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ABSTRACT 

 
Xylem vessels have long been proposed as a key innovation for the ecological 

diversification of angiosperms by providing a breakthrough in hydraulic efficiency to support 

high rates of photosynthesis and growth.  However, recent studies demonstrated that angiosperm 

woods with structurally ‘primitive’ vessels did not have greater whole stem hydraulic capacities 

as compared to vesselless angiosperms.  As an alternative to the hydraulic superiority hypothesis, 

the heteroxylly hypothesis proposes that subtle hydraulic efficiencies of primitive vessels over 

tracheids enabled new directions of functional specialization in the wood.  However, the 

functional properties of early heteroxyllous wood remain unknown.  We selected the two species 

of Canellales from Madagascar to test the heteroxylly hypothesis because Canellaceae 

(represented by Cinnamosma madagascariensis) produces wood with vessels of an ancestral 

form, while Winteraceae, the sister-clade (represented by Takhtajania perrieri) is vesselless.  We 

found that heteroxylly correlated with increased wood functional diversity related mostly to 

biomechanical specialization.  However, vessels were not associated with greater stem hydraulic 

efficiency or increased shoot hydraulic capacity.  Our results support the heteroxylly hypothesis 

and highlight the importance integrating a broader ecological context to understand the evolution 

of vessels. 

 

 

 
 
 
 
 
 



 iv 

 
 

TABLE OF CONTENTS 
 
Introduction......................................................................................................................................1 
 
Materials and Methods.....................................................................................................................6 
 
Results............................................................................................................................................17 
 
Discussion......................................................................................................................................29 
 
Literature Cited..............................................................................................................................37 
 
Vita.................................................................................................................................................43 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

 
 
 

LIST OF FIGURES 
 
Figure 1.  Study site locations and growth forms of the two species investigated..………............7 
 
Figure 2.  Comparative cross sectional anatomy, tracheary element anatomy and cell contents of  
                 Takhtajania perrieri and Cinnamosma madagascariensis...........................................19 
 
Figure 3.  Comparative hydraulic performances of two populations of Cinnamosma  
                 madagascariensis and Takhtajania perrieri…………………………………….........22 
 
Figure 4.  Comparisons of frequency distributions and hydraulic contributions of tracheary  
                 elements in Cinnamosma madagascariensis and Takhtajania perrieri……................24 
 
Figure 5.  Wood density, biomechanical performance and energetic content of stem wood in  
                 Cinnamosma madagascariensis and Takhtajania perrieri……………………...........25 
 
Figure 6.  Comparative leaf anatomy and water relations in Cinnamosma madagascariensis and  
                 Takhtajania perrier.......................................................................................................27 

 

 

 

 

 

 

 

 

 



 

1 

This thesis is revised based on a paper published by Patrick Hudson, Jaqueline Razanatsoa and 

Taylor Feild: 

Hudson, P.J., J. Razanatsoa, and T.S. Feild. 2010.  Early vessel evolution and diversification in  
     wood function: Insights from the Malagasy Canellales. American Journal of Botany 97(1):  
     80-93. 
 

My primary contributions include (i) assistance in development of the questions 

addressed and hypotheses tested, (ii) travel to research localities and collection of physiological 

data, (iii) collection of anatomical data, (iv) data analysis, (v) assistance in figure construction, 

writing and editing.  

INTRODUCTION 

The early evolution and rise to ecological dominance by flowering plants (angiosperms) 

during the Mesozoic (130 to 65 million years ago) marked a profound change in the water- and 

carbon-use capacity of global vegetation (Bond, 1989; Becker, 2000; Feild and Arens, 2005, 

2007; Boyce et al., 2009; Feild et al., 2009a). Specifically, the vast majority of ecologically 

important angiosperms today function at rates of leaf CO2 and transpiration that are considerably 

greater than all other known living and extinct land plant clades (Bond, 1989; Brodribb and 

Feild, 2000; Pammenter et al., 2004; Brodribb et al., 2007; Boyce et al., 2009). The high 

productivity and transpiration that angiosperm leaves can supply has (1) founded diverse biotas 

that directly or indirectly require angiosperm productivity, (2) may have entrained increased 

rates of forest turnover, and (3) irreversibly changed rates of global biogeochemical cycles 

through increased nitrogen use and weathering (Knoll and James, 1987; Volk, 1989; Grimaldi, 

1999; Moreau et al., 2006; Crepet, 2009). 
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How and when angiosperms evolved their emblematic high rates of photosynthesis and 

growth remain enigmatic. However, the prerequisite that high CO2 uptake requires high 

transpiration means that understanding how the water conducting pipeline diversified during 

early angiosperm evolution represented a critical factor that enabled the evolution of angiosperm 

hyperproductivity (Sperry, 2003; Pammenter et al., 2004; Sperry et al., 2006; Brodribb et al., 

2007; Feild et al., 2009a). In this vein, xylem vessels have been viewed as an important feature 

of the vascular network that helped spark the rapid ecological sweep of angiosperms across the 

planet during the Cretaceous (Bailey, 1944; Carlquist, 1975; Doyle and Donoghue, 1986; Bond, 

1989; Crane and Lidgard, 1989; Lupia et al., 1999; Sperry, 2003; Pammenter et al., 2004; 

Brodribb et al., 2005; Feild and Arens, 2005; McElwain et al., 2005). Vessels, by virtue of their 

larger conduit sizes, furnish a greater capacity to conduct water than tracheids—their 

evolutionary antecedents (Brodribb and Feild, 2000; Sperry, 2003; Sperry et al., 2006). In 

addition, increases in the efficiency of the xylem by vessels may enable the same hydraulic flow 

for a given amount of transpiring leaf area supported, but with less investment in wood (Sperry, 

2003; Brodribb et al., 2005; Feild and Arens, 2007). Thus, vessels have been pointed to as 

innovations that allowed early angiosperms to take advantage of falling atmospheric CO2 during 

their Cretaceous radiation as compared to vesselless plants with more costly stems (McElwain et 

al., 2005). The hypothesis that angiosperms vessels resulted in increased flow capacity has in 

large part formed a conceptual cornerstone for an influential hypothesis that early angiosperms 

outcompeted most nonangiosperms during the Mesozoic (Doyle and Donoghue, 1986; Bond, 

1989; Becker, 2000; Lupia et al., 1999; Pammenter et al., 2004; Feild and Arens, 2005; 

McElwain et al., 2005; Lusk et al., 2007). 
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Though viewed as appearing early in angiosperm evolution (Doyle and Donoghue, 1986; 

Bond, 1989; Pammenter et al., 2004; McElwain et al., 2005), extensive anatomical evidence 

suggested that highly efficient vessels, defined as those consisting of long tubes with thousands 

of short and wide elements interconnected by simple perforation plates, were rare at the base of 

the extant angiosperm phylogeny as well as during the Cretaceous (Frost, 1930; Bailey, 1944; 

Carlquist, 1975, 2004; Wheeler and Baas, 1991; Carlquist and Schneider, 2002). Instead, vessels 

of many basal lineages exhibited a range of small anatomical departures from vesselless 

angiosperm tracheids. Such vessels, referred to as “basal vessels” (Sperry et al., 2007), possessed 

incompletely lysed pit membranes, had little differentiation between lateral pitting and endwall 

pitting of vessel elements, and contained elongated scalariform perforation plates. Compared to 

the vessels of most derived angiosperm clades, basal vessels appear to be less streamlined for 

water flow (Bailey, 1944; Carlquist, 1975, 2004; Carlquist and Schneider, 2002). Supporting that 

hypothesis, measured hydraulic capacities of woods with basal vessels overlapped with those of 

vesselless angiosperm woods, and these capacities were much lower than woods of derived 

eudicots with vessels bearing simple perforation plates (Sperry et al., 2007). Hydraulic capacity 

in these comparisons was defined as hydraulic conductivity (KH) divided by the cross-sectional 

area of xylem (KS = KH/sapwood area; Sperry et al., 2007). 

