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Abstract 
 

The purpose of this thesis is to investigate the methods of implementing a section of a 

Matlab hyper-spectral image processing software application into a digital system that 

operates on a High Performance Reconfigurable Computer. The work presented is 

concerned with the architecture, the design techniques, and the models of digital systems 

that are necessary to achieve the best overall performance on HPRC platforms. The 

application is an image-processing tool that detects the tumors in a chicken using analysis 

of a hyper-spectral image. Analysis of the original Matlab code has shown that it gives 

low performance in achieving the result. The implementation is performed using a three-

stage approach. In the first stage, the Matlab code is converted into C++ code in order to 

identify the bottlenecks that require the most resources. During the second stage, the 

digital system is designed to optimize the performance on a single reconfigurable 

computer. In the final stage of the implementation, this work explores the HPRC 

architecture by deploying and testing the digital design on multiple machines. The 

research shows that HPRC platforms grant a noticeable performance boost. Furthermore, 

the more hyper-spectral bands exist in the input image data, the better of the speedup can 

be expected from the HPRC design work.  
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Chapter 1.      Introduction 

 

This chapter gives a brief overview to the background of High Performance 

Reconfigurable Computers, the objectives, the contributions, and the composition of the 

thesis. 

 

 

1.1 Background 

 

Lately, many areas of research are exploring the use of reconfigurable computers (RC), 

such as field programmable gate array (FGPA), along with a conventional processor. In 

general, such a system is known as a Field Programmable Custom Computing Machine 

(FCCM). FCCMs offer the benefit of the speed from an application-specific coprocessor, 

combined with the capabilities and flexibilities of FPGAs. Conventional processors can 

compute general-purpose tasks, while leaving complex and processor-intensive work to 

the application-specific hardware units. Several research groups have demonstrated the 

performance improvements using RC architectures [19-21].  

 

A related field of study extends the FCCMs to High Performance Reconfigurable 

Computers (HPRC). The idea of HPRC is to encompass parallel processors to work 

collectively on a common problem while each individual processor may or may not be a 

FCCM system.  
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Figure 1-1: High Performance Reconfigurable Computer Architecture [7] 

 

 

Figure 1-1 shows HPRC architecture, which consist a number of compute nodes that are 

linked by an interconnection network. A reconfigurable hardware may be attached to any 

of the compute nodes and there might be an interconnection network that exists between 

the RCs.  

 

In this work, a reconfigurable superscalar processor model uses a reconfigurable system 

called Pilchard to simulate the HPRC environment [1]. At the Electrical and Computing 

Engineering Department of University of Tennessee Knoxville, there are eight Pilchard 

systems available for usage. 

  

In this project, a hyper-spectral image processing application is considered. This 

particular application contains the functions that offer the complexity that calls for a 

dedicated reconfigurable device. In addition, the functions have to be performed on each 
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of the hyper-spectral bands, thus its repetition can benefit from using a high performance 

computing system. The selection of this image processing application is appropriate for 

the study of the HPRC.  

 

While much of the work focuses on transferring the complexity part of the original 

application into specialized hardware functions, other means also have to be considered 

for the communications between the software and the hardware and as well as at the 

superscalar level.  

 

 

1.2 Objectives 

 

In view of the background stated above, the first goal of the work is to, identify any 

performance bottlenecks that the original software application possesses, then 

accelerating the bottleneck code using the Pilchard platform. The RC system using the 

Pilchard platform is expected to give a speedup as compared to the software counterpart.  

 

The second goal builds on the results of the first objective in order to explore HPRC 

platforms. The idea is to have each of the eight available Pilchard systems responsible for 

a subset of the hyper-spectral image bands. The eight systems can work concurrently with 

their corresponding FPGA components to produce even a better speedup than projected 

in the first goal.  
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The third and final goal is to consider the algorithm and design methodology used to help 

outline a standard approach to accelerate software applications by using HPRC. 

 

 

1.3 Main Contributions 

 

The work performed gives the following main contributions: 

• Constructed an image processing hyper-spectral application on HPRC by 

converting it from a Matlab application. 

• Constructed an implementation using HPRC with standard design flow. 

• Designed, implemented, and/or verified the sub-modules of the digital system: 

Pilchard, Pcore, Parith, Fxmult, and Max. 

• An analytical study of 2D Wavelet-Transform 

• An analytical study of the data streaming process using the Pilchard platform. 

• An analytical study of the Pilchard platform and its design package 

• A comparative study of different methods of design for the chicken tumor 

application  
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1.4 Structure of Thesis 

 

The thesis is divided into five chapters. Chapter 1 gives a general introduction to the 

work. Following the introduction, the principles and basic concepts of the Pilchard 

platform and its design packages are described in Chapter 2. Chapter 3 gives a detailed 

description of each algorithm and tasks performed in the original hyper-spectral image 

processing application. The work performed is treated in Chapter 4. It contains each step 

of the project flow. The results, the overall conclusions of the work and the suggestions 

of future work are given in the last Chapter. 
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Chapter 2.  Pilchard Platform and Design Package 

 

The hardware implementation of this project is to be developed on a reconfigurable 

computing environment named Pilchard [1]. Consequentially, this chapter presents an 

overview of the Pilchard platform and design issues related to it.  

  

 

2.1 Pilchard Overview 

 

The Pilchard is a high performance reconfigurable computing platform that was 

developed in the Computer Science and Engineering Department of the Chinese 

University of Hong Kong [3]. It exploits a field programmable gate array device that 

utilizes the dynamic RAM dual in-line memory module to interconnect with its host, 

which typically is a personal computer. The system is low-cost and with its efficient 

interface, it offers the flexibility for quick prototyping of various applications. The 

overhead, whether it is timing or hardware resources, is minimized to maximize the 

resources available for the developers. In addition, the learning curve for implementing a 

digital design with the Pilchard platform is not steep, as suggested by the Chinese 

University of Hong Kong [1,3]. These benefits give the developers more time to carry out 

their design work rather than spending excessive time on learning the interface protocols. 

For these reasons, the Pilchard is used. 
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Figure 2-1: Photography of The Pilchard Board [1] 

 

 

Besides the feasibility that the Pilchard system offers, it also contains some features and 

particulars that are worthy of mentioning. Figure 2-1 shows a picture of the Pilchard 

board.  

 

The main FGPA component is a Xilinx Virtex-E, XCV1000EHQ240, chip, however, it is 

supported by any of the Xillinx Virtex and Virtex-E device family in the PQ240 or the 

HQ240 packages. The Pilchard board is designed to be compatible with the 168 pin 3.3 

Volt, 133MHz, 72-bit, DIMMs. The printed board is a 6-layer impendence controlled 

FR4 board and roughly doubles the height of a standard DIMM card. Currently, the 

Pilchard is only supported by the ASUS CUSL2-C motherboard and tested and operated 

on Mandrake Linux 8.1 x86 version. The configuration bit-stream files are download 
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onto the Pilchard platform using the Parallel Cable III with the Xchecker interface. A 

flowchart of the Pilchard board is shown on figure 2-2 and more in-depth specification is 

shown in table 2-1. 

 

 

2.2 Xilinx Virtex-E Chip 

 

The architecture of the Xilinx Virtex-E chip consists of three major configurable 

elements, an array of configurable logic blocks (CLBs), programmable input/output  

 

 

 

Figure 2-2: Block Diagram of The Pilchard Board [1] 
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Table 2-1: Pilchard Platform Specifications [3] 

Features Description 

Host Interface 
DIMM Interface 
64-bit Data I/O 
12-bit Address Bus 

External (Debug) Interface 27 Bits I/O 

Configuration Interface X-Checker, Multil.ink and JTAG 

Maximum System Clock Rate 133 MHz 

Maximum External Clock Rate 240 MHz 

FPGA Device XCV 1000E-HQ240-6 

Dimension 133mm * 65mm * 1mm 

OS Supported GNU / Linux 

 

 

blocks (IOBs), and interconnects. The CLBs are the basic functional elements for 

mapping user-constructed logics. The IOBs connect the exteriors pins on the Pilchard 

board with the internal signal lines. The interconnect serves as the interface routing the 

connections between the CLBs and the IOBs. User-specific functions are configured onto 

the XCV1000E-HQ240 chip boarding the FPGA. Its specification is summarized in table 

2-2. 

 

The Xillinx Virtex-E FPGA has four digital Delay-Locked Loops (DLLs) and four 

Global Clock Buffers for global clock distribution. However, only three out of the four 
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Table 2-2: Features of XCV1000E-HQ240 [2] 

Parameter Features 

System Gates 1,569,178 

Logic Gates 331,776 

CLB Arrays 64 * 96 

Logic Cells 27,648 

User I/Os 660 

Differential I/Os 281 

BlockRAM Bits 393,216 

Distributed RAM Bits 393,216 

 

 

Global Clock Buffers are used for Pilchard due to the Pilchard architecture. Two out of 

four outputs from the DLLs are labeled and available for use. They are labeled as CLK 

and CLKDIV in pcore.vhd, a Pilchard Harware design file, which will be covered later in 

the chapter. The remaining two DLLs are also available for use, but will require user 

modification of the Pilchard design files, namely the pilchard.vhd and the pcore.vhd. 

These two DLLs are not declared or labeled in the original Pilchard design files.   

 

Another major feature of the Virtex-E FPGA chip is the on-board Block SelectRAM+, 

which had an impact on the overall design outcome. The Block SelectRAM+ uses a dual 

port BlockRAM, containing a total of 96 blocks of RAM, each holding 4096 bits data. A 
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timing factor worth of underlining is that with the Dual-Port RAM, the read/write request 

can only be fulfilled in every two clock cycles but allows simultaneously access data on 

both ports at different memory address locations.  

 

 

2.3 Pilchard Design Files 

 

Another important part of the Pilchard platform, beside the physical device, is the 

included design file packages. The Pilchard design files contain both VHDL files and 

software files that are necessary for the user design implementations and FPGA-Host 

interfaces. Both of the resources need to be edited accordingly to ensure synchronized 

interface communications.  

 

The VHDL files that needed by the developers are Pilchard.vhd, pcore.vhd, a Pilchard 

user constraint file (UCF), and a set of netlist files (EDIF). The pilchard.vhd is the top 

level VHDL codes that bring forth the interfaces with the host DIMM slot directly. It also 

configures the global clock signal, clock divider, I/O buffer, and startup reset of the 

FPGA device on the Pilchard. Unless new sources are added to the interface, such as a 

new clock signal, or special design constraints are to be met, this files does not need be 

modified. Instead, most of the design logic can acquire enough resources to communicate 

with the host from the “pcore.vhd” and should be placed in or under this module. Some 

of the default I/O ports in this file are predefined in association with its parent file, 
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pilchard.vhd, for access the host interface, however, some others are for testing purposes 

can be left unused. The Pilchard’s UCF is a hardware-dependent file that contains the 

information regarding pin locations and timing constraints of the Virtex-E chip. The 

Pilchard’s EDIF is the pre-synthesized file that provides the netlist for I/O blocks used in 

“pilchard.vhd”. 

 

The included software packages are used for the host-side interface, and it contains a set 

of C library code, the “iflib.h” and “iflib.c”, which are the library header file and the C 

source code, respectably.  This set of library files defines four essential application-

program-interface (API) functions that handle the data transfer between the host and the 

Pilchard board. The “write32” and “read32” are used for 32-bit data transfers, while the 

other two functions “write64” and “read64” are used for 64-bit data transfers. The 

Pilchard user reference recommends using the 64-bit interface, since the 32-bit interface 

is slow and inefficient [3]. Even when working with a 32-bit design application, the user 

may still use the 64-bit without decrease in speed performance. All of the files in the 

Pilchard design packages may be found in the Appendix. 

 

 

2.4 Pilchard Host Interface 

 

The data transfer is perhaps one of the most important parts of the Pilchard host interface. 

The “pcore.vhd” contains two 64-bit signals, “din” and “dout”, which are connected 
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directly to the system memory bus through the DIMM slot. Along with the memory bus 

signals, there is also an 8-bit memory address bus that allows Pilchard to address up to 28 

memory locations. This limitation is constrained by the hardware resources and the 

software drivers. To access more memory locations, other means have to be implemented 

such as using data bus to store address locations, using counter schemes, or split the 

address bits into two or more address bus locations.  

 

When the host issues a write request, the input data from “DIN” signal and the address 

bus “addr” are to be read simultaneously on the Pilchard side, to ensure the correct data is 

write to the corresponding location. Similarly, when the host releases a read command, 

both the read signal and address bus are triggered the same time. However, the memory 

address will only be ready at the data output port, “dout,” at the next clock cycle. Figure 

2-3 and 2-4 show the Pilchard write and read cycles.  

 

 

2.5 Chapter Summary 

 

The high performance reconfigurable computer platform used for this project is called 

Pilchard. The hardware issues and specifications for the Pilchard platform were discussed 

in this chapter. The next chapter looks into the applications that are going to be 

implemented on this system.  
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Figure 2-3: Pilchard Write Cycle [3] 

 

 

 

Figure 2-4: Pilchard Read Cycle [3] 
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Chapter 3.  Hyper-Spectral Imaging Application 

 

Chapter three provides a description to the original hyper-spectral software application, 

which was implemented using Matlab. Presented here are some of the key points within 

the software that will have an impact on the overall design flow. 

 

 

3.1 Introduction 

 

This research is based on an image processing application that use a hyper-spectral image 

taken from a chicken with numerous tumor spots. The original analysis code was written 

in Matlab by Dr. Seong G. Kong of the Department of Electrical and Computer 

Engineering at University of Tennessee Knoxville. It consisted of four main functions, 

discrete wavelet transform, normalization, signature plots and features extractions. The 

algorithm is scripted in the order specified above, together with few initialization or 

utility codes form the application. The application operates on a data image that has 65 

hyper-spectral bands, each with a resolution of 460 by 400 digital pixels, making a 32M-

byte data file. The source code itself is merely two-pages long and about 100 lines of 

code, however, due to the size of the image and the algorithms used, it takes Matlab an 

average of 3 to 4 minutes to perform these functions over one sample set of image data. 

These calculations were performed on a test bed using Pentium III, 1 GHz. processor 

with 512 Mb of RAM.  
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Consider remote sensing, a major technology field that uses hyper-spectral image 

processing, commonly produces images with up to 288 separate bands and covering 

regions from 0.4 to 2.5 micrometers [8]. This is about 300 times higher resolution than 

the chick data sample for each band and 1350 times larger in total resolution size. To put 

into perspective, assuming the Matlab calculation time operates linearly with input image 

size, then applications such as remote sensing would literally take Matlab 4725 minutes 

or more than 3 days to perform this application. Realistically, calculation times are not 

linearly proportionally to the input data size. The computation time actually increase 

more due to the reiteration of larger matrices or image resolutions. To overcome this 

deficiency, we will explore the idea of migrating the software bottleneck onto a hardware 

system using High Performance Reconfigurable Computers in this project. 

 

The remaining of the chapter provides a description of all the functions used in the 

application according to their execution order. While the purpose and the functionalities 

of each function are important to understand, but moreover, the algorithms are the key to 

this project’s success. The understanding of these algorithms will be used at later design 

stages. 
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3.2 Discrete Wavelet Transforms 

 

The first step in this set of application is applying a 2-dimensional Daubechies 4 (Daub4) 

discrete wavelet transform [28, 29, 30]. Wavelet transform is an important spectral 

analysis tool. It is used in various applications such as signal processing and image 

processing, communications, and more. The extent of this information can be found in 

references [28, 29, 30]. For this section, we will only explore enough for the readers to 

understand the Matlab functions, used in this particular program, of the discrete wavelet 

transformation. The information presented in this section serves the fundamental 

stepping-stones to the two major designs stages, converting from Matlab code to C++ and 

the VHDL coding of the discrete wavelet transform. Figure 3-1 shows the section of 

codes used in the original Matlab program. 

