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Abstract 

Soilbome pathogens have an economic impact on crops throughout the world. Many 

survive saprophytically and therefore are difficult to control. Soil fumigation and seed 

treatments are sometimes effective. However, they are economically impractical for 

many crops. Crop rotation/alternative crops are often a practical, economical, and 

successful means of controlling soilbome pathogens. Recent studies have revealed that 

Brassica spp. inhibit a wide array of plant pathogens .. Decomposing species of Brassica 

release glucosinolates, which are converted to isothiocyanates (ITC) by the enzyme 

myrosinase. The ITC compounds inhibit microorganisms. The present study had three 

objectives. The first was to evaluate the effect of Brassica spp. on growth of 

Gaeumannomyces graminis var. tritici (Ggt), Fusarium oxysporum, F. solani, and F. 

graminearum, and to determine if inhibition was fungicidal. The first in vitro bioassay 

was designed as a 3 x 3 factorial in a completely randomized design (CRD) with three 

isolates of Ggt and three mulch treatments, with 3 replicates. The second bioassay was a 

6 x 6 factorial with six fungi [three isolates of Ggt (A2, WX, and 211.1 ), F. solani, F. 

oxysporum, and F. graminearum] and six mulch treatments (B. juncea 'Florida 

Broadleaf mustard mulch, B. juncea mustard seed meal, B. napus 'Dwarf Essex Rape', 

B. napus canola, wheat, and no mulch) in a CRD with three replicates. Plant tissue was 

placed in 490-cm3 glass jars covered by inverted Petri dishes containing potato dextrose 

agar (PDA) with a I-day-old fungal plug. Colony diameters were recorded for eight days. 

All fungal pathogens tested were inhibited by B. napus and wheat mulch, but fungal 

growth resumed when the mulches were removed. No growth was recorded for fungi 
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exposed to B. juncea mulch and seed meal, where inhibition was fungicidal. The second 

objective of the present study was to determine the amount of allyl isothiocyanate (AITC) 

needed to inhibit growth of the take-all pathogen. The tests were designed in a CRD with 

five rates of AITC or five rates of B. juncea seed meal. Gaeumannomyces graminis var. 

tritici isolate WX was exposed to AITC, a dominant isothiocyanate compound found in 

Brassica spp. Treatments of pure AITC and AITC from B. juncea mustard seed meal 

(mixed with water) at 0, 0.01, 0.02, 0.03, and 0.04 g were evaluated for the effects on Ggt 

growth. Petri plates with PDA and I-day-old fungal plugs were inverted over 490- cm3 

glass jars with AITC or seed meal treatments for 5 h. Headspace concentrations of pure 

AITC and AITC volatized from B. juncea seed meal were recorded after I and 2 h; 

mycelial diameter was measured for 9 days to determine suppression or death of the 

fungus. Mycelial growth was inhibited by all B. juncea seed meal treatments. The 

concentrations of AITC produced by B. juncea seed meal that inhibited 50 and 90% of 

mycelial growth were 0.43 and 0.80 µmol•liter-1, respectively. Inhibition attributable to 

pure AITC alone was higher than that achieved by B. juncea seed meal. The third 

objective of the present study was to determine if incorporating B. juncea mustard mulch 

into soil containing Ggt-infested wheat crowns would reduce take-all in a subsequent 

wheat crop, and to evaluate phytotoxicity of Brassica mulch to wheat seedlings. The 

experiment was designed as a factorial in a split plot with two rates of Ggt (present or 

absent), two rates of B. juncea 'Florida Broadleaf mulch (present or absent), and ten 

replicates. The main plot was Brassica mulch; the sub-plot was Ggt. There were ten 

plants per replicate and the study was repeated. For the initial crop, wheat seeds were 

planted into soil in plastic containers with and without inoculum of Ggt, isolates A2 and 
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WX, and maintained in a growth chamber at l 8°C. After 28 days, shoots were excised 

and wheat roots were left in soil. Soils with healthy and diseased roots were mulched 

with 'Florida Broadleaf' mustard for five days; mulch was not applied to controls. For the 

'final crop' wheat seeds were replanted into soil; take-all severity, shoot height, and 

percent germination were measured after 28 days. The main effects of mulch and Ggt, 

and the interaction were significant for disease severity in two trials. Treatment of soil 

containing Ggt-infected roots with Brassica mulch significantly reduced take-all in the 

subsequent wheat planting in two tests. In one test, height of seedlings was reduced in 

soil with Brassica mulch and seedling germination was reduced with Brassica mulch 

regardless of the presence of Ggt. 
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Part I 

Literature Review: Effect of Brassica Mulches on Soilborne 
Pathogens of Wheat 
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Take-all of Wheat 

Gaeumannomyces graminis var. tritici (Ggt) is a soilbome pathogen that causes 

take-all of wheat. The term "take-all" was first used in Australia where the disease was 

recognized as early as 1852 (Rothrock, 2001). In the U.S., take-all disease is best known 

as a root and crown rot. It is the most significant wheat disease worldwide, and U.S. 

yield losses exceed $1 billion/year (USDA, 1994). Generally, it occurs sporadically in 

wheat fields planted continuously to wheat or in fields infested with perennial grass 

weeds. The damage to wheat is related to the extent of root and basal stem colonization 

by Ggt. Wheat plants can withstand mild infections with only minimal yield loss. Mild 

infections do not result in obvious disease symptoms. However, when symptoms become 

obvious, yield losses can be high (Cook and Veseth, 1991). 

The most conspicuous field symptom of take-all is the occurrence of stunted, 

yellow plants in circular patches during early stages of growth. Occasionally, dead plants 

can be found scattered throughout the stand. Take-all can be identified by the dark brown 

to black rotted roots or stolons. Initially, roots have small black lesions that expand and 

later coalesce. Heavily rotted roots are very brittle and much of the root system remains 

in the soil when plants are pulled out of the soil. Under a microscope, dark brown 

"runner hyphae" and mycelial mats on roots or stolon surfaces are easily seen and are 

helpful in diagnosing this root disease (Huber and McCay-Buis, 1993). 

Yield loss is attributed to the premature death of plants soon after heading and 

before grain filling. Prematurely killed plants produce bleached, empty heads known as 

whiteheads. Whiteheads are conspicuous in contrast to the normal green color of the 
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crop. Whiteheads often have no grain, but may contain a few shriveled kernels. During 

wet weather, the dead plants become covered with saprophytic fungi, which mask the 

bleached whiteheads by turning them blackish in color. In seasons of abnormally wet 

weather, Ggt can extend up the stems 2.5 to 5-cm (Cook and Veseth, 1991). 

Although the fungus can produce ascospores, they are unimportant in the spread 

of the disease (Homby and Cook, 1990). The take-all fungus exists within soil, in old 

roots and tiller bases of the previous wheat crop and uses these plant remains as a food 

base for survival and as a bridge to support its growth onto new roots of the next crop. 

Wheat plants become infected when their roots contact infested residues or living plants 

harboring the fungus. The fungus spreads from residues to the root surface and from one 

root to the next by growth of "runner hyphae" through the soil (Cook and Veseth, 1991). 

Take-all is usually more severe in sandy soils with high pH. Severity in these 

soils is often because nutrients involved in host defense, such as manganese (Mn) are 

electrochemically unavailable to wheat (Huber and McCay-Buis, 1993). Generally, the 

earlier infection takes place, the more disease and the greater the yield loss at harvest. 

Thus, infections of young plants soon after planting result in the most severe yield losses. 

Moisture retaining, poorly drained soils, or abnormally wet weather, especially in the 

second half of the growing season, favor development of the disease because high 

moisture is needed for mycelial growth (Cook and Veseth, 1991). Maintaining adequate 

levels of nitrogen, phosphorus, and potassium for crop growth reduces take-all (Huber 

and McCay-Buis, 1993). 

3 



Control of Take-all 

Fumigation and Seed Treatment 

Fumigation is an option in many crops that are affected by soilbome pathogens. 

However, given the low economic value of wheat in the southeastern U.S. , fumigation is 

not an option. Fungicide seed treatments are effective in managing take-all (Duffy, 2000; 

Dawson, 2001). However, they are often economically impractical because take-all is 

sporadic in a field. In addition, there are no commercially available cul ti vars of wheat 

with a high degree of resistance. Therefore, alternative control methods are used. 

Irrigation 

Rush et al. ( 1999) have suggested that irrigation management practices should be 

studied further. Specifically, they propose that irrigating at variable rates using Global 

Position Systems (GPS) will contribute to less severe outbreaks of take-all. Take-all 

disease is severe on highly irrigated cropping systems. Using GPS as a tool for irrigation 

decisions may be promising, but no substantial results have been concluded. In areas 

where wheat is not irrigated, such as the southeastern U.S., this control option has no 

practical value. 

Nitrogen 

Nutrition management is another approach to control take-all. In root segments 

located below lesions longer than 1-cm, nitrogen was reduced by half compared to 

healthy roots and root segments above lesions (Schoeny, 2003). This reduction in 

nitrogen probably resulted from the invasion and breakdown of phloem by the fungal 

hyphae. Although still capable of nitrate uptake through their functioning proximal 
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segments, in the field it is necessary to provide enough nitrogen in the upper profile of 

the soil where efficient root segments are located. 

In addition, stage of growth of the wheat plant at the time of fertilizer application 

plays a role in disease. Take-all losses were more severe when nitrogen was applied at 

late boot stage instead of pre-boot stage (Howard et al., 2002a; Howard et al . , 2002b ). 

