
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2004

Hyper-Spectral Image Processing Using High
Performance Reconfigurable Computers
Yuan He
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
He, Yuan, "Hyper-Spectral Image Processing Using High Performance Reconfigurable Computers. " Master's Thesis, University of
Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/2565

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Yuan He entitled "Hyper-Spectral Image Processing Using
High Performance Reconfigurable Computers." I have examined the final electronic copy of this thesis
for form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Electrical Engineering.

Gregory Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Don Bouldin, Seong-Gon Kong

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Yuan He entitled “Hyper-Spectral Image
Processing Using High Performance Reconfigurable Computers.” I have examined the
final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirement for the degree of Master of Science,
with a major in Electrical Engineering.

Gregory Peterson

 Dr. Gregory Peterson, Major Professor

We have read this thesis
and recommend its acceptance:

Don Bouldin

Seong-Gon Kong

 Accepted for the Council:

 Anne Mayhew

 Vice Chancellor and Dean of Graduate Studies

(Original signatures are on file with official student records)

Hyper-Spectral Image Processing

Using

High Performance Reconfigurable Computers

A

Thesis

Presented

For

The Master of Science Degree

The University of Tennessee,

Knoxville

Yuan He

May 2004

Acknowledgments

The work was performed at the Department of Electrical and Computer Engineering,

University of Tennessee in Knoxville during the period from August 2002 to December

2003. I gratefully acknowledge the financial support of Dr. Gregory Peterson, the U.S.

Air Force Research Laboratory and the Department of Electrical and Computer

Engineering, UTK, for this work.

I want to thank my supervisor, Dr. Peterson, for introducing me to the interesting world

of HPRC. He led my work, gave me support, and made valuable comments. Dr. Peterson

is not only a very good teacher of digital systems but also an excellent supervisor.

I would like to express my special gratitude to Dr. Seong G. Kong for providing me with

the original Matlab application, Dr. Hairong Qi for letting me use and modify a portion of

her image processing header file, and Dr. Donald W. Bouldin for letting me use his

laboratory equipment. Without them, this research study would not have been possible.

I want to thank all my colleagues and friends at ECE for their friendship, help and

interesting discussions inside and beyond the field of electrical engineering. Special

thanks to Choi Hing for his help with various practical problems.

Last, but not least, I wish to thank my family and my relatives for their love,

understanding, patience, and continuous support over the years. I give my deepest
 ii

gratitude to my father and grandmother for talking me into graduate school. I would also

like to thank them, along with my mother and grandfather, for their advice and nurturing.

Remembrance to my grandmother. Still.

Yuan He

April 2004, Knoxville.

 iii

Abstract

The purpose of this thesis is to investigate the methods of implementing a section of a

Matlab hyper-spectral image processing software application into a digital system that

operates on a High Performance Reconfigurable Computer. The work presented is

concerned with the architecture, the design techniques, and the models of digital systems

that are necessary to achieve the best overall performance on HPRC platforms. The

application is an image-processing tool that detects the tumors in a chicken using analysis

of a hyper-spectral image. Analysis of the original Matlab code has shown that it gives

low performance in achieving the result. The implementation is performed using a three-

stage approach. In the first stage, the Matlab code is converted into C++ code in order to

identify the bottlenecks that require the most resources. During the second stage, the

digital system is designed to optimize the performance on a single reconfigurable

computer. In the final stage of the implementation, this work explores the HPRC

architecture by deploying and testing the digital design on multiple machines. The

research shows that HPRC platforms grant a noticeable performance boost. Furthermore,

the more hyper-spectral bands exist in the input image data, the better of the speedup can

be expected from the HPRC design work.

 iv

Contents

Chapter 1. Introduction ...1

1.1 Background... 1

1.2 Objectives ... 3

1.3 Main Contributions ... 4

1.4 Structure of Thesis .. 5

Chapter 2. Pilchard Platform and Design Package...............................6

2.1 Pilchard Overview .. 6

2.2 Xilinx Virtex-E Chip... 8

2.3 Pilchard Design Files .. 11

2.4 Pilchard Host Interface ... 12

2.5 Chapter Summary ... 13

Chapter 3. Hyper-Spectral Imaging Application15

3.1 Introduction... 15

3.2 Discrete Wavelet Transforms ... 17

3.3 Normalization ... 21

3.4 Hyper-spectral Plots.. 22

3.5 Feature Extractions ... 22

3.6 Chapter Summary ... 24

Chapter 4. Design and Implementation..25

4.1 Overall Design Flow... 25

4.2 Matlab Profile ... 26

 v

4.3 C++ Designs ... 29

4.3.1 C++ Designs and Implementations... 30

4.3.2 C++ Profile ... 31

4.4 VHDL and Hardware Designs .. 33

4.4.1 Pilchard Design Flow.. 36

4.4.2 Design Entry ... 38

4.4.2.1 System Components and Structure ... 38

4.4.2.2 Functional Behaviors .. 39

4.4.3 Hardware Simulation .. 49

4.4.4 Design Synthesis... 50

4.4.5 Place Route and Bit Streams... 55

4.4.6 In-Circuit Design Verification .. 56

4.5 Chapter Summary ... 57

Chapter 5. Result and Discussion..58

5.1 Results Comparisons... 58

5.1.1 Resource Comparison ... 58

5.1.2 Performance Comparison.. 60

5.1.3 Parallel Computing Results... 66

5.2 Difficulties Encountered ... 68

5.3 Conclusions... 71

5.4 Future Work .. 72

Bibliography...74

Appendix...78
 vi

Vita ... 123

 vii

List of Tables

TABLE 2-1: PILCHARD PLATFORM SPECIFICATIONS [3] ... 9

TABLE 2-2: FEATURES OF XCV1000E-HQ240 [2].. 10

TABLE 4-1: MATLAB PROFILE ... 28

TABLE 4-2: C++ PROFILE .. 32

TABLE 4-3: PARITH - PIPELINE MODEL A.. 44

TABLE 4-4: PARITH - PIPELINE MODEL B .. 44

TABLE 5-1: RESOURCES USED DURING PLACE AND ROUTE... 59

TABLE 5-2: RUN-TIME COMPARISON BETWEEN 16-BIT AND 32-BIT VERSION................... 63

TABLE 5-3: OVERALL RUN-TIME COMPARISON .. 65

TABLE 5-4: BIOGRID RESULTS WITH SINGLE PILCHARD MACHINE 67

TABLE 5-5: BIOGRID RESULTS WITH MULTIPLE PILCHARD MACHINES............................. 68

 viii

List of Figures

FIGURE 1-1: HIGH PERFORMANCE RECONFIGURABLE COMPUTER ARCHITECTURE [7]........ 2

FIGURE 2-1: PHOTOGRAPHY OF THE PILCHARD BOARD [1] ... 7

FIGURE 2-2: BLOCK DIAGRAM OF THE PILCHARD BOARD [1] ... 8

FIGURE 2-3: PILCHARD WRITE CYCLE [3] ... 14

FIGURE 2-4: PILCHARD READ CYCLE [3] ... 14

FIGURE 3-1: MATLAB CODING OF THE WAVELET TRANSFORM... 17

FIGURE 3-2: DAUB4 TRANSFORMATION MATRIX .. 19

FIGURE 3-3: DAUB4 WAVELET FILTER COEFFICIENT .. 20

FIGURE 3-4: WAVELET TRANSFORM FILTER EFFECT... 21

FIGURE 4-1: OVERALL DESIGN FLOW.. 27

FIGURE 4-2: DIGITAL DESIGN FLOW.. 37

FIGURE 4-3: ABSTRACT VIEW OF OVERALL FLOW BLOCK DIAGRAM................................ 40

FIGURE 4-4: GENERATED BLOCK DIAGRAM OF THE "PCORE.VHD".................................... 41

FIGURE 4-5: GENERATED BLOCK DIAGRAM OF THE "PARITH.VHD"................................... 42

FIGURE 4-6: PARITH WAVEFORMS... 47

FIGURE 4-7: FIXED POINT ARITHMETIC IN PARITH.VHD .. 48

FIGURE 4-8: SCRIPTS FOR COMPILE AND SIMULATE VHDL FILES 51

FIGURE 4-9: TESTBENCH HIERARCHY.. 52

FIGURE 4-10: CREATE IMPLEMENTATION OPTIONS USING SYNOPSYS FGPA COMPILER .. 53

FIGURE 4-11: SYNTHESIS SCRIPT... 54

FIGURE 4-12: PLACE AND ROUTE SCRIPT .. 55
 ix

FIGURE 5-1: RUN-TIME COMPARISON BETWEEN 16-BIT AND 32-BIT VERSION.................. 64

FIGURE 5-2: RUN-TIME THRESHOLD (W/ LOAD) .. 64

 x

Chapter 1. Introduction

This chapter gives a brief overview to the background of High Performance

Reconfigurable Computers, the objectives, the contributions, and the composition of the

thesis.

1.1 Background

Lately, many areas of research are exploring the use of reconfigurable computers (RC),

such as field programmable gate array (FGPA), along with a conventional processor. In

general, such a system is known as a Field Programmable Custom Computing Machine

(FCCM). FCCMs offer the benefit of the speed from an application-specific coprocessor,

combined with the capabilities and flexibilities of FPGAs. Conventional processors can

compute general-purpose tasks, while leaving complex and processor-intensive work to

the application-specific hardware units. Several research groups have demonstrated the

performance improvements using RC architectures [19-21].

A related field of study extends the FCCMs to High Performance Reconfigurable

Computers (HPRC). The idea of HPRC is to encompass parallel processors to work

collectively on a common problem while each individual processor may or may not be a

FCCM system.

 1

Figure 1-1: High Performance Reconfigurable Computer Architecture [7]

Figure 1-1 shows HPRC architecture, which consist a number of compute nodes that are

linked by an interconnection network. A reconfigurable hardware may be attached to any

of the compute nodes and there might be an interconnection network that exists between

the RCs.

In this work, a reconfigurable superscalar processor model uses a reconfigurable system

called Pilchard to simulate the HPRC environment [1]. At the Electrical and Computing

Engineering Department of University of Tennessee Knoxville, there are eight Pilchard

systems available for usage.

In this project, a hyper-spectral image processing application is considered. This

particular application contains the functions that offer the complexity that calls for a

dedicated reconfigurable device. In addition, the functions have to be performed on each

 2

of the hyper-spectral bands, thus its repetition can benefit from using a high performance

computing system. The selection of this image processing application is appropriate for

the study of the HPRC.

While much of the work focuses on transferring the complexity part of the original

application into specialized hardware functions, other means also have to be considered

for the communications between the software and the hardware and as well as at the

superscalar level.

1.2 Objectives

In view of the background stated above, the first goal of the work is to, identify any

performance bottlenecks that the original software application possesses, then

accelerating the bottleneck code using the Pilchard platform. The RC system using the

Pilchard platform is expected to give a speedup as compared to the software counterpart.

The second goal builds on the results of the first objective in order to explore HPRC

platforms. The idea is to have each of the eight available Pilchard systems responsible for

a subset of the hyper-spectral image bands. The eight systems can work concurrently with

their corresponding FPGA components to produce even a better speedup than projected

in the first goal.

 3

The third and final goal is to consider the algorithm and design methodology used to help

outline a standard approach to accelerate software applications by using HPRC.

1.3 Main Contributions

The work performed gives the following main contributions:

• Constructed an image processing hyper-spectral application on HPRC by

converting it from a Matlab application.

• Constructed an implementation using HPRC with standard design flow.

• Designed, implemented, and/or verified the sub-modules of the digital system:

Pilchard, Pcore, Parith, Fxmult, and Max.

• An analytical study of 2D Wavelet-Transform

• An analytical study of the data streaming process using the Pilchard platform.

• An analytical study of the Pilchard platform and its design package

• A comparative study of different methods of design for the chicken tumor

application

 4

1.4 Structure of Thesis

The thesis is divided into five chapters. Chapter 1 gives a general introduction to the

work. Following the introduction, the principles and basic concepts of the Pilchard

platform and its design packages are described in Chapter 2. Chapter 3 gives a detailed

description of each algorithm and tasks performed in the original hyper-spectral image

processing application. The work performed is treated in Chapter 4. It contains each step

of the project flow. The results, the overall conclusions of the work and the suggestions

of future work are given in the last Chapter.

 5

Chapter 2. Pilchard Platform and Design Package

The hardware implementation of this project is to be developed on a reconfigurable

computing environment named Pilchard [1]. Consequentially, this chapter presents an

overview of the Pilchard platform and design issues related to it.

2.1 Pilchard Overview

The Pilchard is a high performance reconfigurable computing platform that was

developed in the Computer Science and Engineering Department of the Chinese

University of Hong Kong [3]. It exploits a field programmable gate array device that

utilizes the dynamic RAM dual in-line memory module to interconnect with its host,

which typically is a personal computer. The system is low-cost and with its efficient

interface, it offers the flexibility for quick prototyping of various applications. The

overhead, whether it is timing or hardware resources, is minimized to maximize the

resources available for the developers. In addition, the learning curve for implementing a

digital design with the Pilchard platform is not steep, as suggested by the Chinese

University of Hong Kong [1,3]. These benefits give the developers more time to carry out

their design work rather than spending excessive time on learning the interface protocols.

For these reasons, the Pilchard is used.

 6

Figure 2-1: Photography of The Pilchard Board [1]

Besides the feasibility that the Pilchard system offers, it also contains some features and

particulars that are worthy of mentioning. Figure 2-1 shows a picture of the Pilchard

board.

The main FGPA component is a Xilinx Virtex-E, XCV1000EHQ240, chip, however, it is

supported by any of the Xillinx Virtex and Virtex-E device family in the PQ240 or the

HQ240 packages. The Pilchard board is designed to be compatible with the 168 pin 3.3

Volt, 133MHz, 72-bit, DIMMs. The printed board is a 6-layer impendence controlled

FR4 board and roughly doubles the height of a standard DIMM card. Currently, the

Pilchard is only supported by the ASUS CUSL2-C motherboard and tested and operated

on Mandrake Linux 8.1 x86 version. The configuration bit-stream files are download

 7

onto the Pilchard platform using the Parallel Cable III with the Xchecker interface. A

flowchart of the Pilchard board is shown on figure 2-2 and more in-depth specification is

shown in table 2-1.

2.2 Xilinx Virtex-E Chip

The architecture of the Xilinx Virtex-E chip consists of three major configurable

elements, an array of configurable logic blocks (CLBs), programmable input/output

Figure 2-2: Block Diagram of The Pilchard Board [1]
 8

Table 2-1: Pilchard Platform Specifications [3]

Features Description

Host Interface
DIMM Interface
64-bit Data I/O
12-bit Address Bus

External (Debug) Interface 27 Bits I/O

Configuration Interface X-Checker, Multil.ink and JTAG

Maximum System Clock Rate 133 MHz

Maximum External Clock Rate 240 MHz

FPGA Device XCV 1000E-HQ240-6

Dimension 133mm * 65mm * 1mm

OS Supported GNU / Linux

blocks (IOBs), and interconnects. The CLBs are the basic functional elements for

mapping user-constructed logics. The IOBs connect the exteriors pins on the Pilchard

board with the internal signal lines. The interconnect serves as the interface routing the

connections between the CLBs and the IOBs. User-specific functions are configured onto

the XCV1000E-HQ240 chip boarding the FPGA. Its specification is summarized in table

2-2.

The Xillinx Virtex-E FPGA has four digital Delay-Locked Loops (DLLs) and four

Global Clock Buffers for global clock distribution. However, only three out of the four

 9

Table 2-2: Features of XCV1000E-HQ240 [2]

Parameter Features

System Gates 1,569,178

Logic Gates 331,776

CLB Arrays 64 * 96

Logic Cells 27,648

User I/Os 660

Differential I/Os 281

BlockRAM Bits 393,216

Distributed RAM Bits 393,216

Global Clock Buffers are used for Pilchard due to the Pilchard architecture. Two out of

four outputs from the DLLs are labeled and available for use. They are labeled as CLK

and CLKDIV in pcore.vhd, a Pilchard Harware design file, which will be covered later in

the chapter. The remaining two DLLs are also available for use, but will require user

modification of the Pilchard design files, namely the pilchard.vhd and the pcore.vhd.

These two DLLs are not declared or labeled in the original Pilchard design files.

Another major feature of the Virtex-E FPGA chip is the on-board Block SelectRAM+,

which had an impact on the overall design outcome. The Block SelectRAM+ uses a dual

port BlockRAM, containing a total of 96 blocks of RAM, each holding 4096 bits data. A

 10

timing factor worth of underlining is that with the Dual-Port RAM, the read/write request

can only be fulfilled in every two clock cycles but allows simultaneously access data on

both ports at different memory address locations.