 

 

Figure 3-1: Matlab Coding of The Wavelet Transform 
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The discrete wavelet transform is defined by a square matrix of filter coefficient. Its fast 

linear operation operates on a data vector and transforming it into a numerically different 

vector whose length usually remains the same. When the wavelet transform is correctly 

constructed, the matrix is orthogonal, the transform and the inverse transform can be 

implemented [10]. In this project we will restrict ourselves to the Daubechies class 

wavelet filter due its mere presence in our application, denote by the “db4” in the dwt2 

function. See figure 3-1. This class of filter includes members ranging from highly 

localized to highly smooth. The simplest or the most localized member is called DAUB4, 

which contain only four coefficient, h0, h1, h2, h3. Similarly less localized Daubechies 

could have more coefficients, the number of coefficient will corresponding to its name. 

Hence, DAUB6 will have 6 coefficients.  

 

To understand the algorithm of the discrete wavelet transform, consider the 

transformation matrix, shown in figure 3-2, acting on a column vector of data to its right. 

Note the structure of this matrix. The first row generates one component of the data 

convolved with the filter coefficient h0, … h3, likewise the third, fifth, and other odd 

rows. If the even rows follow the same pattern, offset by one, then the matrix would be a 

circulant, that is, an ordinary convolution that could be done by FFT methods. Instead of 

convolving with h0, h1, h2, h3, the even rows perform a different convolution, with 

different coefficient g0, g1, g2, g3, which correspond to the values of h3, -h2, h1, -h0 

respectively. When compute the last set of data in a vector, the multipliers from the last  
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Figure 3-2: DAUB4 Transformation Matrix 

 

 

pair of the multiplications, denote as h2, h3, g2, and g3 in row seven and eight in figure 

3-2, wraps around to the beginning of the vectors. The overall action of the matrix is, 

thus, to perform two related convolution, then to decimate each of them by half and 

interleave the remaining halves. 

 

Sometimes, it is useful to think of the filter with f coefficients as a smoothing filter; it is 

like a moving average of four points. On the converse, the g coefficient filters is not a 

smoothing filter due to its minus signs. Together, both filters make up what image 

processing refers to as a quadrature mirror filter [28,29].  In fact, the coefficient in the g 

filter is chosen to make it yield a zero response to a sufficiently smooth data vector. This 

results in the output of h filter, decimated by half, accurately representing the data’s  
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Figure 3-3: Daub4 Wavelet Filter Coefficient 

 

 

“smooth” information. While the output of g filter is also decimated is referred to as the 

data’s “detail” information. The coefficient is listed in figure 3-3. 

 

The convolution with the h coefficient is sometime described as the low-pass filter effect 

and the convolution with the g coefficient is referred as the high-pass filter effect. Figure 

3-4 shows the overall effect of the discrete discrete wavelet transform on a 2-demsional 

image.  The LL represents a set of two low-pass filter used on the rows and the columns 

vectors of the data. This particular component is labeled as the variable “ca” in Matlab. 

See figure 3-1. The remaining functions presented in the Matlab program deals with only 

the result from the “ca” component of the discrete discrete wavelet transform. Thus, 

throughout the designing stages of the this project, only this component of the discrete 

discrete wavelet transform will be proposed, calculated, and compared.   
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Figure 3-4: Wavelet Transform Filter Effect 

 

 

3.3 Normalization  

 

After the discrete wavelet transformation, normalization must be performed in order to 

show a spectral image of the data. Normalization is an easy concept to grasp. It is used to 

attain a normalization of the grey level by stretching the data to full dynamic range. This 

is achieved by dividing each pixel by the overall maximum value. The algorithm itself is 

fairly easy, however, most of computation time are consumed for finding the maximum 

value of each band then applied it to each pixel. 
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3.4 Hyper-spectral Plots 

 

Hyper-spectral plots graph the data sets of normal tissues, tumor tissues, and background 

for each of the 65 spectral bands. The coordinates of each respective series are manually 

picked by examining the normalized spectral image. The algorithm is simply the intensity 

value at the given coordinates range divided by the maximum pixel value among the 65 

bands.  

 

 

3.5 Feature Extractions 

 

The feature extraction process is the final operation in the image processing application.  

Generally, the feature extraction takes an image that has been processed and converts the 

areas of interest into well-defined regions that can be used for further investigation. Once 

areas of interest have been identified in the image, then convert the image into a bit map 

with areas of interest valued at one and remainder of the image set to zero.  

 

This type of image can be processed in a variety of ways. Among the popular techniques 

use for this application are the area labeling, threshold comparison, and a more complex 

technique, Hough transform, just to name a few. Area labeling splits a segmented image 

into distinctly labeled areas. The image is scanned row-by-row and column-by-column to 

 22



find the first filled pixel and then the output image is labeled as far to the right and left of 

that pixel as possible while the input image is zeroed. Then the labeled area is scanned 

from left to right checking for connected pixels above and below the line. When a 

connected pixel is found the procedure is repeated recursively starting from the connected 

pixel. This recursive procedure is continued until the whole area has been labeled and 

there are no more connected pixels. Then scanning recommences to find the next area in 

the input image to be labeled.  

 

The Hough transform uses a technique to detect the basic shapes within the image. For 

example, at its simplest the Hough transform can be used to detect straight lines.  If the 

pixels detected fall on a straight lines then they can be expressed by the equation 

y=mx+c. The basis of the Hough transform is to translate the points in (x,y) space into 

(mc,) space using the equation c=(-x)m+y. Thus each point in (x,y) space represents a 

line in (m,c) space. Where three or more of these lines intersect a value can be found for 

the gradient and intercept of the line that connects the (x,y) space points. The Hough 

transform can be expanded to consider circles by transforming the (x,y) space into a 

circle centre space, and even to arbitrary object providing that their shape and orientation 

are known before hand.  

 

The particular method used by Dr. Kong is the second method mentioned above, the 

threshold comparison. While this method being one of the simpler methods in feature 

extraction, simpler than the two method mentioned above, however, it only works with 
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image that has small range of intensive levels. The chicken tumor application only 

associates with three areas of intensity, which are the normal chicken tissue pixels, the 

tumor chicken tissue pixels, and the background image pixels. Each of the feature 

intensity level is assigned by a value calculated through the means and the Gaussian 

membership functions of their respected pixels. Then, the data is scanned pixel by pixel 

and comparing the data pixel against the three feature pixel values. The tumor spot pixels 

are valued at one if the pixels intensity is less than the normal tissue intensity and greater 

than the background intensive value. All other data values are assigned zero. 

 

 

3.6 Chapter Summary 

 

This chapter studied the original Matlab hyper-spectral imaging application, which 

contains four sub-sections, discrete wavelet transform, normalization, hyper-spectral 

plots and feature extractions. The algorithms for each sub-section are discussed. Next 

chapter will start by examining the profiles of each sub-section, thus determining the 

bottlenecks that will be implemented on the Pilchard platform. 
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Chapter 4.     Design and Implementation 

 

Chapter four discusses the design methodology and the design cycle that makes up this 

project. It is sectioned based on the design steps, from an overview to each of the design 

processes. 

 

 

4.1 Overall Design Flow 

 

The design stage of this project begins with examining the Matlab profile. Matlab is well 

established as an effective tool for performing numerical experiments and graphic 

simulations. Its simple, high-level programming language allows rapid development of 

new projects and facilitates debugging. However, a high-level interpreted language such 

as Matlab cannot compete in speed and memory efficiency with traditional compiled 

language such as FORTRAN and C/C++. Thus a good speed up can be gained from 

simply transforming the Matlab code to a simpler programming language, which leads to 

the next design stage. In the second stage, the original Matlab code is re-written to C++ 

from top to bottom.  By analyzing the profile of the program in this new platform, the 

bottlenecks are pinpointed to a few operations. These bottlenecks are then re-designed, to 

match the benchmarks from the original Matlab output, with VHDL onto the FPGA using 

the Pilchard platform. The results from each of the programs are then compared and 

evaluated. This completes the design stages set for a single PC. When this is completed, 
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the project further explores the potential performance boost from a parallel computing 

environment by utilizing all of the available Pilchard machines at the Department of 

Electrical and Computer Engineer at University of Tennessee. Figure 4-1 shows a flow 

chart of the overall design flow for a single Pilchard platform.  

 

 

4.2 Matlab Profile 

 

In order to obtain the best trade off between computation time versus hardware cost and 

design time, it is important to find the section/sections of the analysis that consume the 

most time, then transferring those sections onto the new platform.  The analysis for the 

Matlab code is done by the built-in profile.  

 

The program consists of seven sections, which are listed in table 4-1. The Matlab run-

time is computed and shows the time used per its functions. The run time in each section 

is the sum of the total time taken for all functions under its corresponding section. It is 

worthy noting that even though a section consist a function with the longest run time, it is 

not necessarily the longest run-time section. Sections are divided in such a way that it 

contains a main function along with its corresponding function setups and/or declaration 

of variables. For example, dwt2 is one of the two functions used as part of the 2D discrete 

wavelet transform. It consumed the most run time as a single function calls, but  
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Figure 4-1: Overall Design Flow 
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Table 4-1: Matlab Profile 
 

Matlab Profile 

 Seconds % of Total Time 

Total Run Time 201.15 - 

Setup Time ( read data, declare variable, etc.) 25.73 12.79% 

2D Wavelet Transform 35.85 17.82% 

Normalization 5.925 2.946% 

Hyper-spectral Signatures Plots n/a n/a 

Feature/Tumor Extraction 124.78 62.03% 

Output 3D Image Result n/a n/a 
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the 2D discrete wavelet transform only ranked second as calculated by the sections. 

Table 4-1 reveals the result of the Matlab Profile. It is easily observed that a 

combined 92% of run time is spent on setup, 2D discrete wavelet transform, and 

feature tumor extractions. While the set up time ranks third, however, it is not 

categorized as a major application. It is merely a programming oriented protocol; the 

setup time will vary depending on the program software used. However, due to the 

size of the testing image, it is expected that little speed-up can be gained from this 

procedure. The focus lays on the remaining two functions, which are the 2-

deminsional discrete wavelet transform and the feature/tumor extractions. These 

functions will be implemented. 

 

 

4.3 C++ Designs 

 

To reduce the overhead exhibited on Matlab, C++ was chosen to be the candidate of 

the lightweight platform for two reasons. First, an image-processing library is 

available from previous course work [31]. It contains a versatile image class that 

offers easy manipulation of rows and columns of the data. Second, C++ is the most 

familiar programming platform to the author, in comparison with other alternatives 

like, C, FORTAN, etc. 
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4.3.1 C++ Designs and Implementations 

 

Much of the C++ coding follows the algorithm and process presented in the Matlab 

code with the exception of the few complicated Matlab functions. This included the 

input function and the display function of the image data and the discrete wavelet 

transform function. Since the source code of any Matlab function is undisclosed, the 

analogous implementation in each of these Matlab functions are only technically 

sound in their functionalities, the actual results may not be exact. Also, there are 

other factors that are   unknown from the Matlab algorithms, such as round offs and 

precision bits, which could result in a minor discrepancy between the conversions. 

However, research was done to understand these functions, in order to keep the 

disparities at a minimum.  

 

 

One of the biggest challenges and the one that was expected to show most of the 

disparities between the Matlab and the C++ program are the discrete wavelet 

transform functions. First, this is a three-dimensional image. Typical discrete wavelet 

transform algorithms use one-dimensional vectors. The three-dimensional hyper-

spectral discrete wavelet transform algorithm behaves similarly as the one-

dimensional transform. The algorithm for the two-dimensional discrete wavelet 

transform is to apply a transformation on the rows of the image and downsize the 

result by half, then once more over the column values, for each of the two-

 30



dimensional spectral bands. The setback with using the one-dimensional algorithm 

on a two-dimensional data set is that adjustments have to be made to correct the 

dimensional vectors to the proper size, so that the transformed one-dimensional 

vector matches their correct representation of rows and columns. Also, the 

algorithms used in C++ are a simplified version of the discrete wavelet transform; 

recall from chapter three the original function in Matlab only deals with the 

computation regarding the low-pass component of the transform. Many 

dissimilarities are expected between this and the Matlab algorithm. While Matlab 

uses an industrial-standard image processing system from specialized toolboxes to 

perform the transformations, the algorithm used in C++ is a rather simple 

straightforward. 

 

 Also worth mentioning is that in order to properly display the spectral images, the 

C++ outputs the image file into binary data files, then they are opened and displayed 

using the same Matlab function as in the original Matlab program.    

 

 

4.3.2 C++ Profile 

 

The C++ run time is computed by using the clock ( ) function, which is manually 

inserted at each appropriate corresponding section. Table 4-2 shows the result of the 
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Table 4-2: C++ Profile 

 

  Matlab C++  

  Seconds % of Total Time Seconds % of Total Time 

Total Run Time 201.15 - 11.67 - 

Setup Time ( read data, declare variable, etc.) 25.73 12.79% 0.6 5.14% 

2D Wavelet Transform 35.85 17.82% 3.44 29.48% 

Normalization 5.925 2.946% 4.09 35.05% 

Hyper-spectral Signatures Plots  n/a n/a 0.01 0.09% 

Feature/Tumor Extraction 124.78 62.03% 0.13 1.11% 

Output 3D Image Result n/a n/a 3.4 29.13% 
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C++ profile using a Pentium III, 1Ghz PC with 512 Mb of RAM, the same test bed that 

was used for the Matlab profile. 

 By comparing the results from the table below, the overall run time is reduced from 

201.15 seconds to 11.67 second. The setup utilities, discrete wavelet transforms, and 

feature extraction functions were the three functions with the highest reduction. These 

sets of functions perform extensive matrix computations and iteration of loops. The 

matrix overhead that exists in Matlab is responsible for most of the performance 

hindrance observed here.  

Within the C++ profile, three major time-consumers are the discrete wavelet transform, 

normalization, and the output of the 3D image result. Due to the size of the image data, 

the long output functions run time is unavoidable.  Perhaps the greatest performance 

improvements are to be made from the remaining two functions. The designs and the 

implementation of these functions are covered more in detail in the next chapter. 

 

 

4.4 VHDL and Hardware Designs 

 

As suggested from the previous section, the hardware design is to better implement the 

two bottlenecks in C++, which are discrete wavelet transform and normalization. A 

successful implementation would show a good performance improvement. Although 
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discrete wavelet transform has been widely researched and many IP cores exist, due to 

resource limitation on the Pilchard platform and the sizeable content of the input images, 

the implementation of the IPs for an entire wavelet transform is not feasible for this 

project. Thus, the digital design of the discrete wavelet transform applications has to be 

manually designed and implemented. However, the use of IPs for smaller scope of the 

digit design was explored.  

 

In order to best balance the trade off between design time and performance, with 

consideration of the limited RAM resources on the Pilchard system, only the two 

bottlenecks, wavelet transform and normalization are addressed in the hardware design. 

 

The lowpass-lowpass (LL) portion of the wavelet transformation is implemented on the 

Pilchard. Recall from chapter three, the LL portion of the wavelet transformation 

performs two tasks. First, it performs an operation of the sum of four products. Second, 

as it continues the numerical operation through its data image, it decimates the number of 

the output by half. With the current design, the function of the sum of the four products is 

implemented on the FPGA board. The second task is controlled by the data feed from the 

host side. As data are feed in using the streaming technique, only a portion of the data 

vectors is processed at a time. The process iterates until all of the vectors have been 

computed. The detail of this technique will be discussed later. During the process of the 

discrete wavelet transform, the maximum pixel value of each band is also collected and 

written to registers. These values will be used to improve the normalization performance 
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by eliminating the unnecessary software iteration for calculating the maximum value of 

the normalization process. 