Form of nitrogen is also important in disease management. Ammonium nitrate and 

ammonium sulfate fertilizer were more efficient for suppression of take-all than urea, 

urea-ammonium nitrate, and urea-ammonium nitrate + calcium nitrate (Howard et al., 

2002a). 

Manganese 

Manganese plays a vital role in take-all development. Manganese interacts with 

nitrogen metabolism and is intimately involved in respiration, photosynthesis, hormone 

metabolism, and the synthesis of secondary metabolites associated with the defense of 

plants against pathogens (Huber and McCay-Buis, 1 993) .  However, Ggt oxidizes Mn2+ 

to Mn +4 
• Manganese is available to the plant only in the reduced state of Mn2+ but Mn 

was detected around roots infected with Ggt in the oxidized, Mn +4, a state that is 

unavailable for plant uptake (Schulze, 1 995). Virulence of Ggt isolates, and number and 

total length of lesions, were positively correlated with the Mn-oxidation capacity of Ggt 

isolates (Pedler, 1996). A manganese application rate of 2.25 kg ha- 1 was effective in 

suppressing take-all of bentgrass, caused by the fungus Gaeumannomyces graminis f. sp. 

avenae (Heckman, 2003). Over time, previous applications of Mn fertilizer were less 

effective in suppressing take-all patch than were the most recent applications of Mn. 
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Alternative Approaches 

Crop rotation/alternative crops are often a practical, economical, and successful 

means of controlling soilborne pathogens. Also, management of inoculum levels, and the 

soil environment have been studied as ways to control take-all. Crop rotation/alternative 

crops is a method of cultural control, while managing inoculum levels is predominantly 

done by physical control. 

Soybeans, other legumes, and corn are popular crops for rotations with wheat. In 

the southeastern U.S., often wheat is doubled-cropped with soybean. However, an 

increase in take-all disease following double cropping with soybeans has been reported 

(Cook, 198 1  ). Soybean and sunflower root exudates significantly increase the 

pathogenicity of Ggt in comparison with maize and tobacco root exudates (Mass, 1990). 

Furthermore, naturally occurring microbial antagonists to Ggt are greater in maize and 

tobacco soils than in soybean or sunflower soils (Mass, 1990). 

Crop rotation with other small grains, except oat, does not break the take-all 

disease cycle. Wheat following triticale, barley, or rye has similar disease severity and 

percent whiteheads, whereas wheat following oat has significantly less take-all symptoms 

(Rothrock, 1991  ). Although oat is not susceptible to Ggt, it is susceptible to G. graminis 

var. avenae. 

Soil tillage is an example of physical control that can reduce inoculum levels of 

Ggt. However, this approach may conflict with soil conservation methods in the 

southeastern U.S. Finally, managing the soil environment uses both biological and 

cultural methods to control pathogen growth. In summary, no single method has 

emerged to control take-all of wheat. An integrated approach is the most feasible way to 
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manage take-all at low to moderate levels. 

Crown Rot of Wheat 

Crown rot in wheat is caused by Fusarium graminearum and a variety of other 

Fusarium spp. Fusarium spp. can invade a wide range of crops. They are efficient 

saprophytes that survive and multiply on many crop residues. 

On wheat, F. graminearum survives as chlamydospores in the soil or stubble. 

Chlamydospores formed in conidia or mycelium can exist in the soil for months. These 

germinate and produce hyphae, which infect mainly through crown roots and wounds 

sustained during crown root emergence (Cook and Veseth, 1991). 

Although moisture is essential for infection, crown rot of wheat tends to be most 

severe in drought conditions. Infected crowns and roots are brown and rotted, and a 

reddish brown discoloration of the stem may be present. Leaf sheaths look normal until 

peeled away to reveal a discolored culm. If the plant is water stressed during the final 

stage of plant development, premature ripening and white heads may develop. Later, 

pink or red mycelium can be observed if the stem is split (Inglis and Cook, 1986). 

Control of Crown Rot 

Some lines of wheat have resistance to F. graminearum based on depth at which 

the crown is formed (Wildermuth, 2001). However, crop rotation is the most effective 

means of disease control. Break crops such as legumes can reduce the amount of 

inoculum in the soil. Break crops (Brassica spp. and chickpeas) significantly reduced 

the severity of crown rot in both a susceptible (37 - 47% reduction) and tolerant wheat 

crop (21 - 51 % reduction) compared to growing wheat after wheat or wheat after barley. 
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Brassica spp. were generally more effective than chickpea in reducing the severity of 

crown rot. Denser canopies created by the Brassica crops and increased populations of 

Trichoderma spp . (isolated from wheat following Brassica) made Brassica spp. a more 

effective break crop (Simpfendorfer, 2005). 

Where the disease incidence is high, alternative crops should be considered in the 

rotation. Alternative crops should be grown for at least two years if there is a moderate 

level of crown rot and at least three years if there is a high level of disease 

(Simpfendorfer, 2005). During the growth of alternative crops, grasses should be 

controlled at an early growth stage so they do not maintain the fungus during the rotation 

(Simpfendorfer, 2005). 

Crown rot disease is more severe when nitrogen fertilizer is applied at high rates 

(Wildermuth, 2002). In these cases the full benefit of the fertilizer will not be realized 

until the disease is reduced. Crown rot is also more severe when plants are deficient in 

zinc (Wildermuth, 2002). 

Brassica Mulches 

Brassica mulches (Brassicajuncea cv. Indian Mustard and B. napus cv. Dwarf 

Essex Rape) have been reported to inhibit Ggt in vitro (Angus, 1994). Mulches of 

Brassica spp. such as B. juncea and B. napus produce glucosinolates (GS) (Table I-1; All 

tables and figures are located in Appendix I). These are secondary metabolites found in 

intact plant tissues. When tissue is damaged the enzyme myrosinase (Fig. I-1) (normally 

physically separated by myrosin cells from GS) catalyzes the conversion of GS (Fig.I-2) 

8 



to isothiocyanates {ITC) (Fig. 1-3) (Andreasson et al., 2001; Chew, 1988), which have 

activity against plant pathogens (Charron and Sams, 1999). The ITCs are highly biocidal 

to a diverse range of organisms including nematodes, bacteria, fungi, insects, and 

germinating seeds (Brown and Morra, 1997; Borek, 1998). 

Although the total soil fungal population is strongly increased after Brassica 

mulch treatments, Pythium spp. were suppressed due to the GS degradation products 

released during plant chopping. The fungitoxic effect of these degradation products 

overcame the stimulant effect of organic matter amendment (Lazzeri and Manici, 2001). 

Intact 'Dwarf Essex' meal, with its high concentration of glucosinolates and intact 

myrosinase, completely suppressed Aphanomyces root rot of pea (Pisum sativum) and 

water extracts of meal completely inhibited mycelial growth even at 50% dilution 

(Smolinska, 1997). 

The release of ITCs is dependent on many factors. When tissue is frozen, thawed, 

and dried, cellular disruption is maximized, resulting in high ITC release. Freeze-dried 

tissue can increase ITC release efficiencies 14 to 26% because of the cellular disruption 

that occurs compared to no cellular disruption (Morra and Kirkegaard, 2002). However, 

the molar amount of ITC produced by hydrolysis is lower than the amount of 

corresponding GS present in the plant tissues. The conversion of GS to ITC is limited by 

soil moisture, soil retention, incomplete hydrolysis, and the formation of non-ITC 

hydrolysis products by reactions with proteins and amino acids. (Warton, 2001). 

Brassica spp. can increase the overall health of wheat plants when incorporated 

into a cropping system. Wheat grown after Brassica spp. had greater dry matter than 

wheat grown after wheat (Kirkegaard, 1994). Furthermore, in soil infested with Ggt, 
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wheat after Brassica break-crops yielded a 29% increase in shoot biomass at anthesis 

compared to wheat after wheat (Kirkegaard, 1994 ). 

The GS side chain is very important to biological activity. Small changes in side 

chain structure can have significant effects. For example, while methylthioalkly GS 

produces volatile and pungent isothiocyanates, methylsulphinylalkyl GS (the next 

product in the biochemical pathway) produces non-volatile ITCs with relatively mild 

flavors, such as those found in broccoli. Removal of the methylsulphinyl group and the 

addition of a double bond results again in a volatile ITC. Finally, addition of a hydroxyl 

group to 3-butenyl and 4-pentenyl GS results in the spontaneous cyclization of the 

unstable ITC and the production of a non-volatile product (Mi then, 2001 ). 

More study on the effectiveness of Brassica spp. for suppression of soilborne 

pathogens is needed because Brassica spp. benefit the soil environment and can increase 

overall health of crops. 

Thesis Objectives 

The objectives of this research are; 

I. To evaluate inhibition of Ggt isolates and Fusarium spp. by Brassica spp. in vitro. 

2. To determine the amount of pure allyl isothiocyanate (AITC) and AITC from B. 
juncea mustard seed meal needed for inhibition of Ggt. 