If early vessels did not provide a leap in hydraulic efficiency over vesselless wood at the 

whole stem level, then what processes favored early vessel evolution in angiosperms? One 

untested hypothesis is that primitive angiosperm vessels permitted new developmental potential 

for xylem specialization (Feild and Arens, 2007; Sperry et al., 2007; Feild et al., 2009a). For 

example, on a per xylem conduit basis, hydraulic measurements indicated that basal vessels were 
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on average more efficient than angiosperm tracheids (Hacke et al., 2007; Sperry et al., 2007). 

Therefore, fewer hydraulic cells appear to be necessary for a given KS in woods with basal 

vessels. Fewer cells dedicated to hydraulics in a given volume may permit the wood to function 

in other ways because KS would not be decreased by a loss of hydraulically dedicated wood 

volume. New wood functional properties promoted by vessels could result from the evolution of 

new cell types and/or altered proportions of cells dedicated to storage, radial transport, and 

mechanical functions relative to vesselless plants (Feild et al., 2009a). The manifestation of this 

effect, which vessels are a part of, is the broad phylogenetic trend of increasing heteroxylly with 

angiosperm diversification (Bailey, 1944; Carlquist, 1975, 2004; Wheeler and Baas, 1991; Baas 

and Wheeler, 1996; Carlquist and Schneider, 2002). However, the specific functional features in 

the wood that were involved during the early evolution of heteroxyllous wood remain unknown. 

The magnoliid lineage, Canellales, consisting of vessel-bearing Canellaceae (five to six 

genera, ~21 species) and its vesselless sister-group Winteraceae (four genera, ~65 species, Feild 

et al., 2000; Karol et al., 2000; Salazar and Nixon, 2008), represents a unique comparative 

system to dissect the complex web of functional responsibilities of wood that were involved in 

early vessel evolution (Feild et al., 2002; Baas et al., 2004; Rowe and Speck, 2004; Pratt et al., 

2007; Chave et al., 2009). A comparative analysis of vessel structure–function evolution 

conducted within a specific lineage offers the advantage of reducing the number of independent 

variables bearing on wood evolution to potentially expose a finer decomposition of the 

functional processes involved in trait evolution among closely related taxa (Edwards and 

Donoghue, 2006; Edwards, 2006; Bhaskar et al., 2007; Pratt et al., 2007). Although extant 

Canellaceae and Winteraceae radiated in divergent biogeographic realms (Doyle, 2000; Karol et 
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al., 2000; Salazar and Nixon, 2008), the eastern tropical montane rainforests of Madagascar 

represent the only region where the distributions of Canellaceae (Cinnamosma) and Winteraceae 

(Takhtajania) come into close ecological contact (Schatz, 2000; Feild et al., 2002). The 

exceptional nature of the range overlap in Madagascar suggested that a comparative study of 

Canellales from the region might provide insights on the ecophysiological consequences of early 

vessel evolution. Such a suggestion was made because occurrence in the same climatic regime 

and biogeographic context may permit a clearer view of the possible ecophysiological 

advantages of early vessels (Feild et al., 2002). Although some systematic anatomy has been 

presented on Malagasy Canellales (Wilson, 1960; Carlquist, 2000), no comparative data exist on 

how the functional responsibilities of the xylem relate to tracheary element structure and 

ecological preference. 

Our goal in the current study was to understand how early vessel evolution was integrated 

with overall wood function by comparing the growth habits, stem hydraulic and biomechanical 

structure–function relations, as well as shoot ecophysiological performances of two species of 

Canellales with and without vessels. We investigated three questions: (1) Do xylem vessels 

enable greater hydraulic efficiency relative to tracheids? (2) What are the functional 

consequences of an early experiment in heteroxylous vasculature evolution? (3) How are 

vesselless and vesselled woods related to leaf function? We discuss how our results bear on the 

early selective pressures for the tracheid–vessel element developmental transition in early 

angiosperms. 
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MATERIALS AND METHODS 

Field sites and study species— 

We studied two species: vessel-bearing Cinnamosma madagascariensis Danguy 

(Canellaceae) and vesselless Takhtajania perrieri (Capuron) Baranova & J.-F. Leroy 

(Winteraceae). These species were investigated at two relatively close (~40 km) sites in 

northeastern Madagascar and from one more distant site located in the central highlands of 

Madagascar (Fig. 1, Table 1).  Takhtajania perrieri is the only member of the genus and is 

endemic to Madagascar (Schatz, 2000). There are at least three species of Cinnamosma in 

Madagascar (Schatz, 2001). We focused on C. madagascariensis because the species occurs in 

wet, humid, evergreen, tropical forests along the eastern mountains of Madagascar, which are 

climatically most similar to the known populations of Takhtajania (Fig. 1) (Schatz, 2001). The 

other Cinnamosma species occur only in drier or warmer lowland, evergreen, tropical habitats 

(Schatz, 2001). However, some populations of C. madagascariensis occur in littoral tropical 

rainforests that are warmer and more evaporative than the sites we sampled (Table 1) (Bollen et 

al., 2004). We sampled two populations having climatic conditions that came closest to the 

climatic zone of Takhtajania (Table 1). Because of logistical constraints, we only conducted 

stem hydraulic measurements (see below) on the population of C. madagascariensis from 

Réserve Spécial Ambohitantely (Table 1). The full complement of ecophysiological observations 

outlined below was made on C. madagascariensis from Parc National Marojejy and T. perrieri at 

Réserve Spécial Anjanaharibe-Sud (Table 1). 
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Figure 1. Study site locations and growth forms of the two species investigated. (A) Vesselless Takhtajania perrieri 

was sampled at Réserve Spécial Anjanaharibe-Sud Reserve (denoted as an open square, 14°44′S, 49°28′E, 1100 m 

a.s.l., 10 km from Andapa). Vessel-bearing Cinnamosma madagascariensis from two sites (denoted by open 

circles): Réserve Spécial Ambohitantely, 18°9′S 47°16′E, 1500 m a.s.l., Central Highlands and Parc National 

Marojejy, 14°26′S 49°45′E, 12 km from the village of Manatenina, 400–700 m a.s.l. The known distributions of T. 

perrieri (filled squares) and C. madagascariensis (filled circles) are provided (GBIF Data Portal 2009). (B) Growth 

habit of an adult C. madagascariensis tree from PN Marojejy. (C) Growth habit of an adult T. perrieri at RS 

Anjanaharibe-Sud. Scale bar: (A) 150 km, (B) 50 cm, (C) 30 cm. 
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Table 1. Details of field sites of the two species investigated. References for climatic and vegetation characteristics 

were: Ambohitantely (Pareliussen et al., 2006), Anjanaharibe-Sud (Goodman, 1998), and Marojejy (Goodman, 

2000; Raxworthy et al., 2008). 