 

The digital design is written with 32-bit fixed-point arithmetic, where the rightmost 10 

bits represents fraction. This decision is based on the I/O bus of the Pilchard system and 

the data values found in the application arithmetic process by running the C++ version of 

the program. 32-bits covers almost all of the data values’ range while providing a 

hundredth decimal fraction precision. The I/O port uses a 64-bit width bus, so it also fits 

two 32-bit data perfectly. However, smaller bit widths were also considered. Even with a 

16-bit width, it only covers about 75 percent of the data values within the original 

software computation.  

 

The blockRAM used in this project has a data bus width of 64-bit and depth of 256. The 

working address bus is 8-bit and takes 2 clock cycles to execute each read and write 

command. See figure 2-3 and 2-4. This in turn became the hardware limitation of the 

design. Consider there are 65 bands in the data, each with a resolution of 460*400, 

yielding 11,960,000 pixels. The first discrete wavelet transform operates on the data in 

groups of 4 pixels, which will yield 2,990,000 operations, and after being downsizing by 

2 that leaves 5,980,000 pixels for the next set of transforms. Recall that in the 2-

dimensional discrete wavelet transform, the operation is performed on both the rows and 

the columns of the data. All together, the digital design needs to take in 17,940,000 pixel 

values and performs 4,480,000 operations for each set of image data. Clearly, not all the 
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data samples can be inputted onto the Pilchard at same time to perform even one 

complete discrete wavelet transform. Since 32-bit pixel values are used, it takes four 

clock cycles for read and four clock cycles for write for each discrete wavelet transform 

operations, plus a number of clock cycles to perform the operation. Since the read/write 

ports limit the throughput of the data flow, a pipeline has been designed to operate the 

read/write port at maximum frequency in order to optimize the overall performance.  

 

 

4.4.1 Pilchard Design Flow 

 

To create a functional system efficiently, several design cycles are required. The 

hardware design flow diagram shown in figure 4-2 illustrates all the steps in this project. 

These steps are iteratively implemented and verified until a stable functioning system is 

produced to the user specifications.  

 

There are two design verification steps in this design cycle. The first verification is the 

functional simulation of the design logic, which is done before synthesizing the design. 

The second verification is in-circuit verification and is performed by downloading the bit-

stream onto the Pilchard board and using interface software to verify the system behavior. 

The traditional post-layout simulation for the Pilchard entity was not used because it 

would require taking the back-annotation of a fully routed design and applying timing 

information to perform a functional simulation, however, the behaviors of many signals  

 36



 

 

Design Synthesis 

Design Entry 
VHDL Files 

Start 

Design Verification 
Pre-Synthesis Simulation 

Design Implementation

Download Bit-Stream
To Pilchard 

Design Verification 
In-Circuit Verification 

Finish 

Figure 4-2: Digital Design Flow 

 

 37



 

in the top entity was unknown. Thus, the in-circuit verification became the only 

verification after the synthesis process.  

 

 

4.4.2 Design Entry 

 

VHDL was used in this project to develop a partial discrete wavelet transform function 

and a partial normalization process. This section discusses two main topics, the system 

components and structure, and functional behaviors of each implemented function. While 

the first sub-section focuses on the high-level hierarchy, the latter one is a more in-depth 

description of each function. 

 

 

4.4.2.1 System Components and Structure 

 

Because the Pilchard platform is used, the top-level hierarchy begins with the VHDL file 

“pilchard.vhd” that cames with the platform, which was developed by the Chinese 

University of Hong Kong. Within it is the VHDL file, “pcore.vhd,” which is used as 

wrapper file that allows the user to design, and an IP core to interface with the Pilchard 

board. The “parith.vhd” is the top level of the user design files, which consists of two 

other behavior components, the “max.vhd” and the “fxmult.vhd.”  It is inside the 
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“pcore.vhd” along with the source file, “dpram256_64.vhd,” of dual port Block RAM 

generated from the Xilinx Core Generator. In this project, port A from the dual port 

BlockRAM is used to interface with the “pcore.vhd” and port B is used to interface with 

the “parith.vhd.”  

 

The abstract view of the architecture is shown in figure 4-3. The true representation of the 

block diagram, “pcore.vhd,” is shown in figure 4-4. It is generated by importing the 

actual VHDL codes using the FPGA Advance Pro from Mentor Tools. Figure 4-5 is a 

similar type of block diagram of the “parith.vhd.”  

 

 

4.4.2.2 Functional Behaviors 

 

The function behaviors of each design modules are described in the order of which they 

appear in the hierarchy, starting from the highest level that first contains the user design 

files.  

 

In “pcore.vhd,” it performs several important task that overseer the overall operation of 

the digital designs. One important task is to start and reset the “parith.vhd” module. At 

the raising edge of the clock, the “pcore.vhd” set the start signal for “parith.vhd” to one 

when the “write” signal is high and the data reads a value of four. This signal triggers the 

start process of the design. The reset signal is also triggered by the write signal and the 
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Figure 4-4: Generated Block Diagram of The "pcore.vhd" 
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Figure 4-5: Generated Block Diagram of The "parith.vhd" 
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 first set of instruction must start at the 12th clock cycle due to the 

availability of the read/write head. With this model, a complete iteration of operating 4 
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seventh state. During the eighth state, the results from the second discrete wavelet  

transform is ready, and together with the result from the first set of computation, the two 

32-bit answer are write out together. Also in this state, the maximum function starts to 

compare the values among the first, the second answers of the transform modules and the 

current maximum value. The new maximum is the write to the memory location six, 

during the ninth and final state. Figure 4-6 shows first cycle of the pipeline. The red lines 

denote the undefined signals. In a way, it helps to provide a more noticeable illustration 

of how each signal is progressed at each state denote by “s_0” “s_1” “s_2”… When the 

maximum value is ready to be written into the blockRAM via “din”, it is concatenated 

with a signal “count.”  

 

The remaining two components, “fxmult.vhd” and “max.vhd,” both are the lowest level 

modules. The “fxmult.vhd” computes the low-pass filter component of the discrete 

wavelet transforms on the four input values. The functionality of the fxmult.vhd is 

actually performing a sum of four products. This function was implemented and verified 

using the sum of product design ware from Synopsis and a self implemented function. 

The implemented function, in the end, yield a better timing constraint after the place and 

route process, so it was used.  

 

While the coding for the implemented function may appears to be simple, it actually 

represent a sound solution to what otherwise might have been a complex algorithm.  

Recall the algorithm for discrete wavelet transform, each of the data is multiplied by a 
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fraction coefficient then accumulated together to produce the answer. The obvious 

solution is to multiple the coefficients, however, binary representation of decimal number 

and arithmetic with another decimal number of different precisions can lead to loss of 

precision when using VHDL fixed points. Instead multiplying the fractional coefficient, 

h1, h2, h3, and h4, these constants are shift to the left and treated as integers. When the 

sum of products computation finishes, the result is then adjusted by shifting the decimal 

place to the right.   

 

The detail of this implemented can be explained through figure 4-7. In the system’s 

fixed-point representation, 10 bits of the binary value of the data is s or the decimal 

precisions where as 13 bits of the coefficient is used for the fraction value. The result of 

the arithmetic is a 45 bit binary number with 23-bit in decimals and offset by 13 bit 

precision places. In order to balance the offset, the result is then shifted

the right and discarded.  The module uses signed arithmetic where the first bit represents 

the sign bit. If it is negative, the algorithm uses the 2’s compliment to convert the format. 

This functionality is included in the standard library of ieee.std_logic_signed.all. 

 

 

 

 

Figure 4-7: Fixed Point Arithmetic in Parith.vhd 
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The “max.vhd” also uses one process statement and a set of if else nested function to 

compare the max value for two input signals.  The arithmetic in this module is also 

signed and using two’s compliment. Observe from figure 4-6, the four signals within the 

last set of dividers represents the maximum comparison. Notice when FFFE75D8 is 

compared with 504F0000, the max value yields 504F0000, because FFFE75D8 is a 

negative number. 

 

 

4.4.3 Hardware Simulation 

 

Similar to the compile process, the pre-synthesis simulation is also performed using the 

Mentor Graphics Modelsim SE VHDL5.6a; and all of the VHDL files are compiled in a 

hierarchical order. This is the first of the two design verifications in the digital design 

process. In this stage, the simulation of the design is being tested to verify that the logic 

in the functions behave correctly. Since it is a pre-synthesis simulation, the timing 

information is unavailable and is not needed at this time. In order to simulate the design, 

a test bench is applied to obtain the simulation waveform for signals in the design. Since 

th , the 

XilinxCor  is required to run the simula  The sim tio either 

the GUI interface or the by running a scrip ile. Two additional files that were used in 

this simulation are the wave.do and stim ignals, formats, 

e blockRAM is an IP core that was generated using X

ula

ilinx Core Generator

eLib tion. n can be done using 

t f

.do files. These file contain the s
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and run-time information need for the simulation. A copy of such script is shown in 

figure 4-8. 

 

 

The top-level of the hierarchy for this testbench is shown in figure 4-9. The testbench is 

only used for the simulator and is not to be synthesized. The testbench in this project has 

 loop that contains three sets of testing data to emulate the behavior of the software 

terface. The data is often modified to check the functional behavior of the fixed-point 

arithmetic. The simulation results are found in the previous chapter. By inspecting these 

waveforms, the functions are verified to be correctly simulated. 

 

 

a

in

4.4.4 Design Synthesis 

 

The Synopsys’ FPGA Compiler II was used to synthesis the design work. Since the 

Pilchard uses the Xilinx VirtexE chip, XCV1000E-HQ240, several options needed to be 

selected in order to assurance functional operation. When creating the new project under 

the synthesis tool, no VHDL or EDIF files are used for the IP cores. Those are generated 

using the Xilinx Core Generation from the Pilchard package itself. 
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/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1_comp.vhd 

/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1.vhd 

vhd 

vcom -work work fxmult.vhd 
com -work work max.vhd 
com -work work dpram256_64.vhd  # RAM module 
vcom -work work parith.vhd       # Parithmetic Module 

 # Top Module 
  # Test Bench 

 
 Simulating using ModelSim 

 

 

L files 

 
s
mentor_tools 
 

has been generated using Xilinx's Coregen 
 
vcom -work XilinxCoreLib 
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/ul_utils.vhd 

/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/mem_init_file_pack_v3_1.vhd 
vcom -work XilinxCoreLib 
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_pkg_v3_1.vhd 
vcom -work XilinxCoreLib 

vcom -work XilinxCoreLib 

vcom -work XilinxCoreLib 
/sw/Xilinx4.1i/vhdl/src/XilinxCoreLib/blkmemdp_v3_1.
 
 

v
v

vcom -work work pcore.vhd 
vcom -work work tb.vhd 

#
 

vsim  -coverage tb  -do  wave.do stim.do  

# vsim - Command to open Modelsim  
# wave.do - File that opens Parith and Pcore signals in Modelsim 
# stim.do - File to run the Simulation 
 

 

Figure 4-8: Scripts for Compile and Simulate VHD
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Testbench VHDL tb.vhd 

Testbench Interface 

VHDL File-Pcore.vhd

  

Figure 4-9: Testbench Hierarchy 

 that should be selected when creating the 

hen 

creating the implementation for the Pilchard design, the existing I/O pads should be used 

instead of the default option, which automatically insert necessary I/O pads. Instead using 

the GUI, scripts can also be used for

page in figure 4-11. 

 

 

 

 

 

Figure 4-10 illustrates the correct options

implementation of the chip from the GUI version of the FPGA compiler. Also, w

 synthesis. A copy of such script is shown on next 
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Figure 4-10: Create Implementation Options Using Synopsys FGPA Compiler 
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s
s
et proj syn 
et top pilchard 

et chip pilchard 
set export_dir export_dir 
set device V1000EHQ240 
set speed -6 
 
exec rm -rf $proj 
create_project -dir . $proj 
 
open_project $proj 
 
proj_export_timing_constraint = "yes" 
 
default_clock_frequency = 100 
 
add_file -library WORK -format VHDL pcore.vhd 
add_file -library WORK -format VHDL pilchard.vhd 
add_file -library WORK -format VHDL parith.vhd 
add_file -library WORK -format EDIF dpram256_64.edn 
add_file -library WORK -format VHDL fxmult.vhd 
add_file -library WORK -format VHDL max.vhd 
 
analyze_file -progress 
 
create_chip -target $target -device $device -speed $speed -frequency 
100 -module -name $chip $top 
 
current_chip $chip 
 
set opt_chip [format "%s-Optimized" $chip] 
optimize_chip -name $opt_chip 
 
list_message 
 
report_timing 
 
xec rm -rf $export_dir 
xec mkdir -p $export_dir 
export_chip -progress -dir $export_dir -no_timing_constraint 
 
clo
 
uit 

Figure 4-11: Synthesis Script 

set target VIRTEXE 
s

e
e

se_project 

q
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#!/bin/csh -f 

source /sw/Xilinx4.2i/setti
-6  

ngs.csh 
$1.edf 

$1_r.ncd 

hd 

4.5 Place Route and Bit Streams 

sign Manager. Several files are 

, the “iob_fdc.edif”, which is the net-list file for the 

 in “Pilchard.vhd”; the net-list file for the dual port BlockRAM; and 

constraint files that contains the information regarding the 

g in figure 4-

d for place and route. 

 

ngdbuild -p V1000EHQ240
map $1.ngd 
r $1.ncd -w pa

trce -s 6 $1_r.ncd 
ngdanno $1.ncd 
d2vhdl -w $1.nga time_sim.vng

 

 

Figure 4-12: Place and Route Script 

 

 

4.

 

The place and route process is managed using Xilinx De

needed for the place and route process

I/O blocks used

finally but not least, the user 

physical pin connections and the timing specification are required. The listin

12 is the script use
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4.4.6 In-Circuit Design Verification 

he Pilchard board, a C program is used to 

gram feeds in the data for the discrete 

tores the result in a data file. The library file “iflib.c” has a set of 

he software to the FPGA. This library file was 

ompiled together with the C design files.  

 

To interface with the Pilchard board, a memory map to the hardware was created at the 

beginning. The data that feed to the Pilchard board is located in 65 different data files; 

each contains its respective band image.  The C software opens one file at a time, writes 

ocation 0, 1, 2, and 3, follows by a write command 

t address 4, which triggers the start signal for the digital logics. The two results from the 

nother 16-bit version of the system was also created for result comparison purposes. It 

ses three address locations for the entire computation cycle. It writes four data values in 

 

After the bit-stream is downloaded onto t

perform the in circuit verification. The C pro

wavelet transform and s

APIs to handle the data transfer from t

c

eight 32-bit data values to the address l

a

wavelet transform are written to location 7 and the counter and maximum values are 

written to location 6. Normally, a “hand-shake” method is needed to verify when the 

correct values are received, however, with the streaming technique implemented with this 

project, the digital system actually computes faster than read64 function in the iflib.c 

library files. So when the start signal is issued in the host program, the next instruction 

reads the answer back. 

 

A

u
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each of the first two address locations. The two wavelet-transform results, along with the 

ounter and the maximum value are written back in one address location. The differences 

Summary 

 

This chapter focuses on the design methodology that was used in this thesis. From this 

chapter, the design processes are revealed and each is discussed in detail. Next chapter 

looks at how the results are compared based on these design works.  

 

 

c

with 32-bit version is that it uses six address locations, four for two sets of data inputs, 

one for the two results, and another one for the maximum and counter. The address 

location used is proportional with the bit width used in these two cases. 