3. To determine the ability of B. juncea 'Florida Broadlear mulch incorporated into soil, 
to suppress take-all disease from natural inoculum (infected roots and crowns) in a 
controlled growth chamber environment. 
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Appendix I 

Table 1-1. Compounds found in B. napus and B. juncea (Brown and Morra, 1997; 
Charron and Sams, 1999). 
B. napus 
Allyl [CH2CHCH2] 
3-Butenyl [CH2CHCH2CH2] 
Hexyl [CH3(CH2)s] 
5-Hexenyl[ CH2CH(CH2)4] 
R-2-hydroxy-3-butenyl [CH2CH(OH)CHCH2] 
S-2-hydroxy-3-butenyl [CH2CH(OH)CHCH2] 
4-Hydroxy-3-indolylmethyl ( 4-0HCsHsNCH2) 
2-Hydroxy-4-pentenyl [CH2CHOH2(0H)CHCH2] 
4-Hydroxybenzyl [ 4-0HC6HsCH2] 
3-Indolylmethyl (CsH6NCH2) 
5-Methylhexyl [CH3(CH3)CH(CH2)4] 
4-Methylpentyl [CH3(CH3)CH(CH2)3] 
2-Methylpropyl [CH3(CH3)CHCH2] 
4-Methylsulfinyl-3 -butenyl [CH3SOCHCH(CH2)2] 
4-Methylsulfunylbutyl [ CH3SO( CH2)4] 
3-Methylsulfinylpropyl [CH3SO(CH2)3] 
4-Methylthiobutyl [CH3S(CH2)4] 
3-Methylthiopropyl [CH3S(CH2)3] 
1 -Methoxy-3-indolylmethyl [ l -(CH30)CsHsNCH2] 
1 -Methoxy-3-indolylmethyl [ 4-(CH30)CsH5NCH2 

4-Pentenyl [CH2CH(CH2)3] 
2-Phenylethyl [CH6Hs(CH2)2] 
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B. juncea 
Allyl [CH2CHCH2] 
3-Butenyl 
3-Indolylmethyl 
3-Methylthiopropyl 
4-Methoxyindolyl-3-methyl 
Phenyl ethyl 
2-Phenylethyl [CH6CHs(CH2)2] 



Fig. 1-1 . Myrosinase (Berman, 2000) 
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Fig. 1-2. Glucosinolate 
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Fig. 1-3. Isothiocyanate 
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Part II 

Effect of Brassica Mulches on Growth of Soilborne Wheat 
Pathogens in vitro 
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Abstract 

Fusarium oxysporum, F. solani, F. graminearum, and Gaeumannomyces graminis var. 

tritici ( Ggt), are soilbome plant pathogens of wheat. Decomposing Brassica spp. release 

glucosinolates, which inhibit microorganisms. The objectives of this study were 1 )  to 

evaluate the effect of Brassica spp. on growth of Ggt (A2, WX, and 2 1 1 . 1 )  and Fusarium 

and 2) to determine if inhibition was fungicidal. The first in vitro bioassay was designed 

as a 3 x 3 factorial in a completely randomized design (CRD) with three isolates of Ggt 

and three mulch treatments, with 3 replicates. The second bioassay was a 6 x 6 factorial 

with six fungi [three isolates of Ggt (A2, WX, and 21 1 . 1 ), F. solani, F. oxysporum, and 

F. graminearum] and six mulch treatments (B. juncea 'Florida Broadleaf mustard mulch, 

B. juncea mustard seed meal, B. napus 'Dwarf Essex Rape' , B. napus canola, wheat, and 

no mulch) in a CRD with three replicates. Plant tissue was placed in 490-cm3 jars covered 

by inverted Petri dishes containing potato dextrose agar (PDA) with a fungal plug. 

Colony diameters were recorded for eight days. All fungal pathogens tested were 

inhibited by B. napus and wheat mulch. Fungal plugs were removed from mulch 

treatments and were observed for growth (six to seven days) . In the second bioassay no 

growth occurred for fungi exposed to B. juncea mulch and meal, where inhibition was 

fungicidal. In the first bioassay growth of Ggt isolate WX was observed at five days with 

B. juncea 'Florida Broadleaf mulch. In both assays growth of pathogens resumed after 

removal of mulches that did not contain B. juncea. 
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Introduction 

Pathogens 

The fungal pathogens Gaeumannomyces graminis var. tritici (Ggt) and Fusarium 

graminearum have a major impact on wheat production in the southeastern U.S. 

Gaeumannomyces graminis var. tritici causes take-all of wheat and barley crops 

worldwide (Rothrock, 2001 ). Fusarium graminearum causes foot and crown rot in wheat 

(Cook and Veseth, 1991). Fusarium oxysporum and F. solani cause seedling and root 

rots in wheat (Farr et al., n.d. ; Shivas, 1989). These wheat pathogens have ascomycetous 

sexual stages and exist within soil, in the old roots or tiller bases of previous wheat crops. 

The wheat residue serves as a source of inoculum and supports growth of these pathogens 

onto new roots or crowns of the next crop (Cook and Veseth, 1991). 

Often take-all is found in moist soils, or in dry wheat production areas under 

heavy irrigation. Infection by Ggt occurs through young seminal roots (Cook and Veseth, 

1991). Foot and crown rot pathogens attack wheat plants by growing from crop residue 

into the crown roots of the plant. The fungus continues to grow into the crown tissue, 

rotting the crown and destroying the plant tissues responsible for moving water from the 

roots to the above ground parts of the plant. Plants must be water-stressed for the disease 

to progress. Under adequate moisture conditions, the plants may be infected, but the 

disease will not spread into the crown (Draper, 2000). 

Fumigation is an option in many crops that are affected by soilborne pathogens. 

However, given the low economic value of wheat crops in the southeast, fumigation is 

not an option. Seed treatments with fungicides are effective in managing take-all (Duffy, 
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2000; Dawson, 2001). However, they are often economically impractical because take

all is sporadic in a field. No cultivars of wheat are commercially available with a high 

degree of resistance against take-all. Some lines of wheat have shown resistance to F. 

graminearum based on depth at which the crown is formed (Wildermuth, 2001 ). 

Currently, cultural practices, such as crop rotation and planting dates, are the most 

economical ways to control these diseases. 

Brassica spp. 

Mulches of Brassica spp. such as Brassica juncea and B. napus produce 

glucosinolates (GS), which are secondary metabolites found in intact plant tissues. When 

tissue is damaged the enzyme myrosinase (normally physically separated from GS) 

catalyzes the conversion of GS to isothiocyanates (ITC) (Chew, 1988), which have 

activity against plant pathogens (Charron and Sams, 1999). This allelopathic activity has 

stimulated research using Brassica species as "break crops" to reduce disease loss 

(Angus, 1994). 

The release of ITC is dependent on many factors. When tissue is frozen, thawed, 

and dried, cellular disruption is maximized, resulting in high ITC release. Freeze-dried 

tissue can increase ITC release efficiencies from 14 to 26% because of the cellular 

disruption that occurs compared to no cellular disruption (Morra and Kirkegaard, 2002). 

However, it is well known that the molar amount of ITC produced by hydrolysis is lower 

than the amount of corresponding GS present in the plant tissues. Several limiting factors 

are present. Soil moisture, soil retention, incomplete hydrolysis, and the formation of 

non-ITC hydrolysis products by reacting with proteins and amino acids are possible 
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limiting factors (Warton, 2001 ). 

The objective of this study was to determine if mulches of B. juncea cv. Florida 

Broadleaf, B. napus cv. Dwarf Essex Rape, B. juncea mustard seed meal, and B. napus 

canola affect mycelial growth of three isolates of Ggt and three species of Fusarium in 

vitro. 

Materials and Methods 

Bioassay 

All pathogens (Table 11-1; All tables and figures are located in Appendix II) were 

isolated from diseased wheat roots. Fusarium spp. were isolated from diseased wheat 

roots at the University of Tennessee Highland Rim Research and Education Center, 

Springfield, 1N. Gaeumannomyces graminis var. tritici isolates A2, 211.1, and WX were 

found on diseased wheat roots in Tennessee ( our laboratory), and Georgia and South 

Carolina, respectively (Mazzola et al., 1995). Isolates were cultured on potato dextrose 

agar (PDA) for 7 days at 28 to 32°C. Mycelial plugs were transferred to fresh PDA and 

grown overnight before use in the bioassay. 

Brassica plants were grown as a winter annual crop at the East Tennessee 

Research and Education Center, Blount Farm, Knoxville, 1N. No insecticides, 

fungicides, or herbicides were applied to foliage after planting. Small, young leaves, 

which normally have the highest GS content, were harvested by hand and transferred 

quickly to the laboratory to prevent loss of volatile compounds. Brassica juncea mustard 

seed meal was from unprocessed, seed used for mustard as a condiment. Leaves from 
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Brassica spp. were macerated separately in a food processor for 20 s. Tissue (10 g) from 

each Brassica treatment was transferred to sterile 490-cm3 glass jars. For mustard seed 

meal, 1 g of meal and 9 ml of water were added to jars. The water was added to activate 

the release of ITC. 

After 10 g of fresh, macerated tissue or meal was added to sterile jars, the bottom 

of 100-mm-diam. Petri dishes containing I -day-old plugs of Ggt or Fusarium spp. 

growing on PDA were inverted on top of the jars and the joint was sealed with Parafilm 

to reduce loss of volatile compounds. The bioassay was incubated for 6 to 8 days at room 

temperature and growth of mycelia, based on colony diameter, was recorded daily after 

plating. Because Ggt is a relatively slow growing fungus, no measurement was taken the 

first day. After 6 to 8 days, plugs were removed from the mycelia exposed to mulch or 

meal treatments and plated on fresh PDA. Colonies were allowed to grow for six to seven 

days with no mulch or meal treatment. Mycelial growth (colony diameters) was measured 

to determine if inhibition was fungicidal. 