Locality Information Cinnamosma madagascariensis Population 1 Cinnamosma madagascariensis Population 2 Takhtajania perrieri 

Locality 
       Site 
       Elevation (m a.s.l.) 

 
PN Marojejy  
400–700 

 
RS Ambohitantely 
1500 

 
RS Anjanaharibe-Sud 
1100 

Climate 
       MAT (°C)  
       Rainfall (mm⋅yr−1) 
       Cloud Input 
       Humidity 

 
25  
2200   
low 
high 

 
16.5  
1823   
moderate 
moderate 

 
16  
3600  
high 
high 

Vegetation 
characteristics 
       Forest Type 
       Canopy Height (m) 
 

 
Tropical premontane rainforest 
20–25   

 
Ttropical montane rainforest 
15–20  

 
Tropical montane cloud 
forest 
10–15  

Notes: MAT, mean annual temperature 
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Stem hydraulic conductivity— 

We measured stem hydraulic conductivity (KH; kg⋅m-1⋅s-1⋅MPa-1) using a portable 

flowmeter (Brodribb and Feild, 2000). KH was determined by measuring the pressure drop across 

a PEEK capillary tube (Upchurch Scientific, Oak Harbor, Washington, USA) of known 

conductance with the stem under a positive head pressure. We measured stems under 0.075 to 

0.09 MPa using an air-filled captive air tank pressurized with a hand pump. We used an 

electronic manometer (± 0.001 MPa resolution; model 840081, SPER Scientific, Scottsdale, 

Arizona, USA) to measure the head pressure and pressure drop across the stem segment during 

flow. The flowmeter was filled with filtered (to 0.2 mm), degassed water from nearby streams. 

Potassium and calcium ions can significantly influence stem KH (Zwieniecki et al., 2001). 

We were unable to control ionic concentrations for KH measurements. However, we found that 

greenhouse plants of Drimys winteri (Winteraceae) and Canella winterana (Canellaceae) both 

displayed approximately a 25% increase in stem KH to perfusing solutions of KCl ranging from 

15 to 100 mM as compared to distilled water (T. S. Feild, unpublished observations, 2001). 

These results suggest that our lack of control of ionic solution concentration would not have 

altered relative hydraulic differences between C. madagascariensis and Takhtajania. 

We cut undamaged branches with fully expanded leaves from the subcanopy. We 

checked for native embolism by flushing several stem segments of each species with 0.2 MPa 

pressurized, degassed, and filtered water using a syringe. We then observed whether bubbles 

were pushed out of the xylem. When plants were sampled on wet, cloudy mornings (0700–0830 

hours) (Feild and Balun, 2008), we found no evidence of native embolism in both species. We 

cut stem segments from branches while underwater. We checked that all measured stems were 
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longer than the longest functional conduit (i.e., 20 cm in C. madagascariensis as measured by air 

injection; Brodribb and Feild, 2000). Takhtajania stems, although vesselless, were measured at 

the same dimensions to facilitate comparisons. For Takhtajania and the two populations of C. 

madagascariensis, we sampled five individual plants and two branches from each individual for 

hydraulic measurements. 

From hydraulic flux data, we calculated sapwood-area specific hydraulic conductivity 

(KS; kg⋅m-1⋅s-1⋅MPa-1) as KH divided by the sapwood cross-sectional area with the pith area 

subtracted (Feild and Balun, 2008). Sapwood cross-sectional areas were determined on portions 

of measured stem tissue preserved in 50% ethanol using a Zeiss SterREO Discovery.V8 

dissecting microscope (Carl Zeiss MicroImaging, Gottingen, Germany) and ImageJ software 

(National Institutes of Health, Bethesda, Maryland, USA). We calculated conduit-area specific 

hydraulic conductivity (KC; kg⋅m-1⋅s-1⋅MPa-1) as stem KH divided by the cross-sectional area of 

hydraulic lumens in a stem (Sperry et al., 2007). We calculated per capita conduit specific 

conductivity, defined as the average KH attributable to vessels and tracheids in C. 

madagascariensis as well as tracheids of Takhtajania. In these calculations, we assumed that 

fibers did not participate in hydraulic flow. Next, we divided KH by the number of conduits in a 

measured stem that were counted using criteria described below to specify cell types. We 

determined the leaf-area specific hydraulic conductivity (KL, kg⋅m-1⋅s-1⋅MPa-1) as KH divided by 

the surface area of leaves distal to the cut end of the segment. Using digital image analysis 

software on scanned images of leaves (ImageJ, NIH Image, Bethesda, MD, USA), we quantified 

leaf area. Shoot Huber value (HV) was calculated as sapwood area divided by the distal leaf area. 
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Xylem anatomy— 

We isolated tracheary elements using acetic acid, hydrogen peroxide, and heat (Ruzin, 

1999). Macerated wood was stained in 1% aqueous safranin, vortexed, and tracheary cells were 

pipetted onto slides. We imaged cells with an upright microscope (Axio Imager M1, Zeiss), and 

cells were analyzed for anatomical characteristics using ImageJ. The observations described 

below were made on three stems for each species. 

For tracheary elements (including fibers of C. madagascariensis), we quantified mean 

length, lumen diameter, wall thickness, and the percentage of surface area devoted to pits (Hacke 

et al., 2007). Diameters and wall thicknesses of T. perrieri and C. madagascariensis conduits 

were derived from transverse sections from three stem segments of each species imaged from a 

microscope and 250 to 300 measurements of each variable per species (Hacke et al., 2007). 

Three cross sections of three stems for each species were imaged at 200× to estimate areas of cell 

types. Pit area was assessed on 50 cells for each class at 400× to 600×. To quantify tracheary 

element diameter, we measured each element’s lumen in a stem cross section was traced in 

ImageJ to determine the area of the conduit lumen. Then, the diameter of the circle with equal 

area was calculated to produce the lumen diameter for all cell types in both species. Tracheary 

element diameters were analyzed for frequency distribution in diameter classes of 5-mm 

increments for the relative contribution of each diameter class to the sum of all conduits raised to 

the fourth power of the radius. The sum was proportional to xylem hydraulic conductance, 

assuming that xylem conduits acted as ideal capillaries (i.e., Hagen–Poiseuille equation; Feild et 

al., 2002). Mean hydraulic diameters of tracheary elements were calculated as described 

previously (Hacke et al., 2007). 
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We distinguished vessel elements, fibers, and tracheids in C. madagascariensis on the 

basis of statistical differences in wall thicknesses that correlated with tracheary element pitting 

such that we could categorize the frequencies of cell types based on thickness measurements.  