 

 

4.5 Chapter 
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Chapter 5.  Result and Discussion 

 

This chapter is divided into three sections. In the first section, the results from this work 

is studied and compared. The second section investigates the difficulties during the 

process. The conclusion and future thought are suggested in the last pages.  

oses. In this section, 

e comparison between the two versions will be examined, in the areas of resource 

onsumptions and performance.   

 

 

5.1.1 Resource Comparison 

 

The resource data are acquired after the Xilinx’s place and route process and are 

tabulated into table 5-1. The number of the used slices denotes the logic resource 

consumption. This is almost a direct portion to the number of bit that is used. As the bit  

 

 

5.1 Results Comparisons 

 

The configuration file for the Pilchard’s on-board Xillinx E chip had been successfully 

implemented. The original design system of the 32-bit worked correctly and met the 

design goals. A 16-bit system was also implemented for testing purp

th

c
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Table 5-1: Resources Used During Place and Route 

 

Number Used Percent Usage 
Resource 

 32-bit 
Total Amount 

16-bit 32-bit 16-bit

Slices 677 1280 12288 5.5% 10.4% 

Input LUTs 1026 2015 24576 4.2% 8.2% 

Bonded IOBs 104 104 158 65% 65% 

Block RAMS 4 4 96 4% 4% 

GCLKs 2 2 4 50% 50% 
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width doubles from 16 to 32, the number of slices increased by almost two-fold. This 

ccurrence is expected since each added bit width corresponding to adding a logic block 

f the same operation. The design logics that are independent to the bit width of the input 

ata, such as the state signals or flags, stay the same for both design editions and it is the 

main reason why argument is also 

true for the like up tables or LUTs. The BlockRAM usage represents the resource 

memory used for the data process. Since the design system uses a streaming technique, 

only a data are loaded at a time. The increase of 

the bit width on two sets of data values does not make any significant impact on the 

BlockRAM. The remainin he res , such a ed IOBs Ks, an  

the others that are omitted from the list, such as DLLs or Startups, are hardware 

dependent to the Pilchard hierarch logic module. Since the user-design modules operate 

below this level, all of the resources in e

design implementations.   

 

 

5.1.2 Performance Comparison 

 generally, when evaluating digital system performance, two aspects of the system are 

spected upon, the system throughput and the system latency. However, in both versions 

of the hardware design, the throughput of both systems is processing the same two sets of 

data at a time. Although the bit-width varies, the number of sampled data still remains the 

o

o

d

 the number of slices is not completely doubled. This 

 minimum number of test  to the system 

g of t ources s Bond , GCL d among

this category should remain the sam  for all 

 

In

in
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same.  Thus, the performance evaluation in this project will be based on the latency 

aspect of the systems only. Starting this section, the performance of the hardware system 

is revealed, then an overall comparison between the software and hardware 

implementation will be discussed, and followed by the assessments between the two 

implementations  

 

From the Place and Route process, the maximum frequency was determined to be 21.62 

Mhz and 14.314 Mhz for 16-bit version and the 32-bit version respectably. To ensure the 

Pilchard system works correctly, the clock divide is set to label five and eight while the 

actual clock runs at 100Mhz. This yields 12.5Mhz for the 32-bit version and 20Mhz for 

the 16-bit version.  

 

The Pilchard runtime is calculated based on the average of ten runs of 4,485,000 

iterations that are needed to cover the entire 65 bands of the hyper-spectral imaging data. 

he average run-time with loading the data is about 4.09 seconds for the 16-bit version 

nd 6.54 seconds for 32-bit version; and 2.14 second for the 16-bit version and 2.15 for 

the 32-bit version for without counting the load time for writing in the data to Pilchard. 

The run time for both of the versions without load time is very adjacent to each other. 

This was expected result from using the streaming method. The calculations on-board the 

Pilchard system is actually performing faster than the time it take the host program to 

write the starting signal and reading the answers. In comparison with the load, the 32-bit 

version runs slower than the 16-bit version, because there is more read/write instruction 

T

a
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set on the host side. The run-time comparisons between the 16-bit and 32-bit version is 

shown in table 5-2 and figure 5-1. One thing worth of mentioning is the precision of how 

the run-time is calculated. The calculation is preformed on the host side using the 

gettimeofday function in the standard C library, sys/time.h. This function, however, only 

ceiling to nearest microseconds. So when timing one instruction set such as write64, the 

ifference of the gettimeofday functions before and after the write64 function is 1 

ad times are included in the performance evaluation. From the data, 

is figure shows that the threshold for the precision of the gettimeofday function can be 

d

microsecond. With the same method, two consecutive write64 functions are also found to 

be 1 microsecond. Clearly, there is a threshold point that shows when the gettimeofday 

function can correctly shows the run-time calculation. Figure 5-2 investigates this 

scenario. It shows the Run-Time per iterations for both the 16-bit version and the 32-bit 

version when the lo

th

reached around 1000 iterations. 

 

Table 5-3 shows the overall comparison among the three implementations. The 

normalization process is broken down to two steps in order to better illustrate the correct 

comparison; since only the first step of the normalization was implemented on the 

Pilchard system. Without counting the load time, the overall speedup achieved by using 

the Pilchard design is about a factor of 2.56 and 2.55 for the 16-bit and 32-bit respectable. 

When taking into the consideration of load in the data onto the Pilchard, the speedup for 

the 16-bit is by a factor of 1.34. The 32-bit version is actually slower than the C++ 

version by 0.84 seconds.  
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Table 5-2: Run-Time Comparison Between 16-bit and 32-bit Version 

 

 

 16-bit (seconds) 32-bit (seconds) 

 

Trials w/o load w/ load w/o load w/ load 

1 2.13 4.1 2.16 6.51 

2 2.15 4.04 2.14 6.55 

3 2.14 4.1 2.16 6.57 

4 2.12 4.11 2.12 6.53 

5 2.14 4.09 2.16 6.5 

6 2.15 4.11 2.13 6.58 

7 2.12 4.07 2.16 6.51 

8 2.14 4.1 2.14 6.49 

9 2.16 4.1 2.13 6.59 

10 2.17 4.08 2.15 6.53 

average 2.142 4.09 2.145 6.536 
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Figure 5-1: Run ime C ariso tween 16-bit and 32-bit Version 
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Figure 5-2: Run-Time Threshold (w/ load) 
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Table 5-3: Overall Run-Time Comparison 

 

Pilchard w/ read write 
( without load / with load )  Matlab* 

( Second ) 
C++ 

( Second ) 
 16-bit 32-bit

2D Wavelet 
Transform 

35.85 3.44 

Normalization 
step1 : find max 

2.44 2.04 

2.14 / 4.09 2.15 / 6.54 

Normalization 
step2 : divide 

by max 

3.485 2.05 - - 
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5.1.3 Parallel Computing Results 

 

After the digital design is successfully tested using a single pilchard system, the parallel 

ed. The program responsible for distributing 

and controlling the cl Grid, there are three 

pes of workstations: server, workers, and clients. The server hosts the Java application 

and distributes the tasks sent in by the client to any number of workers.  

 

In this work, the chicken tumor problem is tested with BioGrid using one, three, and five 

Pilchard systems. We us eads. The Pilchard.bit files are 

preloaded onto each of the reconfigurable units before running BioGrid, thus the run-time 

results from this test exclude the load time. When running the parallel test using three 

rkloads on the three systems are different. Since 65 bands cannot 

equally divide into three equal sections, the first two Pilchard machines, each process 22 

bands of total bands and third machine pr s the remaining 21 bands. The result was 

1.84 seconds, a speedup of 1.17 comparing to the result of a single Pilchard platform, 

which is 2.15 seconds. When the load is equally divided among five Pilchard machines, 

the result was 1.37 seconds, a speedup of 1.58.  

 

At first glance, these results may not be the expected performance from a high 

performance parallel architecture. The reason is the extra overheads exerted by the 

BioGrid. When we run 13 bands through a single system, the runtime is 0.43 seconds, 

aspect of the HPRC architecture was explor

ients and tasks is called BioGrid [33].  In Bio

ty

ed the one case to measure overh

Pilchards, the wo

ocesse
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however, when BioGrid is used, the run-time is 1.01 second. It required an additional 

0.58 seconds. Because of this overhead, a similar difference of 0.57 seconds is induced 

with 22 bands. If this overhead is zero, the speedup would be 3.69 ( 1.01 * 5 / 1.37 ) 

when using five parallel systems. Similarly, the speedup without this overhead would be 

2.28 for using three machines. These results are listed in tables 5-4 and 5-5. For larger 

problem sizes, we anticipate that the overheads would have less impact on speedup. 

 

 

 

 

Pilchard with BioBrid 

65 2.15 2.92

13 0.43 1.01

Table 5-4: BioGrid Results with Single Pilchard Machine 

Runtime Using Pilchard 
(sec)

Runtime Using 

(sec)

22 0.72 1.4

  

 

Bands
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Table 5-5: BioGrid Results with Multiple Pilchard Machines 

 

 

1 2 3
Runtime with Numbers of Pilchard Machines (sec)Bands

 

 

5.2 Difficulties Encountered 

 

The development of this project is not without any difficulties. Problems, challenges and 

pre-mature considerations were struggled at numerous prospects of the design process, 

including hardware limitation, programming techniques and styles, and overall design 

perceptions. This section addresses each of these problems and followed by the methods 

that were used to overcome them. These are the valuable lessons learned and the 

f these points will bring more success and faster prototyping in the future 

implementations of familiar kinds. 

 

65 2.92 - -

22 1.40 1.84 -

13 1.01 - 1.37

awareness o
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A major pro constraints.  

 number of times, the digital systems functioned correctly under the simulation; but 

fter the place and route process, it generated a clock cycle twice or three times slower 

than the minimal clock cycles required. An important lesson learned here is to used a 

good programming style and maximize the usages of concurrent processes and pipelines. 

The following guidelines, “HDL Coding Guidelines,” by Damjan Lampret and Jamil 

Khatib, were used in this project at appropriate situation [32]. 

 

For clocks: 

o Use as few clock domains as possible in any design. 

o Do not use clocks or resets as data or enable and vice versa.  

o Clock signals must be connected to global dedicated resets or clock pin on an 

FGA or CPLD. 

o Use synchronous design to avoid problems in synthesis, in timing verification 

blem with design hardware implementation is to meet the timing 

A

a

For timing optimization: 

and in simulations. 

o Avoid using latches. 

o Include all signals that are read inside a combinational process in its sensitivity 

list. 

o Ensure variables are assigned in every branch of a combinational logic process 

to prevent inferring of unwanted latches.  

For general rules 
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o In RTL, never initialized register in their declaration use reset logic instead. The 

initialization statements cannot be synthesized.  

o Write finite state machines in two always blocks – one for sequential 

assignments and other for combinational logic.  

o Compare buses with the same width. 

o Avoid using long if-then-else statements and use case statements instead. This 

helps to prevent inferring of large priority decoders and makes the code easier 

to be read.  

By sim  early work of a design 

system achieved without 

altering

timing con higher place and route effort levels. When multiple place and 

ed only the implementation with the best optimization score 

shoul

 

Besid  techniques and style, hardware also contributed to some 

difficultie

importantly, with different processor speed. The Pilchard systems are on a 1Ghz hosts 

and is

on these  different PCs. The difference in the 

tes a margin of error when comparing the results.  

 

ply following these good programming techniques, an

 had an increase of clock cycle around 30Mhz. This speedup was 

 the functional logic behavior of the design modules. Another way to improve the 

straints is to use 

route process are perform

d be kept and tested.  

es from the programming

s. The baselines for generating the profiles are from different computers, more 

 solely dedicated to Pilchard-related researches. Thus, the Matlab is not available 

machines and the profiles had to be run on

baselines contribu

 70



5.3 

 

The 

functiona e combined with the enhanced 

perfo the in-circuit simulation prove the correct 

functi

comparin

demonstrated the potential of performance improvement from using of such platforms.  

each band process can be divided multiple data sections that 

ach section can run on its only hardware system. The streaming technique used provide 

rallel programming 

Conclusions 

goal of this project was to implement a digital system that performs the 

lities of the bottlenecks presented in C++ profil

rmance. The pre-synthesis simulation and 

onalities of the design and the interface software show that it had the best speedup 

g with the software counterparts. The success of the Pilchard implementation 

 

The study also showed that when computing data on a digital system with host side 

interface, the streaming technique increases the run-time as a direct proportion of the read 

write functions used. On a positive note, the streaming process can be easily configured 

to adapt multiple levels of parallel computing. The task can be broken down at band 

levels, where each Pilchard system can be responsible for a certain number of bands. If 

more system are available, 

e

the scalabilities at multi-levels but at the cost of lower speedup, penalized from the read 

write execution during run-time. 

 

From a parallel processing perspective, this design did not achieve the desired speedup 

compared to a single machine. This setback is mostly due to the overhead with BioGrid. 

With more optimization to BioGrid or the use of other pa
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environment, this overhead may be reduced. Our experiments had short runtimes, with an 

xecution time less than two seconds. Of this time, 0.6 to 0.7 seconds was overhead from 

 

The design work in this project provides the foundation for the high performance parallel 

computing. At least two tasks can be explored to further increase the speedup of the 

application. 

 

First is to overcome the hardware constraints. The blockRAM and the read/write port 

were the most important constraints affecting the result of the performance in this project. 

With better I/O interface and bigger RAM, a more effective algorithm method can be use. 

For example, the data vectors for each band image can be input onto the blockRAM 

before starting the computation. This way eliminates the need for the second cycle of 

input from the host side for the wavelet transform. The values can be kept in the memory 

until the final set of 200 by 240 answer is reached. This not only eliminates an entire 

cycle of I/Os but it also eliminates the host-side data management at each set of 

calculation. The use of better hardware is expected to improve the speedup dramatically.  

e

BioGrid. With larger input image data, the application will require more time to perform 

the wavelet transform. We do not expect the BioGrid overhead to significantly worsen, 

which will minimize the effect of this overhead on the total performance. 

 

 

5.4 Future Work 
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Another important future work is to explore the implementation on high performance 

reconfigurable computers more extensively. The shared task program, such as the 

BioGrid, can be detailed to reduce the overhead that was shown in section 5.1.3. or 

explore the usage of other programs such as MPI or PVM. Also, more HPC tests should 

e performed over a larger network of workers, so a threshold can be determined for an 

ptimized ratio of workers per application.  

 

With exploring new design scheme, there will be many other issues that need to be dealt 

with, like scheduling, optimum resource utilization, modeling and performance analysis. 

Eventually, moving towards building a development system to efficiently utilize the 

processing power of such system is the goal.   

