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ABSTRACT 
 

Recent United States combat operations required weapon systems to incorporate 
enhanced targeting capabilities to improve their effectiveness in weapons employment.  
The United States Air Force B-1B heavy bomber played a key role in releasing GPS 
guided munitions in Operation Enduring Freedom and Operation Iraqi Freedom without 
enhanced targeting capabilities.  Future conflicts are expected to continue to address this 
requirement as the battlefield evolves.  These operations highlighted the need for the  
B-1B to incorporate an advanced targeting pod (TGP) to provide positive identification of 
targets and allow for more precisely planned weapon releases without the aid of 
additional off-board resources. During 2004-2006 a concept demonstration  
electro-optical and infrared TGP program was developed and tested on the B-1B to 
address targeting limitations.  The goal of the test program was to demonstrate a limited 
operational capability of the TGP using minimal testing resources.   

The concept demonstration highlighted areas for improvement in the final TGP 
implementation design. The improved alternatives were submitted as future design 
candidates and test procedures for the TGP development effort.  The purpose of this 
thesis was to examine the concept demonstration test plan and planned test process and 
recommend improved testing processes and design enhancements for the fully integrated 
pod design. The planned testing included modeling and simulation of aerodynamics and 
structures, laboratory system functional testing, hardware development testing, ground 
vibration testing (GVT), electromagnetic interference compatibility testing (EMIC), crew 
operability testing, and flight envelope testing. Many of these elements were not planned 
to be thoroughly tested due to the limited demonstration constraints.   

The findings of this study indicate that a further evaluation of handling qualities 
are required, and pod related weapon separation testing should be expanded to include 
more release configurations and conditions.  The Man Machine Interface (MMI) for the 
TGP future cockpit upgrade requires improvement while EMIC tests and related crew 
training should be increased during the final TGP System Developmental Design (SDD). 
No further increases in testing efforts relative to flight test instrumentation, GVT, 
logistics support, or aerodynamics are required.  
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1.  INTRODUCTION 
 
B-1B involvement in Operations ENDURING FREEDOM and IRAQI FREEDOM 

identified limitations in bomber employment capabilities.  During many missions the  

B-1B crew force participated in time sensitive targeting and close air support operations.  

Although effective, these types of operations highlighted the need for on-board positive 

target identification (PID) without the support of other combat platforms.  The 

employment rules of engagement along with the nature of the targets being attacked 

required such fundamental capabilities. 

By incorporating an onboard capability to find, fix, target, track, engage, and assess 

potential targets, essential combat asset requirements were reduced while United States 

(US) battlefield synergy was enhanced through increased independent target strike 

capability [1]. 

Two independent sources recommended this needed capability for the B-1B.  A combat 

mission needs statement (CMNS) was submitted and approved by the Air Force in early 

September 2003 [2].   The United States Army submitted an Operation Need Statement 

(ONS) shortly thereafter in March 2004.  Both documents emphasized the requirement 

for the B-1B to have PID capability in a dynamic battlefield environment [2]. This thesis 

presents recommendations obtained from an analysis of the test plan developed for the 

targeting pod (TGP) implementation.  These recommendations were made to enhance the 

test process associated with a final targeting pod implementation effort known as System 

Developmental Design (SDD).  Other recommendations relate to system integration of 

the TGP into the current and future B-1B cockpit design. 
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BACKGROUND 
 
Beginning in 2003, a study was completed to determine the feasibility of providing a 

TGP solution for the B-1B.  During the summer of 2004, two different TGPs were 

mounted but not flown on the B-1B as a form-fit check and as an initial statement of 

pursuit.  In Sept 2004, the 419th Flight Test Squadron (FLTS) flew an operationally 

representative sortie on an F-16 to assess the chosen TGP capabilities and to help provide 

planning inputs for the upcoming B-1B pod concept demonstration test.   Initial planning 

for this test began in October 2004 with the primary contractors, the B-1B Systems 

Group, and Air Combat Command B-1B Requirements (ACC/A3A1) [1].   

 

A Statement of Capability (SOC) providing inputs on requirements and support 

capability used to test a B-1B TGP concept demonstration was generated in April with 

the final revision completed in September 2005.   The goal of the concept demonstration 

flight test was to provide the feedback required to achieve a fully funded fully 

implemented TGP program [3]. 

 

Developmental ground test planning began within the bomber test community from July 

through November 2005 with all functional areas providing inputs and design 

requirements for the TGP concept demonstration flight.  Structural design requirements 

were developed for mounting the pod on the aircraft in a flight worthy configuration, 

instrumentation planning was developed, laboratory and ground test requirements were 

established, and nuclear proliferation treaty requirements were satisfied.   
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A ground vibration test was completed by mid January 2006 while concurrent ground 

tests were being performed on the pod and aircraft interface development.   

The hard-point welding processes allowing the mounting of a Munitions Adaptor Unit 

(MAU-12) modified pylon to the aircraft were being tested and refined through the fall of 

2005 and spring of 2006.   

 

Flight test planning began in December of 2005 and continued through the spring of 

2006.  Additionally, several Technical Interchange Meetings (TIMS) were accomplished 

to analyze the detailed approach of every aspect of the test while also refining test 

requirements and processes. 

 

Aircraft modifications for instrumentation and TGP hardware were planned for four 

months starting in March 2006.  Instrumentation modifications had to be completed 

before an EMIC test could be performed to certify the aircraft for flight test.  Finally, a 

series of flight tests were scheduled from July through September 2006 and test reporting 

and aircraft de-modification would follow shortly after final demonstration [3].  

SYSTEM DESCRIPTION 
 
The TGP chosen for the concept demonstration flight test was a generation three capable 

Advanced TGP. The major components of this pod are an electro-optical system, an 

infrared system, laser capabilities, and a self contained navigation unit. 
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The advanced TGP provides greatly enhanced ranges over earlier models and the pod 

allows for detection and identification from ranges outside counter-threat detection in the 

auditory spectrum. These ranges are consistent with employment ranges for Joint (J) 

series weapons, and provided accuracy consistent with Joint Direct Attack Munitions 

(JDAM) employment [www.globalsecurity.org]. 

 

The advanced TGP incorporates a third generation high-resolution Forward Looking 

Infrared (FLIR), a Charge Coupled Device Television (CCD-TV), and a multi-mode 

laser.  This pod offers several advances in all aspects of image processing and improved 

tracking stability. Furthermore, the pod’s fundamental body design allows for supersonic 

employment, a low observable design, and improved maintenance features. It includes all 

features of the earlier models with newer enhancements such as passive air-to-air 

detection and tracking [www.Lockheedmartin.com/mfc].

OBJECTIVES 
 
The objective of this study was to analyze the test planning and test process of the 

concept demonstration pod testing, assess the adequacy of the systems under test, and 

make recommendations which support a final TGP integration during System Design and 

Development (SDD) Fiscal Year (FY) 2009.  
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2.  CREW SYSTEMS EVALUATION AND 
ASSESSMENT 

 
The following section addresses hardware systems development and planning for the 

TGP concept flight demonstration planned in 2006.  Instrumentation, TGP mounting, and 

aircrew interface were addressed for SDD suitability. 

FLIGHT TEST INSTRUMENTATION  
 
The instrumentation package for the concept demonstration flight test is a Type Two  

(T-2) modification.  A T-2 modification is a temporary modification consisting of 

Commercial off the Shelf (COTS), Non Developmental Items (NDI), or existing stock 

items [4].  The instrumentation includes power supplies for the TGP, and a 

communication connection between the pod and aircraft in the form of an Ethernet cable 

and video line.  A communication link provides the operator interface to the pod and 

includes the hand controller and laptop functionality. Additionally, the instrumentation 

requirement provides telemetry (TM) which allows for real time monitoring and post 

flight analysis of onboard sensors via physical media storage.  

 

The largest and most time consuming portion of the modification is the addition of 

approximately 180 onboard sensors.  These sensors are located across the aircraft lower 

fuselage and weapon bay areas near and around the TGP mounting location, the bomb 

bay doors downstream of this position and the engine nacelle.  A few cockpit sensors are 

also used to measure load factor on the aircrew.  These sensors shown in Figure 1 are  



 

Figure 1.  Sensor Placement for Aerodynamic Investigation [5] 

 

installed to measure pressure, structural accelerations, stress and strain, and weapon bay 

acoustic levels.  [5]. One of the primary sensors used, the Kulite, is a solid state 

transducer that measures free air pressure and system pressure [www.kulite.com].  

Similar acoustic and pressure sensors are also used to complete to collection grid. 

 

The vast grid of data collection from these 180 sensors provides real-time and post flight 

data measurements and will allow the test team to validate the structures, aerodynamic, 

and Computational Fluid Dynamics (CFD) model predictions throughout the flight 
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envelope. Weapon bay sensors will provide data on door movements and loads, and 

internal and external disturbed airflow to each weapon bay caused by the TGP 

installation.  The side of the weapon bay and aircraft shared with the TGP are of greatest 

interest, therefore analyzing the effects of the disturbed airflow in that area is important.  