Distinguishing tracheids from fibers is difficult because of blurry distinctions in pitting between 

the two cell types (Carlquist, 1975, 2004). However, we found that such a situation did not occur 

in C. madagascariensis. Tracheids had consistently different wall thicknesses and pitting 

characteristics from fibers. Using these assessments, we were able to normalize the densities of 

cell types to a 1-mm2 of sapwood for both species. With these results, we expressed KC in 

Cinnamosma on the basis of vessel- and tracheid-conduit areas. Finally, we quantified cross-

sectional differences in ray tissue and xylem parenchyma between the two species on digital 

images (Pratt et al., 2007). 

 

Wood density and stem biomechanics— 

Wood density (ρwood) was calculated as dry mass of stem wood divided by fresh volume 

(g⋅cm-3) using volumetric displacement. We cut in half and removed the pith and bark of five 3-

cm long and 1-cm thick pieces of wood. Next, a syringe needle was used to submerge each 

sample in a 60 mL beaker on a field portable balance (± 0.001 g resolution, Denver Instruments, 

Denver, Colorado, USA), and the displacement of water measured. We dried the samples at 

100°C in an oven overnight and measured them for dry mass. We accounted for the effect of 

temperature on the density of water by normalizing values to 20°C. 

The elastic modulus of wood from each species was calculated using four points bending 

tests (Chapotin et al., 2006). The modulus of elasticity (E, GPa) was  
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E = [Fa(3L2 – 4a2)/(24yI)] 

where F was the force (N) applied to each point, L (m) was the distance between the two 

supports, a (m) was the distance between the support and the point of force application, I was the 

second moment of area of the stem section (m4), and y (m) was the vertical deflection at the 

center of the segment. I was calculated by approximating the stem cross section as an ellipse 

(Niklas, 1992). An appropriate force was used such that vertical deflection was small with 

respect to the length of the stem segment (less than 5%). We selected five straight stems for each 

species, cut the stems to 15 cm in length, and stripped them of bark before bending tests. Bark 

was removed to limit measured E to a mechanical property of the wood. Stem diameters along 

the length were then measured with a micrometer to the nearest 0.1 mm. Pith was ignored in our 

calculations, as it should have only a minimal contribution to the mechanical properties of the 

stem (Niklas, 1992). To relate biomechanical measurements to measured stem hydraulic 

capacities, we conducted our bending tests on the most distal branches for both species. 

 

Measurements of xylem energy content— 

Wood samples used for ρwood were burned in an LECO AC-350 isoperibol calorimeter 

(LECO, St. Joseph, Michigan, USA) to determine their heat of combustion. Samples were 

ground to a fine powder and then dried again at 75°C to a constant mass. Approximately 0.5 g of 

sample was combusted in the bomb calorimeter in accordance with the ASTM D240-02 (2007) 

standard test method for heat of combustion. Heat of combustion was expressed on a fresh 

volumetric basis, and dry mass basis represented a measure of wood construction cost. Five 

samples for energetic content from five different stems were measured for each species. 
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Leaf ecomorphic traits— 

Because of the remoteness of our field sites, we were unable to measure leaf gas 

exchange performances. Therefore to infer relative differences in leaf gas-exchange capacity, we 

used a well-supported anatomical proxy of leaf water loss and CO2 uptake (Parlange and 

Waggoner, 1970; Brodribb et al., 2007; Boyce et al., 2009; Kaiser, 2009). We inferred maximum 

leaf water vapor conductance (mmol H2O⋅m-2⋅s-1) from the structure of stomatal system and a 

previously published one-dimensional diffusion equation as 

gsmax = 1/{[(d/πab) + ln(4a/b)/πa]/DN} 

where a = guard cell pore length/2; b = guard cell pore width/2; d = guard cell pore depth; D = 

diffusivity of water vapor in air; N = guard cell density (Parlange and Waggoner, 1970; Brodribb 

and Hill, 1997). Measurements of d were made on cross sections of formalin-acetic acid-alcohol 

(FAA, made by mixing 1 part formalin, 0.5 parts acetic acid and 5 parts ethanol in 3.5 parts DI 

water) fixed leaves embedded in a plastic resin (JB-4, Polysciences, Warrington, Pennsylvania, 

USA). The resin was polymerized according to the manufacturer’s instructions. We sectioned 

samples (7 mm thick) using a tungsten carbide blade on a rotary microtome (RM2245, Leica 

Microsystems, Wetzlar, Germany). Twenty guard cell pores from each species were imaged at 

400× and measured with Image J. We determined a and N on safranin-stained, macerated 

cuticles that were isolated by using an accepted procedure (Feild et al., 2009b). Fifty guard cells 

were imaged at 400× and measured with Image J, and ten 4 mm × 4 mm sheets of cuticle were 

counted for N at 200×. The value b was taken as one-third of the guard cell pore length (Osborne 

et al., 2004). Geometric criteria for measuring guard cell pore length and depth followed Lawson 

and colleagues (1998). 
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The value gsmax calculated from stomatal pore dimensions correlates well with CO2 

uptake and leaf hydraulic conductance (Brodribb and Hill, 1997; Kaiser, 2009). However, this 

equation does not take into account other resistors, such as intercellular conductance, the 

presence of internal cuticle, and ornamentations to the stomatal pore complex that pare back 

effective diffusional aperture (Brodribb and Hill, 1997; Kaiser, 2009). Because C. 

madagascariensis and T. perrieri did not possess stomatal plugs (Bongers, 1973; Feild et al., 

2000), gsmax based on stomatal pore dimensions is likely to be a relatively good approximation of 

leaf maximum gas-exchange capacity (Brodribb and Hill, 1997; Kaiser, 2009). 

In addition, we made observations on the cross-sectional anatomy of leaves to test for 

differences in leaf structure related to the optical processing of photosynthetically active 

radiation, including mesophyll cell structure and leaf thickness (Smith et al., 1997; Smith and 

Hughes, 2009). Finally, leaf mass per area (LMA, g⋅m-2) and leaf size (cm2) were determined for 

20 leaves of each species. All leaves measured were undamaged and fully expanded. Leaves 

were scanned on a portable scanner, measured using ImageJ, and dry mass determined after 

drying for 2 d at 65°C. 

