponding to the event. It is assumed both the timestamp and indicators

contain information to predict failure.

5. Due to the complexity of equipment, it is assumed that the failure patterns at different

points of time are different, i.e., different indicators can react to different types of

failures resulting in various failure trends.

6. The sensed measurements contain hidden information. Therefore, multiple indicators

are developed assuming that all of them are significant. In the following stage, indicator

selection is used to identify important indicators.

1.5 Organization of Thesis

An outline of the thesis is shown in Figure 1.2. Chapter 2 presents the literature review to

understand the indicator development and a survey of failure prediction models. Chapter 3

discusses the theoretical details of the methodology that will be used in this thesis. Chapter

4 discusses the results of the methodology applied to the Meridium’s and NASA’s data set.

The first dataset is a technical data obtained from Meridium with centrifugal pump records,

while the second dataset uses the aircraft turbine engine dataset obtained from NASA’s

prognostics center of excellence repository. Chapter 5 includes the conclusion remarks and

an outlook to future work.
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Figure 1.2: Framework of the thesis
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Chapter 2

Literature Review

Compared to the traditional approaches like breakdown maintenance and preventive

maintenance, prognostics is still a new field being investigated. In fact, researchers studying

prognostics tend to focus on specific areas instead of the field as a whole, mentioning,

monitoring, fault detection and diagnostics while disregarding greater possibilities of the

field (Heo, 2008; Keller et al., 2006; Liao et al., 2006). Lately, new methodologies and

studies have been published for prognostics approaches, which are discussed in detail in the

sections that follow.

This chapter discusses the concept of prognostics, different types of maintenance and its

undesirable effects. The relationship between real-time sensor data and failure detection is

also addressed. The literature relating to the various machine learning methods used for

failure prediction, with an inclination towards maintenance management, are also examined

in detail.

2.1 Maintenance Management Evolution

Maintenance is defined as “set of activities required to keep physical assets in the desired

operating condition or to restore them to the best optimal condition” (Heo, 2008; Liao et al.,

2006; Pintelon and Parodi-Herz, 2008). In other words, maintenance is a significant factor
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that impacts the availability and reliability of the asset to overcome the increase in failure

rate which degrades the production quality and efficiency.

Early in the 1980s, maintenance costs summed up to more than $600 billion in the

domestic plants in the United States, just to maintain their critical equipments. These costs

doubled by the 2000’s (Fluke, 2007). Moreover, in some industries like mining, petrochemical,

and construction, one-third of the maintenance costs is spent on ineffective maintenance and

exceeds the operational costs (Eti et al., 2005; Parida and Kumar, 2006).

Over the years, maintenance has expanded from an everyday function into a complex task.

Maintenance has undergone a continuous change in the organizational level with increasing

complexity of industrial technology and machine tools leading to an elevation in maintenance

costs (Parida and Kumar, 2006). Initially maintenance did not receive the importance it

deserved, but it evolved to become a major task to increase throughput, mainly by reducing

downtime of equipment.

Maintenance evolved from a focus on breakdown and progressed to preventive main-

tenance. Eventually, reliability-centered maintenance was developed and advanced to a

more practical approach based on condition-based maintenance. Currently, the newest

maintenance is based on the prognostics.

The first type of maintenance introduced was breakdown maintenance, where actions are

performed after the equipment has come to a complete stop or has become unstable. The

equipment was checked for defective parts and repaired. Initially, breakdown maintenance

was created only for non-repairable cases and later extended to repairable cases (Barlow

et al., 1963).

Multiple types of maintenance actions were defined under corrective maintenance such as

minimal repair, general repair, failure replacement and general repair. The researchers have

contributed with multiple models which adopted the corrective maintenance actions. The

general age replacement model was proposed by Block et al. (1988); Stadje and Zuckerman

(1991), in which equipment failures are corrected with minimal repair and returned to their

original working condition by identifying the probability repair and replacement.
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Among the different corrective maintenance models, one of the appealing models was

developed by Kijima (1989) to characterize the equipment and maintenance performances

by calculating the new virtual age based on the idea of the primary age. Although corrective

maintenance is easy to perform with less work and lower short-term costs, it increases the

downtime and reduces the reliability of equipment.

The second concept that was introduced in the evolution of maintenance focused on

prevention and originated sometime between the years 1950 and 1960. It was created to

avoid a complete shutdown of equipment and disastrous failures. The actions include setting

up regular inspections and maintenance at periodic time intervals, regardless of the current

condition of the equipment. The critical parameter in PM is determining the optimal time

interval for inspection. Savits (1988) and Block et al. (1990) developed one of the first PM

models known as a block-replacement model. The model uses fixed time intervals to take

action by removing each failure by replacement. Multiple authors (Tilquin and Cleroux,

1975; Boland, 1982; Boland and Proschan, 1982; Aven, 1983) published their work using

block-replacement model. Later, Bazovsky (2004) initiated the use of optimization methods

in PM models. Jardine and Tsang (2013) used an idea developed by Bazovsky (2004) while

developing decision models to calculate the best time interval by extrapolating the historical

reliability data and expected cost rate. Kelly (1989) did a survey of practitioners, which

proved the unpopularity of fixed time intervals in PM. The strategies in PM reduces the

number of failures. However, they do not eliminate immediate disastrous failures between

the intervals and also increase maintenance activities, making PM labor intensive.

The evolution of PM was introduced in the late 1960s, when the United States civil

aircraft industry developed reliability-centered maintenance (RCM) to reduce cost rate

resulting from PM to achieve higher reliability while preserving the functionality of the

equipment. It is based on the evolved form of Failure Mode Effect Analysis (FMEA) and

involves the use of statistical parameters, particularly probability distributions.

The models in RCM use traditional reliability approaches where the parameters are

analyzed based on the distribution of time-to-failure data obtained from similar equipment.

The application of RCM using parametric models such as Weibull distribution Rausand et al.
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(2004), non-homogeneous Poisson process Kothamasu et al. (2009) and Weibull distribution

Van Noortwijk (2009) has helped improve the machine reliability. However, the disadvantage

is that RCM provides the overall reliability estimate of the whole population of similar

equipment in the organization, rather than the real-time reliability estimate of a particular

equipment.

In the last two decades, condition-based maintenance (CBM) has been developed in the

direction to reduce downtime by monitoring equipment health data without interrupting the

normal working operation. CBM introduces maintenance tasks into the schedule only when

there is an intervention detected in the measurements observed from the equipment. An able

CBM can reduce unnecessary costs by eliminating the scheduled PM tasks. Nonetheless, the

minimization of failures and costs require constant on-line monitoring of equipment health.

Hess et al. (2008) identified some limitations in CBM traditional methods during a research

conference held by National Institute of Standards and Technology, which are described

below:

� failed to observe equipment constantly

� inaccurate results in prediction the equipment health

� inability to learn from the historical failure data and detect new failure patterns

In other words, CBM methods are limited by inefficiency in observing, reacting, and

recommending actions to failures.

As the scope of maintenance gained more importance within the organizational perfor-

mance parameters, researchers contributed to enhance CBM’s approach which evolved into

the concept of Prognostics and Health Management (PHM) (Hess et al., 2008). PHM can be

defined as the ideology in maintenance which integrates the physics of failure mechanism and

life-cycle management (Uckun et al., 2008). PHM is today’s most widely accepted practice in

high technology equipment based organizations, such as the aerospace industry and military.

The United States has allocated special emphasis in this approach within NASA in their

spacecraft (Osipov et al., 2007) and the military in two different programs. The programs
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are Joint Strike Fighter Program (Hess et al., 2004) and Future Combat Systems Program

(Barton, 2007) for anomaly detection, efficient diagnostics, real-time performance monitoring

and predicting failures.

PHM has been acting its part in the multiple areas helping industries from the equipment

manufacturer to the end user. Some of the advantages of PHM compared to the other

maintenance systems (Hess et al., 2008; Uckun et al., 2008; Asmai et al., 2010; Balaban and

Alonso, 2012) are:

� improvement in equipment reliability (forecast failure-prone equipment)

� ability to recommend maintenance actions to increase life of an equipment

� reduction of downtime and operational costs by elimination of unnecessary maintenance

actions

The main contribution of PHM is to provide the end users the knowledge of the future

health of equipment. This job broadly consists of two different steps. The first step is

monitoring and accessing the health condition; then anomaly detection techniques can be

used here to detect various types of failure patterns. The second step aims at predicting the

probability of failure, where machine learning methods are used (Si et al., 2011).

In summary, the evolution of maintenance has expanded from simple reactive approaches

to data guided prediction, as the nature of business rely on effective strategies. The thesis

focus on present day approaches while expanding the body of knowledge regarding PHM.

2.2 Prognostics and Health Management

PHM is a concept within equipment monitoring maintenance system which also includes fault

analysis, equipment diagnostics, anomaly detection and online monitoring. Kothamasu et al.

(2009) referred to prognostics as the complete form of CBM system. The authors have used

PHM estimates to develop applications for maintenance assessment and scheduling. Pintelon

and Parodi-Herz (2008); Hess et al. (2008) researched the use of PHM to predict failure for
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logistics systems. Table 2.1 lists the exciting research work using prognostics and health

management.

Callan et al. (2006) divided the PHM system into five different steps: data acquisition,

data manipulation, condition monitoring, health assessment and prognostics. Prognostics is

the most important measure used to “estimate the time of failure or risk for one or more

existing and future failure modes” (Katipamula and Brambley, 2005). The application of all

the steps in the CBM will result in the improvement in production, reduction in downtime

and failures, improved work performance of equipment, elimination of unnecessary downtime

and a decrease in life-cycle cost.

The model considers the original data and produces the results in the form of probability

of failure to schedule maintenance routines. Data is collected through continuous online

observation of equipment and analyzed for pattern changes. The analysis can be performed

with the help of different methods, including statistical and empirical models (Ma and Jiang,

2011). The current condition of the equipment is assessed and compared to the estimates

of the degradation level; this helps determine if the equipment is operating abnormally.