 

 

 

b
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Original Software Application in Matlab  
 
% HYPERSPECTRAL IMAGE PROCESSING 
% by S. G. KONG 
 
close all 
% Reading data ... 
input_file = 'fchicktum04.img'; 
samples = 460; 
lines = 400; 
%Bands = 65; 
bands = 65; 
counter=0; 
[fid, msg] = fopen(input_file, 'r'); 
[ImageFile, count] = fread(fid, [samples, lines*bands], 'int16'); 
status = fclose(fid); 
 
% 3-d and 2-d variables to store the image 
I = zeros(samples, lines, bands); 
BandImage = zeros(samples, lines); 
 
% find BandImage from ImageFile 
for ib = 1: bands 
    for il = 1: lines 
        BandImage(:, il) = ImageFile(:, (il - 1)*bands + ib); 
    end 
    I(:, :, ib) = BandImage; 
end 
clear ImageFile; 
 
% 2-D Wavelet transform of band images 
row = 233; 
col = 203; 
bands = 65; 
wI = zeros(row, col, bands); 
a = zeros(samples, lines); 
for ib = 1: bands 
    a(:, :) = I(:, :, ib); 
    [ca, ch, cv, cd] = dwt2(a, 'db4'); 
    wI(:, :, ib) = ca; 
end 
 
% Find normalized nI with respect to max of each band I(:, :, k) 
bands = 65; 
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for ib=1: bands 
    MAX = max(max(I(:, :, ib))); 

))); 
  nwI(:, :, ib) = wI(:, :, ib)/MAX; 

max(wI))); 

ctral image  
w(nwI(:, :, 5)) 

spectral signatures ... 
ssue 

(91:95, 120, :)/FMAX; 
ormal(11:15, :) = wI(86:90, 130, :)/FMAX; 

 

mor = zeros(20, bands); 
MAX; 

I(206:210, 125, :)/FMAX; 
I(121:125, 130, :)/FMAX; 

zeros(20, bands); 
31:140, 25, :)/FMAX;     

g(11:20, :) = wI(116:125, 180, :)/FMAX;     

normal', ':b') 
ds (Channels)') 

ve Fluorescence Intensity (RFI)') 

ussian membership functions 
aussf = inline('exp(-(x-m).^2/(2*s^2))'); 

    nI(:, :, ib) = I(:, :, ib)/MAX; 
    MAX = max(max(wI(:, :, ib
  
end 
FMAX = max(max(
 
% Display a spe
figure, imsho
 
% Plot hyper
% Normal ti
normal = zeros(20, bands); 
normal(1:5, :) = wI(56:60, 140, :)/FMAX; 
normal(6:10, :) = wI
n
normal(16:20, :) = wI(51:55, 51, :)/FMAX;
 
% Tumor 
tu
tumor(1:5, :) = wI(161:165, 120, :)/F
tumor(6:10, :) = w
tumor(11:15, :) = w
tumor(16:20, :) = wI(196:200, 100, :)/FMAX; 
 
% Background 
bg = 
bg(1:10, :) = wI(1
b
 
figure, plot(
xlabel('Ban
ylabel('Relati
hold on 
plot(tumor', 'r') 
plot(bg', 'g') 
hold off 
axis([0 66 0 0.8]) 
 
% Ga
g
t = linspace(0,1,500); 
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% Features 
d = zeros(row, col); 
feature = zeros(row, col, 2); 
for ir = 1: row 
     for ic = 1: col 
         af = mean(wI(ir, ic, 15:25))/FMAX; 

)) - mean(wI(ir, ic, 40:45)))/mean(wI(ir, ic, 20:25)); 
       feature(ir, ic, 1) = af; 

       mb = gaussf(0, 0.05, af); 
, gaussf(0, 0.12, rb)); 

ussf(1, 0.4, af), gaussf(1, 0.3, rb)); 
mb)) 

         rb = (mean(wI(ir, ic, 20:25
  
         feature(ir, ic, 2) = rb; 
          
  
         mt = min(gaussf(0.2, 0.12, af)
         mn = min(ga
         if ((mt > mn) & (mt > 
             d(ir, ic) = 1; 
         end 
     end 
 end 
 
figure,  
imshow(d) 
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Modified C++ Version of the Application 

========================================== 

 
 Computer Engineer 

pp *** 
times       *** 

ogram takes a Matlab binary hyperspectral  
 of a chicken(460*400*65) convert to bandimages  

hen performs 2D wavelet transform to obtain its 
quency transformed image. Then we  

 the transformed images to obtain the 
ral signatures to determine the tumor 

ocations. 

1) From an image file, Matlab assumes the data are 
in columns whereas C++ reads as rows 
2) Wavelet Transform: to obtain LL or CA coefficient 
we do a lowpass filter to the rows then to the 
columns.  
 
Parts of header library code are from Dr. Qi of 
Department of Electrical & Computer Engineer 
University of Tennessee, Knoxville. 
 
input file : FCHIKCKTUM04.IMG  - tumor image 460*400*50  
 
output files: normdata.txt     -20*65  
              tumordata.txt    -20*65   
              bgddata.txt      -20*65 background 
              tumorimage.txt   -230*200 tumor image 
========================================================== 
*/ 
 
#include "chickmatrix.h" 
#include "chickimgv20.h" 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <math.h> 
#include <string> 

 
 
/* 
===============
Hyperspectral Imaging 
Chicken Tumor 
 
-- Yuan He 
 

dent.ece.utk.eduhe@stu
Department of Electrical &
University of Tennessee, Knoxville. 
   
using chickimgv20.h & chickmtrix library 
 

hickv20.c*** Profiler for c
ulate run *** calc

 
This pr
image
t
low fre
normalized
hyperspect
l
 
note:  
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#include <stdio.h> 
#include <ctime> 

g namespace std; 

     //i row 
00           //j col 

tFile "FCHICKTUM04.IMG" 
utImg1 "OUTPUTIMG1.IMG" 

UTIMG2.IMG" 

mg1,imgW1,imgNW1,imgNorm(20,65), 

b; 

mples*lines]; 

 f2=0, write1=0, write2=0; 

dimage.createMatrix(samples,lines); 
,200); 
es,200); 
,200); 

tFile); 
; 
(); 

 
usin
 

      //k channel #define bands 65      
s 460    #define sample

efine lines 4#d
#define inpu
efine outp#d

#define outputImg2 "OUTP
 

t x){ float gaussf (float m, float s, floa
oat g;  fl

 g=exp(-((x-m)*(x-m)) / ( 2 * s * s ) ); 
eturn (g);  r

} 
 
oat minny (float x, float y){ fl

 float minny0; 
 if (x<=y) minny0=x; 
  else minny0=y; 
 return (minny0); 
} 
 

t argc, char **argv) int main(in
{ 
 Image i
imgTumor(20,65),imgBGD(20,65),imgD(230,200); 

;  int i,j,k,j2,m,x,ii,jj,iii,counter=0
 float max, maxW, Fmax, Fmin, af, rb, rb1, rb2,mt,mn,m
 Matrix bandimage, A,dRow,dRowdCol,dRowCF; 
 
loat M[sa f

 
 unsigned long int s1=0, s2=0,  t1=0, t2=0; 

, n2=0;  unsigned long int w1=0, w2=0,  n1=0
nsigned long int h1=0, h2=0,  f1=0, u

 
1=clock();  t

  
 s1=clock(); 
   
 for (i=0;i<samples*lines;i++) M[i]=0; 
 

createMatrix(samples,2);  A.
an b

 dRow.createMatrix(samples
 dRowCF.createMatrix(sampl

ix(230 dRowdCol.createMatr
 
 img1.readImage(inpu

() imgW1.createImage
 imgNW1.createImage
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  s2=clock(); 
 
 //=============================================== wavelet transfer  

  bandimage(i,j)=img1(i,j,k); 

wpass(460*400,0);  //bandimage becomes 230*400 

changes 230*400 to 460*200 format: fill row first 

j++){ 
ii++; jj=0; } 

 dRow(i,j)=bandimage(ii,jj++); 
 } 

owpass filters col 

olumn first 

 for (i=0;i<460;i++) 

  dRowCF(i,j)=M[iii++]; 

ass(200*460,0); 

hange back from column first to row first and then onto 

+) M[i]=0; 

  M[iii++]=dRowCF(i,j); 

 
  w1=clock(); 
  
for (k=0; k<bands;k++){ 
   
  for(i=0; i<samples;i++) 
   for(j=0;j<lines;j++) 
  
 
//lowpass filter rows 
 
  bandimage.lo
 
//
 
  ii=0; jj=0; 
  for (i=0;i<460;i++) 
   for (j=0;j<200;
    if (jj==400) { 
   
  
 
//l
    
// change format from fill row first to fill c
 
  iii=0; 
  for (j=0; j<200; j++) 
  
    M[iii++]=dRow(i,j); 
 
  iii=0; 
  for (i=0; i<460; i++) 
   for (j=0;j<200;j++) 
  
 

RowCF.lowp  d
   
// c
imgW1(i,j,k) 
 
  for (i=0;i<samples*lines;i+
 
  iii=0; 
  for (i=0;i<230;i++) 
   for (j=0; j<200; j++) 
  
 
  iii=0; 
  for (j=0;j<200;j++) 
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   for (i=0; i<230; i++) 
)= M[iii++]; 

2=clock(); 

=================================find normalized with respect to 

in=0; 

,k)) max =img1(i,j,k);   
j,k)) maxW =imgW1(i,j,k);   

f (Fmax < imgW1(i,j,k)) Fmax =imgW1(i,j,k);   

 } 

 
+){ 
k)/max; 
i,j,k)/maxW; 

ctral 

========================Plot Hyperspectral 

1=clock(); 

    imgW1(i,j,k
 
}                                            // end of K loop ! for 
each band 
 
  w
 
//==
max of each band 
 
  n1=clock(); 
  
Fmax=0; 
Fm
 
 
 for (k=0;k<65;k++){ 
 
  max=0; 
  maxW=0; 
   
  for (i=0;i<samples;i++) 
   for (j=0; j<lines; j++){ 
 
    if (max < img1(i,j
    if (maxW < imgW1(i,
    i
    if (Fmin > imgW1(i,j,k)) Fmin =imgW1(i,j,k);   
  
  
  for (i=0;i<samples;i++)
   for (j=0; j<lines; j+
    img1(i,j,k)=img1(i,j,
  imgNW1(i,j,k)=imgW1(  

   } 
 } 
 
  n2=clock(); 
 
 write1=clock(); 
 
 imgNW1.writeImage(outputImg1);            // normallized Spe
Image 
 
 write2=clock(); 
  
 
 //====================
Signatures 
 
 h
 
 for(k=0;k<65;k++){ 
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  for(i=0;i<20;i++){ 
   if(i>=0 && i<5){ 
   imgNorm(i,k)=imgW1(55+i,140,k)/Fmax; 

,k)=imgW1(130+i,25,k)/Fmax; 
} 

<10){ 

W1(130-5+i,25,k)/Fmax; 

i<15){ 
imgNorm(i,k)=imgW1(85-10+i,130,k)/Fmax; 

or(i,k)=imgW1(120-10+i,130,k)/Fmax; 
(i,k)=imgW1(115-10+i,180,k)/Fmax; 

} 
 
50-15+i,51,k)/Fmax; 

 imgTumor(i,k)=imgW1(195-15+i,100,k)/Fmax; 
i,k)=imgW1(115-15+i,180,k)/Fmax; 

fstream Norm ("normdata.txt"); 

(j=0;j<65;j++){ 
Norm<<imgNorm(i,j)<<" "; 

"; 

m.close(); Tumor.close(); BGD.close();  

/=========================================================Features 

++) 
for (j=0;j<200;j++){ 

  
25;k++) 
(i,j,k);       

   imgTumor(i,k)=imgW1(160+i,120,k)/Fmax; 
   imgBGD(i
  
   if(i>=5 && i
   imgNorm(i,k)=imgW1(90-5+i,120,k)/Fmax; 
   imgTumor(i,k)=imgW1(205-5+i,125,k)/Fmax; 
   imgBGD(i,k)=img
  } 
   if(i>=10 && 
   
   imgTum
   imgBGD
  
   if(i>=15 && i<20){
   imgNorm(i,k)=imgW1(
  
   imgBGD(
   } 
  } 
 } 
 
 o
 ofstream Tumor ("tumordata.txt"); 
 ofstream BGD ("bgddata.txt"); 
  
 for(i=0;i<20;i++){ 
  for 
   
   Tumor<<imgTumor(i,j)<<" 
   BGD<<imgBGD(i,j)<<" "; 
  } 
  Norm<<endl;Tumor<<endl;BGD<<endl; 
 } 
 Nor
 
 h2=clock(); 
 
 
 /
 
 f1=clock(); 
 
 

r (i=0;i<230;i fo
  
    
   af=0; rb=0; rb1=0; rb2=0; 
  
   for(k=14;k<
  af+=imgW1  
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   af = ( af / 11 ) / Fmax; 

b2+=imgW1(i,j,k);       

); 

(0.2, 0.12, af), gaussf(0,0.12,rb) ); 
1, 0.4, af), gaussf(1,0.3,rb) ); 

ream Img2 ("tumorimage.txt"); 

<<endl; 

2.close();  

=clock(); 

***********************************"<<endl; 
ickv20.cpp is as following..."<<endl; 
***************************"<<endl; 

<<"  Total run time  = "<<(t2-t1)*1e-6<<" second"<<endl; 
)*1e-6<<" second"<<endl; 

t<<"  Wavelet time    = "<<(w2-w1)*1e-6<<" second"<<endl; 
" second"<<endl; 
<" second"<<endl; 

ures time   = "<<(f2-f1)*1e-6<<" second"<<endl; 
out<<"  Write 3D Image  = "<<(write2-write1)*1e-6<<" second"<<endl; 

out<<"Fmax= "<<Fmax<<endl; 
"<<Fmin<<endl; 

out<<"max= " <<max<<endl; 
out<<"maxW= "<<maxW<<endl; 

 
   for(k=19;k<25;k++) 
    rb1+=imgW1(i,j,k);       
   for(k=39;k<45;k++) 
    r
 
   rb = ( (rb1 / 6) - (rb2 / 6) ) / (rb1 / 6
 
   mb = gaussf ( 0, 0.05, af); 
   mt = minny ( gaussf
   mn = minny ( gaussf(
   if ((mt>mn) && (mt > mb))  imgD(i,j)=1;  
  }  
  
 ofst
  for(i=0;i<230;i++){ 
  for (j=0;j<200;j++){ 
   Img2<<imgD(i,j)<<" "; 
  } 
  Img2
 } 
 Img
 
 
 f2=clock(); 
 
 t2
 
 cout<<"***************
 cout<<"****  Profiler for ch
 cout<<"***********************
 
 cout
 cout<<"  Setup time      = "<<(s2-s1
 cou
 cout<<"  Normalized time = "<<(n2-n1)*1e-6<<
out<<"  Signatures time = "<<(h2-h1)*1e-6< c

 cout<<"  Feat
 c
 
 cout<<"**************************************************"<<endl; 
 c
 cout<<"Fmin= 
 c
 c
 
 
 
  return 0; 
} 
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C++ Header Files and Libraries 
 
 
Chickimgv20.cpp 
 
nclude "chickimgv20.h" #i

#include <fstream> 
nclude <iostream> #i

#include <cstdlib> 
#include <cstdio> 
#include <cmath> 
using namespace std; 
 
efin#d e PI 3.1415926 

 
; 
*) new float [row * col * channel]; 

if (!image)  
y(); 

 for 2D images 

[row * col * t]; 
if (!image)  
  outofMemory(); 

destructor 
age::~Image() 

  if (image) 

 
 // default constructor

Image::Image() 
{ 

w = 460;   ro
  col = 400; 

hannel = 65;  c
//  type = PGMRAW
image = (float   

  
    outofMemor
} 
 
 constructor//

Image::Image(int r, int c) 
{ 
  row = r; 
col = c;   

  channel = 1; 
  image = (float *) new float [row * col * channel]; 
  if (!image)  
    outofMemory(); 
} 
 
 
 constructor for grayscale/color images //

Image::Image(int r, int c, int t) 
{ 
  row = r; 
  col = c; 
 
image = (float *) new float   

  
  
} 
 
 //

Im
{ 
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    delete [] image;       // free the image buffer 
 

y for the image 
eImage() 

oat [row * col * channel]; 

nt r, int c) 

w float [r * c  * 1]; 

from a file           
adImage(char *fname) 

s::in); 

 " << fname << endl; 

age data 

fp.read(img, (row * col * channel * sizeof(short))); 

ar to float 
channel]; 

ory(); 

<col; j++) 