 

From the data recorded using these sensors, TGP airflow disturbances will be determined 

for all aircraft, pod, weapon bay, and engine interactions. An area of key study is the left 

hand side of the lower fuselage. One of the concerns from the modeling and simulation of 

the installed TGP is vortex shedding and its affect on airflow around the intermediate 

weapon bay and the inboard left hand engine.  Data from the flight test instrumentation 

will be used to verify these analyses. 

 

Sensor data is recorded at a rate of 2000 Hertz (Hz).  This high sample rate was required 

to show any structural modes predicted on the aircraft without aliasing concerns. The 

highest predicted TGP and aircraft structural mode frequencies of interest are less than 

100 Hz, Figure 2.  

TARGETING POD HARDWARE INSTALLATION 
 
The criterion for mounting the TGP to the aircraft was to use existing external nuclear 

Air Launched Cruise Missile (ALCM) pylon fittings. The Strategic Arms Reduction 

Talks (START) and the Strategic Arms Limitations Talks (SALT), barred the B-1B from 

carrying nuclear cruise missiles, but the external  

hard-points were only covered with a material and plate to achieve treaty compliance. 



 

Figure 2.  GVT Resolved Pod Modal Frequencies [6] 

 

The conduit to these 10 hard-points however, including wiring interfaces, was never 

removed and was readily available for this effort. 

[http://www.fas.org/nuke/control/start1/, http://dosfan.lib.uic.edu/acda/treaties/salt2].   

 

The ALCM hard-points provided the most feasible method to attach the TGP.  The 

covering was removed from the hard-point of interest and a welded sleeve mount was 

inserted into the point connection. The welded sleeve provided the mounting option for 

the TGP pylon while rendering the attachment area non-operational for ALCMs due to 

the reduced size of the mounting port. The conduit was used with new military standard 

(MIL-STD) 1553 wiring to interface the pod to the aircraft.  As can be seen in figure 3,  
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Figure 3.  Cutaway Revealing Existing Aircraft Conduit & Wiring Interface [5] 

 

plumbing provided easy access to enable connectivity to the pod.  In this figure, the 

yellow represents new wiring adapted to the existing green and blue conduit and wiring 

harnesses. 

 

When planning the initial concept demonstration flights both chin mounts closest to the 

nose of the aircraft were considered optimum, and the left hand mount shown colored in 

blue in figure 4 was selected for the test case.  The right hand chin mount was 

symmetrically located but was not tested.  Figure 4 shows six other possible mounting 

options for the targeting pod.   



 

Figure 4.  External Pylon Hard-points [5] 

 

Mounting the pod in the chin area allows the best TGP field of regard (FOR). This 

location is also the furthest from weapon bays and engine nacelles.  As shown in figures 

4 & 5, the other hard-point locations are farther aft under the aircraft fuselage.  The 

middle mounting options shown in red and green in figure 4 are closer to the under-slung 

engine nacelles. In the mid-line location, airflow distortions around the weapon bays may 

be a concern due to proximity to engines and weapon bay doors. These intermediate 

location FOR were masked by an additional 10-15 percent in the lateral-to-aft sector as 

compared to the chin option.  Finally, the aft mounting option shown in green in figure 4 

was not chosen due to its proximity to the aft weapon bay and the location between the 

nacelles.  During ALCM flight testing, these stations had received unfavorable 

aerodynamic loads due to a moving pressure gradient that exists at employment airspeeds  
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Figure 5.  Generic TGP Field of Regard (FOR) [8] 

 

between the nacelles [9].  Structural integrity of the pylon eliminated this loading option.  

Additionally, as shown in figure 5, the FOR at this station was the least capable of all the 

mounting options because of masking which adversely affects tactical employment. 

 

In summary, the chin mounting location was deemed optimum and provided the best 

opportunity for successful integration.  The intermediate and aft locations would require 

more extensive structural analysis. ALCM testing, for example, experienced some severe 

bending and twisting modes on the weapon and mount that were unfavorable around and 

aft of the nacelles. The same structural modes were expected to be produced on the TGP 

at these aft locations as well [9].  
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DISPLAYS AND CONTROLS 
 
The TGP concept demonstration focuses on implementation of a basic pod interface with 

the bomber without assessing future cockpit upgrades. Planning was performed to 

maximize testing on flight characteristics and system capability vice focusing on the Man 

Machine Interface (MMI).  This section includes a discussion of identified MMI 

problems and the related recommendations that will improve the operator interface prior 

to the final TGP implementation. 

 

In order to provide a visual interface for the concept demonstration, a temporary design 

incorporated a post production laptop modification that had been used on the aircraft 

since August 2001.  The laptop modification began as a temporary modification (T-2) 

and was subsequently converted to a permanent Type one (T-1) modification with full 

modification support being achieved by 2003 [10].   The original purpose of the laptop 

and communication modification, known as the Beyond Line of Sight (BLOS) 

configuration, was to provide a moving map capability to aircrew and to provide an 

interface to a Combat Track II (CT II) communication link used to provide limited 

network capability for combat operations.   

 

For the concept demonstration test, a Panasonic CF-73 will be used as the visual interface 

to the TGP.  It has a 13.3 inch daylight readable anti-reflective active matrix viewing area 

[www.rugged-systems.com/p/Portables/0029.htm]. The laptop is mounted below the  



 

Figure 6.  B-1B Aft Station 

 

Central Integrated Test System (CITS) control panel in the aft station between the two 

rear crew members using a pull-out tray [11].  Since a laptop addition was not part of the 

original cockpit design, its placement suffered from lack of cockpit real-estate.    Figure 6 

shows the original aft station cockpit panel before the BLOS installation. 

 

As shown in the figure, there was very little available space to place a new display.  To 

accommodate the limited space, the BLOS computer tray was designed as a pull-out 

drawer for a laptop below the CITS panel.  When the laptop was raised, the CITS panel 

was covered preventing access to system messages that are used for aircraft diagnostics.  

Display Interface 
 
The display interface was a Military off the Shelf (MOTS) design.  It used proven 

systems that allowed for limited development of interface software and hardware.  The 
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interface chosen for the test was the F-15 TGP display design group.  Without performing 

a trade study of bomber cockpit integration, this interface was chosen. For this 

demonstration, it was purposely decided to use the MOTS display interface to perform 

the test due to maturity and availability.  

 

In 2004 an F-16 was used to assess TGP and bomber interface compatibility.  This 

interface was similar to the F-15 interface chosen for the B-1B concept demonstration. 

During the F-16 test flight interface problems were identified with target orientation 

references and target dimensions assessment.  Scale markers used on the pod were fixed 

and could not be changed by the operator.  This implementation was inconsistent with the 

B-1B interface.  The bomber scale markers on the radar display are adjustable allowing 

the operator to measure target sizes.  Another compatibility problem was the reference to 

North.  The bomber radar display has the ability to show a synthetic map as either  

North-Up or Track-Up for a reference.  The TGP display evaluated in the F-16 flight test 

implemented a North arrow that was constantly moving based on the position of the line 

of sight from the pod to the target. Determining orientation of a target set where multiple 

targets were present proved difficult [12]. These types of implementations will be used 

during the concept demonstration and the incompatibilities identified will likely decrease 

mission effectiveness due to increased workload. Therefore, the display interface needs to 

be redesigned to a compatible B-1B standard for weapon employment (R1).  

 

Since the future cockpit upgrade of the B-1B is migrating to glass design with bezel 
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control, bezel functionality should be incorporated in the pod interface.   For example, the 

order and labeling of bezels should be consistent with the Fully Integrated Data Link 

(FIDL) design that will be implemented by TGP SDD.  If different bezel controllers are 

implemented with dissimilar templates, the operator will be forced to memorize multiple 

layouts.  Consequently, cockpit efficiency will be reduced.   For the final pod integration, 

the symbology and formats must not only be consistent with all other weapon system 

formats but should allow for future upgrades that incorporate new displays (R2).    

 

The operator interface chosen for the concept demonstration was the BLOS laptop and  

F-15 hand controller. This set-up incorporated a Graphical User Interface (GUI), to the 

operator.  Since the CF-73 had a touch-screen feature, the designers opted to provide two 

methods to operate many of the control functions of the pod either by the hand controller 

or via the laptop touch-screen.  The touch-screen option proved less than optimum for 

control functions due to the location of the laptop in the aft station. 