2.3 Pilchard Design Files

Another important part of the Pilchard platform, beside the physical device, is the

included design file packages. The Pilchard design files contain both VHDL files and

software files that are necessary for the user design implementations and FPGA-Host

interfaces. Both of the resources need to be edited accordingly to ensure synchronized

interface communications.

The VHDL files that needed by the developers are Pilchard.vhd, pcore.vhd, a Pilchard

user constraint file (UCF), and a set of netlist files (EDIF). The pilchard.vhd is the top

level VHDL codes that bring forth the interfaces with the host DIMM slot directly. It also

configures the global clock signal, clock divider, I/O buffer, and startup reset of the

FPGA device on the Pilchard. Unless new sources are added to the interface, such as a

new clock signal, or special design constraints are to be met, this files does not need be

modified. Instead, most of the design logic can acquire enough resources to communicate

with the host from the “pcore.vhd” and should be placed in or under this module. Some

of the default I/O ports in this file are predefined in association with its parent file,

 11

pilchard.vhd, for access the host interface, however, some others are for testing purposes

can be left unused. The Pilchard’s UCF is a hardware-dependent file that contains the

information regarding pin locations and timing constraints of the Virtex-E chip. The

Pilchard’s EDIF is the pre-synthesized file that provides the netlist for I/O blocks used in

“pilchard.vhd”.

The included software packages are used for the host-side interface, and it contains a set

of C library code, the “iflib.h” and “iflib.c”, which are the library header file and the C

source code, respectably. This set of library files defines four essential application-

program-interface (API) functions that handle the data transfer between the host and the

Pilchard board. The “write32” and “read32” are used for 32-bit data transfers, while the

other two functions “write64” and “read64” are used for 64-bit data transfers. The

Pilchard user reference recommends using the 64-bit interface, since the 32-bit interface

is slow and inefficient [3]. Even when working with a 32-bit design application, the user

may still use the 64-bit without decrease in speed performance. All of the files in the

Pilchard design packages may be found in the Appendix.

2.4 Pilchard Host Interface

The data transfer is perhaps one of the most important parts of the Pilchard host interface.

The “pcore.vhd” contains two 64-bit signals, “din” and “dout”, which are connected

 12

directly to the system memory bus through the DIMM slot. Along with the memory bus

signals, there is also an 8-bit memory address bus that allows Pilchard to address up to 28

memory locations. This limitation is constrained by the hardware resources and the

software drivers. To access more memory locations, other means have to be implemented

such as using data bus to store address locations, using counter schemes, or split the

address bits into two or more address bus locations.

When the host issues a write request, the input data from “DIN” signal and the address

bus “addr” are to be read simultaneously on the Pilchard side, to ensure the correct data is

write to the corresponding location. Similarly, when the host releases a read command,

both the read signal and address bus are triggered the same time. However, the memory

address will only be ready at the data output port, “dout,” at the next clock cycle. Figure

2-3 and 2-4 show the Pilchard write and read cycles.

2.5 Chapter Summary

The high performance reconfigurable computer platform used for this project is called

Pilchard. The hardware issues and specifications for the Pilchard platform were discussed

in this chapter. The next chapter looks into the applications that are going to be

implemented on this system.

 13

Figure 2-3: Pilchard Write Cycle [3]

Figure 2-4: Pilchard Read Cycle [3]

 14

Chapter 3. Hyper-Spectral Imaging Application

Chapter three provides a description to the original hyper-spectral software application,

which was implemented using Matlab. Presented here are some of the key points within

the software that will have an impact on the overall design flow.

3.1 Introduction

This research is based on an image processing application that use a hyper-spectral image

taken from a chicken with numerous tumor spots. The original analysis code was written

in Matlab by Dr. Seong G. Kong of the Department of Electrical and Computer

Engineering at University of Tennessee Knoxville. It consisted of four main functions,

discrete wavelet transform, normalization, signature plots and features extractions. The

algorithm is scripted in the order specified above, together with few initialization or

utility codes form the application. The application operates on a data image that has 65

hyper-spectral bands, each with a resolution of 460 by 400 digital pixels, making a 32M-

byte data file. The source code itself is merely two-pages long and about 100 lines of

code, however, due to the size of the image and the algorithms used, it takes Matlab an

average of 3 to 4 minutes to perform these functions over one sample set of image data.

These calculations were performed on a test bed using Pentium III, 1 GHz. processor

with 512 Mb of RAM.

 15

Consider remote sensing, a major technology field that uses hyper-spectral image

processing, commonly produces images with up to 288 separate bands and covering

regions from 0.4 to 2.5 micrometers [8]. This is about 300 times higher resolution than

the chick data sample for each band and 1350 times larger in total resolution size. To put

into perspective, assuming the Matlab calculation time operates linearly with input image

size, then applications such as remote sensing would literally take Matlab 4725 minutes

or more than 3 days to perform this application. Realistically, calculation times are not

linearly proportionally to the input data size. The computation time actually increase

more due to the reiteration of larger matrices or image resolutions. To overcome this

deficiency, we will explore the idea of migrating the software bottleneck onto a hardware

system using High Performance Reconfigurable Computers in this project.

The remaining of the chapter provides a description of all the functions used in the

application according to their execution order. While the purpose and the functionalities

of each function are important to understand, but moreover, the algorithms are the key to

this project’s success. The understanding of these algorithms will be used at later design

stages.

 16

3.2 Discrete Wavelet Transforms

The first step in this set of application is applying a 2-dimensional Daubechies 4 (Daub4)

discrete wavelet transform [28, 29, 30]. Wavelet transform is an important spectral

analysis tool. It is used in various applications such as signal processing and image

processing, communications, and more. The extent of this information can be found in

references [28, 29, 30]. For this section, we will only explore enough for the readers to

understand the Matlab functions, used in this particular program, of the discrete wavelet

transformation. The information presented in this section serves the fundamental

stepping-stones to the two major designs stages, converting from Matlab code to C++ and

the VHDL coding of the discrete wavelet transform. Figure 3-1 shows the section of

codes used in the original Matlab program.

Figure 3-1: Matlab Coding of The Wavelet Transform

 17

The discrete wavelet transform is defined by a square matrix of filter coefficient. Its fast

linear operation operates on a data vector and transforming it into a numerically different

vector whose length usually remains the same. When the wavelet transform is correctly

constructed, the matrix is orthogonal, the transform and the inverse transform can be

implemented [10]. In this project we will restrict ourselves to the Daubechies class

wavelet filter due its mere presence in our application, denote by the “db4” in the dwt2

function. See figure 3-1. This class of filter includes members ranging from highly

localized to highly smooth. The simplest or the most localized member is called DAUB4,

which contain only four coefficient, h0, h1, h2, h3. Similarly less localized Daubechies

could have more coefficients, the number of coefficient will corresponding to its name.

Hence, DAUB6 will have 6 coefficients.

To understand the algorithm of the discrete wavelet transform, consider the

transformation matrix, shown in figure 3-2, acting on a column vector of data to its right.

Note the structure of this matrix. The first row generates one component of the data

convolved with the filter coefficient h0, … h3, likewise the third, fifth, and other odd

rows. If the even rows follow the same pattern, offset by one, then the matrix would be a

circulant, that is, an ordinary convolution that could be done by FFT methods. Instead of

convolving with h0, h1, h2, h3, the even rows perform a different convolution, with

different coefficient g0, g1, g2, g3, which correspond to the values of h3, -h2, h1, -h0

respectively. When compute the last set of data in a vector, the multipliers from the last

 18

Figure 3-2: DAUB4 Transformation Matrix

pair of the multiplications, denote as h2, h3, g2, and g3 in row seven and eight in figure

3-2, wraps around to the beginning of the vectors. The overall action of the matrix is,

thus, to perform two related convolution, then to decimate each of them by half and

interleave the remaining halves.

Sometimes, it is useful to think of the filter with f coefficients as a smoothing filter; it is

like a moving average of four points. On the converse, the g coefficient filters is not a

smoothing filter due to its minus signs. Together, both filters make up what image

processing refers to as a quadrature mirror filter [28,29]. In fact, the coefficient in the g

filter is chosen to make it yield a zero response to a sufficiently smooth data vector. This

results in the output of h filter, decimated by half, accurately representing the data’s
 19

Figure 3-3: Daub4 Wavelet Filter Coefficient

“smooth” information. While the output of g filter is also decimated is referred to as the

data’s “detail” information. The coefficient is listed in figure 3-3.

The convolution with the h coefficient is sometime described as the low-pass filter effect

and the convolution with the g coefficient is referred as the high-pass filter effect. Figure

3-4 shows the overall effect of the discrete discrete wavelet transform on a 2-demsional

image. The LL represents a set of two low-pass filter used on the rows and the columns

vectors of the data. This particular component is labeled as the variable “ca” in Matlab.

See figure 3-1. The remaining functions presented in the Matlab program deals with only

the result from the “ca” component of the discrete discrete wavelet transform. Thus,

throughout the designing stages of the this project, only this component of the discrete

discrete wavelet transform will be proposed, calculated, and compared.

 20

Figure 3-4: Wavelet Transform Filter Effect

3.3 Normalization

After the discrete wavelet transformation, normalization must be performed in order to

show a spectral image of the data. Normalization is an easy concept to grasp. It is used to

attain a normalization of the grey level by stretching the data to full dynamic range. This

is achieved by dividing each pixel by the overall maximum value. The algorithm itself is

fairly easy, however, most of computation time are consumed for finding the maximum

value of each band then applied it to each pixel.

 21

3.4 Hyper-spectral Plots

Hyper-spectral plots graph the data sets of normal tissues, tumor tissues, and background

for each of the 65 spectral bands. The coordinates of each respective series are manually

picked by examining the normalized spectral image. The algorithm is simply the intensity

value at the given coordinates range divided by the maximum pixel value among the 65

bands.

3.5 Feature Extractions

The feature extraction process is the final operation in the image processing application.

Generally, the feature extraction takes an image that has been processed and converts the

areas of interest into well-defined regions that can be used for further investigation. Once

areas of interest have been identified in the image, then convert the image into a bit map

with areas of interest valued at one and remainder of the image set to zero.

This type of image can be processed in a variety of ways. Among the popular techniques

use for this application are the area labeling, threshold comparison, and a more complex

technique, Hough transform, just to name a few. Area labeling splits a segmented image

into distinctly labeled areas. The image is scanned row-by-row and column-by-column to

 22

find the first filled pixel and then the output image is labeled as far to the right and left of

that pixel as possible while the input image is zeroed. Then the labeled area is scanned

from left to right checking for connected pixels above and below the line. When a

connected pixel is found the procedure is repeated recursively starting from the connected

pixel. This recursive procedure is continued until the whole area has been labeled and

there are no more connected pixels. Then scanning recommences to find the next area in

the input image to be labeled.

The Hough transform uses a technique to detect the basic shapes within the image. For

example, at its simplest the Hough transform can be used to detect straight lines. If the

pixels detected fall on a straight lines then they can be expressed by the equation

y=mx+c. The basis of the Hough transform is to translate the points in (x,y) space into

(mc,) space using the equation c=(-x)m+y. Thus each point in (x,y) space represents a

line in (m,c) space. Where three or more of these lines intersect a value can be found for

the gradient and intercept of the line that connects the (x,y) space points. The Hough

transform can be expanded to consider circles by transforming the (x,y) space into a

circle centre space, and even to arbitrary object providing that their shape and orientation

are known before hand.

The particular method used by Dr. Kong is the second method mentioned above, the

threshold comparison. While this method being one of the simpler methods in feature

extraction, simpler than the two method mentioned above, however, it only works with

 23

image that has small range of intensive levels. The chicken tumor application only

associates with three areas of intensity, which are the normal chicken tissue pixels, the

tumor chicken tissue pixels, and the background image pixels. Each of the feature

intensity level is assigned by a value calculated through the means and the Gaussian

membership functions of their respected pixels. Then, the data is scanned pixel by pixel

and comparing the data pixel against the three feature pixel values. The tumor spot pixels

are valued at one if the pixels intensity is less than the normal tissue intensity and greater

than the background intensive value. All other data values are assigned zero.

3.6 Chapter Summary

This chapter studied the original Matlab hyper-spectral imaging application, which

contains four sub-sections, discrete wavelet transform, normalization, hyper-spectral

plots and feature extractions. The algorithms for each sub-section are discussed. Next

chapter will start by examining the profiles of each sub-section, thus determining the

bottlenecks that will be implemented on the Pilchard platform.

 24

Chapter 4. Design and Implementation

Chapter four discusses the design methodology and the design cycle that makes up this

project. It is sectioned based on the design steps, from an overview to each of the design

processes.

4.1 Overall Design Flow

The design stage of this project begins with examining the Matlab profile. Matlab is well

established as an effective tool for performing numerical experiments and graphic

simulations. Its simple, high-level programming language allows rapid development of

new projects and facilitates debugging. However, a high-level interpreted language such

as Matlab cannot compete in speed and memory efficiency with traditional compiled

language such as FORTRAN and C/C++. Thus a good speed up can be gained from

simply transforming the Matlab code to a simpler programming language, which leads to

the next design stage. In the second stage, the original Matlab code is re-written to C++

from top to bottom. By analyzing the profile of the program in this new platform, the

bottlenecks are pinpointed to a few operations. These bottlenecks are then re-designed, to

match the benchmarks from the original Matlab output, with VHDL onto the FPGA using

the Pilchard platform. The results from each of the programs are then compared and

evaluated. This completes the design stages set for a single PC. When this is completed,

 25

the project further explores the potential performance boost from a parallel computing

environment by utilizing all of the available Pilchard machines at the Department of

Electrical and Computer Engineer at University of Tennessee. Figure 4-1 shows a flow

chart of the overall design flow for a single Pilchard platform.

4.2 Matlab Profile

In order to obtain the best trade off between computation time versus hardware cost and

design time, it is important to find the section/sections of the analysis that consume the

most time, then transferring those sections onto the new platform. The analysis for the

Matlab code is done by the built-in profile.

The program consists of seven sections, which are listed in table 4-1. The Matlab run-

time is computed and shows the time used per its functions. The run time in each section

is the sum of the total time taken for all functions under its corresponding section. It is

worthy noting that even though a section consist a function with the longest run time, it is

not necessarily the longest run-time section. Sections are divided in such a way that it

contains a main function along with its corresponding function setups and/or declaration

of variables. For example, dwt2 is one of the two functions used as part of the 2D discrete

wavelet transform. It consumed the most run time as a single function calls, but

 26

C++ / C++
Profile

Matlab
Profile

Hardware
Implementation

Identify
Bottlenecks

Re-Profile

Figure 4-1: Overall Design Flow

 27

Table 4-1: Matlab Profile

Matlab Profile

 Seconds % of Total Time

Total Run Time 201.15 -

Setup Time (read data, declare variable, etc.) 25.73 12.79%

2D Wavelet Transform 35.85 17.82%

Normalization 5.925 2.946%

Hyper-spectral Signatures Plots n/a n/a

Feature/Tumor Extraction 124.78 62.03%

Output 3D Image Result n/a n/a

 28

the 2D discrete wavelet transform only ranked second as calculated by the sections.

Table 4-1 reveals the result of the Matlab Profile. It is easily observed that a

combined 92% of run time is spent on setup, 2D discrete wavelet transform, and

feature tumor extractions. While the set up time ranks third, however, it is not

categorized as a major application. It is merely a programming oriented protocol; the

setup time will vary depending on the program software used. However, due to the

size of the testing image, it is expected that little speed-up can be gained from this

procedure. The focus lays on the remaining two functions, which are the 2-

deminsional discrete wavelet transform and the feature/tumor extractions. These

functions will be implemented.

4.3 C++ Designs

To reduce the overhead exhibited on Matlab, C++ was chosen to be the candidate of

the lightweight platform for two reasons. First, an image-processing library is

available from previous course work [31]. It contains a versatile image class that

offers easy manipulation of rows and columns of the data. Second, C++ is the most

familiar programming platform to the author, in comparison with other alternatives

like, C, FORTAN, etc.

 29

4.3.1 C++ Designs and Implementations

Much of the C++ coding follows the algorithm and process presented in the Matlab

code with the exception of the few complicated Matlab functions. This included the

input function and the display function of the image data and the discrete wavelet

transform function. Since the source code of any Matlab function is undisclosed, the

analogous implementation in each of these Matlab functions are only technically

sound in their functionalities, the actual results may not be exact. Also, there are

other factors that are unknown from the Matlab algorithms, such as round offs and

precision bits, which could result in a minor discrepancy between the conversions.

However, research was done to understand these functions, in order to keep the

disparities at a minimum.