A statistical method utilizes the estimates distribution of normal working and degraded

condition to determine the shift. If a shift is observed, it is important to determine the cause;

equipment has different degradation levels based on the type of failure. Finally, different

prognostics models can be used to determine the probability of failure of the equipment.

Prognostics algorithms can be classified into three types: physics-based, data-driven and

hybrid prognostics as shown in Figure 2.1 (Si et al., 2011).
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Table 2.1: Summary of traditional methods using prognostics and health management

Author Title Models Advantages Disadvantages

Goode, K. B., Moore,
J., & Roylance, B. J.

(2000)

Plant machinery
working life prediction

method utilizing
reliability and

condition-monitoring
data

Weibull
distribution

Predicts failure using
both reliability and
historical condition

monitoring data

Assumes underlying
distribution for input

variables

Li, Y., Kurfess, T. R.,
& Liang, S. Y. (2000)

Stochastic prognostics
for rolling element

bearings

Crack growth
modeling

Adapts to change in
operational conditions

Failure is assumed to
be directly correlated
to the vibration signal

Marble, S., &
Morton, B. P. (2006)

Predicting the remaining
life of propulsion system

bearings

Contact
analysis

Failure prediction
considers equipment
geometry, size, load

and speed

Physical parameters
needs to be calculated
and computationally

expensive

Wang, W. (2007)
An adaptive predictor
for dynamic system

forecasting

Time series
using neural

network

Handles non-linear
variables and dont

require prior
knowledge

Predicts failure only
when the

measurement exceeds
the threshold and

with a short horizon

Zhang, S., Ma, L.,
Sun, Y., & Mathew,

J. (2007)

Asset health reliability
estimation based on

condition data

Recursive
Bayesian
technique

Predicts failure using
condition monitoring

data rather than
failure event data

Performance of model
depends on correct

analysis of threshold

Sun, Y., Ma, L.,
Mathew, J., Wang,

W., & Zhang, S.
(2006)

Mechanical systems
hazard estimation using

condition monitoring

Proportional
covariates

model

Performs well even
without failure event

data

Assumes that failure
pattern changes with

covariates
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2.2.1 Physics-based Prognostics

The physics-based algorithms for prognostics use mathematical techniques to model and

understand the degradation of equipment (Pecht and Jaai, 2010). The equipment health

estimates using this algorithm are based on the process information that causes abnormal

activity and results in failure. They detect failure which occurs under the circumstances of

mechanical, electrical, chemical, thermal and radiation disturbances (Pecht and Gu, 2009).

The algorithm is selected based on the knowledge of loading conditions and equipment

geometry (Pecht, 2008).

Figure 2.1: Classification of prognostics approaches

Physics-based prognostics are developed with an application in specific and applied at

the lowest hierarchy. Heng et al. (2009) suggested that physics-based methods are inefficient

to use in an industrial environment, because of the different types of failures observed in

various types of equipment. Furthermore, method selection is hard when the geometry of

the equipment is unavailable (Pecht and Jaai, 2010). Therefore it is ineffective to use this

due to the various assumptions, errors, and uncertainty developed in a dynamic operating

condition which leads to lower accuracy (Wang, 2010).
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2.2.2 Data-driven Prognostics

Data-driven approaches develop models based on the condition monitoring data instead of

models that depend on the comprehensive equipment physics. They assume that unless an

abnormal activity occurs in the system, it keeps working in normal condition. This approach

obtains relevant information from the raw data and behavior patterns of the equipment.

Therefore, data-driven methods have a better application due to economic modeling, as

they depend only on the historical data and don’t require any human expertise (Javed et al.,

2013; Pecht and Jaai, 2010). The data-driven prognostics methods are classified into machine

learning and statistical approaches.

Machine learning methods are based on the concept of artificial intelligence. They learn

from previous examples of failure patterns and modes in historical data. Based on the types

of data available, different types of machine learning methods can be applied. Supervised

methods are used when the data is labeled, while unsupervised methods are applied to

unlabeled data. Atherton (1999) and Yam et al. (2001) developed prognostics model using

recurrent neural networks (supervised method) to analyze the trends in the monitored data

and forecast the equipment measured value for the future. Zhang et al. (2007) used a

recursive Bayesian method on density function of measured values from the equipment to

predict failure probability. The model mostly used historical degradation pattern rather

than the failure event data.

Statistical approach predicts failure by fitting the monitored data to a probabilistic model,

and fitted curve is extrapolated. Statistical methods are similar to machine learning methods:

they are simple and use the condition monitored data to predict failure. However, the

accuracy of the model can depend on the completeness and nature of data. Si et al. (2011)

presented a survey of a literature review of statistical methods. The survey list includes

multiple methods such as regression methods, Hidden Markov models, Kalman filtering

methods, etc,. Orchard et al. (2005) employed a particle filtering method to forecast the

non-linear projection of increasing degradation in the turbo engine blade. A priori estimate
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was calculated based on the previous state of the blade and used to generate the prediction

horizon of the desired state.

Data-driven prognostics have the ability to extract relevant information from big noisy

data to make prognostics decisions (Dragomir et al., 2009). When data is collected from

equipment operating in a real industrial environment, it contains variability and noise.

Therefore the preprocessing step is an essential step to extract relevant information to

improve the accuracy of the model.

2.2.3 Hybrid Prognostics

Hybrid prognostic is a combination of physics-based and data-driven approaches. The

significance of this method is to develop an optimized prognostics model using both historical

monitoring and reliability data with minimal assumptions to handle uncertainty and predict

failures of high accuracy. Sun et al. (2006) proposed proportional covariates model (PCM)

which used system hazard as an explanatory variable and the monitoring data as response

variables. This model was used to estimate the hazard function in the absence of historical

failure data as long as the response variables were proportional to the hazard. Further

research suggested that both event failure and condition monitoring data was used in

measuring reliability estimation parameters. Hybrid prognostics is further divided into

two types: series and parallel approaches. In a series approach, a physics-based model

is paired with the data-driven method to update model parameters with new training data

(Psichogios and Ungar, 1992). In a parallel approach, a combination of data-based and

physics-based models work in concert to predict residuals in situations when other models

cannot (Thompson and Kramer, 1994).

Heng et al. (2007) developed a new paradigm called intelligent product limit estimator

which incorporated data composed of equipment health up to the time of repair or

replacement (suspended or truncated data) to predict failure. The model built using the

suspended data resulted in an excellent long-range prediction, as the equipment in operation

are never allowed to run to failure and data are suspended. In the model, Kaplan-Meier
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develops estimates using the variation in equipment health, and these estimate probabilities

are used as training targets in the feed-forward neural network. The research presents a model

which utilizes the available information and provides accurate prediction in a probabilistic

unit.

Despite the abundant research efforts, prognostics approaches are not perfect due to the

assumptions inherent in every model (Sikorska et al., 2011). Furthermore, each approach

has pros and cons, while limiting their application on the data available. A prognostics

approach for a particular application is selected based on two important factors: performance

and applicability (Jardine et al., 2006). Javed (2014) compared all the three prognostics

approaches by assigning weights based on different criteria in performance and applicability.

The data-driven approach had the maximum weight in the applicability factor as it can learn

various types of failure patterns with its general methods. However, it requires improvement

in the performance part. An et al. (2015) compared all the approaches with the help of case

study, and data-driven method outperformed others with machine learning methods. The

data-driven method performs better in the event of high levels of noise and large training

data sets. Machine learning methods in data-driven approach is still an improving field, but

it is heavily researched to improve some of the drawbacks. Because data-driven approach

especially machine learning methods are the most efficient with good applicability, this

method will be considered for further analysis in the thesis.

Some machine learning methods obtain high accuracy and some fails (Domingos, 2012),

while the quality of the data has a big impact on the performance of the learning algorithm

too. Inconsistent data will reduce the efficiency of a well tuned complex algorithm, while a

good dataset can obtain high accuracy using a simple algorithm. Thus, developing features

from raw data to extract the useful information is important (Domingos, 2012). It is also

important to note that adding useless features to the data will result in overfitting the

machine learner. Hence, in this study, the drawbacks are addressed by introducing a method

to develop indicators of importance and selecting them to prevent curse of dimensionality.
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2.3 Sensor Technology in Maintenance

Prognostics approaches have a long history of methods which evolved from using visual

inspection to sensor signals to predict failures. Traditionally human interaction was required

to diagnose equipment degradation. Fortunately, sensor technology has taken over the

advanced maintenance approaches to help identify failures (Spencer et al., 2004). Utilization

of sensor signals in parallel with the prognostic approach based data-driven methods will

reduce unplanned maintenance costs, and improve availability and safety.

In spite of advancement in maintenance technologies, unplanned and hand-held based

maintenance is still being used in some industrial equipments. At present, nearly 30% of the

equipment is not using modern technology in maintenance practices (Hashemian et al., 2005).

Emerson company reported the dataset containing pressure, level and flow transmitters

measured using hand-held maintenance technology in multiple industries. Emerson found

that 70% of the time maintenance was scheduled based on the measurement reading, while

there was no breakdown in the transmitters (Hale, 2007). However, some nuclear plants

utilized online sensor technology to get sensed reading and found that there were no problems

90% of the time in equipment (Hashemian et al., 1998). The above literature suggests

that online sensor technology, rather than hand-held devices, reduces the failure rate and

downtime.

Hashemian et al. (1995) describes that in online calibration monitoring, the equipment

with sensor measurements drifted beyond the control-limits was identified and maintenance

actions was performed during the plant downtime. This approach minimized the efforts

of operators by 90%. Hashemian et al. (2005) developed the loop current step response

method, which used active sensor measurements to schedule planned maintenance in cables,

motors and thermocouples. As noted by Hashemian et al. (2007), sensor-based predictive

maintenance methods were used to detect blockages in pressure sensing lines with the help

of pressure sensor placed at the end of the sensing line.