 

As was shown in the FIDL cockpit layout study [13], the primary viewing envelope for 

an optimum workstation environment to include screen contrasts, cockpit lighting, glare, 

and eye strain is ± 20° vertically and ± 50° horizontally.  The installed viewing angle of 

the laptop in the bomber is greater than -50° horizontally and -8° vertically from the 

Design Eye View (DEV) of the primary TGP operator [13]. This FIDL study showed that 

at the primary viewing location the characters require a 16 percent larger font to 

compensate for the off angle viewing to avoid operator difficulty reading the screen.  In 
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order to effectively test the TGP during the concept demonstration, the TGP display 

should also incorporate increased font size.  During the concept demonstration test, 

screen reading difficulty will likely lead to missed information affecting the test results. 

  

Precise aiming at targets is expected to be difficult due to parallax error from off angle 

viewing combined with the two-thirds screen display on the laptop. Therefore, the laptop 

should be mounted on a swivel during the concept demonstration testing such that it is 

within the operator’s DEV, and ultimately, the final TGP display interface must be within 

the operator’s DEV (R3).   

 

Lastly, a related display interface problem was identified during the F-16 TGP 

assessment flight in September 2004.  The existing slew functionality for the TGP uses 

the pod body orientation as the reference frame.  The flight revealed that the TGP cueing 

interface could be improved by using the earth inertial reference frame to slew the 

controller.  In a case where the aircraft was in a steep bank or maneuvering, the operator 

had difficulty slewing the cursor because it was oriented to a pod frame of reference.  In 

other than level flight conditions, cursor axes were transposed due to bank angle causing 

cursor placement difficulty [12].  The TGP slewing must use inertial references to 

eliminate slewing errors associated with attitude interpretation (R4).  

Control Interface 
 
The hand controller planned for the concept demonstration TGP interface is an existing 

F-15 Hands on Throttle and Stick (HOTAS) controller, figure 7. This installation is not  



 

 

 

 

 

 

 

 

 

Figure 7.  F-15 Type Hand Controller [5] 

 

intended for the final TGP implementation.  The F-15 controller will be mounted at the 

aft station on the Offensive Systems Officer (OSO) track handle pedestal via a mounting 

bracket.  The hand controllers will be separated by approximately four inches.  In order to 

use both controllers the TGP controller will be mounted slightly lower and rotated to the 

outside of the existing controller. Figure 8 shows a side view of this TGP controller 

mounting.   

 

The B-1B final pod implementation is intended to be controlled from both the front and 

aft station.  During the concept demonstration, only the aft station controller will be 

evaluated since the front station controller was not installed. Pilots will not be able to 

determine crew performance and workload while flying the aircraft and using the TGP.     
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Figure 8.  TGP Hand Controller Mounting [15] 

 

Additionally, crew coordination between the pilots and Weapon Systems Officers (WSO) 

will not be assessed during the concept demonstration flights. A controller must be placed 

in the front station to assess cockpit design requirements (R5). 

 

Hand controller integration is critical to proper employment of the weapon system. The 

HH-60 final controller shown in figure 9 is the controller that is planned for the FIDL 

design and will not be evaluated during the planned concept demonstration testing.  A 

risk is incurred since potential ergonomic deficiencies associated with this controller may 

not be discovered until after FIDL.  This could result in program delays, increased costs, 

and re-design of the interface.  An evaluation of the FIDL controller must be done before 

final TGP implementation (R6).   
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Figure 9.  Top View Left-Handed FIDL Hand Controller [13] 

 

As shown in figure 10, the current controller design is vastly different from the FIDL 

controller, figure 9, and the concept demonstration TGP controller, figure 7.  Each of 

these controllers has unique system interface requirements resulting in varied controller 

response. For example, the current B-1B track handle used to operate the radar, figure 10, 

has a known response delay deficiency.  The result is difficulty with precise target 

capture tasks due to overshoots. In an aircrew study using the Cooper-Harper rating scale 

as a means of evaluation, Appendix A, aircrew rated their workload and ability to 

perform a simple precise target capture task from various locations on the display. 

Appendix B shows a sample from this study conducted on this deficiency.  Because the 

FIDL hand controller is not ready for testing there is a risk that similar track handle  
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Figure 10.  Legacy Aircraft Track Handle 

 

problems could occur when FIDL is implemented with the TGP.  The hand controller 

functionality and response characteristics are critical to effective weapon employment.  

The concept demonstration process should provide a capability to evaluate a fully 

integrated system before final TGP system integration during SDD. 

 

Lastly, the location of the controller and the associated TGP panel interface violates 

standard workspace design principles. Since control and aiming were achieved from the 

touch screen and hand controller, the operator was required to perform two tasks 

simultaneously. Figure 11 shows the region of reach for a workspace design using a 

sitting requirement.  In this figure, the black area represents an overhead view of a sitting 

person.  A single task performance without handgrip requirements in the figure is  
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Figure 11.  Sitting Workspace Reach [14] 

 

represented by the open areas while a task requirement of varying handgrips is 

represented by the reduced shaded areas. The single outline is the maximum range for 

various hand positions without specific grip requirements.  In the shaded region, an 

operator could be expected to perform common tasks with various types of hand grips 

using the corresponding hand. The task requiring complex handgrips reduces this region 

and severely impedes the operator’s ability to perform tasks across body with opposing 

hands.  If using both hands to perform two independent tasks requiring different hand 

movements, the figure reveals how an operator can be limited in task performance.   

 

Figure 12 shows that performing multiple reach tasks on opposing sides is a poor  
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Figure 12.  Two Simultaneous Tasks Reach Requirement 

 

ergonomic design [14].  The distance between the hand controller and the laptop made 

simultaneous viewing and cursor control very difficult. To depress the depicted buttons 

on the laptop, the operator had to extend his reach or in many cases lean toward the 

laptop.  When leaning occurred and the operator was attempting to operate the hand 

controller, the operator became displaced.  The hand controller was on the operator’s 

right hand side while the lean occurred to the left hand side.  While strapped into an 

ejection seat that reduces mobility, this configuration placed the operator in an awkward 

position.  Performing both tasks lead to operating errors, extended task time, and fatigue 

related to the unnatural body positions.   
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These issues highlight the need for expanded development of the TGP crew interface.  

Prior to SDD, an evaluation of cursor tracking tasks in a standardized cockpit 

environment must be performed to address TGP cockpit interoperability (R7).  
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3.  LABORATORY PROCESSES 
 
An evaluation of the laboratory processes involved with demonstrating TGP capability on 

the B-1B during the concept demonstration testing is discussed in the following section.   

LABORATORY AND SOFTWARE VERIFICATION TESTING 
 
Flight dynamic laboratory testing was conducted at Oklahoma City, OK (OKC) facility 

approximately eight months before the actual flight test.  The purpose of the laboratory 

test was to assess integration of pod navigation systems with aircraft navigation systems 

through the measurement of parameters such as direction cosines, system altitudes, 

moment arm comparisons, and angular measurement references [5].   Before the pod 

could be flown on the aircraft, these navigation systems had to be integrated and any 

known system errors had to be addressed.   

 

In order for the TGP to correctly align its navigation reference, moment arm and attitude 

messages had to be validated.  These messages provided the operator with alignment 

status of the pod and in-flight navigation solution referencing.  Software and hardware 

performance were assessed and some coding changes had to be made to ensure that the 

primary navigation models worked together correctly.  The results of the laboratory 

testing provided information that would be used to modify Kalman filters prior to flight 

test [www.cs.unc.edu/~welch/media/pdf/Kalman_intro.pdf]. 

 

Laboratory testing also verified that correct transfer alignment information was being 
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passed to the TGP.  Additional laboratory testing included simulated flights with both the 

pod and aircraft navigation systems interfaced.  Navigation testing proved more difficult 

since it was not possible to provide actual dynamic flight information to the navigation 

systems simulated in the laboratory.  It was important to verify that the aircraft passed its 

navigation solution to the pod. This ensured that both systems had the same pointing 

reference and the targeting pod computed the correct desired mean point of impact 

(DMPI). 

 

A simple taxi test that varied aircraft direction will be performed before the concept 

demonstration flight tests to provide the information needed to improve the navigation 

model predictions and Kalman tuning.  This testing will fill the data gap that was not 

achievable in the laboratory.   

 

The B-1B Avionics Flight Software (AFS) to pod interface required that new software 

had to translate MIL-STD 1553 data to message traffic understood by the TGP.  All the 

command and control capability passed to the TGP had to be tested for validity.  These 

included many of the different track command modes, laser controllers, system bits, and 

operation modes.  To correctly write TGP software, the B-1B Interface Control 

Document (ICD) was referenced side by side with the Lockheed Martin design interface 

for the TGP. The ICD thoroughly explains required design parameters and 

implementation of coding to achieve system integration [8].  This allowed the conversion 

of C++ TGP coding to adapt to the B-1B programming format.  The B-1B avionics flight 



 
 

26

software coding was modified to meet existing ICD requirements while providing the 

correct control interface to the TGP.  Command and control testing was completed using 

a TGP simulator while MIL-STD 1553 bus traffic was verified to assure messages were 

passed to the pod in the correct format such as bit size, content, expected frequency, etc. 