+j*row*channel] = 
*row*channel]; 

}
 
// allocate memor
id Image::creatvo

{ 
 new fl  image = (float *)

  if (!image)  
    outofMemory(); 
} 
 
void Image::create2D(i
{ 
  image = (float *) ne
if (!image)    

    outofMemory(); 
} 
 
// read image 
void Image::re
{ 
  ifstream ifp; 
  short *img; 
  int i, j, k; 
 
ifp.open(fname, io  

 
  if (!ifp) { 

ge:    cout << "Can't read ima
  exit(1);   

  } 
 
  // read the im
  img = (short *) new short [row * col * channel]; 
  if (!img)  
    outofMemory(); 
 
i  

 
  // convert the data type from unsigned ch

 * col *   image = (float *) new float [row
if (!image)   

    outofMem
   
or (j=0; j f

    for (k=0; k<channel; k++) 
 i<row; i++)       for (i=0;

       image[i+k*row
loat)img[i+k*row+j(f

  
  ifp.close(); 
  delete img; 
} 
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// write image buffer to a file 
id Image::writeImage(char *fname) 

nt i, j, k; 

s::out); 

 fname << endl; 
 exit(1); 

ge data type back to unsigned char 
mg = (float *) new float [row * col * channel]; 
if (!img) 

or (i=0; i<row; i++) 
ol; j++) 

 k<channel; k++) 
row+j*row*channel] = 

loat)image[i+k*row+j*row*channel]; 

    //  img[(i*col+j)*channel+k] = (float)image[(i*col+j)*channel+k]; 

))); 

.close(); 
lete img; 

erator 
oat & Image::operator()(int i, int j, int k) 

erator 
ator()(int i, int j) 

fMemory() 

 of memory!\n"; 
exit(1);} 

vo
{ 
  ofstream ofp; 
  i
  float *img; 
   
  ofp.open(fname, io
   
  if (!ofp) { 
    cout << "Can't write image: " <<
   
  } 
       
  // convert the ima
  i
  
    outofMemory(); 
             
  f
    for (j=0; j<c
      for (k=0;
        img[i+k*
(f
 
  
      
  ofp.write(img, (row * col * channel * sizeof(float
     
  ofp
de  

} 
        
 
// overloading () op
fl
{ 
  
  return image[i + k * row + j * row * channel]; 
} 
 
// overloading () op

t & Image::operfloa
{ 
  return image[i*col + j]; 
} 
 
 

output out of memory error // 
void Image::outo
{ 

out << "Out  c
  

 90



Chickimgv20.h 

   // binary image 

or 
age();                             // default constructor  

r for grayscale 

nt, int);                // constructor for 
le/color images  
Image &);                      // copy constructor  

ximum() const;              // get the maximum pixel value 

);                  // create image, allocate 

            // create image, allocate memory 

 // read image from a file 
 // write image to a file 

efault k=1   

+(Image);              // overloading + operator 
r-(Image);              // overloading - operator 

mage operator*(Image);              // overloading * (element-wised 
ation) 
operator/(Image);              // overloading pixelwise 

ading ->* operator 

eight  
int col;                  // number of columns / width  

// nr of channels (1 for gray-level, 3 for 

nt type;                 // image type (PGM, PPM, etc.) 
// the maximum pixel value 
 // indicates if users want to set their own 

ximum  
float *image;             // image buffer 

output out of memory message 

 
 

fine BINARY   11                 #de
 
class Image { 
 public: 
 
  // constructors and destruct
  Im
  Image(int, int);                     // constructo
images  
  Image(int, i
graysca
  Image(
  ~Image();                            // destructor  
   
  float getMa
 
  void create2D(int, int
memory for 2D 
  void createImage();      
for the image 
  void readImage(char *);             
  void writeImage(char *);            
 
  float & operator()(int, int, int); // operator overloading, default 
k=1   
  float & operator()(int, int); // operator overloading, d
 
  Image operator
  Image operato
  I
multiplic
Image   

division 
  Image operator->*(Image);            // overlo

trix multiplication)  (ma
   
 private: 

nt row;                  // number of rows / h  i
  
  int channel;              
color image) 
  i
  int maximum;              

nt setmax;                i
ma
  
  void outofMemory();       // 
 
}; 
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ickmatrix.cpCh p 

eam> 
eam> 

cstdlib> 

0 0.4829629131445341 

createMatrix(0, 0); 

 constructor 

=0; j<col; j++) 

:getRow() const 

ol; 

llocate memory for the matrix 
d Matrix::createMatrix(int nr, int nc) 

{ 

 
#include "chickmatrix.h" 
#include <fstr
#include <iostr
#include <
#include <cstdio> 
#include <cmath> 
using namespace std; 
 
#define C
#define C1 0.8365163037378079 
#define C2 0.2241438680420134 
#define C3 -0.1294095225512604 
// default constructor 
Matrix::Matrix() 
{ 
  
} 
 
// constructor when knowing row and column 
Matrix::Matrix(int nr, int nc) 
{ 
  createMatrix(nr, nc); 
} 
 
// copy
Matrix::Matrix(Matrix &m) 
{ 
  int i, j; 
 
  createMatrix(m.getRow(), m.getCol());             // allocate memory 
   
  for (i=0; i<row; i++) 
    for (j
      matrix[i * col + j] = m(i, j); 
} 
 
int Matrix:
{ 
  return row; 
} 
  
// get number of columns 
int Matrix::getCol() const 
{ 
  return c
} 
    
 
// a
ivo
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  int i; 
 
  row = nr; 

) new double [row * col]; 

col; i++) 

!\n"; 

destructor 
trix::~Matrix() 

 delete [] matrix;       // free the matrix buffer 

 overloading () operator 
ator()(int i, int j) 

eturn matrix[i * col + j]; 

ransform 

 Matrix::lowpass(int n,int isign){ 

wksp.createMatrix(1,n); 

;j<n-3;j+=2,i++){                        //downsizing 
2 
   wksp(0,i) = 

]+C2*matrix[j+2]+C3*matrix[j+3]; 
trix[j]-C2*matrix[j+1]+C1*matrix[j+2]-

 wksp(0,i) = C0*matrix[n-2]+C1*matrix[n-
*matrix[0]+C3*matrix[1]; 

 // wksp(0,i+nh) = C3*matrix[n-2]-C2*matrix[n-1]+C1*matrix[0]-

or(i=0;i<n;i++) matrix[i] = wksp(0,i);} 

  col = nc; 
  matrix = (double *
  if (!matrix)  
    outofMemory(); 
 
  for (i=0; i<row*
    matrix[i] = 0.0; 
} 
 
// output out of memory error 
void Matrix::outofMemory() 
{ 
  cerr << "Out of memory
  exit(1); 
} 
 
// 
Ma
{ 
  if (matrix) 
   
} 
 
//
double & Matrix::oper
{ 
  r
} 
 wavelet t//

 
void
  Matrix wksp; 
  int nh,nh1,i,j; 
 

f(n<4) exit(1);   i
  
  nh1 = (nh=n>>1)+1; 

f(isign>=0){   i
    for(i=0,j=0
j+=
   
C0*matrix[j]+C1*matrix[j+1
     // wksp(0,i+nh) = C3*ma

matrix[j+3]; C0*
    } 
   
1]+C2
  
C0*matrix[1]; 
  } 
  f
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Chickmatrix.h 

 and destructor 
                 // default constructor  

         // constructor with row 
      // column 

               // copy constructor  
Matrix();                         // destructor  

         // row  
     int);            // column 

() const;                // get row number / the number of 
ple 

 const;                // get column number / the number 

     int);            // column index 

               // number of rows / sample  
int col;                           // number of columns / feature  

 matrix buffer 

); 

nctions are used by inverse() 
nt);      // find the row with maximum 

 volumn 

lumn 
wing columns 

 
 number of categories 

egory a sample belongs 

 
 
class Matrix { 
 public: 
  // constructors
  Matrix();         
  Matrix(int,               
  int);                 
  Matrix(Matrix &);   
  ~
 
// create a matrix 
  void createMatrix(int,    
 
 
  int getRow
sam
  int getCol()
of feature 
 
 
// operator overloading functions 
  double & operator()(int,           // row index 
 
  
  void lowpass(int,int); 
   
// other functions 
 
 protected: 
  int row;            
  
  double *matrix;                     //
 
  void outofMemory(
 
  // the following four fu
  int findPivot(Matrix &, i
absolute value in that
  void switchRow(Matrix &, int, int);// switch two rows 
  void dividePivot(Matrix &, int);   // divide that row with the 
element in that co
  void eliminate(Matrix &, int);     // eliminate the follo
}; 
 
 
/** 
 * Data includes t 
 * (1) m x n matrix where  
 *     m is the number of samples and n is the number of features
 *     t is the
 * (2) m x 1 matrix that stores to which cat
 **/ 
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class Data : public Matrix { 
public: 
 // constructors and destructor 

                     // default constructor  
,                          // constructor with number of 

trix for a certain 

                 // set the number of categories 
ame  
 feature 

int type; 

 
 
  Data();       
  Data(int
feature  
       int,                          // number of sample 
       int);                         // number of type  
 
  // get and set functions 
  Matrix getType(int);               // get the subMa
tegory  ca

  void setType(int);
  void readData(char *,              // file n

f  int,                 // number o
 int);                // number of type  

  void readData(char *,              // file name 
                int);                // number of feature 
  void readData(char *); 
 
rivate:  p

  
 }; 
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VHDL Source Code 
 
#pilchard.vhd 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity pilchard is 
port ( 
 PADS_exchecker_reset: in std_logic; 
 PADS_dimm_ck: in std_logic; 
 PADS_dimm_cke: in std_logic_vector(1 downto 0); 
 PADS_dimm_ras: in std_logic; 
 PADS_dimm_cas: in std_logic; 
 PADS_dimm_we: in std_logic; 
 PADS_dimm_s: std_logic_vector(3 downto 0); 
 PADS_dimm_a: in std_logic_vector(13 downto 0); 
 PADS_dimm_ba: in std_logic_vector(1 downto 0); 
 PADS_dimm_rege: in std_logic; 

imm_cb: inout std_logic_vector(7 downto 0); 
mm_dqmb: in std_logic_vector(7 downto 0); 

PADS_dimm_scl: in std_logic; 
PADS_dimm_sda: inout std_logic; 

 PADS_dimm_sa: in std_logic_vector(2 downto 0); 
 PADS_dimm_wp: in std_logic; 
 PADS_io_conn: inout std_logic_vector(27 downto 0) ); 
end pilchard; 
 
architecture syn of pilchard is 
 
 component INV 
 port ( 
  O: out std_logic; 
  I: in std_logic ); 
 end component; 
 
 component BUF 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component BUFG 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component CLKDLLHF is 
 port ( 
  CLKIN: in std_logic; 
  CLKFB: in std_logic; 
  RST: in std_logic; 

 PADS_dimm_d: inout std_logic_vector(63 downto 0); 
 PADS_d
 PADS_di
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  CLK0: out std_logic; 
 CLK180: out std_logic; 

CLKDV: out std_logic; 
 LOCKED: out std_logic ); 

nent; 

 in std_logic; 

ic ); 

ic; 

 
  
 
 end compo
 

component FDC is  
 port ( 

C: in std_logic;   
  CLR: in std_logic; 
  D: in std_logic; 
  Q: out std_logic ); 
 end component; 
 
 component IBUF 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component IBUFG 
 port ( 
  I: in std_logic; 
  O: out std_logic ); 
 end component; 
 
 component IOB_FDC is 
 port ( 

 C: 
  CLR: in std_logic; 

 D: in std_logic;  
  Q: out std_log

;  end component
 
 component IOBUF 
 port ( 

 I: in std_logic;  
  O: out std_log
  T: in std_logic; 
  IO: inout std_logic ); 

co end mponent; 
 

component OBUF  
 port ( 
  I: in std_logic; 
  O: out std_logic ); 

co end mponent; 
 

component STARTUP_VIRTEX  
 port ( 

 std_logic;   GSR: in
  GTS: in std_logic; 
  CLK: in std_logic ); 
 end component; 
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 component pcore 
 port ( 
  clk: in std_logic; 
  clkdiv: in std_logic; 

 rst: in std_logic; 
_logic; 

or(13 downto 0); 
63 downto 0); 

tor(63 downto 0); 
ector(63 downto 0); 

ogic_vector(25 downto 0); 

d_logic_vector(25 downto 0) ); 
; 

gnal ogic; 
v: std_logic; 

d_logic; 
as_ibuf: std_logic; 

ic; 
gnal gic; 

 std_logic; 

: std_logic; 
e_ibuf_d: std_logic; 

gic_vector(63 downto 0); 
c_vector(63 downto 0); 

gic_vector(63 downto 0); 
c_vector(14 downto 0); 

: std_logic_vector(7 downto 0); 
signal io_conn_iobuf_i: std_logic_vector(27 downto 0); 

: std_logic_vector(27 downto 0); 
n_iobuf_t: std_logic_vector(27 downto 0); 

c; 

; 
ogic; 

signal READ_p: std_logic; 

ogic; 

 
  read: in std
  write: in std_logic; 
  addr: in std_logic_vect
  din: in std_logic_vector(
  dout: out std_logic_vec
  dmask: in std_logic_v
  extin: in std_l
  extout: out std_logic_vector(25 downto 0); 
  extctrl: out st
 end component
 
 si  clkdllhf_clk0: std_l
 signal clkdllhf_clkdi
 signal dimm_ck_bufg: std_logic; 
 signal dimm_s_ibuf: st
 signal dimm_r
 signal dimm_cas_ibuf: std_log
 si  dimm_we_ibuf: std_lo
 signal dimm_s_ibuf_d:
 signal dimm_ras_ibuf_d: std_logic; 
 signal dimm_cas_ibuf_d
 signal dimm_w
 signal dimm_d_iobuf_i: std_lo
 signal dimm_d_iobuf_o: std_logi
 signal dimm_d_iobuf_t: std_lo

gnal i si  dimm_a_ibuf: std_log
 signal dimm_dqmb_ibuf
 
 signal io_conn_iobuf_o
 signal io_con
 
 signal s,ras,cas,we : std_logi
 
 signal VDD: std_logic; 

;  signal GND: std_logic
 
 signal CLK: std_logic

: std_l signal CLKDIV
 signal RESET: std_logic; 
 signal READ: std_logic; 

ic;  signal WRITE: std_log
 
 signal WRITE_p: std_logic; 

: std_logic;  signal READ_n
 signal READ_buf: std_logic; 
 signal WRITE_buf: std_logic; 
 signal READ_d: std_logic; 
 signal WRITE_d: std_l

 98



 signal READ_d_n: std_logic; 
td_logic; 

c_vector(13 downto 0); 
r(13 downto 0); 

tor(63 downto 0); 
tor(63 downto 0); 

 0); 
gnal 0); 
gnal o 0); 
gnal  0); 
gnal  

 
  un mmen ock rate 

hf: label is "8";  

gin 

 RST => RESET, 

 CLK180 => open, 
clkdiv, 

FG port map ( 

FG port map ( 
 

t map ( 

 signal READ_d_n_buf: s
 
 signal pcore_addr_raw: std_logi
 signal pcore_addr: std_logic_vecto
 signal pcore_din: std_logic_vec
 signal pcore_dout: std_logic_vec
 signal pcore_dmask: std_logic_vector(63 downto
 si  pcore_extin: std_logic_vector(25 downto 
 si  pcore_extout: std_logic_vector(25 downt
 si  pcore_extctrl: std_logic_vector(25 downto
 si  pcore_dqmb: std_logic_vector(7 downto 0);
 