One of the biggest challenges and the one that was expected to show most of the

disparities between the Matlab and the C++ program are the discrete wavelet

transform functions. First, this is a three-dimensional image. Typical discrete wavelet

transform algorithms use one-dimensional vectors. The three-dimensional hyper-

spectral discrete wavelet transform algorithm behaves similarly as the one-

dimensional transform. The algorithm for the two-dimensional discrete wavelet

transform is to apply a transformation on the rows of the image and downsize the

result by half, then once more over the column values, for each of the two-

 30

dimensional spectral bands. The setback with using the one-dimensional algorithm

on a two-dimensional data set is that adjustments have to be made to correct the

dimensional vectors to the proper size, so that the transformed one-dimensional

vector matches their correct representation of rows and columns. Also, the

algorithms used in C++ are a simplified version of the discrete wavelet transform;

recall from chapter three the original function in Matlab only deals with the

computation regarding the low-pass component of the transform. Many

dissimilarities are expected between this and the Matlab algorithm. While Matlab

uses an industrial-standard image processing system from specialized toolboxes to

perform the transformations, the algorithm used in C++ is a rather simple

straightforward.

 Also worth mentioning is that in order to properly display the spectral images, the

C++ outputs the image file into binary data files, then they are opened and displayed

using the same Matlab function as in the original Matlab program.

4.3.2 C++ Profile

The C++ run time is computed by using the clock () function, which is manually

inserted at each appropriate corresponding section. Table 4-2 shows the result of the

 31

Table 4-2: C++ Profile

 Matlab C++

 Seconds % of Total Time Seconds % of Total Time

Total Run Time 201.15 - 11.67 -

Setup Time (read data, declare variable, etc.) 25.73 12.79% 0.6 5.14%

2D Wavelet Transform 35.85 17.82% 3.44 29.48%

Normalization 5.925 2.946% 4.09 35.05%

Hyper-spectral Signatures Plots n/a n/a 0.01 0.09%

Feature/Tumor Extraction 124.78 62.03% 0.13 1.11%

Output 3D Image Result n/a n/a 3.4 29.13%

 32

C++ profile using a Pentium III, 1Ghz PC with 512 Mb of RAM, the same test bed that

was used for the Matlab profile.

 By comparing the results from the table below, the overall run time is reduced from

201.15 seconds to 11.67 second. The setup utilities, discrete wavelet transforms, and

feature extraction functions were the three functions with the highest reduction. These

sets of functions perform extensive matrix computations and iteration of loops. The

matrix overhead that exists in Matlab is responsible for most of the performance

hindrance observed here.

Within the C++ profile, three major time-consumers are the discrete wavelet transform,

normalization, and the output of the 3D image result. Due to the size of the image data,

the long output functions run time is unavoidable. Perhaps the greatest performance

improvements are to be made from the remaining two functions. The designs and the

implementation of these functions are covered more in detail in the next chapter.

4.4 VHDL and Hardware Designs

As suggested from the previous section, the hardware design is to better implement the

two bottlenecks in C++, which are discrete wavelet transform and normalization. A

successful implementation would show a good performance improvement. Although

 33

discrete wavelet transform has been widely researched and many IP cores exist, due to

resource limitation on the Pilchard platform and the sizeable content of the input images,

the implementation of the IPs for an entire wavelet transform is not feasible for this

project. Thus, the digital design of the discrete wavelet transform applications has to be

manually designed and implemented. However, the use of IPs for smaller scope of the

digit design was explored.

In order to best balance the trade off between design time and performance, with

consideration of the limited RAM resources on the Pilchard system, only the two

bottlenecks, wavelet transform and normalization are addressed in the hardware design.

The lowpass-lowpass (LL) portion of the wavelet transformation is implemented on the

Pilchard. Recall from chapter three, the LL portion of the wavelet transformation

performs two tasks. First, it performs an operation of the sum of four products. Second,

as it continues the numerical operation through its data image, it decimates the number of

the output by half. With the current design, the function of the sum of the four products is

implemented on the FPGA board. The second task is controlled by the data feed from the

host side. As data are feed in using the streaming technique, only a portion of the data

vectors is processed at a time. The process iterates until all of the vectors have been

computed. The detail of this technique will be discussed later. During the process of the

discrete wavelet transform, the maximum pixel value of each band is also collected and

written to registers. These values will be used to improve the normalization performance

 34

by eliminating the unnecessary software iteration for calculating the maximum value of

the normalization process.

The digital design is written with 32-bit fixed-point arithmetic, where the rightmost 10

bits represents fraction. This decision is based on the I/O bus of the Pilchard system and

the data values found in the application arithmetic process by running the C++ version of

the program. 32-bits covers almost all of the data values’ range while providing a

hundredth decimal fraction precision. The I/O port uses a 64-bit width bus, so it also fits

two 32-bit data perfectly. However, smaller bit widths were also considered. Even with a

16-bit width, it only covers about 75 percent of the data values within the original

software computation.

The blockRAM used in this project has a data bus width of 64-bit and depth of 256. The

working address bus is 8-bit and takes 2 clock cycles to execute each read and write

command. See figure 2-3 and 2-4. This in turn became the hardware limitation of the

design. Consider there are 65 bands in the data, each with a resolution of 460*400,

yielding 11,960,000 pixels. The first discrete wavelet transform operates on the data in

groups of 4 pixels, which will yield 2,990,000 operations, and after being downsizing by

2 that leaves 5,980,000 pixels for the next set of transforms. Recall that in the 2-

dimensional discrete wavelet transform, the operation is performed on both the rows and

the columns of the data. All together, the digital design needs to take in 17,940,000 pixel

values and performs 4,480,000 operations for each set of image data. Clearly, not all the

 35

data samples can be inputted onto the Pilchard at same time to perform even one

complete discrete wavelet transform. Since 32-bit pixel values are used, it takes four

clock cycles for read and four clock cycles for write for each discrete wavelet transform

operations, plus a number of clock cycles to perform the operation. Since the read/write

ports limit the throughput of the data flow, a pipeline has been designed to operate the

read/write port at maximum frequency in order to optimize the overall performance.

4.4.1 Pilchard Design Flow

To create a functional system efficiently, several design cycles are required. The

hardware design flow diagram shown in figure 4-2 illustrates all the steps in this project.

These steps are iteratively implemented and verified until a stable functioning system is

produced to the user specifications.

There are two design verification steps in this design cycle. The first verification is the

functional simulation of the design logic, which is done before synthesizing the design.

The second verification is in-circuit verification and is performed by downloading the bit-

stream onto the Pilchard board and using interface software to verify the system behavior.

The traditional post-layout simulation for the Pilchard entity was not used because it

would require taking the back-annotation of a fully routed design and applying timing

information to perform a functional simulation, however, the behaviors of many signals

 36

Design Synthesis

Design Entry
VHDL Files

Start

Design Verification
Pre-Synthesis Simulation

Design Implementation

Download Bit-Stream
To Pilchard

Design Verification
In-Circuit Verification

Finish

Figure 4-2: Digital Design Flow

 37

in the top entity was unknown. Thus, the in-circuit verification became the only

verification after the synthesis process.

4.4.2 Design Entry

VHDL was used in this project to develop a partial discrete wavelet transform function

and a partial normalization process. This section discusses two main topics, the system

components and structure, and functional behaviors of each implemented function. While

the first sub-section focuses on the high-level hierarchy, the latter one is a more in-depth

description of each function.

4.4.2.1 System Components and Structure

Because the Pilchard platform is used, the top-level hierarchy begins with the VHDL file

“pilchard.vhd” that cames with the platform, which was developed by the Chinese

University of Hong Kong. Within it is the VHDL file, “pcore.vhd,” which is used as

wrapper file that allows the user to design, and an IP core to interface with the Pilchard

board. The “parith.vhd” is the top level of the user design files, which consists of two

other behavior components, the “max.vhd” and the “fxmult.vhd.” It is inside the

 38

“pcore.vhd” along with the source file, “dpram256_64.vhd,” of dual port Block RAM

generated from the Xilinx Core Generator. In this project, port A from the dual port

BlockRAM is used to interface with the “pcore.vhd” and port B is used to interface with

the “parith.vhd.”

The abstract view of the architecture is shown in figure 4-3. The true representation of the

block diagram, “pcore.vhd,” is shown in figure 4-4. It is generated by importing the

actual VHDL codes using the FPGA Advance Pro from Mentor Tools. Figure 4-5 is a

similar type of block diagram of the “parith.vhd.”

4.4.2.2 Functional Behaviors

The function behaviors of each design modules are described in the order of which they

appear in the hierarchy, starting from the highest level that first contains the user design

files.

In “pcore.vhd,” it performs several important task that overseer the overall operation of

the digital designs. One important task is to start and reset the “parith.vhd” module. At

the raising edge of the clock, the “pcore.vhd” set the start signal for “parith.vhd” to one

when the “write” signal is high and the data reads a value of four. This signal triggers the

start process of the design. The reset signal is also triggered by the write signal and the

 39

Host

Pentium III

Pilchard

BlockRAM

Wavelet

Wavelet

Max

Pcore

Parith

64

64

32

64 +

32

32

Figure 4-3: Abstract View of Overall Flow Block Diagram

 40

Figure 4-4: Generated Block Diagram of The "pcore.vhd"

 41

 42
Figure 4-5: Generated Block Diagram of The "parith.vhd"

data signal. The m

the s

design at run-tim

The “parith.vhd” is the m

calls for the other two components to perfor

odule resets, when the “write” signal reads a value of five. This resets

tate counter in “parith.vhd” and gives the ability to iteratively use the implem

e without re-download or reset the bit stream to the Pilchard board.

ain component of the design, where it handles the data retrieval,

m the transforms and maximum calculations,

e result to the blockRAM and register, and positioning them within a pipeline.

odule is operating under the clock-divider clock that is generated from the delay

E chip. The behavior of the “parith.vhd” is determined

hen the start signal from the “pcore.vhd” reads high, it triggers the

achine. From its dormant state, s_0, it moves up state by state until it completes its

th cycle and goes back to s_0.

aximize the frequency of the read/write ports of the

odels of pipelines described in table 4-3 and 4-4. Model-

inimum clock cycles and instructions sets needed to perform a

plete iteration of the digital implementation. Here, each “iss” represents a single read

request for an address location; “read” represents reading the 64-bit from that address

location and splitting it to two 32-bit data; “wt” and “max” represents a set number of

clock cycles of each corresponding computation; and the “write” in this model represents

writing both the current maximum value and the discrete wavelet transform result into a

single 64-bit address location. The process is same for instruction set i + 1. However for i

writes th

This m

lock loop on the Xilinx Virtex1000

by a state counter. W

state m

eleven

The state machine is designed to m

blockRAM. Consider the two m

A represents the m

com

43

ented

44

T ble 4

a - a - l M

k b

3: P rith Pipe ine odel A

Cloc num er
Instructions 1 2 3 4 10 5 6 7 8 9 11

i iss
rea

ss
ad rea d

i
re d read m x s wt a is

write* write*

i + is
rea 1 s

d
iss

read read read x s write*wt ma is
write*

a -4: Parith - l M

k b

T ble 4

Pipe ine odel B

Cloc num er

Instructions 2 31 4 5 7 9 10 11 6 8

iss read
1

d re read

1 wt 1 max
1

iss
rea

1

ad
1

i

ss
ad
2

i
re

iss
read

2

re
2

 t

/

iss
write

a

write
*

ad

read
2 w 2

iss
write

*
max m x

write
max

+ 2 instruction, the

45

 first set of instruction must start at the 12th clock cycle due to the

availability of the read/write head. With this model, a complete iteration of operating 4

data uses seven states and uses 11 states. The difference

with model B is that it operates on two sets of data at a time and group the results from

each of the two wavelet computations together into an address location and also write the

maximum value on a separate stage to another address location. Howeve

of the 64 bit data is used in maximum value address location, the ot

location is vacant. With same clock cycles used per every two computations, model B

provides an additional data storage, thus this odel was chosen. The vacant data memory

w late d to store counters, which a ign the ho C whe transformation

is completed.

In model B, the instruction set can be viewed as an eve s

initial two states, ad c mand is requested for the first two location of the memory

a ss, zero d . g the third forth state, the are rom first two

locations. Since four 32-bit numbers are read, the first wavele ormation is ready to

begin in the sub-m le, fxmult.vhd. Before moving onto the next state, another read

command is issued for the second and third address location. In the fifth and sixth state,

the second sets of data are feed into another fxmult.vhd sub-module. Also, in the sixth

states, the c ete wavelet transf is finished for the first set of

data. They then ready to be feed into the module, max.vhd, and to be compared

against the current maximum value, which is read from the address location six in the

2 iteration of operating 8 data

r, here only half

her half of address

the

 m

lso s

and

as

ddre

r use al to st P n a

 el n-stage tate machine. In the

 a re om

 an one Durin data read f

t transf

odu

omputation f

are

or the discr orm

seventh state. During the eighth state, the results from the second discrete wavelet

transform is ready, and together with the result from the first set of computation, the two

32-bit answer are write out together. Also in this state, the maximum function starts to

compare the values among the first, the second answers of the transform modules and the

current maximum value. The new maximum is the write to the memory location six,

during the ninth and final state. Figure 4-6 shows first cycle of the pipeline. The red lines

denote the undefined signals. In a way, it helps to provide a more noticeable illustration

of how each signal is progressed at each state denote by “s_0” “s_1” “s_2”… When the

maximum value is ready to be written into the blockRAM via “din”, it is concatenated

with a signal “count.”

The remaining two components, “fxmult.vhd” and “max.vhd,” both are the lowest level

modules. The “fxmult.vhd” computes the low-pass filter component of the discrete

wavelet transforms on the four input values. The functionality of the fxmult.vhd is

actually performing a sum of four products. This function was implemented and verified

using the sum of product design ware from Synopsis and a self implemented function.

The implemented function, in the end, yield a better timing constraint after the place and

route process, so it was used.

While the coding for the implemented function may appears to be simple, it actually

represent a sound solution to what otherwise might have been a complex algorithm.

Recall the algorithm for discrete wavelet transform, each of the data is multiplied by a

 46

ig 4 P Waveforms

47

 F ure -6: arith

fraction coefficient then accumulated together to produce the answer. The obvious

solution is to multiple the coefficients, however, binary representation of decimal number

and arithmetic with another decimal number of different precisions can lead to loss of

precision when using VHDL fixed points. Instead multiplying the fractional coefficient,

h1, h2, h3, and h4, these constants are shift to the left and treated as integers. When the

sum of products computation finishes, the result is then adjusted by shifting the decimal

place to the right.

The detail of this implemented can be explained through figure 4-7. In the system’s

fixed-point representation, 10 bits of the binary value of the data is s or the decimal

precisions where as 13 bits of the coefficient is used for the fraction value. The result of

the arithmetic is a 45 bit binary number with 23-bit in decimals and offset by 13 bit

precision places. In order to balance the offset, the result is then shifted

the right and discarded. The module uses signed arithmetic where the first bit represents

the sign bit. If it is negative, the algorithm uses the 2’s compliment to convert the format.

This functionality is included in the standard library of ieee.std_logic_signed.all.

Figure 4-7: Fixed Point Arithmetic in Parith.vhd

. xxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxx = xxxxxxxxxxxxxxxxx
22 bit 45 bit (32bit . 13 bit)13 bit10 bit

et f

 by 13 places to

48

The “max.vhd” also uses one process statement and a set of if else nested function to

compare the max value for two input signals. The arithmetic in this module is also

signed and using two’s compliment. Observe from figure 4-6, the four signals within the

last set of dividers represents the maximum comparison. Notice when FFFE75D8 is

compared with 504F0000, the max value yields 504F0000, because FFFE75D8 is a

negative number.

4.4.3 Hardware Simulation

Similar to the compile process, the pre-synthesis simulation is also performed using the

Mentor Graphics Modelsim SE VHDL5.6a; and all of the VHDL files are compiled in a

hierarchical order. This is the first of the two design verifications in the digital design

process. In this stage, the simulation of the design is being tested to verify that the logic

in the functions behave correctly. Since it is a pre-synthesis simulation, the timing

information is unavailable and is not needed at this time. In order to simulate the design,

a test bench is applied to obtain the simulation waveform for signals in the design. Since

th , the

XilinxCor is required to run the simula The sim tio either

the GUI interface or the by running a scrip ile. Two additional files that were used in

this simulation are the wave.do and stim ignals, formats,

e blockRAM is an IP core that was generated using X

ula

ilinx Core Generator

eLib tion. n can be done using

t f

.do files. These file contain the s

 49

and run-time information need for the simulation. A copy of such script is shown in

figure 4-8.

The top-level of the hierarchy for this testbench is shown in figure 4-9. The testbench is

only used for the simulator and is not to be synthesized. The testbench in this project has

 loop that contains three sets of testing data to emulate the behavior of the software

terface. The data is often modified to check the functional behavior of the fixed-point

arithmetic. The simulation results are found in the previous chapter. By inspecting these

waveforms, the functions are verified to be correctly simulated.

a

in

4.4.4 Design Synthesis

The Synopsys’ FPGA Compiler II was used to synthesis the design work. Since the

Pilchard uses the Xilinx VirtexE chip, XCV1000E-HQ240, several options needed to be

selected in order to assurance functional operation. When creating the new project under

the synthesis tool, no VHDL or EDIF files are used for the IP cores. Those are generated

using the Xilinx Core Generation from the Pilchard package itself.