From a laboratory integration standpoint, thorough testing of the system was completed. 

The laboratory methodology applied to this program should also be pursued during SDD 

(R8).   

MODELING AND SIMULATION 
 
Modeling and simulation were key elements used to analyze the bomber and TGP 

aerodynamic effects including any structural interactions between them. The results of 

these analyses were used to support the flight test program.   

 

A  NASTRAN finite element model as shown in figure 13 was used to perform structural 

mode analysis of the aircraft and pod mounting system.  The study provided a flutter 

prediction for flight test.  [www.mscsoftware.com, 17].  The results of the flutter analysis 

study were later used to develop the test plan for the Ground Vibration Testing (GVT) 

and finally flight aerodynamic testing.  The model helped predict modes, behaviors, and 

frequencies of interest for the pod and aircraft interaction under varying structural 

conditions.  Associated flight dynamics that drove these structural modes could not be 

determined with this model.   

 

 

http://www.mscsoftware.com/
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Figure 13. Nastran Model (Flutter Analysis) [5, 15] 

 

A MECHANICA Model using a coarse grid structure was used to represent the complex 

surfaces of the TGP with varying shape.  A model of the pylon was developed by Boeing, 

and the pod was simulated by a load that represented the pod’s weight [17].  The purpose 

of this model was to determine structural integrity of the pylon pod mounting design. A 

detailed stress analysis was performed with a capable model of this configuration 

[www.ptc.com/products/].  This model allowed variations in conditions such as applying 

forces in all axes to simulate dynamic loaded flight conditions.  The results of the 

analysis indicated that the loads on the pylon were negligible and that the design could 

handle forces well beyond those that would be achieved in the B-1B flying envelope. 

This pylon design could also carry external weights far greater than the TGP.   Figure 14 

depicts the MECHANICA model with a sample color loads scale used to perform visual 

cross-checks of data. In the left figure blue represents a no-load condition and other 

colors such as red represent increasing changes in loads under a given condition.    



 

Figure 14. Mechanica Model (Stress Analysis) [5, 15] 

 

COMPUTATIONAL FLUID DYNAMICS (CFD) 
 
Completing the modeling and simulation effort, CFD was used extensively to provide 

aerodynamic analysis effects of the pod/pylon on the aircraft structure and weapon bays. 

CFD also provided weapon separation characteristics based on aerodynamic flow [18]. 

Figure 15 is an example of a CFD grid used in the analysis.  This figure represents a 

developed grid about the TGP at a fixed distance from its leading edge.   By combining 

multiple grid layers such as the one depicted, a complete 3D analysis can be performed.  

 

The CFD analysis was completed by the Air Force Seek Eagle Office (AFSEO). They 

provided an investigation of the aerodynamic effects from the TGP on the B-1B, an 

analysis of the disturbed airflow effects on engine nacelle and weapon bay doors, and an 

analysis of weapon separation effects from the TGP.   
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Figure 15.  Sample CFD Grid Development (Pod, Pylon & Fuselage) 

 

AFSEO used a "Delta" approach in their analysis.  In the Delta method, CFD was run in a 

clean configuration, without a pod or pylon.  This analysis was then repeated with a pod, 

a pylon, and with both as the final configuration.  The results were imposed on a 

Cartesian grid and subtracted from each other, yielding a “Delta” to show the effects of 

the additional hardware.   

 

The solution allowed for a visual presentation of results for quick interpretation along 

with the analytical results or the composite grid [18].   Figure 16 represents a two-

dimensional time step solution to one of these runs.  Very similar to a Computed Axial 

Tomography (CAT) scan, these individual layers were combined to provide a full 3-D 

model.  
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Figure 16. Discrete CFD Time-slice (Horizontal Plane) 

 

CFD analyses were very intensive and required up to 14,000 processing hours to analyze 

66 million grid points [18].  Figure 17 shows these solved CFD layers propagated from 

fore to aft of the aircraft and left to right.  Here the colors indicate varying Mach numbers 

caused by flow characteristics of the different aircraft components to include the TGP. As 

can be seen in the right side of the figure, the TGP causes flow distortion downstream at 

the given Mach number.  By using such discrete samples, a particular location of interest 

can be isolated for further investigation. 

 

CFD in conjunction with the other modeling and simulation was used to recommend the 

concept demonstration flight test profile.   
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Figure 17.  Discrete CFD Steps; Forward to Aft Longitudinal Axis 

 

For example, it was suggested that flight testing begin by following lower dynamic 

pressure (q) contours with increasing altitude and then repeating with higher q contours.  

By following these contours, the test team could focus specifically on the aft portion of 

the forward bay and the intermediate weapon bay approaching the high subsonic region. 

For optimum weapon employment, the high subsonic region is of greatest interest. CFD 

results indicated that for weapon release scenarios, the intermediate weapon bay would 

pose the most concern from a flow distortion perspective.   An expected vortex shedding 

was expected to occur in this regime that could affect the intermediate weapon bay and 

the inboard left engine nacelle. Figure 16 shows a 0.9 M high q condition with vortex 

shedding from the TGP installation [6].  

 

This analysis indicated that following the contours of q when approaching higher Mach 
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numbers would require caution. Another test condition of interest was with the nose 

landing gear extended and the aircraft flying at approach speeds.  In this case, disturbed 

airflow shed from the nose gear was expected to excite TGP structural modes by 

impinging on it. CFD provided the critical analysis to correctly determine a conservative 

approach for initial flight tests.   

 

Many different configurations were available for CFD analysis.  The aircraft employs 

three types of weapon suspension systems referred to as modules or launchers. The 

modules consist of the two different Conventional Bomb Modules (CBM) and a 

Conventional Rotary Launcher (CRL).   Each of these modules can carry different types 

of weapons and in some cases mix these weapons on a module.  Additionally, each 

module has unique locations inside the weapon bay where the weapons are released.  

Each launcher also has unique weapon release characteristics, dependent on the weapon, 

module, location, and dynamic flight environment.    

 

Since the planned testing was limited in scope, the CFD analysis was performed for a few 

weapon configurations and over a relatively small portion of the aircraft envelope.  

Table 1 summarizes the flight conditions and configurations that were analyzed.  In this 

table, the aircraft was modeled with and without the TGP. The scenarios were completed 

with different weapon carriage systems such as CBM and the CRL.  These modules allow 

different types of weapons to be carried at varying positions inside the weapon bay. 



Table 1. CFD Test Points Initial Demonstration [6] 

 
Weapon Bay 
Door Position 
FWD/INT/AFT 

Pressure 
Altitude 
X1000 ft 

Weapon 
Suspension 
System 

TGP 
Mounting 

FFF 15 CBM On/Off 
FFC 15 CBM On/Off 
CFC 15 CBM On/Off 
FFC 15 CBM On/Off 

FFC 3 CBM On/Off 
FFC 3 CBM On/Off 
PPC 3 CRL On/Off 
CPC 3 CRL On/Off 

Conditions Analyzed With Stores at Varied Altitudes  
FFC GBU-38 CBM On/Off 
FFC Mk-82 CBM On/Off 
FFC CBU-105 CBM On/Off 
PPC GBU-31 CRL On/Off 
Note: F=Full Open, P=Part Open, C=Closed 

 

 

 

 

 

 

 

 

 

 

Note: CBM= Conventional Bomb Module 
CRL= Conventional Rotary Launcher 
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Therefore, the analysis considered each of these modules, door positions, and various 

employment altitudes. CFD was vital in helping to determine critical weapon 

configurations and flight conditions to reduce flight test risk while improving test safety.  

During SDD a much more comprehensive analysis of critical configurations should be 

completed to assess weapon separation characteristics not tested during the demonstration 

effort (R9).  This analysis should include all variables related to the critical 

configurations and flight conditions affecting safe weapon separation 

[http://www.eglin.af.mil/afseo/].  

 

Another tool used concurrently with CFD, but not in this effort, is Design of Experiment 

(DOE).  DOE uses tables that statistically quantify interactions between measured factors 

and indeterminate measurements of factors [www.isixsigma.com/dictionary/Design of 

Experiments]. By applying DOE, the required amount of modeling and testing can be 

reduced. The solution would allow planning to limit the number of flights while 

maximizing weapon envelope testing.  DOE would provide the optimum combinations of 

weapons on each flight to start the process.  Establishing a priority scheme would allow 

for timely releases of weapon flight clearances to the field for the weapons that are 

expected to be used the most.  For example, Guided Bomb Unit (GBU-31/38), JASSM, 

and Wind Corrected Munitions Dispenser (WCMD), would take priority over the Joint 

Stand-Off Weapon (JSOW), MK-84, MK-65, and MK-82s based on employment needs. 