Experimental design and statistical analysis 

Bioassay 1 was designed as a 3 x 3 factorial with three isolates of Ggt and three 

mulch treatments (Table 11-2) in a completely randomized design (CRD) with three 

replicates. Bioassay 2 was designed as a 6 x 6 factorial with six fungal pathogens, six 

mulch treatments (Table 11-3), and three replicates in a CRD. In Bioassay 1, the control 

was not exposed to mulch (untreated). In Bioassay 2, controls were the untreated and 

wheat mulch. Data were analyzed with the Mixed procedure of PC-SAS, (Version 8.2, 

SAS Institute, Cary, NC). Significant effects were further analyzed with Fisher's

protected least significant difference test at P = 0.05. 
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Results 

For Bioassay 1 and Bioassay 2, at each measurement date, the effects of fungi, 

mulch treatment, and the interaction were significant (P < 0.000 1) .  Across all Ggt isolates 

(Bioassay 1 )  and Fusarium spp. (Bioassay 2), B. juncea mustard seed meal and B. juncea 

'Florida Broadleaf' mustard mulch were the most effective mulches for mycelial 

inhibition (Figs. 11- 1 and 11-2). Brassica napus canola type, B. napus 'Dwarf Essex Rape' , 

and wheat inhibited growth at intermediate levels compared to the mustard treatments. 

The patterns of growth inhibition by mulch treatments were similar for all fungi 

(Figs. 11- 1 to 11-5 [Bioassay 1 ]  and Tables 11-4 to 11-9 [Bioassay 2]). Fusarium spp. were 

less sensitive to mulch treatments than Ggt isolates. The Ggt isolate A2 {Table 11-4) was 

less susceptible to B. napus 'Dwarf Essex Rape' than isolates 2 1 1 . 1  and WX. Growth of 

all Ggt isolates was strongly inhibited by B. juncea 'Florida Broadlear mulch and B. 

juncea mustard seed meal. 

After removal of mulch treatments, fungi subjected to B. napus 'Dwarf Essex 

Rape' , wheat, and B. napus canola recovered and resumed growth (Tables 11- 1 0  to 11- 12) .  

With one exception, Ggt isolate WX, fungi exposed to B. juncea 'Florida Broadleaf 

mulch and B. juncea mustard meal had no growth when treatments were removed (Table 

11- 10). Thus, in general, fungi treated with B. juncea 'Florida Broadleaf mustard mulch 

and mustard seed meal in Bioassay 1 and 2 were killed as a result of exposure to these 

mulch treatments. 
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Discussion 

In these studies, mulches and meal of B. juncea significantly inhibited growth of 

all three Ggt isolates and three species of Fusarium; F. oxysporum, F. graminearum, and 

F. solani. Brassicajuncea 'Florida Broadleaf' was more inhibitory than mulch from B. 

napus canola, wheat, or B. napus 'Dwarf Essex Rape'. Hence, B. juncea ' Florida 

Broadleaf' has a greater potential to be used as a break-crop to reduce inoculum of these 

pathogens. 

Brassicajuncea 'Florida Broadleaf' mulch and B. juncea mustard seed meal 

generally proved to be fungicidal because, after removal of the mulch, only one isolate of 

Ggt exposed to 'Florida Broadleaf' mulch recovered. In all other replicates no growth 

was observed after 7 days. When Ggt isolates and Fusarium spp. were removed from 

exposure to B. napus 'Dwarf Essex Rape' ,  B. napus canola, and wheat mulch, all isolates 

recovered and grew. The results of these experiments demonstrate the potential of using 

Brassica spp. as an alternative method for reducing inoculum of soilborne pathogens. 
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Appendix II 

Table 11-1. Fungi tested in bioassay experiments 
Ggt Isolates Fusarium sw. 

Ggt WX F. oxysporum 

Ggt A2 F. graminearum 

Ggt 21 1 . 1  F. solani 

Table 11-2. Experimental parameters for Bioassay 1 
Mulch Treatments Fungal Isolates 
Untreated Ggt WX 
B. napus Ggt A2 

B. juncea Ggt 2 1 1 . 1  
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Table 11-3. Experimental parameters for Bioassay 2 
Mulch Treatments Fungal Isolates 
Untreated Ggt WX 
B. napus 'Dwarf Essex Rape' Ggt A2 
B. napus Canola Ggt 2 1 1 . 1  
Wheat F. oxysporum 
B. juncea 'Florida Broadleaf F. graminearum 
B. juncea Mustard Meal F. solani 
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Fig. 11-1. Main effect of Brassica mulches on growth of Gaeumannomyces graminis var. tritici isolates 
A2, 2 1 1 . 1  and WX in Bioassay 1 .  Data for all fungal isolates were combined. Within each day, bars with 
the same letters are not significantly different according to a Fisher's-protected least significant difference 
test at P = 0.05 
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Fig. 11-2. Main effect of mulch treatments on mycelia growth of Gaeumannomyces graminis var. tritici isolates A2, 
211.1, WX, and Fusarium oxysporum, F. graminearum, and F. solani in Bioassay 2. Growth measurements are based 
on mean colony diameter of all fungal isolates. Within each day, bars with the same letters are not significantly 
different according to a Fisher's-protected least significant difference test at P = 0.05 
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Fig. 11-3. Effect of mulch treatments on growth of Gaeumannomyces graminis var. tritici isolate A2 
in Bioassay 1. Within each day, data points with the same letter are not significantly different 
according to a Fisher's-protected least significant difference test at P = 0.05 
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Fig. 11-4. Effect of mulch treatments on growth of Gaeumannomyces graminis var. tritici isolate WX 
in Bioassay 1. Within each day, data points with the same letter are not significantly different 
according to a Fisher's-protected least significant difference test at P = 0.05 
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Fig. 11-5. Effect of mulch treatments on growth of Gaeumannomyces graminis var. tritici isolate 
2 1 1 . 1  in Bioassay 1 .  Within each day, data points with the same letter are not significantly different 
according to a Fisher's-protected least significant difference test at P = 0.05 



Table 11-4. Effect of mulch on mycelial growth of Ggt isolate A2 for 
day 2, 4, and 6 

Day-L 
Treatment 2 4 6 

Untreated 1 6.00 A 33 .00 A 53.33 A 
B. napus Canola 9.66 B 1 6.00 B 2 1 .00 B 
B. napus 'Dwarf Essex Rape' 8.00 B 8 .00 C 8.00 C 
Wheat 6.66 C 7.33 CD 7.33 CD 
B. juncea 'Florida Broadleaf 7.66 B 7.66 CD 7.66 CD 
B. juncea Mustard meal 4.66 C 4.66 D 4.66 D 

2Within each day, numbers with the same letters are not significantly 
different according to a Fisher's-protected least significant difference 
test at P = 0.05, Bioassay 2. 

Table 11-5. Effect of mulch on mycelial growth of Ggt isolate 2 1 1 . 1 
for day 2, 4, and 6 

Daf 
Treatment 2 4 6 
Untreated 6.33 A 22.00 A 45.33 A 
B. napus Canola 6.00 A 1 5.33 B 1 7.66 B 
B. napus 'Dwarf Essex Rape' 5.66 A 6.00 CD 6.00 CD 
Wheat 7. 1 6  A 7.83 C 7.83 C 
B. juncea 'Florida Broadleaf 4.66 A 4.66 D 4.66 D 
B. juncea Mustard meal · 4.66 A 4 .66 D 4.66 D 
zwithin each day, numbers with the same letters are not significantly 
different according to a Fisher' s-protected least significant difference 
test at P = 0.05, Bioassay 2. 
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Table 11-6. Effect of mulch on mycelial growth of Ggt isolate WX for 
day 2, 4, and 6 

Treatment 
Untreated 
B. napus Canola 
B. napus 'Dwarf Essex Rape' 
Wheat 
B. juncea 'Florida Broadleaf 
B. juncea Mustard meal 

2 
3.83 A 
5.00 A 
4.33 A 
4.00 A 
3 .66 A 
3 .66 A 

oat 
4 
23 .33 A 
1 1 .00 B 
4.33 C 
4.00 C 
3 .66 C 
3 .66 C 

6 
38 .33 A 
1 3 .33 B 
4.33 C 
4.00 C 
3 .66 C 
3.66 C 

zwithin each day, numbers with the same letters are not significantly 
different according to a Fisher's-protected least significant difference 
test at P = 0.05, Bioassay 2. 

Table 11-7. Effect of mulch on mycelia growth of Fusarium oxysporum 
at 2, 4, and 6 days after treatment 

Day2 

Treatment 2 4 6 
Untreated 24.00 A 43 .66 A 67.00 A 
B. napus Canola 24.33 A 36.66 B 43 .33 B 
B. napus 'Dwarf Essex Rape' 22.33 A 29.00 C 35.00 C 
Wheat 19.66 B 3 1 .66 C 43 .66 B 
B. juncea 'Florida Broadleaf 1 3 .66 C 1 3 .66 D 1 3 .66 D 

B. juncea Mustard meal 13 .00 C 1 3 .00 D 13 .00 D 

zwithin each day, numbers with the same letters are not significantly 
different according to a Fisher' s-protected least significant difference 
test at P = 0.05, Bioassay 2. 
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Table 11-8. Effect of mulch on mycelia growth of Fusarium 
graminearum at 2, 4, and 6 days after treatment 

oaf 
Treatment 2 4 6 
Untreated 1 5.33 A 42.33 A 67.00 A 
B. napus Canola 1 6.66 A 36.00 B 46.66 B 
B. napus 'Dwarf Essex Rape' 14.33 B 20.66 D 29.00 C 
Wheat 10.66 C 26.00 C 43 .66 B 
B. juncea 'Florida Broadlear 4.83 D 4.83 E 4.83 D 
B. juncea Mustard meal 5.33 D 5.33 E 5.33 D 

2Within each day, numbers with the same letters are not significantly 
different according to a Fisher's-protected least significant difference 
test at P = 0.05, Bioassay 2. 