 50

#!/usr/bin/csh -f

ource ~cad/.cshrc

The following commands are associated with compiling the RAM which

vcom -work XilinxCoreLib

/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1_comp.vhd

/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1.vhd

vhd

vcom -work work fxmult.vhd
com -work work max.vhd
com -work work dpram256_64.vhd # RAM module
vcom -work work parith.vhd # Parithmetic Module

 # Top Module
 # Test Bench

 Simulating using ModelSim

L files

s
mentor_tools

has been generated using Xilinx's Coregen

vcom -work XilinxCoreLib
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/ul_utils.vhd

/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/mem_init_file_pack_v3_1.vhd
vcom -work XilinxCoreLib
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_pkg_v3_1.vhd
vcom -work XilinxCoreLib

vcom -work XilinxCoreLib

vcom -work XilinxCoreLib
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1.

v
v

vcom -work work pcore.vhd
vcom -work work tb.vhd

#

vsim -coverage tb -do wave.do stim.do

vsim - Command to open Modelsim
wave.do - File that opens Parith and Pcore signals in Modelsim
stim.do - File to run the Simulation

Figure 4-8: Scripts for Compile and Simulate VHD

 51

Testbench VHDL tb.vhd

Testbench Interface

VHDL File-Pcore.vhd

Figure 4-9: Testbench Hierarchy

 that should be selected when creating the

hen

creating the implementation for the Pilchard design, the existing I/O pads should be used

instead of the default option, which automatically insert necessary I/O pads. Instead using

the GUI, scripts can also be used for

page in figure 4-11.

Figure 4-10 illustrates the correct options

implementation of the chip from the GUI version of the FPGA compiler. Also, w

 synthesis. A copy of such script is shown on next

 52

Figure 4-10: Create Implementation Options Using Synopsys FGPA Compiler

 53

s
s
et proj syn
et top pilchard

et chip pilchard
set export_dir export_dir
set device V1000EHQ240
set speed -6

exec rm -rf $proj
create_project -dir . $proj

open_project $proj

proj_export_timing_constraint = "yes"

default_clock_frequency = 100

add_file -library WORK -format VHDL pcore.vhd
add_file -library WORK -format VHDL pilchard.vhd
add_file -library WORK -format VHDL parith.vhd
add_file -library WORK -format EDIF dpram256_64.edn
add_file -library WORK -format VHDL fxmult.vhd
add_file -library WORK -format VHDL max.vhd

analyze_file -progress

create_chip -target $target -device $device -speed $speed -frequency
100 -module -name $chip $top

current_chip $chip

set opt_chip [format "%s-Optimized" $chip]
optimize_chip -name $opt_chip

list_message

report_timing

xec rm -rf $export_dir
xec mkdir -p $export_dir
export_chip -progress -dir $export_dir -no_timing_constraint

clo

uit

Figure 4-11: Synthesis Script

set target VIRTEXE
s

e
e

se_project

q

 54

#!/bin/csh -f

source /sw/Xilinx4.2i/setti
-6

ngs.csh
$1.edf

$1_r.ncd

hd

4.5 Place Route and Bit Streams

sign Manager. Several files are

, the “iob_fdc.edif”, which is the net-list file for the

 in “Pilchard.vhd”; the net-list file for the dual port BlockRAM; and

constraint files that contains the information regarding the

g in figure 4-

d for place and route.

ngdbuild -p V1000EHQ240
map $1.ngd
r $1.ncd -w pa

trce -s 6 $1_r.ncd
ngdanno $1.ncd
d2vhdl -w $1.nga time_sim.vng

Figure 4-12: Place and Route Script

4.

The place and route process is managed using Xilinx De

needed for the place and route process

I/O blocks used

finally but not least, the user

physical pin connections and the timing specification are required. The listin

12 is the script use

 55

4.4.6 In-Circuit Design Verification

he Pilchard board, a C program is used to

gram feeds in the data for the discrete

tores the result in a data file. The library file “iflib.c” has a set of

he software to the FPGA. This library file was

ompiled together with the C design files.

To interface with the Pilchard board, a memory map to the hardware was created at the

beginning. The data that feed to the Pilchard board is located in 65 different data files;

each contains its respective band image. The C software opens one file at a time, writes

ocation 0, 1, 2, and 3, follows by a write command

t address 4, which triggers the start signal for the digital logics. The two results from the

nother 16-bit version of the system was also created for result comparison purposes. It

ses three address locations for the entire computation cycle. It writes four data values in

After the bit-stream is downloaded onto t

perform the in circuit verification. The C pro

wavelet transform and s

APIs to handle the data transfer from t

c

eight 32-bit data values to the address l

a

wavelet transform are written to location 7 and the counter and maximum values are

written to location 6. Normally, a “hand-shake” method is needed to verify when the

correct values are received, however, with the streaming technique implemented with this

project, the digital system actually computes faster than read64 function in the iflib.c

library files. So when the start signal is issued in the host program, the next instruction

reads the answer back.

A

u

 56

each of the first two address locations. The two wavelet-transform results, along with the

ounter and the maximum value are written back in one address location. The differences

Summary

This chapter focuses on the design methodology that was used in this thesis. From this

chapter, the design processes are revealed and each is discussed in detail. Next chapter

looks at how the results are compared based on these design works.

c

with 32-bit version is that it uses six address locations, four for two sets of data inputs,

one for the two results, and another one for the maximum and counter. The address

location used is proportional with the bit width used in these two cases.

4.5 Chapter

 57

Chapter 5. Result and Discussion

This chapter is divided into three sections. In the first section, the results from this work

is studied and compared. The second section investigates the difficulties during the

process. The conclusion and future thought are suggested in the last pages.

oses. In this section,

e comparison between the two versions will be examined, in the areas of resource

onsumptions and performance.

5.1.1 Resource Comparison

The resource data are acquired after the Xilinx’s place and route process and are

tabulated into table 5-1. The number of the used slices denotes the logic resource

consumption. This is almost a direct portion to the number of bit that is used. As the bit

5.1 Results Comparisons

The configuration file for the Pilchard’s on-board Xillinx E chip had been successfully

implemented. The original design system of the 32-bit worked correctly and met the

design goals. A 16-bit system was also implemented for testing purp

th

c

 58

Table 5-1: Resources Used During Place and Route

Number Used Percent Usage
Resource

 32-bit
Total Amount

16-bit 32-bit 16-bit

Slices 677 1280 12288 5.5% 10.4%

Input LUTs 1026 2015 24576 4.2% 8.2%

Bonded IOBs 104 104 158 65% 65%

Block RAMS 4 4 96 4% 4%

GCLKs 2 2 4 50% 50%

 59

width doubles from 16 to 32, the number of slices increased by almost two-fold. This

ccurrence is expected since each added bit width corresponding to adding a logic block

f the same operation. The design logics that are independent to the bit width of the input

ata, such as the state signals or flags, stay the same for both design editions and it is the

main reason why argument is also

true for the like up tables or LUTs. The BlockRAM usage represents the resource

memory used for the data process. Since the design system uses a streaming technique,

only a data are loaded at a time. The increase of

the bit width on two sets of data values does not make any significant impact on the

BlockRAM. The remainin he res , such a ed IOBs Ks, an

the others that are omitted from the list, such as DLLs or Startups, are hardware

dependent to the Pilchard hierarch logic module. Since the user-design modules operate

below this level, all of the resources in e

design implementations.

5.1.2 Performance Comparison

 generally, when evaluating digital system performance, two aspects of the system are

spected upon, the system throughput and the system latency. However, in both versions

of the hardware design, the throughput of both systems is processing the same two sets of

data at a time. Although the bit-width varies, the number of sampled data still remains the

o

o

d

 the number of slices is not completely doubled. This

 minimum number of test to the system

g of t ources s Bond , GCL d among

this category should remain the sam for all

In

in

 60

same. Thus, the performance evaluation in this project will be based on the latency

aspect of the systems only. Starting this section, the performance of the hardware system

is revealed, then an overall comparison between the software and hardware

implementation will be discussed, and followed by the assessments between the two

implementations

From the Place and Route process, the maximum frequency was determined to be 21.62

Mhz and 14.314 Mhz for 16-bit version and the 32-bit version respectably. To ensure the

Pilchard system works correctly, the clock divide is set to label five and eight while the

actual clock runs at 100Mhz. This yields 12.5Mhz for the 32-bit version and 20Mhz for

the 16-bit version.

The Pilchard runtime is calculated based on the average of ten runs of 4,485,000

iterations that are needed to cover the entire 65 bands of the hyper-spectral imaging data.

he average run-time with loading the data is about 4.09 seconds for the 16-bit version

nd 6.54 seconds for 32-bit version; and 2.14 second for the 16-bit version and 2.15 for

the 32-bit version for without counting the load time for writing in the data to Pilchard.

The run time for both of the versions without load time is very adjacent to each other.

This was expected result from using the streaming method. The calculations on-board the

Pilchard system is actually performing faster than the time it take the host program to

write the starting signal and reading the answers. In comparison with the load, the 32-bit

version runs slower than the 16-bit version, because there is more read/write instruction

T

a

 61

set on the host side. The run-time comparisons between the 16-bit and 32-bit version is

shown in table 5-2 and figure 5-1. One thing worth of mentioning is the precision of how

the run-time is calculated. The calculation is preformed on the host side using the

gettimeofday function in the standard C library, sys/time.h. This function, however, only

ceiling to nearest microseconds. So when timing one instruction set such as write64, the

ifference of the gettimeofday functions before and after the write64 function is 1

ad times are included in the performance evaluation. From the data,

is figure shows that the threshold for the precision of the gettimeofday function can be

d

microsecond. With the same method, two consecutive write64 functions are also found to

be 1 microsecond. Clearly, there is a threshold point that shows when the gettimeofday

function can correctly shows the run-time calculation. Figure 5-2 investigates this

scenario. It shows the Run-Time per iterations for both the 16-bit version and the 32-bit

version when the lo

th

reached around 1000 iterations.

Table 5-3 shows the overall comparison among the three implementations. The

normalization process is broken down to two steps in order to better illustrate the correct

comparison; since only the first step of the normalization was implemented on the

Pilchard system. Without counting the load time, the overall speedup achieved by using

the Pilchard design is about a factor of 2.56 and 2.55 for the 16-bit and 32-bit respectable.

When taking into the consideration of load in the data onto the Pilchard, the speedup for

the 16-bit is by a factor of 1.34. The 32-bit version is actually slower than the C++

version by 0.84 seconds.

 62

Table 5-2: Run-Time Comparison Between 16-bit and 32-bit Version

 16-bit (seconds) 32-bit (seconds)

Trials w/o load w/ load w/o load w/ load

1 2.13 4.1 2.16 6.51

2 2.15 4.04 2.14 6.55

3 2.14 4.1 2.16 6.57

4 2.12 4.11 2.12 6.53

5 2.14 4.09 2.16 6.5

6 2.15 4.11 2.13 6.58

7 2.12 4.07 2.16 6.51

8 2.14 4.1 2.14 6.49

9 2.16 4.1 2.13 6.59

10 2.17 4.08 2.15 6.53

average 2.142 4.09 2.145 6.536

 63

0

1

2

3

R
un

-T
im

e
(s

ec
on

ds
)

4

5

6

7

1 2 3 4 5 6 7 8 9 10 avg

16-bit w/o load
16-bit w/ load
32-bit w/o load

Trials

32-bit w/ load

Figure 5-1: Run ime C ariso tween 16-bit and 32-bit Version

-T omp n Be

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000 100000 1E+06

Iterations

R
un

-T
im

er
 p

er
 It

er
at

io
n

16-bit
32-bit

Figure 5-2: Run-Time Threshold (w/ load)

 64

Table 5-3: Overall Run-Time Comparison

Pilchard w/ read write
(without load / with load) Matlab*

(Second)
C++

(Second)
 16-bit 32-bit

2D Wavelet
Transform

35.85 3.44

Normalization
step1 : find max

2.44 2.04

2.14 / 4.09 2.15 / 6.54

Normalization
step2 : divide

by max

3.485 2.05 - -

 65

5.1.3 Parallel Computing Results

After the digital design is successfully tested using a single pilchard system, the parallel

ed. The program responsible for distributing

and controlling the cl Grid, there are three

pes of workstations: server, workers, and clients. The server hosts the Java application

and distributes the tasks sent in by the client to any number of workers.

In this work, the chicken tumor problem is tested with BioGrid using one, three, and five

Pilchard systems. We us eads. The Pilchard.bit files are

preloaded onto each of the reconfigurable units before running BioGrid, thus the run-time

results from this test exclude the load time. When running the parallel test using three

rkloads on the three systems are different. Since 65 bands cannot

equally divide into three equal sections, the first two Pilchard machines, each process 22

bands of total bands and third machine pr s the remaining 21 bands. The result was

1.84 seconds, a speedup of 1.17 comparing to the result of a single Pilchard platform,

which is 2.15 seconds. When the load is equally divided among five Pilchard machines,

the result was 1.37 seconds, a speedup of 1.58.

At first glance, these results may not be the expected performance from a high

performance parallel architecture. The reason is the extra overheads exerted by the

BioGrid. When we run 13 bands through a single system, the runtime is 0.43 seconds,

aspect of the HPRC architecture was explor

ients and tasks is called BioGrid [33]. In Bio

ty

ed the one case to measure overh

Pilchards, the wo

ocesse

 66

however, when BioGrid is used, the run-time is 1.01 second. It required an additional

0.58 seconds. Because of this overhead, a similar difference of 0.57 seconds is induced

with 22 bands. If this overhead is zero, the speedup would be 3.69 (1.01 * 5 / 1.37)

when using five parallel systems. Similarly, the speedup without this overhead would be

2.28 for using three machines. These results are listed in tables 5-4 and 5-5. For larger

problem sizes, we anticipate that the overheads would have less impact on speedup.

Pilchard with BioBrid

65 2.15 2.92

13 0.43 1.01

Table 5-4: BioGrid Results with Single Pilchard Machine

Runtime Using Pilchard
(sec)

Runtime Using

(sec)

22 0.72 1.4

Bands

 67

Table 5-5: BioGrid Results with Multiple Pilchard Machines

1 2 3
Runtime with Numbers of Pilchard Machines (sec)Bands

5.2 Difficulties Encountered

The development of this project is not without any difficulties. Problems, challenges and

pre-mature considerations were struggled at numerous prospects of the design process,

including hardware limitation, programming techniques and styles, and overall design

perceptions. This section addresses each of these problems and followed by the methods

that were used to overcome them. These are the valuable lessons learned and the

f these points will bring more success and faster prototyping in the future

implementations of familiar kinds.

65 2.92 - -

22 1.40 1.84 -

13 1.01 - 1.37

awareness o

 68

A major pro constraints.

 number of times, the digital systems functioned correctly under the simulation; but

fter the place and route process, it generated a clock cycle twice or three times slower

than the minimal clock cycles required. An important lesson learned here is to used a

good programming style and maximize the usages of concurrent processes and pipelines.

The following guidelines, “HDL Coding Guidelines,” by Damjan Lampret and Jamil

Khatib, were used in this project at appropriate situation [32].

For clocks:

o Use as few clock domains as possible in any design.

o Do not use clocks or resets as data or enable and vice versa.

o Clock signals must be connected to global dedicated resets or clock pin on an

FGA or CPLD.

o Use synchronous design to avoid problems in synthesis, in timing verification

blem with design hardware implementation is to meet the timing

A

a

For timing optimization:

and in simulations.

o Avoid using latches.

o Include all signals that are read inside a combinational process in its sensitivity

list.

o Ensure variables are assigned in every branch of a combinational logic process

to prevent inferring of unwanted latches.

For general rules

 69

o In RTL, never initialized register in their declaration use reset logic instead. The

initialization statements cannot be synthesized.

o Write finite state machines in two always blocks – one for sequential

assignments and other for combinational logic.

o Compare buses with the same width.

o Avoid using long if-then-else statements and use case statements instead. This

helps to prevent inferring of large priority decoders and makes the code easier

to be read.