DOE planning and CFD analysis should be used for the final TGP integration to prioritize 

weapon testing and optimize test resources (R10).   
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4.  GROUND DEVELOPMENTAL 
PROCESSES 

 
GROUND VIBRATION TESTING (GVT) 
 
Ground vibration testing was conducted to determine structural responses exhibited by 

the TGP and pylon. The aircraft was configured for the test by placing shakers on the 

TGP and pylon in multiple axes and angles to attempt to stimulate anticipated modal 

responses observed during flight under different loading conditions.  The shakers used a 

direct impulse method to apply a range of frequencies to the test object.  Frequency 

applications were controlled via a computer and frequency amplitudes were monitored 

and adjusted to keep the modal responses bounded. 

 

In order to obtain the feedback of the modal responses, small tri-axial accelerometers 

were attached to over 100 locations on the pod and pylon mounting [21].  These 

accelerometers were accurately mapped into a computer program that generated a wire 

diagram model of the system response.  Post test responses could be analyzed visually via 

a video playback of the model.  Additionally, GVT information was digitally stored to 

provide engineering analysis throughout an entire frequency spectrum.  Since the 

accelerometers were very small, their measurements were recorded in inch pounds 

(in/lbs) and converted to foot pounds (ft/lbs) for modeling and analysis. The aircraft was 

not raised from the floor, and air was left in the tires.  It was assessed that the pneumatic 

damping potentially provided by the tires would not affect any modal responses of the 



pod to aircraft interaction. 

 

The results of the GVT indicated that several low frequency responses provided up to 39 

structural modes on the pod below 100 Hz while frequencies above 100 Hz were 

attenuated similar to the aircraft response without the pod.  When comparing the lower 

frequencies to those of the aircraft and weapon bays, it was determined that between four 

Hz and 50 Hz, shared harmonics of the TGP and aircraft are present [15].  Table 2 shows 

some of the TGP structural frequencies that are the most apt to cause a coupled structural 

response between the aircraft and TGP.  

 

Figure 18 details an overlay of TGP discrete frequencies that are at or near the peak 

pressure responses of the forward and intermediate bays, and the weapon bay door power 

spectral density. These bay and bay door aerodynamic loads were determined from flight 

tests of the original bomber design to refine spoiler configurations that would suppress 

the dynamic cavity noise of the weapon bays.   

 

Table 2. Sample TGP Structural Frequency Modes Exhibited During GVT [1] 

Mode 

 

 
Frequency Hertz Type of TGP and Pylon Motion 

1 2.6 Aircraft forebody vertical, Pod Lateral Rock 
2 4 Pylon/Pod rigid body roll 
3          14.6 Pod Lateral Rock 
4 28.7 Pod Lateral Rock 
5 34.4 Pylon rigid Body Pitching Coupled with Pod Pitch and Yaw 
6 39.7 Pylon and Pod Yawing out of Phase 
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 Figure 18. Comparative Response of Weapon Bay Dynamics to TGP Modes [6, 15, 
20] 

 

Initial studies also revealed that the weapon bay doors have four natural frequencies of 

approximately 16, 32, 42, and 62 Hz respectively [20].  These frequencies were very 

close to four TGP response modes determined in the GVT that associate with pod 

bending, pitching, and yawing. An excited response from the TGP can be present at the 

same time a weapon bay is being excited causing a coupled response leading to structural 

fatigue. 

 

Even though these aircraft modes were all bounded, a concern was raised that the 

interaction of these two independent structures could cause stresses or loads that are 

incompatible in certain flight regimes. Additionally, other observed TGP structural 
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frequencies common to aircraft structural modes including the nose gear assembly may 

cause undesirable aerodynamic loads on the downstream TGP.  

 

The GVT was completed with the pod and pylon combination and the pylon only 

mounting to provide data supporting the aerodynamic and structures testing of both 

aircraft configurations.  After the GVT was completed the results were used to update the 

structural model. The updated model was used to define the conditions for flutter testing.   

 

Since the modes of the basic aircraft are now well understood, and a data base exists from 

thoroughly testing the aircraft during development, there is no need to perform further 

GVT unless structural issues not currently anticipated are discovered during the concept 

demonstration flight test program.  

ELECTROMAGNETIC INTERFERENCE COMPATABILITY 
(EMIC) 
 
Following any major change of special instrumentation (SI) or the addition of new flight 

systems or hardware on the aircraft, a safety of flight electromagnetic interference test 

must be performed.  During the TGP modification the major items of interest for the 

EMIC were the operating pod system, the use of new MIL-STD 1553 data transmission 

lines from the pod to the aircraft interface, and the onboard instrumentation.  This 

instrumentation included data acquisition units mounted on a specially modified weapon 

launcher. Other SI included sensors wiring, power supplies to support the SI interface, 

and the alteration of pre-existing nuclear wiring.   



 
 

39

 

EMIC testing was scheduled for early July 2006.  The EMIC followed historical 

procedures that tested aircraft and TGP systems each as a source of interference, and as a 

victim of interference.  An EMIC procedure is extensive and attempts to isolate and 

correct any interference that would preclude normal flight operations. 

 

Since flight test on the pod was considered limited in scope, an EMIC was only 

performed with weapons in the intermediate bay to support a weapon release from that 

bay in flight.  However, for this program, modifications of pre-existing nuclear wiring 

were completed in all three weapon bays.  Since the TGP modification was a direct 

alteration of weapon control interfacing in each bay, these components should require a 

complete EMIC test that exercises the AFS weapon interface to all three bays.   

 

B-1B systems specifications require a complete EMIC of all associated aircraft and 

weapon systems when a new component is introduced or altered on the aircraft. This 

more complete weapon analysis required during the EMIC would include using  

MIL-STD 1760 guided weapons, and the associated weapon carriage components to 

determine any potential data bus communication anomalies [27].  For the fully developed 

pod effort, a full scale EMIC should be performed using an aircraft that is representative 

of all flight test conditions including defensive systems checks, and weapon bay 

interference checks for all three bays (R11).   
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LOGISTICS SUPPORT 
 
During the demonstration effort, many logistical areas were addressed that could be 

carried through SDD.  The maintenance and support chain was addressed and planned 

from the start with a systematic approach.  The analysis focused on resources required to 

maintain and operate the TGP including materiel and personnel, and the reliability of the 

TGP.  Equipment used to support the TGP was determined, and the level and type of 

maintenance required to support this equipment and the TGP were identified.  The 

planning phase addressed manpower requirements for maintenance as well as how to 

provide tools for system training.  

 

Several draft Technical Orders (T.O.s) were completed to support the pod effort.  The 

T.O.s provided the necessary requirements for loading, maintaining, and operating the 

TGP.  During reviews, draft T.O. changes were developed that would alter current 

aircraft publications, and the plan was to use these changes during the TGP concept 

demonstration.  These efforts would not lead to a certification of the new publications, 

but would be updated during the program as required, and archived for use when the final 

TGP SDD effort takes place [5].  By analyzing the logistics effort involved in the 

preliminary pod investigation, it was apparent that bomber and TGP logistic support were 

very mature and the process could adapt to requirements generated from a program.  

 

Since the test effort was only a demonstration, logistics support did not perform or 

evaluate maintenance areas that are addressed with human factors studies.  For example, 
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maintenance and weapon load crews were not assessed on performing normal support 

requirements with other than normal environmental conditions [5].  Before SDD begins, a 

logistics support human factors focus should be performed that addresses environmental 

adversities such as cold weather or chemical defense posture handling and support (R12).   

 

Overall logistical support and assessment were at the level required for the TGP 

demonstration, and would be able to provide increased support during a more in-depth 

test and development effort. 

CREW TRAINING 
 
To achieve better results before flight testing began, aircrews required pod operation 

training, ideally in a dynamic range environment.  There were several facilities that could 

support limited aircrew training and would be required since the AFFTC did not have a 

complete training facility and environment.  These facilities each offered unique training 

capabilities, but were either limited to controls and displays or not co-located with the 

flight test center.    

 

One such facility was United States Navy (USN) at China Lake, California.  China Lake 

facilities provide a dynamic range environment where targets are presented in actual field 

conditions that include target clutter, different classes of targets, and an equivalent 

electro-optical signature such as heating a vehicle.   Additionally, the China Lake facility 

included the user interface controls and displays, a cockpit mockup, and a dynamic range 

environment.  Aircrews planned to utilize the China Lake facility to enhance training 
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before flight test.  

 

Another facility that supported aircrew training was the Engineering Research System 

(ERS) at Wright Patterson AFB, OH.  The ERS laboratory incorporated a system mockup 

which was to be used before a working TGP was integrated into the Integrated Facility 

for Avionics and Systems Test (IFAST) located at Edwards Air Force Base (AFB), 

California.  The ERS provided a simulated dynamic flight environment that emphasized 

the functionality and operation of the pod. 