Table 11-9. Effect of mulch on mycelia growth of Fusarium solani at 2, 4, 
and 6 days after treatment 

oaf 
Treatment 2 4 6 
Untreated 1 7.00 A 35.33 A 55.33 A 
B. napus Canola 1 5.66 AB 3 1 .00 B 42.33 B 
B. napus 'Dwarf Essex Rape' 1 5.33 AB 22.00 C 29.33 C 
Wheat 14.00 B 26.33 D 41 .66 B 
B. juncea 'Florida Broadlear 8.33 C 8 .33 E 8 .33 D 
B. juncea Mustard meal 8 .00 C 8 .00 E 8 .00 D 

2Within each day, numbers with the same letters are not significantly 
different according to a Fisher's-protected least significant difference 
test at P = 0.05, Bioassay 2. 
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Table 11-10. Effect of the interaction of mulch and Ggt isolate on mycelial growth at 
3, 5, and 7 days after removal of the mulch treatment, Bioassay 1 

Dar after mulch removed2 

Mulch Treatment 
B. napus 'Dwarf Essex Rape' 

B. juncea 'Florida Broadleaf 

Gg!_ Isolate 
A2 
211.1 
wx 

A2 
211.1 
wx 

3 5 7 
23 .5 A 28.5 A 29.5 A 
10.7 B 15.3 AB 18.3 AB 
5 .3 B 10.8 B 14.0 AB 
3.8 B 3.8 B 3.8 B 
4.0 B 4.0 B 4.0 B 
4.0 B 4.0 B 13.5 B 

2Within each day, numbers with the same letters are not significantly different 
according to a Fisher's-protected least significant difference test at P = 0.05, Bioassay 
2. 
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Table 11-11. Effect of the interaction of mulch and Ggt isolate on mycelial growth at 2, 
4, and 6 dais after removal of the mulch treatment, Bioassa� 2 

Da�s after mulch removed Y 

Mulch Treatment Ggt Isolate 
B. napus Canola A2 

211.1 
wx 

B. napus 'Dwarf Essex Rape' A2 
211.1 
wx 

Wheat A2 
211.1 
wx 

· B. juncea 'Florida Broadleaf A2 
211.1 
wx 

B. juncea Mustard meal A2 
211.1 
wx 

2 
41.66 A 
33.66 AB 
26.00 BC 
14.33 D 

4.66 E 
4.33 E 

19.66 C 
11.00 DE 
22.33 C 
7.66 E 
4.66 E 
3 .66 E 
4.66 E 
4.66 E 
3.66 E 

4 6 
59.00 A 80.00 A 
55.33 A 76.33 AB 
44.33 AB 61.00 BC 
31.00 BC 46.66 C 
8.66 E 15.66 D 

11.00 DE 15.66 D 
27.00 BC 25.33 D 

*Z * 

18.66 CD 20.00 DE 
7.66 E 7.66 DE 
4.66 E 4.66 E 
3 .66 E 3.66 E 
4.66 E 4.66 E 
4.66 E 4.66 E 
3.66 E 3.66 E 

YWithin each day, numbers with the same letters are not significantly different according 
to a Fisher's-protected least significant difference test at P = 0.05, Bioassay 2 
z* Contaminated with bacteria 



Table 11-12. Effect of the interaction of mulch and Fusarium species on mycelial growth at 2, 4, 
and 6 da�s after removal of the mulch treatment, Bioassa� 2 

Dar after mulch removedz 

Mulch Treatment Fusarium s� 2 4 6 

B. napus Canola oxysporum 44.66 CD 80.00 A 80.00 A 
solani 68.33 B 53.33 C 80.00 A 

graminearum 80.00 A 80.00 A 80.00 A 

B. napus 'Dwarf Essex Rape' oxysporum 46.00 CD 60.33 BC 75.66 A 

solani 48.33 CD 66.66 ABC 78.00 A 
graminearum 52.33 C 76.00 AB 80.00 A 

w Wheat oxysporum 64.66 B 73.33 AB 75.33 A 
00 

solani 80.00 A 80.00 A 80.00 A 

graminearum 80.00 A 80.00 A 80.00 A 

B. juncea 'Florida Broadleaf oxysporum 13.66 E 13.66 D 13.66 B 

solani 8.33 E 8.33 D 8.33 B 

graminearum 7.66 E 7.66 D 7.66 B 

B. juncea Mustard seed meal oxysporum 13.00 E 13.00 D 13.00 B 

solani 8.00 E 8.00 D 8.00 B 

8!..aminearum 5.33 E 5.33 D 5.33 B 

zWithin each day, numbers with the same letters are not significantly different according 
to a Fisher's-protected least significant difference test at P = 0.05, Bioassay 2. 
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Abstract 

Gaeumannomyces graminis var. tritici ( Ggt) is a soil borne pathogen that affects wheat. 

Recently, Brassica spp. have been reported to suppress soilbome wheat pathogens in 

vitro. The objective of this experiment was to determine the amount of ally I 

isothiocyanate (AITC) released from B. juncea needed to inhibit growth of Ggt. 

Gaeumannomyces graminis var. tritici was exposed to AITC, a dominant isothiocyanate 

compound found in Brassica spp. Treatments of pure AITC and AITC from B. juncea 

seed meal (mixed with water) at 0, 0.01, 0.02, 0.03, and 0.04 g were evaluated for effects 

on Ggt mycelial growth. Petri plates with potato dextrose agar and fungal plugs were 

inverted over 490-cm3 glass jars containing AITC treatments for 5 h. Headspace 

concentrations of pure AITC and AITC from B. juncea were recorded and colony 

diameter was measured for 9 days to determine suppression or death of Ggt. Mycelia 

growth was inhibited by all B. juncea treatments. The concentrations of AITC produced 

by B. juncea that inhibited 50 and 90% mycelial growth of Ggt were 0.43 and 0.80 µmol• 

liter ·1 , respectively. The average amount of AITC for each treatment is reported. 

Inhibition attributable to pure AITC alone was greater than that achieved by B. juncea. 

Introduction 

Gaeumannomyces graminis var. tritici is the most important soilbome pathogen 

affecting wheat worldwide (USDA, 1994). It is prevalent in the Southeastern United 

States due to high rainfall. This pathogen causes take-all of wheat and is most severe in 

areas with high precipitation or irrigation and poor drainage. Various controls have been 
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applied to Ggt but most are ineffective or not economical. 

The damage to wheat is related to the extent of root and basal stem colonization 

by Ggt. Wheat plants can withstand mild infections with only minimal yield loss. Mild 

infections do not result in obvious symptoms of the disease. However, when symptoms 

become obvious, yield losses can be high. Yield loss is attributed to the premature death 

of plants soon after heading and before grain filling. 

Wheat is most vulnerable to take-all during the seedling stage. For this reason 

seed treatments with fungicides have been applied with some success (Duffy, 2000; 

Dawson, 2001 ). However, take-all is sporadic in a field and seed treatments have not 

proven to be economical. Crop rotation and double cropping are common practices in the 

southeast to effectively utilize the growing season and to reduce inoculum of pathogens 

in soil. However, a rotation of wheat and legumes tends to aggravate take-all leading to 

an increase of the disease (Cook, 1981 ). 

Double cropping of wheat with green mulches that have allelopathic potential is 

being considered as an alternative approach to control take-all. Glucosinolates (GS), 

allelopathic compounds, are found in plants of the Brassicaceae family (Chew, 1988). 

The concentration of GS varies throughout the leaves, stems, roots, and seeds 

(Mithen, 2001 ). In general, GS are allocated in proportion to tissue importance relative 

to reproduction, with seeds containing the greatest quantity (Wallace and Eigenbrode, 

2001 ). When tissue is damaged, GS react with the enzyme myrosinase, in the presence of 

water, to form isothiocyanates (ITC). The ITC compounds function as natural fumigants 

and have proven to inhibit a wide array of plant pathogens (Charron and Sams, 1999). 

The GS-myrosinase interaction has been considered a plant defense system. However, 
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little work has been done to discover which specific ITC are directly involved with 

inhibition of pathogens. 

Allyl isothiocyanate (AITC) is a dominant ITC found in Brassica juncea 'Florida 

Broadleaf . This cultivar is grown for food consumption or animal forage and inhibits 

mycelial growth of Ggt and Fusarium in vitro ( Breeden et al., 2003). 

In this study pure AITC and mustard seed meal from B. juncea were tested to 

determine the amount of AITC needed to inhibit growth of Ggt. 

Materials and Methods 

Treatment application 

Fungal plugs of Gaeumannomyces graminis var. tritici were taken from actively 

growing mycelia of isolate WX, placed on 100-mm Petri dishes with 20 ml of potato 

dextrose agar (1/4 strength), and incubated for 24 h at 22°C. Mycelial growth was 

observed on fungal plugs after 24 h. Isolate WX was isolated from roots of wheat with 

take-all disease (Mazzola et al., 1995). 