By sim early work of a design

system achieved without

altering

timing con higher place and route effort levels. When multiple place and

ed only the implementation with the best optimization score

shoul

Besid techniques and style, hardware also contributed to some

difficultie

importantly, with different processor speed. The Pilchard systems are on a 1Ghz hosts

and is

on these different PCs. The difference in the

tes a margin of error when comparing the results.

ply following these good programming techniques, an

 had an increase of clock cycle around 30Mhz. This speedup was

 the functional logic behavior of the design modules. Another way to improve the

straints is to use

route process are perform

d be kept and tested.

es from the programming

s. The baselines for generating the profiles are from different computers, more

 solely dedicated to Pilchard-related researches. Thus, the Matlab is not available

machines and the profiles had to be run on

baselines contribu

 70

5.3

The

functiona e combined with the enhanced

perfo the in-circuit simulation prove the correct

functi

comparin

demonstrated the potential of performance improvement from using of such platforms.

each band process can be divided multiple data sections that

ach section can run on its only hardware system. The streaming technique used provide

rallel programming

Conclusions

goal of this project was to implement a digital system that performs the

lities of the bottlenecks presented in C++ profil

rmance. The pre-synthesis simulation and

onalities of the design and the interface software show that it had the best speedup

g with the software counterparts. The success of the Pilchard implementation

The study also showed that when computing data on a digital system with host side

interface, the streaming technique increases the run-time as a direct proportion of the read

write functions used. On a positive note, the streaming process can be easily configured

to adapt multiple levels of parallel computing. The task can be broken down at band

levels, where each Pilchard system can be responsible for a certain number of bands. If

more system are available,

e

the scalabilities at multi-levels but at the cost of lower speedup, penalized from the read

write execution during run-time.

From a parallel processing perspective, this design did not achieve the desired speedup

compared to a single machine. This setback is mostly due to the overhead with BioGrid.

With more optimization to BioGrid or the use of other pa

 71

environment, this overhead may be reduced. Our experiments had short runtimes, with an

xecution time less than two seconds. Of this time, 0.6 to 0.7 seconds was overhead from

The design work in this project provides the foundation for the high performance parallel

computing. At least two tasks can be explored to further increase the speedup of the

application.

First is to overcome the hardware constraints. The blockRAM and the read/write port

were the most important constraints affecting the result of the performance in this project.

With better I/O interface and bigger RAM, a more effective algorithm method can be use.

For example, the data vectors for each band image can be input onto the blockRAM

before starting the computation. This way eliminates the need for the second cycle of

input from the host side for the wavelet transform. The values can be kept in the memory

until the final set of 200 by 240 answer is reached. This not only eliminates an entire

cycle of I/Os but it also eliminates the host-side data management at each set of

calculation. The use of better hardware is expected to improve the speedup dramatically.

e

BioGrid. With larger input image data, the application will require more time to perform

the wavelet transform. We do not expect the BioGrid overhead to significantly worsen,

which will minimize the effect of this overhead on the total performance.

5.4 Future Work

 72

Another important future work is to explore the implementation on high performance

reconfigurable computers more extensively. The shared task program, such as the

BioGrid, can be detailed to reduce the overhead that was shown in section 5.1.3. or

explore the usage of other programs such as MPI or PVM. Also, more HPC tests should

e performed over a larger network of workers, so a threshold can be determined for an

ptimized ratio of workers per application.

With exploring new design scheme, there will be many other issues that need to be dealt

with, like scheduling, optimum resource utilization, modeling and performance analysis.

Eventually, moving towards building a development system to efficiently utilize the

processing power of such system is the goal.

b

o

 73

Bibliography

 74

[1] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, and K.H.
Lee, “Pilchard – A Reconfigurable Computing Platform with Memory Slot

, Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), Rohnert Park, CA, April 2001.

Xilinx, “Virtex-E 1.8 V Field Programmable Gate Arrays”, Datasheet
(DS022), March 2003. http://www.xilinx.com/partinfo/ds022.htm

[3] K.H. Tsoi, Pilchard User Reference (V0.1), Department of Computer Science

and Engineering, The Chinese University of Hong Kong, Shatin, NT Hong
Kong, January 2002.

[4] Randall Hyde, "The Art of Assembly Language Programming", January 200.
http://webster.cs.ucr.edu/Page_AoALinux/HTML/AoATOC.html

Interface”

[2]

[5] K.C. Chang, “Digital Systems Design with VHDL and Synthesis, An Integrated

Approach”, Matt Loeb, May 1999.

[6] JICS, “Introduction to Parallel Processing”, Lecture Notes.

http://www.jics.utk.edu/documentation.html

[7] Melissa C. Smith and Gregory D. Peterson, “Analytical Modeling for High

Performance Reconfigurable Computers,” Proceedings of the SCS International
Symposium on Performance Evaluation of Computer and Telecommunications
Systems, 2002.

[8] Clyde H. Spencer, “Using Hyperspectral Imagery to Create GIS Layers,” 1995.

http://www.biogeorecon.com/usinggis.htm

[9] Shu-Jen Steven Tsai, “Power Transformer Partial Discharge (PD) Acoustic Signal
 Detection Using Fiber Sensors and Wavelet Analysis, Modeling, and Simulation.”
 December, 2002, Blacksburg, Virginia.

[10] Rudolf K. Bock, “Data Analysis BriefBook,” Version 16, April 1998.

http://rkb.home.cern.ch/rkb/AN16pp/AN16pp.html

[11] Z. Ye, P. Banerjee, S. Hauck, and A. Moshovos, "CHIMAERA: A High-

Performance Architecture with a Tightly-Coupled Reconfigurable Unit,"
presented at International Symposium on Computer Architecture, Toronto,
CANADA, 2000.

 75

[12] J. R. Hauser and J. Wawrzynek, "Garp: A MIPS Processor with a Reconfigura ble
ting

3] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and R.

, vol.

," SPIE International Symposium ITCom,

2001.

[17] guage of Technical Computing,
Using Matlab version 6.0," August 2002 ed: COPYRIGHT 1984 - 2002 by The

[18]

9] G. Cappuccino, G. Cocorullo, P. Corsonello, S. Perri, and G. Staino, “Custom

http://www.techonline.com/community/ed_resource/feature_article/14547

Coprocessor," presented at IEEE Symposium on FPGAs for Custom Compu
Machines, 1997.

[1
Laufer, "PipeRench: a Coprocessor for Streaming Multimedia Acceleration,"
presented at ISCA, 1999.

[14] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and T. R.R.,

"PipeRench: A Reconfigurable Architecture and Compiler," IEEE Computer
33 No. 4, 2000.

[15] G. D. Peterson and M. C. Smith, "Programming High Performance
Reconfigurable Computers," SSGRR 2001, 2001.

[16] M. C. Smith and G. D. Peterson, "Programming High Performance

Reconfigurable Computers (HPRC)

Matlab.Documentation, "MATLAB-The Lan

MathWorks, Inc., 2002.

C. Moler, "Why there isn't a parallel MATLAB," Matlab News and Notes, 1995.

[1
Reconfigurable Computing Machine for High Performance Cellular Automata
Processing,” University of Calabria, Italy.

[2 Osman Devrim Fidanci1, Dan Poznanovic2, Kris Gaj3, Tarek El-Ghazawi1,

Nikitas Alexandridis1, “Performance and
0]

 Overhead in a Hybrid Reconfigurable
Computer.” George Washington University

p on Parallel and

[22] on

D. Thomas, J. Adams, and H. Schmit, "A Model and Methodology for
Hardware-Software Codesign", IEEE Design & Test of Computers, Vol.

[21] N. W. Bergmann, G. Brebner, and J.P. Gray, “Reconfigurable Computing and

Reactive Systems” Proceedings of the Australasian Worksho
Real-Time Systems: PART ‘00, Newcastle, November, 2000

P. Waldeck, N.W. Bergmann, “"Dynamic Hardware-Software Partitioning
Reconfigurable System-on-Chip”, International Workshop on System-on-Chip
for Real-Time Applications, Calgary Canada, June 2003.

[23]

 76

10, No. 3, September 1993, pp. 6-15.

J. Villarreal et al.,

[24] “Improving Software Performance with Configurable Logic,”

J. Design Automation of Embedded Systems, Nov. 2002, pp. 325-339.

[25]
and Distributed Processing

Yi Pan, Jie Li, Ranga Vemuri, “Continuous Wavelet Transform On
Reconfigurable Meshes,” 15th International Parallel
Symposium (IPDPS'01) Workshops April 23 - 27, 2001

[26]
rm,” IEEE Transactions on Circuits and Systems, Part II, pp 305-

316, May 1995.

[27] Coprocessor

M. Vishwanath, R. M. Owens, M. J. Irwin, “VLSI Architectures for the Discrete
Wavelet Transfo

``Garp: A MIPS Processor with a Reconfigurable ,'' by John R.
Hauser and John Wawrzynek, published in Proceedings of the IEEE Symposium

pril 16-18,

n-

[30]

Damjan Lampret, Jamil Khatib, “HDL Coding Guidelines.”

3] James M. McCollum, Chris D. Cox, Michael L. Simpson, and Gregory D.

on Field-Programmable Custom Computing Machines (FCCM '97, A
1997).

[28] R.C. Gonzalez, R.E. Woods “Digital Image Processing (2nd Edition),” Addiso

Wesley Publishing Company, 1993.

[29] C. Sidney Burrus, “Introduction to Wavelet and Wavelets Transform.”

Charles K. Chui, “Wavelets: A Tutorial in Theory and Applications (Wavelet
Analysis and Its Applications, Vol 2).”

[31] Imaging Processing and Matrix libraries from pervious course work in Image

Processing and Pattern Reorganization classes. See appendix.

[32]
http://www.doe.carleton.ca/~gallan/478/478_coding.pdf

[3
Peterson, “Accelerating Gene Regulatory Network Modeling Using Grid-Based
Simulations.” SIMULATION: Transactions of The Society of Modeling and
Simulation Interventional. In review.

 77

Appendix

 78

Original Software Application in Matlab

% HYPERSPECTRAL IMAGE PROCESSING
% by S. G. KONG

close all
% Reading data ...
input_file = 'fchicktum04.img';
samples = 460;
lines = 400;
%Bands = 65;
bands = 65;
counter=0;
[fid, msg] = fopen(input_file, 'r');
[ImageFile, count] = fread(fid, [samples, lines*bands], 'int16');
status = fclose(fid);

% 3-d and 2-d variables to store the image
I = zeros(samples, lines, bands);
BandImage = zeros(samples, lines);

% find BandImage from ImageFile
for ib = 1: bands
 for il = 1: lines
 BandImage(:, il) = ImageFile(:, (il - 1)*bands + ib);
 end
 I(:, :, ib) = BandImage;
end
clear ImageFile;

% 2-D Wavelet transform of band images
row = 233;
col = 203;
bands = 65;
wI = zeros(row, col, bands);
a = zeros(samples, lines);
for ib = 1: bands
 a(:, :) = I(:, :, ib);
 [ca, ch, cv, cd] = dwt2(a, 'db4');
 wI(:, :, ib) = ca;
end

% Find normalized nI with respect to max of each band I(:, :, k)
bands = 65;

 79

for ib=1: bands
 MAX = max(max(I(:, :, ib)));

)));
 nwI(:, :, ib) = wI(:, :, ib)/MAX;

max(wI)));

ctral image
w(nwI(:, :, 5))

spectral signatures ...
ssue

(91:95, 120, :)/FMAX;
ormal(11:15, :) = wI(86:90, 130, :)/FMAX;

mor = zeros(20, bands);
MAX;

I(206:210, 125, :)/FMAX;
I(121:125, 130, :)/FMAX;

zeros(20, bands);
31:140, 25, :)/FMAX;

g(11:20, :) = wI(116:125, 180, :)/FMAX;

normal', ':b')
ds (Channels)')

ve Fluorescence Intensity (RFI)')

ussian membership functions
aussf = inline('exp(-(x-m).^2/(2*s^2))');

 nI(:, :, ib) = I(:, :, ib)/MAX;
 MAX = max(max(wI(:, :, ib

end
FMAX = max(max(

% Display a spe
figure, imsho

% Plot hyper
% Normal ti
normal = zeros(20, bands);
normal(1:5, :) = wI(56:60, 140, :)/FMAX;
normal(6:10, :) = wI
n
normal(16:20, :) = wI(51:55, 51, :)/FMAX;

% Tumor
tu
tumor(1:5, :) = wI(161:165, 120, :)/F
tumor(6:10, :) = w
tumor(11:15, :) = w
tumor(16:20, :) = wI(196:200, 100, :)/FMAX;

% Background
bg =
bg(1:10, :) = wI(1
b

figure, plot(
xlabel('Ban
ylabel('Relati
hold on
plot(tumor', 'r')
plot(bg', 'g')
hold off
axis([0 66 0 0.8])

% Ga
g
t = linspace(0,1,500);

 80

% Features
d = zeros(row, col);
feature = zeros(row, col, 2);
for ir = 1: row
 for ic = 1: col
 af = mean(wI(ir, ic, 15:25))/FMAX;

)) - mean(wI(ir, ic, 40:45)))/mean(wI(ir, ic, 20:25));
 feature(ir, ic, 1) = af;

 mb = gaussf(0, 0.05, af);
, gaussf(0, 0.12, rb));

ussf(1, 0.4, af), gaussf(1, 0.3, rb));
mb))

 rb = (mean(wI(ir, ic, 20:25

 feature(ir, ic, 2) = rb;

 mt = min(gaussf(0.2, 0.12, af)
 mn = min(ga
 if ((mt > mn) & (mt >
 d(ir, ic) = 1;
 end
 end
 end

figure,
imshow(d)

 81

Modified C++ Version of the Application

==

 Computer Engineer

pp ***
times ***

ogram takes a Matlab binary hyperspectral
 of a chicken(460*400*65) convert to bandimages

hen performs 2D wavelet transform to obtain its
quency transformed image. Then we

 the transformed images to obtain the
ral signatures to determine the tumor

ocations.

1) From an image file, Matlab assumes the data are
in columns whereas C++ reads as rows
2) Wavelet Transform: to obtain LL or CA coefficient
we do a lowpass filter to the rows then to the
columns.

Parts of header library code are from Dr. Qi of
Department of Electrical & Computer Engineer
University of Tennessee, Knoxville.

input file : FCHIKCKTUM04.IMG - tumor image 460*400*50

output files: normdata.txt -20*65
 tumordata.txt -20*65
 bgddata.txt -20*65 background
 tumorimage.txt -230*200 tumor image
==
*/

#include "chickmatrix.h"
#include "chickimgv20.h"
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <math.h>
#include <string>

/*
===============
Hyperspectral Imaging
Chicken Tumor

-- Yuan He

dent.ece.utk.eduhe@stu
Department of Electrical &
University of Tennessee, Knoxville.

using chickimgv20.h & chickmtrix library

hickv20.c*** Profiler for c
ulate run *** calc

This pr
image
t
low fre
normalized
hyperspect
l

note:

 82

#include <stdio.h>
#include <ctime>

g namespace std;

 //i row
00 //j col

tFile "FCHICKTUM04.IMG"
utImg1 "OUTPUTIMG1.IMG"

UTIMG2.IMG"

mg1,imgW1,imgNW1,imgNorm(20,65),

b;

mples*lines];

 f2=0, write1=0, write2=0;

dimage.createMatrix(samples,lines);
,200);
es,200);
,200);

tFile);
;
();

usin

 //k channel #define bands 65
s 460 #define sample

efine lines 4#d
#define inpu
efine outp#d

#define outputImg2 "OUTP

t x){ float gaussf (float m, float s, floa
oat g; fl

 g=exp(-((x-m)*(x-m)) / (2 * s * s));
eturn (g); r

}

oat minny (float x, float y){ fl

 float minny0;
 if (x<=y) minny0=x;
 else minny0=y;
 return (minny0);
}

t argc, char **argv) int main(in
{
 Image i
imgTumor(20,65),imgBGD(20,65),imgD(230,200);

; int i,j,k,j2,m,x,ii,jj,iii,counter=0
 float max, maxW, Fmax, Fmin, af, rb, rb1, rb2,mt,mn,m
 Matrix bandimage, A,dRow,dRowdCol,dRowCF;

loat M[sa f

 unsigned long int s1=0, s2=0, t1=0, t2=0;

, n2=0; unsigned long int w1=0, w2=0, n1=0
nsigned long int h1=0, h2=0, f1=0, u

1=clock(); t

 s1=clock();

 for (i=0;i<samples*lines;i++) M[i]=0;

createMatrix(samples,2); A.
an b

 dRow.createMatrix(samples
 dRowCF.createMatrix(sampl

ix(230 dRowdCol.createMatr

 img1.readImage(inpu

() imgW1.createImage
 imgNW1.createImage

 83

 s2=clock();

 //=== wavelet transfer

 bandimage(i,j)=img1(i,j,k);

wpass(460*400,0); //bandimage becomes 230*400

changes 230*400 to 460*200 format: fill row first

j++){
ii++; jj=0; }

 dRow(i,j)=bandimage(ii,jj++);
 }

owpass filters col

olumn first

 for (i=0;i<460;i++)

 dRowCF(i,j)=M[iii++];

ass(200*460,0);

hange back from column first to row first and then onto

+) M[i]=0;