-- CLKDIV frequency control, default is 2 
-- co t the following lines so as to redefined the cl
--  given by clkdiv 
 attribute CLKDV_DIVIDE: string;  
 attribute CLKDV_DIVIDE of U_clkdll
 
 
be
 
 VDD <= '1'; 
 GND <= '0'; 
 
 U_ck_bufg: IBUFG port map ( 
  I => PADS_dimm_ck, 
  O => dimm_ck_bufg ); 
 
 U_reset_ibuf: IBUF port map ( 
  I => PADS_exchecker_reset, 
  O => RESET ); 
 
 U_clkdllhf: CLKDLLHF port map ( 
  CLKIN => dimm_ck_bufg, 
  CLKFB => CLK, 
 
  CLK0 => clkdllhf_clk0, 
 
  CLKDV => clkdllhf_
  LOCKED => open ); 
 
 U_clkdllhf_clk0_bufg: BU
  I => clkdllhf_clk0, 
  O => CLK ); 
 
 U_clkdllhf_clkdiv_bufg: BU
  I => clkdllhf_clkdiv,
  O => CLKDIV ); 
 
 U_startup: STARTUP_VIRTEX por
  GSR => RESET, 
  GTS => GND, 
  CLK => CLK ); 
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 U_dimm_s_ibuf: IBUF port map ( 
  I => PADS_dimm_s(0), 

_we_ibuf ); 

 U_dimm_d_iobuf: IOBUF port map ( 
 I => dimm_d_iobuf_i(i), 

  O => dimm_d_iobuf_o(i), 
 => dimm_d_iobuf_t(i), 
O => PADS_dimm_d(i) ); 

C port map ( 

ap ( 
  C => CLK, 

buf_i(i) ); 

t map ( 

  Q => dimm_d_iobuf_t(i) ); 

G_dimm_a: for i in integer range 0 to 13 generate 

 ( 
dimm_a(i), 

); 

_FDC port map ( 

SET, 

  O => dimm_s_ibuf ); 
 
 U_dimm_ras_ibuf: IBUF port map ( 
  I => PADS_dimm_ras, 
  O => dimm_ras_ibuf ); 
 
 U_dimm_cas_ibuf: IBUF port map ( 
  I => PADS_dimm_cas, 
  O => dimm_cas_ibuf ); 
 
 U_dimm_we_ibuf: IBUF port map ( 
  I => PADS_dimm_we, 
  O => dimm
 
 G_dimm_d: for i in integer range 0 to 63 generate 
 
 
  
 
   T
   I
 
  U_dimm_d_iobuf_o: IOB_FD
   C => CLK, 
   CLR => RESET, 

  D => dimm_d_iobuf_o(i),  
   Q => pcore_din(i) ); 
 

i: IOB_FDC port m  U_dimm_d_iobuf_
 
   CLR => RESET, 
   D => pcore_dout(i), 
   Q => dimm_d_io
 
  U_dimm_d_iobuf_t: IOB_FDC por
   C => CLK, 
   CLR => RESET, 

_buf,    D => READ_d_n
 
 
 end generate; 
 
 
 
  U_dimm_a_ibuf: IBUF port map
   I => PADS_

  O => dimm_a_ibuf(i)  
 
  U_dimm_a_ibuf_o: IOB
   C => CLK, 
   CLR => RE
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   D => dimm_a_ibuf(i), 
i) ); 

dr_raw(3 downto 0); 
ange 4 to 7 generate 

( 
  O => pcore_addr(i), 

 ); 

ore_ ore_addr_raw(13 downto 8); 

ge 0 to 7 generate 

 port map ( 

p ( 

rs => (not pcore_dqmb(0))); 
t pcore_dqmb(1))); 

 (not pcore_dqmb(2))); 
pcore_dmask(31 downto 24) <= (others => (not pcore_dqmb(3))); 
ore_  pcore_dqmb(4))); 

 (others => (not pcore_dqmb(5))); 
hers => (not pcore_dqmb(6))); 

> (not pcore_dqmb(7))); 

G_io_conn: for i in integer range 2 to 27 generate 

 port map ( 
(i), 

  IO => PADS_io_conn(i) ); 

 U_io_conn_iobuf_o: IOB_FDC port map ( 

 U_io_conn_iobuf_i: IOB_FDC port map ( 

- 2), 

   Q => pcore_addr_raw(
 

ge end nerate; 
 
 pcore_addr(3 downto 0) <= pcore_ad
 addr_correct: for i in integer r
  ADDR_INV: INV port map 
 
   I => pcore_addr_raw(i)
 end generate; 
 pc addr(13 downto 8) <= pc
 
 G_dimm_dqmb: for i in integer ran
 
  U_dimm_dqmb_ibuf: IBUF
   I => PADS_dimm_dqmb(i), 
   O => dimm_dqmb_ibuf(i) ); 
 
  U_dimm_dqmb_ibuf_o: IOB_FDC port ma
   C => CLK, 
   CLR => RESET, 
   D => dimm_dqmb_ibuf(i), 
   Q => pcore_dqmb(i) ); 
 
 end nerate; ge
 
 pcore_dmask(7 downto 0) <= (othe
 pcore_dmask(15 downto 8) <= (others => (no
 pcore_dmask(23 downto 16) <= (others =>
 
 pc dmask(39 downto 32) <= (others => (not
 pcore_dmask(47 downto 40) <=
 pcore_dmask(55 downto 48) <= (ot
 pcore_dmask(63 downto 56) <= (others =
 
 
 
  U_io_conn_iobuf: IOBUF
   I => io_conn_iobuf_i
   O => io_conn_iobuf_o(i), 
   T => io_conn_iobuf_t(i), 
 
 
 
   C => CLK, 

  CLR => RESET,  
   D => io_conn_iobuf_o(i), 
   Q => pcore_extin(i - 2) ); 
 
 
   C => CLK, 
   CLR => RESET, 
   D => pcore_extout(i 
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   Q => io_conn_iobuf_i(i) ); 
 
  U_io_conn_iobuf_t: IOB_FDC port map ( 

, 

 O => open, 

 IO => PADS_io_conn(0) ); 

 O => open, 

); 

 (dimm_ras_ibuf) and 
ibuf) and 

 (dimm_we_ibuf); 

 I => READ, 

d

=> W

   C => CLK
   CLR => RESET, 
   D => pcore_extctrl(i - 2), 
   Q => io_conn_iobuf_t(i) ); 
 
 end generate; 
 
 U_io_conn_0_iobuf: IOBUF port map ( 
  I => dimm_ck_bufg, 
 
  T => GND, 
 
 
 U_io_conn_1_iobuf: IOBUF port map ( 
  I => GND, 
 
  T => VDD, 
  IO => PADS_io_conn(1) 
 
 READ_p <= 
  (not dimm_s_ibuf) and 
 
  (not dimm_cas_
 
 
 U_read: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => READ_p, 
  Q => READ ); 
 
 U_buf_read: BUF port map ( 
 
  O => READ_buf ); 
 
 U_read_d: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => READ, 
  Q => READ_d ); 
 
 WRITE_p <= 
  (not dimm_s_ibuf) and 
  (dimm_ras_ibuf) and 
  (not dimm_cas_ibuf) and 
  (not imm_we_ibuf); 
 
 U_write: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D RITE_p, 
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  Q => WRITE ); 
 
 U_buf_write: BUF port map ( 
  I => WRITE, 
  O => WRITE_buf ); 
 
 U_write_d: FDC port map ( 
  C => CLK, 
  CLR => RESET, 
  D => WRITE, 

 C => CLK, 

 I => READ_d_n, 

nside pcore 

 clkdiv => CLKDIV, 

 
in, 

 dout => pcore_dout, 

tin, 
tout, 

  Q => WRITE_d ); 
 
 READ_n <= not READ; 
 
 U_read_d_n: FDC port map ( 
 
  CLR => RESET, 
  D => READ_n, 
  Q => READ_d_n ); 
 
 U_buf_read_d_n: BUF port map ( 
 
  O => READ_d_n_buf ); 
 
 -- User logic should be placed i
 U_pcore: pcore port map ( 
  clk => CLK, 
 
  rst => RESET, 
  read => READ, 
  write => WRITE, 
  addr => pcore_addr,
  din => pcore_d
 
  dmask => pcore_dmask, 
  extin => pcore_ex
  extout => pcore_ex

 extctrl => pcore_extctrl );  
 
end syn; 
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#p .vcore hd 

e ie .std
e ie

 downto 0); 
3 downto 0); 
(63 downto 0); 
r(63 downto 0); 

tin: ector(25 downto 0); 
 downto 0); 
 downto 0) ); 

ownto 0); 

 downto 0); 
ownto 0); 

o 0); 

0); 
o 0); 

ent; 

mponent parith 
ort ( 
 clk: in std_logic; 
 rst: in std_logic; 
 addr: out std_logic_vector(7 downto 0); 
 din: out std_logic_vector(63 downto 0); 
 dout: in std_logic_vector(63 downto 0); 
 we: out std_logic; 
 start: in std_logic; 
 finish: out std_logic 
); 
end component; 
 
signal addrb:std_logic_VECTOR(7 downto 0); 

 
 
library ieee; 

ee _logic_1164.all; us
su ee.std_logic_unsigned.all; 
 
entity pcore is 
port ( 
 clk: in std_logic; 

clkdiv: in std_logic;  
 rst: in std_logic; 

read: in std_logic;  
 write: in std_logic; 

ctor(13 addr: in std_logic_ve
 din: in std_logic_vector(6

or dout: out std_logic_vect
mask: to d  in std_logic_vec
ex  in    std_logic_v 

 extout:  out std_logic_vector(25
tor(25 extctrl: out std_logic_vec

nd pc re; e o
 
 
architecture syn of pcore is 
component dpram256_64 
 port ( 

R(7 d addra: IN std_logic_VECTO
 clka: IN std_logic; 
 dina: IN std_logic_VECTOR(63
 douta: OUT std_logic_VECTOR(63 d
 wea: IN std_logic; 
 
 addrb: IN std_logic_VECTOR(7 downt
 clkb: IN std_logic; 
 dinb: IN std_logic_VECTOR(63 downto 

outb: nt d  OUT std_logic_VECTOR(63 dow
web: IN std_logic);  

end compon
 
oc
p
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signal clkb: std_logic; 
ignal dinb: std_logic_VECTOR(63 downto 0); 
ignal doutb: std_logic_VECTOR(63 downto 0) :=  

00000000000000000000000000000000000000000000000000"; 

ch: std_logic_vector(7 downto 0); 
d_logic; 

gnal VECTOR(63 downto 0); 

gin 

=> addr(7 downto 0), 
clka => clk, 

 

tart_parith, 

rb, 

 

gin 

then 
th <= '0'; 

s
s
"00000000000000
signal web: std_logic; 
 
signal read_latch: std_logic; --

--signal addr_lat
finish: stsignal 

ignals  start : std_logic; 
 

gic_si  bram_dout : std_lo
 
--debug signal 
signal  start_parith:std_logic; 
 
--register interface 
--signal reg0: std_logic_VECTOR(31 downto 0); 
 
be
 

56_64 port map  ( ram0:dpram2
addra  

 
 dina => din, 

ut,  douta => bram_do
te,  wea => wri

 
 addrb => addrb, 
 clkb => clkb, 
 dinb => dinb, 
 doutb => doutb, 

web => web  
;)
 
parith0: parith port map ( 
 clk => clkb, 
 rst => rst, 

doutb,  dout => 
start => s 

 
ddr => add a

 din => dinb, 
 we => web, 
 finish => finish  
);
 
 
process(clk) 
be
 
if ( rst = '1') 

start_pari 
elsif (clk'event and clk ='1') then 

 105



 start_parith <= start_parith or start; 

 downto 0); 

'1' and addr(7 downto 0) = "00000100") 

 define the core clock 

d syn; 

end if; 
 
 
end process; 
 
dout(31 downto 0) <= bram_dout(31
dout(63 downto 32) <= bram_dout(63 downto 32); 
 
start <= '1' when (write = 
 else '0'; 
 
--
clkb <= clkdiv; 
 
en
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#Parith 32bit version 
 
library ieee; 

ogic_1164.all; 
ogic_unsigned.all; 

c; 

vector(7 downto 0); 
d_logic_vector(63 downto 0); -- write to block ram 

: in std_logic_vector(63 downto 0); -- read  to block ram 
out std_logic;      -- write 

enable 
 start: in std_logic; 
 --dc_in: in std_logic_vector( 7 downto 0); 
 finish: out std_logic 
); 
end parith; 
 
architecture rtl of parith is 
 
component fxmult 
port( 
  
 clk,start: in std_logic; 
 a0, a1, a2, a3 : IN std_logic_VECTOR(n-1 downto 0); 
 --finish : out std_logic; 
 q : OUT std_logic_VECTOR(n-1 downto 0) 
 ); 
end component; 
 
component max 
port( 
  
 clk,start: in std_logic; 
 num1, num2, oldmax : IN std_logic_VECTOR(n-1 downto 0); 
 --finish : out std_logic; 
 newmax : OUT std_logic_VECTOR(n-1 downto 0) 
 ); 
end component; 
type states is ( s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, 
s_10); 
 
 
signal idx: std_logic_vector(7 downto 0); 
signal buff_a0, buff_a1, buff_a2, buff_a3, buff_q: std_logic_vector (n-
1 downto 0); 
signal buff_b0, buff_b1, buff_b2, buff_b3, buff_bq: std_logic_vector 
(n-1 downto 0); 

use ieee.std_l
e ieee.std_lus

 
entity parith is 
neric (n : integer := 32); ge

 
port ( 

clk: in std_logi 
 rst: in std_logic; 

std_logic_ addr: out 
din: out st 

 dout
 we: 
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signal buff_num1, buff_num2
ownto 0); 

, buff_old, buff_new: std_logic_vector (n-1 

 start_b, start_max : std_logic; 
r(n-1 downto 0); 

r ( 63 downto 0); 

 

 

lt port map ( 
clk, 

1, 
2, 

uff_b3, 

 

ap ( 
, 
start_max, 
uff_num1, 

 buff_num2, 

 

ate <= s_0; 
finish <= '0'; 

tate = s_0) then  

d
signal start_a,
signal count : std_logic_vecto
signal state : states; 
gnal buff_dout : std_logic_vectosi

 
begin 
 
 
xmultf 1: fxmult port map (
 clk => clk, 
 start => start_a, 
 a0 => buff_a0, 
 a1 => buff_a1, 
 a2 => buff_a2, 
 a3 => buff_a3, 
 --finish => finish_a, 
 q => buff_q 
);
 
fxmult2: fxmu

clk =>  
 start => start_b, 

a0 => buff_b0,  
 a1 => buff_b

a2 => buff_b 
 a3 => b
 --finish => finish_a, 
 q => buff_bq 
);
 
 
max1: max port m

clk => clk 
 start => 

num1 => b 
 num2 =>
 oldmax => buff_old, 
 newmax => buff_new 
);
 

rst) process (clk, 
begin 
 
 if (rst = '1' ) then  

st 
 
 elsif ( clk = '1' and clk'event ) then 
   
 -- state machine  
  
   if (start = '1') then  
      if (s
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         state <= s_1;  
         finish <= '0';  
      end if;  
    
   end if;  
  
 case state is 

 when s_1 => 
    idx <= "00000000";  

   

  000001";  
  _3;  
  

; 
 <= buff_dout(63 downto 32);  

   buff_a1 <= buff_dout(n-1 downto 0); 
    state <= s_4;  

100"; 
 buff_dout (63 downto 32); 
 buff_dout (n-1 downto 0);  

  _5;  
   '1'; 
  

   idx <= "00000101"; 
   buff_b0 <= buff_dout(63 downto 32);  
   buff_b1 <= buff_dout(n-1 downto 0); 