Effective sensor technology and monitoring builds a good foundation for developing an

efficient prognostic based maintenance. In fact, the data generated from sensors are a critical
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component for prognostics approach. However, the options of how the sensor data can be

utilized is still being researched. The sensed data is collected from different sources which

are not interconnected and an independent model is built for each source (Levis et al., 2004).

With improvement in sensor technology, integrated online sensor monitoring systems were

developed, but still lack the automated failure prediction model to utilize them efficiently

(Madria et al., 2014). Therefore, this thesis discusses the ways to close the gap of automation

using machine learning methods to build an automated failure prediction model.

2.4 Failure Prediction Models

The primary motivation for the development of prediction models is to understand the effect

of the quality of historical data on the decision that help schedule planned maintenance to

prevent failure in equipment. The failure event data and condition monitoring data can

be efficiently utilized to identify failure patterns of different faults in equipment and guide

maintenance decisions so as to reduce failure and downtime. In this section of the chapter,

different machine learning techniques that can be used in the prediction of failure is discussed.

Recently there has been a significant increase in the use of predictive models in prognostics

methodology. Multiple models have been developed for specific equipment or type of failures.

The methods include random forest, gradient boosting, neural networks and ensemble

learning methods. The focus is based on data-driven prognostics in the development of failure

prediction models and moreover, to compare the performance to select the best technique for

the study. The methods selected in this study were influenced by the application in a specific

environment, the quality of historical data, predictive performance and computational

requirements for applicability of the method.

Random Forest

Recently, random forest (RF) as a machine learning technique, has been utilized for failure

prediction in multiple operations of engineering due to its robust ability to work efficiently

with large number of indicators, small samples and also its simplicity in interpretation of
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tree-based models (Timofeev, 2004; Verikas et al., 2011). RF uses a tree-based classifier

(Breiman et al., 1984a), integrated with bootstrap aggregation (Breiman, 1996). The

algorithm exploits the use of trees in the method. Each failure pattern is trained in isolation

in a tree, and the predictions of all trees are combined to get a sophisticated result. Using

this method, Frisk et al. (2014) have predicted failures in lead-acid batteries with training

data obtained from heavy duty trucks containing heterogeneous data of 300 variables. RF

performed well even with imbalanced and missing data from trucks.

Santur et al. (2016) proposed the use of RF in a study to predict the failure that may

occur in railway tracks. Video image data of railway tracks was used to extract indicators,

and the data was used to predict the different types of faults like scouring, breaking and

deficient fasteners on tracks. The three different methods: principal component analysis,

singular value decomposition, and random forest were compared with RF achieving the

highest accuracy of 85%. In the study health assessment of bearings, Satishkumar and

Sugumaran (2016) used vibration signals of bearing to develop a failure prediction model

using RF. An accuracy of 95.64% was obtained by initially performing a feature selection

using decision trees.

Gradient Boosting Method

Friedman (2002a) developed gradient boosting machine (GBM), a machine learning classifier

to improve the predictive performance in classifications. GBM is highly appreciated because

of its robustness to interactions, missing values, imbalance and outliers (Hastie et al., 2009).

Furthermore, it automatically selects variables and leaves out irrelevant variables.

Kelvin (2016) analyzed the occurrence of unexpected failures in 1100 automated teller

machines and 280 cash acceptance machine. Multiple models were used in the modeling

step, and GBM resulted in the best model with an area under the curve of 87% to predict

the failure. Furthermore, there were key challenges of data format and volume which was

efficiently handled by GBM. Cerqueira et al. (2016) faced multiple challenges with the air

pressure system components from Scania trucks. There were missing values, outliers and

imbalance in class distribution. IN this situation, GBM was selected as the best method to
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handle the challenges and prevent overfitting. Two different algorithms, random forest and

extreme gradient boosting, were used to model the failure of air pressure components. The

best model (extreme gradient boosting) was generated with parameter tuning using ten-fold

cross-validation and obtained sensitivity cost of 3750 and lowest deviance.

In contrast to using raw sensor variables as training data and traditional statistical

methods in Hu et al. (2016) and Liu et al. (2016) to predict failure, this thesis aims to

develop relevant leading and lagging indicators from sensor variables that contain useful

information to explain the failure patterns in equipment. The best subset of indicators

are selected for modeling using the random forest and gradient boosting methods. The

best failure prediction model is selected based on their applicability to utilize the indicators

developed from the equipment and metrics in performance assessment. The following chapter

will discuss the methodology followed in this research along with a detailed explanation of

all the methods used.
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Chapter 3

Methodology

This chapter describes the methodology developed to attain the objectives of the thesis.

Initially, indicators are developed utilizing the historical dataset, and they are used in the

machine learning algorithm. The details of the development of indicators and working of

machine learning are discussed in the section of this chapter in detail. The methodology has

been divided into the following phases:

1. Data preprocessing

2. Indicator development

3. Model development and selection

4. Evaluation metrics

The data preprocessing phase consists of a novel approach to clean and prepare the data

for modeling. Indicator development describes the techniques to develop the leading and

lagging indicators. The model development phase consists of the mathematical formulation

and techniques used in formulating the machine learning algorithms for failure prediction.

The evaluation metrics phase describes the different evaluation strategies for analyzing the

quality of the prediction results.
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Figure 3.1: Methodology Flowchart
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3.1 Data Preprocessing

Data preprocessing is the phase in the methodology where the data is prepared for further

use in modeling. The challenge in this phase is the number of different activities it involves,

including variable parsing, outliers checking and balancing the label variables. Due to an

improvement in infrastructure, sensor measurement reliability increased linearly over the

last decade when compared to antiquated, manual models of data processing. Therefore,

preprocessing is a necessary task required for the model to predict failure accurately.

3.1.1 Data Organization

According to Wickham et al. (2014), the first step is to map the dataset to match its structure,

which is performed by the following steps:

1. Each variable is allocated to its unique column

2. Each observation is allocated to its unique row

3. Each observational unit is assigned to its unique table

The above steps result in a standard structured data that is easier to read because the

structured layout form paired values from different columns with the same row. However, it

does not affect the further analysis which demands organization of the variables. The most

efficient way of organizing the variables is by their importance in the analysis; the fixed time

stamp variables should come first followed by the measured sensor measurements. Rows are

then sorted based on the time stamp variables, cutting off ties with other fixed variables.

The data structuring step is followed by tidying the dataset read to the system. Initially,

the dataset requires further preparation before jumping to the analysis part. Wickham et al.

(2014) pointed out the most problems in messy datasets:

1. Column header has random names, not variable names.

2. Multiple information is stored in the same column
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3. Variables are stored in both rows and columns

Commonly the messy dataset is arranged with values of the row and column rather than

the variable names. This arrangement of data might sometimes prove useful for efficient

storage and computation, but it complicates the analysis process failing to recognize the

uniqueness of the variable. To improve the identification of variables, the values in the

headers are converted to columns with a unique variable name. The names allocated to the

columns based on the variable are easy to use and informative, maintaining the consistency

throughout the dataset.

Often, after converting values to variable names, there are multiple variable names in

the same column. The variable names in this format can be further broken down to form

additional variables, which results in useful information. Preprocessing the data in this form

extracts the hidden information resolving another problem in the messy dataset.

Variable values stored in both rows and columns is the most tricky part of the

preprocessing. The information of a certain variable is spread all over the data across rows

and columns making it difficult the analyze. The variable names are stored in the columns

while the observation values are the headers. This issue is fixed by reconstructed the data to

represent the variable names as the columns headers and each row represented by a sample.

3.1.2 Imbalanced Datasets

In the real world, datasets involving the health of equipment present imbalance in the dataset

due to rare instances, i.e., failure, which makes it difficult to develop a model as there is

little failure data compared to non-failure data to learn.

Developing a prediction algorithm with an imbalanced dataset results in a high accuracy

of the model but the prediction classifier is biased towards majority class as the number of

rows with minority class being small. For example, consider an imbalanced dataset with

20:80 ratio of minor to major label classes resulting in an accuracy of 95%. This model

initially looks like the perfect model but the results could be deceiving since accuracy favors

labels of major classes strongly while the minority classes are being misclassified.
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There are a couple of methods to solve the imbalance problem in the dataset. The

most efficient method found in the recent literature to re-balance the dataset is Synthetic

Minority Oversampling Technique (SMOTE) Chawla et al. (2002). In this approach, the

minority class is over-sampled by generating new examples to match the number of majority

classes. SMOTE identifies the nearest neighbor of the minority class example using the

Euclidean distance. A synthetic example is generated based on two examples and placed

randomly somewhere between them.

Data preprocessing is an important phase in the methodology; good quality data improves

the end results of the modeling. Like the usual saying garbage in and garbage out, a good

quality data input to the model will lead to high-quality prediction output.

3.2 Indicators Development and Selection

Developing indicators is the process of using domain-specific experience and data insights

to create features that help in the machine learning prediction. More than one indicator is

used at a time in a prediction model; the more uncorrelated the indicators are from each

other, the greater the information gain from the indicators. The set of indicators developed

for the prediction model is referred to as feature space.

In the application of predicting failures using machine learning algorithms, the data

acquired must be preprocessed before the development of feature space for effective results

from the machine learning methods (Zhang et al., 2010). Every variable in the dataset is

developed into a set of features that defines the feature space. This phase is not only limited

to the development of indicators but also includes indicator selection which extracts the most

important features affecting the trend of failure.

3.2.1 Indicator Development

Indicator development is based on different techniques that derive the required information

from the raw sensor data in order to replace variables with new and better indicators. The
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development utilizes functions from various mathematical and modeling techniques to learn

from the observed and measured sensor variables. Tan and Jiang (2013) has experimented

with techniques like decomposing, filtering, translating and more to extract the hidden

information in the sensor data. This thesis uses different techniques to develop indicators

using the historical sensor measurements which signify strong statistical evidence between

the trend in sensor variables and the occurrence of failures.