 M[iii++]=dRowCF(i,j);

 w1=clock();

for (k=0; k<bands;k++){

 for(i=0; i<samples;i++)
 for(j=0;j<lines;j++)

//lowpass filter rows

 bandimage.lo

//

 ii=0; jj=0;
 for (i=0;i<460;i++)
 for (j=0;j<200;
 if (jj==400) {

//l

// change format from fill row first to fill c

 iii=0;
 for (j=0; j<200; j++)

 M[iii++]=dRow(i,j);

 iii=0;
 for (i=0; i<460; i++)
 for (j=0;j<200;j++)

RowCF.lowp d

// c
imgW1(i,j,k)

 for (i=0;i<samples*lines;i+

 iii=0;
 for (i=0;i<230;i++)
 for (j=0; j<200; j++)

 iii=0;
 for (j=0;j<200;j++)

 84

 for (i=0; i<230; i++)
)= M[iii++];

2=clock();

=================================find normalized with respect to

in=0;

,k)) max =img1(i,j,k);
j,k)) maxW =imgW1(i,j,k);

f (Fmax < imgW1(i,j,k)) Fmax =imgW1(i,j,k);

 }

+){
k)/max;
i,j,k)/maxW;

ctral

========================Plot Hyperspectral

1=clock();

 imgW1(i,j,k

} // end of K loop ! for
each band

 w

//==
max of each band

 n1=clock();

Fmax=0;
Fm

 for (k=0;k<65;k++){

 max=0;
 maxW=0;

 for (i=0;i<samples;i++)
 for (j=0; j<lines; j++){

 if (max < img1(i,j
 if (maxW < imgW1(i,
 i
 if (Fmin > imgW1(i,j,k)) Fmin =imgW1(i,j,k);

 for (i=0;i<samples;i++)
 for (j=0; j<lines; j+
 img1(i,j,k)=img1(i,j,
 imgNW1(i,j,k)=imgW1(

 }
 }

 n2=clock();

 write1=clock();

 imgNW1.writeImage(outputImg1); // normallized Spe
Image

 write2=clock();

 //====================
Signatures

 h

 for(k=0;k<65;k++){

 85

 for(i=0;i<20;i++){
 if(i>=0 && i<5){
 imgNorm(i,k)=imgW1(55+i,140,k)/Fmax;

,k)=imgW1(130+i,25,k)/Fmax;
}

<10){

W1(130-5+i,25,k)/Fmax;

i<15){
imgNorm(i,k)=imgW1(85-10+i,130,k)/Fmax;

or(i,k)=imgW1(120-10+i,130,k)/Fmax;
(i,k)=imgW1(115-10+i,180,k)/Fmax;

}

50-15+i,51,k)/Fmax;

 imgTumor(i,k)=imgW1(195-15+i,100,k)/Fmax;
i,k)=imgW1(115-15+i,180,k)/Fmax;

fstream Norm ("normdata.txt");

(j=0;j<65;j++){
Norm<<imgNorm(i,j)<<" ";

";

m.close(); Tumor.close(); BGD.close();

/===Features

++)
for (j=0;j<200;j++){

25;k++)
(i,j,k);

 imgTumor(i,k)=imgW1(160+i,120,k)/Fmax;
 imgBGD(i

 if(i>=5 && i
 imgNorm(i,k)=imgW1(90-5+i,120,k)/Fmax;
 imgTumor(i,k)=imgW1(205-5+i,125,k)/Fmax;
 imgBGD(i,k)=img
 }
 if(i>=10 &&

 imgTum
 imgBGD

 if(i>=15 && i<20){
 imgNorm(i,k)=imgW1(

 imgBGD(
 }
 }
 }

 o
 ofstream Tumor ("tumordata.txt");
 ofstream BGD ("bgddata.txt");

 for(i=0;i<20;i++){
 for

 Tumor<<imgTumor(i,j)<<"
 BGD<<imgBGD(i,j)<<" ";
 }
 Norm<<endl;Tumor<<endl;BGD<<endl;
 }
 Nor

 h2=clock();

 /

 f1=clock();

r (i=0;i<230;i fo

 af=0; rb=0; rb1=0; rb2=0;

 for(k=14;k<
 af+=imgW1

 86

 af = (af / 11) / Fmax;

b2+=imgW1(i,j,k);

);

(0.2, 0.12, af), gaussf(0,0.12,rb));
1, 0.4, af), gaussf(1,0.3,rb));

ream Img2 ("tumorimage.txt");

<<endl;

2.close();

=clock();

***********************************"<<endl;
ickv20.cpp is as following..."<<endl;
***************************"<<endl;

<<" Total run time = "<<(t2-t1)*1e-6<<" second"<<endl;
)*1e-6<<" second"<<endl;

t<<" Wavelet time = "<<(w2-w1)*1e-6<<" second"<<endl;
" second"<<endl;
<" second"<<endl;

ures time = "<<(f2-f1)*1e-6<<" second"<<endl;
out<<" Write 3D Image = "<<(write2-write1)*1e-6<<" second"<<endl;

out<<"Fmax= "<<Fmax<<endl;
"<<Fmin<<endl;

out<<"max= " <<max<<endl;
out<<"maxW= "<<maxW<<endl;

 for(k=19;k<25;k++)
 rb1+=imgW1(i,j,k);
 for(k=39;k<45;k++)
 r

 rb = ((rb1 / 6) - (rb2 / 6)) / (rb1 / 6

 mb = gaussf (0, 0.05, af);
 mt = minny (gaussf
 mn = minny (gaussf(
 if ((mt>mn) && (mt > mb)) imgD(i,j)=1;
 }

 ofst
 for(i=0;i<230;i++){
 for (j=0;j<200;j++){
 Img2<<imgD(i,j)<<" ";
 }
 Img2
 }
 Img

 f2=clock();

 t2

 cout<<"***************
 cout<<"**** Profiler for ch
 cout<<"***********************

 cout
 cout<<" Setup time = "<<(s2-s1
 cou
 cout<<" Normalized time = "<<(n2-n1)*1e-6<<
out<<" Signatures time = "<<(h2-h1)*1e-6< c

 cout<<" Feat
 c

 cout<<"**"<<endl;
 c
 cout<<"Fmin=
 c
 c

 return 0;
}

 87

C++ Header Files and Libraries

Chickimgv20.cpp

nclude "chickimgv20.h" #i

#include <fstream>
nclude <iostream> #i

#include <cstdlib>
#include <cstdio>
#include <cmath>
using namespace std;

efin#d e PI 3.1415926

;
*) new float [row * col * channel];

if (!image)
y();

 for 2D images

[row * col * t];
if (!image)
 outofMemory();

destructor
age::~Image()

 if (image)

 // default constructor

Image::Image()
{

w = 460; ro
 col = 400;

hannel = 65; c
// type = PGMRAW
image = (float

 outofMemor
}

 constructor//

Image::Image(int r, int c)
{
 row = r;
col = c;

 channel = 1;
 image = (float *) new float [row * col * channel];
 if (!image)
 outofMemory();
}

 constructor for grayscale/color images //

Image::Image(int r, int c, int t)
{
 row = r;
 col = c;

image = (float *) new float

}

 //

Im
{

 88

 delete [] image; // free the image buffer

y for the image
eImage()

oat [row * col * channel];

nt r, int c)

w float [r * c * 1];

from a file
adImage(char *fname)

s::in);

 " << fname << endl;

age data

fp.read(img, (row * col * channel * sizeof(short)));

ar to float
channel];

ory();

<col; j++)

+j*row*channel] =
*row*channel];

}

// allocate memor
id Image::creatvo

{
 new fl image = (float *)

 if (!image)
 outofMemory();
}

void Image::create2D(i
{
 image = (float *) ne
if (!image)

 outofMemory();
}

// read image
void Image::re
{
 ifstream ifp;
 short *img;
 int i, j, k;

ifp.open(fname, io

 if (!ifp) {

ge: cout << "Can't read ima
 exit(1);

 }

 // read the im
 img = (short *) new short [row * col * channel];
 if (!img)
 outofMemory();

i

 // convert the data type from unsigned ch

 * col * image = (float *) new float [row
if (!image)

 outofMem

or (j=0; j f

 for (k=0; k<channel; k++)
 i<row; i++) for (i=0;

 image[i+k*row
loat)img[i+k*row+j(f

 ifp.close();
 delete img;
}

 89

// write image buffer to a file
id Image::writeImage(char *fname)

nt i, j, k;

s::out);

 fname << endl;
 exit(1);

ge data type back to unsigned char
mg = (float *) new float [row * col * channel];
if (!img)

or (i=0; i<row; i++)
ol; j++)

 k<channel; k++)
row+j*row*channel] =

loat)image[i+k*row+j*row*channel];

 // img[(i*col+j)*channel+k] = (float)image[(i*col+j)*channel+k];

)));

.close();
lete img;

erator
oat & Image::operator()(int i, int j, int k)

erator
ator()(int i, int j)

fMemory()

 of memory!\n";
exit(1);}

vo
{
 ofstream ofp;
 i
 float *img;

 ofp.open(fname, io

 if (!ofp) {
 cout << "Can't write image: " <<

 }

 // convert the ima
 i

 outofMemory();

 f
 for (j=0; j<c
 for (k=0;
 img[i+k*
(f

 ofp.write(img, (row * col * channel * sizeof(float

 ofp
de

}

// overloading () op
fl
{

 return image[i + k * row + j * row * channel];
}

// overloading () op

t & Image::operfloa
{
 return image[i*col + j];
}

output out of memory error //
void Image::outo
{

out << "Out c

 90

Chickimgv20.h

 // binary image

or
age(); // default constructor

r for grayscale

nt, int); // constructor for
le/color images
Image &); // copy constructor

ximum() const; // get the maximum pixel value

); // create image, allocate

 // create image, allocate memory

 // read image from a file
 // write image to a file

efault k=1

+(Image); // overloading + operator
r-(Image); // overloading - operator

mage operator*(Image); // overloading * (element-wised
ation)
operator/(Image); // overloading pixelwise

ading ->* operator

eight
int col; // number of columns / width

// nr of channels (1 for gray-level, 3 for

nt type; // image type (PGM, PPM, etc.)
// the maximum pixel value
 // indicates if users want to set their own

ximum
float *image; // image buffer

output out of memory message

fine BINARY 11 #de

class Image {
 public:

 // constructors and destruct
 Im
 Image(int, int); // constructo
images
 Image(int, i
graysca
 Image(
 ~Image(); // destructor

 float getMa

 void create2D(int, int
memory for 2D
 void createImage();
for the image
 void readImage(char *);
 void writeImage(char *);

 float & operator()(int, int, int); // operator overloading, default
k=1
 float & operator()(int, int); // operator overloading, d

 Image operator
 Image operato
 I
multiplic
Image

division
 Image operator->*(Image); // overlo

trix multiplication) (ma

 private:

nt row; // number of rows / h i

 int channel;
color image)
 i
 int maximum;

nt setmax; i
ma

 void outofMemory(); //

};

 91

ickmatrix.cpCh p

eam>
eam>

cstdlib>

0 0.4829629131445341

createMatrix(0, 0);

 constructor

=0; j<col; j++)

:getRow() const

ol;

llocate memory for the matrix
d Matrix::createMatrix(int nr, int nc)

{

#include "chickmatrix.h"
#include <fstr
#include <iostr
#include <
#include <cstdio>
#include <cmath>
using namespace std;

#define C
#define C1 0.8365163037378079
#define C2 0.2241438680420134
#define C3 -0.1294095225512604
// default constructor
Matrix::Matrix()
{

}

// constructor when knowing row and column
Matrix::Matrix(int nr, int nc)
{
 createMatrix(nr, nc);
}

// copy
Matrix::Matrix(Matrix &m)
{
 int i, j;

 createMatrix(m.getRow(), m.getCol()); // allocate memory

 for (i=0; i<row; i++)
 for (j
 matrix[i * col + j] = m(i, j);
}

int Matrix:
{
 return row;
}

// get number of columns
int Matrix::getCol() const
{
 return c
}

// a
ivo

 92

 int i;

 row = nr;

) new double [row * col];

col; i++)

!\n";

destructor
trix::~Matrix()

 delete [] matrix; // free the matrix buffer

 overloading () operator
ator()(int i, int j)

eturn matrix[i * col + j];

ransform

 Matrix::lowpass(int n,int isign){

wksp.createMatrix(1,n);

;j<n-3;j+=2,i++){ //downsizing
2
 wksp(0,i) =

]+C2*matrix[j+2]+C3*matrix[j+3];
trix[j]-C2*matrix[j+1]+C1*matrix[j+2]-

 wksp(0,i) = C0*matrix[n-2]+C1*matrix[n-
*matrix[0]+C3*matrix[1];

 // wksp(0,i+nh) = C3*matrix[n-2]-C2*matrix[n-1]+C1*matrix[0]-

or(i=0;i<n;i++) matrix[i] = wksp(0,i);}

 col = nc;
 matrix = (double *
 if (!matrix)
 outofMemory();

 for (i=0; i<row*
 matrix[i] = 0.0;
}

// output out of memory error
void Matrix::outofMemory()
{
 cerr << "Out of memory
 exit(1);
}

//
Ma
{
 if (matrix)

}

//
double & Matrix::oper
{
 r
}
 wavelet t//

void
 Matrix wksp;
 int nh,nh1,i,j;

f(n<4) exit(1); i

 nh1 = (nh=n>>1)+1;

f(isign>=0){ i
 for(i=0,j=0
j+=

C0*matrix[j]+C1*matrix[j+1
 // wksp(0,i+nh) = C3*ma

matrix[j+3]; C0*
 }

1]+C2

C0*matrix[1];
 }
 f

 93

Chickmatrix.h

 and destructor
 // default constructor

 // constructor with row
 // column

 // copy constructor
Matrix(); // destructor

 // row
 int); // column

() const; // get row number / the number of
ple

 const; // get column number / the number

 int); // column index

 // number of rows / sample
int col; // number of columns / feature

 matrix buffer

);

nctions are used by inverse()
nt); // find the row with maximum

 volumn

lumn
wing columns

 number of categories

egory a sample belongs

class Matrix {
 public:
 // constructors
 Matrix();
 Matrix(int,
 int);
 Matrix(Matrix &);
 ~

// create a matrix
 void createMatrix(int,

 int getRow
sam
 int getCol()
of feature

// operator overloading functions
 double & operator()(int, // row index

 void lowpass(int,int);

// other functions

 protected:
 int row;

 double *matrix; //

 void outofMemory(

 // the following four fu
 int findPivot(Matrix &, i
absolute value in that
 void switchRow(Matrix &, int, int);// switch two rows
 void dividePivot(Matrix &, int); // divide that row with the
element in that co
 void eliminate(Matrix &, int); // eliminate the follo
};

/**
 * Data includes t
 * (1) m x n matrix where
 * m is the number of samples and n is the number of features
 * t is the
 * (2) m x 1 matrix that stores to which cat
 **/

 94

class Data : public Matrix {
public:
 // constructors and destructor

 // default constructor
, // constructor with number of

trix for a certain

 // set the number of categories
ame
 feature

int type;

 Data();
 Data(int
feature
 int, // number of sample
 int); // number of type

 // get and set functions
 Matrix getType(int); // get the subMa
tegory ca

 void setType(int);
 void readData(char *, // file n

f int, // number o
 int); // number of type

 void readData(char *, // file name
 int); // number of feature
 void readData(char *);

rivate: p

 };

 95

VHDL Source Code

#pilchard.vhd

library ieee;
use ieee.std_logic_1164.all;

entity pilchard is
port (
 PADS_exchecker_reset: in std_logic;
 PADS_dimm_ck: in std_logic;
 PADS_dimm_cke: in std_logic_vector(1 downto 0);
 PADS_dimm_ras: in std_logic;
 PADS_dimm_cas: in std_logic;
 PADS_dimm_we: in std_logic;
 PADS_dimm_s: std_logic_vector(3 downto 0);
 PADS_dimm_a: in std_logic_vector(13 downto 0);
 PADS_dimm_ba: in std_logic_vector(1 downto 0);
 PADS_dimm_rege: in std_logic;

imm_cb: inout std_logic_vector(7 downto 0);
mm_dqmb: in std_logic_vector(7 downto 0);

PADS_dimm_scl: in std_logic;
PADS_dimm_sda: inout std_logic;

 PADS_dimm_sa: in std_logic_vector(2 downto 0);
 PADS_dimm_wp: in std_logic;
 PADS_io_conn: inout std_logic_vector(27 downto 0));
end pilchard;

architecture syn of pilchard is

 component INV
 port (
 O: out std_logic;
 I: in std_logic);
 end component;

 component BUF
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component BUFG
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component CLKDLLHF is
 port (
 CLKIN: in std_logic;
 CLKFB: in std_logic;
 RST: in std_logic;