_6; 

f_dout(63 downto 32);  
f_dout(n-1 downto 0); 

; 

 when s_7 => 
 buff_dout(63 downto 32); 

   state <= s_8; 
 

<= buff_q; 

 s_9; 
 idx <= "00000111";    

  
  
  
      state <= s_2;  
    
   when s_2 => 
    idx <= "00
    state <= s
     
   when s_3 => 
    idx <= "00000010"
     buff_a0
  
 
      
  when s_4 =>   
    idx <= "00000
    buff_a2 <=
   buff_a3 <=
    state <= s
    start_a <=
     
  when s_5 => 
 
 
  
    state <= s
  
  when s_6 => 
    buff_b2 <= buf
     buff_b3 <= buf
    state <= s_7; 
    start_b <= '1'

     
 
    count <=

buff_old <= buff_dout(n-1 downto 0);   
 
        
  when s_8 => 
    buff_num1 
  buff_num2 <= buff_bq; 

start_max <='1';   
  state <=
  
    we <= '1';  
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 wh _9en s  => 

0; 

=> 

; 
<= s_0; 
<= '1'; 

 <= '0'; 

i  

in < f q & buff_bq) when (state = s_8 or state=s_9) else (count 

rt  

   we <= '0';  
   state<=s_1

   
  when s_10 
   idx <= "00000110"; 
  we <= '1'
  state 
  finish 
   
  when others => 
    we
   end case; 
 end f; 
end process;  
 
 
   
 
  
 addr <= idx; 
 d = (bu f_
& buff_new); 
 buff_dout <= dout; 
 
end l; 
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#p .vhd 16bit versarith ion 

 

 
logic; 

 std_logic_vector(7 downto 0); 
std_logic_vector(63 downto 0); -- write to block ram 

dout: in std_logic_vector(63 downto 0); -- read  to block ram 
: out std_logic;      -- write 

ble
start: in std_logic; 

in std_logic_vector( 7 downto 0); 

re rtl of parith is 

mponent fxmult 
ort( 
  
 clk,start: in std_logic; 
 a0, a1, a2, a3 : IN std_logic_VECTOR(n-1 downto 0); 
 --finish : out std_logic; 
 q : OUT std_logic_VECTOR(n-1 downto 0) 
 ); 
end component; 
 
component max 
port( 
  
 clk,start: in std_logic; 
 num1, num2, oldmax : IN std_logic_VECTOR(n-1 downto 0); 
 --finish : out std_logic; 
 newmax : OUT std_logic_VECTOR(n-1 downto 0) 
 ); 
end component; 
type states is ( s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8); 
 
 
signal idx: std_logic_vector(7 downto 0); 
signal buff_a0, buff_a1, buff_a2, buff_a3, buff_q: std_logic_vector (n-
1 downto 0); 
signal buff_b0, buff_b1, buff_b2, buff_b3, buff_bq: std_logic_vector 
(n-1 downto 0); 

 
 
library ieee; 
use ieee.std_logic_1164.all; 

all;use ieee.std_logic_unsigned.
 
entity parith is 

er := 16); generic (n : integ
 
port ( 

_logic; clk: in std
 in std_ rst:

 addr: out
din: out  

 
 we
a  en

 
 --dc_in: 
 finish: out std_logic 
); 
end parith; 
 
architectu
 
oc
p
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signal buff_num1, buff_num2, buff_old, buff_new: std_logic_vector (n-1 
ownto 0); 
ignal start_a, start_b, start_max : std_logic; 

std_logic_vector(n-1 downto 0); 

r ( 63 downto 0); 

 fxmult port map ( 

 

lt
clk, 
> start_b, 

2, 
3, 

h => finish_a, 

 

, 
tart_max, 
uff_num1, 
uff_num2, 

=> buff_old, 

 

finish <= '0'; 

tate = s_0) then  

d
s
signal count : 
signal state : states; 
signal buff_dout : std_logic_vecto
 
begin 
 
 
fxmult1:
 clk => clk, 
 start => start_a, 
 a0 => buff_a0, 
 a1 => buff_a1, 
 a2 => buff_a2, 
 a3 => buff_a3, 
 --finish => finish_a, 
 q => buff_q 
);
 

2: fxmult port map ( fxmu
 clk => 

start = 
 a0 => buff_b0, 

a1 => buff_b1,  
 a2 => buff_b

a3 => buff_b 
 --finis
 q => buff_bq 
);
 
 

 map ( max1: max port
 clk => clk

start => s 
 num1 => b

num2 => b 
 oldmax 
 newmax => buff_new 
);
 
process (clk, rst) 
begin 
 
 if (rst = '1' ) then  

state <= s_0;  
 
 elsif ( clk = '1' and clk'event ) then 
   
 -- state machine  
  
   if (start = '1') then  
      if (s
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         state <= s_1;  
         finish <= '0';  
      end if;  
    
   end if;  
  
 case state is 

 when s_1 => 
    idx <= "00000000";  

   

  000001";  
  _3;  
  

; 
 <= buff_dout(63 downto 48);  

   buff_a1 <= buff_dout(47 downto 32); 
 buff_a2 <= buff_dout (31 downto 16); 

dout (15 downto 0);  

  

 buff_dout(63 downto 48);  
 buff_dout(47 downto 32); 

out (31 downto 16); 
<= buff_dout (15 downto 0);  

 start_b <= '1'; 
   state <= s_5;  
     

buff_dout(63 downto 48); 
f_dout(47 downto 32); 

buff_bq; 
 start_max <='1'; 

 s_7; 

 when s_7 => 
; 
 

 s_0; 
 finish <= '1'; 

  
  
  
      state <= s_2;  
    
   when s_2 => 
    idx <= "00
    state <= s
     
   when s_3 => 
    idx <= "00000110"
     buff_a0
  
 
   buff_a3 <= buff_
  start_a <= '1'; 
     state <= s_4;
      
  when s_4 =>   
  buff_b0 <=
     buff_b1 <=
  buff_b2 <= buff_d
   buff_b3 
 
   

  
  when s_5 => 

=     count <
  buff_old <= buf
    state <= s_6; 
  
  when s_6 => 
  buff_num1 <= buff_q; 

 buff_num2 <=  
 
    state <=

     
 
    state <= s_8
        
  when s_8 => 
   idx <= "00000111"; 

we <= '1';   
  state <=
 
   
  when others => 
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    we <= '0'; 
   e asnd c

  
r cess;

(buf count & buff_new); 
ut < dout; 

t

e; 
 end if;

o   end p
 
 
   
 
  
 addr <= idx; 
 din <= f_q & buff_bq & 
 buff_do = 
 
end r l; 
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#fx lt wmu ith DesignWare from CoreGen. 

E ieee.std_logic_1164.ALL; 
 ie .std_logic_arith.ALL; 
 ie .std_logic_signed.ALL; 

=32); 

 ( 
clk: IN std_logic; 

 a0, a1, a2, a3: IN std_logic_VECTOR (n-1 downto 0); 
 q: OUT std_logic_VECTOR(n-1 downto 0); 
 start : IN std_logic; 
 finish : OUT std_logic 
 ); 
END fxmult; 
 
ARCHITECTURE syn OF fxmult IS 
 
component DW02_prod_sum_inst  
port( 
 inst_A : in std_logic_vector(n*4-1 downto 0);   
        inst_B : in std_logic_vector(15*4-1 downto 0); 
        inst_TC : in std_logic;           
        SUM_inst : out std_logic_vector(47-1 downto 0)); 
end component; 
 
 
constant c0 : std_logic_vector (14 downto 0) := "000111101110000";     
-- 0.48242  
constant c1 : std_logic_vector (14 downto 0) := "001101011000101";     
-- 0.83654 
constant c2 : std_logic_vector (14 downto 0) := "000011100101100";     
-- 0.22412 
constant c3 : std_logic_vector (14 downto 0) := "111101111011100";     
-- -.12939 
 
signal buff_A : std_logic_vector(n*4-1 downto 0);  
signal buff_B : std_logic_vector(15*4-1 downto 0);  
signal buff_SUM : std_logic_vector(47-1 downto 0);  
signal step1: std_logic; 
signal buff_TC : std_logic := '1'; 
signal temp : std_logic_vector(n-1 downto 0); 
 
begin 
 
 
mult1: DW02_prod_sum_inst port map ( 
 

 
 
BRARY ieee; LI

US
USE ee
E eeUS

 
 
ENTITY fxmult IS 
 
neric (n: integer :ge

 
port 
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 inst_A => buff_A, 
 inst_B => buff_B, 

inst_TC => buff_TC, 
=> buff_SUM 

; 

3; 

  

------------- 

 

 
 SUM_inst 
 
); 
 
---------------------------- --

 
process 
gin   be

 
it until rising_edge (clk)wa

 
uff_Ab  <= a0 & a1 & a2 & a
buff_B <= c0 & c1 & c2 & c3; 
 
step1 <= start; 
   
end process; 
 
-------------

 
ocess pr

begin 
ntil rising_edge (clk); wait u

 
if (step = '1') then  
 temp <= shr ( buff_SUM, "1101"); 
end if; 
 
nish <= step1;fi

 
end process; 
 
q <= temp; 
  
end syn; 
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#DW02_prod_sum_inst 
 
libr
use 

ary IEEE,DWARE,DW02; 
IEEE.std_logic_1164.all; 

02_ od_sum_inst is 
neri ( 

L := 15; 
SITIVE := 4; 
URAL := 47 

: in std_logic_vector(inst_num_inputs*inst_A_width-1 

_B : in std_logic_vector(inst_num_inputs*inst_B_width-1 

ogic; 
 SUM_inst : out std_logic_vector(inst_SUM_width-1 downto 0) 
 ); 

W02_prod_sum_inst is 

f DW02_prod_sum 
_sum 

inst_num_inputs, SUM_width => inst_SUM_width ) 
ap ( A => inst_A, B => inst_B, TC => inst_TC, SUM => 

d inst; 

 
-- pragma translate_off 
library DW02; 
configuration DW02_prod_sum_inst_cfg_inst of DW02_prod_sum_inst is 
for inst 
    for U1 : DW02_prod_sum use configuration 
DW02.DW02_prod_sum_cfg_sim; end for; 
end for; -- inst 
end DW02_prod_sum_inst_cfg_inst; 
-- pragma translate_on 
 

use DWARE.DWpackages.all; 
e DW02.DW02_components.all; us

 
entity pr
    ge c 

DW
  
     inst_A_width : NATURAL := 32; 
     inst_B_width : NATURA
     inst_num_inputs : PO
     inst_SUM_width : NAT
     ); 
      port ( 
     inst_A 
downt  0o ); 

    inst 
downto 0); 
     inst_TC : in std_l
    
    
    end DW02_prod_sum_inst; 
 
architecture inst of D
 
begin 
 
    -- Instance o
  U1 : DW02_prod  

 generic map ( A_width => inst_A_width, B_width => inst_B_width, 
num_inputs => 
 port m
SUM_inst ); 
 
 
en
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#fxmult using ieee.arith.signed 

L; 

 

-1 downto 0); 
) 

td_logic_VECTOR (n-1+15 downto 0); 

gin 

rt= '1') then 

;     -- 0.83654 

tmp1 <= shr ( tmp, "1101");       --shift 13 

; 

; 

 
BRARY ieee; LI

USE ieee.std_logic_1164.AL
USE ieee.std_logic_arith.ALL; 

ALL;USE ieee.std_logic_signed.
 
 
ENTITY fxmult IS 

ger := 32); generic (n: inte
 
 port ( 
 clk, start: IN std_logic; 

 (n a0, a1, a2, a3: IN std_logic_VECTOR
std_logic_VECTOR(n-1 downto 0 q: OUT 

 ); 
END fxmult; 
 
ARCHITECTURE syn OF fxmult IS 
 
ignals  z0, z1, z2, z3, tmp, tmp1: s
 
be
 
ocess (clk) pr

begin  
  

if (sta
  z0 <= a0 * "000111101110000";     -- 0.48242   2bit bec 13bits 
fract 

1011000101"  z1 <= a1 * "00110
  z2 <= a2 * "000011100101100";     -- 0.22412 
  z3 <= a3 * "111101111011100";     -- -.12939 
  
  tmp <= z0 + z1 + z2 + z3;  
   

  
end if; 
d processen

 
 q <= tmp1(n-1 downto 0)
  
end syn; 
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#max.vhd 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_signed.ALL; 

 :=32); 

R (n-1 downto 0); 
UT std_logic_VECTOR(n-1 downto 0) 

buff_newmax,temp: std_logic_VECTOR(n-1 downto 0); 

 

'1') then 

es

' ) then 

en 
temp;  

 
buff_newmax <= oldmax; 

end if;  
d if;  

end process; 
newmax <= buff_newmax; 
end syn; 
 

 
 
ENTITY max IS 
generic (n: integer
 
 port ( 
 clk, start : IN std_logic; 
 num1, num2, oldmax : IN std_logic_VECTO
 newmax

); 
: O

 
END max; 
 
ARCHITECTURE syn OF max IS 
 
signal 
gin be

process (clk) 
begin 
if ( start = 
  
 if (num1 > num2) then 
   temp <= num1;  
  else 
   temp <= num2; 
 end if;  
end if;  
end process; 
 
proc s (clk)  
begin 
if ( start ='1
  
 if (temp > oldmax) th

 buff_newmax <=   
  else
   
 
en
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#float2fix.m 

lose all 

band5.txt'; 
nd5.txt'; 

mples = 460; 

'); 

 1: lines 
fprintf (fid,sdec2bin(data(ib,il),32,10)); 

 '); 

; 

 
c
clear all 
% Reading data ... 
input_file = './b4Wavelet/
utput_file = './b4wfix/bao
sa
lines = 400; 
ata=load(input_file); d
 
id =f  fopen (output_file, 'w
% 3-d and 2-d variables to store the image 
for ib = 1: samples 
    for 
       

il =
 
        fprintf (fid, '
  end   

        fprintf (fid, '\n'); 
end 
 
status = fclose(fid)
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#readoutput.m 

================================ 

ssee 

 

s from chickv20.cpp 
======== 

00; 

id, msg] = fopen('O TPUTIMG1.IMG', 'r'); 
ead(fid, [460, 400*65], 'float'); 

tatus = fclose(fid); 

 
% 3-d and 2-d variables to store the image 
I = zeros(samples, lines, bands); 
BandImage = zeros(samples, lines); 
 
% find BandImage from ImageFile 
for ib = 1: bands 
    for il = 1: lines 
        BandImage(:, il) = ImageFile(:, (il - 1)*bands + 
ib); 
    end 
    I(:, :, ib) = BandImage; 
end 
clear ImageFile; 
 
 
% Display a spectral image  
figure, imshow(I(1:230, 1:200, 4)) 
 
%==========================================================
========================== 

 
 
 
% ==================
% Yuan He 
% ECE Department 
% Univ. of Tenne
% 
% he@student.ece.utk.edu
% 
% This file is use to view result
%===========================================
 
close all 
 
samples = 460; 
lines = 4
bands = 65; 
 
[f U
[ImageFile, count] = fr
s
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img2 = load('tumorimage.txt'); 
gure, imshow(img2(:,:)) 

=====
============ 

a.txt'); 
or = load('tumordata.txt'); 

 

abel('Relative Fluorescence Intensity (RFI)') 

ot(Tumor', 'r') 

0.8])

fi
 
%=====================================================
===========
 
Normal = load('normdat
Tum
BGD = load('bgddata.txt');
 
figure, plot(Normal', ':b') 
xlabel('Bands (Channels)') 
yl
hold on 
pl
plot(BGD', 'g') 
hold off 
axis([0 66 0 
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