Binning Indicators

Binning is a process of transforming continuous variables into nominal or categorical

indicators which help in creating density estimations of the measured values. When

used correctly, the binning process can improve the simplicity of the model and decrease

computation time (Kim and Han, 2000). There are multiple methods in binning but equal

width interval binning was used because of its tendency to produce low discretization error.

In equal width interval binning, the variables are sorted and divided into k equally sized

intervals. For a variable x with the minimum and maximum values denoted by the xmin and

xmax, the bin width is determined by:

δ =
xmax − xmin

k
(3.1)

The value k is determined by Sturges rule where k = 1 + log2(n), where n equals the

length of the dataset (Yang and Webb, 2009). Then the method passes through the entire

dataset once transforming each variable into binned indicators independently.

Time Domain Indicators

The trends of the measured variables can vary from time to time presenting non-stationarity

in the data. According to Virili and Freisleben (2000), the time-dependent variables with

trends can often cause complexity in modeling, leading to a decrease in the quality of

predictions. Therefore, the transformed variables can display the clear change in patterns
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after removing the variability. In this section different time-dependent functions are used to

extract the indicators in the time domain as represented in the equations 3.2 - 3.13.

mean : xm =

∑N
n=1 x(n)

N
(3.2)

standard deviation : xstd =

√∑N
n=1(x(n)− xm)2

N − 1
(3.3)

range : xr = max(x(n))−min(x(n)) (3.4)

peak : xp = max|x(n)| (3.5)

root amplitude : xra =

(∑N
n=1

√
|x(n)|

N

)2

(3.6)

root mean square : xrms =

√∑N
n=1 x(n)2

N
(3.7)

skewness : xske =

∑N
n=1(x(n)− xm)3

(N − 1)x3std
(3.8)

kurtosis : xkurt =

∑N
n=1(x(n)− xm)4

(N − 1)x4std
(3.9)

crest : xc =
xp
xrms

(3.10)

margin : xma =
xp
xra

(3.11)

shape : xsha =
xrms
xm

(3.12)

impulse factor : xif =
xp
xm

(3.13)

where, n is the variable values from n = 1,2,3...,N and N is the length of the dataset.

Normalization Indicators

Normalization is the process of transforming the measured values to a common scale to deal

with variables of different units and scales. Some of the machine learning methods are prone
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to outliers; normalization intends to compare the corresponding normalized values reducing

the effects of exceptional values. The different functions used to normalize the variables are:

unity-based normalization : xun =
x(n)−min(x(n))

max(x(n))−min(x(n))
(3.14)

standard score : xss =
x(n)− xm

xstd
(3.15)

variation coefficient : xvc =
xstd
xm

(3.16)

Normalization is a tedious process as the future distribution of the variable is unknown,

leading to the null maximum and minimum values of the variable. Therefore, normalization

is to be performed after binning the variables which will eliminate outliers Gaber et al.

(2005).

Frequency Domain Indicators

The frequency domain functions transform a given variable on each given frequency band.

Finding the frequency at a particular point in time is irrelevant, but it is important to

find how much of that particular frequency is in the variable. These frequency domain

indicators are developed to find the distribution of frequency and filter the noise. Filtering

in the time domain results in complexity and causes convolution. Therefore, the time-

dependent variables are transformed into frequency domain, remove the noise with filtering

and transform it to obtain the time-dependent indicators. Fourier transform functions are

used in this case to develop the indicators.

Fourier transform treats the values in the variable as a point in the circular path and

divides it into a group of cycles that hold the same information as the original variable

(Bracewell and Bracewell, 1986). The properties of cycles are defined by strength, delay,

and speed which is later used to recreate the original variable. Initially, the variables are

passed through filters where each independent filter extract a cycle, i.e., the filters extracts all

the values in the variables without leaving any observation. After the filtering, the original

variable is obtained from the linear combination of the cycles. Fast Fourier Transform (FFT)
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algorithm is selected to perform the transformation and presented by the complexity of

O(n.log(n)) operations. The FFT algorithm consists of two equations (Harris, 1978), where

equation 3.17 represents the transformation from time domain to frequency domain and

Equation 3.18 converts the frequency domain variables back to the original time-dependent

variables.

Xk =
N−1∑
n=0

xne
−i.2πkn/N (3.17)

xn =
1

N

N−1∑
k=0

Xke
−i.2πkn/N (3.18)

where,

Xk = amount of frequency k in the variable

N = number of samples

n = current sample, n ∈ {0, .., N − 1}

k = current frequency

xn = value of the variable at time n

The transformations result in the development of indicators like frequency peaks in the

variable or the rate of change in the certain frequency.

Frequency Time Domain Indicators

The measured variables may contain hidden information in the frequency domain with

continuously changing statistics with time; such information can be extracted using the

time-frequency analysis. The methods analyze variables in time and frequency domain

simultaneously to describe the behavior of variables over all time. The time-frequency

distribution functions used to develop the indicators are described below.

The Short Time Fourier Transform (STFT) is related to the Fourier Transform introduced

in the previous section. The STFT divides the variables into short segments of equal length

based on the defined time window and analyzes each segment separately. The Fourier

transform of these separate segments results in the sinusoidal frequency and phase content
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for that particular time window of the variable (Sejdić et al., 2009). The mathematical

representation of STFT is (Allen and Rabiner, 1977):

Xn(ejωk) =
∞∑

m=−∞

w(n−m)x(m)ejωkm (3.19)

where,

x(m) = sample at time m

w(m) = window size

Xn(ejωk) = STFT

ωk = frequency value

The resolution of window size is fixed in the SFTF resulting in the trade-off between

time and frequency resolution. A wide window size results in good frequency resolution but

a poor time resolution, while a narrow window size does the opposite.

The wavelet transform is another indicator extraction method which overcomes SFTF

weakness; they are based on small windows of time with limited duration. The fixed

resolution in SFTF is replaced with a continuously changing resolution in both frequency

and time domain in wavelet transformation. Also, it produces the shifted and scaled form of

the original variable. The continuous wavelet transform which is the most common method

in wavelet transformations is used. In continuous wavelet transform (CWT), the resolution

is continuously changing with each time window to fit the variable’s frequency and time.

The equation of CWT is represented by:

Wt(a, b) =

∫ a

−a
x(t)Ψ ∗(a,b)(t)dt (3.20)

where,

x(t) = time function of the variable

Ψ ∗(a,b)(t) = continuous function in time and frequency domain

The above equation divides the variable with time and frequency domain information

into wavelet decomposition coefficients. The coefficients or a combination of them are used

as indicators.
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Basic Expansion Indicators

The idea behind basic expansions is to create all combination of variables to develop new

indicators. The indicators developed using basic expansions will help extract the non-linear

behavior of variables. The different methods in basic expansions include the following:

� Logarithmic transformation

� Dividing variables to create ratios

� Linear and polynomial interaction

� linear and non-linear combination

Rolling Aggregate Indicators

The rolling aggregate is a method in which the lagged indicators are created by selecting

a fixed window size and calculating the aggregate measures. The rolling aggregates can

be computed on several different time domain indicators such as mean, standard deviation,

peak, etc. Different lag window sizes are selected to create several indicators to explain the

short-term and long-term history of the variables.

Summary

The measure of the deviation of an equipment from the normal working condition is dynamic

and influenced by several internal and external factors. Hence, to accurately learn the

degradation patterns and correctly predict the failures in equipment, a total of 346 indicators

are developed as discussed in the section. Table 3.1 gives a summary of all the essential

independent indicators reconstructed from the original equipment sensor data.

3.2.2 Indicator Selection

Following the indicator development phase, all indicators of the dataset are available with

a high-dimensional feature space. Indicator selection is performed for multiple different
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Table 3.1: Summary of Failure Indicators Developed

Indicator Description Count Indicator Category

Failure Count 4 Binning
Mean 14 Time Domain

Standard Deviation 14 Time Domain
Range 14 Time Domain
Peak 14 Time Domain

Root Amplitude 14 Time Domain
Root Mean Square 14 Time Domain

Skewness 14 Time Domain
Kurtosis 14 Time Domain

Crest 14 Time Domain
Margin 14 Time Domain
Shape 14 Time Domain

Impulse Factor 14 Time Domain
Unity-based Normalization 7 Normalization

Standard Score 7 Normalization
Variation Coefficient 7 Normalization

Fourier Transformation 7 Frequency Domain
Discrete Wavelet Transforms 5 Frequency Time Domain

Interactions 120 Basic Expansions
Date Features 7 Basic Expansions

Time of Last Repair 14 Rolling Average

reasons. First, selecting the most important indicators in the feature space will increase

the ability of the prediction model to look at the most relevant data explaining the event

patterns and hence resulting in higher accuracy. Second, selecting the important indicators

reduces the feature space resulting in lower computation time and power. Third, smaller

feature space leads to fewer indicators which simplifies the interpretation of results. Fourth,

indicator selection avoids overfitting the data during modeling.

Indicator selection methods are divided into three types (Blum and Langley, 1997; Das,

2001):

(i) The filter method select indicators from the data independent of the classifier.

(ii) The wrapper method uses any statistical learning algorithm of interest to evaluate the

useful indicators.
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(iii) The embedded method select indicators that help improve the construction and

accuracy of the classifier.

Filter method is computationally efficient but they select indicators which are generic,

and does not take into account the chosen learning algorithm in the selection process. In turn

ignoring the bias of the classifier and reducing the fragment of the prediction model. On the

other hand, wrapper methods are reasonable as they select the indicators by training and

testing based on the hypothesis of a predefined classifier and detect indicators dependencies.

However, this is computationally expensive with a broad range of indicators.

The embedded indicator selection method is advantageous in this thesis case as there

are many indicators with a big feature space and requires interaction with the classification

algorithm. Embedded method performs computationally better than wrapper method and

utilizes the hypothesis of the learning classifier, which is not offered by the filter method (Liu

and Yu, 2005). The best technique for the embedded method is a random forest model (see

section 3.3.2). A random forest consists of many classifiers in which each new forest is trained

by selecting only those indicators that are the most important (Breiman, 2001). Multiple

such forests are created with a different set of indicators to increase the probability that only

the most important indicators are selected. After comparing, the forest with the lowest error

rate and the most accurate contribution is selected as the best subset of indicators.