 

IFAST was the most accessible ground training facility used by the test team. Before 

flight testing, a working TGP was incorporated into the existing B-1B system trainer 

which consists of a Software and Hardware Integration Laboratory (SIL/HIL).  This 

hardware included operational radar components.  Crews were trained on basic operation 

of the pod and the hand controller and laptop. IFAST did not incorporate a dynamic range 

environment.  

 

Testing can be greatly improved by exposing aircrew to aircraft and the support facilities 

that provide training on these systems. By taking this approach, aircrew can learn and 

develop tactics, gain understanding of TGP system operation, and become proficient with 

the operator interface.  Aircrew can also develop target study and assessment skills by 

having a dedicated target range. A dynamic range would reduce the need for more 

expensive flight test by providing realistic ground training. Lessons learned and 
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techniques from this training could be applied by aircrews testing the system. It would be 

essential to this and other test programs to evaluate the need for a dynamic range 

environment at the AFFTC to support TGP test requirements (R13).   
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5.  PLANNED FLIGHT TESTING 
 
The last section of this thesis addresses the flight test planning processes associated with 

TGP testing. Four major areas that were planned for the demonstration flight were 

aerodynamics, flying and handling qualities, system integration, and weapon separation 

testing.  Aircraft performance with the TGP installed was not planned because the TGP 

would not significantly reduce performance [15]. Handling qualities and weapon 

separation testing was also very limited in effort. 

 

AERODYNAMICS 
 
Aerodynamic flight testing was targeted at clearing the normal operational flight 

envelope for the B-1B.  Table 3 indicates the maneuvers planned to assess aerodynamic 

effects and structural loads.  These maneuvers are often associated with determining 

aircraft performance, but are equally reliable for extracting aerodynamic and loads data.  

From the different maneuvers, dynamic pressures, and airspeeds planned, table 3 

represents over 150 test points when all conditions in the chart are accomplished.  

Aerodynamic flight tests were planned with the pod mounted to the pylon and pylon only 

configurations.  The purpose for testing the pylon only was to assess aerodynamic effects 

of an operational configuration where a TGP may not be available or required, but 

retaining the pylon was viable.  

 

 



Table 3.  Planned Aerodynamic Maneuvers [22] 

Aerodynamic  Mach/Airspeed 
Test Maneuver (Kts) 

Altitude  
Mean Sea Level 
(MSL)X1000 ft 

Wing Sweep
(degrees) 

Take Off & Landing (Yaw) 240Kts-0.2M Field Elevation-5 15-20  

Yaw investigation 0.70-1.15 5-30 >65  
Bank to Bank Roll 0.70-1.15 5-30 >65  
Wind Up Turn 0.70-1.15 5-30 >65  
Push Over Pull Up 0.70-1.15 5-30 >65  
Pitch Doublet 0.70-1.15 5-30 >65  
Yaw Doublet 0.70-1.15 5-30 >65  
Spiral Stability 0.70-1.15 5-30 >65  
Notes: 
1) Points flown at approximately every 0.05 Mach 
2) Points flown to obtain data at dynamic pressures of 300,450,600,800, &1000
pounds per square foot (psf) respectively  

 
3) Wing Sweep at lower Mach may be adjusted to 45,55, or as required 

The aerodynamic test plan included landing gear extended test points.   The gear 

extended conditions were intended to test the landing configuration characteristics of the 

aircraft while investigating the disturbed airflow effects of the nose gear assembly on 

TGP structural modes.   Figure 19 shows the extended nose gear and close proximity to 

the TGP.  As can be seen with the TGP at the chin pylon station, the nose gear assembly 

and the TGP are closely aligned.  With this close proximity, the airflow disturbance and 

vortex shedding associated with the nose gear assembly was expected to impinge on the 

TGP.  Under certain flight conditions, this disturbed airflow could excite structural modes 

of the TGP [9].  
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Figure 19.  Longitudinal Position in Inches from Datum of TGP and Nose Gear  

 

The landing gear extended test points were planned to be flown up and away greater than 

7,000 ft above ground level (AGL) using a build-up approach in dynamic pressure (q).  

This flight condition allowed for altitude to recover the aircraft if adverse flight 

conditions are experienced that cause controllability problems.  These test points will 

begin at the higher indicated airspeeds and then decreased in 10 Knot (Kts) intervals.  

Controllability checks are planned at each airspeed before proceeding to lower airspeeds 

that approach stall. 

 

The approach used for aerodynamic testing is shown in Figure 20. In this approach, the q 

lines will be tested at specified airspeeds, and then the process will be repeated at higher 

q with increasing Mach.  The final portion of the testing requires a climb to a higher  
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Figure 20.  Planned Aerodynamic Test Profile [22] 

 

altitude with decreasing q to assess the envelope around and beyond the transonic region 

(0.95-1.05M).   Aircraft performance and fuel efficiency warrants the deviation from 

pursuing lines of constant q beyond the transonic region as shown by the serpentine line 

in Figure 20.   

 

Clean configuration testing was planned in two phases for the concept demonstration.  

The first phase addressed flight points where no weapon bays were opened.  The second 

and more important test called for the weapon bay doors to be opened.  The test team 

selected test conditions based on GVT results and modeling and simulation analysis.  

GVT results provided the TGP structural frequencies and loads, but did not identify what 

flight conditions would excite these modes.  CFD predicted some loads at discrete flight 
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conditions, but was not capable of assessing modal responses between the aircraft and 

TGP.  The CFD analysis provided a set of flight conditions where vortex shedding from 

the pod could occur [6].  This prediction was used to plan testing so as to approach 

questionable regions with caution. Together GVT and CFD analysis provided an 

understanding of flight conditions where the TGP and aircraft interact adversely or 

exhibit undesirable characteristics.  ALCM testing data was also used to help construct 

the flight test.  During the ALCM testing, inlet distortion was observed at supersonic 

airspeeds requiring aircraft flight restrictions [15]. By comparing the TGP to ALCM, 

emphasis was placed on the approach to the supersonic region.  Testing was therefore 

planned to build-up to the critical flight conditions and to clear the B-1B flight envelope 

for TGP carriage.  This plan provided the flexibility for the test team, which allowed 

them to make real time alterations to the test profile. The planned flight maneuvers 

included: yaw investigations, bank to bank rolls, wind up turns (WUT), and push over 

pull ups (POPU) [22]. 

 

Yawing maneuvers will be performed by applying a steady rate rudder input while 

maintaining a constant heading.  These steady heading sideslips will occur in both 

directions to assess the effects of vortex shedding on flight characteristics, engine 

performance, and structural loads. Bank to bank rolls will be flown by applying a half 

lateral stick deflection step input from an initial 45 degree bank to the opposite direction 

of the bank.  These maneuvers will help assess aircraft rolling effects on vortex shedding 

and any interactions of these disturbances on structures, nacelles, and engine 
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performance.   

 

As with the yaw investigation, engine operations will be assessed qualitatively by the 

aircrew as instrumentation was not established specifically for engine performance.  The 

Central Integrated Test System (CITS) computer can be used post flight to analyze 

engine parameters if an anomaly is suspected, but will not provide detailed information 

on factors responsible for that anomaly.  Bank to bank rolls will also be used to provide 

aircraft handling data on any incurred proverse or adverse yaw due to the asymmetrical 

mounting of the TGP. 

 

The WUTs will be executed by increasing bank angle and angle of attack at constant 

Mach during a descent.  These maneuvers were planned at aft wing sweep to allow for 

maximum aircraft g loading. WUTs allow for collection of pod vortex shedding 

interactions, boundary layer investigations, and overall effects of aero-loading over a 

range of AoA and Mach numbers.  Pilots will also be able to assess handling qualities 

during these maneuvers. The POPU or roller coaster maneuver allows for aerodynamic 

testing of the different configurations at low AoA.  This consists of a series of wings 

level pull-ups and push-overs at planned Mach numbers [23, 24].  

 

Open-loop test points were planned concurrently with the aerodynamic testing to assess 

aircraft responses with the addition of the mounted TGP.  These points will be initiated 

by applying step inputs in each axis and observing aircraft response.  Overshoots in pitch, 
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yaw, and roll will be measured over a time period to make an assessment of damping 

ratios. These maneuvers will be flown first without a pod mounting to gather current 

baseline data on the test aircraft. 

 

At the completion of the aerodynamic testing the flight envelope for the pylon only, and 

TGP and pylon configuration will be defined.  Any restrictions or limitations from the 

analysis of this testing are expected to be applied to the final TGP implementation.  These 

aerodynamic tests will qualify the TGP for flight, and negate the need for further 

aerodynamic testing barring the discovery of any unforeseen problems 

POD EFFECTS ON AIRCRAFT PERFORMANCE 
 
The drag assessment of the mounted pod was determined to be less than 40 percent of an 

ALCM and Advanced Cruise Missile (ACM) configuration [15].  Based on this analysis, 

performance testing will not be accomplished in the concept demonstration testing. 