 

Pressure–volume analysis of drying leaves— 

Pressure isopleths (bulk leaf water potential [ΨW] vs. relative water content [RWC]) of 

leaves were assessed by repeated measures (four to six observations per leaf) of mass and ΨW 

using accepted procedures (Sack et al., 2003). We collected seven fully expanded and 

undamaged leaves for each species at maximum field hydration before sunrise (0600 to 0700 
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hours), and checked ΨW to verify that it was greater than 0.05 MPa before beginning a pressure–

volume (PV) curve. From the initial point, leaves were desiccated, and alternately weighed and 

ΨW measured until the leaf was well below the turgor loss point. We weighed leaves on a field 

portable balance, and we determined ΨW with a pressure chamber. Our field-portable pressure 

chamber system consisted of a pressure chamber (PMS-1000 chamber, Corvallis, Oregon, USA), 

a digital pressure gauge (± 0.01 bar, Ashcroft, Stratford, Connecticut, USA), and 1-L volume 

stainless steel cylinder (Swagelok, Olon, Ohio, USA) in series with a high-pressure hand pump 

(three-stage pump PCP, Axsor, Sweden, up to 7 MPa). A hand lens (10×) was used to observe 

the cut end of the petiole for the exact moment of sap exudation. We determined the leaf dry 

mass after 48 h of drying at 65°C. Fresh masses and dry mass values were used to calculate 

RWC (Sack et al., 2003). We determined the ΨW and RWC at the turgor loss point using 

accepted curve-fitting procedures of PV data (Sack et al., 2003) in the program Sigma-Plot 

(Jandel Scientific, SPSS, Chicago, Illinois, USA). 

 

Statistical analyses— 

All data were analyzed using a statistical analysis program (PASW Statistics 17, SPSS). 

Mann–Whitney U tests were applied to the ecophysiological and structural data to test for 

statistically significant differences between species. 
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RESULTS 

Growth forms— 

Cinnamosma madagascariensis occurred as a treelet to small tree up to 8 m tall with a single 

stem bole up to 13 cm diameter at breast height (dbh). No evidence of basal sprouting was 

observed in either of the populations of C. madagascariensis that we studied. The canopies of C. 

madagascariensis trees were wide and deep with several interlacing, distichously branched distal 

branches (3 to 5 mm in diameter on most distal branches with little pith; Fig. 1B). Leaves were 

retained along much of the length of terminal shoots. Internodes of C. madagascariensis (1 to 2 

cm long) were longer than T. perrieri. Plants occurred on flat areas of forested slopes in the 

understory to subcanopy and away from gaps. 

In contrast, Takhtajania perrieri formed a shorter tree up to 5 m tall with stems up 10 cm 

dbh. All adult plants we observed consisted of multiple trunks. Most plants sprouted from the 

base, with one to eight basal and pithy shoots. Plants occurred near trails, on cyclone-influenced 

ridge crest forests, and gap-phase vegetation. The canopies formed by T. perrieri were irregular 

due to leaning trunks, and the canopies were sparsely leaved with irregularly oriented 

candelabriform branches bearing leaves in tufted whorls at the tips (Fig. 1C). The terminal 

branches of Takhtajania, from 8 to 15 mm, were thicker than C. madagascariensis and consisted 

primarily of pith. Internodes of T. perrieri were short (0.4 to 0.9 mm long), and numerous leaf 

scars subtended each whorl. 
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Stem xylem anatomy and tracheary element structure— 

In transverse section, we found, as reported earlier, that the xylem of Takhtajania perrieri 

was homoxylous, with a dominance by tracheids of uniform lumen diameter and wall thickness 

(Fig. 2A, Table 2); (Carlquist, 2000). In contrast, transverse sections indicated that the wood of 

Cinnamosma madagascariensis was more heteroxylous (Fig. 2B) (Wilson, 1960). Compared to 

T. perrieri, axial cell types ranged widely in mean lumen diameter (from 8.9 µm in fibers to 36.7 

µm in vessels) and mean wall thicknesses (1.5 µm in vessels to 4.3 µm in fibers; Table 2). In 

Takhtajania, we confirmed previous observations that tracheid endwalls had uniseriate and 

biseriate circular pits as well as occasionally dense scalariform pitting at the endwalls (Fig. 1C) 

(Carlquist, 2000). In C. madagascariensis, vessels were characterized by variably shaped, 

elongated, many-barred scalariform perforation plates, which accounted for on average 64.4% ± 

13.8 SD of element length. 

Tracheids of Takhtajania and Cinnamosma differed in structure (Table 2, Fig. 2C and D). 

Takhtajania’s tracheids were twice as long, 27% wider in lumen diameter, and had 

approximately 50% more surface area devoted to pits compared with C. madagascariensis 

tracheids (Table 2). Tracheid wall thicknesses of both species tracheids were similar (Table 2). 

Unlike Takhtajania tracheids, however, no C. madagascariensis tracheids possessed scalariform 

pitting. Compared to vessel elements and fibers, C. madagascariensis tracheids occupied an 

intermediate position in wall thickness as well as the area of an individual element devoted to 

pits (Table 2). The lateral pitting of these tracheids was most often uniseriate, with some 

biseriate pitting (Fig. 2D). 
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Figure 2. Comparative cross-sectional anatomy, tracheary element anatomy, and cell contents of Takhtajania 

perrieri and Cinnamosma madagascariensis. (A) Transverse section of T. perrieri wood, showing tracheids of 

nearly uniform diameter. (B) Transverse section of C. madagascariensis wood illustrating the greater variation 

tracheary element diameters. (C) Endwalls of macerated T. perrieri tracheids. The two tracheids illustrate the 

extremes of endwall pitting anatomies that we observed. (D) Variations in endwall pitting of fibers, tracheids, and 

vessel elements in C. madagascariensis. (E, F) The percentages of the transverse surface area (SA) contributed by 

different cell types for (E) T. perrieri and (F) C. madagascariensis. We classified cell types in C. madagascariensis 

using wall thickness measurements as described in the Materials and Methods. Scale bar: (A, B) 100 µm, (C, D) 40 

µm. 
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Table 2. Comparative quantitative anatomical characteristics of the stem secondary xylem from vessel-bearing 

Cinnamosma madagascariensis (Marojejy population only; Table 1) and vesselless Takhtajania perrieri. Letters 

denote significance of difference among variables of at least P < 0.01 (Mann-Whitney U), and errors are standard 

deviations about the mean. Sample sizes for individual means are reported in the Material and Methods section. NA 

denotes not applicable. 