3.3 Model Selection

The initial selection of machine learning algorithm for the prediction of failure in equipment

depends on the type of input data and output expected, as shown in Figure 3.2 . In this

case, supervised machine learning is selected as the training data have failure outcome as

the label variable. Furthermore, the output of the failure prediction is a class variable which

categorizes the problem as a binary class classification method. Following the categorization

of the problem, the algorithms that are applicable and practical to implement are identified.

There are numerous algorithms in classification to solve each task. But instead of selecting

a specific algorithm initially, it is preferred to look at the data and start minimizing the
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Figure 3.2: Guidelines for model selection

list of algorithms to something that makes sense with the data (Hastie et al., 2009). The

exploration of algorithms is started with building models with naive tuning of parameters

to just understand which model behaves better. Based on the result, the list of algorithms

is shortened and the top four competing algorithms are chosen. Then the real modeling

starts with parameters tuning and regularization to form a final model with the indicators

selected to predict failure. These machine learning methods are explored in further detail in

the following sections.

3.3.1 Classification and Regression Trees (CART)

Classification trees are used when the labels are provided in the data based on some derived

rules. Classification and Regression Trees are constructed on a binary decision tree by

obtaining child nodes from the parent node that contains the training sample (Breiman

et al., 1984b). The following CART methodology is explained by Timofeev (2004) using tp

as the parent node and tl, tr as the left and right child nodes of the parent node tp. The

classification tree follows the splitting rule which splits the parent node into smaller parts

with maximum homogeneity. The impurity function i(t) is the measure of the maximum
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homogeneity of child nodes. The CART applies maximization problem at each split in the

nodes:

argmax
xj≤xRj ,j=1,...,M

[i(tp)− Pli(tl)− Pri(tr)] (3.21)

where X is a matrix with M number of variables xj and K classes, xRj is the best splitting

value of variable xj and we assume that Pl, Pr are the probabilities of the left and right

nodes.

There are many impurity functions in practice, but the most commonly used impurity

function is the Gini index (Breiman et al., 1984b) and is represented by:

i(t) =
∑
k 6=l

p(k|t)p(l|t) (3.22)

where k, l 1,...,K are the index of class and p(k|t) is the conditional probability of class

k at node t.

Gini index can be obtained by applying the impurity function 3.22 to the maximization

problem 3.21:

argmax
xj≤xRj ,j=1,...,M

[
−

K∑
k=1

p2(k|tp) + Pl

K∑
k=1

p2(k|tl) + Pr

K∑
k=1

p2(k|tr)

]
(3.23)

With the help of equation 3.23 maximum tree is produced where the nodes were separated

up to the last observation. The tree structure built may be highly complex and consist of

multiple layers. Therefore, before applying the classification tree on testing data to validate

the model, the trees must be optimized by choosing the right size tree by cutting off the

insignificant subtrees.

There are two pruning algorithms in practice: optimization by a number of points in

each node and cross-validation. In case of optimization, the splitting of the parent node is

stopped when the number of observations is less that the predefined number, usually 10% of

the learning sample size. Similarly, cross-validation finds the optimal point between the tree

complexity and misclassification error which is obtained through cost-complexity function.
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With the help of the above parameters, each of the observations in the sample will get to

one of the nodes in the tree. Later, this value will be allocated to the dominant label value.

3.3.2 Random Forest

Random forest is a method in the ensemble learning (Ho, 1995) for classification and

regression that produces multiple decision trees and outputs the classes. Breiman (2001)

proposed random forests, which adds an extra layer by generating random components into

the tree, which produces a distribution of trees. Moreover creating a distribution of predicted

values for each sample label.

When different bootstrap samples are selected, the structure of the tree may look similar

due to the fundamental relationship but they all look the same at the beginning and are

correlated to each other. Therefore, Dietterich (2000) developed a way of random split

selection, where at each split of the tree a random subset of top predictors are selected

to build the next tree. Then each model in the ensemble casts a vote for the prediction

probability of a new sample and the proportion of votes from the models is the predicted

probability.

Algorithm 1: Random Forest Algorithm

1 Select the number of models to build, M
2 for i = 1 to M do
3 Generate a bootstrap sample of the original data
4 Train a tree model Ti on this sample
5 for each split do
6 Randomly select k (< P ) of the original predictors
7 Select the best predictor among the k predictors and partition the data

8 end
9 Use typical tree model stopping criteria to determine when a tree is complete (but

do not prune)
10 end

11 h(·) =
1

M

∑M
i=1 Ti(·)

The tuning parameter that random forest uses to choose the number of randomly selected

predictors is commonly denoted to asmtry which re-correlates the trees in the forest. Breiman
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(2001) recommended setting mtry to the square root of a number of predictors, while mtry

can also be selected optimally by using cross-validation for larger forests.

A general random forest algorithm (Kuhn and Johnson, 2013) to develop a tree-based

model for classification can be implemented as shown in Algorithm 1. A random forest

model is proven to perform accurately and computationally efficient compared to bagging

and boosting. The linear combination of many different classifiers reduces the variance of

the ensemble learner relative to the individual classifier, while random forest achieves this

variance reduction by combing many complex classifiers under the ensemble. Since, each

classifier is selected independently of all other classifiers, random forest exhibits improvement

in error rates and is robust to noisy data.

3.3.3 Stochastic Gradient Boosting

Stochastic gradient boosting is one of the most efficient algorithms for modeling the failure

of machines. Friedman (2001) utilized the boosting statistical framework to develop a simple

and highly adaptable efficient algorithm called “gradient boosting machines.” The algorithm

works with a given loss function and a weak learner before minimizing the loss function by

finding a suitable additive model. The boosting starts with the best estimate of the response

sample and with the help of the initial estimates, gradient (i.e., residuals) is calculated, and

the model is fit to the gradients to reduce the loss function. The fitting model is added to

the previous model and continues during a specified number of iterations.

Since boosting works better with weak learners, any technique which uses tuning

parameters can make a weak learner. The learner is an excellent match for boosting trees

because of many reasons. Foremost, trees have the ability to demonstrate the ability of a weak

learner by restricting their depth. These trees can be added together in a classification model

to obtain better predictions. Lastly, trees structure can be produced rapidly. Therefore, the

predictions from these trees can be aggregated which makes it perfectly suitable to be used

in an additive modeling process. The algorithm for gradient boosting (Friedman, 2002b) is

shown in Algorithm 2 as:
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Algorithm 2: Gradient Boosting Algorithm

1 Initialized all predictions to the sample log-odds: f
(0)
i = log p̂

1−p̂
2 for interation j = 1,...,M do
3 Compute the residual (i.e. gradient) zi = yi − p̂i
4 Randomly sample the training data
5 Train a tree model on the random subset using the residuals as the outcome

6 Compute the terminal node estimates of the Pearson residuals: ri =
1/n

∑n
i (yi−p̂i)

1/n
∑n

i p̂i(1−p̂i)

7 Update the current model using fi = fi + λf
(j)
i

8 end

Gradient boosting works with two tuning parameters: tree depth and number of

iterations. Tree depth is also known as the interaction depth Kuhn and Johnson (2013),

as each split of the parent node can be a higher level interaction term with the split in

the previous tree predictors. From Algorithm 2 we can see that it has similar steps as the

random forest where the trees are used as the base learners, and the final prediction is based

on ensemble ranking of models. However, the ensemble created in gradient boosting differs

compared to other methods. The models are dependent on the previously structured trees, in

which the depth of the tree is minimized using the tuning parameter and contribute unevenly

to the final model.

Gradient boosting machine can be liable to over-fitting because even the weakest learner

moves towards optimally fitting the gradient (Friedman, 2001). This causes the weak learner

to use greedy strategy to select an optimal solution at the current stage. But the learner

fails to find an optimal global solution leading to over-fitting the training sample. A way to

overcome the greediness is to engage shrinkage parameter in controlling the learning process.

The shrinkage parameter can be regularized by adding a penalty to the sum of squared errors

(SSE)if the estimates become large (Hoerl and Kennard, 1970) and is given by:

SSEL2 =
n∑
i=1

(yi − ŷi)2 + λ
P∑
j=1

β2
j (3.24)

The equation 3.24 comes in effect when there is a decrease in SSE; the parameter estimates

shrink towards 0 while increasing the λ. The regularization parameter 3.24 can be added to
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the final step of the loop in Algorithm 2. In gradient boosting only a partial of the predicted

results from current iteration is contributed towards the previous iteration’s results. This

ratio is known as the learning rate or denoted by the symbol λ and varies between 0 and 1.

The method also provides variable importance in classification. The importance is

calculated by recognizing the improvement of each predictor at the split within each tree in

the ensemble. The values are aggregated and averaged across the different ensemble models.

3.3.4 eXtreme Gradient Boosting

XGBoost (Chen and Guestrin, 2016), also known as eXtreme gradient boosting, is a famous

scalable machine learning algorithm for tree boosting. The xgboost method is highly

efficient due to its property of scalability and runs almost ten times faster compared to

the existing popular methods on a single machine. It also handles billions of rows when

running in parallelism. The scalability of xgboost is due to several algorithm optimizations

and innovations (Chen and Guestrin, 2016) that include novel tree learning algorithm and a

quantile weighted procedure which handles instance weights of different trees in the ensemble.

XGBoost modeling is based on least-square residual fitting with a squared-loss objective

function which follows the sample principle as stochastic gradient boosting from previous

section 3.3.3. However, the upgrade is located in the modeling framework, improving the

boosting method that was originally developed by Friedman et al. (2000) to get better

accuracy by controlling over-fitting through regularized model formalization.

The changes that Chen and Guestrin (2016) made in the regularized objective are

explained as following with n samples and m variables including K additive functions.