FLYING AND HANDLING QUALITIES 
 
During the concept demonstration test, a limited flying quality assessment was planned.  

The planned tasks that will be flown concurrent or in addition to the aerodynamic points 

are in table 3 and will provide pilots insight to aircraft characteristics before progressing 

to a closed-loop evaluation [23].  Pilots will generally evaluate flying qualities during and 

between aerodynamic test points.  A more specific closed loop handling evaluation is 

planned to evaluate an air refueling task using a Cooper-Harper rating scale. The data 

will be collected and presented in a histogram format with associated comments.   The air 
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refueling task will be flown first in a clean configuration to provide a comparison point 

for pilots before performing the Cooper-Harper assessment with the TGP and pylon.  

 

The concept demonstration testing limits handling qualities testing and should be 

expanded to assess several unique B-1B handling qualities concerns.  During the 

prototype bomber testing several flight characteristics were identified that made flying 

the aircraft less than optimum under varying flight conditions.  These included pitch 

sensitivity at high Mach number, and light lateral axis damping in almost all flight 

regimes. For example, the pitch axis is sensitive to input as compared to the lateral axis 

leading to poor control harmony, and the aircraft exhibits Dutch Roll characteristics 

during landing tasks without stability augmentation [7].  Other characteristics leading to 

flight coordination concerns include pitch excursions when performing high load factor 

turns and very high roll rates as compared to turn rate.   

 

The addition of the TGP warrants a more in-depth study of HQ to determine whether HQ 

characteristics have been further degraded in the areas mentioned above.    Table 4 lists a 

set of tasks where aircraft damping ratios, control harmony, and general aircraft 

characteristics observed during prior prototype bomber testing may pose a challenge 

when flown with the TGP. Aircrew should determine whether the addition of the TGP 

alters handling qualities adversely by performing the suggested handling evaluations 

(R14).  

 



Table 4.  Author’s Suggested Handling Evaluation Tasks 

Handling Evaluation Mach/Airspeed Altitude Wing 
Sweep (Kts) Mean Sea Level 

(MSL)x1000 ft degrees 

Target 
Parameters 

Visual Contour Bomb Run 0.7-0.9 2 MSL-500 ft 
AGL 

>65 Pitch, Hdg, 
Airspeed 

High Altitude Bomb Run 0.75-1.2 >25K As Rqd Pitch, Hdg, 
Airspeed 

Precision Approach (ILS) 240Kts-0.2M Glideslope 
Intercept to 

Decision Height

<20 or 
As Rqd 

Course 
Guidance, 

Glide slope, 
Airspeed 

Defensive Reaction (Level 
Notch > 90 deg of turn) 

>1.1M-Corner 
Velocity 

>25 down to 
>500 AGL 

As Rqd Altitude, 
Airspeed, 

Heading, g 
Defensive Reaction 
(Descending Notch) 

>1.1M-Corner 
Velocity 

>25 As Rqd Altitude, 
Airspeed, 

Heading, g 
Manual Letdown to Low 
Level 

~0.9 >20 As Rqd Recovery 
Angle, 

Airspeed, g 

 

SYSTEMS INTEGRATION 
 
The system integration phase of testing is planned to address the compatibility of the 

TGP with the aircraft navigation, radar, and targeting systems.  To validate navigation 

compatibility, the test plan includes measuring and analyzing data from initial ground 

alignment, and in-flight alignments.  Additionally Inertial Navigation Unit (INU) data 

from both the aircraft and pod will be collected on each flight profile and compared for 

accuracy.  After completing these first few flights, the TGP navigation model filter will 

be tuned if required to more closely track aircraft performance.   
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Pod slaving to the radar will be systematically measured during test flights by sampling 

TGP generated target coordinates at different ranges, angles, and altitudes.  The aircraft 

radar will be used to track the target and the pod will then be slewed to the radar or 

slewed from the initial track.  The TGP generated coordinates will be compared to the 

mensurated coordinates and the accuracy errors recorded to provide a statistical sampling 

of the performance.   

 

During the final TGP implementation on the B-1B, another important capability in 

complete system integration should be addressed.  The final TGP design should apply  

bi-directional system integration such that the aircraft or TGP can pass and receive target 

information from any available source on the aircraft.  The concept demonstration only 

allows for the pod to receive aircraft targeting and alignment information and does not 

consider the aircraft receiving any targeting or navigation data from the TGP.  In this 

case, target coordinates generated by the TGP will have to be typed into the aircraft 

weapon system by the aircrew.  Also, the aircraft radar will not slew to the TGP during 

this testing.  Such integration shortfalls limit targeting capability and increase aircrew 

workload.   

 

The flight testing which is planned is adequate to determine the level of integration 

established for a demonstration test, but as functionality is expanded in the final TGP 

implementation, system integration flight testing will require more focus on 

implementation of integrated AFS to TGP capability. A fully integrated system must 



allow the TGP and aircraft to send and receive targeting and alignment data  

bi-directionally (R15).   

WEAPON TESTING 
 

Planned weapon testing during the TGP demonstration is limited to two weapon 

separation conditions.  To complete this preliminary sampling of store separations, 

AFSEO analyzed GBU-31 and GBU-38 releases from the intermediate bay.  Table 5 

shows the planned test points to validate the analysis. The goal of these releases is to 

make an initial assessment of the CFD results and validate this model while taking a 

cursory look at the effects of the TGP on weapons separation. 

 

Because the CFD analysis indicated that the intermediate weapon bay was the most 

critical location with the TGP configuration for weapon separation, this bay was chosen 

for the limited weapon releases.   

 

Table 5.  Concept Demonstration Planned Weapon Separation Testing  

Release 
Store 

Weapon Bay 
Door Position 
(FWD/INT/AFT)

Carriage 
Module Bay(s) Module 

Stations 

TGP & 
Pylon 
Configuration 

GBU-31 
2000 lbs 

F/F/C CRL INT NA On 

GBU-38 
500 lbs 

F/C/C SECBM FWD C21 or 
D22 

On 

Note: F=Full, C=closed. C21, D22=individual positions in forward bank and aft bank of 
SECBM respectively. 
Note: SECBM= Conventional Bomb Module equipped for 1760 weapons.  
CRL= Conventional Rotary Launcher, weapon release always from down station. 
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Therefore, if these releases are nominal, further testing can proceed with confidence that 

the results will be good since other configurations are expected to have better separation 

characteristics.  

 

These two planned releases will provide data points for future weapon configurations 

testing and will not clear the entire bomber release envelope.  In order to clear multiple 

weapon release envelopes, results of previous separation testing should be considered.   

As an example, prior to the TGP effort, Joint Air to Surface Stand-Off Missile (JASSM) 

had required no less than six releases to clear the employment envelope. 

 

The JASSM plan required more effort to clear the intermediate weapon bay due to 

weapon and aerodynamic characteristics in the high dynamic pressure regime.  The 

results were intermediate bay JASSM release restrictions [19]. Similarly, the TGP is 

expected to influence weapon separations in the intermediate bay, and the JASSM plan 

shown in Table 6, would be comparable to the TGP effort.   

 

Using available weapon integration plans such as JASSM for planning purposes, a 

thorough approach to TGP integration with weapon delivery can be achieved.  Such 

previous testing had focused on known conditions where weapon separations were 

abnormal.   The JASSM testing focused on the intermediate bay while other tests focused 

on anomalies in the aft bay and flow distortions in the bays caused by the engine nacelles. 

From these combined tests, multiple release restrictions based on airspeed, weapon  



Table 6.  Previous JASSM Weapon Separation Testing [26] 

Sortie Fwd Bay Intermediate Bay Aft Bay 

A Empty/MPRL JASSM Empty/MPRL 
B JSOW JSOW JSOW 
C JSOW JSOW JSOW 
D JASSM, JSOW, JDAM JASSM, JSOW, JDAM JASSM, JSOW,JDAM 
E JASSM, JDAM  JASSM  JASSM  
F JASSM JASSM JASSM 
G JASSM JSOW  JDAM  
H Empty  PAR/MK-82,JASSM Empty  

Note: Totals released during flight test: 6 JASSM vehicles, 10 JSOW vehicles.  
Only type of weapon listed in bay, and number of weapons carried and released vary. 