 Cinnamosma madagascariensis Takhtajania perrieri 

Tracheary Element Trait Vessels Tracheids Fibers Tracheids 
Element Length (µm) 948 ± 135A 840 ± 127A 815 ± 173A 1779 ± 291B 
Mean hydraulic diameter (µm) 37.0 ± 1.9A 16.4 ± 1.7A NA 21.2 ± 1A 
KH per conduit (× 10−10) 71.0 ± 1.6A 6.6 ± 2.4B NA 6.36 ± 1B 
Element diameter (µm) 37 ± 9.5A 13.4 ± 2.5B 8.9 ± 0.8C 18.2 ± 4.1D 
Element density (number mm2) 160 ± 41A 76 ± 38B 2446 ± 617C 1421 ± 137D 
Wall thickness (µm) 1.5 ± 0.1A 2.5 ± 0.4B 4.3 ± 0.2C 2.64 ± 0.2B 
% Wall area with pits 25.1 ± 5A 18.1 ± 4B 4.1 ± 2C 33.2 ± 7 D 
Pit membrane area (µm2) Perforation plate: 35.5 ± 5.0 NA 

Lateral pitting: 26.4 ± 10.7A 
30.9 ± 7.3A 17.7 ± 5.5B 56.8 ± 13.9C 

Perforation plate length (µm) 296.2 ± 85.3 NA NA NA 
Number of bars per perforation plate 88 ± 26.3 NA NA NA 
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Tracheids composed 77% ± 6 SD of the transverse surface area of Takhtajania’s stem 

xylem, with 23% of the surface area occupied by rays (Fig. 2E). In contrast, we found that fibers 

dominated transverse xylem surface area (65% ± 5 SD) in C. madagascariensis, with rays (20 ± 

6% SD), water-conducting cells (15% total; 13% ± 4 SD, vessels; 2% ± 1 SD, tracheids), and 

axial parenchyma (5% ± 3) at smaller fractions (Fig. 2F). Vasicentric parenchyma surrounded 

each vessel or vessel group (Fig. 2F). 

 

Stem hydraulics, biomechanics, and wood energy content— 

Takhtajania possessed an approximately 65% greater average KL and HV than both 

populations of C. madagascariensis (Fig. 3A, B).  However, we found that average KS of C. 

madagascariensis from Marojejy was statistically indistinguishable from that of T. perrieri (Fig. 

3C). Mean KS, HV, and KL values from both C. madagascariensis did not differ significantly 

(Fig. 3). However, mean KS in branches from the Cinnamosma population from Ambohitantely 

was ∼20% lower than T. perrieri (Fig. 3C). When normalized to conduit area, mean KC of the 

two populations of C. madagascariensis were both nearly three times greater than T. perrieri 

(Fig. 3D). Mean KC did not differ between the two populations of C. madagascariensis (Fig. 3). 

Vessels accounted for the majority (96%) of KC in both populations of C. madagascariensis (Fig. 

3E). On a per capita basis, vessels possessed an order of magnitude greater conductivity than 

tracheids (Table 2).  

For T. perrieri, the largest proportion of tracheids (mean = 39% ± 14 SD) fell in the 15–

20 µm diameter class (Fig. 4A).  By comparison, most of the vessels (30% ± 20 SD) in  
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Figure 3. Comparative hydraulic performances of two populations of Cinnamosma madagascariensis (black plots 

subtended by numbers referring to population sites, Table 1) and Takhtajania perrieri (white plots). The following 

traits are depicted: (A) leaf-area specific hydraulic conductivity (KL), (B) Huber value (HV, sapwood area divided 

by distal leaf area), (C) sapwood-area specific hydraulic conductivity (KS), (D) Conduit-area specific hydraulic 

conductivity (KC). In (E), the breakdown of KC by vessel (black bars) and tracheid (gray bars) contributions for the 

two populations of C. madagascariensis are depicted. Letters denote significance at least P < 0.05 (Mann–Whitney 

U). Sample sizes are provided in the Materials and Methods. 
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C. madagascariensis occurred in the 25–30 µm diameter class (Fig. 4B). When modeled as 

pipes, tracheids of the 15–20 µm size class was responsible for the largest proportion of 

hydraulic flow (34% ± 15 SD, Fig. 4C). The highest proportion of flow (33% ± 22 SD, Fig. 4D) 

occurred through vessels in the 30–35 µm diameter class. Vessels accounted for 96% ± 3 SD of 

idealized hydraulic flow, and tracheids were responsible for 4% ± 3 SD. (Fig. 4D). 

Both populations of C. madagascariensis possessed a 45% greater mean ρwood as 

compared to T. perrieri (Fig. 5A).  We measured a 35% greater E in C. madagascariensis from 

Marojejy relative to T. perrieri (Fig. 5B). Consistent with this finding, we observed that branches 

bent to 40° relative to the stem axis snapped in T. perrieri, whereas twigs of C. 

madagascariensis did not snap with 90° bending. 

The mean heat of combustion of C. madagascariensis dry wood on a mass basis was 

approximately 3% less than that of T. perrieri (Fig. 5C). However, when expressed on a 

volumetric basis, the amount of energy per volume of fresh wood in C. madagascariensis was 

41% greater than T. perrieri wood (Fig. 5D). 

Leaf functional traits— 

Both species had similar guard cell densities, guard cell pore depth, but the mean guard cell 

length of T. perrieri was larger (Table 3). Consequently, calculated gsmax based on guard cell 

dimensions and diffusional theory of C. madagascariensis was 39% lower than T. perrieri 

(Table 3). In cross section, we observed that C. madagascariensis developed a single layer of 

palisade parenchyma in the mesophyll, and some cells below the layer were columnar (Fig. 6A).  
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Figure. 4. Comparisons of frequency distributions and hydraulic contributions of tracheary elements in Cinnamosma 

madagascariensis and Takhtajania perrieri. Distributions of conduit diameter frequencies for (A) T. perrieri 

tracheids and (B) tracheids (gray bars) and vessels (black bars) in C. madagascariensis. Distributions of conduit 

diameter frequencies and percent contribution to calculated hydraulic flows for (C) T. perrieri tracheids and (D) C. 

madagascariensis tracheids (gray bars) and vessels (black bars). Sample sizes and hydraulic calculations using the 

Hagen–Poiseuille equation are provided in the Materials and Methods. 
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Figure 5. Wood density, biomechanical performances, and energetic contents of stem wood in Cinnamosma 

madagascariensis (black plots) and Takhtajania perrieri (white plots). (A) Wood density (ρwood) was greater in C. 

madagascariensis than T. perrieri. (B) C. madagascariensis stems had a greater Young’s elastic modulus (E). (C) 

On a mass basis, wood of Takhtajania had a 3% greater energetic content than Cinnamosma. (D) On a fresh 

volumetric basis, wood of C. madagascariensis had a higher energetic content than Takhtajania. Asterisks denote 

significance of difference between species means: **P < 0.01 and ***P < 0.001 (Mann–Whitney U). Sample sizes 

are provided in the Materials and Methods. 
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A hypodermis was present above the palisade layer (Fig. 6A). In contrast, the leaf cross section 

of Takhtajania consisted only of spongy mesophyll tissue (Fig. 6B). Leaves of 

C.madagascariensis were 25% thinner than Takhtajania (Table 3). Leaves of C. 

madagascariensis were smaller in leaf mass per area as compared to Takhtajania (Table 3), but 

leaves of Takhtajania were larger than those of C. madagascariensis (Table 3). In addition, the 

leaves of C. madagascariensis were more resistant to desiccation in comparison to T. perrieri. 

Cinnamosma madagascariensis lost turgor pressure at ΨW of −2.1 MPa and RWC of 86.1% vs. 

ΨW  of −1.2 MPa and 93.4% RWC for turgor loss in T. perrieri (Fig. 6C,D). 
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Figure 6. Comparative leaf anatomy and water relations in Cinnamosma madagascariensis and Takhtajania perrieri. 