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F , (3.25)

where F =
{
f(x) = wq(x)

}
(q : Rm −→ T,w ∈ RT ) is the space of functions containing

all the classification trees. In Equation 3.25, q represents the structure of trees, T is the

number of leaves, fk corresponds to an independent tree structure q and leaf weights w. The
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decision rules are used to classify the trees into leaves and then calculate the final prediction

by summation of leaf scores. To obtain the set of function, the following regularized objective

is minimized.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(f) = γT +
1

2
λ ‖w‖2

(3.26)

In equation 3.26, l is the residual function of ŷi and yi. The second term Ω is the penalty

term which works on the complexity of the model. Also, it helps smooth the weights to avoid

over-fitting. The regularized objective will select the model with simple and best predictive

functions. The Xgboost methodology developed by Chen and Guestrin (2016) is shown in

Algorithm 3.

Algorithm 3: Xgboost Algorithm

1 Add a new tree in each iteration
2 Beginning of each iteration, calculate

gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)), hi = ∂2

ŷ(t−1)l(yi, ŷ
(t−1))

3 Use the statistics to greedily grow a tree ft(x)

Obj = −1
2

∑T
j=1

G2
j

Hj+λ
+ γT

4 Add ft(x) to the model ŷ
(t)
i = ŷ

(t−1)
i + ft(xi)

� Usually, instead we do y(t) = y(t−1)+ ∈ ft(xi)

� ∈ is called step-size or shrinkage, usually set around 0.1

� This means we don’t do full optimization in each step and reserve
chance for future rounds, it helps prevent over-fitting

Most of the existing machine learning tree algorithms require defined procedures,

but Xgboost is a tool motivated by formal principle. Xgboost provides automation of

optimization and regularization. Also, it overworks to obtain a scalable and accurate

prediction.
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3.4 Model Tuning

Three different algorithms are selected for the prediction of failures in equipment. Each

algorithm has one or more parameters that can alter the working of the model and different

ways of training the model on the dataset. These parameters ultimately affect the accuracy

of the model. Therefore, model tuning is used to identify the optimal set of parameters to

obtain the highest accuracy for the given dataset.

Each model is tuned and optimized to obtain the lowest test error. Time-series based

cross-validation is used on the timestamped dataset considered in this thesis to find the

optimal set of parameters as suggested by Bergmeir et al. (2015).

In cross-validation, the dataset is divided into two parts: training and testing dataset.

The training set is used to adjust the parameters while the testing set is used to confirm

the predictive performance of the model. During the model training process, the training

set is further split into 10 subsets or folds of equal size where the first two folds are training

set and third fold is validation set. The step is repeated by adding the succeeding subset of

data to the training set while the data in fourth fold is used as validation set. A step-by-step

procedure of the cross-validation process can be seen in Figure 3.3.

Each of the cross-validation steps produces a validation error, which acts a measure to

describe the performance of the model. The average of these validation errors is considered

to compare the machine learning models.

3.4.1 Tuning of Methods Used

Each machine learning algorithms use different parameters to improve the predictive accuracy

of the classification. The parameters used for tuning the methods are described in Table

3.2. The methods are tuned using the caret package (Kuhn, 2008) based in R software.

Using a 10-fold cross-validation with three repeats of the process as shown in Figure 3.4,

the optimal value of tuning parameters is selected to obtain the highest accuracy from the

chosen machine learning methods. These parameters are again plugged into the method and
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Figure 3.3: 10-fold cross validation process for time series data

performed on the validation dataset to verify the improvement in accuracy. The methods

with optimal parameters is then used on the test dataset to obtain failure time predictions.

3.5 Evaluation Metrics

The output of the machine learning failure prediction is obtained in the form of a binary

decision whether the equipment status is failure-prone or not. The selected machine learning

methods is first fit on training data to tune the model, then the trained model is used to

prediction failures in equipments using the test data. The predictive accuracy of the model

is evaluated using contingency table from which multiple metrics are derived. The decision

rules setup in the algorithm is based on the tuning parameters used such as number of trees

and number of variables at each split. While distribution estimates can be derived from the

data set, finding optimal tuning parameters is specific to the method and is quite difficult.
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Table 3.2: Tuning parameters for the methods used on training dataset

Method Tuning Parameters
CART cp - complexity parameter

Random Forest
n.tree - number of trees to grow
mtry - number of variables at each split

Stochastic Gradient Boosting

n.tree - number of trees to fit
interaction.depth - maximum depth of variable interaction
shrinkage - parameter to control tree expansion
n.minobsinnode - minimum number of observations in node

eXtreme Gradient Boosting

max depth - maximum depth of a tree
eta - shrinks the variable weights
gamma - loss reduction parameter
colsample bytree - subsample ratio of columns
min child weight - minimum sum of instance weight
subsample - ratio of variables to train model

(a) Random forest uses two tuning parameters
n.trees and mtry

(b) Gradient boosting uses four tuning param-
eters n.trees, interaction depth, shrinkage and
n.minobsinnode

Figure 3.4: Tuning of random forest and gradient boosting methods

Indeed, the parameters in the failure prediction methods can be tuned to obtain better results

than the other failure prediction method. Therefore, for this reason, multiple classification

metrics are used to evaluate the performance of the failure prediction approaches.
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3.5.1 Confusion Matrix

A confusion matrix, also known as an error matrix (Stehman, 1997) or contingency table,

is a visual representation of the performance of a supervised machine method as shown in

Table 3.3 . It presents the difference between incorrectly and correctly classified labels which

will help for demonstrating the accuracy of the model. Consider a matrix of size n×n where

n is the number of classes. Each column in the matrix represents the label counts from the

testing data while each row represents the predicted label counts.

Table 3.3: Confusion Matrix

True Class

Failure Non-Failure Sum

Prediction
Class

Failure True Positive (TP) False Positive (FP) Positives
Non-Failure False Negative (FN) True Negative (TN) Negatives

Sum Prediction Non-Failures Total

From confusion matrix, a different conclusion can be derived for the classification results

of the prediction algorithm. The misinterpreted results are represented in two distinct ways.

False negatives occur when the prediction algorithm predicts a failure but the machine, in

reality, is working normally whereas false negative suggests that the machine is working

normally, but in reality, it is failure prone. In failure prediction, the false positives, and false

negatives are referred to as false and missing warnings. Similarly, the correctly classified

results is presented in two different cases: true positive occurs with the prediction correctly

classified as failure-prone, while the true negatives occur when the prediction are properly

classified as not failure-prone.

From the confusion matrix, various metrics as shown in Table 3.4 can be derived to

compare different prediction models. The metrics shown in the table is further explained in

the next sections.
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Table 3.4: Metrics derived from confusion matrix (Table 3.3)

Metric Name Symbol Formula

Accuracy acc TP+TN
TP+TN+FP+FN

Precision p TP
TP+FP

3.5.2 Accuracy

In classification methods, the performance is evaluated based on the accuracy metric, which

is the ratio of a number of correct prediction to the number of all predictions. The accuracy

performs as:

Accuracy =
true positives + true negatives

true positives + false positives + false negatives + true negatives
(3.27)

Although accuracy is the most widely used metric, it is an inappropriate metric for failure

measure. This is due to the fact that accuracy is not very descriptive when the failures are

rare events. The model can be highly accurate but may still lack in the power of predicting

the failures.

Consider an imbalanced training data set with 99% non-failures and 1% failures; the

classifier will result in an excellent accuracy by correctly classifying the non-failures. In this

case, the classifier may identify all non-failures and obtain high levels of accuracy without

taking randomness into account. Rather, metrics such as precision and recall measures the

correct number of failures predicted with imbalanced data, making them appropriate to be

used in the failure prediction evaluation.

3.5.3 Precision and Recall

In recent days, the popularity of precision and recall are increasing with the classifier

performance, which was originally introduced by van Rijsbergen (1979). Precision can be
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defined as the ratio of a number of correctly classified failures to the total number of events

that are classified as failures. Recall is the ratio of correctly classified failures to the total

number of true failures in the data set:

Precision =
true positives

true positives + false positives
=

correct warning

failure warnings
(3.28)

Recall =
true positives

true positives + false negatives
=

correct warning

total failures
(3.29)

Based on the imbalanced data mentioned above, precision would be the failure warning

generated as such, while recall would be a number of failure warnings correctly identified

failures from all the labels in the dataset. Precision and recall are dependent on each other,

each metric achieves better at the expense of other metric. A perfect failure prediction

model will result in precision and recall of 1.0. Since the evaluation metrics has overcome

the extreme imbalance in the data set, precision and recall are suitable where the failures

are much more rare events compared to the non-failures.

3.5.4 F-score

Precision is inversely proportional to recall, i.e., improving precision reduces recall, i.e.,

reducing the false positives increases the false negatives. F-score incorporates the effect of

both precision and recall. The F-score is a more stable measure of precision and recall in a

single measurement which is shown in the equation below.

F-score =
2 × (Precision × Recall)

Precision + Recall
(3.30)
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Chapter 4

Results and Application

This chapter presents the case study and the results of the implementation of the failure

prediction model. The case study was developed to test the predictive accuracy of the model

using the asset performance data from Meridium (2017) and validated using benchmarked

dataset from NASA’s Prognostics Data Repository (NASA, 2008). The results are presented

with a brief explanation of the dataset along with exploratory analysis. In the case study,

indicators were developed and filtered to select the best subset which was introduced into a

predictive model.

4.1 Asset Performance Data

The database of centrifugal pump records was obtained from Meridium, an asset performance

management organization. The database consists of information from three tables:

equipment records (EQ), work history data (WH) and sensor reading records (READINGS).

The equipment records table consists of 906 centrifugal pumps with 10569 failure and non-

failure recorded events, each with sensor measurements of about five to ten years. The

performance of centrifugal pump is obtained from responses of seven sensed variables as

shown in Figure 4.1. The equipment and sensor records consist of the date and time stamps;

recorded corresponding to any event in the equipment, while the sensor measurements are

recorded at an hourly interval for every equipment. The sensitive information which can
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identify the equipment are removed as requested by Meridium to maintain confidentiality.