 PADS_dimm_d: inout std_logic_vector(63 downto 0);
 PADS_d
 PADS_di

 96

 CLK0: out std_logic;
 CLK180: out std_logic;

CLKDV: out std_logic;
 LOCKED: out std_logic);

nent;

 in std_logic;

ic);

ic;

 end compo

component FDC is
 port (

C: in std_logic;
 CLR: in std_logic;
 D: in std_logic;
 Q: out std_logic);
 end component;

 component IBUF
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component IBUFG
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component IOB_FDC is
 port (

 C:
 CLR: in std_logic;

 D: in std_logic;
 Q: out std_log

; end component

 component IOBUF
 port (

 I: in std_logic;
 O: out std_log
 T: in std_logic;
 IO: inout std_logic);

co end mponent;

component OBUF
 port (
 I: in std_logic;
 O: out std_logic);

co end mponent;

component STARTUP_VIRTEX
 port (

 std_logic; GSR: in
 GTS: in std_logic;
 CLK: in std_logic);
 end component;

 97

 component pcore
 port (
 clk: in std_logic;
 clkdiv: in std_logic;

 rst: in std_logic;
_logic;

or(13 downto 0);
63 downto 0);

tor(63 downto 0);
ector(63 downto 0);

ogic_vector(25 downto 0);

d_logic_vector(25 downto 0));
;

gnal ogic;
v: std_logic;

d_logic;
as_ibuf: std_logic;

ic;
gnal gic;

 std_logic;

: std_logic;
e_ibuf_d: std_logic;

gic_vector(63 downto 0);
c_vector(63 downto 0);

gic_vector(63 downto 0);
c_vector(14 downto 0);

: std_logic_vector(7 downto 0);
signal io_conn_iobuf_i: std_logic_vector(27 downto 0);

: std_logic_vector(27 downto 0);
n_iobuf_t: std_logic_vector(27 downto 0);

c;

;
ogic;

signal READ_p: std_logic;

ogic;

 read: in std
 write: in std_logic;
 addr: in std_logic_vect
 din: in std_logic_vector(
 dout: out std_logic_vec
 dmask: in std_logic_v
 extin: in std_l
 extout: out std_logic_vector(25 downto 0);
 extctrl: out st
 end component

 si clkdllhf_clk0: std_l
 signal clkdllhf_clkdi
 signal dimm_ck_bufg: std_logic;
 signal dimm_s_ibuf: st
 signal dimm_r
 signal dimm_cas_ibuf: std_log
 si dimm_we_ibuf: std_lo
 signal dimm_s_ibuf_d:
 signal dimm_ras_ibuf_d: std_logic;
 signal dimm_cas_ibuf_d
 signal dimm_w
 signal dimm_d_iobuf_i: std_lo
 signal dimm_d_iobuf_o: std_logi
 signal dimm_d_iobuf_t: std_lo

gnal i si dimm_a_ibuf: std_log
 signal dimm_dqmb_ibuf

 signal io_conn_iobuf_o
 signal io_con

 signal s,ras,cas,we : std_logi

 signal VDD: std_logic;

; signal GND: std_logic

 signal CLK: std_logic

: std_l signal CLKDIV
 signal RESET: std_logic;
 signal READ: std_logic;

ic; signal WRITE: std_log

 signal WRITE_p: std_logic;

: std_logic; signal READ_n
 signal READ_buf: std_logic;
 signal WRITE_buf: std_logic;
 signal READ_d: std_logic;
 signal WRITE_d: std_l

 98

 signal READ_d_n: std_logic;
td_logic;

c_vector(13 downto 0);
r(13 downto 0);

tor(63 downto 0);
tor(63 downto 0);

 0);
gnal 0);
gnal o 0);
gnal 0);
gnal

 un mmen ock rate

hf: label is "8";

gin

 RST => RESET,

 CLK180 => open,
clkdiv,

FG port map (

FG port map (

t map (

 signal READ_d_n_buf: s

 signal pcore_addr_raw: std_logi
 signal pcore_addr: std_logic_vecto
 signal pcore_din: std_logic_vec
 signal pcore_dout: std_logic_vec
 signal pcore_dmask: std_logic_vector(63 downto
 si pcore_extin: std_logic_vector(25 downto
 si pcore_extout: std_logic_vector(25 downt
 si pcore_extctrl: std_logic_vector(25 downto
 si pcore_dqmb: std_logic_vector(7 downto 0);

-- CLKDIV frequency control, default is 2
-- co t the following lines so as to redefined the cl
-- given by clkdiv
 attribute CLKDV_DIVIDE: string;
 attribute CLKDV_DIVIDE of U_clkdll

be

 VDD <= '1';
 GND <= '0';

 U_ck_bufg: IBUFG port map (
 I => PADS_dimm_ck,
 O => dimm_ck_bufg);

 U_reset_ibuf: IBUF port map (
 I => PADS_exchecker_reset,
 O => RESET);

 U_clkdllhf: CLKDLLHF port map (
 CLKIN => dimm_ck_bufg,
 CLKFB => CLK,

 CLK0 => clkdllhf_clk0,

 CLKDV => clkdllhf_
 LOCKED => open);

 U_clkdllhf_clk0_bufg: BU
 I => clkdllhf_clk0,
 O => CLK);

 U_clkdllhf_clkdiv_bufg: BU
 I => clkdllhf_clkdiv,
 O => CLKDIV);

 U_startup: STARTUP_VIRTEX por
 GSR => RESET,
 GTS => GND,
 CLK => CLK);

 99

 U_dimm_s_ibuf: IBUF port map (
 I => PADS_dimm_s(0),

_we_ibuf);

 U_dimm_d_iobuf: IOBUF port map (
 I => dimm_d_iobuf_i(i),

 O => dimm_d_iobuf_o(i),
 => dimm_d_iobuf_t(i),
O => PADS_dimm_d(i));

C port map (

ap (
 C => CLK,

buf_i(i));

t map (

 Q => dimm_d_iobuf_t(i));

G_dimm_a: for i in integer range 0 to 13 generate

 (
dimm_a(i),

);

_FDC port map (

SET,

 O => dimm_s_ibuf);

 U_dimm_ras_ibuf: IBUF port map (
 I => PADS_dimm_ras,
 O => dimm_ras_ibuf);

 U_dimm_cas_ibuf: IBUF port map (
 I => PADS_dimm_cas,
 O => dimm_cas_ibuf);

 U_dimm_we_ibuf: IBUF port map (
 I => PADS_dimm_we,
 O => dimm

 G_dimm_d: for i in integer range 0 to 63 generate

 T
 I

 U_dimm_d_iobuf_o: IOB_FD
 C => CLK,
 CLR => RESET,

 D => dimm_d_iobuf_o(i),
 Q => pcore_din(i));

i: IOB_FDC port m U_dimm_d_iobuf_

 CLR => RESET,
 D => pcore_dout(i),
 Q => dimm_d_io

 U_dimm_d_iobuf_t: IOB_FDC por
 C => CLK,
 CLR => RESET,

_buf, D => READ_d_n

 end generate;

 U_dimm_a_ibuf: IBUF port map
 I => PADS_

 O => dimm_a_ibuf(i)

 U_dimm_a_ibuf_o: IOB
 C => CLK,
 CLR => RE

 100

 D => dimm_a_ibuf(i),
i));

dr_raw(3 downto 0);
ange 4 to 7 generate

(
 O => pcore_addr(i),

);

ore_ ore_addr_raw(13 downto 8);

ge 0 to 7 generate

 port map (

p (

rs => (not pcore_dqmb(0)));
t pcore_dqmb(1)));

 (not pcore_dqmb(2)));
pcore_dmask(31 downto 24) <= (others => (not pcore_dqmb(3)));
ore_ pcore_dqmb(4)));

 (others => (not pcore_dqmb(5)));
hers => (not pcore_dqmb(6)));

> (not pcore_dqmb(7)));

G_io_conn: for i in integer range 2 to 27 generate

 port map (
(i),

 IO => PADS_io_conn(i));

 U_io_conn_iobuf_o: IOB_FDC port map (

 U_io_conn_iobuf_i: IOB_FDC port map (

- 2),

 Q => pcore_addr_raw(

ge end nerate;

 pcore_addr(3 downto 0) <= pcore_ad
 addr_correct: for i in integer r
 ADDR_INV: INV port map

 I => pcore_addr_raw(i)
 end generate;
 pc addr(13 downto 8) <= pc

 G_dimm_dqmb: for i in integer ran

 U_dimm_dqmb_ibuf: IBUF
 I => PADS_dimm_dqmb(i),
 O => dimm_dqmb_ibuf(i));

 U_dimm_dqmb_ibuf_o: IOB_FDC port ma
 C => CLK,
 CLR => RESET,
 D => dimm_dqmb_ibuf(i),
 Q => pcore_dqmb(i));

 end nerate; ge

 pcore_dmask(7 downto 0) <= (othe
 pcore_dmask(15 downto 8) <= (others => (no
 pcore_dmask(23 downto 16) <= (others =>

 pc dmask(39 downto 32) <= (others => (not
 pcore_dmask(47 downto 40) <=
 pcore_dmask(55 downto 48) <= (ot
 pcore_dmask(63 downto 56) <= (others =

 U_io_conn_iobuf: IOBUF
 I => io_conn_iobuf_i
 O => io_conn_iobuf_o(i),
 T => io_conn_iobuf_t(i),

 C => CLK,

 CLR => RESET,
 D => io_conn_iobuf_o(i),
 Q => pcore_extin(i - 2));

 C => CLK,
 CLR => RESET,
 D => pcore_extout(i

 101

 Q => io_conn_iobuf_i(i));

 U_io_conn_iobuf_t: IOB_FDC port map (

,

 O => open,

 IO => PADS_io_conn(0));

 O => open,

);

 (dimm_ras_ibuf) and
ibuf) and

 (dimm_we_ibuf);

 I => READ,

d

=> W

 C => CLK
 CLR => RESET,
 D => pcore_extctrl(i - 2),
 Q => io_conn_iobuf_t(i));

 end generate;

 U_io_conn_0_iobuf: IOBUF port map (
 I => dimm_ck_bufg,

 T => GND,

 U_io_conn_1_iobuf: IOBUF port map (
 I => GND,

 T => VDD,
 IO => PADS_io_conn(1)

 READ_p <=
 (not dimm_s_ibuf) and

 (not dimm_cas_

 U_read: FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ_p,
 Q => READ);

 U_buf_read: BUF port map (

 O => READ_buf);

 U_read_d: FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ,
 Q => READ_d);

 WRITE_p <=
 (not dimm_s_ibuf) and
 (dimm_ras_ibuf) and
 (not dimm_cas_ibuf) and
 (not imm_we_ibuf);

 U_write: FDC port map (
 C => CLK,
 CLR => RESET,
 D RITE_p,

 102

 Q => WRITE);

 U_buf_write: BUF port map (
 I => WRITE,
 O => WRITE_buf);

 U_write_d: FDC port map (
 C => CLK,
 CLR => RESET,
 D => WRITE,

 C => CLK,

 I => READ_d_n,

nside pcore

 clkdiv => CLKDIV,

in,

 dout => pcore_dout,

tin,
tout,

 Q => WRITE_d);

 READ_n <= not READ;

 U_read_d_n: FDC port map (

 CLR => RESET,
 D => READ_n,
 Q => READ_d_n);

 U_buf_read_d_n: BUF port map (

 O => READ_d_n_buf);

 -- User logic should be placed i
 U_pcore: pcore port map (
 clk => CLK,

 rst => RESET,
 read => READ,
 write => WRITE,
 addr => pcore_addr,
 din => pcore_d

 dmask => pcore_dmask,
 extin => pcore_ex
 extout => pcore_ex

 extctrl => pcore_extctrl);

end syn;

 103

#p .vcore hd

e ie .std
e ie

 downto 0);
3 downto 0);
(63 downto 0);
r(63 downto 0);

tin: ector(25 downto 0);
 downto 0);
 downto 0));

ownto 0);

 downto 0);
ownto 0);

o 0);

0);
o 0);

ent;

mponent parith
ort (
 clk: in std_logic;
 rst: in std_logic;
 addr: out std_logic_vector(7 downto 0);
 din: out std_logic_vector(63 downto 0);
 dout: in std_logic_vector(63 downto 0);
 we: out std_logic;
 start: in std_logic;
 finish: out std_logic
);
end component;

signal addrb:std_logic_VECTOR(7 downto 0);

library ieee;

ee _logic_1164.all; us
su ee.std_logic_unsigned.all;

entity pcore is
port (
 clk: in std_logic;

clkdiv: in std_logic;
 rst: in std_logic;

read: in std_logic;
 write: in std_logic;

ctor(13 addr: in std_logic_ve
 din: in std_logic_vector(6

or dout: out std_logic_vect
mask: to d in std_logic_vec
ex in std_logic_v

 extout: out std_logic_vector(25
tor(25 extctrl: out std_logic_vec

nd pc re; e o

architecture syn of pcore is
component dpram256_64
 port (

R(7 d addra: IN std_logic_VECTO
 clka: IN std_logic;
 dina: IN std_logic_VECTOR(63
 douta: OUT std_logic_VECTOR(63 d
 wea: IN std_logic;

 addrb: IN std_logic_VECTOR(7 downt
 clkb: IN std_logic;
 dinb: IN std_logic_VECTOR(63 downto

outb: nt d OUT std_logic_VECTOR(63 dow
web: IN std_logic);

end compon

oc
p

 104

signal clkb: std_logic;
ignal dinb: std_logic_VECTOR(63 downto 0);
ignal doutb: std_logic_VECTOR(63 downto 0) :=

00";

ch: std_logic_vector(7 downto 0);
d_logic;

gnal VECTOR(63 downto 0);

gin

=> addr(7 downto 0),
clka => clk,

tart_parith,

rb,

gin

then
th <= '0';

s
s
"00000000000000
signal web: std_logic;

signal read_latch: std_logic; --

--signal addr_lat
finish: stsignal

ignals start : std_logic;

gic_si bram_dout : std_lo

--debug signal
signal start_parith:std_logic;

--register interface
--signal reg0: std_logic_VECTOR(31 downto 0);

be

56_64 port map (ram0:dpram2
addra

 dina => din,

ut, douta => bram_do
te, wea => wri

 addrb => addrb,
 clkb => clkb,
 dinb => dinb,
 doutb => doutb,

web => web
;)

parith0: parith port map (
 clk => clkb,
 rst => rst,

doutb, dout =>
start => s

ddr => add a

 din => dinb,
 we => web,
 finish => finish
);

process(clk)
be

if (rst = '1')

start_pari
elsif (clk'event and clk ='1') then

 105

 start_parith <= start_parith or start;

 downto 0);

'1' and addr(7 downto 0) = "00000100")

 define the core clock

d syn;

end if;

end process;

dout(31 downto 0) <= bram_dout(31
dout(63 downto 32) <= bram_dout(63 downto 32);

start <= '1' when (write =
 else '0';

--
clkb <= clkdiv;

en

 106

#Parith 32bit version

library ieee;

ogic_1164.all;
ogic_unsigned.all;

c;

vector(7 downto 0);
d_logic_vector(63 downto 0); -- write to block ram

: in std_logic_vector(63 downto 0); -- read to block ram
out std_logic; -- write

enable
 start: in std_logic;
 --dc_in: in std_logic_vector(7 downto 0);
 finish: out std_logic
);
end parith;

architecture rtl of parith is

component fxmult
port(

 clk,start: in std_logic;
 a0, a1, a2, a3 : IN std_logic_VECTOR(n-1 downto 0);
 --finish : out std_logic;
 q : OUT std_logic_VECTOR(n-1 downto 0)
);
end component;

component max
port(

 clk,start: in std_logic;
 num1, num2, oldmax : IN std_logic_VECTOR(n-1 downto 0);
 --finish : out std_logic;
 newmax : OUT std_logic_VECTOR(n-1 downto 0)
);
end component;
type states is (s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9,
s_10);

signal idx: std_logic_vector(7 downto 0);
signal buff_a0, buff_a1, buff_a2, buff_a3, buff_q: std_logic_vector (n-
1 downto 0);
signal buff_b0, buff_b1, buff_b2, buff_b3, buff_bq: std_logic_vector
(n-1 downto 0);

use ieee.std_l
e ieee.std_lus

entity parith is
neric (n : integer := 32); ge

port (

clk: in std_logi
 rst: in std_logic;

std_logic_ addr: out
din: out st

 dout
 we:

 107

signal buff_num1, buff_num2
ownto 0);