In cross section, (A) C. madagascariensis leaves had a palisade layer as well as a hypodermis, whereas (B) T. 

perrieri leaves were composed of spongy mesophyll tissue. Scale bars: = 100 µm. (C) Moisture release and (D) 

pressure–volume curves demonstrate that leaves of C. madagascariensis (black circles) have a greater ability to 

maintain turgor under drought conditions than T. perrieri (white circles). Sample sizes are provided in the Materials 

and Methods. 
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Table 3. Comparative functional trait values (mean ± SD) of Cinnamosma madagascariensis and Takhtajania 

perrieri leaves. Asterisks denote significance of difference between species means: *P < 0.05, **P < 0.01, ***P < 

0.001 (Mann–Whitney U).   NS denotes not significant at α = 0.05.  Sample sizes for individual means are reported 

in the Material and Methods. 

Leaf Trait C. madagascariensis T. perrieri 
Stomatal density (mm−2) 148.3 ± 7.4 147.8 ± 17.3 NS 
Guard cell size (length × width, µm) 25.7 ± 2.4 x 21.2 ± 1.3 29.1 ± 2.2 x 22.5 ± 1.7***, ** 
Pore length (µm) 6.48 ± 0.85 8.32 ± 0.89*** 
Pore depth (µm) 10.16 ± 2.07 9.76 ± 0.92 NS 
gsmax (mmol H2O⋅m−2⋅s−1) 125.49 203.23 
Leaf size (cm2) 32.2 ± 5.3 58.1 ± 18.3*** 
Leaf thickness (µm) 312.9 ± 7.7 404.5 ± 21.4*** 
LMA (g⋅m−2) 100 ± 0.1 111 ± 0.1** 
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DISCUSSION 

We found that vessels of an ancestral form, characterized by long and low-angle 

scalariform perforation plates with up to 120 pit bars (Frost, 1930; Bailey, 1944; Carlquist, 1975, 

2004; Carlquist and Schneider, 2002), were associated with substantial divergence in wood 

function as compared to a relative without vessels. Vessels of C. madagascariensis provided 

approximately 3-fold greater KH normalized to the cross-sectional area of conduit lumens (KC) in 

comparison to the vesselless wood of T. perrieri. Increased KC decreased by 75% the amount of 

wood cross-sectional area devoted to axial hydraulic flow as compared to T. perrieri. Although 

C. madagascariensis possessed tracheids (Wilson, 1960), we found that vessels were responsible 

for the vast majority of KC. Consistent with greater conduit efficiency, the vessel elements of C. 

madagascariensis possessed several anatomical differences involved in greater flow efficiency in 

spite of a large decrease in the numerical density of hydraulic cells in the wood. These features 

included increased pit membrane area by perforation plates, ability to develop wider lumens, and 

thinner walls than T. perrieri tracheids. Although we were unable to determine the vessel length 

distribution in the field, we note that maximum vessel length in C. madagascariensis was ~20 

cm by air injection. This observation suggests another significant increase in conduit efficiency 

of vessels relative to tracheids (Pittermann et al., 2006; Sperry et al., 2006, 2007; Hacke et al., 

2007). 

However, increased hydraulic efficiencies of basal vessels relative to tracheids occurred 

only at the conduit level because hydraulic efficiencies of whole stem (i.e., the sapwood level, 

KS) of C. madagascariensis and T. perrieri were equivalent (Table 2, Fig. 3). The functional 

distinction between KC and KS is important because differences in KS reflect overall wood 
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allocation costs to supply transpiring leaves with water (Brodribb and Feild, 2000; Sperry, 2003; 

Baas et al., 2004; Sperry et al., 2006). In addition, vessels of C. madagascariensis were 

associated with lower capacity of the wood to supply transpiring leaves with water (lower KL) in 

C. madagascariensis (Fig. 3). Instead of reducing overall shoot costs, we found that greater KC 

furnished by basal vessels increased the area available in the wood to function differently from 

vesselless Winteraceae wood. 

 

Functional divergence of Cinnamosma and Takhtajania wood— 

Our results indicated that the majority of xylem cross-sectional area “freed up” by the 

basal vessels of C. madagascariensis was allocated to biomechanical function. This conclusion 

was supported by a dominance of sapwood cross-sectional area in C. madagascariensis by fibers 

having greater wall thicknesses as compared to vessels and tracheids (Table 2). The development 

of mechanically specialized fibers in C. madagascariensis most likely was responsible for the 

greater ρwood and increased E as compared to Takhtajania (Hacke et al., 2001; Jacobsen et al., 

2005). 

It is unknown if the E and mechanically associated traits (e.g., wall thickness, pit area 

fraction) of fibers in C. madagascariensis represent properties extending outside the ranges 

capable by vesselless vasculatures in the Winteraceae. We note, however, that average ρwood 

values of Canellaceae, including C. madagascariensis, C. fragrans (mean = 0.928 g⋅cm−3 ± 0.06 

SD; N = 10), and Pleodendron costaricense, were 9, 23, and 22% greater, respectively, than the 

reported maximum ρwood found in 16 species of Winteraceae (Hacke et al., 2007; Moya-Roque et 
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al., 2007; P. J. Hudson and T. S. Feild, personal observations, 2007, 2008). Because basal 

vessels furnished higher KC, our results suggest that a greater ρwood and E can be achieved in C. 

madagascariensis for a given allocation of sapwood cross-sectional area in contrast to vesselless 

woods of Winteraceae (Hacke et al., 2007). The option for increased cellular specialization 

toward mechanics and increased ρwood at a given KS could afford several advantages. These 

advantages include increased wood longevity and pathogen resistance as well as increased 

mechanical strength (Hacke et al., 2001; Jacobsen et al., 2005; Preston et al., 2006; Swenson and 

Enquist, 2007; Chave et al., 2009). Mechanical traits also have consequences for the evolution of 

growth forms and regeneration ecologies (see below, Sterck et al., 2001; Rowe and Speck, 2004; 

Osunkoya et al., 2007). 

Increased ρwood, however, entails significant energetic cost because the cell walls of 

tracheary elements probably explain the majority of wood construction cost (Hacke et al., 2001). 

Our results supported this hypothesis because differences in ρwood and the energetic cost on a 

volumetric basis between C. madagascariensis and T. perrieri were nearly proportional (Fig. 5). 

Interestingly, we found that the basal vessels in C. madagascariensis were not associated with 

major differences in the energy content of wood on a dry mass basis. Although we could not 

differentiate the energy content of specific cell types, our results suggest that vessel-fiber based 

wood was not intrinsically more expensive than vesselless wood. Future studies, however, are 

needed to examine how vessels and the evolution of heteroxyly may have varied stem 

maintenance respiration costs. Such research is needed because we found evidence that the 

fraction of living cells (rays plus axial parenchyma) was greater in C. madagascariensis than T. 

perrieri (Fig. 2). 
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Vessels in relation to ecological divergence— 

We observed that vessels related to the ecologies of the two species in unexpected ways. 