The variables extracted from the data tables are listed below in Table 4.1.

Figure 4.1: Sensors installed in centrifugal pump to monitor performance, adopted from
Meridium (2017)

4.1.1 Preprocessing

Preprocessing is an important step to obtain consistent and outliers free data to input into

the prediction model. Since the failure records were entered by the operators, the significant

number of missing values, duplicate values, and inaccurate format of entry was found. This

step is implemented to obtain good prediction results with high performance. Based on the

specific assumptions considered in Chapter 1, the following steps are taken to make the data

more accessible.

1. The variable equipment type description contains the equipment type and along with the

manufacturer name encoded as a number. The manufacturer name may be useful in a

general evaluation, but offer little importance to predict failure. Hence, the variable was

parsed, and only the equipment type was considered.
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Table 4.1: Variable description

Type of Information Table Name Description
Equipment Type

Description
ER Defines equipment category

Equipment Start
Date

ER
Date-time when equipment started

operating

Event Type WH
Defines the event type like repair,

preventive or predictive maintenance
Event Start Date WH Date-time when the event started

Maintenance Start
Date

WH
Date-time when the maintenance

started
Maintenance

Completion Date
WH

Date-time when the maintenance
ended

Equipment
Available Date

WH
Date-time when the equipment is

available after maintenance

Internal ID WH
Unique identification number of

equipments
Breakdown
Indicator

WH
Status whether the equipment failed

or not

Maintenance Order WH
Type of maintenance performed:

corrective, preventive or predictive
Maintenance

Priority
WH

Type of maintenance assigned based
on severity of event

Sensor Timestamp READINGS
Date-time when the sensed variables

are recorded; hourly interval
Suction Pressure READINGS Pounds per square inch

Discharge Pressure READINGS Pounds per square inch
Flow READINGS Gallons per minute

Vibration READINGS Millimeters per second squared
Temperature READINGS Degrees Fahrenheit

RPM READINGS Revolutions per minute
Power READINGS Horse power

2. After merging EQ and WH, 4 out of 11 variables had missing values. These equipment

records were not considered in further analysis.
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3. To ensure that the events are not recorded before the equipment start date, the following

conditions were tested:

Equipment Start Date ≤ Event Start Date ≤ Maintenance Start Date

Maintenance Start Date ≤ Maintenance Completion Date ≤ Equipment Available Date

4. The variable names were encoded with special character and numbers which made it

difficult to understand. The names were changed to match the description of data in the

column.

5. The dates were specified in different formats in date-time columns. To make it consistent

with the analysis, it was changed to MM:DD:YY HH:SS (month:day:year hours:seconds).

6. The imbalance due to a smaller number of failure occurrences leads to a higher number

of non-failure records compared to failure records in the dataset. The failure records are

increased by oversampling using SMOTE (Chawla et al., 2002) to balance the dataset.

After the preprocessing step, the tables EQ and WH were combined to obtain 11 variables

with 10450 records. The number of event samples was reduced from 10569 to 10450 records

after removing the rows with missing values and running the above-mentioned conditions.

A general visualization of sensors can be seen in Figure 4.2.

4.1.2 Preliminary Modeling

Once the dataset is preprocessed, the historical sensor variables were used to create the

preliminary failure prediction models using the selected machine learning methods (see

Section 3.3). The sensor variables employed in the current evaluation will act as a benchmark

to check if the model performs better after developing additional indicators with the historical

data. For evaluation purpose, the model is created using only the training data, and then

the accuracy of the failure predictions is checked using the test data. Failure of equipment
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Figure 4.2: Centrifugal pump sensor measurements

were recorded in the testing data, so the failure predictions of the model was compared with

the recorded event to check the performance.

The first 80% of the historical sensor measurements was used as the training data while

the remaining 20% of the sensor measurements was used as test data. The preliminary model

was created with default tuning parameters in the model. The objective of the preliminary

model was to train the methods without spending much time and analyze the behavior of

the dataset before developing the model for a production environment. The testing data

was used to evaluate the performance of the model as there was no need to wait for the next

failure to occur in the equipment.

Figure 4.3 shows the various evaluation metric values for the preliminary models

(Classification and Regression Trees, random forest, stochastic gradient boosting and
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(a) Evaluation of model using accuracy, precision,
f-score and kappa

(b) Sensor variable importance plot using random
forest

Figure 4.3: Performance of preliminary model

eXtreme gradient boosting). From the figure, the performance of the eXtreme gradient

boosting is the best with 46% accuracy. However, a model with such low accuracy cannot

be used in the production environment as it fails to predict the future failure in equipment.

The variable importance plot identifies the relative importance of each variable contributing

towards the accuracy of the model can be seen in Figure 4.3. The vibration sensor contributes

the most for the prediction of failure. However, the contribution of the sensor variables is

not much. The information comprised in the historical sensor variables is adding little value

to help improve the accuracy of the model. Therefore, to obtain better information from

the historical sensor variables, failure indicators should be developed using domain-specific

knowledge.

4.1.3 Indicator Development and Selection

Additional indicators were developed from the historical sensor variables to improve the

information contributed towards the prediction of failures without losing the original

59



information. The measurements of seven sensor variables shown in Figure 4.2 were not

directly useful in the prediction of failure as some of the sensors did not show any change

in patterns during the failure of equipment. In other cases, the variables may be correlated

proving it difficult to develop a good failure prediction model leading to a bad model with

over-fitting or under-fitting the data.

A time-stamped data point in the dataset represents the working condition of the

equipment at a point in time along with a label of either failure or non-failure. As seen

in the methodology section 3.2, a recorded measurement from the sensor can be represented

in multiple ways. Multiple functions were applied to the 7 historical sensor variables to

create 346 failure indicators which were represented in vector form (shown in Figure 4.4).

Figure 4.4: The process of creating failure indicators from the historical sensor data in the
database

The dataset contains 346 unique failure indicators after the indicator development stage.

Some indicators in the feature space had zero or near zero-variance which causes prediction

model instability. Therefore, the best subset of failure indicators were selected to improve
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Figure 4.5: The process of creating failure indicators from the historical sensor data in the
database

the prediction performance. Each time a selected indicator was added to the model, a

performance gain was observed.

The best set of failure indicators to predict failure was identified with the help of variable

importance feature of random forest method. From the 346 indicators developed, a total of

109 indicators was selected so as to accurately observe the change in patterns and predict

the failure in equipment. Figure 4.5 shows the relative importance of the top 20 indicators

selected based on the Gini impurity index using the random forest classification method.

Table 4.2 describes the indicators referencing the Figure 4.5 in the decreasing order of

importance chosen for failure prediction modeling. From the tabulated table, there were

14 time domain indicators, 4 basic expansions, and 2 frequency domain indicators.

The important indicators selected for predictive modeling will potentially help the

maintenance practitioners look for any significant patterns leading to failures and schedule

maintenance before the equipment stops working. The largest influence of failure consists

of time domain indicators especially Kurtosis of sensor variables. The sudden change in the

sensor measurements is captured by Kurtosis which differentiates the small changes which

occur due to atmospheric conditions compared to the significant changes due to equipment
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degradation. Kurtosis had a higher value when there was a failure which helped the model

setup conditions to classify between failure and non-failure.

The indicators derived from the timestamp also played an major role that can explain

the seasonality of the age-related failure patterns (Wang et al., 2006). The identified basic

expansion indicators as detailed in Table 4.2 are consistent with the finding from flight

engine failure study by Keller et al. (2006) in which, the probability of failure increased

on a particular day of the week due to long flight period. The basic expansion indicators

explained one of the possible failure mechanisms associated with long working hours that

created too much stress inside the pump walls (Wohlgemuth et al., 2006).

The failure indicators obtained from the selection process was used as input for the

failure prediction model to predict the future failure probability of an equipment in the asset

performance data. The section to follow will present the results of failure prediction models

using different machine learning methods.

4.1.4 Performance Comparison of Failure Prediction Models

Four different machine learning algorithms: classification and regression trees (CART),

random forest (RF), stochastic gradient boosting (GBM) and eXtreme gradient boosting

(xgboost) methods are used in the development of the failure prediction model. The best

method for the classification of failures was selected after comparison of the evaluation

metrics. The goal is to find the best algorithm that can perform with the highest accuracy

using the failure indicators developed. For this reason, the dataset is split into training and

test data, where the first 80% of the recorded sensor measurements are treated as training

data while the remaining 20% of the sensor measurements are used as test data. Table 4.3

lists the evaluation metrics accuracy, precision and F-measure for the methods utilized for

modeling. Xgboost method was the best method compared to others with an accuracy of 90%

followed by GBM method with 87% accuracy. When compared to random forest method,

that is the most commonly used method for failure classification (Ngai et al., 2009), xgboost

method performs with greater accuracy by correctly classifying the failures and non-failures.
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Table 4.2: Description of top 20 indicators selected using random forest model

Indicator
Description

Importance Indicator Type Reference

Kurtosis in vibration 90.22 Time domain X1
Skewness in RPM 80.55 Time domain X2
Kurtosis in RPM 78.87 Time domain X3

Skewness in discharge
pressure

77.08 Time domain X4

Kurtosis in power 60.66 Time domain X5
Interaction of

discharge pressure,
power and rpm

20.32 Basic expansion X6

Skewness in power 17.05 Time domain X7
Peak in rpm for 24
hour aggregation

14.56 Time domain X8

Kurtosis in suction
pressure for 3 hour

aggregation
14.48 Time domain X9

Fourier
transformation of

temperature
12.07 Frequency domain X10

Peak in power for 24
hour aggregation

11.64 Time domain X11

Day of the week 9.59 Basic expansion X12
Skewness in
temperature

7.73 Time domain X13

Range in flow for 24
hour aggregation

6.63 Time domain X14

Week of the year 4.87 Basic expansion X15
Interaction of

temperature and rpm
3.55 Basic expansion X16

Standard deviation in
temperature

1.75 Time domain X17

Fourier
transformation of flow

1.25 Frequency domain X18

Kurtosis in vibration
for 24 hour
aggregation

1.06 Time domain X19

Kurtosis in flow 0.94 Time domain X20

63



Table 4.3: Performance of the failure prediction methods

Prediction Method Evaluation Metrics Time(ms)

Accuracy Precision F-measure

CART 60 80 43.5 1566.4
RF 71 90.7 60.7 2578.56

GBM 87 97.8 85 3600.26
Xgboost 90 99 90.1 2122.85

Figure 4.6: Comparison of performance metrics and computational time

Figure 4.6 is the visual representation of performance metrics across different failure

prediction methods presented in Table 4.3. Another important metric to be considered

while comparing the prediction methods is the build time and classification speed of the

algorithm while training the model with failure indicators. This metric is important while

working with real-time data of thousands of rows together. Figure 4.6 shows that CART

method has the lowest build time followed by xgboost method with a 556 minutes difference.