, buff_old, buff_new: std_logic_vector (n-1

 start_b, start_max : std_logic;
r(n-1 downto 0);

r (63 downto 0);

lt port map (
clk,

1,
2,

uff_b3,

ap (
,
start_max,
uff_num1,

 buff_num2,

ate <= s_0;
finish <= '0';

tate = s_0) then

d
signal start_a,
signal count : std_logic_vecto
signal state : states;
gnal buff_dout : std_logic_vectosi

begin

xmultf 1: fxmult port map (
 clk => clk,
 start => start_a,
 a0 => buff_a0,
 a1 => buff_a1,
 a2 => buff_a2,
 a3 => buff_a3,
 --finish => finish_a,
 q => buff_q
);

fxmult2: fxmu

clk =>
 start => start_b,

a0 => buff_b0,
 a1 => buff_b

a2 => buff_b
 a3 => b
 --finish => finish_a,
 q => buff_bq
);

max1: max port m

clk => clk
 start =>

num1 => b
 num2 =>
 oldmax => buff_old,
 newmax => buff_new
);

rst) process (clk,
begin

 if (rst = '1') then

st

 elsif (clk = '1' and clk'event) then

 -- state machine

 if (start = '1') then
 if (s

 108

 state <= s_1;
 finish <= '0';
 end if;

 end if;

 case state is

 when s_1 =>
 idx <= "00000000";

 000001";
 _3;

;
 <= buff_dout(63 downto 32);

 buff_a1 <= buff_dout(n-1 downto 0);
 state <= s_4;

100";
 buff_dout (63 downto 32);
 buff_dout (n-1 downto 0);

 _5;
 '1';

 idx <= "00000101";
 buff_b0 <= buff_dout(63 downto 32);
 buff_b1 <= buff_dout(n-1 downto 0);

_6;

f_dout(63 downto 32);
f_dout(n-1 downto 0);

;

 when s_7 =>
 buff_dout(63 downto 32);

 state <= s_8;

<= buff_q;

 s_9;
 idx <= "00000111";

 state <= s_2;

 when s_2 =>
 idx <= "00
 state <= s

 when s_3 =>
 idx <= "00000010"
 buff_a0

 when s_4 =>
 idx <= "00000
 buff_a2 <=
 buff_a3 <=
 state <= s
 start_a <=

 when s_5 =>

 state <= s

 when s_6 =>
 buff_b2 <= buf
 buff_b3 <= buf
 state <= s_7;
 start_b <= '1'

 count <=

buff_old <= buff_dout(n-1 downto 0);

 when s_8 =>
 buff_num1
 buff_num2 <= buff_bq;

start_max <='1';
 state <=

 we <= '1';

 109

 wh _9en s =>

0;

=>

;
<= s_0;
<= '1';

 <= '0';

i

in < f q & buff_bq) when (state = s_8 or state=s_9) else (count

rt

 we <= '0';
 state<=s_1

 when s_10
 idx <= "00000110";
 we <= '1'
 state
 finish

 when others =>
 we
 end case;
 end f;
end process;

 addr <= idx;
 d = (bu f_
& buff_new);
 buff_dout <= dout;

end l;

 110

#p .vhd 16bit versarith ion

logic;

 std_logic_vector(7 downto 0);
std_logic_vector(63 downto 0); -- write to block ram

dout: in std_logic_vector(63 downto 0); -- read to block ram
: out std_logic; -- write

ble
start: in std_logic;

in std_logic_vector(7 downto 0);

re rtl of parith is

mponent fxmult
ort(

 clk,start: in std_logic;
 a0, a1, a2, a3 : IN std_logic_VECTOR(n-1 downto 0);
 --finish : out std_logic;
 q : OUT std_logic_VECTOR(n-1 downto 0)
);
end component;

component max
port(

 clk,start: in std_logic;
 num1, num2, oldmax : IN std_logic_VECTOR(n-1 downto 0);
 --finish : out std_logic;
 newmax : OUT std_logic_VECTOR(n-1 downto 0)
);
end component;
type states is (s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8);

signal idx: std_logic_vector(7 downto 0);
signal buff_a0, buff_a1, buff_a2, buff_a3, buff_q: std_logic_vector (n-
1 downto 0);
signal buff_b0, buff_b1, buff_b2, buff_b3, buff_bq: std_logic_vector
(n-1 downto 0);

library ieee;
use ieee.std_logic_1164.all;

all;use ieee.std_logic_unsigned.

entity parith is

er := 16); generic (n : integ

port (

_logic; clk: in std
 in std_ rst:

 addr: out
din: out

 we
a en

 --dc_in:
 finish: out std_logic
);
end parith;

architectu

oc
p

 111

signal buff_num1, buff_num2, buff_old, buff_new: std_logic_vector (n-1
ownto 0);
ignal start_a, start_b, start_max : std_logic;

std_logic_vector(n-1 downto 0);

r (63 downto 0);

 fxmult port map (

lt
clk,
> start_b,

2,
3,

h => finish_a,

,
tart_max,
uff_num1,
uff_num2,

=> buff_old,

finish <= '0';

tate = s_0) then

d
s
signal count :
signal state : states;
signal buff_dout : std_logic_vecto

begin

fxmult1:
 clk => clk,
 start => start_a,
 a0 => buff_a0,
 a1 => buff_a1,
 a2 => buff_a2,
 a3 => buff_a3,
 --finish => finish_a,
 q => buff_q
);

2: fxmult port map (fxmu
 clk =>

start =
 a0 => buff_b0,

a1 => buff_b1,
 a2 => buff_b

a3 => buff_b
 --finis
 q => buff_bq
);

 map (max1: max port
 clk => clk

start => s
 num1 => b

num2 => b
 oldmax
 newmax => buff_new
);

process (clk, rst)
begin

 if (rst = '1') then

state <= s_0;

 elsif (clk = '1' and clk'event) then

 -- state machine

 if (start = '1') then
 if (s

 112

 state <= s_1;
 finish <= '0';
 end if;

 end if;

 case state is

 when s_1 =>
 idx <= "00000000";

 000001";
 _3;

;
 <= buff_dout(63 downto 48);

 buff_a1 <= buff_dout(47 downto 32);
 buff_a2 <= buff_dout (31 downto 16);

dout (15 downto 0);

 buff_dout(63 downto 48);
 buff_dout(47 downto 32);

out (31 downto 16);
<= buff_dout (15 downto 0);

 start_b <= '1';
 state <= s_5;

buff_dout(63 downto 48);
f_dout(47 downto 32);

buff_bq;
 start_max <='1';

 s_7;

 when s_7 =>
;

 s_0;
 finish <= '1';

 state <= s_2;

 when s_2 =>
 idx <= "00
 state <= s

 when s_3 =>
 idx <= "00000110"
 buff_a0

 buff_a3 <= buff_
 start_a <= '1';
 state <= s_4;

 when s_4 =>
 buff_b0 <=
 buff_b1 <=
 buff_b2 <= buff_d
 buff_b3

 when s_5 =>

= count <
 buff_old <= buf
 state <= s_6;

 when s_6 =>
 buff_num1 <= buff_q;

 buff_num2 <=

 state <=

 state <= s_8

 when s_8 =>
 idx <= "00000111";

we <= '1';
 state <=

 when others =>

 113

 we <= '0';
 e asnd c

r cess;

(buf count & buff_new);
ut < dout;

t

e;
 end if;

o end p

 addr <= idx;
 din <= f_q & buff_bq &
 buff_do =

end r l;

 114

#fx lt wmu ith DesignWare from CoreGen.

E ieee.std_logic_1164.ALL;
 ie .std_logic_arith.ALL;
 ie .std_logic_signed.ALL;

=32);

 (
clk: IN std_logic;

 a0, a1, a2, a3: IN std_logic_VECTOR (n-1 downto 0);
 q: OUT std_logic_VECTOR(n-1 downto 0);
 start : IN std_logic;
 finish : OUT std_logic
);
END fxmult;

ARCHITECTURE syn OF fxmult IS

component DW02_prod_sum_inst
port(
 inst_A : in std_logic_vector(n*4-1 downto 0);
 inst_B : in std_logic_vector(15*4-1 downto 0);
 inst_TC : in std_logic;
 SUM_inst : out std_logic_vector(47-1 downto 0));
end component;

constant c0 : std_logic_vector (14 downto 0) := "000111101110000";
-- 0.48242
constant c1 : std_logic_vector (14 downto 0) := "001101011000101";
-- 0.83654
constant c2 : std_logic_vector (14 downto 0) := "000011100101100";
-- 0.22412
constant c3 : std_logic_vector (14 downto 0) := "111101111011100";
-- -.12939

signal buff_A : std_logic_vector(n*4-1 downto 0);
signal buff_B : std_logic_vector(15*4-1 downto 0);
signal buff_SUM : std_logic_vector(47-1 downto 0);
signal step1: std_logic;
signal buff_TC : std_logic := '1';
signal temp : std_logic_vector(n-1 downto 0);

begin

mult1: DW02_prod_sum_inst port map (

BRARY ieee; LI

US
USE ee
E eeUS

ENTITY fxmult IS

neric (n: integer :ge

port

 115

 inst_A => buff_A,
 inst_B => buff_B,

inst_TC => buff_TC,
=> buff_SUM

;

3;

 SUM_inst

);

---------------------------- --

process
gin be

it until rising_edge (clk)wa

uff_Ab <= a0 & a1 & a2 & a
buff_B <= c0 & c1 & c2 & c3;

step1 <= start;

end process;

ocess pr

begin
ntil rising_edge (clk); wait u

if (step = '1') then
 temp <= shr (buff_SUM, "1101");
end if;

nish <= step1;fi

end process;

q <= temp;

end syn;

 116

#DW02_prod_sum_inst

libr
use

ary IEEE,DWARE,DW02;
IEEE.std_logic_1164.all;

02_ od_sum_inst is
neri (

L := 15;
SITIVE := 4;
URAL := 47

: in std_logic_vector(inst_num_inputs*inst_A_width-1

_B : in std_logic_vector(inst_num_inputs*inst_B_width-1

ogic;
 SUM_inst : out std_logic_vector(inst_SUM_width-1 downto 0)
);

W02_prod_sum_inst is

f DW02_prod_sum
_sum

inst_num_inputs, SUM_width => inst_SUM_width)
ap (A => inst_A, B => inst_B, TC => inst_TC, SUM =>

d inst;

-- pragma translate_off
library DW02;
configuration DW02_prod_sum_inst_cfg_inst of DW02_prod_sum_inst is
for inst
 for U1 : DW02_prod_sum use configuration
DW02.DW02_prod_sum_cfg_sim; end for;
end for; -- inst
end DW02_prod_sum_inst_cfg_inst;
-- pragma translate_on

use DWARE.DWpackages.all;
e DW02.DW02_components.all; us

entity pr
 ge c

DW

 inst_A_width : NATURAL := 32;
 inst_B_width : NATURA
 inst_num_inputs : PO
 inst_SUM_width : NAT
);
 port (
 inst_A
downt 0o);

 inst
downto 0);
 inst_TC : in std_l

 end DW02_prod_sum_inst;

architecture inst of D

begin

 -- Instance o
 U1 : DW02_prod

 generic map (A_width => inst_A_width, B_width => inst_B_width,
num_inputs =>
 port m
SUM_inst);

en

 117

#fxmult using ieee.arith.signed

L;

-1 downto 0);
)

td_logic_VECTOR (n-1+15 downto 0);

gin

rt= '1') then

; -- 0.83654

tmp1 <= shr (tmp, "1101"); --shift 13

;

;

BRARY ieee; LI

USE ieee.std_logic_1164.AL
USE ieee.std_logic_arith.ALL;

ALL;USE ieee.std_logic_signed.

ENTITY fxmult IS

ger := 32); generic (n: inte

 port (
 clk, start: IN std_logic;

 (n a0, a1, a2, a3: IN std_logic_VECTOR
std_logic_VECTOR(n-1 downto 0 q: OUT

);
END fxmult;

ARCHITECTURE syn OF fxmult IS

ignals z0, z1, z2, z3, tmp, tmp1: s

be

ocess (clk) pr

begin

if (sta
 z0 <= a0 * "000111101110000"; -- 0.48242 2bit bec 13bits
fract

1011000101" z1 <= a1 * "00110
 z2 <= a2 * "000011100101100"; -- 0.22412
 z3 <= a3 * "111101111011100"; -- -.12939

 tmp <= z0 + z1 + z2 + z3;

end if;
d processen

 q <= tmp1(n-1 downto 0)

end syn;

 118

#max.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

 :=32);

R (n-1 downto 0);
UT std_logic_VECTOR(n-1 downto 0)

buff_newmax,temp: std_logic_VECTOR(n-1 downto 0);

'1') then

es

') then

en
temp;

buff_newmax <= oldmax;

end if;
d if;

end process;
newmax <= buff_newmax;
end syn;

ENTITY max IS
generic (n: integer

 port (
 clk, start : IN std_logic;
 num1, num2, oldmax : IN std_logic_VECTO
 newmax

);
: O

END max;

ARCHITECTURE syn OF max IS

signal
gin be

process (clk)
begin
if (start =

 if (num1 > num2) then
 temp <= num1;
 else
 temp <= num2;
 end if;
end if;
end process;

proc s (clk)
begin
if (start ='1

 if (temp > oldmax) th

 buff_newmax <=
 else

en

 119

#float2fix.m

lose all

band5.txt';
nd5.txt';

mples = 460;

');

 1: lines
fprintf (fid,sdec2bin(data(ib,il),32,10));

 ');

;

c
clear all
% Reading data ...
input_file = './b4Wavelet/
utput_file = './b4wfix/bao
sa
lines = 400;
ata=load(input_file); d

id =f fopen (output_file, 'w
% 3-d and 2-d variables to store the image
for ib = 1: samples
 for

il =

 fprintf (fid, '
 end

 fprintf (fid, '\n');
end

status = fclose(fid)

 120

#readoutput.m

================================

ssee

s from chickv20.cpp
========

00;

id, msg] = fopen('O TPUTIMG1.IMG', 'r');
ead(fid, [460, 400*65], 'float');

tatus = fclose(fid);

% 3-d and 2-d variables to store the image
I = zeros(samples, lines, bands);
BandImage = zeros(samples, lines);

% find BandImage from ImageFile
for ib = 1: bands
 for il = 1: lines
 BandImage(:, il) = ImageFile(:, (il - 1)*bands +
ib);
 end
 I(:, :, ib) = BandImage;
end
clear ImageFile;

% Display a spectral image
figure, imshow(I(1:230, 1:200, 4))

%==
==========================

% ==================
% Yuan He
% ECE Department
% Univ. of Tenne
%
% he@student.ece.utk.edu
%
% This file is use to view result
%===

close all

samples = 460;
lines = 4
bands = 65;

[f U
[ImageFile, count] = fr
s

 121

img2 = load('tumorimage.txt');
gure, imshow(img2(:,:))

=====
============

a.txt');
or = load('tumordata.txt');

abel('Relative Fluorescence Intensity (RFI)')

ot(Tumor', 'r')

0.8])

fi

%===
===========

Normal = load('normdat
Tum
BGD = load('bgddata.txt');

figure, plot(Normal', ':b')
xlabel('Bands (Channels)')
yl
hold on
pl
plot(BGD', 'g')
hold off
axis([0 66 0

 122

Vita

jing, China. For the first twelve years, he

cation at Beijing Di Yi Shi Ying Xiao Xiu. In

ity of Tennessee,

 received a Bachelor’s degree in Electrical and Computer

e continued working toward his master’s degree in the same

 at the department’s Information Technology Administrator

office and serves as the vice president of the Chinese Student and Scholars Association.

Yuan He was born on March 22, 1979 in Bei

lived there and completed to his early edu

1992, he came to the USA with his parents. He enrolled in the Univers

Knoxville in fall 1997 and

Engineering in 2001. H

department. He also works

 123

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2004

	Hyper-Spectral Image Processing Using High Performance Reconfigurable Computers
	Yuan He
	Recommended Citation

	Chapter 1. Introduction
	Background
	Objectives
	Main Contributions
	Structure of Thesis

	Pilchard Platform and Design Package
	Pilchard Overview
	Xilinx Virtex-E Chip
	Pilchard Design Files
	Pilchard Host Interface
	Chapter Summary

	Hyper-Spectral Imaging Application
	Introduction
	Discrete Wavelet Transforms
	Normalization
	Hyper-spectral Plots
	Feature Extractions
	Chapter Summary

	Design and Implementation
	Overall Design Flow
	Matlab Profile
	C++ Designs
	C++ Designs and Implementations
	C++ Profile

	VHDL and Hardware Designs
	Pilchard Design Flow
	Design Entry
	System Components and Structure
	Functional Behaviors

	Hardware Simulation
	Design Synthesis
	Place Route and Bit Streams
	In-Circuit Design Verification

	Chapter Summary

	Result and Discussion
	Results Comparisons
	Resource Comparison
	Performance Comparison
	Parallel Computing Results

	Difficulties Encountered
	Conclusions
	Future Work

	Bibliography
	Appendix
	Vita