Petri dishes were inverted on 490-cm3 glass jars that had been flamed with 70% 

ethanol. Pure AITC (95%, Sigma Aldrich, St. Louis, MO) was diluted with hexane 

(HPLC grade, Sigma Aldrich, St. Louis, MO) to obtain desired treatment concentrations 

of 0.0, 0.72, 1.56, 2.5, 3.125 , and 4.76 µmol • liter·1 • An airtight 10-µl syringe (Agilent 

Technologies, Palo Alto, CA) was used to inject pure AITC into the bottom of jars. 

Brassicajuncea seed meal treatments (0.0, 0.01, 0.01, 0.02, 0.03, 0.04 g) were placed in 

the bottom of jars and deionized water (50, 50, 100, 100, 150, and 200 µl respectively) 
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was added to hydrolyze the GS and activate the release of ITC from B. juncea (Table 111-

1; All tables and figures are located in Appendix III). Jars were sealed with Parafilm and 

incubated at 23 °C for 1 h before AITC was measured. 

The AITC concentrations were determined at 1, 2, and 3 h using an airtight 50-µl 

syringe (Agilent Technologies, Palo Alto, CA). Headspace samples were taken from a 

hole (0.635-cm-diam.) that was covered with two layers of adhesive tape on the side of 

the glass jar. 

Gas Chromatograph 

Headspace samples were injected into a Hewlett Packard 5890 gas chromatograph 

equipped with a Hewlett Packard 5972 mass selective detector to desorb for 1 min. The 

column was an Alltech EC Wax 30 x 0.25 x 0.25 (Alltech Associates, Inc., Deerfield, IL). 

The inlet and outlet temperatures were 200 and 280°C, respectively. The oven 

parameters were programmed at 60°C for 1 min, and then increased by 5°C per min to a 

maximum of 150°C. Detector response was quantified based on the equation for the 

AITC standard curve. 

After 5 h of exposure to pure AITC and B. juncea mulch in sealed jars, Petri 

dishes were removed, resealed with Parafilm and a new Petri lid, and Ggt was allowed to 

grow for 9 days. Fungicidal properties of pure AITC and B. juncea seed meal treatments 

were determined by measuring the colony diameter of fungal plugs. 

Data Collection 

Rates of pure AITC and the resulting counts, taken at one and two hours, were 

used to generate a regression equation (Fig 111-1 ). This equation was used to calculate 
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concentrations of B. juncea seed meal that inhibited 50 and 90% (IC50 and IC90) of Ggt 

mycelial growth (Fig. 111-2 and Fig. 111-3). 

Design and Analysis 

This experiment utilized a completely randomized design with three replicates 

and was repeated. Treatments were five rates of pure AITC or five rates of B. juncea 

seed meal (Tables 111- 1 and 111-2). Two treatments of B. juncea with 0.0 1 g were used; 

however one treatment (denoted with an asterisk) had 1 00 µl of water added in order to 

obtain a lower amount of AITC. Linear regression with PC-SAS software (Version 9 . 1 ,  

SAS Institute, Cary, NC) was utilized to produce the equations for quantifying AITC 

production and for describing the relationship between AITC release and B. juncea. 

Results 

The linear regression equation, developed using known concentrations of AITC, 

was y = 905 .99x + 1 34.6 1 (Fig. 111- 1 ). The R2 of this equation was 0.85 .  Mycelia of Ggt 

were sensitive to volatiles produced by B. juncea seed meal. Treatments containing 0.03 

g or more resulted in death of Ggt. Inhibition of Ggt mycelia at 50% (IC50) and 90% 

(IC90) were, 0.43 and 0.80 µmol-litef 1
, respectively, by B. juncea were calculated using 

the linear regression equation (Fig. 111-2). 

Concentrations of GS activity can vary between samples of B. juncea, therefore 

IC50 and IC90 values of B. juncea meal (g) were not determined. Instead, AITC from 

GS activity in B. juncea treatments were measured and related to inhibition of Ggt. The 

Ggt isolate WX was sensitive to pure AITC (Fig. 111-3). The IC50 and IC90 values of 
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pure AITC were 0.22 and 0.49 µmol-litef 1 respectively. These values were calculated 

using the equation developed from a standard curve (Figure 111-1 ). 

The average concentration of AITC evolved from each treatment of B. juncea 

ranged from 0.39 µmol•liter- 1 for 0.01 g meal (diluted with 100 µl water) to 1.77 

µmol-litef 1 for 0.04 g meal (diluted with 200 µl water) (Table 111-1). The AITC 

(µmol-litef 1
) evolved from pure AITC ranged from 0.06 (0.72 µM treatment) to 0.92 

(4.76 µM treatment) (Table 111-2). Absorption of volatiles by experimental equipment 

occurred in all treatments of pure AITC and AITC from B. juncea meal. 

Discussion 

In a study on inhibition of Pythium ultimum and Rhizoctonia solani by B. juncea, 

more than 90% of the volatiles recorded were AITC. This suggested that AITC was a 

significant factor in suppression of the pathogens by volatiles emitted from macerated 

mustard leaves (Charron and Sams, 1999). 

In experiments with Sclerotium rolfsii, mycelia and sclerotia were sensitive to 

volatiles produced by freeze-dried B. juncea Indian mustard. However, predicted 

concentrations of Indian mustard necessary for inhibition of S. rolfsii mycelial growth 

were four times the concentrations actually observed, if AITC alone was responsible for 

the inhibition. This suggested that other chemicals released by the Indian mustard 

contributed to its toxicity. Harvey concluded that AITC and other compounds acted 

synergistically to provide greater inhibition than either compound alone (Harvey et al., 

2002). 

Results of the current study differed from the aforementioned. The LC50 for pure 
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AITC was 0.22 µmor 1 [332.71 Gas Chromatograph Count (GCC)] and the LC90 was 

0.49 µmor 1 (578.86 GCC). The LC50 for AITC mustard seed meal from B. juncea was 

0.43 µmor 1 (524.61 GCC) and the 1C90 was 0.80 µmor 1 (858.25 GCC). The equation y 

= 905.99x + 134.61 was used to calculate projected values. The results suggest that 

AITC is the primary ITC responsible for inhibition of Ggt. 

In this study AITC from Brassica juncea inhibited Ggt mycelia. It has been 

reported that only 1 % or less of the predicted ITC concentration from GS were measured 

in soil amended with tissues of high GS content (Morra and Kirkegaard, 2002). 

Mustard seed meal from B. napus cv. Dwarf Essex stimulated microbial 

organisms antagonistic to Rhizoctonia solani (Mazzola et al., 2001). Total bacterial 

populations in soil increased from log 7 colony-forming units (CFU) g-1 to greater than 

log 8 CFU g- 1 4 wk after application of 'Dwarf Essex' seed meal. Furthermore, 

fluorescent pseudomonad and actinomycete populations increased significantly in 

response to application of 'Dwarf Essex' seed meal. Nematode populations were reduced 

also in one of two soils tested (Mazzola et al., 2001). More work is needed to determine 

the biofumigation properties of AITC from Brassica sp. and whether biofumigation will 

be effective in reducing primary inoculum of Ggt. 
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Appendix III 

Table 111-1. Amount of allyl isothiocyanate (AITC) 
(µmol-lite{ 1

) measured from each treatment of B. juncea 
(g) after 1 h 

Brassica juncea (gt 
0.01 
0.01 
0.02 
0.03 
0.04 

AITC (µmol•liter·1) 
0.41 
0.39 
0.86 
1.62 
1.77 

a diluted with 50, 100, 100, 150, and 200 µl deionized water, 
respectively. 

Table 111-2. Amount of pure allyl isothiocyanate (AITC) 
(µmol•liter·1) recorded from each treatment of AITC (µM) 
diluted with 95% HPLC hexane after l h  

AITC (µM) treatment AITC (µmol-liter·1) 

0.72 0.06 

1.56 0.23 
2.50 
3.125 
4.76 
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Part IV 

Effect of B. juncea 'Florida Broadleaf' Mulch Incorporated 

into Soil Infested with Wheat Roots and Crowns on Take-all 
. Disease of a Subsequent Wheat Crop 
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Abstract 

Mulches of Brassica spp. release glucosinolates during decomposition which are 

catalyzed to isothiocyanates, compounds that are toxic to soil microbes. Earlier we 

reported that Brassica juncea 'Florida Broadleaf mulch was fungicidal in vitro to 

Gaeumannomyces graminis var. tritici (Ggt), which causes take-all of wheat. In this 

study, our aims were to determine if incorporating 'Florida Broadleaf mulch into soil 

containing Ggt-infested wheat crowns and roots would reduce take-all in a subsequent 

wheat crop, and to evaluate phytotoxicity of B. juncea mulch to wheat seedlings. The 

experiment was a factorial in a split plot with two rates of Ggt (present or absent), two 

rates of Brassica mulch (present or absent) and ten replicates. Brassica mulch was the 

main plot and Ggt was the subplot. The study was repeated. Wheat 'AGS 2000' seeds 

were planted into soil in containers with and without Ggt. After 28 days, shoots were 

excised and wheat roots were left in soil. Soils with healthy and diseased roots were 

mulched with 'Florida Broadleaf for five days; mulch was not applied to controls. Wheat 

'AGS 2000' seeds were replanted into soil; take-all severity and shoot height were 

measured after 28 days. The main effects of mulch and Ggt, and the interaction were 

significant for disease in two trials. Treatment of soil containing Ggt-infected roots with 

B. juncea mulch significantly reduced take-all in the subsequent wheat planting in two 

tests. In one test, height of seedlings was reduced in soil with B. juncea mulch and 

seedling germination was reduced with B. juncea mulch regardless of the presence of 

Ggt. 
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Introduction 

Gaeumannomyces graminis var. tritici is the most significant wheat disease worldwide, 

and U.S. yield losses exceed $ 1  billion/ year (USDA, 1994). The ascomycetous 

pathogen has a sexual stage but it is not important to disease transmission (Hornby and 

Cook, · 1990). The fungus exists within soil, in old roots and tiller bases of previous 

wheat crops, and uses these plant remains as a food base for survival and to support 

growth onto new roots of the next crop (Cook and Veseth, 199 1 ). 