However, xgboost method is preferred for prediction in the production environment due to

its higher performance and relatively low build time.

The next case study application utilizes a data set obtained from NASA data repository

based on aircraft turbine engines. This application will further explain the efficacy of

indicator development and selection methods for failure prediction.

64



4.2 NASA Benchmark Data

The NASA benchmark data set (NASA, 2008) consists of 100 engines each with multiple

rows of multivariate data that includes time-stamped sensor data collected over every hour.

The data described the working condition of aircraft turbine engines. The failure is detected

at the component level in the engine with four different rotating components and exhibits

output responses of pressure, vibration, voltage, and rotation as shown in Figure 4.7. The

time series sensor dataset comprised of a total of 876100 entries. The sensor dataset consists

of time-stamped sensor values at hourly intervals.

Figure 4.7: Engine sensor measurements
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The historical dataset consists of maintenance and failure records. The maintenance

dataset includes scheduled and unscheduled maintenance records which consist of both

regular inspections as well as component failure. The records are entered into the

maintenance dataset when a new component is introduced into the equipment during the

scheduled maintenance or due to a failure. The entries created due to breakdown are entered

into the failure dataset. The failure dataset consists of a total of 761 entries among four

different components in the equipment which is shown in Figure 4.8. The historical records

are merged with the sensor measurements using the timestamp column.

Figure 4.8: Failure in the components

The timestamped 4 historical sensor measurements were used to develop 94 leading and

lagging failure indicators. However, because only some of indicators interpret the failure

pattern, the 94 unique indicators passed through indicators selection method using random

forest model. A total of 46 indicators were selected as the best subset that contributed to

the failure prediction compared to the other indicators. These 46 indicators were used to

develop a failure prediction model and predict the probability of failure of each component

in the equipment.
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4.2.1 Results

The process of finding a robust method for automatic prediction of failures was performed by

training and cross-validation of four different machine learning algorithms. The classification

performance of the algorithms was used for comparison to select the best model. The goal

was to find best method that can predict failure using the incoming small real-time data.

For this reason, the entire dataset was divided into training and testing set of 80:20 ratio.

The training dataset was again split into increasing size of 10% to 90%. All the algorithms

performed well with good accuracy. However, stochastic gradient boosting performed the

best (see Table 4.4 and Figure 4.9).

Table 4.4: Performance of the failure prediction methods for engines

Prediction Method Evaluation Metrics Time(ms)

Accuracy Precision F-measure

CART 75 83.6 62.8 765.6
RF 83 85.5 82.6 720.56

GBM 89 90.9 85.7 980.2
Xgboost 85 91.7 89.2 920.7

Figure 4.9: Right:Results of failure prediction models using evaluation metrics accuracy,
precision and f-measure. Left: Comparison of computation time

In this work, automatic methods were presented to predict failures occurring in centrifugal

pumps and aircraft turbine engines. The availability of failure occurrence in equipment or

components in advance helps in scheduling planned maintenance activities. Furthermore,
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the reliability is enhanced which improves the throughput and increases the profit for an

organization.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

A robust methodology that provides accurate estimates of failure in centrifugal pumps

using extreme gradient boosting model is presented in this thesis. The developed model

predicts the failure of pumps twenty-four hours in advance by accurately capturing the failure

patterns and with the help of time-frequency indicators engineered from the historical sensor

measurements. For every centrifugal pump, data from the sensor measurements is mined

to obtain the failure patterns to analyze the intervention or degradation. The predictive

accuracy of the extreme gradient boosting model is compared with random forest, stochastic

gradient boosting, and classification and regression trees with the help of multiple evaluation

metrics like accuracy, precision, and f-measure.

Extreme gradient boosting model is efficient as it proved to have a better fit for the data

set and it takes less time to classify the failure events even for a higher order of magnitude

of data as compared to stochastic gradient boosting model (second best model), which tend

to over-fit the sensor measurements to non-failures. The best model was evaluated with

benchmark dataset from NASA data repository and obtained a good accuracy model.
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Relative the traditional data-driven methods which used historical sensor measurements

and failure rates, there is an improvement in the prediction accuracy of the developed

methodology because of the development of leading and lagging indicators.

Implementing the failure prediction model will help in scheduling planned maintenance

by eliminating downtime in equipment. Providing the maintenance practitioners with the

failure times will positively impact the performance of the system by increasing the reliability

and availability. It also has the capability to improve maintenance costs and maintenance

related logistics.

5.2 Contributions

The research described in this thesis leads to many contributions to the area of failure

prediction and planned maintenance. These contributions result in the development of

leading and lagging indicators from the historical data sources for use in the machine learning

failure prediction methods. Additionally, a platform was built to identify and validate failure

prediction models for different scenarios. The contributions are explained here.

1. Development of a set of leading and lagging indicators to characterize the failure

patterns in the equipment for application of the machine learning failure prediction

methods.

2. Development of an automated process to use suitable methods to identify an optimal

or near-optimal subset of failure indicators, including preprocessing methods to remove

less relevant data sources to improve the computation time.

3. Development of the R-Studio based program script to incorporate the application of

four types of machine learning model development. Methods to aid in the development

and selection of indicators and also to some extent to automate the process is included

in the script.
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5.3 Future Work

5.3.1 Model

The developed failure prediction model demonstrated its ability to classify the failures with

good accuracy, however, there can be further improvements. By incorporating the individual

failure messages with failed parts as potential predictor variables, a more detailed model can

be developed resulting in the prediction of failure parts or mode. There also exists a potential

to combine real-time environmental conditions with sensor measurements. This information

can be used to develop more indicators which may lead to better estimation of failures.

Furthermore, the model can be extended to other equipment by simply changing some of

the indicators applicable to them.

5.3.2 Software

The developed model can be enhanced by integrating the existing scheduling tools used by

maintenance practitioners to forecast the capacity. By doing this, the software can develop

the bill of materials and manage the arrival of materials to the equipment. The same

information can be displayed on the shop floor as a dashboard, providing the operators with

updated information.
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Appendix A

Asset Performance Data

A.1 Addressing the imbalance problem

Figure A.1: Over-sampling failures to balance the data
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A.2 Failure indicators

Figure A.2: Sample of indicators developed from sensor measurements

90



Vita

Dhanush Agara Mallesh is currently a graduate student pursuing two Master’s, Master

of Science in Industrial Engineering and Master of Science in Statistics at the University

of Tennessee, Knoxville. Prior his graduate studies, Dhanush obtained a Bachelor of

Engineering degree in Mechanical Engineering from AMC Engineering College, India in

2013. He attended two different schools Frank Anthony Public School and BGS International

Residential School where he lettered in soccer, field hockey and track, graduating in May

2007.

Dhanush Agara Mallesh was born on May 1991 in Bangalore, India. He is the son of

Mallesh Agara Mallegowda and Shantha Gorur Chickkegowda of India, and is the younger

brother of Kavya Mallesh. At UTK, he was awarded the Extraordinary Professional Promise

honor which is provided to graduate students who demonstrate professional promise in

teaching, research or other contributions. His research interests include predictive modeling

and natural language processing.

91


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2017

	Developing Leading and Lagging Indicators to Enhance Equipment Reliability in a Lean System
	Dhanush Agara Mallesh
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Approach
	1.4 Assumptions
	1.5 Organization of Thesis

	2 Literature Review
	2.1 Maintenance Management Evolution
	2.2 Prognostics and Health Management
	2.2.1 Physics-based Prognostics
	2.2.2 Data-driven Prognostics
	2.2.3 Hybrid Prognostics

	2.3 Sensor Technology in Maintenance
	2.4 Failure Prediction Models

	3 Methodology
	3.1 Data Preprocessing
	3.1.1 Data Organization
	3.1.2 Imbalanced Datasets

	3.2 Indicators Development and Selection
	3.2.1 Indicator Development
	3.2.2 Indicator Selection

	3.3 Model Selection
	3.3.1 Classification and Regression Trees (CART)
	3.3.2 Random Forest
	3.3.3 Stochastic Gradient Boosting
	3.3.4 eXtreme Gradient Boosting

	3.4 Model Tuning
	3.4.1 Tuning of Methods Used

	3.5 Evaluation Metrics
	3.5.1 Confusion Matrix
	3.5.2 Accuracy
	3.5.3 Precision and Recall
	3.5.4 F-score


	4 Results and Application
	4.1 Asset Performance Data
	4.1.1 Preprocessing
	4.1.2 Preliminary Modeling
	4.1.3 Indicator Development and Selection
	4.1.4 Performance Comparison of Failure Prediction Models

	4.2 NASA Benchmark Data
	4.2.1 Results


	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work
	5.3.1 Model
	5.3.2 Software


	Bibliography
	Appendix
	A Asset Performance Data
	A.1 Addressing the imbalance problem
	A.2 Failure indicators

	Vita