 
PAR=Pneumatic assisted rack prototype 

 

configuration, weapon door configuration, and weapon position in the bays were derived 

[19].  Some of these conditions are relevant to the expected effects of the TGP on the 

intermediate weapon bay and provide a baseline for future TGP testing.   Since CFD 

analysis has shown that the TGP is expected to disturb airflow in critical regions around 

the weapon bays, separation testing is warranted with an attached pod [6]. Table 7 shows 

a listing of testing and analysis that should be considered for the final TGP qualification 

effort and represents several conditions where release restrictions already exist and could 

be expected with the TGP.  For example, in the table, a GBU-38 may be limited to a 

specific station in the aft bay and require an upstream bay door to be open to affect a 

clean release, or similarly a CBU may have these limits in the intermediate bay.  Overall, 

varying the weapon type and location, type of launcher, door configuration, and flight 

condition leads to these restrictions that must be assessed with the TGP. 
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Table 7.   Weapon Separation Analysis Configurations 

Store 
Door Position   
(P, F,  C) 

Carriage 
Module Bay(s) Stations 

Sniper &Pylon 
Mounting 

GBU-31 
class 

All CRL Fwd/Int/Aft NA On 

CRL NA JASSM          
JSOW 

All 
  

Fwd/Int/Aft 
  

On 

Mk-84  All CRL Fwd/Int/Aft NA On 
GBU-38 F/C SECBM Fwd/Int/Aft TBD  On 

CBM/SECBM TBD Mk-82 class F/C 
  

Fwd/Int/Aft 
  

On 

CBU class F/C SECBM Fwd/Int/Aft TBD On 
WCMD class F/C SECBM Fwd/Int/Aft TBD On 
Quickstrike 
class 

All CRL or 
CBM/SECBM

Fwd/Int/Aft TBD & 
NA 

On 

Future 
Weapon 

TBD TBD Fwd/Int/Aft TBD Off/On 

Note: P=Part, F=Full, C= Closed. CRL=Conventional Rotary Launcher.  

 
(SE)CBM= Conventional Bomb Module Variants. TBD=To Be Determined 

Some insight will be gained from the two planned weapon separations during the concept 

demonstration.  However, a much larger test effort is required to have TGP and aircraft 

compatibility for weapon releases due to multiple pre-existing release restrictions that 

may propagate into the TGP configurations.  Such dynamic weapon separation testing 

requires multiple contingency plans to overcome unpredicted results while still allowing 

for testing that clears a weapon envelope. The SDD TGP test effort must expand weapon 

separation flight testing to provide flight clearances for weapon envelopes while 

addressing existing release restrictions (R16).   
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6.  CONCLUSIONS 

 
The crew systems evaluation and assessment provided important insight to the level of 

development required for a successful TGP final qualification flight test.  It revealed that 

the instrumentation plan was very thorough and was expected to help complete a one 

time aerodynamic evaluation of the pod.   Very little emphasis was placed on an 

operationally suitable MMI solution that would be implemented in the B-1B cockpit 

when the pod was fully developed. The existing COTS laptop used to provide BLOS 

capabilities was configured to provide display and control interface to the TGP without 

consideration for good ergonomic design and human factors.  A MOTS hand controller 

was affixed to the existing aircraft hand controller on the OSO side to provide additional 

TGP control capability and was cumbersome.  It was a significant finding that the 

planned concept demonstration testing did not provide for an assessment of the integrated 

controls and displays with the existing aircraft architecture, or the architecture planned 

for FIDL, the future cockpit modification.  Failure to perform this assessment is 

potentially the largest oversight of the program.  The results of these planning oversights 

may increase program risk for the SDD TGP effort.  Controls and displays 

implementation with respect to the aircraft cockpit modernization and TGP integration 

was also not in the current plan leaving in question the future suitability of this system  

 

Laboratory processes were determined to be both mature and suitable for this test effort.  

All modeling and simulation capabilities were very advanced and had supported the B-1B 
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test community in previous testing.  The major modeling and simulation limitations 

highlighted from this section were evidenced by the scope of testing performed.  This 

limited testing would achieve the test objectives for TGP demonstration, but would 

require bolstering during SDD.   

 

A study of ground developmental testing revealed support areas that were sufficient for 

the planned concept demonstration test. The study also showed several areas where 

improvements could be made prior to SDD, the final TGP implementation.  The GVT 

testing was very thorough and was expected to provide ample data to support the 

aerodynamic flight testing.  Areas that required a more detailed study included EMIC 

testing.  EMIC testing was limited to the operation of the pod with aircraft systems and 

instrumentation to exclude weapon interface, bay configurations, and defensive systems 

that would not be used for the test.  Additionally, the AFS was developed without a full 

weapon interface to expedite the testing.  Therefore, a combat ready bomber 

configuration was not tested in the laboratory, on the ground, or in-flight.  For full TGP 

employment capabilities, a fully configured bomber will need an EMIC performed.   

 

Logistic support for the test was complete and the process could be carried to SDD.  

Crew training for the demonstration was limited to mostly controls and displays. Further 

development of crew training facilities such as IFAST may be required to support 

realistic crew training scenarios. These facilities could include realistic target 

environments. B-1B crewmembers at large were unfamiliar with TGP concepts of 
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operations.  

 

Finally the planned flight test and conduct was strong in some areas but required 

modifications for SDD.  The areas that were thorough included the planned aerodynamic 

testing, and systems integration.  From this demonstration testing, the aerodynamic 

testing was expected to clear the carriage of the TGP for the B-1B flight envelope and 

refine any points of concern as required.  The systems integration testing would clearly 

demonstrate the capabilities of the TGP on the bomber.  The process for systems 

integration will also lay the foundation for systematic testing should SDD require an 

additional analysis.  

 

The plan for assessing handling qualities testing was very limited and only considered 

one closed-loop task.  Several other key tracking tasks that are common to bomber 

operation should be performed during this test. 

 

The weapon testing plan was intended to provide a snapshot evaluation of one point in 

the weapon release envelope for two weapons.  This point was determined by the 

modeling and simulation results.  This one point will provide insight into the broader 

weapon separation testing requirement, and help determine if interaction of the TGP and 

aircraft is suitable for weapon employment. Other separation tests such as JASSM that 

share similar weapon bay airflow separation concerns should be used as models for the 

TGP SDD effort. 
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Overall, the planned demonstration effort is considered to be adequate for moving 

forward with mounting and integrating the TGP on the aircraft. However, additional 

testing will be required to make this system a more viable asset to the B-1B.  An initial 

answer concerning feasibility will be achieved during the concept demonstration flight 

test.  Suitability and capability will have to be determined when the TGP goes into SDD.  
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7.  RECOMMENDATIONS 

 
Several recommendations were generated from this study.  These recommendations are 

intended to improve the SDD for the TGP.  These recommendations are extracted from 

the text in the order in which they appeared in this study and slightly modified for clarity 

in this section. 

 

1. The TGP display interface needs to be redesigned to a compatible B-1B standard 
for weapon employment.  

 
2. For the final pod integration, the symbology and formats must not only be 

consistent with all other weapon system formats but should allow for future 
upgrades that incorporate new displays. 
 

3. The TGP laptop interface should be mounted on a swivel during the concept 
demonstration testing such that it is within the operator’s DEV, and ultimately, 
the final TGP display interface must be within the operator’s DEV. 

 
4. The TGP slewing must use inertial references to eliminate slewing errors 

associated with attitude interpretation. 
 
5. A controller must be placed in the front station to assess cockpit design 

requirements. 
 
6. An evaluation of the FIDL controller must be done before final TGP 

implementation. 
 
7. Prior to SDD, an evaluation of cursor tracking tasks in a standardized cockpit 

environment must be performed to address TGP cockpit interoperability.   
 
8. The laboratory methodology applied to this program should be pursued during 

SDD.   
 
9. During SDD a much more comprehensive analysis of critical configurations 

should be completed to assess weapon separation characteristics not tested during 
the demonstration effort. 
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10. DOE planning and CFD analysis should be used for the final TGP integration to 
prioritize weapon testing and optimize test resources. 

 
 
11. For the fully developed pod effort, a full scale EMIC should be performed using 

an aircraft that is representative of all flight test conditions including defensive 
systems checks, and weapon bay interference checks for all three bays.  

 
12. Before SDD begins, a logistics support human factors focus should be performed 

that addresses environmental adversities such as cold weather or chemical defense 
posture handling and support.   

 
13. It would be advantageous to this and other test programs to evaluate the need for a 

dynamic range environment at the AFFTC to support TGP test requirements.   
 
14. Aircrew should determine whether the addition of the TGP alters handling 

qualities adversely by performing the suggested handling evaluations.   
 
 
15. A fully integrated system must allow the TGP and aircraft to send and receive 

targeting and alignment data bi-directionally.   
 
16. The SDD TGP test effort must expand weapon separation flight testing to provide 

flight clearances for weapon envelopes while addressing existing release 
restrictions. 
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COOPER-HARPER RATING SCALE 
 

 
Figure A1.  Cooper-Harper Scale 

 
 
 
 
 

 
 

70



 
 

71

 

 

 

 

 

 

 

APPENDIX B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Sample Results (Track Handle Study), [16] 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure B1. Cooper-Harper Histogram (Overshoots) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure B2.  Cooper-Harper Histogram (PIO) 
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