Take-all is usually more severe in sandy soils, with high pH and low fertility. 

Also, take-all is often found in regions with heavy rainfall, such as the Southeastern 

states, or in soils of dry wheat production under heavy irrigation, such as the Midwest 

and Pacific Northwest states. Infection by Ggt occurs through young seminal roots. 

Infections of these seedlings soon after planting result in the most severe yield losses. 

Seed treatments with fungicides are effective in managing take-all (Duffy, 2000; 

Dawson, 2001 ). However, they are often economically impractical because take-all is 

sporadic in a field. Nutrient management is another form of take-all control. 

Maintaining adequate levels of nitrogen, phosphorus, and potassium for crop growth 

reduces take-all (Huber and McCay-Buis, 1993). Form of nitrogen is important in 

disease management. Nitrogen applied in the ammonium form is more efficient for 

suppressing take-all than urea nitrogen (Howard et al., 2002a; 2002b ) .  

Crop rotation/alternative crops are often a practical, economical, and successful 

means of controlling soilborne pathogens. Crop rotation with other small grains, except 

oat, will not break the take-all disease cycle. In the southeast, wheat is often doubled-
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cropped with soybean. However, an increase in disease following double cropping with 

soybean has been reported (Cook, 1981). 

Brassica mulches have been reported to inhibit Ggt in vitro (Angus, 1994). 

Mulches of Brassica spp. such as Brassicajuncea and B. napus, produce glucosinolates 

(GS). These are secondary metabolites found in intact plant tissues. When tissue is 

damaged the enzyme myrosinase (normally physically separated from GS) catalyzes the 

conversion of GS to isothiocyanates [ITC (Chew, 1988)] , which have activity against 

plant pathogens (Charron and Sams, 1999). The ITC compounds are highly biocidal to a 

diverse range of organisms including nematodes, bacteria, fungi, insects, and germinating 

plant seeds (Brown and Morra, 1997; Borek, 1998). 

The objectives of this experiment were to determine if incorporation of B. juncea 

'Florida Broadlear mulch into soil containing Ggt-infested wheat crowns and roots 

would reduce take-all in a subsequent wheat crop, and to evaluate phytotoxicity of B. 

juncea 'Florida Broadlear to wheat seedlings. 

Materials and Methods 

Pathogen inoculum 

Two isolates (WX and A2) of Ggt were used to produce inoculum in order to 

minimize possible effects from differential sensitivity of the pathogen to Brassica mulch. 

The isolates were cultured from diseased wheat roots in South Carolina (Mazzola et al. , 

1995) and Tennessee (our laboratory) respectively. Mycelia grown in 100-mm Petri 

dishes on potato dextrose agar (1/4 strength) were added to twice-autoclaved (120°C, 90 

min) oat grain medium (150 cm3 oats, 125 ml deionized water) in a I-liter Erlenmeyer 
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flask that was plugged with a cotton swab wrapped in cheesecloth. Flasks were agitated 

every 24 h in order to distribute mycelia throughout the flask and allow mycelia to 

colonize oat seeds. As oat seeds became colonized with Ggt they turned black and began 

to clump together. 

After 2 wk, oat inoculum was spread on heavy paper in a fume hood for 24 h to 

dry. Inoculum was stored at 3 8°C. As needed, whole colonized oat grains were ground 

in a blender, and sieved to obtain particles of 0.25 to 0.5-mm diam for use as inoculum. 

Soil 

Sequoia silty clay loam soil from the East Tennessee Research and Education 

Center Small Grain Unit, Blount County, TN was used for this test. Soil was autoclaved 

two times ( 120°C, 1 .5 h) on consecutive days. Difficulty in obtaining infection from Ggt 

led to adjustment of pH and soil coarseness. Calcium carbonate was added to raise the 

pH of the soil from 5 .5 to 7.0. A soil mineral and nutrient analysis of natural {Table IV-

1 ;  All tables and figures are located in Appendix IV) and autoclaved (Table IV-2) 

Sequoia silty clay loam was preformed by A&L Analytical Laboratories, Memphis, TN. 

Coarseness of soil was adjusted by adding medium grained sand to soil. The final 

3 :  1 ratio (wt/wt) of soil to sand was used for the disease assay. 

Wheat Seed 

Wheat seed used in this experiment was screened for viability and for 

susceptibility to take-all. Wheat cultivars (AGS 2000, USG 3209, OH 708 ,  AST, and 

McCormick) were placed on 1 00-mm Petri dishes with moistened filter paper. Cultivars 

with less than 90% germination were not considered for the take-all susceptibility test. 

Susceptibility to take-all was measured by planting seeds in a 1 : 1 mixture of Ggt 
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and soil. Plants grew for seven days and seedlings were rated for severity of take-all. 

Plant roots were washed free of soil and severity of take-all was evaluated on a scale of 0 

to 8, where O = plant healthy (no disease evident); 1 = < 10% roots black; 2 = 1 0-25% 

roots black; 3 = 25-50% roots black; 4 = 50- 100% roots black; 5 = all roots with lesions 

and lesions at base of stem; 6 = lesions moving up the stem; 7 = plant chlorotic and 

severely stunted; and 8 = plant dead or nearly so (Thomashow and Weller, 1988; 

Thomashow, 1 990). Cultivar AGS 2000 was used in this experiment because it had the 

most severe take-all disease (Fig. IV- 1 ). 

Disease assay 

Plastic containers (656 cm3
) with drainage holes were used in this experiment 

(Stuewe and Sons, Inc. Corvallis, OR). Eleven water absorbent cotton balls, 250-cm3 

vermiculite, 200-cm3 soil with Ggt inoculum (6%, wt/wt), and 50-cm3 vermiculite were 

layered in the containers for this assay. Seed were placed on the top of the soil/Ggt 

mixture and 50-ml of deionized water was added daily to simulate flood conditions. 

Cones were covered with clear plastic for 4 days to prevent excessive water evaporation 

during seed germination (Figure IV-2). Containers were placed in a growth chamber at 

l 8°C for 28 days. 

Mulch incorporation 

Brassicajuncea leaves were harvested, dried ( 10% moisture), and stored (24°C) 

at the East Tennessee Research and Education Center, Knoxville, TN, before 

incorporation into the disease assay. 

After 28 days of growth, wheat stems were excised ( 1 -cm) above the soil line and 

discarded. For Brassica treatments, soil was separated into 3-cm sections, and kneaded 
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for 25 s in a sealable plastic bag. Dried B. juncea (8 .8 g) was added, and soil was 

kneaded for an additional 25 s to ensure a homogeneous mixture . The same process was 

repeated for each treatment excluding the addition of dried Brassica. Soil sectioning and 

kneading were done to simulate tillage in a field system. For the treatments without Ggt, 

the same procedure was used except that soil with wheat roots and crowns were used 

instead of autoclaved soil. Biofumigation with Brassica mulch occurred for 5 days. 

Data Collection 

Ten wheat seeds were planted in each cone and seedlings were grown for 28 days. 

Soil was washed from plant roots and disease severity was determined (0-8 scale). Seed 

germination percentage and seedling height were measured also. 

Design and Analysis 

The study was designed as a 2 x 2 factorial in a split plot with two levels of Ggt 

inoculum (present or absent) and two soil treatments (untreated or B. juncea 'Florida 

Broadleaf mulch) . Brassica mulch was the main plot and Ggt was the subplot. There 

were 10 replicates per treatment and 10 plants per replicate. The study was repeated. 

Data were analyzed for significance .with the Mixed procedure of PC-SAS 

(Version 9.0, SAS Institute, Cary, NC). Significant effects were further analyzed with 

Fisher' s protected least significant difference test at P = 0.05 or P = 0. 10. 
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Results 

Take-all disease severity 

The interaction of soil treatment and pathogen was significant in both trials (P < 

0.0001). In two trials, of soil containing Ggt-infected roots and crowns as inoculum, 

disease severity was significantly lower with incorporation of Brassica mulch in soil than 

in untreated soil (Fig. IV-3, IV-4). In the absence of Ggt, there was no evidence of take

all disease. 

Shoot height 

In the first trial (Fig. IV-5), the interaction of soil treatment and pathogen was 

significant. (P < 0.0001). Height of seedlings was less in Ggt-free soil mulched with 

'Florida Broadleaf than in soil without mulch, but with Ggt present. Plant height in 

untreated soil (no Ggt) with no mulch treatment was greatest. In the second trial (Fig. IV-

6), the main effect of pathogen was significant (P = 0.0476). Height was lowest in soil 

without Ggt regardless of mulch addition. 

Seedling germination 

In the first trial (Fig. IV-7), the effect of pathogen was significant (P = 0.0078). 