First, we observed that basal vessels and the biomechanical specialization of C. 

madagascariensis were associated with a preference for densely shaded forest understory 

habitats. Greater mechanical strength can be advantageous in low light understories to develop 

thin diameter stems that support a broad leaf area to efficiently collect light (Sterck et al., 2001; 

Rowe and Speck, 2004; Osunkoya et al., 2007). Stems with greater E for a given diameter can be 

more resilient to breakage, which can increase the probability that a costly investment in wood 

production is not lost by understory disturbance (Jacobsen et al., 2005; Rowe and Speck, 2004). 

Consistent with greater ρwood and E, the growth form of C. madagascariensis appeared to be 

more demanding of mechanical support as compared to Takhtajania’s (Fig. 1). Cinnamosma 

madagascariensis grew with a single and taller erect trunk that supported a broader and deeper 

canopy of thinner, densely leaved terminal branches (Fig. 1B). Also in line with an apparent 

understory preference, the values of KS, KL, and HV in both populations of C. madagascariensis 

nested in the ranges reported for shade-demanding woody plants from tropical forests (Brodribb 

and Feild, 2000; Feild and Holbrook, 2000; Santiago et al., 2004; Lusk et al., 2007; Campanello 

et al., 2008; Feild and Balun, 2008). 

Surprisingly, we found that vesselless Takhtajania possessed a much greater KL than 

vessel-bearing C. madagascariensis (Table 1, Fig. 2). Consistent with greater KL, calculated 

gsmax values were higher in T. perrieri, largely because guard cell pores were larger relative to C. 

madagascariensis (Table 3). Relative to other Winteraceae, the xylem hydraulics of T. perrieri 

were unusually high in capacity. For example, T. perrieri possessed 30% greater KS than the 
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previously observed maximum in Winteraceae (Feild and Holbrook, 2000; Feild et al., 2002; 

Hacke et al., 2007). Supporting the hypothesis that hydraulic conductance and mechanics are 

closely traded off in vesselless angiosperms and conifers (Pittermann et al., 2006; Feild and 

Arens, 2007; Hacke et al., 2007; Feild et al., 2009a), T. perrieri possessed the lowest ρwood 

measured and one of the highest mean conduit lumen diameters for all Winteraceae measured 

thus far. 

The growth habit of T. perrieri suggests that this species may be functioning near the 

biomechanical limits to vesselless wood hydraulic capacity. Takhtajania plants consisted of 

multiple, shorter, and leaning trunks produced by repeated bouts of pithy and brittle shoots from 

the base of the plant. In addition, Takhtajania developed soil-hugging shoots that extended up to 

a meter from the base. However, reiteration by relatively cheap growth appears to be an effective 

regeneration mode in the context of generally open, gap-phase habitats of Takhtajania on north-

facing cloud forest ridges that suffer frequent cyclonic damage (Birkinshaw, 2007). Although a 

broad comparative survey of Winteraceae leaf-gas-exchange capacities is unavailable, the 

absence of stomatal plugs in Takhtajania that are otherwise wide spread in Winteraceae 

(Bongers, 1973; Feild et al., 1998, 2000), combined with high KL, suggest that this species 

possesses an unusually high gas exchange capacity for Winteraceae. Thus, we did not find 

evidence that basal vessels in the wood were associated with greater capacities of leaf gas-

exchange. 

Finally, leaf cross-sectional anatomical differences suggested that the two species were 

structurally tuned to differing light climates. For example, the presence of a single palisade layer 

combined with a hypodermis and thin construction are consistent with our observations of C. 
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madagascariensis in low-light understory habitats punctuated by sunflecks of bright collimated 

light (DeLucia et al., 1996). The dominance of the leaf cross section by spongy mesophyll in 

Takhtajania was more consistent with its occurrence in a light climate dominated by diffuse light 

under prolonged cloud immersion (Lawton, 1990; Smith et al., 1997; P. J. Hudson, personal 

observations, 2008). 

 

Conclusions— 

Our study demonstrated that xylem vessels in C. madagascariensis were not linked to 

increases in overall shoot hydraulic capacity, and vessels were not associated with enhanced leaf 

photosynthetic or shoot hydraulic capacities. Rather, we found that a significant and early 

evolving functional consequence of vessel evolution was the uncoupling of hydraulic and 

mechanical responsibilities in the wood by increasing KC for a given KS. Such uncoupling 

resulted in biomechanics related to the growth habits in two species of Canellales. Thus, our 

results support the heteroxylly hypothesis for the early evolutionary advantages of vessels as 

innovations promoting functional diversification of the wood (Carlquist, 1975, 2004; Feild and 

Arens, 2007; Sperry et al., 2007; Feild et al., 2009a). Our results suggest that biomechanical 

specialization, perhaps leading to new options for growth form diversification, may have been an 

important functional consequence of early increases in conduit hydraulic efficiencies by basal 

vessels. Future studies will be necessary to determine how other important components of 

heteroxylly evolution, such as parenchyma and rays, diversified and coevolved with hydraulics 

and biomechanics during early angiosperm evolution. The diversity of xylem vasculatures across 

extant basal angiosperms offers a diverse range of evolutionary “experiments” and considerable 
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growth form variation to tease apart these interactions (Carlquist, 1975, 2004; Carlquist and 

Schneider, 2002; Feild and Arens, 2005, 2007; Feild et al., 2009a). 

A limitation of our study is that recent phylogenetic studies make it clear that Takhtajania 

and C. madagascariensis have come to inhabit somewhat similar geographic and climatic 

envelopes through different biogeographic histories (Karol et al., 2000; Salazar and Nixon, 

2008). While Takhtajania is placed phylogenetically as the sister to the remaining genera of 

Winteraceae, C. madagascariensis is well nested within Canellaceae, which results in 

considerable phylogenetic distance between the two taxa (Karol et al., 2000; Salazar and Nixon, 

2008). Thus, a future broader comparative analysis of hydraulic and biomechanical coordinated 

evolution in relation to Canellales’ habitats and growth forms will be needed to resolve how 

heteroxylly evolution relates to ecological diversification. 

Although we did not measure resistance of the scalariform perforation plates, we posit 

that those of C. madagascariensis will be relatively high because of their long lengths with 

numerous pit bars (Sperry et al., 2007; Christman and Sperry, 2009). Because we found that 

vessels did not decrease KS relative to vesselless wood, our results support an emerging 

hypothesis that vessels only drove major cuts in the cost of KL through increased KS once 

elongate scalariform perforation plates became consolidated into a single aperture (Sperry et al., 

2007; Christman and Sperry, 2009; Feild et al., 2009a). Therefore, understanding how early 

angiosperms acquired such high rates photosynthetic productivity will require a specific focus on 

perforation plate form and functional diversification, rather than vessels per se (Feild and Arens, 

2007; Sperry et al., 2007; Feild et al., 2009a). Instead of devices immediately enabling access to 
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high rates of water transport capacity and therefore photosynthesis, our results highlight the 

concept of vessels as traits that potentially enabled new properties of wood function. 
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