Germination was greatest for seedlings in soil without Ggt. In contrast, in the second 

trial (Fig. IV-8), effect of soil treatment was significant (P = 0.054 7). Germination was 

lower in soil mulched with Brassica, regardless of the presence of Ggt. 
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Discussion 

In previous reports we have shown that fresh mulches of Brassica spp. 

have fungicidal activity in vitro against soil borne pathogens of wheat such as Ggt and 

Fusarium graminearum, F. oxysporum and F. solani (Breeden et al., 2002; Breeden et al., 

2003). In this study, incorporation of dried mulch of B. juncea cv. Florida Broadleaf, at a 

rate of 4% wt/vol significantly reduced severity of take-all disease. However, Brassica 

mulch was associated with reduced shoot height and seed germination of wheat. It is 

possible that lower rates of 'Florida Broadleaf mulch may suppress disease without 

causing phytotoxicity effects. 

In addition to the release of ITC, incorporation of dried Brassica mulch may alter 

the microbial population dynamics of soil. Addition of Brassica napus seed meal, with 

little ITC activity, suppressed Rhizoctonia root rot of apple caused by R. solani and 

increased specific groups of microorganisms, such as total bacteria, actinomycetes and 

fluorescent pseudomonads. The authors concluded that disease suppression could have 

resulted from enhanced populations of microorganisms that were antagonistic to R. solani 

(Mazzola et al., 2001 ). Although effects of B. juncea mulch on microbial populations 

were not evaluated in this study, it is likely that incorporation of mulch altered microbial 

populations which in tum could have contributed to disease suppression of Ggt. 

Literature Cited 

Angus, J.F. , Gardner, P.A., Kirkegaard, J.A., and Desmarchelier, J.M. 1994. 
Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take
all fungus. Plant Soil 162:107-112. 

60 



Borek, V., Elberson, L.R., McCaffrey, J.P., and Morra, M.J. 1 998. Toxicity of 
isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil 
eggs. J. Agric. Food Chem. 46:53 1 8-5323 

Brown, P. & Morra, M. 1 997. Control of soil-borne plant pests using Glucosinolate
containing plants. Pages 1 67-229 in: Advances in Agronomy, Vol. 6 1 ,  D. Sparks, ed., 
Acad. Press, San Diego. 

Charron, C.E, and Sams, C.E. 1 999. Inhibition of Pythium ultimum and Rhizoctonia 
solani by shredded leaves of Brassica species. J. Amer. Soc. Hort. Sci. 124:462-467. 

Chew, F.S.  1 988. Biological effects of glucosinolates. Pages 1 55 - 1 8 1  in: Biologically 
Active Products, H.G. Cutler, ed. Amer. Chem. Soc., Washington, D.C. 

Cook, R.J., and Veseth, R.J. 1 991 . Wheat Health Management. APS Press, St. Paul, MN. 

Cook, R.J. 1 98 1 .  The influence of rotation crops on take-all decline phenomenon. 
Phytopathology 7 1 :  1 89- 1 92. 

Dawson, W.A.J.M., and Bateman, G.L. 200 1 .  Fungal communities on roots of wheat 
and barley and effects of seed treatments containing fluquinconazole applied to control 
take-all. Plant Pathol. 50 :75-82. 

Duffy, B. 2000. Combination of pencycuron and Pseudomonas fluorescens strain 2-79 
for integrated control of rhizoctonia root rot and take-all of spring wheat. Crop Prot. 
1 9:2 1 -25. 

Howard, D.D., Newman, M.A., Essington, M.E., and Percell, W.M. 2002a. Nitrogen 
fertilization of conservation-tilled wheat. I. Sources and application rates. J. Plant Nutr. 
25: 1 3 1 5-1 328. 

Howard, D.D. , Newman, M.A., Essington, M.E., and Percell, W.M. 2002b. Nitrogen 
fertilization of conservation-tilled wheat. II. Timing and application of two nitrogen 
sources. J. Plant Nutr. 25 : 1 329-1339. 

Homby, D and Cook, R.J. 1 990. Biological Control of Soilbome Plant Pathogens. C.A.B. 
International, Tucson, AZ. 

Huber, D.M. and T.S. McCay-Buis 1 993. A multiple component analysis of the take-all 
disease of cereals. Plant Dis. 77:437-447. 

Mazzola, M., Granatstein, D.M., Elfving, D. C., and Mullnix, K. 200 1 .  Suppression of 
specific apple root pathogens by Brassica napus seed meal amendment regardless of 
glucosinolate content. Phytopathology 91 :673-679. 

61 



Mazzola, M., Fujimoto, D.K.,  Thomashow, L.S., and Cook, R.J. 1995 . Variation in 
sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent 
Pseudomonas spp. and effect of biological control of take-all of wheat. Appl. Environ. 
Microbiol. 61 :2554-2559. 

Thomashow, L.S. , and Weller, D.M. 1988. Role of phenazine antibiotic from 
Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. 
J. Bacteriol. 170:3499-3508. 

Thomashow, L.S., Weller, D.M., Bonsall, R.F., and Pierson, L.S., III. 1990. Production 
of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the 
rhizosphere of wheat. Appl. Environ. Microbiol. 56:908-912. 

U.S. Department of Agriculture. 1994. Agriculture Fact Book, Office of 
Communications, Washington, D. C. 

62 



Appendix IV 

Table IV-1. Analysis of Sequoia silty clay loam soil. 
Nutrient 
Phosphorus (P) 
Potassium (K) 
Calcium (Ca) 
Magnesium (Mg) 
Sulfur (S) 
Boron (B) 
Copper (Cu) 
Iron (Fe) 

Manganese (Mn) 
Zinc (Zn) 
Sodium (Na) 
Organic Matter 
CEC 
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Concentration 
35.0 ppm 

200.0 ppm 
697.0 ppm 
145.0 ppm 

7.0 ppm 
0.7 ppm 
1.8 ppm 

65.0 ppm 
314.0 ppm 

2.9 ppm 
17.0 ppm 
1.4% 
8 .1 meq/1 OOg 



Table IV-2. Analysis of autoclaved Sequoia silty clay 
loam soil. 

Nutrient 
Phosphorus (P) 
Potassium (K) 
Calcium (Ca) 
Magnesium (Mg) 
Sulfur (S) 
Boron (B) 
Copper (Cu) 
Iron (Fe) 

Manganese (Mn) 
Zinc (Zn) 
Sodium (Na) 
Organic Matter 
CEC 
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Concentration 
3 1 .0 ppm 

1 94.0 ppm 
660.0 ppm 
146.0 ppm 

8.0 ppm 
0.7 ppm 
1 .8 ppm 

5 1 .0 ppm 
385 .0 ppm 
60. 1 ppm 
1 8.0 ppm 
1 .7% 
8.7 meq/ l 00g 



Figure IV-1. Wheat cv. AGS 2000 was 
very susceptible to take-all disease. Healthy 
wheat roots not exposed to Ggt (left) and 
roots with severe take-all (right). 
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Figure IV-2. Containers were covered with plastic 
to prevent excessive moisture evaporation during 
seed germination. 
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Fig. IV-3. Effect of the interaction of soil treatment and soil infestation 
with Gaeumannomyces graminis var. tritici on disease rating (0-8) of 
wheat seedlings. Standard error of the mean = ± 0.2335 .  Bars with 
different letters are significantly different according to a F-protected 
least significant difference test at P = 0.05 . Trial 1 .  

67 



ro 

5 ......------------------------------, 

A 

4 . . . . . . . . . . . . . . . . . . . . . . . .  . 

- Ggt 
� No Ggt 

I 3 . . . . . . . . . . . . . . . . . . . . . . . . e, 
C) 
C 

-� 
(I) 
"' 

51 2 · · · · · · · · · · · · · · · · · · · · · · · · · 
B 

1 · · · · · · · · · · · · · · · · · · · · · · · · 

0 .___ ___ _ 

C 

0 

Untreated 

Soi I treatment 

C 

0 

Brassica 

Fig. IV-4. Effect of the interaction of soil treatment and soil infestation 
with Gaeumannomyces graminis var. tritici on disease rating (0-8) of 
wheat seedlings. Standard error of the mean = ± 0. 1 992. Bars with 
different letters are significantly different according to a F-protected 
least significant difference test at P = 0.05. Trial 2 .  
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Fig. IV-5. Effect of soil treatment (untreated or Brassica mulch) on shoot 
height of wheat seedlings planted in untreated soil or soil infested with 
Gaeumannomyces graminis var. tritici. Standard error of the mean = ± 
0.6668. Bars with different letters are significantly different according to a F
protected least significant difference test at P = 0.05. Trial 1 .  
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Fig. IV-6. Effect of pathogen treatment ( +Ggt, no Ggt) on shoot height of 
wheat seedlings planted in untreated soil or soil mulched with Brassica 
juncea 'Florida Broadleaf . Standard error of the mean = ± 0.3 123 .  Bars with 
different letters are significantly different according to a F-protected least 
significant difference test at P = 0.05 . Trial 2. 
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Fig. IV-7. Effect of pathogen ( +Ggt, no Ggt) on germination of 
wheat seedlings planted in untreated soil or soil mulched with B. 
juncea 'Florida Broadleaf. Standard error of the mean = ± 
5.0254. Bars with the same letters are not significantly different to 
an F-protected least significant difference test at P = 0.05. Trial 1. 

71 



1 00  

80 
C: 
0 

i 
C: 

.E 
Q) 
0) 

+-' 
C: 
Q) 

40 0 
'-
Q) a.. 

20 

A 

I 

Untreated Brassica mulch 

Soi l  treatment 

Fig. IV-8. Effect of soil treatment (untreated or Brassica mulch) on 
germination of wheat seedlings. Standard error of the mean = ± 3 .43 1 2. 
Bars with the same letters are not significantly different according to an 
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